
Runtime Adaptive System-on-Chip
Communication Architecture

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

der Fakultät für Informatik

der Universität Fridericiana zu Karlsruhe (TH)

genehmigte

Dissertation

von

Mohammad Abdullah Al Faruque

aus Tangail, Bangladesh

Tag der mündlichen Prüfung: 22.07.2009

Erster Gutachter: Prof. Dr.-Ing. Jörg Henkel

Zweiter Gutachter: Prof. Dr.-Ing. Jürgen Becker

c© Copyright by Mohammad Abdullah Al Faruque, 2009

All Rights Reserved

Mohammad Abdullah Al Faruque

Hans-Pfitzner-Str.7

76227, Karlsruhe

Hiermit erkläre ich an Eides statt, dass ich die von mir vorgelegte Arbeit selbständig verfasst

habe, dass ich die verwendeten Quellen, Internet-Quellen und Hilfsmittel vollständig angegeben

habe und dass ich die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen –

die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf

jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Mohammad Abdullah Al Faruque

Acknowledgment

First of all, I sincerely thank my adviser, Professor Dr. Jörg Henkel, for his erudite guidance

during my whole period of research. I am fortunate to have an adviser with great vision, who is

always interested in exploring new research directions and ideas. He gave me complete freedom

in performing research, and still made sure that my various works are neatly tied together. He

has given excellent personal support to all his students and provided an enjoyable working

environment.

I am also very grateful to Professor Dr. Jürgen Becker for accepting to be my co-examiner and

providing valuable feedback.

I would like to thank my colleague Thomas Ebi for his continuous support in my research work.

I present my gratitude to other colleagues Talal Bonny, Lars Bauer, and Muhammad Shafique

for their support through discussion and positive feedback regarding my research work. I again

thank all the other members of our chair, “Chair for Embedded Systems” for their help and

support during my research work and thesis writing.

I am grateful to all my students for their hard and fruitful work, particularly Gereon Weiss, Xing

Ye, Rudolf Krist, Manuel Hammerich, Thomas Schröder, and Thorsten Vogel.

I thank my parents for their constant love, support, and prayers. My parents always dreamed

that one day I will finish my PhD. I believe this piece of work was only possible because of their

prayer and wishes. I also thank my elder sister and younger sister for their loving and caring

attitude throughout my student life. I would not miss the chance to thank my grandparents for

their best wishes.

Finally, I present my deepest gratitude to my wife and my daughter. All of my achievements

contain an invisible part of their contribution. I am grateful for all the sacrifices that my wife

made to support my research. The quality of this work would not have been achieved without

her priceless sacrifices.

I dedicate this thesis to all of my family members.

i

List of Publications

Publications Included in This Thesis

Journal Publication

[J.1] M. A. Al Faruque, J. Henkel: ”QoS-Supported On-chip Communication for Multi-Processors”,

in International Journal of Parallel Programming (IJPP’08), Volume 36, Number 1, Pages:

114-139, February, 2008.

Conference Publications

[C.1] M. A. Al Faruque, T. Ebi, J. Henkel: ”Configurable Links for Runtime Adaptive On-chip
Communication”, in IEEE/ACM Design Automation and Test in Europe (DATE’09),
Munich, Germany, Pages: 256-261, April, 2009.

[C.2] M. A. Al Faruque, T. Ebi, J. Henkel: ”ROAdNoC: Runtime Observability for an Adaptive
Network on Chip Architecture”, in IEEE/ACM International Conference on Computer-

Aided Design (ICCAD’08), San Jose, California, USA, November, 2008.

[C.3] M. A. Al Faruque, R. Krist, J. Henkel: ”ADAM: Run-time Agent-based Distributed Ap-
plication Mapping for on-chip Communication”, in 45th IEEE/ACM/EDA Design Au-

tomation Conference (DAC’08), Anaheim, California, USA, Pages: 760-765, June, 2008.

(Received a European Network of Excellence on High Performance and Embedded
Architecture and Compilation, HiPEAC Paper Award)

[C.4] M. A. Al Faruque, J. Henkel: ”Minimizing Virtual Channel Buffer for Routers in on-chip
Communication Architectures”, in IEEE/ACM Design Automation and Test in Europe

(DATE’08), Munich, Germany, Pages: 1238-1243, March, 2008.

[C.5] M. A. Al Faruque, T. Ebi, J. Henkel: ”Run-time Adaptive on-chip Communication Scheme”,

IEEE/ACM International Conference on Computer-Aided Design (ICCAD’07), San Jose,

California, USA, Pages: 26-31, November, 2007.

[C.6] M. A. Al Faruque, J. Henkel: ”Transaction Specific Virtual Channel Allocation in QoS
Supported On-chip Communication”, IEEE International Conference on Application-

specific Systems, Architectures and Processors (ASAP’07), Montreal, Canada, Pages:

48-53, July, 2007.

iii

iv

[C.7] M. A. Al Faruque, G. Weiss, J. Henkel: ”Bounded Arbitration Algorithm for QoS-
Supported On-chip Communication”, IEEE/ACM International Conference on Hardware/-

Software Co-Design and System Synthesis (Codes+ISSS’06), Seoul, South Korea, pages:

76-81, October, 2006.

Workshop Publication

[W.1] M. A. Al Faruque, X. Ye, G. Weiss, J. Henkel: ”QoS-Supported Configurable Networks
on Chip”, Future Interconnects and Network on Chip (NOCS’06) Workshop co-located

with IEEE/ACM Design Automation and Test in Europe (DATE’06), Page: 42, Munich,

Germany, March, 2006 (poster, abstract).

Abstract

Diverse and during runtime varying workloads and/or constraints in embedded systems require

runtime adaptivity to provide a high degree of efficiency during any operation mode/scenario.

Design-time decisions can often only cover certain scenarios and fail in efficiency when hard-

to-predict system scenarios occur. Reliability concerns associated with upcoming technology

nodes further strengthen the necessity towards considering runtime adaptivity in all possible

parts of the future system-on-chips. In this thesis, the first approach of an adaptive system-on-

chip communication architecture is presented. The adaptive system provides adaptivity both

in the system-level as well as in the architecture-level. The system-level adaptation is provided

using a runtime application mapping. The architecture-level adaptation is implemented by us-

ing several novel methodologies to increase the resource utilization of the underlying silicon

fabric, i.e. sharing the Virtual Channel Buffers (VCBs) among different output ports, changing

the routing at runtime, and changing the supported bandwidth between adjacent links using

configurable links at runtime. To achieve successful runtime adaptation, runtime observability

is a prerequisite, as it provides necessary system information gathered on-the-fly. Therefore,

a comprehensive runtime observability infrastructure for the proposed adaptive system is also

presented in this thesis.

The proposed adaptive system-on-chip communication architecture is capable of supporting

deadlock-free data transmission and meets required bandwidth guarantees for parallel transac-

tions. Therefore, it is built on top of a novel Quality-of-Service (QoS)-supported Networks-on-
Chip (NoC) architecture. The link arbitration algorithm, the Bounded-Arbitration-Algorithm
(BAA) proposed in this thesis manages the flow-control mechanism at transaction-level and

provides 100% guarantee on demanded bandwidth. The advantages of BAA are demonstrated

by means of a complete MPEG4 video decoder case study analysis and under certain constraints

it is shown that BAA achieves a bandwidth utilization of up to 100% (97% on an average) with

a guaranteed 100% bandwidth.

A runtime agent-based distributed application mapping is employed to achieve the system-level
adaptation. To obtain a scalable mapping solution, the computational load is reduced by con-

fining mapping to clusters which are a connected subset of NoC tiles. Exploration shows, the

proposed runtime mapping obtains 10.7 times lower monitoring traffic compared to the state-of-

the-art centralized mapping schemes proposed for a 64 × 64 NoC. The algorithm also requires

less execution cycles compared to a non-clustered centralized approach. It achieves on an av-

erage 7.1 times lower computational effort of the mapping algorithm compared to the simple

Nearest-Neighbor (NN) heuristics in a 64 × 32 NoC.

After the system-level has successfully set up a mapping instance, it is up to the architecture-
level to configure each tile for the resulting transactions. The 2X-Link, a novel link for the

v

vi

architecture-level provides a higher throughput of up to 36%, with an average throughput in-

crease of 21.3%, compared to the Normal-Full-Duplex-Link and keeps performance-related

guarantees with as low as 50% of the Normal-Full-Duplex-Link capacity. The experiments

show, when some links fail randomly, the NoC with the 2X-Links may recover from those faults

with an average probability of 82.2%, whereas those faults would be fatal for the Normal-Full-
Duplex-Links. The on-demand buffer assignment presented as a part of the architecture-level
of the adaptive system increases the buffer utilization and decreases the overall buffer use on an

average of 42% in the case study analysis compared to a fixed buffer assignment. The runtime

observability infrastructure that is integrated for the runtime system in the architecture-level
is hardly intrusive, i.e. in worst case it may require a mere 0.7% of the total link capacity. It

analyzes the communication architecture during runtime and self-adapts depending on the mon-

itoring traffic on when and how a certain router should be configured for a certain transaction.

The runtime observability infrastructure on an average increases the transaction success rate by

62% compared to having no runtime observability for the E3S benchmark suite with a hardware

overhead of 46 slices in a Virtex II FPGA. The area overhead that stems from the architecture-
level adaptation may be traded-off against the flexibility to select an available route using the

2X-Links and on-demand buffer assignment (42% buffer saving) to that route for ensuring the

QoS.

The QoS-supported NoC architecture is further explored for a case-study analysis to design an

application-specific NoC. A novel methodology for design space exploration using a two-step

methodology to minimize the number of VCBs is presented as a part of the application-specific

NoC design in this thesis. On an average, 90.2% reduction in the number of VCBs compared to

a fixed assignment for the E3S embedded application benchmark suite is achieved.

In summary, a runtime adaptive system-on-chip communication architecture on top of a QoS-

supported NoC is presented in this thesis. The runtime adaptation is achieved by providing

novel methodologies both in the system-level as well as in the architecture-level. The benefits

of such an approach are presented with extensive experiments using representative embedded

systems applications e.g. a robotic application, a set of multi-media applications, and the E3S

embedded systems synthesis benchmarks suite.

Zusammenfassung

Vielfältige und zur Laufzeit variierende Auslastungen und/oder Einschränkungen eingebet-

teter Systeme erfordern eine Adaption des Systems zur Laufzeit, um einen hohen Grad der

Effizienz während eines beliebigen Betriebsmodus/-szenarios zu gewährleisten. Entscheidun-

gen, welche während der Entwurfszeit getroffen werden, können oft nur gewisse Szenarien

berücksichtigen und scheitern im Falle von schwer vorhersehbaren Systemszenarien daran, die

Effizienz aufrecht zu erhalten. Zuverlässigkeitsprobleme, welche verstärkt mit den kommenden

Generationen der Halbleitertechnologie in Verbindung gebracht werden, verstärken den Be-

darf an Laufzeitadaptivität in allen Teilen zukünftiger System-on-Chip Entwürfe. Diese Ar-

beit präsentiert den ersten Ansatz einer adaptiven Kommunikationsarchitektur für ein solches

System-on-Chip. Dieses adaptive System bietet Adaptivität sowohl auf Systemebene als auch

auf Architekturebene. Die Adaption auf Systemebene wird durch eine Zuordnung der Anwen-

dungen auf die einzelnen Rechenknoten zur Laufzeit erzielt. Die Adaptivität auf Architek-

turebene wird durch verschiedene, neuartige Methodologien erreicht. Sie erhöhen die Auslas-

tung der Ressourcen des zugrunde liegenden Siliziums, z.B. durch das dynamische Verteilen des

Speichers der virtuellen Kanäle (Virtual Channel Buffer, VCB) an verschiedene Ausgangsports,

eine Anpassung des Routings zur Laufzeit und das Ändern der möglichen Bandbreite zwischen

benachbarten Routern zur Laufzeit. Um eine erfolgreiche Adaption zur Laufzeit zu ermöglichen,

ist eine ständige Beobachtung des Systems erforderlich. Daher wird eine umfassende Infras-

truktur zur Beobachtung des Systems zur Laufzeit im Rahmen dieser Arbeit entworfen und

vorgestellt.

Die vorgestellte adaptive System-on-Chip Kommunikationsarchitektur, realisiert als Networks-

on-Chip (NoC), unterstützt eine deadlock-freie Datenübertragung und garantiert benötigte Dienst-

güten (Quality-of-Service, QoS) während paralleler Übertragungen. Das in dieser Arbeit vor-

geschlagene Verfahren, der “Bounded-Arbitration Algorithmus” (BAA), regelt die Flusskon-

trolle auf Transaktionsebene und bietet eine 100-prozentige Garantie der verlangten Bandbrei-

tenanforderungen. Die Vorteile des BAAs werden anhand einer umfangreicher Fallstudie eines

MPEG4 Videodecoders analysiert. Hierbei wird gezeigt, dass der BAA unter den gegebenen

Einschränkungen eine Bandbreitennutzung von bis zu 100% (im Durchschnitt 97%) erreicht,

ohne an Dienstgüte zu verlieren (100% garantierte Bandbreite).

Es wird eine verteilte, agentenbasierte Zuordnung der Anwendungen auf die einzelnen Rechen-

knoten zur Laufzeit verwendet um die, Adaption auf Systemebene zu realisieren. Um die

Zuordnung skalierbar zu halten, wird der Rechenaufwand reduziert, in dem die Zuordnung auf

Cluster beschränkt wird. Ein Cluster besteht aus einer verbundenen Untermenge der Networks-

on-Chip-Knoten. Untersuchungen zeigen, dass das vorgeschlagene Verfahren 10,7 mal weniger

Datenübertragung zur Systemüberwachung verursacht, als ein zentral gesteuertes Verfahren,

vii

viii

wie es zum aktuellen Stand der Technik in 64 × 64 NoCs verwendet wird. Hinzu kommt, dass

der Algorithmus im Vergleich zu Verfahren ohne Cluster weniger Rechenzeit benötigt. In Ex-

perimenten verursacht er im Durchschnitt 7,1 mal weniger Rechenaufwand im Vergleich zur

einfachen “Nearest-Neighbor” (NN)-Heuristik in einem 64 × 32 NoC.

Nachdem auf Systemebene erfolgreich eine Anwendungszuordnung gefunden wurde, ist es

eine Aufgabe auf Architekturebene, die resultierenden Verbindungen der Kacheln zu konfi-

gurieren. 2X-Links, eine neue Art von Verbindungen für Networks-on-Chips, ermöglicht einen

bis zu 36% höheren Durchsatz (im Durchschnitt 21,3%) im Vergleich zu normalen Volldu-

plexverbindungen. Sie garantieren Verbindungen mit bis zu 50% der Kapazität von normalen

Vollduplexverbindungen. Durch Simulationen wird gezeigt, dass ein NoC mit 2X-Links mit

einer durchschnittlichen Wahrscheinlichkeit von 82,2% zufällige Verbindungsausfälle umge-

hen kann, obwohl die Ausfälle für normale Vollduplexverbindungen unausweichlich wären.

Die bedarfsabhängige Zuteilung der VCBs erhöht die Auslastung der einzelnen Buffer. In

einer Fallstudie wird der Speicherbedarf im Vergleich zu einer festen Speicherzuteilungsstrate-

gie im Durchschnitt um 42% reduziert. Die Infrastruktur zur Beobachtung des Systems zur

Laufzeit, welche in die Architektur des Laufzeitsystems integriert ist, ist sehr leichtgewichtig

– im schlimmsten Fall benötigt sie höchstens 0,7% der verfügbaren Verbindungskapazität. Sie

analysiert die Kommunikation wären der Laufzeit und entscheidet eigenständig, wann und wie

ein Router für gewisse Übertragungen konfiguriert sein sollte. Diese Maßnahme verbessert die

Erfolgsquote der Übertragungen von Anwendungen aus der E3S-Benchmark-Suite um 62% im

Vergleich zu einer Architektur ohne eine entsprechende Beobachtungsinfrastruktur. Sie benötigt

einen Hardwareaufwand von 46 Slices in einem Virtex II FPGA. Der zusätzliche Hardware-

verbrauch wird durch die Möglichkeit, verschiedene Routen – mit und ohne 2X-Links – zu

nehmen, der Speicherzuteilung zur Laufzeit (42% weniger Speicherbedarf) und durch die er-

langte Dienstgüte ausgeglichen.

Die QoS-bietende System-on-Chip Kommunikationsarchitektur wird mittels einer Fallstudie

weiter untersucht, um ein applikations-spezifisches NoC zu entwerfen. Eine neue Vorgehens-

weise, um mittels einer zweistufigen Methodologie die Zahl der benötigten VCBs zu min-

imieren, wird im Rahmen dieser Arbeit vorgestellt. Im Durchschnitt wird dadurch der für die

“E3S embedded application benchmark suite” benötigte Speicher im Vergleich zu einer festen

Speicherzuteilung um 90,2% reduziert.

Zusammenfassend präsentiert diese Arbeit ein laufzeitadaptives NoC, welchem eine System-

on-Chip Kommunikationsarchitektur, welche QoS unterstützt, zugrunde liegt. Die Adaption

zur Laufzeit wird durch neue Vorgehensweisen sowohl auf Systemebene als auch auf Architek-

turebene erzielt. Die Vorteile eines solchen Ansatzes werden durch zahlreiche Experimente aus

repräsentativen Anwendungen für eingebettete Systeme dargestellt – z.B. einer Robotikapplika-

tion, einer Klasse von Multimediaapplikationen und der “E3S benchmark suite”.

Contents

Acknowledgement i

List of Publications iii

Abstract v

Zusammenfassung vii

Abbreviations xiv

List of Figures xvii

List of Tables xix

List of Algorithms xxi

1 Introduction 1
1.1 Background . 1

1.2 Networks-on-Chip Design Evolution . 2

1.3 Contributions of This Dissertation . 4

1.4 Dissertation Outline . 5

2 Related Work: MPSoC Interconnections 7
2.1 Bus-based Interconnection . 7

2.2 Networks-on-Chip: Key Research Issues . 9

2.2.1 Networks-on-Chip Architectures . 9

2.2.2 Topology Customization . 10

2.2.3 Quality-of-Service-supported Networks-on-Chip 11

2.2.4 Buffer Minimization . 13

2.2.5 Runtime Adaptivity in Networks-on-Chip Design 14

2.2.6 Application Mapping onto Networks-on-Chip 15

2.2.7 Runtime Traffic Observability . 16

2.3 Conclusion . 17

3 QoS-supported System-on-Chip Communication 19
3.1 Definitions . 20

3.2 Packet-based Communication . 21

3.2.1 Wormhole Switching . 22

ix

x Contents

3.2.2 Packet Structure . 24

3.2.3 Pipeline Stages of the Router Architecture 25

3.3 Guaranteed Communication on Top of the Packet-switched Network 28

3.4 Bounded-Arbitration-Algorithm . 31

3.4.1 Fine-grained Quality-of-Service Specification 31

3.4.2 BAA on Top of the TDMA-like Link Arbitration 32

3.4.3 Bound Analysis . 34

3.4.4 Evaluation of the Bounded-Arbitration-Algorithm 36

3.5 Conclusion . 41

4 Road to Adaptive Networks-on-Chip 43
4.1 Parameters to be Customized . 44

4.1.1 Architecture-level Parameters . 45

4.1.2 Communication Paradigm Customization 47

4.1.3 Mapping of the Application . 49

4.1.4 Design Flow for an Application-specific NoC 50

4.2 Novel Application-specific NoC Architecture 51

4.3 Application-specific Virtual Channel Buffer Assignment 53

4.3.1 Minimizing Virtual Channel Buffer during Application Mapping 55

4.3.1.1 The Optimization Criteria 55

4.3.1.2 Optimization Algorithm . 57

4.3.1.3 Problem Formulation . 57

4.3.1.4 Solution Construction . 58

4.3.2 Probabilistic Analysis . 59

4.3.2.1 Traffic Modeling . 60

4.3.2.2 VCB Reduction Considering Quality-of-Service 62

4.3.3 Evaluation of the Proposed Methodology 63

4.4 Road to Runtime Adaptation: Parameters . 66

4.5 Conclusion . 68

5 AdNoC: Runtime Adaptive Networks-on-Chip 69
5.1 Motivation . 69

5.2 Advantages of the Adaptive NoC over the Application-specific NoC 70

5.3 Runtime Adaptive Networks-on-Chip (AdNoC) 71

5.3.1 AdNoC Specific Definitions . 71

5.3.2 Overview of the AdNoC Architecture 73

5.3.3 System-level Adaptation . 73

5.3.4 Architecture-level Adaptation . 75

5.4 Conclusion . 75

6 Runtime System-level Adaptation 77
6.1 ADAM: Runtime Application Mapping Algorithm 78

6.1.1 Different Parts of the ADAM Algorithm 79

6.1.2 Cluster Negotiation Algorithm . 81

6.1.2.1 Data Structures for the Algorithms 82

Contents xi

6.1.2.2 Algorithm Description . 84

6.1.2.3 Histogram Matching during Cluster Negotiation 86

6.1.2.4 Exemplary Algorithm Execution 87

6.1.3 (Re-)clustering and Task Migration for the ADAM Algorithm 89

6.1.4 The Mapping Algorithm Inside a Cluster 90

6.1.4.1 Data Structures for the Algorithm 91

6.1.4.2 Heuristics for the Optimization 94

6.1.4.3 Algorithm Description . 95

6.1.4.4 Exemplary Algorithm Execution 97

6.1.5 Configuration Data for the Runtime ADAM Algorithm 97

6.1.6 Persistent Configuration Data . 98

6.1.7 Collecting Status of Each Tile . 101

6.2 Conclusion . 101

7 Runtime Architecture-level Adaptation 103
7.1 Architecture-level Adaptation . 104

7.1.1 Motivational Example Supporting Architecture-level Adaptation 105

7.1.2 Parameters for the Runtime Adaptation 106

7.1.3 Runtime Configurable Links (2X-Links) 108

7.1.3.1 System-on-Chip Communication Links 109

7.1.3.2 Design and Implementation of the 2X-Links 110

7.1.4 Weighted Routing Algorithm . 112

7.1.5 On-demand Buffer Assignment . 114

7.2 Runtime Observability for the AdNoC Architecture (ROAdNoC) 118

7.2.1 Monitoring Events . 119

7.2.2 Design and Event Collection . 119

7.2.3 Aggregation and Processing . 120

7.2.4 Monitoring Related Traffic . 123

7.3 Adaptive Router Architecture for the AdNoC 124

7.4 Hardware Implementation of the AdNoC Architecture 126

7.4.1 The wXY-routing and the On-demand Buffer Assignment Components 127

7.4.2 Configurable Links Components . 127

7.4.3 Monitoring Component . 129

7.4.4 Hardware Evaluation . 130

7.5 Conclusion . 131

8 Simulation and Hardware Prototyping Environment 133
8.1 Simulation Environment . 133

8.1.1 OMNeT++ Simulator . 133

8.1.1.1 Implementation . 135

8.1.1.2 Traffic Model Implementation 137

8.1.2 SystemC-based NoC Simulator . 139

8.1.2.1 Configuration for the Application-specific NoC 141

8.1.3 Application Mapping Tool . 141

8.2 Hardware Prototyping . 142

xii Contents

8.3 Conclusion . 143

9 Results and Case-Study Analysis 145
9.1 Evaluation of the Proposed AdNoC Architecture 146

9.1.1 ADAM Provides Flexibility and Reduces Computational Cost 146

9.1.2 On-demand VCB Assignment Increases Buffer Utilization 149

9.1.3 Configurable Links Increase Resource Utilization 152

9.1.4 Light-weight Monitoring Component 158

9.2 Summary of the Evaluation . 161

10 Conclusion 163
10.1 Thesis Summary . 163

10.2 Future Work . 165

References 180

Abbreviations

ACO Ant Colony Optimization

AdNoC Adaptive Networks-on-Chip

ADAM Agent-based Distributed Application Mapping

ASIC Application-Specific Integrated Circuit

ROAdNoC Runtime Observability for Adaptive Networks-on-Chip

ARQ Automatic Repeat Request

B-Frame Bidirectional-Frame

BAA Bounded-Arbitration-Algorithm

BE Best-Effort

BW BandWidth

CA Cluster Agent

CAD Computer-Aided Design

CM Centralized Manager

CMOS Complementary MetalOxideSemiconductor

CPU Central Processing Unit

DSM Deep Sub Micron

DSP Digital Signal Processing

E3S Embedded Systems Synthesis Benchmarks Suite

FIFO First In First Out

Flit Flow Control Unit

FPGA Field-Programmable Gate Array

GA Global Agent

GS Guaranteed Service

GUI Graphical User Interface

HF Header Flit

I-Frame Intra-Frame

IP Intellectual Property

IPL Image Processing Line

ITRS International Technology Roadmap for Semiconductors

iQuant Inverse Quantification of the MPEG4 Decoder

LB Lower Bound

LC Link Control

LUT Look-Up-Table

MPEG4 Moving Picture Experts Group-Standard 4

MPSoC Multi-Processor System-on-Chip

xiii

xiv Contents

MUX Multiplexer

MWD Multi-Window Display

NACK Negative ACKnowledgment

NI Network Interface

NN Nearest-Neighbor

NoC Networks-on-Chip

NoCMS NoC Monitoring Service

OA Output Arbiter

OCP Open Core Protocol

OCIN System-on-Chip Interconnection Network

OD Output Decoder

PF Payload Flit

PE Processing Element

P-Frame Predicted-Frame

PCA Physical Channel Arbiter

PDA Personal Digital Assistant

PIP Picture in Picture

QAP Quadratic Assignment Problem

QoS Quality-of-Service

QNoC Quality-of-Service NoC

RAM Random-Access Memory

RGB Red, Green, and Blue

RR Round-Robin

SDM Space Division Multiplexing

SE Storing Element

SHF Secondary Header Flit

SoC System-on-Chip

TF Tail Flit

TG Task Graph

TGFF Task Graph For Free

TDD Time-Division-Duplex

TDMA Time Division Multiple Access

TTL Time-To-Live

UB Upper Bound

UMARS Unified MApping, Routing, and Slot allocation

VBR Variable-Bit-Rates

VC Virtual Channel

VCA Virtual Channel Arbiter

VCB Virtual Channel Buffer

VHDL Very High Speed Integrated Circuit Hardware Description Language

VOPD Video Object Plane Decoder

wXY weighted XY

List of Figures

1.1 Evolution of the Networks-on-Chip . 3

2.1 NoC as the future system-level design solution [85] 10

3.1 Adaptation of the ISO/OSI reference model 21

3.2 Flit composition of a packet for the application-specific NoC 23

3.3 Exemplary flit composition of a 4 x 4 adaptive NoC 25

3.4 The basic QoS-supported router architecture 26

3.5 Example of a packet transmission and requesting directions 28

3.6 Round-robin link arbitration . 30

3.7 TDMA: Time division multiple access-like link arbitration 32

3.8 Proposed bounded-arbitration-algorithm . 33

3.9 MPEG4 video decoder and its data flow graph 35

3.10 MPEG4 video decoder mapping onto a 5 × 4 Mesh 36

3.11 Transaction-specific bandwidth provides the lower bound guarantee 37

3.12 Throughput between RR and BAA . 37

3.13 Latency comparison for TDMA-like fixed, RR and BAA algorithms 38

3.14 Resource utilization: TDMA-like fixed and BAA 38

3.15 Fine-granular service class specification . 39

3.16 Overall throughput comparison for MPEG4 video decoder and stimulus 40

3.17 Overall latency comparison for MPEG4 video decoder and stimulus 41

4.1 3D design-space exploration for the application-specific NoC design 44

4.2 Different types of topology for the application-specific NoC design 46

4.3 Area effects of the increasing virtual channel buffers 47

4.4 Design flow for an application-specific NoC motivated from [122] 50

4.5 Different state-of-the-art service-class-based architectures 52

4.6 Motivating example: MPEG4 video decoder mapped onto a 4 x 4 NoC 54

4.7 VCBs reduction using an analytical approach 55

4.8 Exemplary application mapping onto a 3 x 3 NoC using ACO 58

4.9 Comparison of ACO with the GA and the LB algorithms 60

4.10 IPL mapping and VCBs reduction through probabilistic analysis 64

4.11 Effect of the application-specific VCB assignment for the E3S benchmark suite 65

4.12 Effect of the multi-objective goal function for the E3S benchmark suite 66

5.1 The adaptive system-on-chip communication architecture 74

6.1 Various options for (re-)mapping . 78

xv

xvi List of Figures

6.2 Flow of the ADAM algorithm . 80

6.3 Cluster negotiation and application mapping inside the negotiated cluster 81

6.4 Suitable cluster and binding example . 87

6.5 Task migration to support runtime application mapping 89

6.6 The (re-)clustering algorithm flow . 90

6.7 Example for a runtime application mapping inside a cluster 96

6.8 Configuration data for the runtime ADAM algorithm 98

7.1 Motivational example to show the requirement of the architecture-level adaptation104

7.2 Functionality during architecture-level adaptation 107

7.3 Different types of system-on-chip communication links 110

7.4 Examples of circular routing from the source S to the destination D 114

7.5 Scenario of the runtime adaptive architecture capabilities 117

7.6 Overview of the monitoring component . 118

7.7 Runtime observability capabilities of the ROAdNoC infrastructure 122

7.8 Flit composition of a monitoring packet . 123

7.9 An overview of the AdNoC architecture-level part in each router 125

7.10 Adaptive hardware for the output port of a router 126

7.11 Hardware implementation of the 2X-Link . 128

7.12 Overhead of the TDD-Links compared to the 2X-Links 129

7.13 Hardware for adding and analyzing monitoring events 130

7.14 Details of the hardware prototype of the proposed AdNoC architecture 131

8.1 Exemplary router module: “.ned” file with one output port 134

8.2 Exemplary configuration “.ini” file . 135

8.3 Graphical OMNeT++ NoC simulation environment 136

8.4 The class structure of the configurable NoC (a library structure) 138

8.5 An overview of the OCP implementation with its signals 139

8.6 Design flow of the NoC architectures having different dimensions 140

8.7 Hardware prototyping of the NoC architectures 142

9.1 Multi-media applications used for the case study analysis 145

9.2 Robotic application (IPL) used for the case study analysis 146

9.3 Applications form the E3S benchmark used for the case study analysis 147

9.4 Mapping computational effort (fixed cluster size) 148

9.5 Computation complexity of the components of the ADAM algorithm 149

9.6 Comparison of the computation complexity of the ADAM algorithm 150

9.7 Traffic produced by the ADAM compared to the algorithms [31, 37, 147] . . . 151

9.8 Comparing ADAM algorithm to exhaustive offline mapping algorithm 152

9.9 Successful transactions and corresponding buffer requirement 153

9.10 Resource utilization for unit virtual channel buffer block 154

9.11 Utilization of the link capacity (VOPD application) 155

9.12 Average throughput of the Automotive application 156

9.13 Timeliness of the Telecom application . 156

9.14 Appropriate link capacity of the VOPD application 157

List of Figures xvii

9.15 Average timeliness and fault-tolerance ability of the Robotic application 157

9.16 Bandwidth occupancy factor of the Consumer application 158

9.17 Monitoring packets injection and traffic density 159

9.18 Causes of monitoring events . 160

9.19 Unsuccessful transactions for various re-sending thresholds 161

List of Tables

2.1 Comparison of the bus-based and the NoC-based MPSoC architectures [19, 69,

96] . 8

3.1 Size of the header flit contents in an n x m adaptive NoC and in a 4 x 4 adaptive

NoC . 24

3.2 Similarities/differences of the application-specific and the adaptive NoC archi-

tectures . 27

3.3 Fine-grained service class specification . 31

3.4 Traffic modeling . 35

3.5 Comparison of BAA compared to RR and TDMA-like fixed link arbitrations . . 42

4.1 Likelihood of transaction i occupying VC1 . 63

4.2 Likelihood of transaction i occupying VC2 . 64

4.3 Probability to use each virtual channel buffer 65

4.4 Tasks and service class specification . 67

5.1 Advantages/disadvantages of the adaptive and the application-specific NoCs . . 71

6.1 Cluster PE type look-up-table: an individual CA 83

6.2 Entry of the cluster tile look-up-table . 91

6.3 Entry of the task-to-tile mapping look-up-table 92

7.1 Event counters . 121

7.2 Flit size for a monitoring packet in an n x m NoC and in a 4 x 4 NoC 124

7.3 Hardware requirement for the adaptive scheme 127

9.1 Application and corresponding NoC specification 150

9.2 Traffic comparison using 200 transactions/second 160

xix

List of Algorithms

1 RR: Round-robin link arbitration algorithm 30

2 TDMA: Time division multiple access-like link arbitration algorithm 33

3 BAA: Bounded-arbitration-algorithm . 34

4 Application-specific VCB assignment . 61

5 Suitable cluster negotiation . 85

6 Runtime application mapping inside a cluster 95

7 2X-Links for the adaptive system-on-chip communication architecture (AdNoC) 109

8 Weighted XY-routing algorithm at router-level 111

9 On-demand buffer assignment . 113

10 Runtime architecture-level adaptation . 115

11 Aggregation and processing of the monitoring traffic 120

xxi

Chapter 1

Introduction
Semiconductor industries have kept alive Moore’s law since 1965 with the innovation of novel

process technologies and this is expected to continue as long as our system requirements expand

at the present rate. In the current process technology shift from 65nm to 45nm, the number of

logic gates per square millimeter has increased from 700,000 to 1,4 million [85]. Intel also

projects the availability of 100 billion transistors on a 300mm2 die by 2015 [26]. Due to several

practical limitations the process technology is no longer able to provide reliable silicon fabrics

with the continuing technology scaling and therefore, reliable systems have to be built from

un-reliable fabrics [6, 25, 126]. The burden of continuing on the technology roadmap to meet

the increasing computational demand is now on the shoulders of architecture and system-level
engineers. In the continuing process of novel architectures, a Multi-Processor System-on-Chip
(MPSoC) made up of thousand of heterogeneous Processing Elements (PEs), i.e. different types

of instruction set processors or reconfigurable hardware on such an architecture, plays an im-

portant role in satisfying the increased computational demand in an energy-efficient way. The

design methodology for the MPSoC and its on-chip interconnection have already been shifted

towards Networks-on-Chip (NoC) as it is envisioned that future MPSoCs will be predominantly

communication-centric [14, 44, 69, 73, 87, 128, 174].

Extensive research had been done to develop area and energy efficient NoC since 2000 both

in the industry and in the academia. Besides, several research breakthrough in academia to

develop application-specific NoCs, i.e. XPipe[14], Æthereal [65], Proteo [145], etc. recently,

several general-purpose NoCs such as Tile64TM, an embedded multicore by Tilera [173] and

an 80-core general-purpose processor from Intel [76] have been fabricated. In a nutshell, the

research in the domain of NoC has been mainly concentrated on application-specific NoCs

[14, 123] and design-time parameterized general-purpose NoCs [66, 76, 173] (NoCs with re-

spect to reconfigurable logic blocks are not considered here and will be discussed later). In order

to achieve runtime flexibility for different scenarios, i.e. reliable communication in a MPSoC,

the NoC must be extended with adaptive capabilities, e.g. the ability to change the traffic route

at runtime in order to bypass faulty areas efficiently. This is the first work to propose a runtime

adaptive system-on-chip communication architecture which together takes the reliability issues

with other issues (e.g. the user-behavior) into consideration.

1.1 Background
Thousand of processor cores will be possible to integrate on a system-on-chip communication

architecture [26]. In the Deep Sub Micron (DSM) technology in the late silicon era (nano-age),

1

2 CHAPTER 1. INTRODUCTION

many characteristics of the on-chip systems will change drastically and will have a major impact

on the system-on-chip interconnect. The nano-age is characterized through novel effects that

aggravate the design and architecture when migrating to upcoming technology nodes. There-

fore, the challenges at physical-level at nano-age have to be tackled to achieve a successful

system-on-chip communication architecture. Traditionally, shared bus-based architectures have

been used as a system-on-chip interconnects for the MPSoCs [3, 96]. In such an architecture,

only two communicating partners may access the bus at a single point of time. In case of mul-

tiple requests from different communicating partners, the requests are arbitrated using different

arbitration mechanisms, e.g. round-robin, priority-based round-robin, etc. The bus-based archi-

tectures have evolved over the last couple of years from single shared buses to multiple bridged

buses (hierarchical buses), and crossbars. The hierarchical buses, i.e. AMBA multi-layer [2],

STBus [155], SonicsMX [149], etc. allow multiple buses to operate in parallel, however, all the

communicating partners need to be connected to a single crossbar. These bus-based architec-

tures suffer from scalability problems for a large number of connected processing elements.

In summary, these bus-based system designs have been seen as incapable of meeting the design

challenges for the next generation systems mainly due to lack of scalability and the imbal-

ance between gate delays and wire delays on-chip in the nano-age [44, 74, 96]. It has been

studied in early works [44, 74] that every additional transaction on a bus increases the resis-

tance, which in turn leads to higher energy consumption because of the necessary bus drivers.

A long bus also comes with latency drawbacks which limit the possible system frequencies.

Clock skew is an inherent synchronization problem of long links, as using the same clock for

all components throughout the whole system will not be achievable with the growing future

complexity. A hierarchical bus needs bridges to overcome synchronization problems, which are

not feasible for more complex systems having thousand-core chips. Furthermore, in the DSM
era, physical issues like crosstalk or energy dissipation are likely to appear. Additional mecha-

nisms are therefore required to achieve the reliability of the communication. To tackle all these

problems, the paradigm shift to communication-centric design using NoCs as a system-on-

chip communication concept has emerged as an important step toward the MPSoC architecture

[44, 69, 74, 87, 122]. The evolution of NoC from a simple shared bus structure is shown in

Figure 1.1 (for simplicity, a NoC having a 2D regular Mesh topology is considered here).

1.2 Communication-centric Design: Networks-on-Chip
Design Evolution

In the beginning of research in the domain of NoC, the major challenges had been to select

the design related parameters for an area and energy efficient router architecture to facilitate

packet-based communication. Several parameters are selected that influence the design and

performance of the NoC. The parameters may be summarized as follows: the topology, the link-
width, the buffer size, the floorplanning, the routing algorithm, the switching strategy, and the
application mapping. Details of all these parameters are given in Chapter 4. Different technol-

ogy and design-related issues considering these parameters have led NoC research broadly into

the following directions: the application-specific NoCs, e.g. Nostrum [94, 118], Xpipe[14, 43],

QNoC [23], the design-time parameterized general purpose NoCs, e.g. Tile64TM[173], an 80-
core general-purpose processor from Intel [76], the reconfigurable NoCs, e.g. DyNoC [22],

1.2. NETWORKS-ON-CHIP DESIGN EVOLUTION 3

CuNoC [88], ReNoC [156], LiPaR [141], etc. that are built on top of reconfigurable hardware,

e.g. FPGA, and the adaptive NoC (proposed in the scope of this thesis).

IP

IP

R

R

R

R

R

R

R

R

R

N

I

N

I

N

I

N

I

N

I

N

I

NI

NI
R Router

NI Network Interface

IP Intellectual Property e.g. processing

element, memory, etc.

System-on-chip communication infrastructure

Shared bus
Multiple

bridged bus

Complex

hierarchical

bus

Crossbar

switches

Bus-based architectures suffer from scalability

problem as well as, limits performance and

other runtime parameters in the DSM era.

Evolution of different types of buses over the

last couple of years. (Details are not shown)

Networks-on-Chip

IP
NI

IP

IP IP

IP

IP

IP

Figure 1.1: Evolution of the Networks-on-Chip

Application-specific Networks-on-Chip: Application-specific NoCs are generally tailor-

made for a certain application or an application domain and fail in scenarios of hard-to-

predict system behavior and/or in situations where user-behavior and reliability are con-

cerns. An application-specific NoC is defined as a design-time parameterized architecture

with a custom topology, a fixed routing scheme, a fixed number of allowed virtual con-

nections at each output port, fixed supported bandwidth because of fixed channel width,

a fixed floorplanning, and a static application mapping algorithm [14, 23, 78, 122]. De-

tails of the application-specific NoC architecture, design methodology, tools, and other

optimization are discussed in Chapter 4.

Design-time Parameterized General Purpose Networks-on-Chip: Design-time param-

eterized general-purpose NoCs are over-designed (e.g. number of virtual channels) con-

sidering different types of traffic scenarios and cannot adapt architectural parameters,

i.e. buffer assignment or link capacity at runtime (lower resource utilization). Recently,

several general-purpose NoCs such as Tile64TM, an embedded MPSoC from Tilera [173]

and an 80-core general-purpose processor from Intel [76] have been designed and fab-

ricated. The runtime configuration of different communication-related parameters in the

architecture-level is not considered in design-time parameterized general-purpose NoCs

and therefore, they provide lower hardware utilization. Runtime application mapping

may only be considered to achieve a general purpose behavior on such an over-designed

general-purpose NoC [37].

Adaptive Networks-on-Chip: In general, the research in the domain of NoC has been con-

centrated on the application-specific NoCs and the design-time parameterized general-

purpose NoCs, as well as NoCs on FPGA-type hardware (as discussed later). In order

4 CHAPTER 1. INTRODUCTION

to tackle hard-to-predict system behavior from different runtime scenarios, i.e. the user-

behavior, reliability issues in a MPSoC, the NoC must be extended with adaptive capa-

bilities, e.g. the ability to change the traffic route at runtime in order to bypass faulty

areas efficiently with a higher resource utilization and flexibility. Self-organization con-

sidering the adaptivity has been a research focus in Artificial Intelligence and Distributed
Systems communities [9, 95] for several years. IBM’s Autonomic Computing Initiative
[75] deals with self-organization of IT servers in networks. Self-organization in system-

on-chip design is relatively new. The possibility to use the idea of adaptivity in the future

system-on-chip design is discussed in [12, 75, 100].

To achieve self-adaptivity in the system-on-chip communication architecture, the adaptive

NoC needs to provide adaptivity both in the system-level as well as in the architecture-
level. The system-level adaptation may be provided using a runtime application map-

ping. Therefore, the assignment of different tasks of an application can be realized in

different processing elements at runtime. At the same time, to achieve a higher resource

utilization and flexibility, the architecture of the adaptive NoC needs to be integrated

with novel methodologies of runtime parameterization. The runtime resource parame-

terization mainly exploits resource multiplexing mechanisms at varying workloads. In

the scope of this thesis, a novel adaptive system-on-chip communication architecture, the

Adaptive Networks-on-Chip (AdNoC) is presented to exploit all the benefits that can thus

be achieved.

Networks-on-Chip on top of Reconfigurable Hardware: All the previously mentioned

different types of NoC architectures are partly or fully static in design for a group of

parameters. The adaptive NoC that is presented in this thesis is configurable in some

parameters, i.e. buffer assignment, routing, supported bandwidth, and mapping but still

static in its topology, floorplanning, switching strategy, processing element types, etc. at

runtime. Therefore, these NoCs are not sufficiently flexible as a communication architec-

ture on top of reconfigurable hardware, i.e. FPGA-based systems, where flexibility of the

number of processing elements and their types are reconfigurable at runtime. The multi-

core architectures built on top of FPGA-based fabrics demand a changing network which

may be instantiated at runtime. A great deal of work has been done in this paradigm of

NoCs for the reconfigurable hardware, i.e. in [22, 82, 83, 88, 103, 131, 141, 156].

1.3 Contributions of This Dissertation
In this thesis, a self-adaptive system-on-chip communication architecture that analyzes itself

during runtime and self adapts when and how a certain router should be configured for a certain

transaction is presented. The novel contributions are as follows:

1. Adaptive Networks-on-Chip (AdNoC), an adaptive system-on-chip communication ar-

chitecture is proposed in the scope of this thesis. The runtime adaptivity in the AdNoC
architecture is employed both in the system-level as well as in the architecture-level (pub-

lished in [52, 53, 54, 58]).

1.4. DISSERTATION OUTLINE 5

2. A scalable and configurable cycle-accurate Quality-of-Service (QoS)-supported system-
on-chip communication architecture on top of which a case study analysis of an application-

specific NoC, as well as the proposed AdNoC are built, are presented in details in this

thesis (published in [57, 60]). A novel link arbitration algorithm named as bounded-
arbitration-algorithm which provides transaction-level bandwidth guarantees consider-

ing the upper and the lower bounds of each transaction is used for the QoS-supported

system-on-chip communication architecture (published in [59]).

3. The system-level adaptation is achieved using a runtime Agent-based Distributed Ap-
plication Mapping (ADAM) algorithm for the next generation self-adaptive heteroge-

neous MPSoCs. The advantages, runtime behavior, and performance gain using the novel

ADAM algorithm are presented in this thesis (published in [58]).

4. In the architecture-level, several novel methodologies to adapt the underlying intercon-

nections on-demand in response to changing communication requirements imposed by

an application, i.e. runtime application mapping request due to reliability issues or user

behavior, are employed.

5. To provide on-demand interconnections, a novel adaptive routing algorithm (wXY-routing
algorithm) that meets QoS requirements (bandwidth) is presented. The routing algorithm

makes decisions locally at each router depending on the available bandwidth in each di-

rection to the neighboring router. Dynamic connections are realized by re-assigning a

certain number of buffer blocks to different output ports of a router on-demand. It also in-

creases the resource utilization, especially buffer utilization, through on-demand buffer
block assignment (published in [52]).

6. A runtime configurable link (2X-Link) at the architecture-level to compliment the adap-

tive system-on-chip communication architecture is presented. The 2X-Links can adapt

the link capacity by changing the direction at runtime on-demand, thereby increasing the

resource utilization while considering the reliability issues. The building blocks of the

2X-Link are two half-duplex links instead of the state-of-the-art simplex links (published

in [54]).

7. To employ successful adaptation the communication architecture needs to be observed.

Therefore, to provide runtime observability, a novel low cost Runtime Observability in-
frastructure for the AdNoC (ROAdNoC) is presented. It is highly flexible and hardly

intrusive (published in [53]).

1.4 Dissertation Outline
The remainder of the thesis is outlined as follows: Chapter 2 presents the state-of-the-art re-

lated works in the scope of system-on-chip communication architecture design. Different types

of NoC architectures, design methodologies, design-space exploration, application mapping,

energy and resource minimization, routing algorithms etc. are presented in short in this chapter.

In Chapter 3, the QoS-supported NoC that is the basic architecture of the proposed system-on-

6 CHAPTER 1. INTRODUCTION

chip communication is detailed. The mechanism to establish QoS on top of a packet-based com-

munication is shown here. The link arbitration algorithm: the bounded-arbitration-algorithm
proposed in the scope of this thesis is also presented with supporting case study analysis in this

chapter.

Chapter 4 presents a complete design methodology of an application-specific NoC on top of

the QoS-supported NoC architecture discussed in Chapter 3. Different parameters that may be

customized at design time to build an energy/area efficient application-specific NoC are dis-

cussed with special emphasis on a novel methodology of buffer minimization. The buffer for

an application-specific NoC may be minimized during application mapping as well by know-

ing the application-specific traffic model. Different case-study analysis are shown to further

demonstrate the applicability of the proposed buffer minimization technique.

The proposed runtime AdNoC built on top of the QoS-supported NoC discussed in Chapter 3 as

a part of the adaptive system-on-chip communication architecture is introduced in Chapter 5.

Different definitions related to AdNoC architecture are introduced here. Details of the achieved

adaptation both in the system-level and in the architecture-level are explained in the following

chapters.

The system-level adaptation that performs a runtime application mapping is presented in Chap-
ter 6. In the scope of this chapter, a novel runtime agent-based distributed application mapping

algorithm (ADAM) is explained in detail. The complexity analysis as well as the flexibility and

the overhead of such approach is also discussed in this chapter. Different case-study analysis to

show the benefits of ADAM algorithm are presented in Chapter 9.

Chapter 7 detailed different novel methodologies for the architecture-level adaptation for the

proposed AdNoC architecture. To achieve an area efficient flexible adaptation, different novel

methodologies are used, i.e. on-demand buffer assignment to different output ports, adaptive

routing, the wXY-routing algorithm for supporting varying workloads, and link reversal mecha-

nism the (2X-Link) to allow runtime supported bandwidth adaptation. A comprehensive runtime

observability infrastructure for the AdNoC (ROAdNoC) which is flexible (e.g. in choosing the

routing path), hardly intrusive, and requires little additional overhead is also described in this

chapter.

Tools, simulation environment, and the prototyping boards used to demonstrate the benefits of

the proposed architecture are explained in Chapter 8. A SystemC-based simulator that has

been developed as a part of the thesis work is also shown here. The VirtexII-based prototyping

board for runtime hardware evaluation is presented in this chapter.

In Chapter 9, different case-study analysis to show the performance, area, and energy related

results for the proposed AdNoC architecture are presented. Evaluation results for both the

system-level adaptation and the architecture-level adaptation are demonstrated in this chapter.

Different embedded applications, i.e. a robotic application, several multi-media applications,

the E3S embedded benchmark suite, and artificial applications generated from the TGFF are

used to show the benefits of the AdNoC architecture. Finally, the thesis is concluded together

with future outlook in Chapter 10.

Chapter 2

Related Work: MPSoC
Interconnections

Extensive works have been done in the domain of System-on-Chip (SoC) interconnection design

for the Multi-Processor System-on-Chip (MPSoC) architectures. In this chapter, a short sum-

mary of the works those have highly influenced this thesis and have similarity on the domain

of Networks-on-Chip (NoC) design are presented. In the rest of the chapters in various places

several prior works on that particular novel contribution are discussed in details.

2.1 Bus-based Interconnection
In one facet of the bi-directional embedded system’s development market, the digital conver-

gence of multiple complex applications as well as new critical applications (software side) in

single terminal demand for higher computational power. On the other facet of the develop-

ment, the semiconductor industries allow to introduce thousands of processors or equivalent

logic gates on a single chip (hardware side) to fulfill the computational demand [26]. We are

therefore, in the era of complex MPSoC architectures. Typically, a MPSoC architecture is built

by exploiting off-the-shelf standard components (the component-based design) and using mul-

tiple high performance hierarchical buses for establishing communication among components

(bus-based system design).

It is already discussed in Chapter 1 that bus-based MPSoC design is not efficient and scalable for

future such system design [44, 74]. Therefore, considering the limitations (see Table 2.1) of the

bus-based architectures, the paradigm shift to the communication-centric design has emerged

as an important step for the MPSoC architecture. Academic and industrial frameworks in the

scope of MPSoC interconnections are briefly presented below (for a chronological overview see

[144]). The industrial solutions can be divided into three main approaches:

• Shared bus has been traditionally used as a system-on-chip interconnections for the MP-

SoCs (ARM AMBA [3, 96], IBM CoreConnect [42], Sonics μNetwork [149, 175]). In

such an architecture, only two communicating partners may access the bus at a sin-

gle point of time. In case of multiple requests from different communicating partners

the request is arbitrated using different arbitration mechanisms, i.e. Round-Robin (RR),

priority-based RR, etc. The bus-based architectures have evolved over the last couple of

7

8 CHAPTER 2. RELATED WORK: MPSOC INTERCONNECTIONS

Bus Networks-on-Chip
Disadvantages Advantages

Parasitic capacitance grows with every attached

part, thus no scalability of performance is possi-

ble

(Structured) point-to-point, one-way links for any

network size enable a better signaling

Difficulty of specifying the bus timing in DSM

process

Global asynchronism of the parts enables pipelin-

ing of wires

Slow and problematic testability Built-In Self Test (BIST) is fast and complete

Growing delay with every additional master and

instance-specific bus arbiters are necessary

Distributed routing decisions are made possible

and the same router can be scalable reinstantiated

in the network

Bandwidth is limited and shared by all units at-

tached to the bus

Scalability of the existing bandwidth through

sharing the links

Advantages Disadvantages
Fair scheduling and guaranteed latency through a

single bus arbiter

(Unpredictable) network contention because of

unpredictable communication behavior

Low silicon costs for bus Significant silicon area costs for a whole system-

on-chip network

Compatibility with most IPs IPs need wrappers for transparent communication

and synchronization of multi-processing

Simple and well understood concepts Network design introduces new concepts for sys-

tem designers

Table 2.1: Comparison of the bus-based and the NoC-based MPSoC architectures [19, 69, 96]

years from a single shared bus to a multiple bridged bus and crossbar (hierarchical bus).

The hierarchical buses, i.e. AMBA multi-layer [2], STBus [155], SonicsMX [149], etc. al-

low multiple buses to operate in parallel however, all the communicating partners need to

connect to a single crossbar. It has been used as an inexpensive solutions but suffers from

face latency and scalability problems for a large number of connected cores.

• Crossbar switches provide a high bandwidth provision but suffer from a possible lack of

scalability (Fulcrum Microsystems Nexus [115]).

• Networks-on-Chip are developed as a packet-based system-on-chip network that has to

deal with all best-known network problems (STMicroelectronics STNoC [158], Arteris
[4], Silistix CHAINworks [146] - before CHAIN [10] architecture of the Manchester uni-

versity), iNoC [84], etc.

First academic projects in the field of NoC had been SPIN [69], Proteo [145, 164], the NoC

of Dally [44], and Æthereal [65, 133]. Recent research resulted in architectures, i.e. Nostrum
[94, 118], Xpipe[14, 43], QNoC [23, 135], etc.

The NoC paradigm allows to interconnect up to thousands of processor cores onto a single sil-

icon die. The basic idea has been adopted from large-scale networks. Instead of connecting

communication partners directly through one time-shared link, in a NoC the links can be shared

by many transactions at the same time. Through this ability to handle parallel transactions, the

problem of a bus as a bottleneck may be solved. In Table 2.1 as system-on-chip interconnec-

tions, NoCs and bus-based interconnections are compared considering the early works [69, 96].

2.2. NETWORKS-ON-CHIP: KEY RESEARCH ISSUES 9

2.2 Networks-on-Chip: Key Research Issues
NoCs as a system-on-chip communication architecture, its different design methodologies and

key research problems have been discussed in [44, 69, 74, 87, 105, 122, 126, 128]. In [122], key

research problems in NoC design are formalized. Here, authors have identified several parame-

ters that need to be researched and parameterized for the application-specific NoC design. The

key NoC research problems are in general: the topology synthesis problem, the channel width

problem, the buffer sizing problem, the floorplanning problem, the routing problem, the switch-

ing problem, the scheduling problem, and the IP mapping problem. These research parameters

from the perspective of the application-specific NoC design are discussed in Chapter 4. In [97],

research challenges associated with some practical NoC implementation considering area and

energy are shown.

Recently, in [126] authors have identified five broad research areas for the future NoC de-

sign: (1) system-on-chip interconnection network (OCIN) technology and circuits, (2) OCIN

microarchitecture, (3) OCIN system architecture, (4) CAD and design tools for OCINs, and

(5) evaluation and driving applications for OCINs. In the research area of OCIN technology

and circuits, the CMOS technology roadmap and its affect on the OCIN need to be evaluated.

OCIN microarchitecture research tries to find the answer of the micro-architectural solution for

the system-on-chip routers and network interfaces to meet latency, area, and power constraints.

OCIN system architecture research deals with the system architecture issues, e.g. topology, rout-

ing, flow control, and interfaces for system-on-chip networks. CAD and design tools for OCINs

are needed to design system-on-chip networks and systems. Therefore, extensive research needs

to be involved in this direction. Finally, research in evaluation and driving applications for

OCINs tries to find the methodology to evaluate system-on-chip networks and to determine the

dominant workloads (applications) for OCINs in next five to 10 years. In this paper, authors

have also introduced the upcoming research challenges in NoC domain, i.e. programmability,

power, application, reliability, variability, prototype development, standard benchmarks, etc.

2.2.1 Networks-on-Chip Architectures
NoC as discussed earlier, is promising for an interconnection fabric in MPSoC. Figure 2.1 shows

the evolution of NoCs envisaged by the International Technology Roadmap for Semiconductors
(ITRS) until the end of the next decade. Application-specific NoC design has been mainly a

great research interest since the beginning of this decade. Several application-specific NoC

architectures [20, 23, 32, 43, 65, 72, 92, 107, 133, 145, 157, 170] and different research issues,

i.e. topology customization [1, 15, 33, 81, 109, 123, 127, 152], buffer minimization [55, 56, 78,

139], routing algorithms [45, 79, 132], application mapping [70, 77, 98, 104, 110, 111, 112,

113, 143], design methodologies and automation tools [57, 60, 67, 86, 89, 94, 114, 178] have

been discussed in previous works. Different types of NoC architectures, i.e. the application-

specific NoC, the design-time parameterized general-purpose NoCs, the adaptive NoCs, and

the reconfigurable NoCs are already discussed in Chapter 1.

Recently, several NoC-related companies, i.e. iNoC [84], Arteris [4], Silistix [146] are sell-

ing tools to design application-specific NoCs. iNoC provides interconnection IP for ASIC and

FPGA-based system. This IP portfolio enables seamless SoC connectivity, compliant with the

10 CHAPTER 2. RELATED WORK: MPSOC INTERCONNECTIONS

Figure 2.1: NoC as the future system-level design solution [85]

strictest requirements in bandwidth, latency, power, and area. iNoC also supplies a design

tool for the application-specific NoCs. Arteris includes the following networking concepts for

the NoC design: separation of computation and communication, packet-based communication,

Quality-of-Service (QoS) based routing, and flexible NoC topology. Silistix provides CHAIN-
works, a suite of software tools for the design and synthesis of customized system-on-chip

interconnect using self-timed clockless circuits.

2.2.2 Topology Customization
Lot of work has been done in the area of topology customization [1, 15, 33, 81, 109, 123, 127,

152] for designing an application-specific NoC. Some of the most influencing works in this

research area are discussed in the following.

In paper [15], an advanced NoC architecture, called Xpipe, targeting high performance and re-

liable communication for system-on-chip interconnections is presented as one of the first works

related to application-specific NoC design. Xpipe consists of a library of soft macros (switches,

network interfaces, and links) that are design-time parameterizable so that application-specific

architectures can be instantiated and synthesized. Links can be pipelined with a flexible number

of stages to decouple link throughput from its length and to get arbitrary topologies. Moreover,

a tool called XpipeCompiler, which automatically instantiates a customized NoC from the li-

brary of soft network components is used in this paper to test the Xpipe-based synthesis flow

for application-specific communication architectures. Different features of Xpipe architecture

may be found in [14, 16, 43, 86, 157].

In [123], authors have presented a methodology to automatically synthesize an architecture

where a small number of application-specific long-range links are inserted on top of a given reg-

ular 2D Mesh topology. This way, they have achieved both the regularity as well as application-

specific partial customization. In paper [152], a novel heuristic-based technique consisting of

system-level physical design and interconnection network generation that generates custom low

power NoC architectures for application-specific MPSoC is presented. They have shown that

their technique has a low computational complexity, and consumes only 1.25 times the power

consumption, and 0.85 times the number of router resources compared to their own previous

2.2. NETWORKS-ON-CHIP: KEY RESEARCH ISSUES 11

work considering an optimal MILP based technique [154] where computational complexity is

not bounded.

In [109], efforts have been made to reduce the area cost of the application-specific NoCs by

using network partitioning techniques. The Fiduccia-Mattheyses (FM) algorithm is adopted

to formulate the partitioning problem for the application core graph. Their experiments show

that their technique is a superior way to reduce the application-specific NoC area compared

to other topology generation techniques. Authors in [127] present a customization scheme of

the network topology for the STNoC, the NoC developed by STMicroelectronics. They started

topology customization from a ring topology and a given application. Finally, their approach

delivers an application-specific NoC with a customized topology in terms of performance, area,

and energy overhead. They have shown that the generated STNoC custom topologies provide

a reduced cost with respect to the spidergon topology. The work presented in [33] provides a

methodology for generating an energy optimized application-specific NoC topology that sup-

ports both point-to-point and packet-switched networks. A prohibitive greedy iterative im-

provement strategy is used to explore the design space in their methodology. Their experiments

show that a combination of on-chip and point-to-point networks (a hybrid network) achieve ap-

proximately 25% lower energy consumption (with a maximum of 37%) than a state-of-the-art

min-cut partition based topology generator for different applications.

Work in [1] presents a component library for flexible construction of interconnection architec-

tures to enable the creation of application development platforms. NoC topology optimization

is included by describing the methodologies used by an effective design automation tool. The

included cost functions of the tool capture the parameters contributing to the performance and

energy consumption of asynchronous interconnections. Work in [81] shows a methodology to

synthesize energy-efficient NoCs by adopting a multicommodity formulation to unify network

topologies, physical embedding, and wire style optimizations. They utilize a variety of inter-

connect wire styles to achieve high performance low power system-on-chip communication.

Their methodology could achieve a power saving up to 35% for a varity of applications. More

works related to NoC topology customization can be found in [87]. In this thesis, a regular 2D

Mesh architecture is used, no topology customization is considered both for the application-

specific NoC and for the adaptive NoC on top of the proposed QoS-supported system-on-chip

communication architecture.

2.2.3 Quality-of-Service-supported Networks-on-Chip
NoC design requires to adapt a set of parameters and these parameters need to be integrated with

the QoS requirements for designing an embedded real-time system. Different issues related to

QoS in bigger networks are summarized in [68, 181]. QoS parameters and its definition are

extremely diverse and application-specific in embedded systems. The definition becomes more

complicated while considering multiple applications on a single device. Current embedded sys-

tems offer multiple applications running concurrently or sequentially in the time domain. All

these different applications have different requirements. These requirements need to be sup-

ported during runtime on such devices. To consider the requirements of multiple applications

each application needs to be analyzed carefully and individually from a QoS perspective. Gen-

12 CHAPTER 2. RELATED WORK: MPSOC INTERCONNECTIONS

erally, the requirements of an embedded system application (e.g. real-time video telephoning)

is time critical and driven by the current work load on that device. These quality limits are

also sometimes restricted by the audio and visual perception of the human senses. Therefore,

the underlying QoS parameters: latency, throughput and jitter must be provided by the system.

Generally, the lower and the upper bounds can be measured for each type of transaction. Be-

sides this performance phenomena, other services/transactions like security data and memory

read/write or internet browsing may have varying quality requirements, e.g. reliability. The lev-

els of reliability (i.e. lossless data transactions) also add more parameters to the final system

design.

In [73, 133, 180], the issues of QoS, in terms of guaranteed BandWidth (BW), low latency, jitter,

in-order transmission and lossless data transmission have been addressed. To meet these issues

with minimum overhead is still an open research challenge. Formally, system-on-chip QoS

in communication can be broadly classified into two categories: (I) Time related performance
guarantees (i.e. bandwidth, latency and jitter) and (II) Data-flow related reliability guarantees
(e.g. in-order data transmission, lossless data transmission). Early novel works [20, 145] have

partly or fully ignored the time related QoS issues. In [14], data-flow related guarantees are

emphasized. The need to support time-related guarantees and to provide flexible and/or hard

guarantee for a time-critical system are very important issues. To differentiate among traffic

requirements, service classes/levels have been introduced. The service classes in a system for

different communication pairs have been roughly classified in [133] as: Best-Effort (BE) service

and Guaranteed Service (GS). According to this classification, state-of-the-art works may be

classified into two categories: BE-oriented NoC and GS-oriented NoC.

BE-oriented NoCs provide a higher resource utilization and treat all the communicating pairs

equally and thus ignore the hard real-time guarantees. In GS-oriented NoC, the state-of-the-art

approaches to provide time related guarantees are classified as (1) Establishing a connection

prior to the communication and reserving resources and then sharing time slots among multiple

available transactions (i.e. Æthereal) [65]. The contention among different data traffic patterns

is fully handled during the connection establishment time; (2) Implementing different service

classes and exploring the advantages of wormhole routing and Virtual Channels (VCs). A

virtual circuit, a virtual connection, is built by exploiting prioritized service classes (i.e. QNoC)

[23, 135].

The connection-oriented technique provides the contention-free routing by reserving the re-

sources in advance. Inefficient resource reservation leads to unused bandwidth. The network is

underutilized in Variable-Bit-Rates (VBR) transactions. The connection setup stage is an over-

head for such architectures and thus, they suffer from lack of scalability. The second method

performs and implements quality on top of packet-switched communication, generally using

the wormhole routing scheme. It provides better performance results for VBR [71, 72], pro-

vides higher relative guarantees, but may fail in tight requirements. The problem also lies in

the specification and granularity of the service classes which leads to unused bandwidth. These

approaches use a simple RR link arbitration.

Existing service-class-related works can be broadly classified into two parting directions. The

first group of the architectures presented in [23, 71, 72] have used a fixed number of service

2.2. NETWORKS-ON-CHIP: KEY RESEARCH ISSUES 13

classes. Each service class has a particular Virtual Channel Buffer (VCB) in each output port.

They do not provide a 100% tight guarantee for each of the transaction (QNoC [23, 135] pro-

vides on an average slightly more than 99% guarantee but fails to achieve a 100% guarantee,

which is a mandatory constraint for a safety critical embedded system), and these architectures

do not have a clear and fine-granular classification for each transaction. Therefore, the band-

width is not allocated fairly to increase resource utilization. The arbitration of the VCBs to

the output port is dependent on their corresponding service class. Concurrent transactions use

the packet-based RR ordering of input ports for the awaiting transmission of packets within the

same service class. The basic arbitration principle among different service classes is: once a

higher priority packet appears on one of the input ports, transmission of the current packet is

preempted and the higher priority packet gets through.

The second group of QoS-supported service-class-associated NoCs is presented in [92, 170].

In this group the differentiation of transactions bandwidth requirement is done on the spatial

domain. In a link of available bandwidth b, by allocating n number of VCBs (out of m VCBs in

total) a total of (b/m × n) bandwidth may be provided. The virtual channels are arbitrated in

a RR fashion. It consumes a lot of buffers in terms of VCB implementation for fine granularity

and suffers from starvation for some transactions. In [170], apart from [92], VCBs assigned for

BE traffic can be taken by GS at connection establishment time.

The proposed QoS-supported system-on-chip communication architecture in this thesis has

taken the advantages of both the service-class-based and the connection-based approaches (see

Chapter 3) and it has some novel architecture level differences compared to the current service-

class-related state-of-the-art NoC works. However, the proposed QoS-supported system-on-

chip communication architecture uses a wormhole switching scheme like [23, 71, 72, 92, 170]

and thus utilizes virtual channel implementation.

2.2.4 Buffer Minimization
Buffers are used to facilitate the flow control mechanism in the router. In QoS-supported NoC

where a wormhole-based routing scheme is used, the logical connections are implemented using

buffers. In a typical system-on-chip router, buffers take the premier share of the silicon area of

the NoC and consequently their size should be kept as minimum as possible. Work in [173]

shows that the buffer area amounts to about 60% of the entire router area. Work in [122] shows

that by increasing the buffer size at each input channel from 2 to 3 words, the router area of a

4x4 NoC increases by 30% or more. Again, depending on the network workload, increasing the

buffer size may reduce the network latency by orders of magnitude. Therefore, due to diverse

traffic patterns exhibited from application-specific NoCs, it might be beneficial to allocate more

buffering resources only to the heavy loaded (traffic hotspot) areas. Authors in [78] show that

the values for average packet latency that may be obtained for the same total amount of buffering

space are very different.

Early major work [78] in the area of buffer reduction for application-specific NoC has proposed

a methodology to provide application-specific buffer size allocation but did not consider the

QoS issues. The proposed methodology assumes deterministic routing, store-and-forward or

virtual cut-through switching schemes, and a poisson traffic distribution for all packets injected

14 CHAPTER 2. RELATED WORK: MPSOC INTERCONNECTIONS

in the network. Under these assumptions, the authors derive the blocking rate of each individual

channel and then add more buffering resources only to the higher utilized channels. In [139],

authors have presented different system-on-chip buffer properties and then have described an

optimized buffer implementation methodology for the Proteo networks-on-chip architecture.

They further have reported gate-level area estimation and have analyzed the performance of the

network and buffer utilization across the network. In [34], authors have investigated the im-

pact of FIFO size on the interconnect throughput for single source and single sink interconnect

scenarios. Work in [41] has presented an algorithm to find the minimal decoupling buffer sizes

for a NoC using TDMA and credit-based end-to-end flow-control where the performance con-

straints of the applications running on the system are maintained. Their exploration shows that

their method results in a 84% reduction of the total NoC buffer area. Authors in [172] presented

a zero-efficient buffer design as well as an error control scheme. They have acheived up to 43%

energy saving using a 90nm CMOS process technology.

In [55, 56], buffer minimization using a two-step methodology to optimize the number of VCBs
in a QoS-parameterized application-specific NoC architecture are presented. In Chapter 4, this

methodology is explained in detail. As a first step, a multi-objective mapping algorithm that

considers both the communication volume and the number of virtual channel buffers during

NoC mapping based on a modified Ant Colony Optimization (ACO) algorithm is used. This

approach is orthogonal to any application driven traffic model. In the second step, the traffic

characteristics of the application is considered. It is observed that a wide range of digital media

applications follow the poisson distribution and therefore, an analytical approach is provided to

optimize further the number of virtual channel buffers depending on QoS parameter q and the

application-specific traffic model. On the other hand, there are a lot of real applications which

exhibit traffic patterns which are very different compared to the poisson model therefore, the

derivation of analytical models for performance evaluation becomes much more difficult [167].

The research in this direction is also very challenging.

2.2.5 Runtime Adaptivity in Networks-on-Chip Design
It is already discussed that embedded systems applications have grown considerably in size and

complexity in recent years. Therefore, such a complex embedded system must be able to handle

also those situations efficiently that were unpredictable at design time. In this case, the system

needs to adapt itself to the new situation and therefore, it needs to be designed with the capability

of self-adaptiveness in mind. In the domain of self-organization, IBM’s Autonomic Computing

Initiative [75] deals with self-organization of IT servers in networks. Recently, the idea of

adaptivity/self-organization has been borrowed for the future SoC design [12, 75, 100, 138].

As far as NoCs go, adaptivity would be very beneficial since a fixed topology with a fixed num-

ber of buffers etc. are most often only efficient in certain scenarios and represents an overdesign

in all other cases (for details see Chapter 5). NoCs suffer from the high overhead a designer

has to pay. Therefore, commercial deployment of NoCs is restricted to some specific projects.

Mainstream deployment of NoCs in MPSoCs is with so-far-proposed approaches rather un-

likely. The state-of-the-art NoCs [14, 23, 133] though presenting a scalable communication

infrastructure are still too inflexible to dynamically support the communication among modules

2.2. NETWORKS-ON-CHIP: KEY RESEARCH ISSUES 15

in a system with heavily varying workloads and/or changing constraints. A static NoC is defined

as a design-time parameterized architecture with a fixed routing scheme and a fixed number of

allowed virtual connections at each output port. They are generally tailor-made for a certain

application or application domain. In the following, a review of the related work that deals with

on-demand interconnection schemes in different problem spaces that are closest to the proposed

novel concept in presented.

The FLUX network [169] has been proposed to establish interconnection on-demand before

or during program execution by adapting the physical network. While creating point-to-point

connections, the deployed links need to be reserved. Hence, several links must be present to be

able to adapt to arbitrary applications. The connections implement a circuit switching network

approach and are non-scalable. The required number of links increases exponentially relative

to the number of processing elements. In [150], authors have proposed a power-aware net-

work whose links are turned on and off in response to bursts and dips of traffic on-demand.

In their approach, future traffic characteristics are assumed to be predicable based on recent

traffic patterns. Hard-to-predict events like, for instance, rapid motion in a video sequence can-

not efficiently be treated. In [21, 22, 82, 83, 88, 103, 131, 141, 156], dynamic communication

infrastructures among dynamically placed modules on a reconfigurable device are presented.

The system is built on top of a reconfigurable hardware, e.g. on an FPGA. All these approaches

are limited to reconfigurable devices. It is not scalable to faster and efficient ASIC while the

proposed runtime adaptive system-on-chip communication architecture is orthogonal to any

hardware implementation.

2.2.6 Application Mapping onto Networks-on-Chip

The application mapping onto a NoC architecture can be broadly classified into two categories:

(1) design-time application mapping for the application-specific NoCs and (2) runtime applica-

tion mapping for the adaptive and the general purpose NoC architectures. In this thesis, both the

design-time application mapping for the application-specific NoC detailed in Chapter 4 and run-

time application mapping required for the adaptive system-on-chip communication architecture

detailed in Chapter 6 are presented.

Several design-time application mapping algorithms have been proposed in early works. In

[77], a mapping using the branch-and-bound algorithm has been proposed. Here, the commu-

nication related energy consumption has been used as a goal function. The energy consumption

is inherently minimized by reducing the amount of communication volume. Genetic algorithm

based mapping algorithms have been introduced in [98, 143]. In these papers, efforts are made

on the modification of the genetic algorithm to fit into NoC mapping. In [98], the optimiza-

tion criteria is overall-execution time. In [143], cycle crossover and coordinate crossover are

used to make sure that the offspring is legal. [77, 143] determine a network assignment which

is designed to minimize the power consumption by reducing the communication volume. In

[70], authors have proposed a heuristic-based (UMARS) mapping algorithm by keeping mostly

communicating tasks together to each other and to the center of the NoC. In general, all these

previous works considered only the communication volume as the basis of their optimization.

The minimization of communication volume is definitely an important criteria to be minimized

but in this thesis other criteria (e.g. buffer area) are also addressed to be minimized during

16 CHAPTER 2. RELATED WORK: MPSOC INTERCONNECTIONS

application-specific NoC mapping. Work in [5] presents a similar approach (both considered

a multi-objective optimization during mapping) to multi-objective exploration of the mapping

space of a Mesh-based application-specific NoC architecture. Based on evolutionary computing

techniques (genetic algorithm is used here), they try to obtain the Pareto mappings that opti-

mize performance and power consumption. In this thesis, in Chapter 4, a mapping algorithm

that considers the amount of communication volume and at the same time considers the mini-

mization of buffer space in a QoS supported application-specific NoC are presented. This NoC

mapping is done in the offline stage of the application-specific NoC design.

The adaptive and the general-purpose systems, which changes its configuration over time, re-

quire a (re-)mapping/runtime mapping of the application. Possible reasons for the necessity

of a runtime application mapping are listed in Chapter 6 (the proposed runtime application

mapping algorithm, the Agent-based Distributed Application Mapping (ADAM) is orthogonal

to any scheme that requires runtime application mapping [58]). Few research work has been

conducted in the domain of runtime application mapping for MPSoC. In [147], authors extend

the MinWeight algorithm proposed in [28] for solving the problem of runtime task assignment

on heterogeneous processors. The task graphs are restricted to a small number of vertices or

a large number of vertices with degree no more than two. Authors in [31] investigate the per-

formance of several mapping heuristics promising for runtime use in NoC-based MPSoCs with

dynamic workloads, targeting NoC congestion minimization. The work presented in [37] and

[38] propose an efficient technique for runtime application mapping onto a homogeneous NoC

platform with multiple voltage levels. Their work is limited to a homogeneous architecture and

a separate control network besides the data network is used which represents an extra overhead

in terms of area and energy consumption. All the state-of-the-art runtime application mapping

works [31, 37, 38, 147] have used a Centralized Manager (CM) for conducting the mapping

job which is not scalable in the era of hundreds or even thousands cores that may soon be in-

tegrated on a MPSoC. It suffers from a single point of failure, larger volume of monitoring
traffic (monitoring-traffic is the traffic which is caused by collecting information about the state

of the tiles, during each instance of mapping), central point of communication around the CM
(hot-spot), and scalability issues.

The concept of task migration is an integral part of the runtime application mapping. The

study of task migration to move a currently executing tasks between different processors which

are connected by a network has already been a research focus in the distributed and parallel

computing domain [137, 148]. Now it is used to facilitate runtime application mapping in

adaptive heterogeneous MPSoC. Work presented in [17, 119] discuss the issues related to the

task migration concept for MPSoC design, i.e. the cost to interrupt a given task, save its context,

transmit all data to a new IP, and restart the task in the new IP. In the proposed ADAM algorithm,

this approach is used though the detail of task migration is out of the scope of this thesis.

2.2.7 Runtime Traffic Observability
A runtime observability scheme to achieve a successful adaptation is used in the proposed

system-on-chip communication architecture in this thesis. In order to assure a certain degree of

2.3. CONCLUSION 17

QoS (e.g. guarantees in performance and required bandwidth), a feedback of the current sys-

tem state must be available. This can be achieved through runtime observability in an adaptive

system-on-chip communication architecture. If a runtime observability infrastructure comes

with only a small hardware overhead and some small communication overhead that would then

more than compensate the degree of freedom achieved using a successful adaptation. Within

this thesis an event-based NoC monitoring component at architecture-level is presented. In this

thesis, runtime observability is denoted as a complete infrastructure and monitoring as a hard-

ware component attached to each tile that offers runtime observability. The prime challenges

for runtime observability are scalability, flexibility, non-intrusiveness, real-time capabilities,

and cost. In order for the monitoring components to be as non-intrusive as possible, they need

to keep their interference with normal system execution, so-called probe effects [90] at a min-

imum. An example of these effects would be the sending of monitoring packets (the traffic

that is generated during runtime observation of the system state are described in details later in

this thesis in Chapter 7) through the regular point-to-point data links between routers. If these

packets are injected too rapidly, they demand resources which otherwise may have been used

for regular traffic. It is therefore, necessary to limit monitoring traffic by keeping its bandwidth

usage and occurrence frequency minimal.

In general, it may be stated that observability capabilities for system-on-chip communication

have not been proactively investigated in the NoC domain. In [120], authors have mentioned

an operating system controlled system-on-chip runtime collection of traffic statistics at the Net-
work Interface (NI) to optimize the usage of communication resources in a NoC using a central-

ized resource management scheme. In [39, 40], authors have presented a generic event-based

NoC Monitoring Service (NoCMS) for Æthereal. Their observability infrastructure is not de-

signed specifically to detect faults in network traffic during runtime adaptation but instead just

to gather statistics (debugging) on the NoC behavior. In [165], authors further used the moni-

toring probes proposed in [39, 40] for a new communication service to control congestion. In

a nutshell, the Æthereal monitoring framework is not used to adapt the underlying system-on-

chip communication architecture. Runtime observability is also not included in general-purpose

NoCs (e.g. [66, 76, 173]) as these architectures do not adapt at the architecture-level to increase

resource utilization. Recently, authors in [126] have also focused on self-monitoring compo-

nents for NoCs considering reliability factors.

2.3 Conclusion
In summary, this chapter presents some of the most important related works in the domain of

NoC design that help to explain the thesis. The related works presented here are further men-

tioned in various places in the rest of the thesis to demonstrate the specific novel contribution

of this thesis.

Chapter 3

QoS-supported System-on-Chip
Communication Architecture
The increasing complexity of Multi-Processor System-on-Chip (MPSoC) has invoked a paradi-

gm shift in the system-on-chip communication architecture design. In the previous chapters it is

discussed, that a Networks-on-Chip (NoC)-based architecture is seen to be the most promising

solution for the future MPSoC. A NoC is a collection of tiles and each tile is commonly made

up of three components (see Definition 4): a router, a Network Interface (NI), and the Intel-
lectual Property (IP). The IP may be composed of either Processing Elements (PEs), i.e. CPUs

or Storing Elements (SEs), e.g. RAM. IPs are mainly third party components and their imple-

mentation is not considered to be a part of NoC design. Therefore, the communication scheme

needs to be transparent to allow the deployment of diverse IPs in the given NoC architecture.

The transparency is achieved through the NI. The NI is located between an IP and its router

and is responsible for translating data from the IP representation into a format understood by

the network. This may be done by encapsulating the IP data with necessary header information

needed by the routers. The routers are responsible for choosing the route, that is followed by the

data in the network. In short, the process is accomplished by decoding the header information

and by making a decision based on the implemented routing algorithm.

One of the major challenges in NoC design is the large design space spanned by an extensive

set of (partly) independent parameters. Only a set of carefully adapted parameters will allow

unveiling the potential benefits of a NoC. The adapted parameters have to be integrated with

the Quality-of-Service (QoS) requirements for designing a time-critical embedded system. The

definition of QoS is extremely diverse and application specific in embedded systems. The re-

quirements of an embedded system application (i.e. TV broadcasting in a PDA) is time critical

and driven by the current work load on that device. Those quality limits are also restricted by

human audio-visual perception. The underlying QoS parameters latency, throughput and jitter

in such performance phenomena, bounds must be provided by the system. Other sorts of ser-

vices like security data and memory read/write or internet browsing may have varying quality

requirements. The levels of reliability (i.e. lossless data transactions) also add more parameters

to the system design. Considering the importance of QoS, a QoS-supported system-on-chip

communication architecture is presented in this chapter. The basic router architecture consid-

ering the QoS issues are kept similar with some basic assumptions for the application-specific

NoC presented in Chapter 4 and the adaptive NoC presented in Chapter 5. Both architectures

use a wormhole-based routing algorithm, virtual channels implemented using buffer blocks,

19

20 CHAPTER 3. QOS-SUPPORTED SYSTEM-ON-CHIP COMMUNICATION

pipelined architecture, and a route established mechanism for each transaction from the source

to the destination during data transmission. The architecture is explained in detail later in this

chapter. Specific features related to the application-specific NoC are presented in Chapter 4 and

related to the adaptive NoC in Chapter 5.

The novel contributions in the scope of this chapter are as follows:
(1) A scalable and configurable cycle-accurate QoS-supported NoC as a system-on-chip com-

munication architecture, on top of which a case study analysis of an application-specific NoC, as

well as the proposed adaptive NoC are built are presented in details here (published in [57, 60]).

(2) In this chapter, a novel link arbitration algorithm named as bounded-arbitration-algorithm
which provides transaction-level bandwidth guarantees considering the upper and the lower

bounds of each transaction is detailed (published in [59]).

3.1 Definitions
The application characterization graph and other associated definitions that are necessary for

the explanation of the QoS-supported NoC architecture are described below:

Definition 1: An application Task Graph (TG) is a directed graph G = (T, F), where T is

the set of all tasks (computational module), ti ∈ T describing a task and fi,j ∈ F represents

the data transmission from task ti to tj . Each fi,j has associated a value V (fi,j) describing the

communication volume in bits transmitted between the tasks ti and tj . Moreover, each ti may

be annotated with several information, e.g. execution time on different types of processing el-

ements, energy consumption depending on the type of the processing elements, task deadline,

etc. The task graph set G is the set of all task graphs Gk.

Definition 2: A Service Class (SC), SC = Normalized(BW) is a normalized value associ-

ated with each flow fi,j ∈ F in G = (T, F) explaining range of bandwidth requirement between

communicating partners. The SC is determined during application exploration and may be in-

fluenced by other QoS design parameters, i.e. latency, jitter, etc .

Definition 3: A Service Class associated Task Graph (SCTG) is a directed graph SG(T, F) ⊂
G = (T, F), where the vertices T represent the set of partitioned computational modules re-

ferred to as tasks ti ∈ T and F represents the flows between tasks (similar to Definition 1). Each

flow fi,j ∈ F between tasks ti and tj is associated with a communication volume v(fi,j) and a

corresponding service class assignment SCi,j . The service class assignment between ti and tj
is evaluated by the designers according to the QoS parameters.

Definition 4: A tile, N , is composed of mainly three mutually exclusive subsets, NIP , NNI

and NR which represent the set of Intellectual Properties (IPs), i.e. heterogeneous PEs, NI and

routers respectively.

Definition 5: A Virtual Channel (VC) is a unidirectional logical or virtual connection between

the tile Ni and Nj multiplexed with other VCs across the physical channel PYi,j . Each VC is

realized by an independently managed pair of message buffers referred to as Virtual Channel
Buffer (VCB).

Definition 6: A NoC’s Physical Network (PN) is a directed graph PN = (N, V, Bt, r). N is

a set of tiles ni and vi,j ∈ V represent an edge, the physical channel between two tiles ni and

3.2. PACKET-BASED COMMUNICATION 21

nj . Each tile has a current buffer configuration at time t, bi,t ∈ Bt represents the state of a

buffer assignment to individual output ports. The network also has a routing function r which

determines the routes taken. In case of an application-specific NoC design, both Bt and r are

fixed at design time but may change for the adaptive NoC architecture.

Definition 7: The application mapping function is a function MPt : G �→ PN which maps

an application onto the physical NoC network either at design time for the application-specific

NoC or at runtime for the adaptive NoC. The function changes in discrete time intervals.

Definition 8: A routing function r : N × N → V , r : (ni, nk) �→ vi,j returns a route vi,j away

from the current PE (ni) given the input port for each transaction and the destination nk.

Definition 9: A transaction (TR) is a message that needs to be sent from a source tile Ni to

destination tile Nj at time t. The size of the message varies considering different parameters,

i.e. time, application, source task, QoS, etc . The frequency and the size of the message deter-

mines the required bandwidth for the communicating partners. The transaction is divided into

packets and packets are further divided into flits for the wormhole-based routing.

Other definitions that are necessary to understand the concept of the proposed adaptive NoC

architecture are explained in Chapter 5.

Application layer

Presentation layer

Session layer

Transport layer

Network layer

Data link layer

Physical layer

Application layer

Transport layer

Network layer

Data link layer

Physical layer

Architecture-level

(a) ISO/OSI model (b) NoC model
(c) Proposed adaptive system-on-

chip communication architecture

System-level

Simplified view of the ISO/OSI

model necesary for this thesis

Figure 3.1: Adaptation of the ISO/OSI reference model

3.2 Packet-based Communication
There are two common ways of transmitting data through a network, circuit switching and

packet switching [134]. With circuit switching, a complete route from the source to the destina-

tion is allocated to a connection and therefore, no intermediate router processing is performed

(a very simple switch is used instead of a router). This dedicated route results in very low la-

tency comparable to that of bus based systems. However, since the entire route is allocated to

22 CHAPTER 3. QOS-SUPPORTED SYSTEM-ON-CHIP COMMUNICATION

the connection, this blocks all links included in the route. Therefore, circuit switching severely

limits the number of simultaneous connections by the network. In general, a single connection

may not require the maximum link bandwidth capacity resulting in an inefficient bandwidth

utilization.

In a packet switching communication, a transaction is divided into several smaller data units

(packets) and these are then transmitted separately through the network. To accomplish this,

each packet needs to be buffered at each router during route traversal. The necessary header

information is decoded and evaluated to decide on the subsequent route to be taken by the

packet. Packet switching does not reserve the entire route. Therefore, links are not blocked by

one transaction and because of resource multiplexing, bandwidth utilization is increased. Packet
switching however also comes with some drawbacks, i.e. in circuit switching, bandwidth and

latency of communication are guaranteed due to dedicated links but this is not the case in packet
switching when multiple packets share links. Ensuring bandwidth and latency constrains to be

met requires additional QoS mechanisms [101] in packet switching. In this thesis, a hybrid

approach by using a connection-oriented approach on top of packet based communication is

used to ensure QoS.

A packet-based communication architecture and its protocol stack can be logically modeled

in layers. The ISO/OSI [162] model is such a widespread reference model where hierarchical

communication layers use the services of lower layers to build more abstract, improved ser-

vices. Originally the model consists of seven layers (see Figure 3.1 (a)). In NoC design, it

is also common practice to adapt a hierarchical communication model because of complexity,

reusability, and even for energy reasons. For the system-on-chip communication architecture

seven layered models appear to be oversized and therefore, several recent works have envis-

aged three to five layered models. An adaptation to a three layered model of NoC with a focus

on energy consumption is done in [13]. This micro-network stack consists of the software,

architecture&control and physical layer. The Nostrum Backbone [107] introduces five layers,

merging the three top layers to one (see Figure 3.1 (b)). The physical layer in system-on-chip

communication architectures handles the reliability issues, i.e. data loss, crosstalk, energy dis-

sipation, etc. The data link layer implements the switching technique and the medium access

control. Routing, flow control and error control are the predominant tasks of the network layer.

The transport layer provides a transport of data with a defined QoS. Above mentioned four lay-

ers are considered as the architecture-level (see details of architecture-level in Chapter 5) part in

the scope of this thesis (see Figure 3.1 (c)). The PEs attached to tiles provide the session layer,

the presentation layer, the application management layer, and part of the network layer and the

transport layer. These layers are considered as the system-level (see details of system-level in

Chapter 5) of the adaptive NoC architecture (see Figure 3.1 (c)).

3.2.1 Wormhole Switching
In the proposed packet-based communication scheme, flow control occurs in two steps: (1)

at transaction-level: a transaction which may be composed of several packets travel from the

source to the destination after a route is established between these two communicating partners.

3.2. PACKET-BASED COMMUNICATION 23

This flow control provides required QoS at transaction-level. (2) at packet-level: the transfer

of a packet across the physical channel between the adjacent routers may take several cycles or

steps. Therefore, a packet-level flow control mechanism which is generally termed as switching

strategy is required.

Type RoutePriority Data #Hops

Header Flit (HF)

Type Route Data

Second Header Flit (SHF)

Type Data

Payload Flit (PF)

Type
Keep

connection
Data

Tail Flit (TF)

Reserved

HF

Packet structure

(SHF)* PF PF TF

A simple packet structure is shown here. A transaction may

be composed of multiple such packets. The packet structure

for both the application-specific NoC and the adaptive NoC

presented in this thesis are kept almost similar (the structure

of the header flits are only changed).

Figure 3.2: Flit composition of a packet for the application-specific NoC

There have been several switching strategies studied for the system-on-chip communication

architecture design, i.e. wormhole switching, store-and-forward switching, virtual cut-through
switching, etc. In this work, wormhole-based switching strategy is employed because of its

performance, easy implementation and buffer space requirement [47]. Each packet may be

broken into message flow control units named as flits (flow units). These subdivisions of the

packets are all of the same length: typical sizes include 32 bits [59] to 96 bits [39]. Due to

channel width constraints multiple physical channel cycles may be required to transfer a single

flit. The amount of data unit that can be send within a single cycle across a link is termed as

phits. In this thesis, the term flits and phits have been used interchangeably and kept similar

in size. The packet format comprising different types of flits is presented in the following

subsection. Generally, there are four types of flits (multiple types of header flit are possible).

The first one named as the header flit, includes the routing information. The routers then set

up the route which the header flit and all subsequent flits will take. Following the header flit,
the payload flits then transmit the majority of the packet payload until the packet is finished

by a tail flit. In wormhole routing, buffering only has to be done on the flit-level and not on

the packet-level [47]. Since all except the header flit do not contain routing information, it is

required that routing on the flit level is static and is not altered by a router for the duration of

the packet route traversal. Therefore, each flit of a packet must follow the same route.

Flow control mechanism in the packet-level of the wormhole switching is implemented us-

ing a Go-Back-N ARQ [168] (Automatic Repeat ReQuest) using Negative ACKnowledgments
(NACK). Therefore, successfully transmitted flits do not need to be acknowledged. However,

once a transmission error has occurred, the receiving router sends a NACK to the previous

router. This then sends a Go-Back-N signal to the VCB invoking a resending of the previous N

24 CHAPTER 3. QOS-SUPPORTED SYSTEM-ON-CHIP COMMUNICATION

packets. The value N may be determined by the number of cycles of the processing delay n
and the link propagation delay m. Thus N is at most 2m + n.

3.2.2 Packet Structure

The topology used for the network is a regular 2D Mesh. This facilitates the NoC to be highly

scalable and simplifies the design of the routing algorithms. Packets are generally composed

of four types of flits for both the application-specific NoC and for the adaptive NoC: a Header
Flit (HF), a following Second Header Flit (SHF), Payload Flit (PF), and a Tail Flit (TF) (see

Figure 3.2 for the application-specific NoC packet structure and Figure 3.3 for the adaptive NoC

packet structure). The first flit of a packet is the HF which contains the information needed by

the network to process the packet. The HFs are different for the application-specific NoC and

for the adaptive NoC. In the application-specific NoC, the HF contains a type field which defines

its type, a priority field, and the routing information. The size of those fields are design-time

parameterized. The routing information consists of direction bits for every positional router
(the term positional router is used in this thesis to highlight the need of different orientations

of input and output ports in irregular NoC topologies) and a field that represents the number of

hops the packet has to travel. If there is not enough space for the routing information in one HF,

the following header flits SHF may contain such routing information. In a smaller network, the

available space in the HF for routing information is sufficient. A HF may also contain data if

there is enough space available.

Header flit parts Size n × m Size 4 × 4§

2 Priorities, 8 BW Slots
Type 2 bit 2 bit

Priority log2 (Priorities) 1 bit

Destination log2(n × m) 4 bit

Source log2(n × m) 4 bit

Transaction ID source + 2 6 bit

TTL log2(n + m + 2x)† 4 bit

BW log2 (BW Slots) 3 bit

§rest of the bits of the 32 bit flit are free and not shown in Figure 3.3
† x = number of misroutes

Table 3.1: Size of the header flit contents in an n x m adaptive NoC and in a 4 x 4 adaptive NoC

In an adaptive NoC, the HF includes the packet priority and type (similar to HF in the application-

specific NoC), its destination address, a unique transaction identifier, a Time-To-Live (TTL)

counter, bandwidth requirements (in slots), and the transaction source. An example of their

length for the HF is given in Table 3.1 for both a general n×m adaptive NoC and for an exem-

plary 4× 4 adaptive NoC. The HF is followed by PFs which carry most of the packet contents.

Usually, there are several PFs. The last flit to arrive is the TF, which signals the end of the

packet. The TF also contains a keep-connection flag. If this is set, the router keeps resources

allocated to the transaction for future packets.

3.2. PACKET-BASED COMMUNICATION 25

Type Priority Destination Trans. ID TTL BW

Type Data

Type Data

Type
Keep Connec-

tion

Header Flit (HF)

Second Header Flit (SHF)

Payload Flit (PF)

Tail Flit (TF)
...

4 bit 6 bit2 bit 1 bit 4 bit 3 bit

2 bit

4 bit

1 bit

Source

Data

Figure 3.3: Exemplary flit composition of a 4 x 4 adaptive NoC

3.2.3 Pipeline Stages of the Router Architecture

The NoC architecture needs to be simple and parameterizable. The proposed QoS-supported

NoC is pipelined like the state-of-the-art Xpipe architecture [14]. Several design related pa-

rameters, i.e. topology, routing, switching, etc. have already been discussed earlier. The links

between two routers are pipelined. Therefore, irregular topology with a favorable routing algo-

rithm may also be designed within the frame-work. The topology customization using irregular

topology has not been included in the scope of this thesis.

To keep the NoC predictable in terms of cycle counts, the router-to-router connections and also

the router-to-IP connections are cycle-accurate. To demonstrate the basic QoS-supported NoC

architecture, one output port unit for a simple positional router is shown in Figure 3.4. Both

the application-specific NoC (see Chapter 4) and the adaptive NoC (see Chapter 5) are designed

on top of this basic QoS-supported architecture. The Input Decoder (ID) decodes the incoming

packets for the appropriate output port. Output Arbiter (OA) arbitrates the output directions

among the incoming packets. The following steps implement the QoS during the transmission.

To allow a higher operating frequency, the router structure is deeply pipelined forming several

pipeline stages at the output port. No error control unit is added in the architecture as the net-

work is assumed to be reliable. Hence, no end-to-end retransmission at packet-level is required

and thus, the throughput and the latency bounds can be measured cycle accurately. The two

necessary stages for a guaranteed transaction, the admission control stage and the packet con-
trol stage are also highlighted in the figure. The Virtual Channel Arbiter (VCA) implements the

admission control by runtime VCB assignment and the Physical Channel Arbiter/Link Control

26 CHAPTER 3. QOS-SUPPORTED SYSTEM-ON-CHIP COMMUNICATION

Output port

ID ODOA

V

C

S

Positional router

Processor port

Input
port

Output
port

A simple positional router

Details of an output port

Admission

control

Buffer

resources

Packet

control

V

C

A

VCB

VCB

PCA

LC

Figure 3.4: The basic QoS-supported router architecture

(PCA/LC) handles the link arbitration (a novel link arbitration algorithm named as bounded-
arbitration-algorithm is presented later in this chapter).

In Figure 3.5, an exemplary transmission of a packet for an application-specific NoC is pre-

sented. An IP core initiates a transmission by utilizing its implemented protocol, i.e. OCP

[121]. The NI accepts the incoming request and packetizes the data. Therefore, a classifica-

tion of the incoming message is made. A service class represented by a priority in the HF and

the connection management as a bit in the TF are determined. The route to the destination

IP is looked-up in a routing table located in the NI and added to the header information (in

the adaptive NoC the route is calculated distributively in each intermediate router rather being

calculated in NI centrally). A route-length defines the number of hops the packet has to travel

to the destination. It is decreased by every router along the route. On reaching its destination

this parameter equals zero. With this number of hops the router is able to receive the direction

of the packet at the next hop. The direction information consists of bits that define an output

direction of the positional router. Every output direction of a router can be selected by a unique

bit-sequence. If the packet is scheduled for the transmission out of the buffer, a request has to be

sent first to reserve a VCB in the output port of the router. Every VCB or NI needs to be reserved

in advance to keep the order of the data. The procedure is the same for sending to VCBs or NIs.

Therefore, the process of a request is only described for the VCBs.

The shared resources in such a QoS-supported architecture are: (1) links and (2) buffers. The

buffers are used to implement the VCs. VCBs are highlighted in Figure 3.4. VCs differen-

tiate among the transactions during the communication. The links are shared among all the

transactions for bandwidth allocation. In this architecture, the resource sharing of links and its

utilization increment in terms of fair bandwidth allocation are considered. The buffer utilization

is increased for the application-specific NoC by minimizing the number of VCBs at design time

(see Chapter 4) and for the adaptive NoC by using a central pool of VCBs and then assigning

those VCBs at runtime (see Chapter 7).

3.2. PACKET-BASED COMMUNICATION 27

Si
m

ila
ri

tie
s

A
pp

lic
at

io
n-

sp
ec

ifi
c

N
oC

an
d

A
da

pt
iv

e
N

oC
B

o
th

th
e

ap
p

li
ca

ti
o

n
-s

p
ec

ifi
c

N
o

C
an

d
th

e
ad

ap
ti

v
e

N
o

C
su

p
p

o
rt

s
q

u
al

it
y

-o
f-

se
rv

ic
e.

T
h

e
Q

o
S

is
im

p
le

m
en

te
d

b
y

V
C

B

as
si

g
n

m
en

t
in

ea
ch

o
u

tp
u

t
p

o
rt

o
f

th
e

ro
u

te
rs

fr
o

m
th

e
so

u
rc

e
to

th
e

d
es

ti
n

at
io

n
an

d
th

e
ar

b
it

ra
ti

o
n

al
g

o
ri

th
m

p
ro

v
id

es

Q
ua

lit
y-

of
-s

er
vi

ce
th

e
n

ec
es

sa
ry

fl
o
w

co
n

tr
o

l
m

ec
h

an
is

m
b

y
th

e
p

ro
p

o
se

d
b

o
u

n
d

ed
-a

rb
it

ra
ti

o
n

-a
lg

o
ri

th
m

.
A

co
n

n
ec

ti
o

n
is

es
ta

b
li

sh
ed

fo
r

ea
ch

tr
an

sa
ct

io
n

.

Pi
pe

lin
ed

ar
ch

ite
ct

ur
e

A
p

ip
el

in
ed

ar
ch

it
ec

tu
re

is
u

se
d

fo
r

b
o

th
th

e
ap

p
li

ca
ti

o
n

-s
p

ec
ifi

c
N

o
C

an
d

th
e

ad
ap

ti
v
e

N
o

C
.

T
h

e
b

as
ic

ar
ch

it
ec

tu
re

sh
o
w

n

in
F

ig
u

re
3

.4
is

re
u

se
d

al
so

fo
r

th
e

ad
ap

ti
v
e

N
o

C
p

re
se

n
te

d
in

C
h

ap
te

r
5

.

Sw
itc

hi
ng

st
ra

te
gy

B
o

th
u

se
w

o
rm

h
o

le
sw

it
ch

in
g

st
ra

te
g

y.

To
po

lo
gy

In
g

en
er

al
,

a
2

D
M

es
h

to
p

o
lo

g
y

is
u

se
d

fo
r

b
o

th
th

e
ar

ch
it

ec
tu

re
s.

Fl
oo

rp
la

nn
in

g
N

o
fl

o
o

rp
la

n
n

in
g

is
co

n
si

d
er

ed
in

th
e

sc
o

p
e

o
f

th
e

th
es

is
.

D
iff

er
en

ce
so

r
ad

di
tio

n
(t

he
ad

ap
tiv

e
N

oC
)i

n
th

e
ro

ut
er

ar
ch

ite
ct

ur
e

A
pp

lic
at

io
n-

sp
ec

ifi
c

N
oC

A
da

pt
iv

e
N

oC
Pa

ck
et

st
ru

ct
ur

e
T

h
e

co
m

p
le

te
ro

u
te

fr
o

m
th

e
so

u
rc

e
to

th
e

d
es

ti
n

at
io

n
is

g
iv

en
T

h
e

h
ea

d
er

fl
it

co
n

ta
in

s
th

e
so

u
rc

e
an

d
d

es
ti

n
at

io
n

in
th

e
h

ea
d

er
fl

it
o

f
th

e
fi

rs
t

p
ac

k
et

(s
ee

F
ig

u
re

3
.2

).
ad

d
re

ss
(s

ee
F

ig
u

re
3

.3
).

V
ir

tu
al

ch
an

ne
lb

uf
fe

r
T

h
ey

ar
e

fi
x
ed

to
ea

ch
o

u
tp

u
t

p
o

rt
at

d
es

ig
n

ti
m

e.
A

ce
n

tr
al

p
o

o
l

o
f

V
C

B
s

ar
e

u
se

d
.V

C
B

s
ar

e
as

si
g

n
ed

to

T
h

ey
m

ay
b

e
m

in
im

iz
ed

at
d

es
ig

n
ti

m
e.

ea
ch

o
u

tp
u

t
p

o
rt

o
n

-d
em

an
d

.

R
ou

tin
g

al
go

ri
th

m
S

o
u

rc
e-

b
as

ed
d

et
er

m
in

is
ti

c
ro

u
ti

n
g

.
D

is
tr

ib
u

te
d

ro
u

ti
n

g
al

g
o

ri
th

m
.

B
an

dw
id

th
T

w
o

si
m

p
le

x
li

n
k

s
ar

e
u

se
d

to
fo

rm
th

e
b

i-
d

ir
ec

ti
o

n
al

T
w

o
ha

lf-
du

pl
ex

lin
ks

ar
e

u
se

d
to

fo
rm

th
e

b
i-

d
ir

ec
ti

o
n

al

co
m

m
u

n
ic

at
io

n
b

et
w

ee
n

ad
ja

ce
n

t
ro

u
te

rs
.

li
n

k
s.

B
an

d
w

id
th

m
ay

b
e

co
n

fi
g

u
re

d
at

ru
n

ti
m

e.

M
ap

pi
ng

al
go

ri
th

m
D

es
ig

n
-t

im
e

m
ap

p
in

g
al

g
o

ri
th

m
s

ar
e

u
se

d
.

R
u

n
ti

m
e

ap
p

li
ca

ti
o

n
m

ap
p

in
g

is
u

se
d

(s
ee

C
h

ap
te

r
5

).

M
on

ito
ri

ng
N

o
m

o
n

it
o

ri
n

g
h

ar
d

w
ar

e
co

m
p

o
n

en
t

is
re

q
u

ir
ed

.
M

o
n

it
o

ri
n

g
h

ar
d

w
ar

e
to

su
p

p
o

rt
ar

ch
ite

ct
ur

e-
le

ve
la

d
ap

-

ta
ti

o
n

is
ad

d
ed

.

T
ab

le
3
.2

:
S

im
il

ar
it

ie
s/

d
if

fe
re

n
ce

s
o
f

th
e

ap
p
li

ca
ti

o
n
-s

p
ec

ifi
c

an
d

th
e

ad
ap

ti
v
e

N
o
C

ar
ch

it
ec

tu
re

s

28 CHAPTER 3. QOS-SUPPORTED SYSTEM-ON-CHIP COMMUNICATION

Sending IP Source NI Source router Routers

comp

start trans

classify

get route

pktize & store

req dir

trans flits res VC

decline reqtransmit flits

req direction

FC_NACK

req direction

transmit flits
reserve VC

Destination router

request NI

reserve NItransmit flits

Destination NI

transmit flits

Destination IP

reassemble

start trans

consume

Figure 3.5: Example of a packet transmission and requesting directions

3.3 Guaranteed Communication on Top of the
Packet-switched Network

The proposed system-on-chip communication architecture is built to support QoS on top of a

packet based communication. As mentioned earlier, the architecture uses a wormhole-based
routing algorithm and multiple pipeline stages are used for data transmission in each router. To

accomplish multiple parallel transaction over a single physical interconnect between adjacent

routers, VCs are used. VCs are realized by implementing VCBs in each output port of a router.

The guaranteed transaction in terms of bandwidth and latency is implemented by exploiting

the concept of a connection-establishment from the source to the destination. Each transaction

allocates a single VCB in each router from the source to the destination throughout the complete

route. The VCB assignment is performed at runtime during connection-establishment time.

The link arbitration algorithm manages the flow control for each transaction depending on its

requirement. Some parameters and features that are changed or added in the adaptive NoC are

given as follows:

• Packet structure: a source-based routing algorithm is used in the application-specific NoC

but a distributed routing algorithm is used in the adaptive NoC. Therefore, the header flit
of the application-specific NoC contains the complete route before the transaction starts.

On the other hand, in the adaptive NoC, the header flit only contains the source and the

destination address and the route is calculated during the first header flit transmission in

a distributed way in each router.

3.3. GUARANTEED COMMUNICATION ON TOP OF THE PACKET-SWITCHED NETWORK 29

• Distributed routing algorithm: in the adaptive NoC at each router a wXY-routing algo-

rithm is implemented. The routing algorithm is explained in detail in Chapter 7.

• Link reversal mechanism: The bi-directional links between two adjacent routers in the

application-specific NoC are implemented using two simplex links but in the adaptive

NoC the bi-directional links between two adjacent routers are implemented using two

half-duplex links. Details are explained in Chapter 7.

• Virtual channel buffer: In an application-specific NoC, the VCBs are assigned to each

output port at design time. The number of VCBs are also customized at design time

depending on the application. On the other hand, in an adaptive NoC, the VCBs need

to be assigned to each output port on-demand at runtime. Therefore, a central pool of

VCBs are used in each router and these are assigned to each transaction and output port

on-demand at runtime.

• Mapping algorithm: a design time application mapping algorithm presented in Chapter 4

is used for the application-specific NoC but for the adaptive NoC a runtime application

mapping algorithm presented in Chapter 6 is used.

• Monitoring component: a monitoring component is implemented to allow successful

architecture-level adaptation (see Chapter 7) for the adaptive NoC. In an application-

specific NoC, no monitoring component is used or implemented.

An overview comparing the application-specific NoC and the adaptive NoC architecture on top

of the proposed QoS-supported system-on-chip communication architectural design principles

is summarized in Table 3.2. Two main components that are used to establish QoS are as follows:

1. VCB assignment for each transaction over the complete route (for details see Chapter 4).

2. Link arbitration algorithm that manages the flow control mechanism in each link (for

details see Section 3.4).

A short overview of these components are described in the following.

Virtual Channel Buffer Assignment: VC implementation in wormhole-based routers in-

creases the link resource utilization by multiplexing several logical transactions over a

single physical interconnect between adjacent routers. VCBs are used to store data in the

intermediate routers during data transmission for each transaction. A connection-oriented

approach at transaction-level is used to establish QoS (a connection is established from

the source to the destination tile by assigning a single VCB in each router throughout

the complete route for each transaction). For the application-specific NoC presented in

Chapter 4 the VCB are fixed at each output port during design time. The number of VCB
assignment at each output port may be customized at design time and therefore, the area

requirement for the router may be optimized. The VCB minimization at design time for

the application-specific NoC is presented in detail in Chapter 4.

On the other hand, to allow different parallel transactions on each output port on-demand,

the VCB assignment to each output port is performed at runtime for the adaptive NoC

architecture. Therefore, a central pool of VCB is used and from there VCBs are assigned

30 CHAPTER 3. QOS-SUPPORTED SYSTEM-ON-CHIP COMMUNICATION

Allocated virtual channels

Unallocated virtual channels
A

R
B

IT
E

R

VC1

VC2

VC3

VC4

Schedule

VC1 VC2 VC3 VC3VC2VC1

Link arbitration over time
Transaction 1

Transaction 2

Transaction 3
Different VCBs are holding flits of

different packets. These packets are

the building blocks of each transaction

Each allocated VCB gets the right to send flits

in a common link in a circular fashion

Figure 3.6: Round-robin link arbitration

to each output port at runtime. It increases the resource utilization and facilitates more

concurrent parallel transactions. Details are explained in Chapter 7.

Algorithm 1 RR: Round-robin link arbitration algorithm
V C: Number of virtual channels

V Cres: Number of reserved virtual channels at time t
Pi: Priority of the ith transaction

STmax: Slot table size in number of cycles

STavl: Slot available in number of cycles

V Cdelay jitter
k : Virtual channel k latency sensitive and jitter allowed

V Cjitter
k : Virtual channel k latency sensitive and jitter allowed

Cmax
p : Upper bound # of cycles assigned to priority p

Cmin
p : Lower bound # of cycles assigned to priority p

ith: Entry in the Slot Table: ST (i)
Cp: Cycles assigned to priority P

1: for all V Cresi ∈ V Cres do
2: Assign slots to ST (next slot) ← i
3: + + next slot
4: end for

Link Arbitration Algorithm: Link arbitration manages the transaction-level flow control

during data transmission and therefore keeps the required bandwidth guarantees for the

transactions. There have been several link arbitration algorithms used in the state-of-the-

art works, i.e. Round-Robin (RR) [91], Time Division Multiple Access (TDMA) [41, 136],

etc. The work presented in [91, 92] have assumed that all the VCs are statically allocated

and predetermined by the centralized manager. In Figure 3.6, there are four VCs and

three transactions. If the physical channel bandwidth is b then the granularity of the

bandwidth reservation can only be b/4, b/3, b/2 and b. Again, QNoC [23] provides on an

average slightly more than 99% guarantee but fails to achieve 100% guarantee, which is

3.4. BOUNDED-ARBITRATION-ALGORITHM 31

mandatory constraint for a safety critical embedded system. Work presented in [23] and

[72] implement arbitrations depending on the service classes. Output line traffic within

a service class is arbitrated using a RR approach (see Figure 3.6 and Algorithm 1). The

higher prioritized packets get through as long as there is data in the buffer corresponding

to the service class. In this fashion, this approach provides relative guarantee, not tight
guarantees compared to the whole architectures. Common to current works in NoC sim-

ilar to the proposed QoS-supported NoC architecture is that efficient resource utilization

together with supporting hard guarantees is not fully considered.

In the scope of this thesis, a novel link arbitration algorithm based on TDMA approach

is used. The proposed link arbitration algorithm named Bounded-Arbitration-Algorithm
(BAA) increases the resource utilization by treating individual transaction separately by

broadly classifying them to several service classes determined during application explo-

ration.

3.4 Bounded-Arbitration-Algorithm

The link arbitration algorithm, BAA, used in the scope of presented QoS-supported system-on-

chip communication architecture considers both TDMA-like connection-oriented and service

class based approaches. The algorithm has adopted fine-granular service class specification,

considering the lower and the upper bounds for each transaction type and therefore, avoids re-

source underutilization and erroneous resource reservation. The approach also provides flexible

connections for the required service classes assigned to each transaction.

Service Latency Bandwidth (BW) Jitter Example LB UB
Priority H low - - short message nlH nhH

Priority X1 - Fixed guarantee No jitter/fixed video 80%BW nl1 nh1

Priority X2 - Fixed guarantee jitter allowed data 50%BW nl2 nh2

...

Priority Xn - Fixed guarantee No jitter streaming audio nln nhn

Priority L lowest Not fixed acceptable short memory access nlL nhL

Table 3.3: Fine-grained service class specification

3.4.1 Fine-grained Quality-of-Service Specification

The support of diverse types of traffic patterns with the maximum link utilization is the prin-

cipal goal of the QoS-supported system-on-chip communication architecture. In the scope of

this thesis, support for guaranteed bandwidth, low latency, jitter, and a scalable framework for

the service class assignment during application exploration at design time are specified. In an

application-specific NoC, the application is well known, therefore the design space exploration

is limited but for the adaptive NoC the design space becomes larger for all the possible types

32 CHAPTER 3. QOS-SUPPORTED SYSTEM-ON-CHIP COMMUNICATION

of application. Therefore, in an adaptive NoC a trade-off is considered during service class

specification for each transaction. Previous work like [133] has summarized the service classes

in: Best Effort (BE) and Guaranteed Service (GS). Work in [23], QNoC architecture has iden-

tified 4 different types of service classes, namely, Signaling, Real-Time, Read-Write (RD/WR)
and Block Transfer. So for all real time transactions with varying communication requirements,

(i.e. bandwidth) QNoC treats the transaction in the same fashion. However, all these works un-

derestimate the fine granularity of the bandwidth assignment. To overcome these shortcomings,

the proposed approach offers a scalable and application-specific service class specification ex-

plored at design time. In Table 3.3, an exemplary service class specification for a multi-media

application is shown. Each of these service classes specifies the Lower Bound (LB) and the

Upper Bound (UB) cycles in the scheduling table (scheduling table and slot table are used in-

terchangeably) to satisfy variable-bit-rate data transactions. The jitter problem is handled by

keeping the lower and the upper bounds the same. Generally, the highest priority is kept for the

messages having emergency requirements, i.e. interrupts, security messages.

Allocated virtual channels

Unallocated virtual channels

A
R

B
IT

E
R

VC1

Prio 4

VC2

Prio 3

VC3

Prio 2

VC4

Prio 1

Schedule

Link arbitration over time

11

22

33

44

CyclesPriority

11

22

33

44

CyclesPriority

Service classes

VC1 VC1 VC1 VC2VC2VC1 VC2 VC3 VC3

Transaction 1

Transaction 2

Transaction 3

Each allocated VCB gets the right to send flits

in a common link using TDMA. Number of

cycles are determined by the service class

specification given in the table below.

Figure 3.7: TDMA: Time division multiple access-like link arbitration

3.4.2 BAA on Top of the TDMA-like Link Arbitration

Considering all the above mentioned QoS requirements, in Algorithm 2 and in Figure 3.7, the

link arbitration algorithm similar to the state-of-the-art TDMA-like fixed arbitration is presented.

This algorithm provides service class specification as well as tight guarantees in terms of band-

width and jitter. Algorithm 2 exploits the advantage of TDMA together with an independent

service class specification. Each type of service class gets a fixed number of cycles to send data

at a specified time on the link. The diversity of data transactions under different traffic loads is

not taken into account. It cannot configure services adaptively while meeting the lower bound.

These situations may lead to false reservation according to miss-use of available resources dur-

ing average execution time. In the presence of available bandwidth, whole the bandwidth can

be assigned to the lowest priority (like Æthereal)[133]). But a situation of having no available

best effort traffic will lead to bandwidth underutilization for the higher prioritized traffic.

3.4. BOUNDED-ARBITRATION-ALGORITHM 33

Algorithm 2 TDMA: Time division multiple access-like link arbitration algorithm
Other variables are defined in the previous Algorithm 1

Pi: Priority of the ith transaction

Cp: Cycles assigned to priority P

1: for all V Cresi
∈ V Cres do

2: for all Cpi
do

3: Assign slots to ST (next slot) ← i
4: + + next slot
5: end for
6: end for

To avoid the latency problem and to use the unused bandwidth by any available transaction,

a novel link arbitration algorithm, called bounded-arbitration-algorithm is proposed in Algo-

rithm 3 (see also Figure 3.8). Unused bandwidth can be shared by every present concurrent

transaction, but still considering the service class specification. This tends to increase the

throughput of the network. The less time a resource is (exclusively) reserved, the chance of

contention for the resources by the concurrent transactions decreases. Thus, the algorithm is

not only providing low latency for privileged transactions but also a possible better utilization

for other transactions/applications using the QoS-supported system-on-chip communication ar-

chitecture.

Allocated virtual channels

Unallocated virtual channels

A
R

B
IT

E
R

Schedule

Link arbitration over time

Service classes

611

333

524

Upper
Bound

Lower
Bound

Service
class

611

333

524

Upper
Bound

Lower
Bound

Service
class

VC4

VC1

Prio 4

VC2

Prio 3

VC3

Prio 2

VC1 VC1 VC2 VC3VC2VC2 VC1 VC1 VC1 VC3

Transaction 1

Transaction 2

Transaction 3

Each allocated VCB gets the right to send flits in a common

link similar to TDMA. But the number of cycles are determined

by the service class specification given in the table below.

Each service class has a lower and an upper bound for

selecting the cycles associated with a transaction.

Figure 3.8: Proposed bounded-arbitration-algorithm

The algorithm implements the service class specification together with the higher and the lower

bounds slot allocation. In this algorithm, all transactions first meet their lower bound require-

ments and then go for filling the unused bandwidth approaching to the upper bound. The se-

lection of the VCs up to the upper bound, specified by the priority of the stored packets is

done depending on the service class parameters, specially considering latency and jitter. The

algorithm ensures the lower bound for any sort of transaction but certainly on the service class

basis. Besides offering unused bandwidth to only the lower priority transactions, it tends to

meet the upper bound requirements for some flexible (i.e. latency sensitive and jitter allowed)

transactions.

34 CHAPTER 3. QOS-SUPPORTED SYSTEM-ON-CHIP COMMUNICATION

Algorithm 3 BAA: Bounded-arbitration-algorithm
1: slot assigned ← FALSE

// Fill Scheduling Table SC with lower bound number of slots

2: for all V Cresi ∈ V Cres do
3: for all Cmin

pi
do

4: Assign slots to ST (next slot + +) ← i
5: end for
6: end for

// Filling SC with latency sensitive transactions that allows jitter

7: while ¬slot assigned do
8: slot assigned ← TRUE
9: for all V Cresj

∈ V Cdelay jitter
j do

10: if SLOTj < Cmax
p AND STavl then

11: Assign slots to ST (next slot + +) ← j
12: Increase the allocated slots for V Cresj to SLOTj ++

13: slot assigned ← FALSE
14: end if
15: end for
16: end while

// Filling SC with transactions that allows jitter (rest BE transactions)

17: while ¬slot assigned do
18: slot assigned ← TRUE
19: for all V Cresk

∈ V Cjitter
k do

20: if SLOTk < Cp
max AND STavl then

21: Assign slots to ST (next slot + +) ← k
22: Increase the allocated slots for V Cresk

to SLOTk ++

23: slot assigned ← FALSE
24: end if
25: end for
26: end while

3.4.3 Bound Analysis

Building a time-critical embedded system is always a challenging task. The system design

starts from the application exploration. This exploration provides the average, lower and best

case scenario for the running system. From this analysis the designer restricts the design to obey

the bounds. The following bound analysis is only valid when the application and its transactions

are well known at design time. The throughput bounds (in bits/cycle) for every transaction may

be formulated as follows:

[L-B] T p
c = (low sp

c/S) × CW × DR [bits/cycle] (3.1)

[U-B] T p
c = (up sp

c/S) × CW × DR [bits/cycle] (3.2)

The throughput for a transaction c having the priority p is defined by T p
c in the above equa-

tion. The number of allocated cycles for the transaction c over time for priority p is assigned

both for the lower and the upper bounds, low sp
c and up sp

c . The symbol CW stands for the

channel width and DR stands for the data ratio, representing the protocol overhead. Similar to

other architectures, the proposed QoS-supported system-on-chip communication architecture

3.4. BOUNDED-ARBITRATION-ALGORITHM 35

also suffers from the protocol overhead, i.e. header data for the transmitted packets. The data

ratio compared to the extra header information is also considered in the bound calculation.

PREDICT

Memory

INPUT

iDCT

ADD

Memory

MiQuant

MemoryMemory

Figure 3.9: MPEG4 video decoder and its data flow graph

Similarly, the latency bounds can be summarized as:

Li
hop = Li

vctolinkS + Li
link+ Li

linktoV Cj
(3.3)

Lp
c =

(LIP toSW + Li
hop+ LNItoIP) × IP data

T p
c

(3.4)

Here, Li
hop is the latency of an individual hop i, calculated by summing up the latency from the

virtual channel to the link (Li
vctolinkS), the latency in the link (Li

link), and the latency in link for

the router i to the virtual channel, j (Li
linktoV Cj

). After attaining the latency of a single hop, the

latency for an individual transaction may be calculated. Symbol Lp
c stands for the latency of

a transaction having the priority p. This latency can be calculated by all the small parts that

contribute to the latency along the route, the latency from the IP to the router switch (LIP toSW),

the latency for each router i in the transaction route (Li
hop), the latency from the NI to the IP

(LNItoIP). All sources of latency are then multiplied with the amount of data sent by the IP

(IPdata) and divided by the throughput of the transaction having the priority p (T p
c).

Injection: Min. Max.

MPEG4 400 MB/s 800 MB/s

Stimulus1 120 MB/s 400 MB/s

Stimulus2 180 MB/s 400 MB/s

Stimulus3 300 MB/s 600 MB/s

Table 3.4: Traffic modeling

36 CHAPTER 3. QOS-SUPPORTED SYSTEM-ON-CHIP COMMUNICATION

Macroblock & parameter
MotionVector & parameters
Data generated from stimulus

(Each flow is correspondingly color
coded)

(0x4)

IP

IP

(3x4)

IP

(0x0)

IP

IP

(3x0)

IP

(0x1)

IP

(0x3)

IP

IP

IP

(3x1)

IP

IP

IP

IP

IP

(3x3)

IP

INPUT

(1x1)

PREDICT

(2x1)

iQUANT

(1x2)

iDCT

(1x3)

ADD

(2x2)

I/O

(2x3)

Stimulus1
Producer

(1x0)

Stimulus1
Consumer

(1x4)

Stimulus2
Producer

(2x0)

Stimulus2
Consumer

(2x4)

Stimulus3
Producer

(0x2)

Stimulus3
Consumer

(3x2)

Input

iQuant

iDCT

ADD
PRE

DICT

MPEG4 Task Graph

Figure 3.10: MPEG4 video decoder mapping onto a 5 × 4 Mesh

3.4.4 Evaluation of the Bounded-Arbitration-Algorithm

For the evaluation of the proposed bounded-arbitration-algorithm, an MPEG4 video decoder is

implemented (only application-specific NoC is considered in this evaluation). In Figure 3.9, the

task graph of the MPEG4 video decoder is shown. An MPEG4 encoded video is a sequence of

I-frames, P-frames, and B-frames. An I-frame is not predicted. P-frames are predicted from the

previous I- or P-frame. And finally, a B-frame is predicted from the previous and next I- or P-

frame. B-frames are optional in compression. Figure 3.9 shows that an I-frame needs the tasks

INPUT, iQuant, iDCT, and ADD for decoding. P- and B-frames require INPUT/VLC, iQuant,
iDCT, PREDICT, and ADD tasks for decoding. The mapping of an MPEG4 video decoder onto

a 5 × 4 Mesh NoC architecture is shown in Figure 3.10. Here, 6 inner tiles are used for the

tasks of MPEG4. Other tiles are used for other Stimulus to create arbitrary traffic during the

experiments. Stimulus created Stimuli go through the whole chip and then create concurrent

communication together with the MPEG4 application. Thus it simulates the embedding of

the MPEG4 in a larger application. In most of the cases, the smallest communication unit in

MPEG4 is a MacroBlock (MB), consisting of 16 × 16 pixels. The communication unit between

the tasks INPUT and PREDICT is the so called MotionVector (MV).

α(t) = μ =
ρ′(t) × D
ρ′′(t) × W

(3.5)

For the experiments, the traffic model described in Table 3.4 and in Equation 3.5 are taken. A

random rate, μ keeps the injected traffic load between 30-100% of the worst case specified in

the Table 3.4. Here D stands for the amount of data transferred between two tasks and W for the

worst case (fastest computation) execution time. To keep the traffic application-specific, ran-

dom variables ρ′ and ρ′′ have been introduced, where 0 ≤ ρ′ ≤ 1 and 1 ≤ ρ′′ ≤ 2. Experiments

show, the injection rates of the variable-bit-rate data producing applications vary over time. For

Example, the IP1x2 (iQuant) is producing a MacroBlock of 808 Bytes for IP1 × 3 (iDCT) in

an interval depending on the prior processing of IP1x2 (Input). The analysis of the MPEG4

3.4. BOUNDED-ARBITRATION-ALGORITHM 37

StimulusBStimulusA StimulusC

Round-robin arbitration

500MB/s

500MB/s

500MB/s

500MB/s

MPEG4 video decoder

Bounded-arbitration-algorithm

StimulusBStimulusA StimulusC

800 MB/s

400 MB/s
400 MB/s

400 MB/s

(Bandwidth arbitration) (Bandwidth arbitration)

MPEG4 video decoder

Figure 3.11: Transaction-specific bandwidth provides the lower bound guarantee

(IP1x0 to IP1x4) - Stimulus1
Throughput - bounded bandwidth using

Bounded-arbitration-algorithm

0

500

1000

1500

2000

Simulation time (cycles)

M
B

/s

Bounded-arbitration-algorithm Bounds

(IP1x0 to IP1x4) - Stimulus1
Throughput Round-robin

0

500

1000

1500

2000

Simulation time (cycles)

M
B

/s

Round robin Bounds

Figure 3.12: Throughput between RR and BAA

application shows that the computation times vary from 50-100%. Some observations consid-

ering the transactions iQuant → iDCT and Stimulus1(Producer)→ Stimulus1 (Consumer) are

recorded in the following given figures.

An analytical result showing the comparison of traffic specification between the RR and the

BAA is presented in Figure 3.11. In this experiment, link capacity of 2000 MB/s is considered.

Link capacity is design time parameterizable for the application-specific NoC. The lower bound

(minimum) requirements from the MPEG4 and Stimulus are assumed to be 800 MB/s and 400

MB/s respectively (different scenario compared to Table 3.4). The upper bound (maximum)

requirements for both the MPEG4 and Stimulus are assumed 2000 MB/s. The RR arbitration

scheme fails to allow all 4 concurrent transactions to meet their minimum requirements. The

BAA supports application specific bandwidth assignment and that is why it can allow all 4

transactions to meet at least their lower bounds.

Figure 3.12 depicts the direct comparison of the throughput of the low prioritized Stimulus1
transaction for the BAA and the RR algorithms. It is shown that the BAA supplies a fluctuat-

ing throughput of 400-2000 MB/s but the RR arbitration provides a throughput that oscillates

in the interval of 1000-2000 MB/s. These observations can be explained as follows: the BAA
algorithm arbitrates only the minimum bandwidth specified in the service class description of

38 CHAPTER 3. QOS-SUPPORTED SYSTEM-ON-CHIP COMMUNICATION

(IP1x2 to IP1x3) - MPEG4
Latency - Comparison

TDMA-like fixed arbitration

Round-robin arbitration

Bounded-arbitration-algorithm

Bound

0

200

400

600

800

1000

Simulation time (cycles)

C
yc

le
s

Figure 3.13: Latency comparison for TDMA-like fixed, RR and BAA algorithms

Link (IP1x3 to IP1x4) - Stimulus1
Wasted bandwidth - comparison

0

10

20

30

40

50

Simulation time (cycles)

%
of

 r
es

er
ve

d
ba

nd
w

id
th

TDMA-like fixed arbitration Bounded-arbitration-algorithm

Figure 3.14: Resource utilization: TDMA-like fixed and BAA

the Stimulus1’s priority to the transaction, if both transactions are present. Thus it privileges

the MPEG4 over the Stimulus1 transaction as it is specified. In contrast to that, the RR arbitra-

tion does not consider any priority or classification. Therefore, the low prioritized transaction

gets the same portion of the bandwidth as the latency-sensitive data. With a growing number

of concurrent transactions, high classified transactions might fail their deadline, because low

prioritized data is arbitrated the same way. This comparison shows that BAA is able to arbitrate

transactions separately depending on the classification of the transaction type.

Figure 3.13 shows the difference among the fixed arbitration scheme (TDMA-like) (see Algo-

rithm 2), the RR (see Algorithm 1), and the BAA. The graph shows that BAA provides the lowest

latency for the latency-sensitive MPEG4 transactions. Even though RR provides a low latency,

(least is higher than the one in the BAA) with more concurrent transactions the RR would not be

as competitive because of the equal arbitration of all transactions. TDMA-like fixed arbitration

3.4. BOUNDED-ARBITRATION-ALGORITHM 39

Link (IP1x3 to IP1x4) - Stimulus1
Wasted bandwidth - granularity

0

10

20

30

Simulation time (cycles)

%
 o

f r
es

er
ve

d
ba

nd
w

id
th

Course-granular service class specification

Fine-granular service class specification

Figure 3.15: Fine-granular service class specification

algorithm provides predictable constant throughput and latency bounds but has no ability to

adapt to the present traffic.

The waste of bandwidth for a static reservation of resources compared to a more adaptive, BAA,

is shown in the Figure 3.14. It can be seen in the figure that the wasted bandwidth of the

fixed approach is on an average near 25% because of the unpredictability of the applications

injection rate. The BAA provides a good resource utilization by keeping the bandwidth waste

significantly low around 3% over the whole simulation time. These results show the importance

of bandwidth adaptation during runtime. Whereas the BAA shares unused bandwidth among

other transactions, the fixed approach wastes it. This leads to a huge resource underutilization

by wasting 1
4

of the reserved bandwidth in this experiment. For the high costs of resources

in a system-on-chip, such a waste of resources is inevitable. An adaptive approach like the

introduced BAA is mandatory. It can be derived that the BAA, presented in this thesis provides a

very high resource utilization of 97%. It represents an approach that is able to adapt to variable-
bit-rate traffic patterns and considers service-based classifications.

The possible granularity of the traffic classification is crucial for the utilization of the network.

The Stimulus1 is producing data with 20% of the bandwidth. One classification reserves 25%,

the other one 20%. BAA is used, but with no jitter. The result in Figure 3.15 shows that, the

course-granular scheme exhibits a high waste of bandwidth. On an average 20% of the reserved

bandwidth are wasted. This conforms with the deviation of 5% in the traffic specification,

because 5% is 20% of the defined 25% of bandwidth. The waste of bandwidth by the fine-

granular specification is on an average negligible with less than 0.10%. The result emphasizes

the importance of a specific definition of the traffic requirements. Architectures that are not

offering a fine-granular service specification suffer from a bad resource utilization in diverse

traffic scenarios. However, the approach of this work with the introduced design allows a fine-

40 CHAPTER 3. QOS-SUPPORTED SYSTEM-ON-CHIP COMMUNICATION

MPEG4 Stimulus1-3

Inp Inp Inp iQuant iDCT MC S1 S2 S3

iQuant iDCT MC iDCT ADD ADD

Average throughput of all transactions

0

500

1000

1500

2000

2500

Th
ro

ug
hp

ut
 (M

B
/s

)

Bounded-arbitration-algorithm

Round-robin

TDMA-like fixed arbitration

Figure 3.16: Overall throughput comparison for MPEG4 video decoder and stimulus

granular service class specification.

The advantage of the BAA in terms of higher throughput, low latency and more resource utiliza-

tion compared to the TDMA-like fixed algorithm and to the simple RR algorithm are summarized

in Table 3.5, Figure 3.16, and Figure 3.17. Because of the static reservation the TDMA-like fixed

algorithm provides constant throughput which is determined by the reserved worst case require-

ments. RR offers a high throughput for the MPEG4 and the Stimuli transactions. But especially

the throughput of the higher prioritized MPEG4 transactions is less than in the BAA simulation.

The BAA assigns the most throughput to the latency-sensitive MPEG4 transactions. Thus the

throughput of the Stimuli is not as high as utilizing RR. In case of more concurrent transactions

along the same route, RR would share the throughput equally among all the transactions. Such

an arbitration does not consider any service classification and might fail in meeting the dead-

lines of each individual transmission. The throughput results show the advantage of the BAA
that arbitrates the traffic as defined in the service class specification.

The average latency in cycles per thousand bytes is presented for the three arbitration schemes.

Utilizing the TDMA-like fixed algorithm, the highest average latency for every transaction is

obtained. Because of the static reservation, always only a reserved fraction of the bandwidth

is used, even if the full bandwidth would be available. This leads to constant but very high

latency for the TDMA-like fixed algorithm, measured in cycles. Comparing RR and BAA it can

be derived that the average latency in both arbitration schemes is quite low. But considering

the traffic classification the BAA provides the best results. The latency-sensitive MPEG4 trans-

actions using the BAA have lower latency cycles than with RR arbitration. In the RR scheme,

the low classified Stimuli have a lower latency than utilizing BAA. But this results in the higher

average latency of the MPEG4 transactions which are classified as latency-sensitive and privi-

leged. Thus RR does not consider any service-based separation of the traffic. BAA provides a

methodology to keep the latency for specific transactions high, by maximizing the latency of

3.5. CONCLUSION 41

MPEG4 Stimulus1-3

Inp Inp Inp iQuant iDCT MC S1 S2 S3

iQuant iDCT MC iDCT ADD ADD

Average latency of all transactions

0

1000

2000

3000

4000
La

te
nc

y
(c

yc
le

s)
Bounded-arbitration-algorithm

Round-robin

TDMA-like fixed arbitration

Figure 3.17: Overall latency comparison for MPEG4 video decoder and stimulus

traffic with a low priority. Table 3.5 also summarizes that the BAA considering service classifi-

cation provides a higher network utilization of about 97% together with higher throughput and

low latency.

3.5 Conclusion

The adaptive system-on-chip communication architecture introduced in Chapter 5 is built on top

of the QoS-supported NoC architecture presented in this chapter. The flow control mechanism

to provide QoS at transaction-level using a novel link arbitration algorithm named as bounded-
arbitration-algorithm is explained in detail here. The importance of classifying each transaction

at its fine granular level with lower and upper bounds of services is introduced in this chapter.

It is already discussed that a scalable system-on-chip interconnect with bandwidth guarantee is

beneficial for system-on-chip real-time MPSoCs. However, it carries the burden of typically

wasting a large amount of bandwidth when the guaranteed bandwidth is not used by one or

more interconnect channels. As discussed, state-of-the-art communication architectures do not

provide satisfactory solutions, either they lack 100% guarantee or they come with a relatively

large average bandwidth waste.

It is demonstrated that the proposed link arbitration algorithm that provides QoS at transaction-
level is able to provide a 100% guarantee of bandwidth with an average waste of only 3%

(i.e. 97% utilization) a value that has not been achieved by others so far. The advantages of BAA
is evaluated by a case study of an MPEG4 video decoder under varying Stimuli scenarios.

42 CHAPTER 3. QOS-SUPPORTED SYSTEM-ON-CHIP COMMUNICATION

A
v
er

ag
e

th
ro

u
g

h
p

u
t

M
B

/s
A

v
er

ag
e

la
te

n
cy

cy
cl

es
/1

0
0

0
B

%
B

an
d

w
id

th
w

as
te

T
ra

n
sa

ct
io

n
s

F
ix

ed
(T

D
M

A
-l

ik
e)

R
R

BA
A

F
ix

ed
(T

D
M

A
-l

ik
e)

R
R

BA
A

F
ix

ed
(T

D
M

A
-l

ik
e)

R
R

BA
A

In
p

u
t−

>
iQ

u
an

t
8

0
0

1
8

4
0

19
01

9
3

9
5

7
5

56
1

9
0

0
0

In
p

u
t−

>
iD

C
T

8
0

0
1

8
2

2
19

00
1

2
7

2
8

8
3

85
0

8
3

1
1

In
p

u
t−

>
P

R
E

D
IC

T
8

0
0

2
0

0
0

20
00

1
6

8
0

9
8

6
97

8
8

9
2

2
iQ

u
an

t−
>

iD
C

T
8

0
0

1
7

5
6

18
75

9
6

2
5

9
9

57
3

9
0

0
0

iD
C

T
−

>
A

D
D

8
0

0
1

6
6

2
17

67
3

1
4

8
1

6
2

0
14

99
5

7
1

1
P

R
E

D
IC

T
−

>
A

D
D

8
0

0
1

7
6

8
18

90
1

0
5

1
6

2
6

59
0

5
5

1
1

S
ti

m
u

lu
s1

4
0

0
1

7
8

8
17

32
1

7
5

4
6

7
6

70
9

2
3

4
8

S
ti

m
u

lu
s2

4
0

0
1

7
3

0
16

73
1

7
1

7
7

0
3

73
9

2
5

4
4

S
ti

m
u

lu
s3

6
0

0
1

7
7

7
17

37
1

2
3

6
6

4
8

66
8

1
9

3
4

T
ab

le
3
.5

:
C

o
m

p
ar

is
o
n

o
f

B
A

A
co

m
p
ar

ed
to

R
R

an
d

T
D

M
A

-l
ik

e
fi

x
ed

li
n
k

ar
b
it

ra
ti

o
n
s

Chapter 4

Road to Adaptive Networks-on-Chip
from Application-specific Design
Application-specific Networks-on-Chip (NoC) design has been a great research interest since

the beginning of this decade. Several application-specific NoC architectures [20, 23, 32, 43,

65, 72, 92, 107, 133, 145, 157, 170] and different research issues, i.e. topology customization

[1, 15, 33, 81, 109, 123, 127, 152], buffer minimization [55, 56, 78, 139], routing algorithms

[45, 79, 132], application mapping [70, 77, 98, 104, 110, 111, 112, 113, 143], design method-

ology, and automation tools [57, 60, 86, 89, 94, 114, 178] have been discussed in previous

works. In general, customization of different NoC parameters starting from the application

or application-domain to a highly optimized communication-centric Multi-Processor System-

on-Chip (MPSoC) architecture at design time is termed as the application-specific NoC. In an

application-specific NoC, the customization is mainly performed in three domains of NoC de-

sign (1) NoC architecture-level parameters, i.e. buffer, topology, link-width, and floorplanning,

(2) communication paradigm, i.e. routing algorithm, switching strategy, and (3) application
mapping, i.e. task and communication scheduling, task and PE mapping. Details of all these

parameters with a general design flow of an application-specific NoC are described in the fol-

lowing sections.

The novel contributions in the scope of this chapter are as follows:
(1) A detailed study to formulate the parameters for building networks-on-chip architectures are

shown in this chapter. These customization parameters are later evaluated to construct the novel

adaptive system-on-chip communication architecture.

(2) A case-study analysis to build an area-efficient application-specific NoC by reducing buffer

at design time is detailed in this chapter.

(3) To optimize the number of Virtual Channel Buffers (VCBs) in a Quality-of-Service (QoS)-

supported application-specific NoC architecture, a two-step methodology is provided. The two

steps are given below:

Step 1: A multi-objective mapping algorithm that considers both the communication volume

and the number of VCBs during NoC mapping based on a modified Ant Colony Optimization
(ACO) algorithm is used. This approach is orthogonal to any application driven traffic model

(published in [55]).

Step 2: In the second step, the traffic characteristics of the application is considered. It is

observed that a wide range of digital media applications follow the poisson distribution and

therefore, an analytical approach to optimize further the number of VCBs depending on QoS

parameter q and the application-specific traffic model is presented (published in [56]).

43

44 CHAPTER 4. ROAD TO ADAPTIVE NETWORKS-ON-CHIP

Parameters related to
architecture-level

Parameters related to
communication paradigm

Parameters related to
application mapping

Topology customization

Buffer size customization

Bandwidth customization

Floorplanning customization

Selection of switching
scheme

Routing algorithm

Task and communication
scheduling

Task to IP mapping

Application-specific
Networks-on-Chip

An application-specific NoC development

is presented using a 3D design space

exploration starting from the application

task graph. The architecture choice

depends on trade-off among power,

performance, and area.

Design-time optimization/

customization of different

parameters in 3D design space

Figure 4.1: 3D design-space exploration for the application-specific NoC design

4.1 Parameters to be Customized for the
Application-specific Networks-on-Chip

In this section, a summary of all the possible parameters that can be customized at design time

for an application-specific NoC design are presented. A similar overview is also presented in

[122]. An application-specific NoC design begins from the application task graph TG (see Def-

inition 1 in Chapter 3) and then the application is mapped onto an optimized NoC architecture.

In the following, the application-specific NoC, ANOC is defined:

Application-specific Networks-on-Chip: The system-on-chip communication architec-

tural design choice starting from an application to a 3D design-space exploration, con-

sidering the triple ANoC = (X, Y, Z) may be defined as application-specific NoC. Fig-

ure 4.1 shows different parameters in a 3D view that needs to be customized at design

time. The variables in the triple ANoC = (X, Y, Z) are explained as follows:

• The parameter X in the triple ANOC is a quadruple X = (To, Bu, BW, F l),
the architecture-level parameters, those are required to design the router for the

application-specific NoC. In the quadruple, To is the custom topology, Bu is the

buffer assigned to each port, BW is the supported bandwidth in each output port

which may be calculated from the given link-width, and Fl represents the floorplan-

4.1. PARAMETERS TO BE CUSTOMIZED 45

ning of the final MPSoC depending on different sizes of the tiles.

• The parameter Y consists of two parameters for selecting the type of communi-
cation paradigm, Y = (Ro, Sw), where Ro is the routing algorithm selected for

the NoC considering the application. The routing in general is of two types (con-

sidering only the deterministic routing) (1) source-based routing and (2) distributed
routing, e.g. the XY-routing algorithm. Second parameter in selection of the commu-
nication paradigm is the switching strategies (Sw), i.e. store-and-forward, virtual
cut-through, wormhole, etc.

• The third dimension in the 3D design-space for the application-specific NoC design,

is the application mapping to the NoC platform. Several parameters, i.e. energy,

performance, etc are used as the cost function for the application mapping. It also

has two parameters to be customized, Z = (Sc, Mp), where Sc is the task and
communication scheduling and Mp is the mapping of the task on the corresponding
precessing element inside each tile.

All these parameters those need to be customized at design time to generate an application-

specific NoC are described in short, in the following subsections. A detailed study regarding all

these parameters may be found in [43, 47, 65, 77, 87, 122].

4.1.1 Architecture-level Parameters

The hardware-related parameters those comprises the design of the router for the application-

specific NoC are considered in this category. The parameters are: (1) topology selection, (2)

link-width, (3) buffer size, and (4) floorplanning of the NoC.

Topology Customization: In the architecture-level design process of an application-specific

NoC, one of the most important steps is to choose a suitable NoC topology for a partic-

ular application and then mapping of that application on the selected topology [86, 114].

There are several standard topologies onto which the application may be mapped. Those

may be classified as (1) direct topology, e.g. Mesh (see Figure 4.2 (a)), Torus, Hyper-

cube, etc and (2) indirect topology, e.g. 3-stage clos, butterfly (see Figure 4.2 (b)), etc

[47]. In a direct topology in each router, only one Processing Element (PE) is connected

and on the other hand in a indirect topology several PEs may be connected to a router.

The selection of an appropriate topology for the application-specific NoC architecture-
level design depends on several design objectives, i.e. network latency, throughput, QoS,

power consumption, area, etc.

The simplicity and easy floorplanning have always motivated towards selection of a reg-

ular grid-like topology, i.e. Mesh [23, 24, 59]. While the topology is selected, the NoC

design problem is reduced to the rest of the other issues, i.e. routing algorithm, buffer as-

signment, application mapping, etc. Several experiments have shown that such a regular

grid-like topology does not meet the design constraints or even may end up with infea-

sible solutions [122]. Therefore, to achieve a better design-space exploration, a group of

46 CHAPTER 4. ROAD TO ADAPTIVE NETWORKS-ON-CHIP

standard topologies is also explored to find an optimal solution for the given application

[93, 114].

Recently, the limitations of the standard topology selection have motivated the researchers

and designers for exploration in the direction of flexible customized topology (see Fig-

ure 4.2(c)). The benefits of a customized flexible topology for an application-specific

NoC are multifold: the communication workload presented in an application can be ex-

ploited and therefore can be optimized for the architecture [124, 130, 153], the wastage of

silicon area because of different sizes of tiles may be saved, resource utilization per tran-

sistor basis may be increased, etc. Several approaches concerning its design challenges

have been already discussed in the previous works [1, 33, 43].

a) Direct NoC topology: Mesh b) Indirect NoC topology: Butterfly
c) Application-specific

custom topology

0 0 0

1 1 1

2 2 2

3 3 3

0

1

2

3

4

5

6

7

0

1

3

3

4

5

6

7

0 1 2

3 4 5

6 7 8

2

2

2

2

2

2

2

2

Each circle denotes a tile having

intellectual proerty, router, and

network interface

Stage 1 Stage 2 Stage 3
Different sizes of each circle

explains the possibility of having

different sizes of tiles

Figure 4.2: Different types of topology for the application-specific NoC design

Link-Width Customization: The width of the communication link determines the supported
bandwidth of that particular link. The bandwidth calculation in relation to the link-width
is calculated as follows:

BW = fch × W (4.1)

In Equation (4.1), BW stands for the supported bandwidth of the link which is calculated

considering the link operating frequency fch and the width of the links in number of bits

is shown as W . In general, if the link-width W increases then it decreases the commu-

nication latency. The side affect of the increased link-width W is higher area in the NoC

implementation. The choice of an appropriate link-width influences the NoC parameters,

i.e. resource utilization, area, energy, etc [47, 60, 122].

Buffer Size Customization: Buffer is required to store the transactions in the intermediate

routers from the source to the destination to resolve the issues, like. route selection, con-

gestion, etc. Depending on the router implementation buffer may be used in the input

ports as well as in the output ports. An estimation shows that the buffer area amounts to

about 60% of the entire router area [173]. In [122], authors have shown that by increasing

the buffer size at each input port from 2 to 3 words increases the overall router area by

30% for a 4 × 4 NoC (an input buffering scheme together with wormhole-based routing

is used in this architecture). Therefore, overall use of the buffer has to be reduced for

4.1. PARAMETERS TO BE CUSTOMIZED 47

Number of slices for a router implementation

0

200

400

600

800

1000

1200

1400

1600

1800

Output
port

Header
decoder

Virtual
Channel (VC)

VC
processing

VC arbiter Crossbar Acknowl
-edgement

Total

Different parts of a router

of

 s
lic

es
Number of VCBs 1
Number of VCBs 2
Number of VCBs 3

Figure 4.3: Area effects of the increasing virtual channel buffers

designing a system-on-chip communication architecture and it is of prime importance.

On the other hand, using more buffers, the reduced latency for the transactions and acco-

modation of more parallel transactions may be achieved.

In the scope of this thesis, an application-specific NoC on top of the QoS-supported

system-on-chip communication architecture presented in Chapter 3 is detailed in this

chapter (see Section 4.3). Special emphasis has been given to reduce the size of the

buffer at design time in this work. Figure 4.3 shows the effect of increasing the buffer

that is needed to implement the Virtual Channels (VCs) in the proposed architecture.

Floorplanning Customization: The floorplanning is a part of the architecture-level param-

eters that may be customized at design time for the application-specific NoC. The floor-
planning for the regular topologies is well studied and has been addressed in [179]. But

on the other hand, if the size of the tiles in the NoC varies with the selection of an arbitrary

topology then the customization of the floorplanning becomes a very important step in

the NoC design process. Floorplanning needs to consider several issues, i.e. placement of

routers and repeaters for a latency insensitive operation, routability of the global network

link for higher performance, the coupling effects, etc. [30, 86, 110].

4.1.2 Communication Paradigm Customization

The communication paradigm guides the transaction flow after the application is mapped onto

the NoC architecture. Generally, the parameters that are required for the flow control of the

transactions are: the routing algorithm and the switching strategy. The selection of the commu-
nication paradigm directly influences the physical parameter of the NoC architecture, e.g. buffer

as well as the performance of the NoC, i.e. latency, throughput, QoS. An overview of these pa-

rameters is given below.

48 CHAPTER 4. ROAD TO ADAPTIVE NETWORKS-ON-CHIP

Routing Algorithm Selection: One of the most important parameters for the NoC design

is the selection of the routing algorithm. Endless number of routing algorithms have been

proposed for the system-on-chip communication architectures for the last couple of years

(for details see [47]). The selection of the routing algorithm greatly affect the NoC design

parameters specially performance, energy, and area. Therefore, a trade off among area,

energy, and performance is considered.

Routing algorithms can be broadly classified depending on the number of destinations

into two distinct categories: (1) unicast routing, single destination and (2) multicast rout-
ing, multiple destinations [47]. Most of the early works have mainly concentrated in

unicast routing because of its higher demand from application side [24, 43, 77]. There

have been very few works dealing with multicast routing for the system-on-chip commu-

nication architecture [102, 140]. Depending on where the routing decisions are taken an

unicast routing may be mainly classified as: (1) source-based routing and (2) distributed
routing. In a source-based routing, the routing decision is taken in the source of the trans-

action and the complete route is determined before data transmission starts. On the other

hand, in a distributed routing, the route is determined in a deterministic way while the

packets inside a transaction are traveling across the network. Both these source-based
[43] and distributed [132] routing algorithm have been studied in early works for the

system-on-chip communication architectures. All these routing algorithms can be de-
terministic [116] or adaptive [7, 62, 79, 142]. Deterministic routing algorithms always

provide the same route for a given source and a destination and adaptive routing algo-

rithms use several information, i.e. network traffic, available network resources, etc [47].

For an application-specific NoC design selection of the deterministic routing algorithm

is more appropriate as the given application is well studied and therefore, the routing al-
gorithm may be customized by using the state-of-the-art techniques, i.e. traffic splitting

[113]. Situations where the traffic scenarios may not be predicted beforehand, i.e. during

faults, demand for the adaptive routing algorithms [7, 48, 49]. In the scope of this thesis,

a deterministic routing algorithm is used for the application-specific NoC and an adaptive
routing algorithm named as the wXY-routing algorithm for the adaptive system-on-chip

communication architecture explained later in Chapter 7.

The routing algorithms whatever the type is need to be livelock, deadlock, and starvation

free [47, 62]. In practice, deadlock and livelock detection and recovery mechanisms are

expensive and they may effect the latency and throughput of the network. Determinis-

tic and partially adaptive algorithms [79] based on turn model are free from deadlock

problems, but on the other hand, fully adaptive routing algorithms require extra precau-

tion, e.g. Time-To-Live (TTL) counters are used in the proposed adaptive system-on-chip

communication architecture in Chapter 7.

Switching Strategy Selection: The second parameter in the communication paradigm se-

lection, that is closely coupled with the routing algorithm, is the switching strategy. The

switching strategy determines the flow control mechanism of the packet inside a router.

It influences the required buffer to store the intermediate data during transmission [47].

There are several types of switching strategies for the system-on-chip communication ar-

chitectures, e.g. store-and-forward, wormhole, virtual-cut-through, etc. Among the above

4.1. PARAMETERS TO BE CUSTOMIZED 49

mentioned switching strategies wormhole switching has been proved to be most promising

for the system-on-chip communication architectures because of its lower buffer resource

and latency requirements [20, 23, 43, 44].

In general, wormhole switching provides better network performance i.e latency or av-

erage throughput compared to a pure circuit switching [106, 133] under the presence of

dynamic traffic [122] (examples of circuit switched NoC can be found in [27, 176]). In

an application-specific NoC design, the application is well studied and therefore, a circuit

switching may provide 100% QoS compared to a wormhole switching. Therefore, circuit

switching may be used for an application-specific NoC design where QoS is of prime im-

portance. In the proposed application-specific NoC presented in this thesis, a connection-

oriented approach over wormhole-based switching is presented. The connection-oreinted

approach exploits the concept of circuit switching in the transaction level and therfore,

provides QoS.

4.1.3 Mapping of the Application

The application is mapped onto the NoC architecture at design time and this mapping influ-

ences several parameters during the execution of the applications, i.e. QoS, performance in

terms of throughput and latency, etc. The parameters those may be included in the architecture

exploration for system-on-chip communication architecture considering the mapping of the ap-

plication are: task and communication scheduling and task to PE mapping. A short outline of

these parameters is given below.

Scheduling Algorithm Selection: During the application mapping, the problem of the

task and communication scheduling needs to consider the computation and the communi-

cation together. The scheduling is very important for real-time and DSP-applications. The

task and communication scheduling problem is a classical problem in computer science

and has been also studied for the applications that are mapped onto the NoC architectures.

Besides the classical problems, in the NoC domain the inter-processor communication de-

lay together with the congestion issues need to be considered [122]. Several works have

been done in this respect, i.e. an architectural support for compile-time scheduling in the

system-on-chip communication [99], energy minimization by first allocating more slack

to those tasks which have larger impact on energy and performance constraints [80], etc.

In [80], authors have used a level-based scheduling for tasks and communication transac-

tions in parallel and then have used a search and repair procedure iteratively to improve

the solution by fixing the deadline misses in the schedule.

Application Task Graph to Processing Element Mapping: The application task graph

onto PE mapping can be described as follows: an application is described by a set of tasks

and those are already bounded and scheduled to a particular PE in the earlier stage and

then the function of the application mapping is to assign these tasks topologically to the

networks. Several parameters, i.e. energy, performance, buffer area, etc are considered

as the cost function for the application mapping. In an application-specific NoC, the

mapping is done offline at design time. In practice, the stages: task to PE binding and then

50 CHAPTER 4. ROAD TO ADAPTIVE NETWORKS-ON-CHIP

Hard

platform

Firm

platform

Soft

platform

Floorplanning

customization

Topology

customization

Bandwidth

customization

Buffer size

customization

Parameters related

to architecture-level

Parameters related to

communication paradigm

Parameters related to

application mapping

Switching

scheme

Routing

algorithm

Communication and

task scheduling

Task to IP

mapping
All hard,firm, and soft

NoCs may customize

routing algorithm and

switching scheme

Hard NoCs may

only customize

communication and

task scheduling

Figure 4.4: Design flow for an application-specific NoC motivated from [122]

mapping physically to a given NoC architecture happen in a feedback loop. Generally, the

mapping is performed after the binding and then the NoC is simulated to gather results

on the cost matrices and given to the binding process for further modification.

There have been several works for design-time mapping algorithm. In [77], a mapping us-

ing branch-and-bound algorithm has been proposed. The authors have used the commu-

nication related energy consumption as a goal function. Genetic algorithm based mapping

algorithms have been introduced in [98, 143]. [77, 143] determine a network assignment

which is designed to minimize the power consumption by reducing the communication

volume. All these previous works considered mainly the communication volume as the

basis of their optimization. Work in [5] presents an approach to multi-objective explo-

ration of the mapping space of a Mesh-based network-on-chip architecture. Based on

evolutionary computing techniques (genetic algorithm is used here), they try to obtain

the pareto mappings that optimize performance and power consumption. In the scope

of this thesis, the importance of buffer minimization during application mapping is pre-

sented and therefore, a multi-objective optimization algorithm to optimize the amount of

total communication volume and the amount of buffer using a modified ACO algorithm

is presented. The performance of ACO algorithm and its suitability over other algorithms

for optimization are given in [55, 159]. Within this thesis, the ACO algorithm is adapted

as the first step of the two-step methodology to optimize the amount of buffer for an

application-specific NoC that is built on top of the QoS-supported system-on-chip com-

munication architecture presented in Chapter 3. Details are explained in Section 4.3.

4.1.4 Design Flow for an Application-specific NoC

In this subsection, a summarized design flow for an application-specific NoC considering the

concept of hard, firm, and soft NoC platform as presented in [122] is discussed. The hard NoC

4.2. NOVEL APPLICATION-SPECIFIC NOC ARCHITECTURE 51

has already a selected NoC architecture and all the computation and communication compo-

nents are pre-designed. Therefore, the application-specific NoC design challenge or the cus-

tomization is only possible in the communication paradigm parameters (see Y = (Ro, Sw)
in 3D design-space exploration parameters in Section 4.1) and in the application mapping pa-

rameters (see Z = (Sc, Mp) above in Section 4.1). In a firm NoC platform, the PE may be

plugged-in onto different tiles and thus the floorplanning may be customized in some extents.

After that similar to the hard NoC platform the communication paradigm parameters and the

application mapping parameters may be customized. Finally, the soft NoC, the most flexible

NoC may be customized for all the parameters described above during the 3D design-space

exploration for the given application. Figure 4.4, similar to the flow presented in [122], shows

the design flow of all possible types of the application-specific NoC architectures.

4.2 Novel Application-specific NoC Architecture

In this section, the case study analysis to build an application-specific NoC on top of the QoS-

supported system-on-chip communication architecture presented in Chapter 3 is described. For

better understanding of the rest of the chapter, a short summary, of the QoS-supported NoC,

as the system-on-chip communication architecture is repeated in this section (for details see

Chapter 3). To show the novelty of the NoC, a comparison is drawn to the state-of-the-art ar-

chitectures (service-class-based approaches [23, 72, 92, 170]) which are similar to the proposed

architecture.

The QoS-supported NoC architecture that is presented in this thesis has taken the advantages

of both service-class-based and connection-based approaches and it has some novel architec-

ture level differences compared to the current service-class-related state-of-the-art NoC archi-

tectures. The presented methodology uses wormhole switching strategy like [23, 72, 92, 170]

and thus utilize VC implementation. Previous works related to service-class-based architectures

used a fixed number of VCBs in each output port and thus do not consider an application-specific

VCB assignment. It is already discussed in Chapter 3, that existing service-class-related archi-

tectures may be broadly classified into two parting directions. The first group of the architec-

tures presented in [23, 72] have used a fixed number of service classes (see Figure 4.5 (a)). Each

service class has a particular VCB in each output port. They do not provide 100% tight guar-

antee for each of the transaction, and these architectures do not have a clear and fine-granular

classification for each transaction. Therefore, the bandwidth is not allocated fairly to increase

resource utilization. The arbitration of the VCBs is dependent on their corresponding service

class to the output port. Concurrent transactions use the packet-based round-robin ordering of

input ports for the awaiting transmission of packets within the same service class.

The second group of QoS-supported service-class-associated NoCs (see Figure 4.5 (b,c)) is

presented in [92, 170]. In this group, the differentiation of transactions bandwidth requirement

is done in the spatial domain. In a link of available bandwidth b, by allocating n number of VCBs
(out of m VCBs in total) a total of (b/m×n) bandwidth can be provided. The VCs are arbitrated

in a round-robin fashion. It consumes a lot of buffer in terms of VCB implementation for fine

granularity and suffers from starvation for some transactions. In [170], shown in Figure 4.5 (c),

52 CHAPTER 4. ROAD TO ADAPTIVE NETWORKS-ON-CHIP

b) Connections are built based on BW using number
 of VCBs in the chain of routers in a transaction (multiple
 VCB is assigned for one transaction)

Decoding
Logic

VCB

VCB

VCB

VCBVC arbiter Link arbiter

Link allocation is done on the
spatial domain of VCB allocation
(Not fine-grained BW allocation)

Round Robin
link arbitration

Input
transactions

VCBs assigned for BE
can be assigned to GT

Decoding
Logic

VCB

VCB

VCB

VCB

VC arbiter

 Link arbiter

Link Allocation is done on the
spatial domain of VCB allocation
(Not fine-grained BW allocation)

Input
transactions

VCBs for guaranteed
 througput

VCBs for best effort
traffic

c) Connections are built based on BW using number
 of VCBs in the chain of routers in a transaction like (b)
 distinguishing clearly between VCBs for BE and GS

a) Fixed # of VCBs depending on the # of Scs
(Relative guarantee no tight guarantee)

of VCBs and # of
SCs are same here

VCB SC1

VCB SC2

VCB SC3

VCB SC4
Decoding

Logic } Other Output
PortInput

Transactions

Arbiter

Connectio- less transmission
provide relative guarantee

d) Proposed architecture: VCBs are assigned dynamically,
 single VCB is assigned for each transaction

Decoding
Logic

VCB

VCBVC arbiter Link arbiter

Link Allocation is done on the
temporal domain. VCBs are allocated
dynamically without any design constraint
(higher resource utilization and
less buffer utilization)

Bounded-link-arbitration algorithm

Input
transactions

.

.

.

Time Slot

Proposed QoS-supported System-on-Chip
communication architecture

Architecture from University of Twente [92]QNoC [23] and Diffserv-based [72] architecture

Architecture from Arizona State University [170]

Figure 4.5: Different state-of-the-art service-class-based architectures

apart from [92] shown in Figure 4.5 (b), VCBs assigned for Best Effort (BE) traffic can be taken

by Guaranteed Service (GS) at connection establishment time.

To overcome all these problems, an architecture that arbitrates on the temporal domain, has

application-specific fine-granular service-class specification, thus higher resource utilization,

and no particular static assignment of VCBs is proposed in Chapter 3. The number of VCBs
is constrained in each output port by the number of allowed concurrent transactions, some of

them allowing flexible transactions. The connections are freed after each unit transaction (after

every packet transmission the VCB is freed to be allocated by other concurrent transactions).

The size of each unit transaction depends on the application behavior and is customizable at

design time for application-specific NoC. All these VCBs are arbitrated in the time domain and

provide buffer minimization considering all transactions in an application at design time and

fine-grained bandwidth assignment per transaction. The arbitration on the bandwidth for com-

peting transactions is done using a modified Time Division Multiple Access (TDMA) approach

described as in Chapter 3. For the current buffer analysis it is assumed that the complete appli-

cation behavior including the traffic characteristics is known a priori (there have been several

prior research for system-on-chip traffic modeling, e.g. in [151, 166]).

In the proposed application-specific NoC, for each transaction only one VCB is needed, not

4.3. APPLICATION-SPECIFIC VIRTUAL CHANNEL BUFFER ASSIGNMENT 53

multiple VCBs like in [92, 170]. It is already discussed that VCBs are used to facilitate the

flow control mechanism in the router and take the principal share of the silicon area of the NoC

[78, 173], and consequently their size should be minimized.

In the following of this chapter, a novel two-step methodology to optimize the number of VCBs
for an application-specific NoC built on top of the QoS-supported system-on-chip communica-

tion architecture described in Chapter 3 is presented. The two steps are given below:

Step 1: A multi-objective mapping algorithm that considers both the communication volume

and the number of VCBs during application mapping based on a modified Ant Colony
Optimization (ACO) algorithm is used. This approach is orthogonal to any application

driven traffic model.

Step 2: In the second step, the traffic characteristics of the application is considered. It is

observed that a wide range of digital media applications follow the poisson distribution
and therefore, an analytical approach to optimize further the number of VCBs is provided

depending on QoS parameter q and the application-specific traffic model.

4.3 Application-specific Virtual Channel Buffer
Assignment

VCBs are used to store intermediate data for each transaction. In the proposed application-

specific NoC architecture one VCB per router output port for each transaction along the com-

plete path is used. A connection is built using a chain of VCBs along the route of the transaction.

Below it is explained how these number of VCBs in each output port may be optimized using a

two-step methodology.

To demonstrate the motivation of the application-specific VCB assignment besides minimizing

the total communication volume at design time during application mapping is presented by

means of an MPEG4 video decoder case study analysis in Figure 4.6. This is the first step of

the proposed approach and it takes no assumptions on the traffic model and freeing/releasing

buffer strategy. Figure 4.6 (a,b,c) show the Service Class associated Task Graph (SCTG) (see

Definition 3 in Chapter 3) of the MPEG4 video decoder.

Figure 4.6 (d) provides an arbitrary mapping of tasks onto a 4×4 Mesh NoC. It can be calculated

that the needed number of the VCBs is 74 and the total communication volume is 26,932 MB/s

and therefore, higher area and energy consumption than the optimal value (given budget). The

detailed explanation to calculate the total number of VCBs and the total communication volume

is given later. The number of VCBs is directly proportional to the area [55] and the leakage

power [35]. The total communication volume is proportional to the communication related

energy consumption [77, 98, 143]. Therefore, the goal for the application-specific NoC design

is to keep the amount of the VCBs and the total communication volume as low as possible and

to consider them both at the mapping time.

54 CHAPTER 4. ROAD TO ADAPTIVE NETWORKS-ON-CHIP

b) MPEG4 Communication task graph

T4

T0 T1 T2 T3

T5 T6 T7

T8 T9 T10 T11

SC3

S
C
5

SC
5

SC2

SC
4

SC
4

SC1
SC
4

SC
4SC
1 SC

3 SC2
SC
1

a) MPEG4 tasks for figure (b)

T6sram2T0vu

T7idct,etcT1Au

T8adspT2med cpu

T9upsampT3rast

T10babT4sdram

T11riscT5sram1

Task IDTask NameTask IDTask Name

T6sram2T0vu

T7idct,etcT1Au

T8adspT2med cpu

T9upsampT3rast

T10babT4sdram

T11riscT5sram1

Task IDTask NameTask IDTask Name

c) Service class specification for MPEG4
(only BandWidth (BW) req. is shown)

100 200SC3

200 600SC2

600 1000SC1

BW req (MB/s)Service class

100 200SC3

200 600SC2

600 1000SC1

BW req (MB/s)Service class

0 10SC5

10 100SC4

BW req (MB/s)Service class

0 10SC5

10 100SC4

BW req (MB/s)Service class

Different mapping instace have different number of
VCBs requirement

e) Consider only the comm. cost

T2 T5

T4 T9 T6 T11

T0 T1 T10

T3 T8 T7

#of VCBs : 38

Comm Vol : 7262 MB/s

d) Arbitrary mapping

T6 T0 10

T2 T1 T3 T11

T8 T9

T4 T5 T7

#of VCBs : 74

Comm Vol : 26932 MB/s

g) Con. both comm and #of VCBs

T5 T2

T7 T6 T9 T10

T11 T8

T1 T3 T4 T0

#of VCBs : 34

Comm Vol : 7344 MB/s

f) Consider only # of VCBs

T7 T2 T5

T1 T9 T8

T0

T11 T6 T10 T3

T4

#of VCBs : 32

Comm Vol : 8253 MB/s

Figure 4.6: Motivating example: MPEG4 video decoder mapped onto a 4 x 4 NoC

Figure 4.6 (e) shows the mapping of the tasks to the tiles considering only communication

volume similar to the approaches [77, 98]. Here, the communication volume is 7,262 MB/s

which is an optimal value and the number of the VCBs is 38. Now in Figure 4.6 (f), it can

be seen that if we optimize only for the VCBs then we have an optimal number of VCBs (32

VCBs) but the total communication volume increases to 8,252 MB/s. Therefore, it is clear

that both these parameters need to be considered jointly during mapping. Using a very simple

cost function presented later in this chapter, a trade off can be achieved between the number

of VCBs and the total communication volume. In Figure 4.6 (g), it requires 34 VCBs and

the communication volume is 7,344 MB/s which are near optimal solution. The combined

optimization goal function is a designer’s choice.

Lets now motivate the second step of the proposed VCB reduction strategy. In Figure 4.7 (a),

different concurrent transactions between two tiles are shown. The traffic model and the param-

eters to fit into the poisson distribution is shown in Figure 4.7 (b,c). The probability of use each

VC is shown in Figure 4.7 (d). It is assumed that the VCBs can be freed and be assigned at run-

time, and thus depending on the probability, the designer can decide to put required amount of

buffers in the corresponding output port. In this example, 2 VCBs can be used easily instead of

4 as VCB3 and VCB4 have lower probability (0.57% and 0.02% respectively) to be used during

concurrent transmission. Detail formulation and result analysis are given later in this chapter.

Therefore, if the traffic model is known priori and the communication task graph is given then

the VCB assignment can be carefully modelled at design time.

4.3. APPLICATION-SPECIFIC VIRTUAL CHANNEL BUFFER ASSIGNMENT 55

100000900SC3

50000250SC2

10004SC1

Average Inter Arrival

Time (cycles)

packet Length

(flits)

Service Class

(SC)

100000900SC3

50000250SC2

10004SC1

Average Inter Arrival

Time (cycles)

packet Length

(flits)

Service Class

(SC)

b) Traffic patterens of the transactions

0.02%VCB4

0.57%VCB 3

5,13%VCB 2

100%VCB 1

Probability of Use

P(VCB)

Virtual Channel

Buffer (VCB)

0.02%VCB4

0.57%VCB 3

5,13%VCB 2

100%VCB 1

Probability of Use

P(VCB)

Virtual Channel

Buffer (VCB)

d) Probability to use virtual channel buffer

VCB1

VCB2

VCB3

VCB4

TILE 3 TILE 4

Transaction 1

Transaction 2

Transaction 3

Transaction 4

a) Transactions between two tiles

c) Parameters for the poisson model

SC21Trans 4

SC30.5Trans 3

SC150Trans 2

SC21Trans 1

Service

Class

Expected Arrival in T(ë)Transactions

SC21Trans 4

SC30.5Trans 3

SC150Trans 2

SC21Trans 1

Service

Class

Expected Arrival in T(ë)Transactions..VCB..

..VCB.. ..VCB..

..VCB..
.
.
V
C
B
.
.

.

.
V
C
B
.
.

.

.
V
C
B
.
.

Figure 4.7: VCBs reduction using an analytical approach

4.3.1 Minimizing Virtual Channel Buffer during Application
Mapping

In this subsection, the first step of the two-step methodology to optimize the number of VCBs
in an application-specific NoC is presented. Application mapping is one of the most important

steps to build the application-specific NoC and is described in 4.1.3 during presenting the 3D

design-space exploration for such architectures.

4.3.1.1 The Optimization Criteria

Generally, in a NoC scenario, the application mapping to a set of PEs, the communication vol-

ume [77, 98, 143] is considered as the optimization criteria to optimize the total communication-

related energy consumption. All these above mentioned works are not optimizing for multiple

criteria and do not consider the effect of increased number of VCs. In Equation (4.2), only the

minimization of the communication volume is shown. A multi-objective optimization criteria

considering both the total communication volume as well as the number of VCBs as the first

step to optimize the number of VCBs in an application-specific NoC is presented in the scope of

this chapter. Equation (4.4) considering both the optimization objective shown in Equation (4.2)

and Equation (4.3) gives the cost function of the proposed optimization algorithm for the ap-

plication to PE mapping. In the following, the specification of the two optimization criteria are

summarized.

56 CHAPTER 4. ROAD TO ADAPTIVE NETWORKS-ON-CHIP

• Total communication volume of a given mapping configuration is:

voltot(TGvol, map) =
Nts−1∑

i=0

Nts−1∑
j=0

dst(i, j) voli,j (4.2)

∀i, j ∈ {0, . . . , Nts − 1} : dst(i, j) = |xi − xj| + |yi − yj|
∀i ∈ {0, . . . , Nts − 1} : xi = tsi mod Nnoc

∀i ∈ {0, . . . , Nts − 1} : yi = tsi div Nnoc

where TGvol is the application task graph containing the communication volume for ev-

ery task, voli,j, ∀i, j ∈ {0, . . . , Nts−1}. The map data object contains the representation

of task mapping. The elements of the mapping data object are values tsi, where i stands

for the “task identification number” and the value stored in tsi represents the “tile iden-
tification number” where the task is being mapped onto.

In Equation 4.2, the total communication volume is calculated by accumulating the com-

munication volume of each flow, voli,j between two different tasks tsi and tsj in the task

graph. voli,j is multiplied by the Manhattan distance between these two tasks dst(i, j).

• Total number of VCBs of a given mapping configuration is:

vcbtot(TGvol, map) =
Nts−1∑

i=0

Nts−1∑
j=0

dst(i, j) σ(voli,j) (4.3)

∀x ∈ int, x ≥ 0 : σ(x) =

{
1, x > 0

0, x = 0

where the σ() function is the positive integer values.

The two optimization criteria are combined to the total cost function (optimization criteria,

cost function, and goal function are used interchangeably in this chapter) for the application

mapping:

c = α
vcbtot(TGvol, map)

vcbtot,unmap(TGvol)
+ (1 − α)

voltot(TGvol, map)

voltot,unmap(TGvol)
(4.4)

The variables vcbtot,unmap(TGvol) and voltot,unmap(TGvol) are almost the same as the two target

functions defined above in Equation 4.2 and Equation 4.3. Only the distance between the tasks

is not considered when calculating them:

voltot(TGvol) =
Nts−1∑

i=0

Nts−1∑
j=0

voli,j (4.5)

vcbtot(TGvol) =
Nts−1∑

i=0

Nts−1∑
j=0

σ(voli,j) (4.6)

Thus, the resulting values can be used as a value to normalize the partial target which then can

be better compared with the other targets, as it is done in the cost function c.

4.3. APPLICATION-SPECIFIC VIRTUAL CHANNEL BUFFER ASSIGNMENT 57

4.3.1.2 Optimization Algorithm

In the proposed approach, an optimization algorithm that can consider both the communication

volume as well as the number of VCBs is explored. The algorithm has to be computationally ef-

ficient and to provide better optimal solution. Exploration during the evaluation of the proposed

methodology shows the ACO, one of the Swarm Intelligence (SI) systems as the best solution

for such problem space [159, 160]. The comparison to other algorithms to ACO is discussed

later in this chapter. ACO, introduced by Moyson and Manderick and furthermore developed

by Marco Dorigo [159] is a probabilistic technique for solving computational problems which

may be reduced to find good paths through graphs. They were inspired by the behavior of bio-
logical ants in finding paths from the colony to a food source. In reality, ants initially wander

randomly and upon finding food return to their colony while laying down pheromone trails. If

other ants find such a path they are likely not to keep traveling at random but instead follow the

trail. Therefore, returning and reinforcing the trail if they find food. Over time, however, the

pheromone trail starts to evaporate thus reducing its strength. More pheromone is evaporated if

more time is required by an ant to travel down and come back. A shorter path may be observed

by comparing the density of the pheromone. Pheromone evaporation has also the advantage of

avoiding the convergence to a local optima. If there is evaporation at all then the paths chosen

by the first ants would tend to be excessively attractive to the following ones. In that case, the

exploration of the solution space would be constrained. Therefore, when one ant finds a good

path from the colony to a food source then other ants are more likely to follow that path and

positive feedback eventually leaves all the ants following a single path. The idea of the ant

colony algorithm is to mimic this behavior with “simulated ants” walking around the graph

representing the problem to solve.

4.3.1.3 Problem Formulation

Application mapping to the PE inside the NoC is a Quadratic Assignment Problem (QAP).
Therefore, the problem formulation considering [159] is given first. The formulation of the

problem is given as below:

Given n tasks from an application and n tiles in a NoC (the number of tasks in an application

and the number of tasks may be different), two n × n matrices A = [ai,j] and B = [br,s], where

ai,j is the distance between tiles i and j and br,s is the communication flow between two tasks r
and s is considered. Therefore, the QAP may be stated as follows:

min
ψ∈S(n)

n∑
i=1

n∑
j=1

bi,jaψi,ψj
(4.7)

Here, S(n) is the set of all mapping solutions for n tasks and ψi gives the corresponding mapped

tile for the task i in the current solution ψ ∈ S(n). Here bijaψi,ψj
describes the cost contribution

of simultaneously assigning task i to tile ψi and task j to tile ψj . The formulation of the QAP
may be made as an integer optimization problem with a quadratic objective function. Let xij be

a binary variable which takes value 1 if task i is mapped onto tile j and 0 otherwise. Then the

58 CHAPTER 4. ROAD TO ADAPTIVE NETWORKS-ON-CHIP

problem can be formulated as:

minimize

n∑
i=1

n∑
j=1

n∑
l=1

n∑
k=1

ai,jbk,lxi,kxj,l (4.8)

Here,
∑n

i=1 xi,j = 1,
∑n

j=1 xi,j = 1 and x ∈ 0, 1.

30
0

M
B
/s

200 MB/s

400
M

B
/s

50
0

M
B
/s

20
0

M
B
/s

The application is composed of

several tasks i.e. T1, T2, etc.

A 3 X 3 NoC: Mesh topology, each

tile is denoted as t1, t2, etc

Figure 4.8: Exemplary application mapping onto a 3 x 3 NoC using ACO

4.3.1.4 Solution Construction

The QAP is a NP-hard optimization problem [159]. Therefore, to solve the QAP, heuristic al-

gorithms may be used to achieve very high quality solutions in short computation time. Several

such heuristic algorithms have been proposed which include algorithms like genetic algorithms,

simulated annealing, tabu search, depth search, etc. It is shown in [159] that, for structured in-

stances, ACO algorithms are one of the best performing algorithms. Therefore, it is already

mentioned in 4.3.1.2 that, ACO is used to solve the application mapping problem considering

the cost function given in 4.3.1.1. An application mapping scenario using ACO is shown in

Figure 4.8, where each task should be mapped onto one tile in a 3 × 3 Mesh NoC, e.g. task T1
should be mapped onto tile t2, task T3 to tile t5, etc. The function for the ants is to find the

best way to map all the tasks to the corresponding tiles. In this mapping algorithm, Max-Min
Ant System (MMAS) is chosen because it has higher convergence speed than other ant systems

4.3. APPLICATION-SPECIFIC VIRTUAL CHANNEL BUFFER ASSIGNMENT 59

and it can avoid search stagnation by limiting the range of the pheromone trail strengths to the

interval [tmin, tmax] [159].

In Algorithm 4 (see Line 1 to Line 12), the probability (pheromone) between the tasks and

corresponding mapped tiles are initialized. Then the ants will map the tasks to the tiles one by

one considering the mapping probability. After all the ants finish their mapping, only the best

ant which obtains the most optimal results can update the pheromone. After several iterations

an optimal solution is found. The fitness function calculation for the algorithm is given below:

fitness =
n∑

i=1

n∑
j=1

c × d(Θi, Θj) (4.9)

Here c is described in Equation 4.4 and d(Θi, Θj) is the Manhattan distance (number of tiles)

between Θi and Θj .

d(Θi, Θj) = d(Θi, Θj)x + d(Θi, Θj)y = |(Θi − Θj)%M | + |(Θi − Θj)/M | (4.10)

To compare the performance and usability of ACO it is compared to Genetic Algorithm (GA)

[98] and to List-Based (LB) heuristics for application mapping [70]. A heuristic to keep the

LB very simple by putting the most communication intensive tasks closer to each other around

the center of the tile based architecture is used. LB is not suitable for multiple-objective opti-

mization. Again to compare ACO with branch-and-bound, it is observed that ACO does not use

upper bound or lower bound to trim probability solutions. It just uses the best ants to update the

pheromone to influence the next iteration. Therefore, it does not cause exhaustive enumeration

like branch-and-bound [159].

GA uses crossover and mutation to breed new population, but in application mapping, the prin-

ciple of crossover and mutation should be carefully selected, otherwise, illegal solution is gen-

erated. ACO only uses local search to find the local optimal solution thus changes between two

solutions will not cause illegal results. Therefore, the local search can be used very safely. ACO
enjoys advantages like positive feedback, distributed-computation and fast convergence while

local optima may be avoided by pheromone evaporation. The performance of ACO compared

to GA and LB considering only the amount of communication volume as the cost function is

shown in Figure 4.9 for different sizes of applications. The applications are created from TGFF
[46]. The result shows that, ACO provides better optimization result than GA and LB and also

it has a higher convergence rate compared to GA especially for larger applications.

4.3.2 Probabilistic Analysis

In order to further optimize the number of VCBs after the first step, the application-driven traffic

model is carefully analyzed at design time. It is observed that a wide range of embedded system

applications follow a standard statistical model i.e poisson distribution, gaussian distribution,

etc. for their corresponding traffic modeling and this behavior can be captured at design time

during application exploration [78]. A VCB optimization methodology depending on the given

60 CHAPTER 4. ROAD TO ADAPTIVE NETWORKS-ON-CHIP

Execution cycles for different mapping algorithms

1

10

100

1000

10000

100000

100000
0

1E+07

1E+08

1E+09

1E+10

1E+11

5 10 15 35 60 100
of tasks

#o
f c

yc
le

s
(lo

g-
ar

ith
m

et
ic

sc

al
in

g)

List-based heuristic for application mapping
Genetic algorithm for application mapping

Proposed ant colony optimization for application mapping

Communication cost for different mapping algorithms

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

5 10 15 35 60 100
of tasks

C
om

m
un

ic
at

io
n

vo
lu

m
e

(M
B

/s
)

List-based heuristics for application mapping

Genetic algorithm for application mapping

Proposed ant colony optimization for application mapping

Figure 4.9: Comparison of ACO with the GA and the LB algorithms

application traffic model (poisson distribution is considered here) is given below. The presented

methodology does not only constrained to poisson distribution model but depending on the

traffic behavior of the given application, i.e. gaussian distribution, etc. similar analysis may be

done.

4.3.2.1 Traffic Modeling

Multimedia applications, for instance, exhibit much more predictable traffic behavior than that

found in traditional networks. The poisson distributed model is a mathematical model com-

monly used in network analysis. It correctly models events which occur independently at ran-

dom intervals. In a NoC, traffic patterns are generally more regular for a wide variety of appli-

cations. In wide range of digital media applications such as a motion recognition application

of a robot called Image Processing Line (IPL) [8], for instance, packets are sent from one task

to another in fairly regular intervals making it easy to determine well-defined average intervals.

In cases where a task does not send anything over one interval and does in another, it is simply

considered the sending interval. The poisson distribution is then calculated for that interval.

Packet arrival in the proposed model is assumed to be poisson distributed. Thus, the probability

of X packets arriving in a given time interval T can be expressed by Equation 4.11. The value

of λTR is the number of arrivals of a particular transaction expected in the interval.

PλTR
(X = k) =

e−λTRλk
TR

k!
(4.11)

where:

λTR =
T

Average arrival time
k = Arrivals occurring in T

The poisson distribution only provides information on the number of packets expected in an

interval. For some analysis, such as to predict VCB use, it is necessary to make a prediction on

expected arrival times. Packet arrival behavior can be analyzed using the poisson distribution’s

4.3. APPLICATION-SPECIFIC VIRTUAL CHANNEL BUFFER ASSIGNMENT 61

respective poisson process shown in Equation 4.12. Here P ((N(t + τ) − N(t)) = k) denotes

the probability for N = k events to occur in the arbitrary time interval of length τ . This allows

us to make predictions on an event’s expected time.

PλTR
((N(t + τ) − N(t)) = k) =

e−λTRτ (λTRτ)k

k!
(4.12)

Algorithm 4 Application-specific VCB assignment
antbest,glob: Globally decided best ant at time t

1: initialize(pher tab)

// initial values of the entries are 1
Ntiles

2: while !exit condition do
// ACO iterations can be limited by time or by maximum number of
iterations

3: initialize(antpop)

// generates a new ant population
4: construct solutions(antpop, TGvol, pher tab)

// assign ants’ tasks to tiles
5: calculate fitness(antpop)

// cost function: c = α #V CB
#V CBn

+ (1 − α) Commvol

Commvol,n

6: local search(antpop)

7: evaporate(pher tab)

8: drop pheromone(pher tab, antpop)

9: if fitness(antbest,pop) < fitness(antbest,glob) then
10: antbest,glob ← antbest,pop

11: end if
12: end while
13: Use the probabilistic approach after the application mapping using ACO
14: for all tiles ti do

// All the tiles in the NoC
15: if there are any transmission with the East tile then

// connections in the East
16: Use the probabilistic approach to optimize V CB depending on q
17: end if
18: if there are any transmission with the West tile then

// connections in the West
19: Use the probabilistic approach to optimize V CB depending on q
20: end if
21: if there are any transmission with the North tile then

// connections in the North
22: Use the probabilistic approach to optimize V CB depending on q
23: end if
24: if there are any transmission with the South tile then

// connections in the South
25: Use the probabilistic approach to optimize V CB depending on q
26: end if
27: end for

62 CHAPTER 4. ROAD TO ADAPTIVE NETWORKS-ON-CHIP

4.3.2.2 VCB Reduction Considering Quality-of-Service

The required number of VCBs to satisfy a QoS parameter q is now analyzed, which defines

the probability for successful transmission in terms of meeting the provided QoS bounds on

throughput and latency in the proposed architecture. This translates to the QoS-supported packet

transmission and thus needs to be analyzed. Here, the VCB reduction is done after the first step

in the design-space exploration to optimize the number of VCBs, where the number of VCB for

concurrent connections and also designer defined flexible provision for transmission are already

decided.

In the scope of this work, the QoS parameter q is defined to be a probabilistic value of the

time-related QoS parameter latency and throughput Q(l,t). If a router architecture �(B, DL),
(B represents buffer elements and DL represents decoding logic) can provide bounded latency

and throughput, means 100% of its required QoS value, then q is assumed to be 100%. The

value of q is parameterised by the number of VCBs, as if there are rooms for every transaction

considering the worst case: concurrent transactions. Every unit transaction will get a VCB in

each output port if it is demanded after the first step of the application-specific VCB assignment.

The availability of the VCB is guaranteed, because in the first step the buffer assignment is done

depending on the total number of worst-case concurrent transactions. The value of q less than

100% influences the packet blocking time in the buffer assignment for concurrent transactions

and thus cannot meet the 100% guarantee.

Depending on all these properties of the router architecture and the application traffic model

(poisson distribution), the required number of VCBs using the following probabilistic analysis

is now calculated. The expected values of the poisson distributions E(X) = λ to calculate the

probability of TRa claiming the first VCB is used:

P (VCB1 = TRa) =
λTRa∑
i

λTRi

(4.13)

The assignment of subsequent VCBs is then the conditional probability of the assignment of

previous VCBs. Therefore, taken the probability for the first VCB it is examined the poisson
processes of each transaction for the time it is occupied. Since the VCBs are filled up, it is

assumed them to be initially empty. Therefore, τ is only proportional to the TR in the first VC.

τ =
(pa)(2m + n)

T

With a given unit time interval T, the packet size in flits of TRa = pa × (2m+n) is the number

of cycles that a flit remains inside the buffer. The probability of TRb occupying the second VCB
is then:

P (VCB2 = TRb | VC1 = TRa) = (1 − e−λTRb
τ) × P (VCB1 = TRa)

4.3. APPLICATION-SPECIFIC VIRTUAL CHANNEL BUFFER ASSIGNMENT 63

where:

τ =
min (pb, pa)(2m + n)

T

Here, P (VCB2 = TRb) is calculated from Equation 4.12. To calculate P (VCB2 = TRb), it is

first calculated P (VCB2 �= TRb) by taking the value k = 0 in the equation and then it may be

found, (1 − P (VCB2 �= TRb)) = (1 − e−λtrb
τ). Now for the nth VC:

P (VCBn = TRa | VCBn−1 = TRb) = (1−e−λTRaτ)×P (VCBn−1 = TRb | VCBn−2 = TRc)
(4.14)

In order to meet the QoS requirements, the usage of a VCB must be guaranteed for a given

percentage q contention-less packet transmission. To accomplish this, its usage may not exceed

(1 − q). That is, a VCB is not required if:⋃
a,b

(P (VCn = TRa | VCn−1 = TRb)) < (1 − q) (4.15)

Therefore, to optimize the number of VCBs in the first step, a multi-objective mapping function

during application mapping considering the worst case concurrent transactions that provides

100% QoS, is used. To further optimize the number of VCBs, the application-specific traffic

model is analyzed. In the second step, depending on the QoS value the designer can find an

optimal solution to assign number of VCBs.

The pseudo code of the VCB reduction methodology is presented in Algorithm 4. In this al-

gorithm, Line 1 to Line 12 present the pseudo code for the ACO-based mapping algorithm. A

global pheromone table, pher tab is initialized by an uniform value considering the number of

tiles, Ntiles. Ants in the algorithm can update the pheromone table and pheromone evaporation

is also used to overcome the local minima in the optimization algorithm. Line 13 to Line 27

presents the probabilistic approach based on the traffic model and QoS parameter. It is applied

after a optimum mapping is achieved using the proposed mapping algorithm.

4.3.3 Evaluation of the Proposed Methodology

Transactions P (VC1 = TRx)
TR1 25.0%

TR2 25.0%

TR3 25.0%

TR4 25.0%

Table 4.1: Likelihood of transaction i occupying VC1

An IPL [8] application, shown in Figure 9.2 in Chapter 9 for the case study analysis to reduce

the number of VCBs is used here. The application shown in Figure 4.10 (a), is mapped onto

a 3 × 3 NoC architecture shown in Figure 4.10 (d) to gain performance increase in terms of

64 CHAPTER 4. ROAD TO ADAPTIVE NETWORKS-ON-CHIP

Left
Skin

Image

Right
Skin

Image

Left
Shirt

Image

Left
Shirt

Image

Gradient1 Gradient2

Post
Proces
sing1

Post
Proces
sing1

RGB

HSV

Gauss
Smooth2

Right
Image

Left
Image

RGB

HSV

Gauss
Smooth1

Skin
Filter1

Skin
Filter2

Shirt
Filter1

Shirt
Filter2

a) Application Task Graph
 Image Processing Line (IPL)

SC3625Transaction 4

SC3625Transaction 3

SC2625Transaction 2

SC2625Transaction 1

Service Class

(SC)

Expected

Arrival in T(ë)

Transactions

SC3625Transaction 4

SC3625Transaction 3

SC2625Transaction 2

SC2625Transaction 1

Service Class

(SC)

Expected

Arrival in T(ë)

Transactions

c) Transactions descriptions

6253SC 3

6251SC 2

6259SC 1

Average Inter-Arrival

Time (cycles)

Packet

Length

(flits)

Service

Class (SC)

6253SC 3

6251SC 2

6259SC 1

Average Inter-Arrival

Time (cycles)

Packet

Length

(flits)

Service

Class (SC)

b) Traffic characteristics in the
 highlighted transactions

RGB

HSV

Output Filter 2

Gauss 1

Gauss 2

Input Filter 1

Gradient

Post Proc

Trans 1

Trans 2

Trans 3

Trans 4

d) NoC mapping of IPL application

Figure 4.10: IPL mapping and VCBs reduction through probabilistic analysis

Transactions VC1 = VC1 = VC1 = VC1 =
TR1 TR2 TR3 TR4

P (VC2 = TR1) 0.0% 0.4% 1.17% 1.17%

P (VC2 = TR2) 0.4% 0.0% 1.17% 1.17%

P (VC2 = TR3) 0.4% 0.4% 0.0% 1.17%

P (VC2 = TR4) 0.4% 0.4% 1.17% 0.0%

Table 4.2: Likelihood of transaction i occupying VC2

more frames decoding per second (from 5 fps in uniprocessor system to 25 fps in a MPSoC).

For the experimental setup some assumptions are made: the image size is 320 × 200 pixels, it

decodes 25 frames per second what means 1 pixel per 625 ns, each flit payload size is 24 bits

(1 RGB pixel), robot left eye and the right eye process image parallely and the VCB depth is of

(2m + n).

In a fixed VCB assignment approach, the NoC needs 96 VCBs. After using the first step of

the proposed VCB reduction methodology the number of VCBs can be optimized to 20 for the

presented optimized mapping. The second step of the methodology depends on the analysis

of two neighboring tiles. For this application it is only shown the VCB reduction for the tiles

Filter 2 and Output. From Filter 2 to Output there are 4 VCBs. The traffic characteristics

for all these connections are also shown in Figure 4.10 (b,c). Two transactions are of Service
class 2 (see Definition 2 in Chapter 3) and the other two are of Service class 3. The detailed

calculations are shown in Table 4.1, Table 4.2, and Table 4.3. Depending on the probabilistic

calculations, the number of VCBs can be optimized to 2 from 4 for this physical link as VCB3
and VCB4 has the probability of use 0.44% and 0.01% respectively and these can be neglected

in terms of provided QoS budget (this budget may be provided by the designer depending on the

application characteristics). Other connections can be also calculated using the same rules. In

4.3. APPLICATION-SPECIFIC VIRTUAL CHANNEL BUFFER ASSIGNMENT 65

Table 4.1, using the Equation 4.13 the probability to have at least 1 VCB is shown (100%). The

expected probability to use a second VCB is 9.07% and the other values are shown in Table 4.3

using Equation 4.14.

Virtual Channel Buffer (VCB) Probability of use, P(VCB)
VCB1 100%

VCB2 9.07%

VCB3 0.44%

VCB4 0.01%

Table 4.3: Probability to use each virtual channel buffer

Effect of application-specific Virtual Channel Buffer (VCB) assignment
(Orthogonal to any traffic model)

0

50

100

150

200

250

300

350

400

450

Applications

N
um

be
r o

f V
C

B
s

Fixed number of VCBs
Optimized number of VCBs

Figure 4.11: Effect of the application-specific VCB assignment for the E3S benchmark suite

In Figure 4.11, the buffer savings, taking only the VCBs as the optimization criteria for a col-

lection of multi-media applications and the E3S benchmark suite [50], compared to the fixed

number of the VCB assignment approach is shown. The saving can be on an average of 90.2%

for the applications. The number of VCBs in each output port for a fixed approach is taken 4

which is comparable to the QNoC [23, 24] architecture.

In Figure 4.12, the effect of multiple goal functions in application mapping for the E3S bench-

mark suite [50] is shown. The bar chart shows the normalized number of VCBs and the lines

show the normalized amount of total communication volume for three different optimization

criteria. The results show different optimized mappings considering only the communication

volume, only the number of VCBs, and both respectively. Table 4.4 shows that, for a col-

lection of multimedia and E3S embedded applications a multi-objective goal function during

application mapping can optimize the number of VCBs and the communication volume near to

an optimal solution compared to considering these parameters separately (the first step of the

proposed methodology).

66 CHAPTER 4. ROAD TO ADAPTIVE NETWORKS-ON-CHIP

Virtual channel buffers and communication cost

(E3S benchmark, normalized values)

0%

20%

40%

60%

80%

100%

120%

Networking Consumer Telecom Automotive

Applications

#
 o

f
V

C
B

s
 a

n
d

 c
o

m
m

.
c
o

s
t

re
la

ti
v
e

 t
o

 a
v
e

ra
g

e
 [

%
]

of VCBs (opt. for comm. volume)

#VCBs (opt. for VCB)

#VCBs (opt. for both)

Comm. volume (opt. for comm. volume)

Comm. volume (opt. for VCBs)

Comm. volume (opt. for both)

Figure 4.12: Effect of the multi-objective goal function for the E3S benchmark suite

4.4 Road to Runtime Adaptation: Parameters

In this section, the parameters that may be adapted at runtime depending on the need of the

adaptive system-on-chip communication architecture are discussed. The parameters that are

possible to be customized for an application-specific NoC design are presented in Section 4.1.

The best case for an application to be executed onto a NoC would be to optimize for all the

presented parameters, but at runtime it is not possible to customize all the parameters. An

extensive exploration has been done depending on the requirements of the adaptive system-

on-chip communication architecture to find the runtime parameters that may be adapted. A

detailed explanation of the requirement of such architecture and its parameters are explained in

the following chapters in Chapter 5, Chapter 6, and Chapter 7. The parameters that are identified

in the scope of this thesis may also be viewed as a 3D design-space exploration graph similar to

one shown in Figure 4.1.

Similar to the 3D design-space exploration for the application-specific NoC, the architecture-
level parameters for the runtime adaptive NoC can be presented as X = (Bu, BW), where

Bu represents the buffer inside the router and BW is the supported bandwidth of the links.

The communication paradigm is presented as Y = (Ro), where Ro is the routing algorithm.

Both these two dimensions together form the architecture-level part of the proposed, runtime

Adaptive Networks-on-Chip (AdNoC) presented in the following chapters. The third dimension,

4.4. ROAD TO RUNTIME ADAPTATION: PARAMETERS 67

Application #VCs (comm v) #VCs (vc) #VCs (both) c cv (comm v) c cv (vc) c cv (both)
VOPD 42 37 37 4618 6026 5025

MPEG4 decoder 39 34 34 7246 8545 7457

PIP 9 9 9 661 653 646

MWD 17 17 17 1451 1490 1429

Set-Top Box 11 11 11 900 990 923

Auto 26 26 26 136 142 136

Consumer 17 16 16 52 59 54

Networking 9 9 9 44 44 44

Telecoms 41 36 36 129 159 130

Table 4.4: Tasks and service class specification

the application mapping is presented as Z = (Mp), where Mp is the runtime application
mapping and it falls in the system-level part of the proposed AdNoC. In the following, these

parameters that have been identified to be customized at runtime are explained in short.

Runtime Virtual Channel Buffer Assignment: Single VCB for each transaction in each

output port is used in the proposed AdNoC architecture similar to the application-specific

NoC presented earlier in this chapter. In the application-specific NoC, the VCBs are

tightly coupled to each output port at design time and therefore, it is not possible to change

the number of VCBs in each output port at runtime. To accomplish runtime assignment,

a central pool of VCBs has been used instead of tightly coupled VCBs in each output

port for the proposed AdNoC. The proposed on-demand VCB assignment increases the

resource utilization of the buffer and thus compensate the extra hardware used to achieve

this flexibility. Details are explained in Chapter 7.

Runtime Bandwidth Configuration: It is explained in 4.1.1 that the bandwidth of a link

is determined by the link-width. At runtime it is not possible to increase the link-width
and therefore, a novel technique named as the 2X-Link has been designed to change the

supported bandwidth by using two half-duplex links instead of two simplex links. The

proposed 2X-Links can operate in three different bandwidth modes: (1) both in one direc-

tion (both have X unit of bandwidth) (2) both in reverse direction (first one has 2X and

the second one has 0 units of bandwidth) and (3) both in opposite direction (first one has

0 and the second one has 2X units of bandwidth). Details are explained in Chapter 7.

Runtime Adaptive Routing Algorithm: The source-based deterministic routing algorithm
may not be used for the AdNoC as the application is changed over time in such an architec-

ture. Therefore, an adaptive routing algorithm based on the XY-routing algorithm named

as the wXY-routing algorithm is presented in the thesis. In the wXY-routing algorithm, the

route is calculated in a distributed way by considering the available bandwidth in each

output port. The deadlock and starvation problem are also solved by using a TTL counter

for each transaction. Details are explained in Chapter 7.

Runtime Application Mapping Algorithm: The design-time mapping algorithms discussed

earlier may not be used for the adaptive system-on-chip communication architecture,

(AdNoC), because an adaptive system that changes its configuration over time requires

68 CHAPTER 4. ROAD TO ADAPTIVE NETWORKS-ON-CHIP

a (re-)mapping/runtime mapping of applications. Therefore, in the system-level part of

the AdNoC, a runtime agent-based distributed application mapping algorithm named as

ADAM is employed. Details are explained in Chapter 6.

4.5 Conclusion

A case study analysis and a complete design flow of an application-specific NoC on top of the

proposed QoS-supported system-on-chip communication architecture presented in Chapter 3

are presented here. In the scope of the chapter, the novel contribution to reduce the VCB using a

two-step scheme is also presented. It is shown that, on an average 90.2% reduction in the num-

ber of VCBs compared to the state-of-the-art QNoC , a fixed allocation for the E3S embedded

application benchmark suite using the first step may be acheived. In the second step, the re-

duction depends on the designer, the QoS parameter and the application-specific traffic model.

The complete two-step VCB reduction scheme by means of a robotic application (Image Pro-

cessing Line) case-study analysis is also demonstrated here. Finally, this chapter has introduced

the road to design of the novel AdNoC using the design-space exploration knowledge of an

application-specific NoC on top of the similar QoS-supported system-on-chip communication

architecture.

Chapter 5

AdNoC: Runtime Adaptive
Networks-on-Chip

Diverse and during runtime varying workloads and/or constraints in embedded systems require

runtime adaptivity to provide a high degree of efficiency during any operation mode/scenario.

Design-time decisions can often only cover certain scenarios and fail in efficiency when hard-to-

predict system scenarios occur. In this thesis, the first approach of an adaptive system-on-chip

communication architecture is presented. The adaptive system provides adaptivity both in the

system-level as well as in the architecture-level. The system-level adaptation is provided by

using a runtime agent-based distributed application mapping (for details see Chapter 6). The

architecture-level adaptation is implemented by using several novel methodologies to increase

the resource utilization (silicon fabric), i.e. sharing the Virtual Channel Buffer (VCB) among

different output ports, changing the supported link bandwidth, etc. (for details see Chapter 7).

To achieve the successful adaptation, the runtime observability is a prerequisite as it provides

necessary system information gathered on-the-fly. Therefore, a comprehensive runtime observ-

ability scheme (for details see Chapter 7) for the proposed adaptive system-on-chip communi-

cation architecture is also presented in this thesis.

The novel contribution in the scope of this chapter is as follows:
The novel runtime Adaptive Networks-on-Chip (AdNoC), as an adaptive system-on-chip com-

munication architecture is introduced in this chapter. The runtime AdNoC architecture is built

on top of the presented QoS-supported NoC presented in Chapter 3. Runtime adaptation is

achieved both in the system-level as well as in the architecture-level of the proposed AdNoC
architecture (published in [52, 53, 54, 58]).

5.1 Motivation

Application specific Networks-on-Chip (NoCs) as discussed in Chapter 4, are design-time pa-

rameterized architectures with a custom topology, a fixed routing scheme, and a fixed number

of allowed virtual connections at each output port [14, 52]. The application-specific NoCs are

generally tailor-made for a certain application or an application domain and fail in scenarios

of hard-to-predict system behavior and/or in situations where reliability is a concern. Some

scenarios are as follows :

69

70 CHAPTER 5. ADNOC: RUNTIME ADAPTIVE NETWORKS-ON-CHIP

• The system constraints may change during runtime.

• The user of the system may change his pattern of how to operate/use the system.

• Smaller feature sizes in the nano age will invoke the reliability concerns. It will require

building future reliable systems out of un-reliable components. For further details on the

reliability concerns in upcoming technology nodes the reader is referred to [26].

All those scenarios – from the user behavior to the reliability issues – require designing systems

with adaptivity capabilities in mind such that the system may allow application variations and

may react on faulty situations accordingly. The implementation of a reliable communication-

centric system-on-chip may, for example, depend upon the ability of the NoC to route traffic

in such a way that it can efficiently bypass the faulty areas at runtime. Therefore, in the scope

of this thesis, a self-adaptive system-on-chip communication architecture that analyzes itself

during runtime and self adapts when and how a certain router should be configured for a cer-

tain transaction is presented. Adaptivity is required both in the system-level as well as in the

architecture-level where it is realized through modification thereof, or even new paradigms

in the architectural design. The software part in between the application and the underly-

ing hardware layer executed in the Processing Element (PE) is considered as the system-level
(see Definition 5) and the data transmission part which is implemented in the hardware as the

architecture-level (see Definition 6). Changes in the user behavior, system constraints and/or re-

liability issues can be effectively compensated at the system-level by, for instance, dynamically

(re-)mapping a running application at runtime. Architecture-level modifications on the other

side may help to increase the resource utilization at runtime [52] besides the main purpose of

providing flexibility.

5.2 Advantages of the Adaptive NoC over the
Application-specific NoC

In Table 5.1 (symbol “(-)” stands for showing the disadvantages and “(+)” for showing the

advantages), the qualitative advantages of the AdNoC over the application-specific NoC are

summarized. A table comparing the architectural difference between the application-specific

NoC and AdNoC is already given in Chapter 3 (see Table 3.2). The AdNoC architecture pre-

sented in this thesis is flexible, efficient, and reliable. Due to the fact that the AdNoC supports

the adaptive routing and the runtime application mapping, it may support the varying workloads

for the embedded systems application. It uses resource multiplexing by reusing different parts

of the router and therefore, higher resource utilization is achieved in an AdNoC. The higher

resource utilization minimizes the design-time estimation for the hardware resources. There-

fore, the over-design may be avoided for the AdNoC architecture compared to the design-time

parameterized general purpose NoCs design.

5.3. RUNTIME ADAPTIVE NETWORKS-ON-CHIP (ADNOC) 71

(Design-time) Application-specific NoC (Runtime) Adaptive NoC (AdNoC)
All the design related parameters, i.e. nu- All the design-related parameters may be

Flexibility mber of virtual channel, buffer depth are (-) configured at runtime to meet the requir- (+)
fixed at design time. No flexibility. ements of the different tasks. Therefore,

high flexibility.

Routing & Routing and mapping are static and per- Dynamic routing and runtime mapping are

Mapping formed offline. Therefore, they are only (-) used. Therefore, may support varying wo- (+)
Algorithm efficient in specific scenarios. rkloads and/or constraints in systems.

Hardware Hardware resources are allocated to each Hardware resources may be shared and r-

Resources part of NoC at design time. Therefore, no (-) eused. Therefore, higher resource utilizat- (+)
resource multiplexing (lower resource ut- ion and lower silicon area.

ilization).

Design-time decisions only cover certain The system may be adapted both at syst-

Efficiency scenarios and fail in efficiency when hard (-) em-level as well as architecture-level du- (+)
-to-predict system scenarios occur. ring unpredicted scenarios.

Static design and therefore, may not be The system-level adaptation allows to

able to recover from faults. move a complete task to another PE and

Reliability (-) therefore, may recover from faults. Archi- (+)
tecture-level adaptation supports resource

reuse to other parts. Higher resource util-

ization during faults.

Complexity Simple implementation and the control Increased complexity. The control requi-

of control management is easy to realize. (+) res additional hardware and consumes (-)
logic more power. Over-designed, hard-to-pr-

edict the initial hardware budget.

Table 5.1: Advantages/disadvantages of the adaptive and the application-specific NoCs

5.3 Runtime Adaptive Networks-on-Chip (AdNoC)

In this section, a short summary of the proposed AdNoC architecture is presented together with

some related definitions that will help to understand the rest of the thesis.

5.3.1 AdNoC Specific Definitions
In addition to the general NoC-related definitions given in Chapter 3, the novel AdNoC architecture-

related definitions are described in the following:

Definition 1: Logical Network (LN) at time t is a directed graph Lt = (M, W), where M is a

set of task groups mi and wi,j ∈ W represents the set of connections between two task groups

mi and mj . A task group mi is a set of tasks scheduled to be executed on a particular PE. There-

fore, LN is the subset of the task graph set G (see Definition 1 in Chapter 3) that are running at

a specific time t.
Definition 2: The task mapping function is a function lt : T ′ ⊆ T �→ Lt which maps subset

T ′ of each task graph T in the task graph set G (see Definition 1 in Chapter 3) to the logical

network LN . Specifically T ′ can be equal to the entire task graph.

Definition 3: The network mapping function is a function pt : Lt �→ S ⊆ P which maps a log-

ical network, LN onto a subset of the physical network, PN . The function changes in discrete

time intervals.

72 CHAPTER 5. ADNOC: RUNTIME ADAPTIVE NETWORKS-ON-CHIP

Definition 4: The buffer configuration bi,t is the current buffer configuration of tile ni ∈ N .

Buffers are required to implement virtual connections between two tiles to realize multiple

mutually exclusive transactions. The definition of VC and VCB are given in Chapter 3 (see

Definition 5). The buffer configuration provides the current assignment of individual buffer

blocks and thus the number of available VCs to each output port at time t. The set of current

configurations is Bt.

Definition 5: The system-level of the adaptive system-on-chip communication architecture SL
is a collection of the top three layers and partially the other two layers (the transport layer and

the network layer) of the ISO/OSI model presented in Chapter 3 (see Figure 3.1), task mapping

function lt, and network mapping function pt. The three layers are: the application layer, the

presentation layer, and the session layer. All these functionalities are assumed to be running in

the PEs of the AdNoC architecture.

Definition 6: The architecture-level of the adaptive system-on-chip communication architec-

ture AL is the collection of the bottom four layers of the ISO/OSI model presented in Chapter 3

(see Figure 3.1) together with the routing function r presented in Chapter 3 (see Definition 8)

and the buffer configuration bi,t. The bottom four layers that are considered as a part of the

architecture-level are: the transport layer, the network layer, the data link layer, and the physi-
cal layer.

Definition 7: The system monitor M is a hardware component inside the runtime observability

infrastructure, which is used to collect, aggregate, and process system statistics. It spans from

the top to the lower level of the entire architecture. The system monitoring abstraction is pre-

dominantly realized in the system-level in software and in the architecture-level in hardware.

Definition 8: A cluster is a subset Ci ⊆ N , where N is the set of tiles nj that belong to the

physical network PN presented in Chapter 3 (see Definition 6) and a virtual cluster Cvi is a

cluster where there are no fixed boundaries to decide which tiles are included and which tiles

are not. It can be created, resized and destroyed at runtime.

Definition 9: An agent Ag is a computational entity, which acts on behalf of others. The con-

struction of an agent is motivated from [18, 64] where agents are used for distributed network

management. The properties of an agent in the proposed architecture are: an agent (1) is a

smaller task closer to the system, (2) must do resource management, (3) may need memory to

store state information for the resources, (4) must be executable on any PE, (5) must be migrat-

able, (6) must be recoverable, (7) is able to be instantiated for a new cluster, and (8) is able to be

destroyed if the cluster no longer exists. An agent-based mapping algorithm provides a flexible

framework for runtime application mapping because it has the negotiation capability among the

clusters distributed over the whole chip and is not dependent on the design-time parameters (see

above properties).

Definition 10: A cluster agent AgCi ∈ Ag is an agent that is responsible for mapping oper-

ations in the cluster Ci. The cluster agent is located in the processing element pCi
j where the

index j of pj suggests that the cluster agent can be located on any PE of the cluster. The AgCi

stores the information about the cluster that the agent is responsible for.

Definition 11: A global agent Agglob is an agent that stores the information for performing the

mapping operations of a selected cluster. It stores information that describes the current usage

of communication and computation resources for each cluster Ci and this information is used

for selection and re-organization of the clusters. Agglob is movable and the stored information

5.3. RUNTIME ADAPTIVE NETWORKS-ON-CHIP (ADNOC) 73

is light-weight and easily recoverable (there are multiple instances of the global agents).

Definition 12: The application mapping function is given by m : T � ti �→ nj ∈ N and the

runtime application mapping function mrun maps the instance of task graph set Gt at time t to

the physical network PN presented in Definition 6 of Chapter 3.

Definition 13: A binding is a function b : T � ti �→ tpPE ∈ Tps, where T is the set of all

tasks of an application and Tps is the set of the PE types that are used on the physical network

PN . The function assigns each task ti of the TG to a favorable type of PE. After the binding

operation is completed, the tasks are allowed to be mapped only to PEs of the type given by the

binding function b.

Definition 14: The Adaptive Networks-on-Chip (AdNoC) is defined as the tuple AdNoC =
(PN, M,Gi, pt, m, r, SL, AL,Lt, lt) with the parameters as given above. The values of t are

from discrete intervals. There may be multiple task graphs simultaneously (Gi) running on Ad-
NoC. The definitions of Gi and PN are given in Definition 1 and Definition 6 respectively in

Chapter 3.

5.3.2 Overview of the AdNoC Architecture

AdNoC, the proposed runtime adaptive system-on-chip communication architecture is capable

of supporting deadlock-free data transmission and meets the required bandwidth guarantees for

the concurrent transactions in system-on-chip communication for a network exposed to varying

system constraints and/or mode switches. A transaction-level connection-oriented approach on

top of a packet-based communication to provide the performance-related guarantees, i.e. band-

width requirements for the critical transactions, as well as a pure best effort approach for the

rest of the transactions (a hybrid approach) is used. As most NoCs, the architecture is pipelined,

deploys wormhole-based distributed routing, and the topology is a regular 2D Mesh (for details

see Chapter 3). AdNoC is divided into two main parts: the system-level (see Definition 5), and

the architecture-level (see Definition 6). Figure 5.1 shows an overview of the complete AdNoC
architecture. Details of the system-level and the architecture-level are presented in Chapter 6

and in Chapter 7 respectively.

5.3.3 System-level Adaptation

Adaptivity at system-level is deployed using the runtime application mapping algorithm in

which a runtime agent-based (for the definition of agents see Definition 9) distributed appli-

cation mapping is proposed. The detailed scheme is explained in Chapter 6. In summary, to

obtain a scalable mapping solution the computational load is reduced by confining the mapping

to clusters (see Definition 8) which are a connected subset of NoC tiles. The clusters have a

variable size that can be adjusted during runtime and each cluster has one cluster agent (see

Definition 10) which is responsible for (re-)mapping.

There are several reasons for (re-)mapping at different levels, e.g. user-behavior from the application-

level or hardware faults from the architecture-level. The cluster agent first tries to find a suitable

(re-)mapping for a mapping request. In the event that the cluster agent is not able to establish a

74 CHAPTER 5. ADNOC: RUNTIME ADAPTIVE NETWORKS-ON-CHIP

Sy
st

em
-le

ve
l/(

re
-)m

ap
pi

ng

C
lu

s
te

r
a

g
e

n
t

G
lo

b
a

l
a

g
e

n
t

F
in

d

c
lu

s
te

r

C
lu

s
te

r

fo
u

n
d

?

R
e

-c
lu

s
te

r?

A
p

p
lic

a
ti
o

n

m
a

p
p

in
g

C
lu

s
te

r
a

g
e

n
t
B

C
lu

s
te

r
s
ti
ll

s
u

it
a

b
le

?

R
e

-c
lu

s
te

r

C
lu

s
te

r
a

g
e

n
ts

d
e

le
g

a
te

m
a

p
p

in
g

fo
r

a
ll

ti
le

s
in

th
e

ir

c
lu

s
te

r
o

n
c
e

it
is

c
h

o
s
e

n
b

y

a
g

lo
b

a
l
a

g
e

n
t.

A
ll

a
g

e
n

ts

a
re

ru
n

in
s
o

ft
w

a
re

.

C
lu

s
te

r
a

g
e

n
t
A

U
p

d
a

te

m
a

p
p

in
g

N
o

N
o

Y
e

s

Y
e

s

Y
e

s

Y
e

s

System-levelsystem

stateinformation

storedinmemory.

A
rc

hi
te

ct
ur

e-
le

ve
l(

in
ev

er
y

til
e)

A
d

a
p

ti
v
e

ro
u

ti
n

g
/V

C
B

a
s
s
ig

n
m

e
n

t

N
o

Y
e

s

Y
e

s
Y

e
s

N
o

V
C

B

s
ta

te
s

R
o

u
te

s
S

e
le

c
t

ro
u

te

T
a

il
fl
it
/

c
lo

s
e

c
o

n
n

C
le

a
r

V
C

B

H
e

a
d

e
r

fl
it
?

R
o

u
te

fl
it

A
s
s
ig

n
V

C
B

V
C

B

fo
u

n
d

?

In
c
o
m

in
g

fl
it

R
o

u
te

fo
u

n
d

?

Events

M
o

n
it
o

r

s
ta

te

E
v
e

n
t

re
c
ie

v
e

d

C
o

lle
c
ti
n

g

ro
u
te

r
s
ta

tu
s

in
fo

rm
a

ti
o

n

M
o

n
it
o

r

R
e

s
e

n
d

?

(R
e

-)
m

a
p

?

N
o

M
o

n
it
o

ri
n

g
h

a
rd

w
a

re

is
re

q
u

ir
e

d
in

e
a

c
h

ti
le

to
p

ro
v
id

e
lo

c
a

l

o
b

s
e

rv
a

b
ili

ty

Y
e

s

N
o

Y
e

s

(R
e

-)

M
a

p
p

in
g

re
q
.

M
ig

ra
ti
o

n

c
lu

s
te

r?

T
a
s
k

m
ig

ra
ti
o

n

N
o

L U T

N
o

B
a

n
d

w
id

th

m
e
t?

Y
e

s

R
e

v
e

rs
a

l

p
o

s
s
ib

le
?

N
o

R
e

v
e

rs
e

lin
k

&

fo
rm

2
X

-L
in

k
s

B
a

n
d

w
id

th

m
e

t?

Y
e

s

re
-a

llo
c
a

te

s
o
m

e

ro
u

te
s

N
o

F
o
r

e
a
c
h

in
-

c
o

m
in

g
h

e
a

d
e

r

fl
it
,

th
e

ro
u
te

r

tr
ie

s
to

fi
n
d

a

ro
u

te
fo

r
th

e

c
u
rr

e
n
t

m
a
p
-

p
in

g
in

s
ta

n
c
e
.

F
in

d
in

g
a

ro
u

te
w

h
ic

h
m

e
e

ts
b

a
n

d
w

id
th

re
q

u
ir
e

m
e

n
ts

m
a

y
re

q
u

ir
e

2
X

-L
in

k
s
.

Y
e

s
N

o

Mappinginstance

L
in

k

s
ta

te

V
C

B
a

re
a

s
s
ig

n
e

d
o

n
-d

e
m

a
n

d
to

e
a

c
h

o
u

tp
u

t
p

o
rt

a
t
ru

n
ti
m

e

F
ig

u
re

5
.1

:
T

h
e

ad
ap

ti
v
e

sy
st

em
-o

n
-c

h
ip

co
m

m
u
n
ic

at
io

n
ar

ch
it

ec
tu

re

5.4. CONCLUSION 75

mapping instance it informs a global agent (see Definition 11). Those are special agents which

are in charge of selecting a different cluster, re-clustering, and coordination. The global agent
then tries to resize the cluster associated with the cluster agent. If this fails, a different clus-

ter is chosen and a new mapping is done. All agents are implemented in software and may

be migrated to run on any PE in every tile within their deployment area (i.e. in a cluster or

globally).

5.3.4 Architecture-level Adaptation

After the system-level has successfully set up a mapping instance, it is up to the architecture-
level to configure each tile for the resulting transactions. Once a transaction arrives at a tile, all

possible directions must first be checked for suitable routes. To find a valid route which can

meet the bandwidth constraints for the transaction it may be needed to use the concept of the

2X-Link. Up until now, the number of VCBs at one port has typically been fixed at design-time

[14, 76] for the application-specific NoCs (see Chapter 4). With on-demand assignment [52],

the VCBs are not tied to ports, but only to the router itself. The router may distribute the VCBs
to any route as needed by assigning a transaction to the VCBs through the virtual channel arbiter

and then assigning it to an output port. Details of the architecture-level adaptation are discussed

in Chapter 7.

5.4 Conclusion

The novel idea of the adaptive system-on-chip communication architecture has been introduced

in this chapter. The adaptive system provides adaptivity both in the system-level as well as in

the architecture-level. The system-level adaptation and the architecture-level adaption parts are

detailed in Chapter 6 and Chapter 7 respectively.

Chapter 6

System-level Adaptation in the
Runtime Adaptive Networks-on-Chip

To solve the problem of mapping tasks to respective Processing Elements (PE), several design-

time (offline) mapping algorithms have been proposed in related work. In [77], branch-and-
bound-based, in [98] genetic algorithm-based, and in [70] heuristic-based mapping algorithms

are proposed (details of these related works are already explained in Chapter 3). But an adaptive

system that changes its configuration over time requires a (re-)mapping/runtime mapping of

applications. Possible reasons for the necessity of a runtime application mapping are given

below.

Let us motivate the need of a runtime distributed application mapping for the Adaptive Networks-
on-Chip (AdNoC) architecture by means of a simple scenario. A 32 × 32 Networks-on-Chip
(NoC) with a Mesh topology may be studied in this respect. Some events that may require a

(re-)mapping at runtime for an adaptive system where design-time mapping algorithms fail are

given below:

• Online detection of hardware faults.

• To minimize runtime system costs (i.e. to save energy because of the low battery status).

• When the user requirements change, e.g. the user wants to switch video playback to a

higher resolution.

• When an adaptive system tries to configure the underlying NoC infrastructure (i.e. chang-

ing the routing algorithm and the buffer assignment in the architecture-level of the adap-

tive NoC architecture) and if it fails, then the mapping instance of the application needs

to be changed.

The state-of-the-art runtime application mapping works [31, 38, 37, 147] have used a Central-
ized Manager (CM) (see Figure 6.1 (a)) for conducting the job of mapping which is not scalable

in the context of hundreds or even thousands of cores that may soon be integrated on a Multi-
Processor System-on-Chip (MPSoC). These architectures may bear the following problems:

• Single point of failure.

• Higher computational cost to calculate mapping inside CM.

77

78 CHAPTER 6. RUNTIME SYSTEM-LEVEL ADAPTATION

• Large volume of monitoring-traffic. Monitoring-traffic is defined as the traffic which is

caused by collecting information about the state of the tiles.

• Point of traffic congestion area (hot-spot) as every tile sends the status of the PE to the

CM after every instance of mapping. It increases the chance of bottleneck around the CM.

To solve the problem of a static design-time mapping algorithm which may require a high com-

putational effort, we need an algorithm that can perform a low-cost (execution time) mapping

algorithm inside a virtual cluster (see Definition 8 in Chapter 5) constructed at runtime. The

problems of a centralized mapping algorithm are solved in this thesis by using a distributed

mapping inside each virtual cluster. This distributed mapping is accomplished by software

modules that are autonomous, modifiable, and exhibit adaptation capabilities.

The novel contributions in the scope of this chapter are as follows:
(1) A runtime agent-based distributed application mapping for the next generation self-adaptive

heterogeneous MPSoCs is presented in this chapter. The proposed application mapping al-

gorithm is composed of two major parts: (1) a cluster selection and cluster reorganization at

runtime and (2) a mapping algorithm inside a cluster at runtime (published in [58]).

(2) In the scope of this chapter, a runtime cluster negotiation algorithm that generates virtual
clusters to solve the problems of the centralized mapping algorithm is provided.

(3) A low cost heuristic-based mapping algorithm in terms of execution cycle on any instruction

set processor that minimizes the communication related energy consumption is presented.

Centralized

Manager

(CM)

Centralized approach
All nodes communicate

with central mapping instance

Decentralized approach
Negotiation requires communication

between all nodes

Virtual cluster approach
Communication limited to

agents

Virtual cluster
PE and router

(regular tile)

PE and router

(cluster agent -

maps inside

cluster)

PE and router (global agent

delegates inquiries to cluster

agents, may be also a

cluster agent)

Mapping information

(a) (b) (c)

Figure 6.1: Various options for (re-)mapping

6.1 ADAM: Runtime Agent-based Distributed
Application Mapping Algorithm

Adaptivity at the system-level is deployed using a runtime application mapping algorithm in

which an Agent-based Distributed Application Mapping (ADAM) is proposed. An agent is a

6.1. ADAM: RUNTIME APPLICATION MAPPING ALGORITHM 79

computational entity, realizes in software, and acts on behalf of other entities (see Definition 9

in Chapter 5). In summary, to obtain a scalable mapping solution, the computational load is

reduced by confining mapping to virtual clusters which are a connected subset of NoC tiles.

The clusters have a variable size that may be adjusted during runtime and each cluster has one

cluster agent (CA) which is responsible for (re-)mapping (see Figure 6.1 (c)).

There are several reasons as discussed earlier for (re-)mapping at different levels during applica-

tion execution, e.g. user-behavior from the application-level or hardware faults stems from the

architecture-level. The CA first tries to find a suitable (re-)mapping for a mapping request. In

the event that the CA is not able to establish a mapping instance it informs a Global Agent (GA).

These are special agents which are in charge of selecting a different cluster, (re-)clustering, and

coordination. The GA then tries to resize the cluster associated with the CA. If this fails, a dif-

ferent cluster is chosen and a new mapping is done. All agents are implemented in software and

may be migrated to run on any PE in every tile within their deployment area (i.e. in a cluster or

globally).

6.1.1 Different Parts of the ADAM Algorithm

An overview of the ADAM algorithm is presented in Figure 6.2. The runtime application map-

ping in the proposed algorithm is achieved by using a negotiation policy among CAs and GAs of

a certain instance of time distributed over the whole chip. In Figure 6.2, an application mapping

request is sent to the CA of the requesting cluster which receives all mapping requests and nego-

tiates to the GAs. There may be multiple instances of the GAs that are synchronized over time.

The GAs have global information about all the clusters of the NoC in order to take decision to

which cluster the application should be mapped onto. Possible replies to this mapping request

are:

1. When a suitable cluster of the application exists then the GAs inform the requesting source

CA and it asks the suitable destination CA for the actual mapping of the application.

2. When no suitable clusters are found by the GAs then the GAs report the next most promis-

ing cluster where it is possible to map the application after the task migration (it is called

a candidate cluster). The destination CA or the candidate CA negotiates with the GAs
to make this cluster suitable for the application mapping. The number of iterations is a

design-time configuration parameter.

3. When neither suitable cluster nor candidate cluster for a task migration are found then

the (re-)clustering concept is used. The (re-)clustering operation tries to acquire PEs

from the neighboring clusters (for details see 6.1.3). If the requirements are met after

(re-)clustering then the application may be mapped onto that cluster. This step is iterated

for a number of times specified by the design-time configuration parameter.

If all the above mentioned options do not lead to a successful mapping (the application and

the system constraints are not met), then the mapping request is refused and reported to the

requester. The requester waits until some resources are freed to proceed with the mapping

request.

80 CHAPTER 6. RUNTIME SYSTEM-LEVEL ADAPTATION

request accepting

awaiting

requests

request

Start state

End state
+ means complexity,

hides a sub state chart
Legend:

request

received

appl to map

migrate

tasks

recluster

recluster

map appl

map

appl

map appl

wait for

next request

find another

cluster

appl to modify

wait for next request

app mapping

unsorted

flows

sort,

desc sorted

flows

task weights

calculated

calc

flows

left

start

mapping

map in

sorted

order

no flows

left

mapping done

exit

finding suitable cluster

awaiting

suitable

cluster

exists

most suitable

cluster for task

migration to

return

find suitable

cluster request

received

suitable cluster

to return

return

suitable

cluster

no suitable

cluster exists,

no task migration

possible

most suitable

cluster for

reclustering to

return

return most promising cluster

for migration

return most promising

cluster for reclustering

no suitable

cluster exists,

task migration

possible
map

appl

appl not mapped

dest cluster

unknown

dest cluster

known

most suitable

cluster for

migration known

Most suitable

cluster for

reclustering

known

recluster

migrate tasks

find suitable

cluster request

return suitable

cluster

return most

promising cluster

for migration

return most

promising cluster

for reclustering

appl task graph
modification

reclustering

clustering

successf.

QoS

reqr. met

QoS reqr.

not met

map

app

clustering

failedno

reclustering

possible

find another

cluster

taking tiles

from neighb.

Clusters

task migration

migration

successful

QoS

reqr. met

map

app

QoS reqr.

not met no migr.

possible
migration

failed recluster

migration

state

cluster agent, src

global agent

cluster agent, dst

Figure 6.2: Flow of the ADAM algorithm

6.1. ADAM: RUNTIME APPLICATION MAPPING ALGORITHM 81

In the following subsections, the detailed algorithm of runtime the ADAM which has the follow-

ing components are presented: (1) a cluster negotiation algorithm, (2) the (re-)clustering and the

task migration methodology, and (3) a mapping algorithm inside a virtual cluster (component

1 and 2 are combined to a single component earlier in this chapter).

6.1.2 Cluster Negotiation Algorithm

The runtime suitable cluster negotiation algorithm (see Algorithm 5) is presented here. In this

part of the algorithm, a suitable cluster is tried to be found, which is the first part of the ADAM
algorithm before actual mapping of the application starts.

Parent task
Cluster agent (source

cluster)
Global agent

Cluster agent (destination

cluster)

map_apps(apps_tg[])

get_dest_cluster(req._a1)

map(app1_tg)

report_state(state)

get_dest_cluster(req._a2)

map(app2_tg) ...

... /* return for app_n */
...

...

...
/* all apps mapped */

Figure 6.3: Cluster negotiation and application mapping inside the negotiated cluster

A simple sequence diagram showing a straight forward distributed application mapping (with-

out considering the (re-)clustering and the task migration methodologies presented in 6.1.3) and

the components which participate when applications get mapped onto the NoC are described

in Figure 6.3. Parent task is a computational module that is able to start applications, create

tasks etc. Cluster agent (source cluster) is the management unit that is responsible for the re-

source allocation of the cluster and contains the parent task (details of the CA are described in

Definition 10 of Chapter 5). The Cluster agent (source cluster) receives mapping requests and

82 CHAPTER 6. RUNTIME SYSTEM-LEVEL ADAPTATION

in this case it iterates over all applications contained in the set apps tg[] and negotiates with

the GA which cluster is best suitable to map the tasks of the particular application. The GA
holds some configuration data about all the clusters, e.g. how many computational resources

are available and how much communication capacity is free. When the GA has found a clus-

ter, where the application will fit into, it returns its identification number to the Cluster agent
(source cluster), the requesting cluster. GAs are central instances and have overall information

about the whole MPSoC (details of the GA are described in Definition 11 of Chapter 5). The

Cluster agent (source cluster), the requesting cluster sends a mapping request to the Cluster
agent (destination cluster), the destination cluster, whose identification number is returned by

the GA. The Cluster agent (destination cluster) receives the task graph of the application that

has to be mapped as an argument of the mapping request. If no suitable cluster is found then

this algorithm tries to form a suitable cluster for the application mapping.

6.1.2.1 Data Structures for the Algorithms

Input and output data structures common for Algorithm 5 and Algorithm 6 are described in the

following:

• The application communication task graph, TG (see Definition 1 in Chapter 3) with re-

quired computational resource profiles for each task and each flow is given by a set of

entries: entry = (idsrc, iddst, bwreq, lat, RRtp). Here, idsrc and iddst are the identifi-
cation number of the source and destination tasks of the flow respectively, bwreq is the

required bandwidth of the flow, lat is the communication latency, and RRtp is the com-

putational resource requirement on each PE type that is needed for a task to ensure a

successful execution.

• The state information about all the clusters are stored in a summarized format by the

GAs and the more detailed information about the individual cluster is stored by the CA
of that particular cluster. Table 6.1 presents the data structure of the cluster PE type
look-up-table which is an entry for each CA stored within the GA data structure. This

table represents an individual CA holding the state information about the groups of tiles

bounded by different PE types. This table is also referred as nhistc[] (described later), a

tile computational resource usage histogram in the following algorithms. The memory

requirements to store this table depends on several parameters: (1) #Tps: the number

of all possible PE types, (2) #Nclu: the maximum number of tiles a cluster may contain,

and (3) ncla: the number of the computational resource requirement classes which is

described later during introducing the data structure nhistc[]. All tiles of a certain PE

type within a cluster are composed to a group and this PE type oriented state information

about the MPSoC is used to determine which types of PEs should be taken for the tasks.

The entries for the PE types contain current usage of all the tiles that belong to the type

and these usages are separated into several computational resource requirement classes.

The entries of the Table 6.1 are described below:

PE type identification number: tpPE represent the identification number of the PE

type. The memory necessary to store this field depends on the number of PE types

6.1. ADAM: RUNTIME APPLICATION MAPPING ALGORITHM 83

field memory requirement short description
tpPE log2 #Tps PE type identification number, #Tps = #of PE types

q tiles log2 #Nclu Nclu maximum #of tiles in a cluster

r usgtot log2 #Nclu total computational resource used by the PE type

q cl0 log2 #Nclu #tiles in resource usage class (0, 1
n
]

q cl1 log2 #Nclu #tiles in resource usage class (1
n
, 2

n
]

.

q cln log2 #Nclu #tiles in resource usage class (n−1
n

, 1]

Table 6.1: Cluster PE type look-up-table: an individual CA

that are available on the MPSoC at design time, e.g. 20 PE types require 8 bits

(25 = 32 < 20 > 24 = 16, 5 bits, aligned to Byte size) to store this data structure.

Cluster tile quantity: q tiles describes the number of tiles inside a cluster of a par-

ticular PE type. The memory size required for this field depends on the maximum

number of tiles those can be accommodated in a cluster (#Nclu) (design-time pa-

rameterized).

Computational resource usage: r usgtot is required by the tasks that are running

on all PEs of the particular PE type inside a cluster. It is important to sort the

Table 6.1 by resource availability which is described below in Algorithm 6 (see

also Figure 6.7 (d)). The memory requirement for this field is determined by the

maximum number of the tiles that may be accommodated in a cluster (#Nclu).

Computational resource usage histogram: The entries q clk ∈ {q cl0, . . . , q cln}
represent the actual computational resource usage histogram that contains the num-

ber of tiles of the particular PE types that are assigned to a computational resource
usage class given by k in q clk: (k−1

ncla
, k

ncla
], where k ∈ {1, . . . , ncla} and ncla is

the number of the computational resource usage classes. The memory required to

store this field is determined by the maximum number of tiles that a cluster can

accommodate #Nclu.

• Energy Model: The selection criteria in the cluster negotiation process is the minimum

energy consumption during execution of a certain application. In embedded systems

design, energy is considered to be one of the major parameters to be minimized. To

make a binding decision, the amount of energy consumption for different PE types at

different computational resource requirement classes is needed. To explain the energy

model, an example from Figure 6.4 (b) is taken, where for the PE of type tp2, the energy

consumption is specified by two values: tp2 : (4X, 12X) that means that each PE of

type tp2 consumes 4 units of energy (static energy consumption) in a fixed time when it

uses no processing resources and 12 units of energy when it consumes the complete PE

resources and otherwise,

E = u · (E[100%] − E[0%]) + E[0%] (6.1)

This simple energy consumption to the computational resource requirement relation in

84 CHAPTER 6. RUNTIME SYSTEM-LEVEL ADAPTATION

the energy model is used in current the ADAM algorithm. But the ADAM algorithm is

orthogonal to any energy model. Any other fine-grained energy model may be used to

replace this exiting model.

• Data structure thist[] and nhistc[] store the computational resource requirement his-
togram and the computational resource usage histogram respectively. The data structure

nhistc[] is also described by the Table 6.1. As an example, in Figure 6.4 (e), (f) these two

data structures can be seen as tables. Each entry thist[tp, k] : gives the quantity of tasks

of given type being in the computational resource requirement class (k−1
ncla

, k
ncla

] (ncla is

the number of classes) and each entry nhistc[tp, k] : gives the actual quantity of tiles of

given type being in resource usage class (k−1
ncla

, k
ncla

].

thist[tp, k] = #{t ∈ T | b(t) = tp ∧ u(tp, t) ∈ (
k

ncla

,
k + 1

ncla

]} (6.2)

k = �u(tp, t) · ncla�

nhist[tp, k] = #{n ∈ Nclu | tp(n) = tp ∧ u(tp, n) ∈ (
k

ncla

,
k + 1

ncla

]} (6.3)

k = �u(tp, n) · ncla�
A simple example to calculate k for the task t3 in Figure 6.4 (a) bounded to PE of type

tp2 is as follows: ncla = 5, k = �22% · 5� = 1 ⇒ t3 increases the counter of tasks bound

to PE of type tp2 that are in resource requirement class (1
5
, 2

5
].

• The output data structure are the cluster where the application is mapped onto and the

binding ∀ti ∈ T : b(ti) ∈ Tps (see Definition 13 in Chapter 5). In Algorithm 5, an array

b[ti] is used for this purpose.

6.1.2.2 Algorithm Description

The pseudocode of the suitable cluster negotiation algorithm is presented in Algorithm 5. The

loop spreading from Line 1 to 6 is executed for each task contained in the given communication

task graph TG. In the loop body, the initial binding is calculated and stored in the list b[] data

structure. The criteria for this binding is only the specification of energy consumption of the

tasks for each PE type. Therefore, only those PE types are chosen where the energy consump-

tion have the lowest value (see Equation (6.1)). In Line 3, the u[tp] data structure counts for

each PE type, the total computational resources required by the tasks that are bounded to this

particular PE type. This data structure is used for sorting during calculating the values from

the table illustrated in Figure 6.4 (c). This table contains the computational resource require-

ment profile for the application. Line 4 shows the calculation of the computational resource
requirement class identifier k. This identifier is used to assign the task to the corresponding

computational resource requirement class using the requirement of the task that is bounded to

a particular PE type. Finally, the result is stored in the computational resource requirement
histogram thist[].

6.1. ADAM: RUNTIME APPLICATION MAPPING ALGORITHM 85

Algorithm 5 Suitable cluster negotiation

input: TG, {nhistc[] | c is cluster} Figure 6.4 (a,f)

output: c, b[]; (suitable cluster and binding) Figure 6.4 (f,g)

u(tp, t): gives the computational resource requirement when the task t is bounded to tp Fig-

ure 6.4 (c)

u[tp]: gives the total computational resource requirement for the tasks bounded to given PE type

in TG
E(tpj, ti): computational energy consumed when task ti is bound to type tpj Figure 6.4 (d)

nloop: constant, number of matching loop iterations

1: for all ti ∈ TG do
// min energy binding Figure 6.4 (d) & thist calculate &
summarize u(tp) in TG

2: b[ti] = min
tpj

{E(tpj, ti) = u(tpj, ti) · (E[100](tpj) − E[0](tpj)) + E[0](tpj)}
// initial binding stored in b[], minimum energy
Figure 6.4 (d)

3: u[b[ti]] = u[b[ti]] + u(b[ti], ti)
// consider the columns of computational resource
requirement profile Figure 6.4 (c)

4: k = �u(tpj, ti) · ncla�
5: thist[b[ti], k] = thist[b[ti], k] + 1 Figure 6.4 (e)

6: end for
7: sort thist by u[tp] desc

8: tpmax = maxtpj
{u[tpj]}

9: sort {c ⊆ N |c is a cluster} by uc[tpmax]
10: for all c ∈ N, c is a cluster do
11: sort nhistc by u[tp] asc

12: match thist[] and nhistc[] (Equation (6.4))

13: store mismatch[c, iloop] = (tpj, kmis, qtsk,mis)
14: if matched or iloop = nloop then
15: leave loop

16: end if
17: end for
18: if iloop = nloop then
19: for all c ∈ N, c is a cluster, (init : iloop = 0) do
20: (tpj, kmis, qtsk,mis) = mismatch[c, iloop]
21: move qtsk,mistasks with maxt{u[b[t]]} from tpj to another PE types with

mintp{E(tp, tasks)}
22: match thist and nhistc
23: if not matched or iloop = nloop then
24: restore b[] to min energy binding; leave loop

25: end if
26: end for
27: end if
28: if not matched: find cluster and tasks to migrate

29: if not matched: find cluster and tasks to be taken from neighbors or share with neighbors

30: return b[], c

86 CHAPTER 6. RUNTIME SYSTEM-LEVEL ADAPTATION

In Line 7, the computational resource requirement histogram is sorted by the criteria of the

computational resource requirement of all tasks bounded to the particular PE types u[tp], cal-

culated in Line 3, in a descending order. In Line 8, the type whose bounded tasks have the

maximum resource requirement is selected. It is used below in Line 9 as the sorting criteria of

the data structure containing references to all clusters. The more resources of a particular PE

type is available on the cluster, the higher is the position of this PE type in the sorted cluster list.

Line 10 begins iteration over all clusters of the MPSoC and ends in Line 17. At first, the com-
putational resource usage histogram is sorted in an ascending order inside the loop. The sorting

criteria is the resource usage of all tiles of particular PE types. Therefore, the most available PE

types are located in the beginning of the computational resource requirement histogram data

structure.

In Line 12, the matching of computational resource requirement histogram thist[] and the com-
putational resource usage histogram nhistc[] is calculated (an example to show the matching is

given later). Equation (6.5) is used for this matching. If the cluster is not suitable (no match oc-

curs) then the PE of type tpj , the resource requirement class identified by kmis, and the quantity

of mismatched tasks qtsk,mis are stored in the mismatch data structure in Line 13. If every group

of tasks (grouped by PE types) has matched with the available computational resources, or the

number of tries to find a suitable cluster given by nloop is reached then the loop is terminated in

Line 15.

During mismatch and reaching the maximum number of tries (iloop = nloop) another loop begins

(Line 18 and Line 19). The loop iterates again over all the clusters available on the MPSoC and

this time the binding is modified. At first, inside the loop the mismatch information is made local

(Line 20). In Line 21, some tasks which are bounded to the critical PE types where not enough

resources are available are rebounded to another PE types (considering the order of increasing

energy consumption given by the energy consumption profile). Line 22 executes the matching

of the histograms thist[] and nhistc[] again. The loop may be left under the same criteria as

above when the minimum energy bounded tasks are attempted to map (Line 23). While leaving

the loop the binding is restored to the minimum energy binding in Line 24 because of the other

operations later: the task migration and the (re-)clustering expect the minimum energy binding

as the initial binding. In Line 28, the task migration is initiated, if still the matching is not

successful. If the task migration is not successful either then the (re-)clustering is considered.

On success the binding b[] and the suitable cluster are provided as output in Line 30.

6.1.2.3 Histogram Matching during Cluster Negotiation

The matching of the two data structures nhistc[] and thist[] shown in Equation (6.4) is the

heart of the Algorithm 5. nhistc[] is sorted in the ascending order and thist[] is sorted in the

descending order. When the result of this term is true, then the cluster is suitable for the tasks of

the application. During the cluster matching, the concept of task rebinding is also considered.

∀i ∈ 1, ..., ncla − 1 :

ncla−1∑
j=ncla−i

thist[tp, j] ≤
i∑

j=1

nhistc[tp, j] (6.4)

6.1. ADAM: RUNTIME APPLICATION MAPPING ALGORITHM 87

If there is no available cluster which may be selected as a suitable cluster for a given energy

budget then possible clusters are searched where the task migration may be performed to retrieve

suitable cluster for the application. The system has to decide which tasks may be migrated for

each application at a given time. In this work, the task migration steps are not addressed in

details and uses state-of-the-art methodologies [17, 31]. A short summary of the used task

migration methodology is explained in 6.1.3.

If the migration of the tasks does not deliver the expected results to make a cluster suitable, then

the last possibility to achieve this objective is the (re-)clustering operation. Therefore, all the

possible candidate neighboring clusters are examined, if it does have the desired tiles to make

the cluster suitable for the application mapping. If the condition is fulfilled then the tiles are

examined if they are available to be given away to another cluster, or if it is possible to perform

a task migration operation within the neighboring cluster to make the desired tiles available for

the (re-)clustering.

The complexity of the cluster negotiation algorithm is O(m + r · log r) where m is the number

of tasks and r is the number of virtual clusters. Due to the low complexity, this part of the

approach is suitable to be applied at runtime.

E[100%](tp3)

= 12 X

Legend

PE type 1

PE type 2 flow, with bw7

t1 task t1

tpPE

1

2

3

4

E[0%]

2 X

4 X

1 X

5 X

(b) Energy by

resource requirement

E[100%]

11 X

12 X

17 X

21 X

t1

t2 t3

t4

10 7

5

t5
11

(a) Task graph

3

(e) Computational resource

requirement histogram

1

2

3

4

1/5

1

0

0

0

2/5

1

1

0

0

3/5

1

0

0

0

4/5

1

0

0

0

tpPE 5/5

0

0

0

0

(f) Computational resource

usage histogram

1/5

1

1

2

3

2/5

1

1

5

2

3/5

0

1

4

2

4/5

1

2

5

4

5/5

15

2

5

4

(c) Resource

requirement profile

1

2

3

4

5

tp1

9

33

51

42

61

res. req. by tpPE

tp2

12

16

22

30

55

tp3

17

39

49

45

46

tp4

8

15

21

20

21

task

t1

t2 t3

t4

10 7

t5
11

(g) Binding

3

(d) Energy consumption/

min-energy binding

1

2

3

4

5

energy by tpPE

tp2

4.96

5.04

5.76

6.4

8.4

tp3

3.72

7.24

8.84

8.2

8.36

tp4

6.28

7.4

8.36

8.2

8.36

task
tp1

2.81

4.97

6.59

5.78

7.49

1

2

3

4

tpPE

1

0

0

Figure 6.4: Suitable cluster and binding example

6.1.2.4 Exemplary Algorithm Execution

In Figure 6.4, an example for the cluster negotiation procedure is presented. The task graph of

the application that is requested to be mapped is shown in Figure 6.4 (a). Each node of this

graph corresponds to a task ti ∈ T and each edge corresponds to a flow fi,j ∈ F between two

tasks ti and tj . The weights assigned to the edges corresponds to the bandwidth required by the

inter task communication between the tasks that are connected by the edges.

88 CHAPTER 6. RUNTIME SYSTEM-LEVEL ADAPTATION

The energy consumed by different PE types are presented in Figure 6.4 (b). In the table in

Figure 6.4 (b), E[0%] provides the energy consumption when the computational resource us-

age required by the tasks running on the PEs are 0 % and E[100%] provides the energy con-

sumption when the tasks running on the PEs use 100 % of the computational resources. Fig-

ure 6.4 (c) shows the computational resource requirements of all tasks ti ∈ T , contained in

the task graph for each PE type. As an example, task t3 requires 51 % of computational re-

sources, if it is mapped onto a PE of type tp1, 22 % of the computational resource is required

on a PE of type tp2, and so on. Equation (6.1), Figure 6.4 (b), and Figure 6.4 (c) are used to

calculate the actual required energy consumption for every tasks and for every types of PEs

that the tasks can be bounded to at runtime. The result of this calculation is presented in Fig-

ure 6.4 (d). As an example, taking the values of the computational resource requirement of

the task t3 while bounded to the PE of type tp1 (u = 51 %) from Figure 6.4 (c) and the values

E[0%](tp1) = 2, E[100%](tp1) = 11 from Figure 6.4 (b) we can calculate the corresponding entry

for Figure 6.4 (d).

E = u · (E[100%] − E[0%]) + E[0%] = 51 % · (11 − 2) + 2 = 6.59

Using the energy consumption values from Figure 6.4 (d) the minimum energy binding for the

tasks of the application can be derived by simply selecting the lowest value of energy consump-

tion for each task. These values are the highlighted entries of Figure 6.4 (d). The task t3 for

example is bounded to the PE of type tp2 because t3 consumes least energy when it is bounded

to tp2. This binding is used to classify the tasks of the application into computational resource
requirement histogram (thist[]) in Figure 6.4 (e). The entry in the second row (tp2) and the

second column (class: (1
5
, 2

5
]) contain the value 1, that means that there is exactly 1 task that

is bounded to the PE of type tp1 and classified to the second class (k = 2). Task t3 requires

22 % ∈ (1
5
, 2

5
] of the computational resources of a PE of type tp2.

Figure 6.4 (e) presents the computational resource usage histograms (nhistc[]) for a cluster. As

an example, table entry (tp3, cl2) contains the value 5 which means that the cluster contains 5

tiles with a PE of type tp3, where the currently running tasks use between 20 % and 40 % of

the computational resources. In Algorithm 5, the data structures thist[] (Figure 6.4 (e)) and

nhistc[] (Figure 6.4 (f)) are compared. If these data structures match then the cluster is selected

as a suitable cluster (6.4). The values of the row iterated in Figure 6.4 (e) are considered in the

opposite direction compared to Figure 6.4 (f), that means the tiles with smallest resource usage

are used first and continue from left to right, beginning with the class (1
5
, 2

5
].

At first, the entry from Figure 6.4 (e) with the largest computational resource requirements of the

PE of type tp1 is considered. thist[tp1, cl4] = 1 that means 1 task is bounded to tp1 and requires

an amount ∈ (60 %, 80 %] of the computational resources. Now this value is compared to the

entry of Figure 6.4 (f) representing tiles which can provide this computational resources. Here,

nhistc[tp1, cl1] = 1 that means tiles whose resources are used at maximum 10 %. We see that

the required resources of this step is available on this cluster: thist[tp1, cl4] ≤ nhistc[tp1, cl1]
therefore, we go to the next computational resource requirement class cl3. According to (6.4)

the following is checked: thist[tp1, cl3] + thist[tp1, cl4] ≤ nhistc[tp1, cl2] + nhistc[tp1, cl1]
= 2 ≤ 2. Each resource requirement/usage class for each PE type until the first mismatch

occurs or all entries match is checked similarly. In this example in the third matching step a

6.1. ADAM: RUNTIME APPLICATION MAPPING ALGORITHM 89

mismatch occurs: 1 + 1 + 1 ≤ 1 + 1 + 0 which returns false. To handle this a rebinding of

the corresponding tasks is done. Therefore, task t3 which requires 33 % of the computational

resources on PE of type tp1 (causing there 4.9X energy consumption) is rebounded to tp2 (5.0X
energy consumption). Type tp2 is selected because the energy consumption is well below the

given energy budget. Finally, Figure 6.4 (g) presents the returned binding and the selection of

the cluster whose computational resource usage histogram is in Figure 6.4 (f).

Connected tilesCluster agent Source tile Destination tile

(3)mig(tsk,c_txt_swt)

(4)Succ_mig

Parent task

(1)Send a mig req

(2)Freeze the destination tile

(2)Freeze the source tile

(2)Freeze the connected tiles

(5)Release the freezes

(5)Release the freeze

(6)/*done*/

(4)Succ_mig

Figure 6.5: Task migration to support runtime application mapping

6.1.3 (Re-)clustering and Task Migration for the ADAM Algorithm

In case a suitable cluster cannot be found in Algorithm 5, it starts looking for the clusters which

may support the task migration. The task migration as an integral part of the runtime applica-

tion mapping algorithm is demonstrated roughly in Figure 6.5. Details of the task migration

methodology are out of the scope of this thesis. The algorithm uses the approach presented in

[119]. The parent task sends a task migration request to the CA and upon receiving the request

it freezes the source tile, connected tiles to the source, and the destination tile for successful

and transparent task migration. The task migration is performed with all local data within the

executing task, the state of the task, and even the modified binary of the task (the binary of

the application may need to be changed to make it compaitable for different instruction set

processors). The feedback after the task migration is provided to the CA.

When the migration of the tasks does not deliver a suitable cluster, then the (re-)clustering op-

eration shown in Figure 6.6 is invoked. First the neighboring clusters are negotiated if there are

some unoccupied PEs that they might be given away to the requesting cluster. If no unoccu-

90 CHAPTER 6. RUNTIME SYSTEM-LEVEL ADAPTATION

Start state

End state

Legend:

taking PEs from

neighboring clusters

Re-clustering

successful

QoS

reqr. met

QoS req.

not met

map

app

Re-clustering

failed

no reclustering

possible

find another

cluster

requesting

neighbors

for free PEs

no free PEs

reported

requesting

neighbors for

migration

no free PEs

and no

no free PEs reported

requesting neighbors

for least utilized

PEs

,

PE not shared

no free PEs

and no

take unoccupied PE

take freed

PE

share PE

Figure 6.6: The (re-)clustering algorithm flow

pied PEs are available, the neighbors are requested to migrate tasks between PEs of that cluster

without losing its performance and runtime constraints. If that is not successful either, then the

neighboring cluster is requested for the least utilized PEs that may be shared with the requesting

cluster. The task migration and the (re-)clustering methodologies have not been covered in the

scope of this thesis in detail. The concept of the task migration and the (re-)clustering have only

been used in the scope of this thesis and have been kept as a future work.

6.1.4 The Mapping Algorithm Inside a Cluster

The runtime application mapping algorithm inside a cluster managed by the CA is motivated by

the static mapping algorithm presented in [70] as it is very light-weight in terms of execution

cycles and provides near-optimal mapping solution.

6.1. ADAM: RUNTIME APPLICATION MAPPING ALGORITHM 91

6.1.4.1 Data Structures for the Algorithm

An offline mapping algorithm may be adapted without any changes to create an initial mapping,

when applications are loaded onto NoC, comparable to the approaches from [70]. But afterward

it has to provide additional functions to handle events that will occur at runtime. These functions

will modify the task graph that is held in memory of the mapping module. This is solved by

adding extra information contained within the TG (entry = (idsrc, iddst, bwreq, lat, RRtp))
explained in 6.1.2.1 to the resulting mapping data structure given below (this entry is a single

element in the data structure mpng):

mpng = (idsrc, idtile, iddst, idapp, RRtp, vol, lat)

In the following, the data structures which are used by this part of the mapping algorithm are

studied. The major data structures that are stored in the memory of the CA are shown in Ta-

ble 6.1 for each cluster (explained in detail in 6.1.2.1), Table 6.2, and Table 6.3. The first two

tables correspond to the variable model of the Algorithm 6.

Table 6.1 is stored for each cluster by the CAs. It is a local copy of the entry in the globally

stored table by the GAs. The detailed description of the table is given in 6.1.2.1. Table 6.2

describes an entry of the cluser tile look-up-table that is located in each cluster to define one

of the data structures for the CA. It describes the usage of the tiles and of the links between

the tiles or more precisely resource utilization of the output ports. The memory usage of this

table relies on the following parameters: (1) #N : the number of tiles of the complete MPSoC,

(2) #Tps: the number of different PE types, (3) #Lv: the number of different computational
resource usage classes of a tile or the number of the communication bandwidth usage levels

of a link. (4) q vcmax is a design parameter, that specifies the maximal number of the virtual

channels.

field memory requirement short description
id log2 #N tile identification number

tpPE log2 #Tps type of tile’s PE

r usgcomp log2 #Lv resource usage

bwused communication bandwidth usage

lN log2 #Lv for the north link (output port)

lE log2 #Lv for the east link

lS log2 #Lv for the south link

lW log2 #Lv for the west link

q vc virtual channel quantity

lN log2 q vcmax for the north link (output port)

lE log2 q vcmax for the east link

lS log2 q vcmax for the south link

lW log2 q vcmax for the west link

Table 6.2: Entry of the cluster tile look-up-table

The entries of Table 6.2 are explained below:

92 CHAPTER 6. RUNTIME SYSTEM-LEVEL ADAPTATION

Tile identification number The field id is used to identify the tiles in the table. It is needed

because the virtual clusters are not fixed. A tile can be added or removed from the cluster.

The size of this field is directly linked to the number of tiles, because each tile in the NoC

has an unique id: log2 #N . As an example when the MPSoC would have 4096 tiles,

12 bits are needed to store the id field and due to using Byte sized data structures it is

16 bits or 2 Bytes.

PE type The entry tpPE of this table stores the type of the PEs that is located on the cluster.

This information is needed during the execution of the mapping procedure because after

binding each task to a PE type, the algorithm must know where tiles of this PE types are

located. The size of this field depends on the number of the PE types that are available on

the MPSoC, e.g. 20 PE types would require 5 bits (25 = 32) aligned to Byte size, exactly

one Byte is required for this data.

Computational resources The entry r usgcomp represents the computational resource us-

age of the tasks that are currently running on a particular PE in a virtual cluster. This field

is required by the mapping algorithm to check if there are available resources for the new

tasks to be mapped onto the PEs. This entry is used inside the cost function calculation

(RU(nj) represents the computational resource usage on tile nj) in Equation (6.5). The

memory used by this entry depends on the granularity of the resource usage specifications

which are specified by the parameter #Lv.

Bandwidth The entries bwused,ldir
represent the communication bandwidth usage of each tile

for each output port, where dir ∈ {N, E, S,W} is the direction (North, East, South, and

West) of the output ports. This information is used in Algorithm 6 to decide if there are

enough available communication bandwidth for the task to be mapped onto a candidate

tile. These entries are using the same resource usage specification granularity given by

#Lv.

Virtual channels The entries q vcldir
correspond to the number of virtual channels used in

the output ports (dir ∈ {N, E, S,W}). The memory required by this entry depends on

the maximum number of virtual channels q vcmax that is specified at design time.

field memory requirement short description
idsrc log2 #Ttot source task identification number

idtile log2 #N assigned tile identification number

iddst log2 #Ttot destination task identification number

idapp log2 #apps application identification number

r usgsrc log2 #Lv computational resource usage in steps of 1
256

bwreq log2 volmax log2 # volume

lat log2 latmax latency

Table 6.3: Entry of the task-to-tile mapping look-up-table

Table 6.3 (the task-to-tile mapping look-up-table) corresponds to the variable mpng (Algo-

rithm 6). Here, the information about the tasks that are mapped onto the cluster and the cor-

responding communication flows between the tasks are stored. This data structure is used to

6.1. ADAM: RUNTIME APPLICATION MAPPING ALGORITHM 93

look up which tile a task is assigned to. The application communication task graph (entry =
(idsrc, iddst, bwreq, lat, RRtp)) is transformed to this data structure when a mapping of an appli-

cation is successful. The memory usage of this data structure depends on the following param-

eters: (1) #Ttot: maximum number of tasks those can be supported by the MPSoC, (2) #N :

number of tiles of the MPSoC, (3) #apps: maximum number of supportable applications, (4)

#Lv: number of computational resource usage classes, (5) volmax: maximum communication

volume of a flow between two tasks, (6) latmax: maximum latency of a flow, and (7) nflow,max:

the maximum number of flows that are supportable by the MPSoC. The detailed description of

the entries of Table 6.3 are given below:

Source task identification number idsrc is used as the input parameter to find the mapped

task. The required memory size for this entry is dependent on the maximum number

of tasks that may be supported by the MPSoC #Ttot. If the MPSoC supports 20,000

(∈ {214, . . . , 215}) tasks, this entry will require 15 bits or Byte-aligned 16 bits = 2 Bytes

of memory.

Assigned tile identification number idtile describes to which tile the task is mapped onto.

It needs an amount of memory that is dependent on the total number of tiles provided by

the MPSoC #N .

Destination task identification number iddst stores the identification number of the des-

tination task to which the source task is connected to. For each edge of the TG an entry

is needed to ensure that the graph information is not lost. The memory size requirement

is the same as the idsrc: log2#Ttot.

Application identification number To keep the communication task graph information af-

ter mapping, also the application identification number idapp for each task is required.

Without this information no mapping modification is possible. Memory size relies on the

maximum number of applications those can be run on the MPSoC at once: #app.

Computational resources r usgsrc is an entry that comes from the communication task

graph (r usgsrc is similar to RRtp and describe the computational resource requirement

of the task on each PE type) and needs to be stored to provide the possibility to mod-

ify the mapping at runtime. Memory size relies on the resource usage granularity #Lv
(see Table 6.2).

Communication bandwidth bwreq is the required communication bandwidth, that is needed

by the communication flow between the source and the destination task. The memory

size depends on the maximum communication volume volmax that can be transmitted by

a particular flow.

Latency lat is the required communication latency for a particular communication flow be-

tween the source and the destination tasks.

94 CHAPTER 6. RUNTIME SYSTEM-LEVEL ADAPTATION

6.1.4.2 Heuristics for the Optimization

To decide to which tile of the PE type a task should be mapped onto, a heuristic is used and it is

described by the following cost function c(t, n) for the selection of a tile nj for a given task ti.

c(ti, nj) = α · (D(nj) + bwreq,tot(nj) + RU(nj)) + β ·
∑

k∈Tconn,mp

d(k) · vol(k) (6.5)

where, D(nj) =
1

#tilesclu

∑
l∈N

d(n, l)

The parameters that are used to describe the Equation (6.5) are explained below:

• D(nj): average distance of a tile to all other tiles within a cluster.

• d(n, l): Manhattan distance between the tiles n and l.

• Tconn,mp: set of all ti, connected and mapped tasks.

• dk: Manhattan distance between the mapped tasks.

• volk: the communication flow between the connected tasks.

• bwreq,tot: total bandwidth required by the tasks running on the tile.

• RUnj
: the computational resources that are used by the running tasks on a PE.

The cost function considers the current state of the tiles where the tasks may be mapped onto.

Equation (6.5) considers the additional resource requirements by the tasks when those are

mapped onto the tiles. The distance to the already mapped tasks are considered as well, and

the tasks those are connected to the already mapped tasks will be mapped now. The cost func-

tion has two components that are parametrized by the scalar coefficients α and β. The first part

of the cost function is parametrized by α which considers the current state of the NoC but not

the tasks from the TG.

D(n) is used to determine the optimality of the position of the tile n, a lower value is achieved

when the tile has a lower distance to every other tiles in the cluster. Lower distance means

lower energy required to transfer data through this connection.

bwreq,tot is used in the cost function because if only D is considered then the algorithm will try

to map every tasks to the center of the cluster as they have a better D value. Therefore,

bwreq,tot produces a tradeoff while there are too many tasks with high communication

bandwidth requirements to be mapped onto a tile.

RUnj
guides the search for the tiles whose computational resources are more available.

The second part of the cost function is parameterized by β and uses the information from the TG
to get good locations for the tasks. The sum of the products of d(k)·vol(k) accumulated over all

tasks of the TG those are connected to the current task and the tasks those are already mapped

on the MPSoC. Therefore, the tasks of the TG of an application are tried to keep together.

6.1. ADAM: RUNTIME APPLICATION MAPPING ALGORITHM 95

Algorithm 6 Runtime application mapping inside a cluster

TG: input data, application communication task graph

mpng: output data, mapping of tasks to tiles

model: state of the physical network

Tps ∈ model: types contained in model

tpPE: type of a tile’s PE, tpPE ∈ Tpsmodel

rs avail(tpPE): gives the available computational resources of all

PEs of the given type tpPE

binding: ∀ti ∈ TG : ∃b(ti), b : see Definition 13 in Chapter 5

sorted: Tpsmodel, asc, by rc avail(tpPE)

// sorting by availability of PE types in he MPSoC

1: for all a ∈ Tpsmodel do
2: fa = {fij ∈ F | bound(ti, a) ∨ bound(tj, a)}
3: sort(fa, desc, by bw req(fij ∈ fa))
4: for all fk

ij ∈ fa do
5: select tiles ni′ , nj′ ∈ model, for ti, tj of fk

ij, by min(cmp)
6: insert(ni′ , nj′ to mpng)

7: end for
8: end for
9: allocate(mpng); update(model by mpng)

For simplicity, the computational resource availability is not considered in the order of the tasks

while mapping. It is assumed that the required bandwidth of the inter task communication will

correlate with the computational resource requirements (this assumption can be redefined in

the future work). Therefore, the bandwidth is used to sort the data structure containing the

flows whose connected tasks are mapped. The order of these flows within the data structure

guides the mapping order of the tasks. In an unfavorable case, the less computational resource

requiring tasks are mapped at first and block the computation-heavier tasks to be mapped on a

better location. Observation shows, the computational resource requirement of a task is a less

important criteria for the assignment of the tasks. Only if the tiles of the PE types where the

tasks have to be bounded to are too critical then it has to be taken into account. This problem is

not solved in this thesis adequately and considered as the future work. One possibility to handle

this problem may be to consider the sorting criteria of the data structure fa and an additional

one that relies directly on the computational resource requirements of the tasks.

6.1.4.3 Algorithm Description

The pseudocode of the runtime application mapping algorithm inside a cluster is given in Al-

gorithm 6. The input data structure is the communication task graph TG of the incoming

application and the data structure model of the MPSoC which stores the current state of the

used computation and communication resources. The TG contains for each task its energy con-

sumption for computation, which is fixed for a particular type of PE. The task to the PE binding

is determined in the previous negotiation step between the CA and the GA. The TG also contains

96 CHAPTER 6. RUNTIME SYSTEM-LEVEL ADAPTATION

the communication costs for each flow fij between the tasks ti and tj . The model contains for

each tile its current computational resource usage by the running tasks, the type of processing

element of this tile tpPE , and for each link the current bandwidth usage parameterized by the

service classes. The output data structure is the mapping of tasks to the corresponding tiles of

the mpng and it is used to allocate the tiles physically on the MPSoC and to update the model
by the added application.

In the following Algorithm 6 is explained in detail. The loop in Line 1 begins to iterate over

all PEs of types a ∈ Tpsmodel, the listing shows that the set of all PEs of types Tpsmodel must

be sorted in an ascending order by the availability of the computational resources of those PE

types. In Line 2, the set of flows fa is created where each flow fij ∈ F connects to a task that

is bounded to the current PE of type a (Line 1). The binding is already done in Algorithm 5

during cluster negotiation. This flow set fa is sorted in a descending order in Line 3 by the

bandwidth requirements bw req(fij) where, fij ∈ fa. In Line 4, another loop starts iterating

over the elements of the current set of flows fij ∈ fa. Inside this loop body tiles ni′ , nj′ are

selected from the cluster tile look-up-table (Table 6.2) where the tasks connected by the current

flow fij may be mapped onto (Line 5). To guide the quality of the mapping the cost function

described in Equation (6.5) is used. The selected tiles are stored within the output data structure

mpng (Table 6.3). Finally in Line 9, the assignment of the mapping to the physical network

takes place and the data structures holding the information about the MPSoC are updated.

t1 t5

t4

t2

t3

t1

t2 t3

t4

10 7

5

t5
11

ba c

ed f

ba c

ed f

(a) Task graph

(b) Tiles (part

of cluster)

(c) Tasks placed

on tiles

tp_i

tp_1

tp_2

tp_3

tp_4

tp_5

avail_rs(

tp_i)

1730 %

210 %

370 %

530 %

505 %

ord(tp_i)

5

1

2

4

3

(d) available computational

resources

(e) Flows by

PE types

tasks

t1

t2

t3

t4

t5

cmp_req

30 %

25 %

29 %

40 %

38 %

(f) Required

computational

costs

(g) Current comp.

resources in use

by tasks on tiles

Legend

PE type 1

PE type 2

PE type 3
flow, with bw7

t1 task t1

PE

a

b

c

d

e

f

10 %

40 %

20 %

10 %

33 %

25 %

res.

in use
flows

1-2
1-3
3-4

4-5

bw

10

7

5

11

Figure 6.7: Example for a runtime application mapping inside a cluster

6.1. ADAM: RUNTIME APPLICATION MAPPING ALGORITHM 97

6.1.4.4 Exemplary Algorithm Execution

Algorithm 6 is demonstrated using an example in Figure 6.7. After the cluster negotiation part

presented in 6.1.2, the CA is requested to map an application to the responsible cluster. At

first, all types of PEs are iterated and the current type is referred to as a in the algorithm. For

each type the set of flows fa are considered. In Figure 6.7 (a), the communication task graph

TG, whose tasks are bounded by respective PE types is shown. There are two groups of tasks:

(1) bounded to PE of type tp1: {t1, t4, t5} and (2) bounded to PE of type tp2: {t2, t3}. These

groups are sorted by the availability of the resources provided by the PEs of these types. The

value assigned to the edges specify the communication volume between the connected tasks.

In Figure 6.7 (b), a part of the tiles of the selected cluster where the tasks will be mapped

onto is presented. Figure 6.7 (g) shows the current computational resource usage by the tasks

running on some of these tiles from Figure 6.7 (b). Figure 6.7 (f) presents the computational

resource requirement for each task of the communication task graph. The availability of the

computational resources (avail rs(tpi)) is presented in the second column of the Figure 6.7 (d).

To determine these values the individual value of each PE of this type have been added up, e.g.

all tiles of type 1 provide 1730% of the computational resources. The lines in this table are

sorted and the sorting order depends on the available resources.

In Figure 6.7 (e), the first set of flows f tp2 those are related to PE type of 2 ({f12, f13, f34})

and the corresponding bandwidth requirements of these flows are highlighted. Figure 6.7 (e)

shows that, the flows are sorted by the required bandwidth within the current set (f tp2). In the

following the mapping of the tasks considering the flows are shown (the result of the mapping

is shown in Figure 6.7 (c)):

• The algorithm starts with the flow f12 and looks where the tasks t1 and t2 may be mapped

onto. A good location for the assignment of t1 is the tile [a] (see Figure 6.7 (f),(g)), for the

next task t2 the tile [b] is selected and so on (considers also the PE types and the binding

of the tasks). This selection is added to the data structure mpng that collects all these

selections of tiles for the tasks.

• For the application mapping, the next flow f13 finds that task t1 is already mapped there-

fore, the algorithm continues with the next task t3 and assigns it to the tile [e].

• Similarly, for the flow f34, tile [f] is selected for the task t4.

Now the algorithm continues with the next set of flows f tp1 which corresponds to the PE of type

tp1. For the flow f45, tile [c] is selected for the task t5. After all these mapping steps, the tasks

have to be assigned physically as it is specified in the data structure mpng and finally, the state

of the network model is updated.

6.1.5 Configuration Data for the Runtime ADAM Algorithm

The required configuration data those need to be stored in the local memory associated with the

CAs and GAs for the runtime ADAM algorithm are discussed here. In the previous subsections,

98 CHAPTER 6. RUNTIME SYSTEM-LEVEL ADAPTATION

the data structures that have to be transmitted between clusters, CAs, GAs, etc. have already

been discussed. The data structures describing the state of the network are considered here

again to answer the following questions:

• Which data structures have to be stored in the MPSoC to provide the runtime application

mapping functionality?

• Where these data structures have to be stored?

• Which data structures have to be communicated between tiles?

• Which data structures are needed in the algorithms during application mapping?

In the following, these listed issues are discussed.

...
PE type

LUT

PE type

LUT

PE type

LUT

each cluster is represented by a PE
type LUT within the global agent

<<component>>

Global agent

<<component>>

Cluster agent

Tile LUT
PE type

LUT

mapping

LUT

fine grained tile

state information

copy of the

global LUT

task-to-tile

mapping, LUT

Figure 6.8: Configuration data for the runtime ADAM algorithm

6.1.6 Persistent Configuration Data

To provide the runtime application mapping functionality by the ADAM algorithm, some data

structures about the current MPSoC state have to be kept persistent during the execution. The

term persistence is used to emphasis the meaning of some information those have to be kept be-

tween different mapping requests. During runtime application mapping, some other temporary

processing data are also generated. There are several data structures containing configuration

data those needs to be stored to provide the mapping functionality. First of all, there must be

some global data structures those describe the state of every cluster of the MPSoC. This data is

in summarized format and does not contain fine grained details about a particular tile inside the

clusters. This data structure is stored in the PE type look-up-table in Table 6.1 for each cluster.

These cluster PE type look-up-tables for each cluster are stored within the GAs. The global part

of the mapping algorithm (Algorithm 5) only uses this data structure to decide to which CA the

application has to be assigned. CAs need detailed information about the resources provided by

the cluster. In 6.1.4.1, the data structures those are needed by the mapping algorithm to perform

6.1. ADAM: RUNTIME APPLICATION MAPPING ALGORITHM 99

the mapping on the cluster level have already been explained . These data structures are: the

cluster tile look-up-table in Table 6.2, the cluster PE type look-up-table in Table 6.1 which is

a copy of the corresponding look-up-table stored within the GA, and the task-to-tile mapping
look-up-table (mpng) presented in Table 6.3.

All the above mentioned configuration data structures have to be stored in the MPSoC. The

evaluation depends on various architectural parameters of the MPSoC, e.g. the number of PE

types and the number of tasks those can be mapped onto the MPSoC. Some assumptions are

considered to present the following example to calculate the amount of memory required to

store configuration data by the GAs and CAs. It is assumed that the NoC dimension is 64x64,

therefore, #N = 4096, the tiles of the MPSoC are organized in qntclu = 32 clusters that means

the average cluster size is szclu = 128 tiles, the lower and upper bound of the cluster size is set to

szclu,min = 16 and szclu,max = 216 tiles respectively, 16 (= nTps) different types of PEs are used,

and ncla = 16 classes in the computational resource usage histogram to classify the resource

usage by the tasks running on the tiles are considered. The data structures within the CAs need

some additional parameters: the resource usages are specified by a scalar data structure whose

granularity is specified by nlv and therefore, this parameter is set to nlv = 216. The maximum

number of tasks is qnttsk,max = 216 and the MPSoC is able to run 216 applications in parallel.

Calculation of the Memory Requirements for a GA In the GA, there is a cluster PE type
look-up-table for each cluster. The maximum number of clusters is given by #N/szclu,min =
4096/16 = 256. Therefore, there must be enough memory to store 256 cluster PE
type look-up-tables. A single cluster PE type look-up-table described in Table 6.1 has

nTps = 16 entries and each entry needs the following amount of memory. The PE type id
requires 1 Byte, the field qtiles requires log2 szclu,max = 16 bit = 2 Byte, the field r usgtot

needs 2 Bytes of memory, and the actual computational resource usage histogram that is

stored by the fields q cl0, . . . , q cln require ncla · 2 Byte = 16 · 2 Byte of memory. There-

fore, the GA must provide memory space of

#N

szclu,min

· nTps · (len(qtiles) + len(r usgtot) + ncla · q clx) =

4096

16
· 16 · (2 B + 2 B + 16 · 2 B) = 147.5 KB

Calculation of the Memory Requirements for a CA Three data structures are stored by

the CAs. The first data structure is the cluster tile look-up-table (Table 6.2). The max-

imum cluster size is szclu,max = 2048 tiles therefore, this is also the maximum number

of entries in the cluster tile look-up-table. The field used for the tile id needs 2 Bytes

= log2 #N of memory, the PE type field requires one Byte of memory, the field r usgcomp

needs 2 Bytes, each of the bandwidth fields needs 2 Bytes, and the virtual channel fields

need one Byte each. Therefore, we can calculate the memory requirement of Table 6.2 as

follows:

szclu,max · (len(id) + len(tpPE) + len(r usgcomp) + 4 · len(bwused,x) + 4 · len(q vc)) =

2048 · (2 B + 1 B + 2 B + 4 · 2 B + 4 · 1 B) = 34.8 KB

100 CHAPTER 6. RUNTIME SYSTEM-LEVEL ADAPTATION

The second data structure is the cluster PE type look-up-table which is a copy of the

globally stored data structure presented in (Table 6.1). Therefore, the memory required

by one cluster PE type look-up-table is 576 Bytes.

The third data structure is the task-to-tile mapping look-up-table. The memory required

by this data structure is calculated in the following. It is assumed that there are maximum

number of entries which are stored in this table and in the worst case a cluster can contain

the maximum number of tasks which may be mapped onto the tiles of the cluster. It

is further assumed that, there is no cluster that is larger than the half of the MPSoC

(szclu,max = 2048). Therefore, the maximum number of tasks that should be manageable

by the CA is also the half of the maximum number of tasks mappable on the complete

MPSoC (qnttsk,max,clu =
qnttsk,max

2
= 215). The field source task identification number,

idsrc requires log2 qnttsk,max = 2 Bytes, the field assigned tile identification number, idtile

requires 2 Bytes because the number of tiles is ntiles,max = 212, the field for destination

task identification number, iddst requires 2 Bytes, the field idapp requires 2 Bytes, the field

r usgsrc needs 2 Bytes to be able to store nlv = 216 different states, and the fields bwreq

and the lat require 2 Bytes of memory. All together the memory required by the task-to-
tile mapping look-up-table in the worst case is calculated as follows:

qnttsk,max,clu · (len(idsrc) + len(idtile) + · · · + len(lat)) =

215 · 7 · 2 B = 458.8 KB

Therefore, the memory required by a single CA is:

34.8 KB + 576 B + 458.8 KB = 494.1 KB

It must be considered that the presented amount of memory required by a CA is only in the worst

case scenario, because the cluster size is the half of the MPSoC. If the cluster is resized, (on the

(re-)clustering operation) the memory required by these data structures are changed. Therefore,

the data structure cluster tile look-up-table will only contain the same number of entries as the

number of tiles that belong to this cluster, the task-to-tile mapping look-up-table will require

only the number of entires to be able to hold the mapping of the corresponding number of the

single task mappings, e.g. 215 entries are needed for a cluster that has the size of the half of

MPSoC, but only 2048 = 211 entries are needed for a cluster with szclu = 128 = #N
32

tiles,

2048 = 216

32
and so on. Therefore, for this presented cluster the total required memory is:

(128 · (6 · 2 B + 1 B)) + (16 · 18 · 2 B) + (2048 · 7 · 2 B) =

1664 B + 576 B + 28672 B = 30.9 KB

Considering the maximum memory size of almost 0.5 MB which is required to store the data

structures, it is difficult to take another option other than the local memory of the particular PEs

inside a tile. Therefore, the data structures used within the ADAM algorithm have been stored

in the local memory of the tile, where the GAs as well as the CAs are located.

6.2. CONCLUSION 101

6.1.7 Collecting Status of Each Tile

The data structures that are stored inside the CAs in the cluster tile look-up-table are collected

at runtime. These data structures have to be collected from each tile directly at runtime and

therefore, those have to be kept available by the tiles. The tile architecture has to provide some

status information which are stored directly on the tiles. The entry of the cluster tile look-up-
table presented in Table 6.2 has to be located on each tile.

According to the previous experimental setup each tile has to store following amount of status

information:

(len(id) + len(tpPE) + len(r usgcomp) + 4 · len(bwused,x) + 4 · len(q vc)) = 17 B

This status information is communicated from each tile to the corresponding CAs at runtime and

is aggregated in the cluster tile look-up-table. The CAs summarize this raw status information

and send the current status information about the MPSoC to the GAs. This information is stored

in the cluster PE type look-up-tables that are stored both within the CAs and GAs. The amount

of data that is needed to be transferred depends on the mapping request, more precisely, on the

size of the application that needs to be mapped on the executing MPSoC. The entries of the data

structures stored within the CAs and the GAs are modified when the status needs to be updated.

Therefore, the status information of the modified tiles are updated in the CAs after the mapping

is completed and from the CA the differences between the old status and the new state of the

cluster PE type look-up-tables, representing the summarized cluster status are transported to the

GA.

6.2 Conclusion

The first algorithm for a runtime application mapping in a distributed manner using an agent-

based approach is detailed in this chapter. This algorithm is targeted for the adaptive NoC-based

heterogeneous multi-processor systems. The proposed runtime application mapping algorithm,

ADAM is included in the system-level part of the adaptive system-on-chip communication ar-

chitecture. A detailed evaluation of the proposed algorithm is presented in Chapter 9.

Chapter 7

Architecture-level Adaptation in the
Runtime Adaptive Networks-on-Chip

After the system-level part of the proposed adaptive system-on-chip communication architec-

ture, has successfully set up a mapping instance, it is up to the architecture-level to configure

each tile (the router part inside a tile) for the resulting transactions. The router parameters are

configured to achieve higher resource utilization in terms of buffer utilization and to increase

the number of successfully transaction meeting the bandwidth guarantees. Once a transaction

arrives at a router inside a tile, all possible directions must first be checked for suitable routes.

To find a valid route which can meet the bandwidth constraints for the transactions it may need

to use the concept of 2X-Links (details are explained in 7.1.3). The number of Virtual Chan-
nel Buffers (VCBs) per output port has typically been a design-time parameter [14, 76]. An

on-demand buffer assignment where VCBs are tied to routers and not to individual output ports

allows a router to distribute the VCBs as needed to any possible route. Therefore, the VCBs are

assigned to transactions which are in turn assigned to an output port.

The novel contributions in the scope of this chapter are as follows:
(1) The architecture-level part of the runtime adaptive system-on-chip communication archi-

tecture (AdNoC) that adapts the underlying interconnects on-demand in response to changing

communication requirements imposed by an application, e.g. after a runtime application map-

ping request due to reliability issues or user behavior.

(2) To provide on-demand interconnections, a novel adaptive routing algorithm that meets

Quality-of-Service (QoS) requirements (bandwidth) is presented. The routing algorithm makes

decisions locally at each router depending on the available bandwidth in each direction to the

neighboring router. Dynamic connections are realized by re-assigning a certain number of

buffer blocks to different output ports of a router on-demand. The on-demand buffer block as-

signment also increases the resource utilization, especially buffer utilization (published in [52]).

(3) A runtime configurable link (2X-Link) at the architecture-level to compliment the AdNoC
architecture is presented. The 2X-Link can adapt the link capacity by changing the direction at

runtime on-demand, thereby increasing the resource utilization while considering the reliability

issues. The building blocks of the 2X-Link are two half-duplex links instead of the state-of-the-

art simplex links (published in [54]).

(4) To achieve successful adaptation the communication architecture needs to be observed.

Therefore, to provide runtime observability for realizing a successful on-demand adaptation, a

103

104 CHAPTER 7. RUNTIME ARCHITECTURE-LEVEL ADAPTATION

Coding Format

60M
B
/s

40MB/s

9
0

M
B

/s

9
0

M
B

/s

MDCT Analys

b) LAME Mp3 encoder

Link 1
120MB/s

Link 2
80MB/s

d) Communication link
 library

c) BW is the % of communciation volume to the available
bandwidth of Link 1 and Link 2

Bandwidth of link 1 is 120MB/s and Bandwidth of link 2 is 80MB/s

Path
BW

Link1
BW

Link2

Filter2 --> Filter3

Coding --> Format

MDCT --> Coding

Analys --> Coding

83%

33%

75%

50%

75%

125%

50%

113%

75%

113%Analys --> Format

Path

mem --> Filter1

mem --> Filter2

mem --> Filter3

Input --> Filter1

Input --> Filter2

BW
Link1

67%

83%

42%

42%

42%

BW
Link2

100%

125%

63%

63%

63%

a) Set-top box

Filter1

Filter2mem

Filter3

Input

0M
5

B
/s 0M

B

10

/s

50MB/s

100MB/s

80MB/s 50MB/s

Format Analys

Coding

MDCTFilter1 Input

Filter3

mem Filter2

42%

83%

75%

33%83%

67%

42% 83% 33% 50%

42% 75%

X

g) No Runtime adaptivity
(LAME Mp3 application
No wXY for LAME Mp3
Normal-Full-Duplex-Links
using Link 1 (120MB/s))

Format Analys

Coding

MDCTFilter1 Input

Filter3

mem Filter2

42%

83%

75%

33%

83%

67%

42% 83% 33% 50%

42% 75%

i)
(wXY-routing algorithm
NoC with 2X-Links
using Link 1 (120MB/s)

Runtime adaptivity (2X-links)

Format Analys

Coding

MDCTFilter1 Input

Filter3

mem Filter2

63%

113%

50%

125%

125%

100%

63% 125%

113%

50% 75%

63%

j)
(wXY-routing algorithm
NoC with 2X-Links
using Link 2 (80MB/s)

Runtime adaptivity (2X-links)

e) No runtime adaptivity
(Set-top box application
XY-routing algorithm
Normal-Full-Duplex-Links
using Link 1 (120MB/s))

Filter1 Input

Filter3

mem Filter2

42%

83%

83%

67%
83%

42%

42%

X

f) Runtime adaptivity
wXY-routing algorithm
Set-top box application
Normal-Full-Duplex-Links
using Link 1 (120MB/s))

Filter1 Input

Filter3

mem Filter2

42%

83%

83%

67%
83%

42%

42%

Format Analys

Coding

MDCTFilter1 Input

Filter3

mem Filter2

42%

83%

75%

33%

83%

67%

42% 83% 33% 50%

42% 75%

X

h)
(wXY-routing algorithm
LAME Mp3 application
Normal-Full-Duplex-Links
using Link 1 (120MB/s))

Runtime adaptivity

Figure 7.1: Motivational example to show the requirement of the architecture-level adaptation

novel low cost runtime observability infrastructure is presented. It is highly flexible and hardly

intrusive (published in [53]).

7.1 Architecture-level Adaptation

A variety of functionalities that are included in the router architecture are considered for the

architecture-level adaptation. The runtime adaptivity in the AdNoC architecture is achieved

through configuration of different router-related parameters. The parameters that may be con-

figured at runtime are summarized below:

• The routing algorithm used in the router implementation is not determined at design time,

i.e. as with the XY-routing algorithm, but the routing decision is taken depending on the

current traffic load of each output port in the individual router. A weight is calculated to

choose a route depending on the availability of bandwidth and the possibility of assigning

7.1. ARCHITECTURE-LEVEL ADAPTATION 105

a free VCB on that route.

• A concept of the 2X-Link which can configure its transmission direction to three different

modes given as: (1) both in one direction (2) both in the reverse direction and (3) both in

opposite directions. This concept helps to increase the available bandwidth in a particular

direction and therefore, influences the routing decision. This runtime scheme to configure

the available bandwidth of a link between two adjacent routers increases the success rate

for the transactions.

• An on-demand VCB assignment to each output port instead of a fixed assignment at design

time is used in the router implementation of the AdNoC architecture. A centralized pool

of buffer is used and therefore, buffer may be assigned to output ports on-demand for

each transaction at runtime.

Details of all these runtime configurable parameters are explained later in this chapter.

7.1.1 Motivational Example Supporting Architecture-level
Adaptation

For a motivational example of the proposed runtime architecture-level adaptation let us consider

a 3 × 3 Mesh NoC, two applications: the LAME MP3 encoder and a set-top box application
(Figure 7.1 (a,b)), and two macro libraries: the Intellectual Property (IP) library and the com-

munication link library (Figure 7.1 (d)). The IP library includes 5 types of Processing Elements
(PEs) which are not shown in the figure as it is not required to understand the example. Fig-

ure 7.1 (c) shows that using the current configuration (link library and applications) Link1 can

meet the requirement of each transaction while Link2 fails (showing more than 100% band-

width) in 5 of the given transactions considering no runtime adaptivity (here no wXY-routing
algorithm or 2X-Link is considered).

At any given time the NoC may be configured to run applications with heavily varying con-

straints as requested from the upper layer. The upper layer is the application layer which also

includes the operating system and other associated system administering applications. All these

parts are abstracted as the system-level part (see Definition 5 of Chapter 5) of the adaptive

system-on-chip communication architecture (AdNoC) and is described in Chapter 6. Lets as-

sume, at time t0 the NoC is running the set-top box application in Figure 7.1 (e). In the current

execution instance, all the transactions other than the transaction from Filter2 (the task name is

used to represent the tile where that particular task is mapped onto) to the Filter3 are successful

in conducting a deterministic XY-routing algorithm like [23, 61, 77] (in a 2D tile-based NoC the

packet first goes in X direction and then in Y direction toward its destination). However, the

transaction between the Filter2 and the Filter3 will fail due to the limited bandwidth availability

in the link between the mem and the Filter3. This is denoted by the red X. Consequently, the

router at Filter2 is forced to try another route which is successful (using the proposed wXY-
routing algorithm) shown in Figure 7.1 (f). With the routes, the routers supply corresponding

VCBs, assigning the buffer to the corresponding output ports on-demand.

106 CHAPTER 7. RUNTIME ARCHITECTURE-LEVEL ADAPTATION

Generally, in application-specific NoCs or general-purpose NoCs the VCBs are assigned at de-

sign time to accommodate transactions but this can limit the accomodable transactions in a

particular output port of a router. In this scenario, as VCB assignment is done from a central

pool of VCBs therefore, the proposed adaptive routing algorithm (the wXY-routing algorithm)

may be used without considering the availability of VCBs at a particular output port.

Now again assume that at time t1, the set-top box application and the LAME MP3 encoder need

to be executed in parallel. Similar to the set-top box application, using the XY-routing algo-

rithm [61, 77], the traffic from Coding is routed through Analysis to Format in Figure 7.1 (g).

This however fails, as the combined bandwidth required by the transactions exceeds the total

link capacity. This is denoted by the red X. With the wXY-routing algorithm proposed in the

scope of this thesis, however, the tasks are able to choose different routes but in this scenario,

the algorithm is still unable to manage to find a valid route. The runtime (re-)mapping mech-

anism presented in the Chapter 6 can also be tried to solve this problem, but for this case it is

investigated that the (re-)mapping does not work because no instance of mapping can meet the

bandwidth constraints.

Under this presented scenario, the state-of-the-art mechanism proposed in [113], splitting the

traffic across multiple routes between the source and the destination for each transaction (traffic-
splitting) may be used to logically expand the link capacity. However, this approach leads to

higher packet latency, flits rearranging, unpredicted network situations, and in extreme cases

may cause an increase in communication bottlenecks. To remedy this, an ideal solution may be

to physically expand the link capacity of a particular link at runtime. To accomplish this, the

possibility of using link reversal mechanisms is investigated (the 2X-Link is used), e.g. if the

link from Format to Analysis can be reversed, then the bandwidth capacity in the opposite

direction will be doubled and all the transactions will be successful (see Figure 7.1 (i)). It is

further investigated that it is able to decrease the available bandwidth even more by using only

link2 from the communication library while still being able to successfully accommodate all of

the transactions (see Figure 7.1 (j)). Therefore, the link reversal mechanism is highly efficient

in terms of link-resource-utilization compared to an adaptive system-on-chip communication

architecture, i.e. AdNoC without runtime configurable links.

The example clearly shows that using an adaptive system-on-chip communication architecture

considering both the adaptive routing algorithm and the 2X-Link can increase the number of

successful transactions and therefore, bring higher efficiency to the network. On the other

side the novel on-demand VCB assignment uses resource multiplexing and therefore, increases

buffer-resource-utilization.

7.1.2 Parameters for the Runtime Adaptation

The parameters that can be adapted at runtime in the communication architecture are already

summarized in 7.1 and are as follows: (1) the adaptive routing algorithm [52], (2) the available

bandwidth capacity of a link termed as the 2X-Link [54], and (3) on-demand VCB assignment to

the output ports considering the direction of the transactions [52]. Finally, a runtime observabil-

ity component is included in the architecture to perform a successful adaptation and to gather

7.1. ARCHITECTURE-LEVEL ADAPTATION 107

System-level

C
lu

s
te

r
A

A
rc

h
it
e

c
tu

re
-l
e

v
e

l
(i
n

e
v
e

ry
ti
le

) Events

M
o

n
it
o

r

s
ta

te

E
v
e

n
t

re
c
ie

v
e

d

C
o

lle
c
ti
n

g

ro
u

te
r

s
ta

tu
s

in
fo

rm
a

ti
o

n

M
o

n
it
o

r

R
e

s
e

n
d

?

(R
e

-)
m

a
p

?

Aggregation of monitoring traffic to other monitors

D
u
ri
n
g

(r
e
-)

m
a
p
p
in

g
th

e

m
o
n
it
o
r

in
fo

rm
s

it
s

c
o

rr
e

s
p

o
n

d
in

g
P

E

M
o

n
it
o

ri
n

g
tr

a
ff

ic
g

e
n

e
ra

te
d

in
th

e
a

rc
h

it
c
tu

re
-l
e

v
e

l

M
o

n
it
o

ri
n

g
h

a
rd

w
a

re
is

re
q

u
ir
e

d
in

e
a

c
h

ti
le

to

p
ro

v
id

e
lo

c
a

l
o

b
s
e

rv
a

b
ili

ty

M
o

n
it
o

ri
n

g

in
fo

rm
a

ti
o

n
is

c
o

lle
c
te

d
in

th
e

L
U

T
a

n
d

/o
r

a
g
g
re

g
a
te

d
to

o
th

e
r

m
o

n
it
o

rs

If
a

c
ri
ti
c
a
l

e
v
e
n
t

o
c
c
u
rs

,

th
e

m
o
n
it
o
r

fi
rs

t

in
it
ia

te
s

re
-

s
e

n
d

in
g

th
e

c
o
n
n
e
c
ti
o
n

to

a
v
o

id
th

e
o

v
e

r-

h
e

a
d

in
c
u

rr
e

d

b
y

(r
e
-)

m
a
p
p
in

g

Y
e

s

N
o

Y
e

s

L
U

T

Adaptiverouting/

VCBassignment

N
o

Y
e

s

Y
e

s
Y

e
s

N
o

V
C

B

s
ta

te
s

R
o

u
te

s
S

e
le

c
t

ro
u

te

T
a

il
fl
it
/

c
lo

s
e

c
o

n
n

C
le

a
r

V
C

B

H
e

a
d

e
r

fl
it
?

R
o

u
te

fl
it

A
s
s
ig

n
V

C
B

V
C

B

fo
u

n
d

?

In
c
o
m

in
g

fl
it

R
o

u
te

fo
u

n
d

?

N
o

N
o

2X-Links:Runtime

configurablelinks

B
a

n
d

w
id

th

m
e
t?

Y
e

s

R
e

v
e

rs
a

l

p
o

s
s
ib

le
?

N
o

R
e

v
e

rs
e

lin
k

&

fo
rm

2
X

-L
in

k
s

B
a

n
d

w
id

th

m
e

t?

Y
e

s

re
-a

llo
c
a

te

s
o
m

e

ro
u

te
s

N
o

Y
e

s
N

o
L

in
k

s
ta

te

Agent-basedDistributedApplicationMapping
2

X
-L

in
k
s

m
a

y

c
o
n
fi
g
u
re

th
e

s
u

p
p

o
rt

e
d

b
a
n
d
w

id
th

to

th
re

e
d
if
fe

re
n
t

m
o

d
e

s

w
X

Y
-r

o
u

ti
n

g
fi
n

d
s

a
ro

u
te

fo
r

th
e

tr
a

n
s
a

c
ti
o

n
a

n
d

th
e

n
a

s
s
ig

n
s

a
V

C
B

to
th

a
t

o
u

tp
u

t
p

o
rt

.
T

h
is

a
s
s
ig

n
m

e
n

t
e

n
s
u

re
s

Q
o

S
.

Y
e

s
V

C
B

a
t

o
u

tp
u

t

p
o

rt

F
ig

u
re

7
.2

:
F

u
n
ct

io
n
al

it
y

d
u
ri

n
g

ar
ch

it
ec

tu
re

-l
ev

el
ad

ap
ta

ti
o
n

108 CHAPTER 7. RUNTIME ARCHITECTURE-LEVEL ADAPTATION

unsuccessful events to assist for further steps [53]. A diagram showing the workflow of the

adaptive router in the architecture-level is presented in Figure 7.2. At a given time t, application

task graph is requested to be mapped by the system-level part onto the NoC architecture. In the

architecture-level, apart from the system-on-chip transmission functionality the main purpose

of the adaptive system-on-chip communication architecture (AdNoC) is to find a suitable route

that meets all the requirements for the transactions, i.e. the bandwidth is met and then assigning

VCBs on-demand on those directions for the current instance of mapping. Several possible sit-

uations which may occur while searching for a suitable route after a mapping instance has been

passed down to the architecture-level are summarized below (see Algorithm 10):

• If the adaptive router can find a suitable route for all the transactions, then the VCBs are

assigned according to the transaction direction and the architecture-level adaptation ends

successfully.

• If the adaptive router cannot meet the performance-related guarantees for all the transac-

tions of the current instance of mapping, the router searches for an appropriate link which

may be reversed to form a 2X-Link in its transmission direction to help performance-

critical transactions. When the feedback value is true, then the VCBs are assigned ac-

cordingly.

• If no suitable link can be reversed for successful transactions, some routes may be (re-)allocated

to relieve the link resource congestion. Since the computational complexity for the route

allocation is less than for the (re-)mapping, it is at first tried to balance the load on each

link. If all the performance-related guarantees can be met, the final state is reached.

• If both the link reversal and route (re-)allocation do not work, (re-)mapping is the only

way to meet the performance-related guarantees as proposed in Chapter 6.

When the last option does not lead to a successful application execution that meets every

performance-related guarantee, then the (re-)mapping request will be refused by the currently

executing system. The architecture-level adaptation is performed with the assistance of runtime

observability infrastructure that is an integral part of the proposed system-on-chip communica-

tion architecture.

7.1.3 Runtime Configurable Links (2X-Links)

Communication links in the state-of-the-art NoCs typically employ full-duplex communication

(simultaneously bi-directional) using two simplex links [76, 117, 133, 173] (details of link types

are explained later). In between two adjacent routers there are two uni-directional simplex links,

i.e. one from Router 1 to Router 2 and another from Router 2 to Router 1. Both of these uni-

directional links together form the full-duplex links. The links are design-time parameterized

(e.g. the bit-width of the link) and therefore, provide a fixed link capacity in terms of bandwidth

for a certain clock frequency. It is observed that there may be several scenarios that may require

configurable links (links which can adjust their supported bandwidth capacity by using the

proposed 2X-Links). Below some of those scenarios mentioned above are shown:

7.1. ARCHITECTURE-LEVEL ADAPTATION 109

Algorithm 7 2X-Links for the adaptive system-on-chip communication architecture (AdNoC)
avBWdir: Available bandwidth in the direction dir
reqBW : Bandwidth requested by transactions towards dir
BWdir: Total bandwidth towards dir
usedBWdir−1 : Bandwidth used in the opposite direction of dir
t: Direction of the link (if 2X-Links then it is 2 otherwise 1)

QoS: performance-related guarantees (bandwidth, latency, etc.)

1: t = 1
2: upon receiving a transaction and the destination do
3: if QoS are not met then

// try to reverse links
4: for all links with avBWdir < reqBW do
5: if usedBWdir−1 = 0 then
6: reverse link

7: t = 2
8: avBWdir+ = BWdir−1

9: if QoS are now met then
10: route to dir
11: return

12: else
13: t = 1
14: end if
15: end if
16: end for
17: end if

• As the number of possible simultaneous inter-task transactions increases in a particular

link in one direction, it becomes more difficult to meet the bandwidth requirements of all

transactions. Therefore, there might be situations where a certain link requires an increase

in link capacity (only possible when all the transactions are flowing in a single direction).

• Sometimes, the bandwidth requirements of the tasks expand according to user require-

ment changes (e.g. the user wants to switch video playback to a higher resolution). If in

such a scenario the current link capacity of one half of the duplex link cannot meet the re-

quirement then the other half may be reversed to add more available bandwidth (doubled

the link capacity in the proposed 2X-Link).

• When a hardware fault in one direction of the link, e.g. in the link from Router 1 to

Router 2, occurs randomly, the transactions via this link in this direction will not suc-

ceed. In such a scenario, if the other half of the full-duplex link (link from Router 2 to

Router 1) has the ability to reverse its direction while free, it could transmit these trans-

actions. Therefore, 2X-Link increases the resource utilization and improves reliability

factors through the runtime adaptation.

7.1.3.1 System-on-Chip Communication Links

Some link-related terms to explain the proposed 2X-Links are discussed here:

A simplex communication link is a link where transactions are allowed only in one direction.

110 CHAPTER 7. RUNTIME ARCHITECTURE-LEVEL ADAPTATION

a) Simplex system-on-chip communication links: data

only flows from the producer tile to the consumer tile.

Data producer Data consumer
Simplex

b) Half-duplex system-on-chip communication links: data flows

between both the tiles marked as the producer or the consumer

but not simultaneously, one direction at one time.

Data producer/

Data consumer

Data producer/

Data consumer

Half-duplex

(Take turns)

e) 2X-Links system-on-chip communication links made using 2

half-duplex links: data flows between the tiles in both directions

simultaneously

Half-duplex
Data producer/

Data consumer

Data producer/

Data consumerHalf-duplex

Simultaneous/2X

bandwidth in any direction

d) Full-duplex system-on-chip communication links made using 2

Simplex links: data flows between the tiles in both directions

simultaneously

Data producer/

Data consumer

Data producer/

Data consumer

Simplex

Simplex

(Simultaneously)

c) TDD-Links system-on-chip communication links made using a

half-duplex link but with the bit width is doubled: data flows

between the tiles in both directions simultaneously using TDMA-

based link arbitration algorithm. TDMA is fine-grained arbitration

access. It can be configured to change the amount of bandwidth

in any direction. Here TDMA is done on the basis of round-robin

arbitration for simplicity. At time frame F data from left to right

and at time frame B data from right to left is transmitted.

TDMA-based link

arbitration

F B B BF F
Time

Half-duplexData producer/

Data consumer

Data producer/

Data consumer(Take turns

on a specified

time frame)

Figure 7.3: Different types of system-on-chip communication links

Figure 7.3(a) shows that data can only be transmitted from Data producer to Data consumer. A

half-duplex link provides communication in both directions, but only in one direction at a time

(not simultaneously) (see Figure 7.3(b)). A full-duplex link allows communication in both direc-

tions, and unlike half-duplex link, allows this to happen simultaneously (see Figure 7.3(d)). Two

simplex communication links may be combined together to form a full-duplex link, e.g. links in

the current NoC architectures [76, 117, 133, 173].

A 2X-Link is a combination of two half-duplex links and therefore, their transmission can be

configured to three different modes (both in one direction, both in the reverse direction, and

both in opposite directions). Figure 7.3(e) shows the data transmission of the proposed 2X-
Link. For the runtime AdNoC architecture these 2X-Links are used.

A Time-Division-Duplex-Link (TDD-Link) uses time division multiplexing to separate inward

and outward transactions. It emulates full-duplex communication over a single half-duplex link
(the bit width of the single half-duplex link used to form a TDD-Link is doubled in order to

be able to compare it to the two half-duplex links used to form the 2X-Link). Time division

duplex has a strong advantage in the case where the asymmetry of the forward link and reverse

link data speed is variable. As the amount of forward link data increases, more bandwidth can

dynamically be allocated and as it shrinks, it can be taken away. The TDD-Link is implemented

in the scope of this work to compare it to the proposed 2X-Link (see Figure 7.3(c)).

7.1.3.2 Design and Implementation of the 2X-Links

If in a Normal-Full-Duplex-Link the link capacity is “X” then the proposed 2X-Link may adjust

its link capacity among “Zero”, “X”, and “2X”. The possibility of incorporating the TDD-

7.1. ARCHITECTURE-LEVEL ADAPTATION 111

Link as a runtime configurable link in the AdNoC is also investigated and the TDD-Link is then

compared to the proposed configurable 2X-Link. The 2X-Link has the advantages of lower area

and fault-tolerance ability over the TDD-Link. Its limitations are: transmission can only be

supported in one direction and the bandwidth granularity in the link is coarse-grained (0, X,

and 2X). On the other hand, the TDD-Link may adjust its time slot to support bi-directional

transactions and at the same time may configure the runtime link capacity in one direction in a

fine-grained way but suffers from higher area overhead and fault-tolerance ability. Considering

the area overhead and the fault-tolerance ability, the 2X-Link is chosen as an integral part of the

runtime adaptive system-on-chip communication architecture (AdNoC).

Algorithm 8 Weighted XY-routing algorithm at router-level
BWdir: Total bandwidth towards dir
wdir: Weight in each direction to find the route for a transaction

t: Direction of the link (if 2X-Link then it is 2 otherwise 1)

reqBW : Bandwidth requested by transactions towards dir
avBWdir: Available bandwidth in the direction dir for a router

1: upon receiving a transaction and the destination do
2: if transaction in look-up-table from different source port then

// look for potential loops
3: loopRoute ⇐ output port of other transaction

4: end if
5: for all output ports pdir do

// initialize all weights to zero
6: wdir ⇐ 0
7: end for

// Calculation of the route distance relative to the destination
8: dx = | destination x − current x|
9: dy = | destination y − current y|

10: for all pdir with avBWdir > reqBW and loopRoute �= pdir do
// there is no loop and bandwidth available

// East and West output ports
11: if pdir points toward destination x then
12: wdir ⇐ avBWdir × dx + BWdir × t

// Weight calculation considers the existence of the 2X-Links
13: else if avBWdir points away from destination x then
14: wdir ⇐ avBWdir × t
15: end if

// North and South output ports
16: if avBWdir points toward destination y then
17: wdir ⇐ avBWdir × dy + BWdir × t
18: else if avBWdir points away from destination y then
19: wdir ⇐ avBWdir × t
20: end if
21: end for

// route toward the port having highest weight
22: route = pdir with max(wdir)

// save the route in the look-up-table
23: look-up-table ⇐ transaction = route

24: return route

Principally, the concept of the 2X-Link is not new and has been borrowed from Telecoms [51]

112 CHAPTER 7. RUNTIME ARCHITECTURE-LEVEL ADAPTATION

and Wireless Sensor Networks [29] research (in these domains it is termed as the link reversal

mechanism). Link reversal algorithms have been studied experimentally and have been used in

practical routing algorithms, e.g. TORA [129]. The circuit implementation and the 2X-Links
inside the complete AdNoC architecture are shown later in this chapter.

7.1.4 Weighted Routing Algorithm

To provide bandwidth guarantees in an adaptive system-on-chip communication architecture

(AdNoC), the underlying communication interconnects needs to provide an adaptive route allo-

cation strategy that is not static in function. In a NoC where runtime adaptation is not possible,

the routing decision may be a distributed or source-based deterministic routing scheme. In

a distributed deterministic routing scheme, the routing decision is determined locally at each

router using predefined rules, e.g. the XY-routing algorithm in the QNoC [23] architecture. The

source-based deterministic routing scheme (e.g. Xpipe [14]) keeps the complete route in its

header information and needs the global view of the whole chip before execution or even at

design time. That is why both schemes are not suitable for the AdNoC architecture where the

group of the tasks and their mapping may change during runtime. Therefore, finding a route

for a given logical network and physical mapping of an application are major challenges. The

runtime route allocation algorithm is given in Algorithm 8.

For a requesting transaction, the route is checked in every possible direction and the VCB is

assigned accordingly on-demand. The weighted XY-routing (wXY-routing) algorithm presented

in Algorithm 8 assigns each output port a weight based on available bandwidth and dx, the x
coordinate (columns) distance or dy, the y coordinate (rows) distance between the current and

the destination nodes. This ideally gives the packet a maximum number of sensible routing

choices along its route as it allows the packet to be routed toward its destination in both the x
and y directions. The weight is also proportional to the available bandwidth. If the output port

is chosen with the highest associated available bandwidth, the used bandwidth is distributed as

evenly as possible among the output ports. Thus the other output ports are more likely to be

able to accommodate future transactions. In the proposed AdNoC architecture, the concept of

the 2X-Link described in 7.1.3 is used to increase the available bandwidth of a particular link.

Therefore, the weight calculation in the wXY-routing algorithm also inherently considers the

advantages of using the 2X-Links. By allowing all these values to contribute to the weight, the

weight becomes a trade-off among these considerations.

The wXY-routing is described as follows: given is the tuple P = {N, E, S,W}. Each i ∈ P
has a weight wi and available bandwidth avBWi with avBWi < t×BWmax, BWmax being the

maximum link capacity (simplex link) represented as bandwidth, and t indicates whether a link

is a 2X-Link or not. If the link is a 2X-Link then t = 2, otherwise, t = 1. The current router

coordinates are x, y. Each packet p has destination coordinates xd, yd and a required bandwidth

reqBW . The weights are assigned as follows:

wN =

⎧⎪⎨
⎪⎩

avBWN × |yd − y| + t × BWN , yd − y < 0

0 , avBWN < reqBW

avBWN , otherwise

7.1. ARCHITECTURE-LEVEL ADAPTATION 113

wE =

⎧⎪⎨
⎪⎩

avBWE × (xd − x) + t × BWE , xd − x > 0

0 , avBWE < reqBW

avBWE , otherwise

wS =

⎧⎪⎨
⎪⎩

avBWS × (yd − y) + t × BWS , yd − y > 0

0 , avBWS < reqBW

avBWS , otherwise

wW =

⎧⎪⎨
⎪⎩

avBWW × |xd − x| + t × BWW , xd − x < 0

0 , avBWW < reqBW

avBWW , otherwise

subject to: {
t = 2 , if 2X-Link is activated

t = 1 , otherwise

The route r chosen is then:

r =

{
P (local processor port) , x = xd and y = yd

i ∈ {N, E, S,W} , else, with wi = max
i

(wi)

The wXY-routing algorithm is designed to make meaningful routing decisions whenever pos-

sible. However, in certain worst-case scenarios, routing problems can arise which need to be

dealt with.

A livelock situation occurs when packets are routed through a network without ever reaching its

destination. The wXY-routing algorithm given in Algorithm 8 may lead to livelock. However,

since the algorithm routes towards a destination whenever possible, livelock can only happen

if a packet is continuously misrouted away from its destination. This is a sign that there are

no available routes to the destination. Livelock may be dealt with using a Time-to-Live (TTL)
counter. This counter is given an initial value equal to the Manhattan distance +2m, where

m is the number of allowed misroutings. At each hop the TTL for a packet is decremented by

one and when the counter reaches zero, the packet is removed from the network and a feedback

message is sent to the sender.

Algorithm 9 On-demand buffer assignment
1: upon receiving a transaction and direction do
2: search for next free buffer bffree ∈ buffer pool B and not in buffer table

3: if bffree found then
// assign available buffer to current direction

4: current buffer bfcurr ⇐ bffree

5: buffer table ⇐ bfcurr → output port

6: return bfcurr

7: else
8: return no buffer available

9: end if

114 CHAPTER 7. RUNTIME ARCHITECTURE-LEVEL ADAPTATION

S represents the source of the

transaction and D stands for the

destination of the transaction

a) An exemplary 3 x 2 NoC architecture

S

D

b) An exemplary 3 x 3 NoC architecture

S

D

A header flit

may arrive

second time

and form a

circular route

Figure 7.4: Examples of circular routing from the source S to the destination D

A scenario (ping-pong effect) which may lead to a livelock situation is shown in Figure 7.4 (a).

In this example, after misrouting (i.e. to the bottom left router), the algorithm will tend to favor

returning the packet directly backward towards the destination. This is generally not the desired

behavior to avoid livelock since the previous router has already decided to route away from the

destination. This is remedied in the wXY-routing algorithm by setting the weight of the output

port corresponding to the input port equal to the lowest possible non-zero weight, if there is

enough bandwidth, and 0, if there is not. The return route should not be avoided altogether as it

is possible that there is absolutely no other way out of the router. This however leads to another

problem: what happens when the header flit of the packet arrives at a router for the second time?

It sees that its transaction identification number is already in the router and is routed in the same

direction again forming a circular-routing (see Figure 7.4 (b)). Generally, every time a packet

crosses its own route, the result is a circular-routing (see Figure 7.4 (a) and Figure 7.4 (b)).

To avoid this problem in the AdNoC, the transaction identification number is tied to an input

port. When a header flit crosses an already visited router in its route from a different input port

then it generates two different transactions with the same transaction identification number. It

is guaranteed that the second transaction is not routed to the previously chosen output port by

setting its weight to 0. The router then sends out a split-tail-flit in the direction of the previous

route for the first transaction and halts the transaction until the split-tail-flit arrives at the router.

It deletes the first transaction and ties the second one to the input port of the first.

7.1.5 On-demand Buffer Assignment

When transmitting data over a packet-switched network, it is necessary to store parts of the

data at each intermediate hop. In a wormhole-based router, this requires VCBs for each router

through the complete route of each transaction. Up till now, the number of VCBs at one port

has always been fixed at design time [14, 23, 72, 73, 92, 170]. With the on-demand assignment,

the VCBs are not tied to ports, but only to the router itself. The router may distribute the VCBs

7.1. ARCHITECTURE-LEVEL ADAPTATION 115

to any route as needed by assigning those to the according output ports. The scheme to assign

buffers on-demand (at runtime) is given in Algorithm 9. Physically, it is realized by using a

central pool of FIFOs connected to each output port through a crossbar matrix. Pointers need to

be saved for each output port to remember the current state of the buffer assignment.

Algorithm 10 Runtime architecture-level adaptation
1: upon receiving a mapping instance and a transaction at runtime do

// A connection is established in a distributed way for each transaction
from the source to the destination. In each router a route is determined
and a VCB is then assigned towards that route. To get a route the
bandwidth may be configured using the 2X-Links

2: for all All transactions ti do
3: repeat
4: if destination = processor port then
5: route ⇐ processor port

6: else
7: if flit type �= head or transaction in look-up-table from same source port then

// non-header flits are always in look-up-table
8: route ⇐ look-up-table

9: else
// get route

10: route ⇐ do weighted XY-routing algorithm and call Algorithm 8

11: if route found then
// assign buffer to route

12: do runtime buffer assignment for found route call Algorithm 9

13: else if possible to reverse the link then
14: call Algorithm 7

15: route ⇐ do weighted XY-routing algorithm and call Algorithm 8

16: if route found then
// assign buffer to route

17: do runtime buffer assignment for found route call Algorithm 9

18: end if
19: end if
20: if no route found or buffer assignment unsuccessful then
21: collect router status information

22: send information to higher level (see Algorithm 11)

23: end if
24: end if
25: if flit type = tail and keep-alive not requested then

// free buffer
26: remove buffer from buffer table

27: remove transaction from look-up-table

28: end if
29: end if
30: until (complete route of the transaction is found)

31: end for

The benefits of such on-demand assignment is evident: through on-demand assignment, buffers

are only assigned when needed meaning that VCBs can be reused by different ports. The obvious

drawback of this method is that additional cycles are needed to retrieve the buffer pointers

and the buffer contents. Experiment shows, however, that the latency for each transaction is

116 CHAPTER 7. RUNTIME ARCHITECTURE-LEVEL ADAPTATION

mainly dominated by the packet size but not by the distance in a pipelined wormhole-based
communication. The processing time for sending data is fixed in each router at design time (and

is therefore, constant). The latency in a pipelined architecture can be formulated as follows:

Ltrans = F × Tp + (Dmanh − 1) × Tp[cycles] (7.1)

Here Ltrans is the latency for each transaction, F is the number of flits in a packet, Tp is the

number of cycles required to process and to send each flit, and Dmanh is the Manhattan distance
to the destination. The packet size F is the dominant factor in this equation as the Tp is constant

and the change in the Manhattan distance Dmanh due to the routing algorithm is negligible.

The routing algorithm tends to keep the length of the route near to the Manhattan distance by

assigning a very low weight to the reverse directions (directions pointed toward the source).

Therefore, the runtime route allocation algorithm does not affect the end-to-end latency.

Figure 7.5 shows an exemplary scenario to showcase the runtime behavior using different trans-

actions in one router. Transactions are represented by different sized rectangle boxes depending

on their bandwidth use within that link. In this exemplary scenario, the different parameters that

can be configured at runtime include: (a) the route chosen by the wXY-routing algorithm and (b)

the on-demand VCB assignment. The concept of the 2X-Link is not shown here as it is assumed

that the weight calculation is abstracting it. Let us now discuss what happens at selected points

in time Ti in Figure 7.5.

T0: All four directions are occupied with four different transactions and therefore, buffers are

also assigned. Some VCBs are un-assigned and also there is available bandwidth for other

transactions in the South and the East directions.

T1: Transaction T5 requests a route and weights are calculated until tδ taking 4 cycles. A

VCB is also assigned to the calculated direction before tδ. By now, all five transactions

meet their bandwidth requirements.

T2: Transaction T1, T2, and T4 free their corresponding virtual channels and assigned buffers.

Therefore, these VCBs and the released virtual channel bandwidth may be utilized by

future transactions.

T3: Four new transactions T1, T2, T4, and T6 request processing and they are granted re-

sources for transmission.

T4: Transactions T7 requests a route and VCB but due to unavailable buffer resources, the

transaction cannot be granted. So, the requesting transaction has to wait or inform the

upper layer through the system monitor (ROAdNoC presented in the next Section 7.2).

This situation may also occur in case there is a VCB but no bandwidth left in any direction.

7.1. ARCHITECTURE-LEVEL ADAPTATION 117

Ti

D
ir
re

c
ti
o

n
N

D
ir
re

c
ti
o

n
S

D
ir
re

c
ti
o

n
E

D
ir
re

c
ti
o

n
W

T
1

T
2T

3T
4

1'

T
1

'

T
2T

3T
4

T
5

2'

T
3

3'T
4

T
6

T
3T
1

T
5

T
2

4'

T
4

T
6

T
3T
1

T
5

T
2

T
5

T
1

T
6

T
7

A
ll

4
tr

a
n

s
a

c
ti
o

n
s

a
re

a
c
c
e

p
te

d

T
ra

n
s
a

c
ti
o

n

T
5

a
rr

iv
e

s

C
o

n
n

e
c
ti
o

n
s

a
re

fr
e

e
d

4
n

e
w

tr
a

n
s
a

c
ti
o

n
s

a
rr

iv
e

d

T
7

a
rr

iv
e

d
T

7
is

re
je

c
te

d

a
n

d
u

p
p

e
r

la
y
e

r

is
in

fo
rm

e
d

B
u

ff
e

r
fo

r
T

5

is
a

s
s
ig

n
e

d

B
u

ff
e

r
fo

r
fi
n

is
h

e
d

tr
a

n
s
a

c
ti
o

n
s

a
re

fr
e

e
d

T
h

e
re

is
n

o
fr

e
e

b
u

ff
e

r
b

lo
c
k

T
4

T
2

N
S

E

W
E

S E

0'

W
0

W
1

W
3

W
0

W
0

W
0

W
0

W
0

2
o

u
t
o

f
6

b
u

ff
e

r
is

fr
e

e
a

s
th

e
re

a
re

4

tr
a

n
s
a

c
ti
o

n
s

4
c
y
c
le

s

T
5

N
S

E

W

E
S

W

N
E

W

E
S

W

N
E

W

F
ig

u
re

7
.5

:
S

ce
n
ar

io
o
f

th
e

ru
n
ti

m
e

ad
ap

ti
v
e

ar
ch

it
ec

tu
re

ca
p
ab

il
it

ie
s

118 CHAPTER 7. RUNTIME ARCHITECTURE-LEVEL ADAPTATION

7.2 Runtime Observability for the AdNoC Architecture
(ROAdNoC)

In order to assure a certain degree of QoS (e.g. guarantees in performance and required band-

width), a feedback of the current system state must be available. This can be achieved through

runtime observability in the AdNoC architecture. If a runtime observability infrastructure comes

with only a small hardware overhead and some small communication overhead that would then

more than compensate the degree of freedom achieved using a successful adaptation. Within

this thesis, an event-based NoC monitoring component at architecture-level that offers runtime

observability is proposed. In the AdNoC architecture, runtime observability is denoted as a com-

plete infrastructure and “monitoring” is a hardware component attached to each tile. The prime

challenges for runtime observability are scalability, flexibility, non-intrusiveness, real-time ca-

pabilities, and cost. In order for the monitoring components to be as non-intrusive as possible,

they need to keep their interference with normal system execution, so-called probe effects [90]

at a minimum. An example of these effects would be the sending of monitoring packets through

the regular point-to-point data links between routers. A monitoring packet is the traffic that is

generated during runtime observation of the system state and is described later in this chapter.

If these packets are injected too rapidly, they demand resources which otherwise may have been

used for regular traffic. It is therefore necessary to limit monitoring traffic by keeping its band-

width usage and occurrence frequency minimal. The Runtime Observability for an Adaptive
Networks-on-Chip (ROAdNoC) infrastructure that supports successful architecture-level adap-

tation is implemented using a low cost and light-weight monitoring component inside each tile.

The key parts of ROAdNoC infrastructure are described below.

Adaptive

routing

Monitor

Monitor

PE

port

Packet buffer

VCB

assign-

ment

Event counters

N E S W

Conn. counters

Router

Network interface (NI)

PE

port

P
ro

c
e

s
s
in

g
E

le
m

e
n

t

To neighboring routers

1. An event occurs.

2. Monitor increments

corresponding event

counter.

3. If counter has

reached a threshold,

inform NI.

4 If this tile is source

of the event, close

connection.

5. If connection

counter has not

reached threshold,

re-transmit. If it

has send (re-

)mapping request to

cluster agent.

4b If this tile is not the

source, sending a

monitoring packet to

source of the event.

2

1

3

1

2

3

4a

4a

4b

4b

5a

5b

5a

5b

Figure 7.6: Overview of the monitoring component

7.2. RUNTIME OBSERVABILITY FOR THE ADNOC ARCHITECTURE (ROADNOC) 119

7.2.1 Monitoring Events

Events are situations when successful traffic propagation is prevented in the communication

architecture. The ROAdNoC infrastructure is event-based and events are caused by failures in a

subsystem of an individual router, i.e. the adaptive routing algorithm or the on-demand transac-

tion assignment to a VCB. The list of events is generic and can be enhanced depending on the

architecture. The events that are necessary for the proposed adaptive system-on-chip communi-

cation architecture (AdNoC) are explained in the following (events that may be generated from

the 2X-Links are not considered in the current implementation):

• TTL-expire-event: In order to assure livelock-free routing, each packet is given a max-

imum Time-To-Live (TTL) hop count. If a packet fails to reach its destination within the

TTL, it is removed from the network. The TTL is the Manhattan distance plus a given

maximum number of misroutes.

• No-route-found-event: If the routing algorithm fails to find any available routes inside a

router, the packet is removed from the network. This occurs when too many bandwidth

slots (for details of bandwidth slot see Chapter 3) are already reserved in all directions,

not leaving enough bandwidth to accommodate incoming packets.

• No-buffer-event: If the Virtual Channel Arbitrator (VCA) fails to find a free VCB to

hold the incoming packet it is removed from the network.

• Buffer-full-event: Occurs when the VCA already has an assigned VCB to a transaction

but cannot write to it because it is full. This does not result directly in packet loss but

it is a sign of congestion in the network. This situation may be resolved automatically,

however it should be observed and be reacted to if it persists over a prolonged period of

cycles.

These events correspond to the NoC alert events in the monitoring system for Æthereal NoCs

presented in Section 3. Unlike in Æthereal [39, 40], these events are used to identify the faults

during NoC adaptation at architecture-level and are used to invoke the necessary steps to remedy

it. The events given here are binary in nature; that is, either an event has occurred or not (except

buffer-full-event which is invoked for a given threshold). This simplification eliminates the need

for attributes to be supplied for events as with the monitoring component for Æthereal [39]. The

user-configuration-events of Æthereal (high level communication configuration events such as

transaction-opened and transaction-closed) are indirectly observed. However this is only done

in order to set up the counters for each transaction and to free them when the transaction closes.

7.2.2 Design and Event Collection

The monitoring component of a router for the ROAdNoC infrastructure consists of a Look-Up-
Table (LUT) containing a set of counters for each transaction going through the router. These are

tied to events which can occur in the on-demand VCB assignment and in the adaptive routing

120 CHAPTER 7. RUNTIME ARCHITECTURE-LEVEL ADAPTATION

Algorithm 11 Aggregation and processing of the monitoring traffic

input: event e = {event type t, transaction ID C,
transaction source S}

output: null
definitions: X: current router

E: event queue

LUT[transaction ID, event type]: look-up-table

with event counters

τt: given threshold for events of type t
δ: given threshold for re-sending

sc: send counter in S for C
NI: network interface

CA: cluster agent associated with X

1: get next event e from E
2: event counter ← LUT[C, t]
3: increment event counter

4: if event counter > τt then
5: if X != S then
6: send event message e = {t, C, S} to S
7: else
8: signal NI: send tail flit from packet buffer for C to close conn.

9: if sc < δ then
10: signal NI: re-send packet for C
11: else
12: send (re-)mapping message {remap,S,t} to CA

13: end if
14: end if
15: LUT[C, t] ← 0
16: else
17: LUT[C, t] ← event counter

18: end if

parts of the router. These counters are incremented every time an event is reported, thereby

collecting data on events.

The counters are stored in the LUT with the corresponding transaction identification number
and the source address of a transaction. In particular, the source address can be the same address

as the monitoring component if the corresponding PE is the source of the transaction. This is a

special case, as the counters are not only incremented by events occurring within the router but

also through messages received from monitoring components in other routers. In this case, the

triggering part is the Network Interface (NI) in Table 7.1.

7.2.3 Aggregation and Processing

An adaptation fault occurs when an event counter reaches a certain value. The event aggregation

and processing scheme is explained in Figure 7.6 and the functionality upon problem detection

is given in Algorithm 11 with corresponding parts of the figure in the following description:

1. Monitoring component X detects a problem

7.2. RUNTIME OBSERVABILITY FOR THE ADNOC ARCHITECTURE (ROADNOC) 121

Counter Triggering Router Part Response
TTL-expire-event wXY-routing or NI† directly

No-route-found-event wXY-routing or NI† directly

No-buffer-event VCA/Buffer allocation or NI† directly

Buffer-full-event VCA or NI† wait till over threshold

†Message from other monitor

Table 7.1: Event counters

2. Monitoring component X sends message to NI part

3. NI part of X looks if it is the source S of the transaction

• NI of X sends message to S if it is not

4. If X = S, X tells NI to close its current transaction by sending a tail flit: freeing VCB

and clearing the route

5. IF X = S, X examines its transaction counter and

• Tells NI to resend data if a specified value is not reached, or

• Sends message to upper layer requesting (re-)mapping

The aggregation is done through the NI by sending messages to the source of the transac-

tion. The processing is done partially in the NI and in the cluster agent. NI takes care of

re-transmission while the cluster agent is invoked if a (re-)mapping is needed. The time-line

diagram which portrays a certain scenario of the ROAdNoC infrastructure can be seen in Fig-

ure 7.7.

T1: The processing element PE1 associated with router R1 begins to send data to another

PE. The NI assigns this transaction the transaction identification number C1. Thus, the

monitoring component M1 of R1 adds this transaction to its list of observed transactions.

Here, only one exemplary counter is given in the monitoring component. This counter

representing the event of no-buffer being available in a router is initialized to zero.

T2: On its way to the destination the header flit of this transaction arrives at router R2. R2 is

generally not reached after one hop; the header flit may already have been routed through

other routers. Upon arrival of the header flit, C1 is added to the transaction table of

monitoring component M2 at router R2.

T3: The flit then progresses through R2 until it reaches the VCA. The VCA fails to allocate a

free buffer for C1 and this event is reported to M2 which increments its no-buffer counter.

The VCA then simply discards the header flit and all subsequent flits and does not send a

NACK signal as it would if the buffer were already successfully assigned but simply full.

This is done so that there is no blocking in previous routers and a tail flit can arrive to

close the transaction.

122 CHAPTER 7. RUNTIME ARCHITECTURE-LEVEL ADAPTATION

P
E

1
s
e

n
d

s
C

1

D
a

ta

R
1

R
i

R
j

R
2

D
a

ta

R
1

R
i

R
j

R
2

D
a

ta

R
1

R
i

R
j

R
2

D
a

ta

R
1

R
i

R
j

R
2

D
a

ta

R
1

R
i

R
j

R
2

M
o

n
it
o

r
P

a
c
k
e

t

R
1

R
i

R
j

R
2

C
1 -

0 0

M
1

M
2

C
1

C
1

0 0

M
1

M
2

C
1

C
1

0 1

M
1

M
2

C
1

C
1

0 0

M
1

M
2

C
1

C
1

1 0

M
1

M
2

C
1 -

0 0

M
1

M
2

T 1
T 2

T 3
T 4

T 5
T 6

Ti
m

e

C
1

a
rr

iv
e

s
a

t
ro

u
te

r
R

2
.

M
2

a
d

d
s

C
1

to
it
s

ta
b

le

M
1

re
s
e

ts
c
o

u
n

te
r,

re
s
e

n
d

in
g

C
1

,
M

2
re

m
o

v
e

s

C
1

u
p

o
n

re
c
e

iv
in

g
ta

il
fl
it

M
1

in
c
re

m
e

n
ts

it
s

c
o

u
n

te
r,

th
re

s
h

o
ld

is
m

e
t.

M
1

s
e

n
d

ta
il

fl
it

to
R

2

_
1

,
M

2

s
e

n
d

s
m

e
s
s
a

g
e

to
M

1
,

M
2

re
s
e

ts
it
s

c
o

u
n

te
r

V
C

A
o

f
R

2
fa

ils
to

fi
n

d

a
fr

e
e

V
C

.
M

2

in
c
re

m
e

n
ts

it
s

c
o

u
n

te
r

T
ra

n
s
._

ID
N

o
_

b
u

ff
e

r
T

ra
n

s
._

ID
N

o
_

b
u

ff
e

r
T

ra
n

s
._

ID
N

o
_

b
u

ff
e

r
T

ra
n

s
._

ID
N

o
_

b
u

ff
e

r
T

ra
n

s
._

ID
N

o
_

b
u

ff
e

r
T

ra
n

s
._

ID
N

o
_

b
u

ff
e

r

F
ig

u
re

7
.7

:
R

u
n
ti

m
e

o
b
se

rv
ab

il
it

y
ca

p
ab

il
it

ie
s

o
f

th
e

R
O

A
d
N

o
C

in
fr

as
tr

u
ct

u
re

7.2. RUNTIME OBSERVABILITY FOR THE ADNOC ARCHITECTURE (ROADNOC) 123

T4: For the no-buffer counter the threshold is one. That is, one no-buffer-event is enough to

invoke a monitoring packet from the monitoring component. M2 informs the sender of the

transaction through its NI; in effect sending a monitoring packet to the monitoring com-

ponent M1 at time T4. At the same time, M2 resets its no-buffer counter for transaction

C1.

T5: Once the monitoring packet arrives at M1 it increments its own counter for C1 and, since

the threshold is met, it informs its NI to close the current transaction C1. This is done by

simply sending a tail flit.

T6: M1 has already reset its no-buffer counter and the NI is in the process of re-sending its

data. The tail flit arrives at R2 causing M2 to remove C1 from its transaction table.

Pri-

ority
Destination Trans. ID TTL BW

(BandWidth)
Type

Keep

Conn.
Type Trans. ID Event type

Header flit

Tail flit

2 bit 1 bit 4 bit 10 bit 4 bit 4 bit 7 bit

Payload

Source

(optional)

Figure 7.8: Flit composition of a monitoring packet

7.2.4 Monitoring Related Traffic

The monitoring component is situated partially between the router and the NI (see Figure 7.6).

It is therefore able to interact with the NI to send its own packets over the regular communi-

cation network. This means, however, that the monitoring traffic must compete with regular

transmissions for network resources. A monitoring packet must be of a higher priority than

regular packets. This allows it to preempt another transaction in a VCB. When using only two

priorities, one for regular traffic and one for monitoring traffic, a packet’s priority requires a

one-bit field in the header flit. For the rest of the fields, an exemplary monitoring packet in a 4

× 4 NoC is shown in Figure 7.8. It is two flits in size and is composed of a regular header flit
for transmission plus a tail flit with payload data containing at least the triggering transaction
identification number and the type of event. In addition, it may also contain information such as

the source of the transaction which is used to provide the cluster agent with additional knowl-

edge it may exploit during (re-)mapping. This is the minimum size since the routing algorithm

implementation requires both a header and a tail flit; the header flit is required to create a route

and the tail flit to close it. It also does not require a source field in the header since monitoring

packets are not monitored themselves. The size of the monitoring packet can be calculated from

the formulas given in Table 7.2.

124 CHAPTER 7. RUNTIME ARCHITECTURE-LEVEL ADAPTATION

Size 4 × 4 (2 priorities,
Flit part Size n × m 8 bandwidth (BW) slots)

Type 2 bit 2 bit

Priority log2 (priorities) 1 bit

Destination log2 (n × m) 4 bit

TTL log2 (n+m+2x†) 4 bit

BW log2 (BW slots) 3 bit

†x = number of misroutes

Table 7.2: Flit size for a monitoring packet in an n x m NoC and in a 4 x 4 NoC

The frequency with which monitoring packets are generated is also very important to consider.

These are event-based meaning they are only sent when an event occurs. Since events are

only generated on faults during adaptation, there is no monitoring traffic when the network

operates normally. Apart from the regular monitoring traffic, events can also eventually initiate

(re-)mapping. (Re-)mapping comes with a high communication overhead. It is, however, also

through observability that unnecessary (re-)mapping can be avoided compared to a scheme

where any transaction fault automatically calls for (re-)mapping.

7.3 Adaptive Router Architecture for the AdNoC

The router of the AdNoC architecture is built on top of the router used for the QoS-supported

NoC presented in Chapter 3. Figure 7.9 shows a simplified router diagram of the AdNoC ar-

chitecture (only the parts that are interesting for understanding the AdNoC are highlighted and

the other parts are kept similar to the Figure 3.4 in Chapter 3). The Input decoder is directly

connected to the adjacent output port of all neighboring routers. In a Normal-Full-Duplex-Link,

there are 5 inputs: East, West, North, South, and another from the PE. However, considering

the presence of the 2X-Link the Input decoder may have upto 9 inputs: 5 similar to the Normal-
Full-Duplex-Links and new 4 from the 2X-Links. All flits entering the router go first to the

Input decoder. If the flit is of header type, the header information is read from the flit. The

decoder determines the transaction identification number, required bandwidth slots, the packet
destination, TTL, and priority of the flit. If the flit is a different type, i.e payload or tail flit, only

the transaction identification number is required. As the transaction identification number is

not stored in the flits, it needs to be inferred from a previous header flit. To accomplish this,

the Input decoder must be aware of the link arbitration. It needs to store all transactions enter-

ing from each neighboring routers and performs a reverse arbitration to attain the transaction
identification number.

The decoded information is sent to the wXY-routing inside the router to determine the route of

the transaction. Apart from choosing the direction in which to route the incoming transaction,

this part of the router is also responsible for the VCB assignment. For each new transaction,

a free VCB is assigned. The state of all of the VCBs in the router are stored in a LUT. Once

7.3. ADAPTIVE ROUTER ARCHITECTURE FOR THE ADNOC 125

Trans.

ID

Trans.

ID

Trans.

ID

Trans.

ID

Trans.

ID

T
ra

n
s
.

ID

VCB 1

VCB 2

VCB 3

TDM/

SDM VCB

Full
NACK

VCB

Full

VCB

Full

NACK

NACK

NACK

NACK

NACK

NACK

NACK

NACK

NACK

NACK

NACK

NACK

NACK

Regular flit

Flit from 2x-Links

N N

E

S

W

PE

E

S

W

Weighted-XY routing

From: To:

To: PE

Input

decod

er

T
ra

n
s
.

ID

Trans.

ID

Trans.

ID

Trans.

ID

ro
u
te

d
e
s
t.

Trans. ID: Transaction identification number

NACK: Negative acknowledgement

Figure 7.9: An overview of the AdNoC architecture-level part in each router

a transaction has been completed, it is removed from the LUT, thus freeing the VCB for new

transactions. Along with the VCB index the assigned bandwidth slots are also stored. These

are determined by keeping track of the available slots in four binary arrays (one for each output

direction). New transactions requesting n bandwidth slots are assigned the next n slots flagged

as available which are then marked as unavailable. Similarly, upon completion of a transaction

the reserved slots are again marked as available. Therefore, this implements the bounded-
arbitration-algorithm [59] proposed in the scope of this thesis.

The VCA is responsible for sending flits from the Input decoder to the appropriate free VCB. To

do this, it must first request the index of the right VCB from the buffer assignment upon arrival

of a header flit. This is done by sending the transaction identification number to the buffer

assignment part which then informs the VCA of the appropriate VCB index (see Figure 3.4 in

Chapter 3 for more details). The VCA then sends the flit to the corresponding buffer through

a crossbar. The transaction identification number and the index are stored locally in the VCA
allowing the following data flits to be arbitrated without the need to perform routing.

Since, there is a central pool of VCBs, output arbitration needs to be done both temporally

(Time Division Multiplexing, TDM) as well as spatially (Space Division Multiplexing, SDM).

This may lead to complications as slot arbitration cannot be performed in parallel for multiple

transactions, i.e. one VCB containing a transaction being routed towards North, another VCB
containing a transaction being routed towards South, and a third towards South: all transaction

are assigned n bandwidth slots. Arbitration of two of these transactions cannot be done without

considering the destinations of all other transactions. Therefore, this is solved by determining

the slot arbitration in the position where buffer assignment is done. This allows arbitration to be

performed in the two domains sequentially. First the TDM is informed of the slots assigned to a

126 CHAPTER 7. RUNTIME ARCHITECTURE-LEVEL ADAPTATION

particular VCB from the buffer assignment part. The TDM then retrieves a flit from the VCB, if

it is assigned the current bandwidth slot then passes it to the SDM. The SDM retrieves the output

direction from the wXY-routing for the current VCB index. All the values retrieved are stored

locally to reduce the overhead for subsequent flits. Due to the bi-directional communication

characteristic of the proposed 2X-Link, the link control part (TDM/SDM) also has 9 outputs.

W0 W1 W2 W3

ART

LX DX LY DY

Path

Flit Type 00

R
e
a
d

MUL

Control signal from
virtual channel arbiter

To output port
link controller

Direction

Direction

dX dY

Sub 1 Sub 2

Comp 2
Comp 3

Mux 2 Mux

3

VCBkVCB2
VCB1

Crossbar

LUT

2 bit 2 bit 2 bit 2 bit

2 bit

Legend:

A: Available bandwidth

R: Required bandwidth

T: Total bandwidth

W: Weight in each direction
LUT: Look up table

MUL: Multiplier

Sub:Subtractor

Add: Adder

Comp: Comparator

A R

A

A dX, dY

IS1

IS2

Comp 5

T
Add

4 bit

DX/Y:Destination coordinate

IS: Internal signal

LX/Y: Local coordinate

All Input signal from
header decoder

Mux 4

Mux 5

Mux 1

Comp1

Comp 4

2bit

8bit 8bit

From input port
VCA

3
2
 b

it

8 bit

8 bit
Weight

calculation

Max Function

Figure 7.10: Adaptive hardware for the output port of a router

7.4 Hardware Implementation of the AdNoC
Architecture

The circuit implementation of different parts of the router for the proposed AdNoC architecture

that are not part of the router used for the QoS-supported NoC in Chapter 3 are explained in this

section. The area requirements of all these parts after synthesizing it for Virtex II FPGA [177]

are also explained in the scope of this section. The adaptive parts of the router implementation

for the AdNoC architecture are as follows: (1) the wXY-routing algorithm, (2) the on-demand

VCB assignment, (3) the 2X-Link realization, and (4) the ROAdNoC infrastructure (the mon-

itoring component). Each part is explained separately with their own circuit implementation

7.4. HARDWARE IMPLEMENTATION OF THE ADNOC ARCHITECTURE 127

then they are synthesized for downloading onto the Virtex II FPGA [177] and finally the per-

formance and the hardware requirement for each part is explained and the overhead is justified

accordingly.

Hardware block Area requirement [ASIC/FPGA]
Routing logic 2877 gates / 129 slices

VCB crossbar 1680 gates / 122 slices

Look-up-table (4 × # of transactions) bits / BlockRAM

VCB size (flit size × (2m+n)) bits / BlockRAM

(m and n are the dimensions of the NoC)

Pointer-table (# of VCBs × 4) bits / BlockRAM

Registers (4 × 4) bits / registers

Table 7.3: Hardware requirement for the adaptive scheme

7.4.1 The wXY-routing and the On-demand Buffer Assignment
Components

The implementation of the wXY-routing and the on-demand VCB assignment components of

the router for the AdNoC architecture are illustrated in Figure 7.10. The route allocation part

either decides based on the LUT or by calculating the type of the flit. This part is separated by

the comparator, Comp1 and the multiplexer, Mux1. If the incoming flit is a header flit then the

weight of a possible route is calculated. It is shown as Wn. The maximum weight is evaluated

using Comp2, Comp3, Comp4, Mux2, Mux3, and Mux4. The direction of the transaction is also

stored in the LUT. All control bits of the route allocation stem from the header decoder of the

router. Each weight calculation is evaluated using a Multiplier, an Adder, a Multiplexer, and

a Comparator. In the right-bottom part of the Figure 7.10, a crossbar to select an appropriate

VCB is implemented.

The hardware overhead for the wXY-routing and the on-demand VCB assignment components is

given in Table 7.3. The crossbar to implement the on-demand buffer assignment and the small

LUT to keep the VCB pointers contribute to the area. The implementation of the VCB crossbar

for a flit size of 8 bits having 4 VCBs shared by the 4 output ports costs 122 slices in an FPGA.

The implementation of the adaptive routing algorithm wXY-routing also contributes to the over-

all area. In fact, it takes 129 slices for each router. The entire area overhead may be traded-off

to the achievement of the flexibility during runtime. The flexibility to select an available route

and the on-demand buffer assignment to that route ensures the QoS (guaranteed bandwidth) for

the AdNoC.

7.4.2 Configurable Links Components
In order to realize the bi-directional communication on a single link two tri-state logic gates are

used. Tri-state logic gates have three states of the output: high (H), low (L), and high-impedance
(Z). The high-impedance state play no role in the logic, which remains strictly binary. These

devices have previously been used on buses to allow multiple sources to send data in parallel. A

128 CHAPTER 7. RUNTIME ARCHITECTURE-LEVEL ADAPTATION

E
N

E
N

2

E
N

1

E
N

4

E
N

3

Linki+1,i

Linki,i+1

In
p

u
t

p
o

rt

O
u

tp
u

t

p
o

rt

In
p

u
t

p
o

rt

O
u

tp
u

t

p
o

rt

E
N

1
G

7

E
N1

G
8

E
N

1
G

5

E
N1

G
6

E
N

1
G

3

E
N1

G
4

1
G

1

E
N1

G
2

Inputs/
outputs to/
from one
side of a

router

Inputs/
outputs to/
from one
side of a

router

O
u

tp
u

t
p

o
rt

O
u

tp
u

t
p

o
rt

In
p

u
t
p

o
rt

In
p

u
t
p

o
rt

Figure 7.11: Hardware implementation of the 2X-Link

group of tri-state logic gates driving a line with a suitable control circuit is basically equivalent

to a multiplexer [163].

The architecture of the bi-directional link control using half-duplex links for the proposed 2X-
Link is presented in Figure 7.11. Two tri-state logic gates, e.g. G1 and G2 work as a group. They

are controlled by the same control signal ¯EN1. When the value of ¯EN1 is 0 then the tri-state gate

G1 is active and G2 is stalled. Therefore, data may be transmitted from the neighboring VCBs
through Linki,i+1 to the component Input decoder. On the other hand, if the value of ¯EN1 is 1
then the tri-state gate G1 is stalled and data may be sent from the VCB to the adjacent router’s

Input decoder via Linki,i+1. Therefore, the half-duplex communication on one link is realized.

In this architecture, the signal ¯EN1 and ¯EN3 control the data transmission via Linki,i+1 while

signal ¯EN2 and ¯EN4 control the data transmission via Linki+1,i. They are assigned different

values to avoid conflicts on the link and an unpredictable situation.

The extra hardware that is needed to implement either a single 2X-Link or a single TDD-Link
on top of the AdNoC router is 74 slices. Each TDD-Links additionally requires one control

unit to control the data transmission direction and the time slot allocation. The extra hardware

needed to implement this control unit is another 49 slices. Figure 7.12 shows the additional

slice requirements for the TDD-Links compared to the 2X-Links. With the increasing size of the

NoC, a NoC with the TDD-Links requires more slices compared to the NoC with the 2X-Links,

e.g. in a 7 × 7 NoC, the TDD-Links require 4116 more slices than the 2X-Links.

7.4. HARDWARE IMPLEMENTATION OF THE ADNOC ARCHITECTURE 129

Difference of #of slice requirement between TDD-Links and 2X-Links 4116

2940

1960

1176

588
19649

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1x2 NoC 2x2 NoC 3x3 NoC 4x4 NoC 5x5 NoC 6x6 NoC 7x7 NoC

NoC size

N
um

be
r o

f S
lic

es Additional slices required by TDD-Links

Figure 7.12: Overhead of the TDD-Links compared to the 2X-Links

7.4.3 Monitoring Component
The monitoring component of the ROAdNoC infrastructure is event-based and the event-counter

values are stored in a LUT. One entry in the LUT ties the transaction identification number to

the source of the transaction and to its associated counters. Given the values for a 4 × 4 NoC

(see Table 7.1 and Table 7.2), one entry in the LUT is thus 8 bits for the transaction source plus 4

bits for each of the four counters: 24 bits in total. If there are n VCBs and k inputs, then (n+k)
entries are needed. In other words, more entries are needed than VCBs since transactions may

cause events even (especially) if all VCBs are already occupied. In general, k is equal to the

amount of inputs. For example, if a router has 4 VCBs and 5 inputs then 9 entries are required.

Transaction numbers are added to the LUT when a header flit of the first packet for the trans-

action arrives at a router (Figure 7.13(b)). The arrival causes the set and configure flags to be

triggered, initiating a write to the LUT and setting the counter values to zero. Similarly, a tail
flit arriving at the router causes the configure flag to be triggered while the set flag remains

zero. This causes the monitoring component to remove the transaction from the LUT. Once an

event occurs it initiates a read from the LUT using the event transaction identification number
(Figure 7.13(a)). It then compares the counter value returned from the LUT of the event type

corresponding to the event type that arrived. If the counter value has reached its threshold, the

NI part of the monitoring component is informed and the counter value is set to zero in the LUT.

If not, the incremented value is written to the LUT.

The NI part of the monitoring component, upon receiving an event, first compares the transac-

tion source with its own address. If it is not the sender then a packet is sent to the remote sender.

Otherwise, the transaction send count is examined to find out if there are previous send attempts

by comparing the transaction-send counter stored in a register with a given re-send threshold.

Based upon this, the NI is either told to re-send the packet if the transaction-send threshold has

not been met or a (re-)mapping if it has. If the packet is re-sent, the transaction-send counter is

incremented. A (re-)mapping causes the counter to be reset to zero.

130 CHAPTER 7. RUNTIME ARCHITECTURE-LEVEL ADAPTATION

NI

Resend

Threshold

Remap

Own Address

Resend

S
e

n
d

M
e

s
s
a

g
e

T
o

o
th

e
r

n
o
d
e

LUT

Read/

Write

LUT

r/w addr

FIFO

Incr Incr

TTL

Threshold

No Buffer

Threshold

TTL No Buffer

8

4

4

4 4

10

Router

F

I

F

O

0000"

0000"

out
incr

reset

Resend

Counter

Write

LUT

r/w addr

F

I

F

O
0..0"

0000"

Ready

Source

8 bit

Set/reset

Configure

ID10 bit

0000"

10

8

8 4

4

b) Adding and deleting connections from

the monitor using a LUT
a) Analyzing events with LUT

Router

Figure 7.13: Hardware for adding and analyzing monitoring events

Each router has 5 input ports resulting in 5 possible simultaneous transactions needing to be

set up in a monitoring component. Also, using a LUT entails a few cycles delay in which

new transactions/events cannot be processed. To allow each tile to function using only one

monitoring component, FIFOs are added to buffer its inputs.

7.4.4 Hardware Evaluation
The implementation on a XILINX Virtex2 XC2V-6000 FPGA is shown in Figure 8.7(a). The

AdNoC architecture comes at a hardware overhead, roughly 41% area increase compared to

a design-time parameterized router not considering the VCB reduction due to resource mul-

tiplexing but 59% less area compared to a complete duplication of the basic QoS-supported

NoC presented in Chapter 3 for the purpose of reliable system design [11] using the AdNoC
architecture.

The entire area overhead may be counterbalanced by the level of flexibility that is achieved,

the scope of assigning the hardware components where some parts are already faulty to other

functional units, finding an alternative route to avoid a faulty path, and a larger number of

successful transactions (for details on these results see Chapter 9).

The reusability of the VCBs also gives a higher chance to lower the total number of VCBs, which

may balance a fraction of the overall overhead introduced by the wXY-routing, the on-demand

VCB assignment crossbar, the 2X-Link, and the monitoring hardware components, though this is

7.5. CONCLUSION 131

(c) Additional hardware needed to achieve

adaptivity in a 4-input/4-output AdNoC

Adaptivecomponents Hardware requirements

Link reversal hardware 74 slices

wXY- routing algorithm 129 slices

VCB selector 122 slices

Monitoring hardware 46 slices

[FPGA]

-

(b) Hardware requirements of a 4-input/4-output

router implementation (without adaptive part)

Simplerouter components No of slices
Virtual channel arbiter 87

Crossbar 348

Headerdecoderprocess 39

Virtual channelprocess 17

Bufferack 23

Virtual channel 19

Headerdecoder 49

Link control 12

Output 117

Router (4 inout 4 output) 1085

process

4

Figure (a) shows the block diagram of the

AdNoC router and table in (b) shows the area

requirements for a basic QoS-supported router

presented in Chapter 3 and the table in (c)

shows the extra hardware needed for the AdNoC

built on top of the basic QoS-supported router

(a) Router architecture of the AdNoC which is synthesized for Virtex II

FPGA board

AdNoC router

Decoding logic

Input decoder process

Virtual channel process

Link control logic

Buffer

acknowledgement

M
o

n
ito

r

On-demand VCB assignment

VCB selector

. .

LUT

free VCBs

wXY

routing
LUT

bandwidth

available

LUT: Look-up-Table

L
in

k
to

n
e

ig
h

b
o

rin
g

ro
u

te
r

L
in

k
to

n
e

ig
h

b
o

rin
g

ro
u

te
r

VCB VCB VCB

Output

port

Input

decoder

2
x
-L

in
k

Input

decoder

Output

port

2
x
-L

in
k

Figure 7.14: Details of the hardware prototype of the proposed AdNoC architecture

not the main motivation of this thesis. Simulations show when using the scheme of wXY-routing
and the on-demand buffer assignment strategy one can experience a 42% reduction of the VCBs
compared to a fixed buffer assignment and a fixed routing scheme. For the buffer savings, some

simple assumptions are taken (in Table 7.3 the formula for the VCB size is given): each VCB
is a FIFO of depth 20 and width of the flit size. Therefore, it requires 160 bits to implement

each VCB. Therefore, the area overhead may be further justified by the degree of freedom to

achieve higher performance in the architecture-level during runtime adaptation together with

considering the reliability issues and the possibilities to reduce the number of VCBs at design

time due to the reusability compared to a fixed assignment approach.

7.5 Conclusion
In summary, the architecture-level part of the proposed AdNoC architecture is detailed in this

chapter. Different novel techniques, i.e. sharing the VCBs among different output ports, chang-

ing the routing at runtime, and changing the supported bandwidth between adjacent links using

configurable links at runtime are explained in details. A runtime observability infrastructure that

is employed for the successful architecture-level adaptation is also described here. The hard-

ware overhead of the AdNoC router is justified by the advantages of the runtime adaptation and

the possible reduction of the VCBs which takes the premier share of the router implementation.

Several experimental results based on AdNoC simulation of the proposed architecture-level are

presented in Chapter 9 in details.

Chapter 8

Simulation and Hardware Prototyping
Environment

Several state-of-the-art tools, i.e. OMNeT++ [125] and some inhouse simulation tools which are

based on SystemC [161] and C++ programming languages (compiled with GNU gcc [63]) have

been used to simulate the proposed adaptive system-on-chip communication architecture. The

inhouse simulation tools have been developed during the scope of the dissertation work. VirtexII

FPGA has been targeted for the hardware prototyping and therefore, existing prototyping boards

CHIPit [36] and HW-AFX-FF1152-200 [177] have been used. The hardware has been described

using the VHDL [171] hardware description language and simulated using ModelSim simulator

from Mentor graphic [108] and synthesized using Xilinx tools from Xilinx, Inc [177]. In the

following, a short description of the tools that are used in this thesis are discussed.

8.1 Simulation Environment

In this section, the simulation tools which are used in the scope of this dissertation are explained.

8.1.1 OMNeT++ Simulator

OMNeT++ [125] which is used to simulate the proposed adaptive system-on-chip communi-

cation architecture is a component-based modular network simulation environment. It can be

used to build simulations for numerous types of communication networks. It can be executed

using either a GUI front-end or as a command-line program. The GUI allows the visualization

of network behavior and traffic flows whereas the command-line interface allows faster simula-

tion for the collection of statistics. An OMNeT++ simulation environment is made up of three

types of files. These files separately describe the architecture and behavior of the simulation

environment and the configuration of individual simulation runs.

Architecture: The simulation architecture is described in “.ned” files (an example is shown

in Figure 8.1). These files define a hierarchy of modules. A module can either be a

simple module or a compound module. For each module inputs and outputs are given.

133

134 CHAPTER 8. SIMULATION AND HARDWARE PROTOTYPING ENVIRONMENT

module Router
parameters:

myid: numeric,
r_x_dim: numeric,
r_y_dim: numeric,
r_processing_delay;

gates:
in: in_n, in_ack_n;
out: out_n, out_ack_n;

submodules:
n: OutPort;

parameters: routerid = myid,
op_x_dim = r_x_dim,
op_y_dim = r_y_dim;

r: RouteInput;
parameters: routerid = myid,

ri_x_dim = r_x_dim,
ri_y_dim = r_y_dim,

processing_delay = r_processing_delay;
transactions:

in_n --> r.in_n;
r.out_n --> n.in;
n.out --> out_n;
r.ack_n --> out_ack_n;
in_ack_n --> n.in_ack;

endmodule

Figure 8.1: Exemplary router module: “.ned” file with one output port

Simple modules are processing entities whose behavior needs to be implemented. Com-

pound modules are made up of one or more modules and the inter-connections between

these modules. For instance, a compound module consisting of one simple module would

contain connections linking the relevant inputs of the compound module to those of the

simple module as well as connecting the outputs. “ned” files also include parameter def-

initions which may be supplied to the configuration files and accessed by the behavioral

implementation.

Behavior: The behavior is implemented in C++. Each simple module has its own implemen-

tation with one global header file (noc.h) supplying global parameters. The OMNeT++

framework supplies objects such as messages (a communication entity which can be used

to implement either packets or flits) and queues (message FIFOs). It also supplies all

necessary functions such as inserting and removing messages to and from the queues and

sending messages to an output port. Messages entering a simple module from an input in-

8.1. SIMULATION ENVIRONMENT 135

voke an event handling routine within the C++ file. The core functionality of the module

is implemented in this routine.

This framework also provides mechanisms for gathering and recording statistics. The

statistics can be either a scalar type or a vector type which are written to scalar/vector

files given in the configuration file. Scalar type values are simply counters which keep

track of certain events and are written at the end of the simulation run. For example,

router elements keep track of the number of discarded packets and this value is stored as

packet-loss. The vector types are used to follow changing values over time. In particular

these are used to keep track of bandwidth usage. In this simulation, they are collected

on the number of bandwidth slots used at each output port. Vector statistics can also be

visualized when using the graphical front-end (see Figure 8.3).

Configuration: Simulation runs are configured in “.ini” files (an example is shown in Fig-

ure 8.2). In these files, parameter values are set for both the global simulation (i.e. sim-

ulation length) as well as for the parameters defined in the ”.ned” files. This allows

multiple simulations to be run for a given environment: each with different simulation

characteristics such as the traffic patterns, routing algorithms, NoC dimensions, etc.

[General]
network = noc
sim-time-limit = 4000us

[Parameters]

*.x_dim = 4

*.y_dim = 4

*.processing_delay = 0.000000008
routing algorithm ("wXY-routing" or "XY-routing")

..*.algorithm = "wXY-routing"

..inter_packet_delay = normal(0.000001, 0.0000001)

..dest_x = intuniform(0,3)

..dest_y = intuniform(0,3)

..flits = 200

..bw = 1

Figure 8.2: Exemplary configuration “.ini” file

8.1.1.1 Implementation
The implementation of the adaptive system-on-chip communication architecture for the simu-

lation is made up of the following modules:

• The processing element is a simple module which acts as a producer/consumer of the

network traffic. The traffic distribution, bandwidth slots requirements, and destination

coordinates are provided as parameters.

136 CHAPTER 8. SIMULATION AND HARDWARE PROTOTYPING ENVIRONMENT

Figure 8.3: Graphical OMNeT++ NoC simulation environment

• The routing unit is responsible for choosing the route that flits will traverse. All flits

entering a router are sent directly to the routing unit. This unit then sends the flit to the

output port of the direction chosen by the routing algorithm. Both the wXY-routing and

the XY-routing algorithms are implemented and may be configured from the configuration

file. Since the simulator does not simulate computation, there is no direct processing

delay. Therefore, to make the simulation accurate, there is an added sending delay of flits

to the output ports of the routing unit. This delay simulates the processing delay and is

specified in the configuration file.

• The output port is a simple module consisting of a series of queues. These queues are

objects provided by the OMNeT++ framework to hold OMNeT++ messages. For the

simulation, these messages represent flits and include all necessary fields (flit type, des-

tination, source, transaction ID, required bandwidth slots, and priority). The objective of

the module is the delegation of queues to incoming transactions and the arbitration of flits

to the corresponding router output and its connected link.

• The router is a compound module and consists of a routing unit and 5 output ports – one

to each neighboring router and one to the Processing Element (PE) connected with the

router.

• The Networks-on-Chip (NoC) is a compound module consisting of several routers and

their respective PEs. These are organized in a 2D Mesh whose dimensions are given as a

parameter.

8.1. SIMULATION ENVIRONMENT 137

An example simulation setup is shown in Figure 8.3 using the graphical output of the OM-

NeT++ simulator. Here the simulator is running a 4×4 NoC. The figure also shows the internal

connections of one of the routers (top right).

Since a router has 5 output ports, the centralized buffer pool used for the on-demand Virtual
Channel Buffer (VCB) assignment is not implemented directly in the architecture. However,

queue usage is limited by a per router global counter. This counter is decremented each time

any of the routers output ports’ queues are occupied and incremented upon their release. If

the counter reaches zero, no further queues are used in any of the output ports. This indirectly

implements the centralized buffer pool needed for the on-demand VCB assignment. The value

of this counter is not provided as a parameter and must be changed in the header file.

Link arbitration to provide transaction-level guarantee is performed by the output ports using

the bounded-arbitration-algorithm presented in Chapter 4. Each output port can send one flit

in every cycle. Sending is rotated through the non-empty message queues giving each queue as

many cycles as bandwidth slots allocated to the transaction in each queue. Once all slots are

used up the procedure is repeated considering the total number of slots that is specified in the

header file. There are never more bandwidth slots allocated then the total available slots. This is

insured through the wXY-routing algorithm and by discarding transactions those are exceeding

the limit at the output port when using the XY-routing algorithm.

8.1.1.2 Traffic Model Implementation

The OMNeT++ framework directly provides probabilistic distributions for the network traffic.

Therefore, these may be used to define a wide range of traffic characteristics in the configuration

files.

Uniform Traffic: A simple traffic scenario is uniform traffic. Here all PEs communicate with

all other PEs. Uniform traffic is not very realistic in a NoC scenario. It does however

provide a worst-case scenario. Although this kind of traffic distribution is unlikely in

a specific application, it reveals some of the rudimentary aspects of the used routing

algorithms. It shows the effect of the higher bandwidth traffic on a NoC environment.

For simplicity, all transactions are of the same class specification. Therefore, they all

have the same packet length in flits and the same number of required bandwidth slots

which they may allocate. In the simulation, this is implemented by setting a random

destination as default in the simulation configuration file. An exemplary specification is

given below:

..dest_x = intuniform(0,3)

..dest_y = intuniform(0,3)

This parameter is read by the behavioral implementation for each new transaction and

provides a different random value between 0 and 3 at each time, i.e. for a 4 × 4 NoC.

Task-based Traffic: Task based traffic uses traffic from real representative applications suit-

able for NoC design such as real-time multimedia applications shown in Chapter 9. Com-

138 CHAPTER 8. SIMULATION AND HARDWARE PROTOTYPING ENVIRONMENT

munication volume among the computing modules and the characteristics of the applica-

tion are collected during application exploration. This information is usually given as a

task graph where the nodes represent individual tasks and the edges represent communi-

cation links weighted by the required communication bandwidth.

IP_Switch

NI_Switch

IP_Module

NoC_Switch

Network_Interface

NoC_NI

OCP_NI

Input_Port Output_Por Proc_Por

Main NoC

NoC_Link

Input_Decoder Output_Arbiter VC_Arbiter VC_Selector Virtual_Channel Output_Decoder PC_Arbiter

Request_Mux FC_Module
11

Proc_Input_Decoder Processor_ArbiterProc_Req_Mux

1

Figure 8.4: The class structure of the configurable NoC (a library structure)

The simulator allows two transactions originating at each PE. Therefore, each PE can send

data to two separate destinations. However, each PE only has one packet queue. Packets

to different destinations are inserted sequentially. For task based traffic the destination of

each transaction must by provided for each PE. This is done as follows:

*.pe[1].dests = 2

*.pe[1].dest_x = 1

*.pe[1].dest_y = 2

*.pe[1].dest_x2 = 0

*.pe[1].dest_y2 = 1

*.pe[2].dests = 1

*.pe[2].dest_x = 2

*.pe[2].dest_y = 2

Here, the number of different destinations is specified for each PE. The x, y coordinates

(in a 2D Mesh topology) for each destination are then specified. The originating PE for

each transaction is invariant. Different mappings must be calculated before the simulation

starts with possibly a different tool. Therefore, a separate simulation run is needed for

each mapping and each with different traffic configurations.

8.1. SIMULATION ENVIRONMENT 139

Network Interface

msg

msg

processID

src_addr

dest_addr

keepConnection

fr
o
m

/t
o

th
e

N
o

C
_

N
I

MCmd

MAddr

MData

MConnId

MDataLast

MDataValid

MBurstLength

MBurstSeq

MBurstPrecise

MAddrSpace

SCmdAccept

MCmd

MAddr

MData

MConnId

MDataLast

MDataValid

MBurstLength

MBurstSeq

MBurstPrecise

MAddrSpace

MDataInfo

SCmdAccept

OCP
(Open Core

Protocol)

NI
(Network

Interface)

IP
(Intellectual property, e.g.

a processing element)

last_msg

last_msg

OCP

Figure 8.5: An overview of the OCP implementation with its signals

8.1.2 SystemC-based NoC Simulator

Besides the OMNeT++ based NoC simulator a configurable NoC simulation tool for a cycle-

accurate simulation at system-level is also implemented using SystemC in the scope of this

thesis work [60]. Configurability of the NoC is achieved by a library-based approach. Generic
Modules are used as template components to build topology-dependent parts. Most of the class

names include the postfix “generic” as they can be configured as concrete modules. Figure 8.4

shows an overview of the class structure of the configurable NoC implementation (a library

structure). The tiles are represented by the class IP Switch (see Figure 8.4). Links are imple-

mented as NoC Link. A tile is composed of a switch with a NI (NI Switch) and a specific

Intellectual Property (IP) (IP Module). The NI switch consists of a router (NoC Switch)

and a NI (Network Interface). A router instantiates its ports which are the input ports

(Input Port), the output ports (Output Port), and the processor port (Proc Port). A

NI holds the inner modules: a NoC NI (NoC NI) and an IP-dependent NI (OCP NI).

Two modules are located in an input port as can be seen on Figure 8.4: a request multi-

plexer (request mux) and a flow control module (FC Module). They are created, ini-

tialized, and connected in the constructor of the input port. The functionality of an input

port module is low as it just holds and connects its inner components. But the implementa-

tion of the output port modules needs special attention and needs to be configurable. There-

140 CHAPTER 8. SIMULATION AND HARDWARE PROTOTYPING ENVIRONMENT

Determination of

Topology and application mapping

information

Structure of

routers

links

Building parts

Build IP_Switches

Build NI_Switches

Build NoC_Switches

Build router ports

Build input ports

Build output ports

Build processor ports

Combining and connecting parts

NoC configuration

Simulation

Figure 8.6: Design flow of the NoC architectures having different dimensions

fore, the number of Virtual Channels (VCs) is designed to be configurable by the constant

CONFIG VC NO. Every module is instantiated and connected in the constructor of an out-

put port. The components of the output port are shown in Figure 8.4: the Input Decoder

(inp dec), the Output Arbiter (out arbit), the Virtual Channel Arbiter (vc arbit), the

Virtual Channel Selector (vc select), the Virtual Channels (vir ch[CONFIG VC NO]),

the Output Decoder (out dec), and the Physical Channel Arbiter (pc arbit). The processor

port module (Proc Port) connects the router with the attached NI. It consists of the processor

input decoder (Proc Input Decoder), the processor arbiter (Processor Arbiter), and

the processor request multiplexer (Proc Req Mux) (see Figure 8.4). They are instantiated and

connected in the constructor SC CTOR(proc port). All parts of the NoC implementation

are clocked.

An inter-core protocol is used for the communication with other IPs, i.e. a PE. It utilizes a

standardized Open Core Protocol (OCP) [121] interface to communicate with the attached NI.

The implementation of the OCP with its necessary signals and methods is shown in Figure 8.5.

This implementation is used by the OCP NI module presented in Figure 8.4.

8.1. SIMULATION ENVIRONMENT 141

8.1.2.1 Configuration for the Application-specific NoC

The presented simulation tool is used to build application-specific NoCs and enhancing the tool

for the adaptive system-on-chip communication architecture is on the future working list. The

application-specific NoC is customizable therefore, the configuration of the network parame-

ters is done utilizing the presented library-based approach. Most of the network parameters

are configurable through configuration files which include definitions of constants. Similar to

the Xpipes Lite [157] architecture, replacements of constants in the source code are done with

the preprocessor commands. The Xpipes lite [157] architecture utilizes this strategy to build

synthesizable NoCs in SystemC. Global constants for the whole NoC may be found in the

noc configuration.h header file. The file switch configuration.h includes con-

figuration constants for a single router. Configuration of the NI is set in ni configuration.h.

OCP-dependent parameterization is done in ocp configuration.h. IP Modules are con-

figured in ip configuration.h. An example for setting the parameter flit size is as fol-

lows:

#define CONFIG_FLIT_SIZE 32

Here, the size of a flit and thus the channel-width of the NoC is set to 32 bits. The complete

list of configuration constants are not explained in detail in the scope of this thesis. Most of

the modules in a NoC depend on the topology of the network. Therefore, this work introduces

generic types of modules which may be instantiated as concrete modules through scripts. The

introduced components of a NoC in Figure 8.4 are generic modules. A positional router in the

network has to be specific in such a way that its input and output direction have to be defined.

Additionally, to save links for the direction bits the output directions of the neighboring routers

are also important. These factors need to be considered when implementing a distinct NoC.

Scripts are written in shell scripting language or C++ programming language to enable the build-

ing of concrete modules. Here, concrete means that the input, output directions, and the output

ports of the neighboring routers are fixed in the implementation of the modules. Figure 8.6

shows the process of creating an application-specific NoC for simulation purposes. From the

topology, the router and link structure is derived. That determines the number of input and out-

put ports of each router and the output ports of their neighboring routers. With that information

the single parts can be built out of the library. The specific types can be created invoking the

scripts. For a complete NoC implementation all the tiles have to be connected manually in the

main() function of the simulation. Therefore, the tiles and the links are connected to a whole

network in the main() function. Topology-independent configuration settings can be made by

assigning distinct values to the NoC parameters located in the configuration files. Finally, a

simulation of the NoC can be executed. A possible reconfiguration of parameters is denoted by

the arrow back to the NoC configuration in the Figure 8.6.

8.1.3 Application Mapping Tool

An application mapping tool is implemented in this thesis based on C++ programming lan-

guage. The mapping tool is kept configurable by plugging in several state-of-the-art application

142 CHAPTER 8. SIMULATION AND HARDWARE PROTOTYPING ENVIRONMENT

mapping algorithms. The agent-based distributed application mapping (ADAM) presented in

Chapter 6 is plugged onto this application mapping tool for the simulation purpose. Other

mapping algorithms that are studied to design an application-specific NoC, e.g. the ant colony
optimization algorithm, genetic algorithm, and branch-and-bound based application mapping

algorithm presented in Chapter 4 are also plugged onto this tool. Details of the tool are not

explained here.

(c) HW implementation on FPGA board
(a) HW implementation with Xilinx PlanAhead, visualized

with FPGA Editor

On-demand
Buffer assign.
(increases the

router area but
resource

multiplexing in
buffer saves 42%
which takes 60%

of the router area)

Router w/o adaptivity
(No buffer is shown). Buffer is
implemented using BlockRAM

Adaptive routing, on-
demand VCB, and 2X-

Links

Monitoring
component

Adaptive Router

Component Area

wXY-routting 122 slices

On-demand VCB 129 slices

2X-Links 74 slices

Monitoring
component

46 slices

(b) Hardware requirement for AdNoC components

Figure 8.7: Hardware prototyping of the NoC architectures

8.2 Hardware Prototyping

A configurable NoC library using the hardware description language VHDL is developed dur-

ing the thesis work. Different hardware parts, their functionalities, and hardware result (in

number of slices and look-up-tables) are already discussed in Chapter 7. Here, only the pro-

totyping environment is presented. Hardware results are generated synthesizing these VHDL

implementations. The VHDL implementation of the NoC architecture is simulated using the

ModelSim simulator from Mentor graphic [108] and synthesized using Xilinx tools from Xil-

inx, Inc [177]. Different tools from Xilinx ISE, e.g. FPGA Editor, XPower, CORE Generator,

PlanAhead design analysis tool are used for hardware analysis [177]. The prototype of the NoC

architecture is evaluated on the prototyping boards the CHIPit [36] and the HW-AFX-FF1152-

200 [177]. The hardware synthesis of the adaptive system-on-chip architecture is shown in

Figure 8.7. Figure 8.7 (a) shows the hardware usage of different parts of the adaptive system-

on-chip architecture placed by PlanAhead design analysis tool and visualized by FPGA Editor.

Figure 8.7 (b) shows the hardware results for the parts that are necessary to implement for

achieving architecture-level adaptation on top of the basic QoS-supported NoC presented in

Chapter 3. Finally, Figure 8.7 (c) shows the targeted prototyping board.

8.3. CONCLUSION 143

8.3 Conclusion

Different simulation tools and the prototyping environment are explained in short in this chapter.

The evaluations of the proposed adaptive system-on-chip communication architecture presented

in Chapter 5, Chapter 6, and Chapter 7 are done using the presented simulation tools. The

router architecture presented in Chapter 7 is prototyped using the environment described in

Section 8.2. The evaluation results are given in Chapter 9.

Chapter 9

Results and Case-Study Analysis

In this chapter, a detailed case-study analysis to show the benefits of the proposed adaptive

system-on-chip communication architecture is shown. The result includes both the analysis

for the system-level adaptation as well as the architecture-level adaptation of the Adaptive
Networks-on-Chip (AdNoC) architecture. Different parts of the architecture-level adaptation

are evaluated in this chapter to show their flexibility, performance gain, and resource utiliza-

tion.

The simulation environment and tools that are used to show the case-study analysis of the pro-

posed adaptive system-on-chip communication architecture are presented in Chapter 8.

a) Video Object Plane Decoder (VOPD) b) Pictute in Picture (PIP) c) Multi-Window Display (MWD)

VLD RLD
Iqu
ant

Inv
sca

ac
pre

idct

Strp
mm

Up
sam

Vop
rec

padVop
mm

arm70

362

362

357 70

16300

353362

313

500

313

94

49

27

Inp
mm

hs vs jug1

Inp
mm jug2 mm

Op
disp

128

64

64 64

64 64

64

64

in nr me
m1

vs hs me
m2 hvs

jug1 me
m3 jug2

se Ble
nd

64 64

64

96

96

96

128

96
96

96

64
64

96

Figure 9.1: Multi-media applications used for the case study analysis

Several embedded systems applications from different application domains, i.e. multi-media

applications with real-time constraints, robotic applications having both a control and image

processing part, the embedded E3S benchmark suite [50], and applications from Task Graph
for Free (TGFF) [46] have been used to show the gain in terms of performance, increased re-

source utilization, etc. for the proposed AdNoC architecture compared to the state-of-the-arts.

The multi-media applications that are used are: Video Object Plane Decoder (VOPD), Picture
in Picture (PIP), and Multi-Window Display (MWD) (see Figure 9.1). The robotic applica-

tion that is used in the AdNoC exploration is the Image Processing Line (IPL) application (see

Figure 9.2). From the E3S benchmark suite the applications that are used are: the Automo-
tive/Industry application, the Consumer application, and the Telecom application (see Figure 9.3

145

146 CHAPTER 9. RESULTS AND CASE-STUDY ANALYSIS

for a subset of the E3S benchmark suite applications). Several other applications have been gen-

erated using the state-of-the-art application task graph generation tool TGFF [46].

Left
Skin

Image

Right
Skin

Image

Left
Shirt

Image

Left
Shirt

Image

Gradient1 Gradient2

Post
Proces
sing1

Post
Proces
sing1

RGB

HSV

Gauss
Smooth2

Right
Image

Left
Image

RGB

HSV

Gauss
Smooth1

Skin
Filter1

Skin
Filter2

Shirt
Filter1

Shirt
Filter2

a) Application task graph
 Image Processing Line (IPL)

Robot eye camera
University of Karlsruhe (TH)
http://wwwiaim.ira.uka.de/

Object: human
body

Shirt edge detected Skin detected

b) Application scenario of IPL

43 43

4.8 4.8

4.8 4.8 4.8 4.8

1.6 1.6

1.6

1.6

1.6

1.6

1.6

1.6

Figure 9.2: Robotic application (IPL) used for the case study analysis

9.1 Evaluation of the Proposed AdNoC Architecture

The adaptive system-on-chip communication architecture (AdNoC) is evaluated with different

case-study analysis here. The proposed AdNoC architecture has mainly two parts: the system-
level presented in Chapter 6 and the architecture-level presented in Chapter 7. Different features

and benefits related to both the system-level adaptation and the architecture-level are described

in the following.

9.1.1 ADAM Provides Flexibility and Reduces Computational Cost

The ADAM algorithm is evaluated using different evaluation matrices. The performance is

shown in terms of execution time and the volume of the generated monitoring traffic and the

results are compared to the state-of-the-art centralized approaches [31, 37, 147]. In addition,

9.1. EVALUATION OF THE PROPOSED ADNOC ARCHITECTURE 147

c-jpeg sink
6 1

flit-g

flit-b

flit-r

rgb-yiq

2
2

2 2

2 2
src

a) Consumer application

src

fir

angle

road

4

table

4

sink
1

fft

Matrix

ifft

15

4 15

15 15

4

b) Automotive/Industrial application

ce 2 fft 2

4

3

3

3

10

ac 2 fpba 2
3

src

sink

c) Telecom application

Figure 9.3: Applications form the E3S benchmark used for the case study analysis

the cluster-level mapping algorithm is compared to an exhaustive offline mapping algorithm in

order to see how far the ADAM is off from an optimum solution.

In Figure 9.4, the ADAM algorithm is compared to the centralized one [31]. The mapping com-

putation of the proposed ADAM algorithm is partitioned into several steps shown in Figure 9.5.

The configuration parameters for this experiment are as follows: the average cluster size is 64

and the number of tasks is 48. In this experiment, the number of cycles to check whether a task

can be mapped onto a tile is represented by “X” (it may differ depending on the instruction

set of the processing element). The computational complexity of different algorithms and their

parts are considered to calculate the value of the needed cycles. The computational complexity

of the ADAM algorithm is given in Chapter 6 and the state-of-the-art algorithms in [31]. It is

considered that each task has to be checked for a possible assignment to each tile inside a virtual
cluster while in the non-clustered approach the tiles of the whole NoC have to be considered.

Therefore, the ADAM algorithm can reduce the mapping computation complexity, e.g. on a

32x64 system it is estimated an approximate 7.1 times lower computational effort compared to

the simple Nearest-Neighbor (NN) heuristics proposed in [31]. Figure 9.6 shows that ADAM
algorithm scales in the same way as the non-clustered architecture when no clustering approach

is considered in the proposed algorithm.

Figure 9.7 demonstrates the advantage of the proposed ADAM algorithm when the communi-

cation volume generated by the NoC needed for the mapping algorithm is considered. The

cluster-based distributed approach is compared to the centralized approaches [37, 147] and a

fully distributed approach (each tile acts as an individual cluster). The experimental setup is as

following (for details of the parameters see Chapter 6): the number of classes and PE types are

16, the resource requirement encoding requires 1 Byte, the task identification number encoding

requires 4 Bytes, the number of tasks encoding requires 4 Bytes, and the bandwidth encoding

requires 1 Byte of memory space. To calculate the mapping traffic produced by the proposed

approach it is needed to break down the communication into the following parts: (1) transmis-

sion of the task histogram thist[] to the GA, (2) transmission of the task graph to the CA of

the suitable cluster, (3) reporting the cluster state to the CA, and (4) transmission of the cluster

148 CHAPTER 9. RESULTS AND CASE-STUDY ANALYSIS

Mapping computational effort (fixed cluster size)

1000

10000

100000

1000000

64 100 144 256 400 1024 2048 4096

NoC size [tiles]

X
* c

yc
le

s

ADAM (The proposed algorithm)
Centralized NN (app. from [31])

Centralized MAC (app. from [31])

Centralized PL (app. from [31])

Comparison to centralized algorithms from [31]

Figure 9.4: Mapping computational effort (fixed cluster size)

state to the GA. The experiment shows that the proposed approach has noticeable advantages in

reducing the amount of communication volume (10.7 times lower on a 64× 64 NoC) caused by

the mapping when the heterogeneous MPSoC has many tiles.

In Figure 9.8, a comparison of the suitability of the proposed cluster-level mapping algorithm is

presented. It shows that the ADAM algorithm does not produce optimum results as they can be

produced by the offline exhaustive algorithm which requires a far higher computational effort.

But relative to the consumed computation effort the ADAM algorithm provides a reasonable

near-optimal solution. The communication volume serves as the optimization criteria for the

mapping algorithm (it reduces the communication related energy consumption [77]), and on an

average a deviation of a mere 13.3% compared to the exhaustive mapping algorithm is observed.

For simplicity reasons, to make the comparison to the offline exhaustive mapping algorithm, a

homogeneous tile has been considered. The near-optimal result can be used for the runtime task

mapping as this result may be traded-off with the adaptivity and the lower computational effort.

The ADAM algorithm is further evaluated by means of a robotic application presented in [8].

It is found that in the proposed algorithm the near optimal communication volume to be 120.1

MB/s whereas, in the exhaustive offline mapping algorithm it can be reduced to 106.9 MB/s.

The result is acceptable as it is done at runtime using a heuristic algorithm and consuming 2

times lower execution cycles compared to NN heuristics. Mapping the IPL application takes

only 11241 × X cycles using the proposed ADAM algorithm orthogonal to any instruction set

processor compared to the NN heuristics (takes 20480×X cycles) proposed in [31] on a 32×64
NoC. Therefore, it is observed that the proposed runtime agent-based distributed application

9.1. EVALUATION OF THE PROPOSED ADNOC ARCHITECTURE 149

Mapping components (ADAM)

10

100

1000

10000

Preparation Match Rebind
match

Migration (Re-)clustering Mapping

Components

X
* c

yc
le

s
8x8 NoC

16x16 NoC

32x32 NoC

64x64 NoC

Figure 9.5: Computation complexity of the components of the ADAM algorithm

mapping approach reduces the overall monitoring-traffic compared to a centralized mapping

scheme and requires less execution cycles compared to a non-clustered centralized approach.

9.1.2 On-demand VCB Assignment Increases Buffer Utilization

For the evaluation of the on-demand VCB assignment and the wXY-routing algorithm of the

AdNoC architecture, the proposed scheme is compared with two representative state-of-the-art

static architectures, namely QNoC [23] and Xpipe [14]. The proposed architecture and these

architectures share the same flow control mechanism during transmission except the proposed

scheme supports adaptive transactions. Both of these architectures exploit packet-based system-

on-chip communication and use wormhole routing with VC implementations. QNoC provides

QoS implementing different service classes. It uses a fixed number of VCBs in each output port

and deploys a distributed deterministic XY-routing algorithm. The Xpipe architecture also uses

fixed number of VCBs in each output port and a source-based deterministic routing. For a fair

comparison, the source-based deterministic routing of Xpipe is replaced with a wXY-routing
algorithm in the evaluation. These parameters in the design are the most important for the

flow control mechanism and support for the QoS. The fixed buffer assignment strategy in the

QNoC and the Xpipe allows us to compare the buffer utilization between the fixed approach and

the proposed on-demand buffer assignment approach. Therefore, considering these character-

istics/parameters, the proposed approach is compared to the static QNoC [23] and Xpipe [14]

architectures.

150 CHAPTER 9. RESULTS AND CASE-STUDY ANALYSIS

Mapping computational effort (1 cluster)

1000

10000

100000

1000000

64 100 144 256 400 1024 2048 4096

Cluster size [tiles]

X
* c

yc
le

s

ADAM (The proposed algorithm)
Centralized NN (app. from [31])

Centralized MAC (app. from [31])

Centralized PL (app. from [31])

Figure 9.6: Comparison of the computation complexity of the ADAM algorithm

Application #of tasks Link capacity (MB/s) NoC
VOPD 12 845 4 × 3
PIP 8 200 3 × 3
MWD 12 221 4 × 3

Table 9.1: Application and corresponding NoC specification

Some assumptions are taken for the experimental setup. The link capacity for each application

is taken as:

LC = BWmax
k + Avg(Bi)[MB/s] (9.1)

where, i, k = tasks → taskd, LC stands for the link capacity, BWmax
k for the maximum

bandwidth, and Avg(Bi) for the average bandwidth. For this exploration, three applications

shown in Figure 9.1 have been used. The specification of the applications and the dimensions

of the NoC architectures are given in Table 9.1. For the evaluation, 25 representative mapping

samples for each application have been investigated . The experiments with different subsets of

25 samples from a large mapping space have been then conducted. Experiments revealed that

for different subsets of 25 samples, the result remains similar. Therefore, in this thesis only a

subset of 25 exemplary results are shown.

The runtime distributed application mapping algorithm (ADAM) in AdNoC changes the map-

ping of the running tasks. Therefore, it is needed to configure the underlying communication

structure for the current instance of the application. Here, in both the figures XY-n stands for the

XY-routing algorithm having a number of n VCBs in each output port, comparable to the QNoC

9.1. EVALUATION OF THE PROPOSED ADNOC ARCHITECTURE 151

Traffic produced to collect the current MPSoC state

1K

10K

100K

1000K

10000K

100000K

1000000K

10 20 40 100 200 500

Application size [tasks]

Am
ou

nt
 o

f d
at

a
by

 e
ac

h
in

st
an

ce
 o

f m
ap

pi
ng

ADAM 8x8 (proposed algorithm)

ADAM 32x32 (proposed algorithm)

ADAM 64x64 (proposed algorithm)
Centralized 8x8

Centralized 32x32

Centralized 64x64

Fully distributed 8x8

Fully distributed 32x32

Fully distributed 64x64

[B
yt

es
]

Figure 9.7: Traffic produced by the ADAM compared to the algorithms [31, 37, 147]

architecture, fB-wXY-n stands for the wXY-routing algorithm having n number of fixed VCBs in

each output port, comparable to the Xpipe architecture and dB-wXY-n stands for the proposed

wXY-routing algorithm having n number of on-demand VCBs in each router, the proposed on-

demand VCB assignment scheme in the AdNoC architecture.

Figure 9.9 shows the behavior of the different routing and buffer assignment schemes when the

ADAM algorithm changes the task mapping. It is found that if the PIP application uses the XY-
routing algorithm and in total 24 VCBs, then the success rate to provide bandwidth guarantee

(QoS) is 11%. If the routing algorithm is just changed to the wXY-routing algorithm having

the same buffer assignment strategy the success rate increases to 80%. 100% success rate has

been found in the transmission using 48 VCBs in both the routing schemes. This implies that

even if the buffer assignment strategy is fixed using the wXY-routing algorithm the proposed

scheme can improve the successful transaction rate. Now as it may be seen that in the proposed

scheme using the dB-wXY-2 strategy (requiring only 18 VCBs) a success rate of 43% is gained

and using only 27 VCBs a 100% success rate may be achieved. Therefore, the number of VCBs
in the AdNoC architecture may be reduced by 44% while keeping the success rate 100% like the

other schemes. Similar results have also been observed for the application VOPD and MWD.

Therefore, besides the degree of freedom in the adaptation during runtime the proposed on-

demand buffer assignment strategy together with the runtime wXY-routing algorithm gains a

higher successful transaction rate to the VCB unit compared to the static approaches QNoC and

Xpipe (shown in Figure 9.10).

152 CHAPTER 9. RESULTS AND CASE-STUDY ANALYSIS

Mapping instance of the
Robotic application

2000

4000

6000

8000

10000

12000

14000

C
om

m
un

ic
at

io
n

co
st

 [M
B

/s
]

Resulting communication volume
after mapping

0
MPEG VOPD Image

Processing Line
(x 1/100 MB/s)

MWD

Applications

ADAM (The proposed algorithm)
Exhaustive optimization
for mapping

Resulting mapping
solution using

ADAM

Gauss

2
Input Grad

RGB 2

HSV

Gauss

1
Post

Shirt

Filter

Skin

Filter
Output

Part of the SoC

Figure 9.8: Comparing ADAM algorithm to exhaustive offline mapping algorithm

The XY-routing algorithm is forced to take deterministic routes where the wXY-routing algorithm

takes bandwidth usage into consideration, choosing routes with low loads. This focuses the

traffic onto specific links increasing their required capacity while other links may remain idle.

Figure 9.11 demonstrates this for the VOPD application. The result shows that for a given

specific mapping and link capacity, the wXY-routing algorithm is more likely to find a successful

routing than the static XY-routing algorithm. On an average this likelihood is around 20% for

the VOPD application.

It can be concluded that the AdNoC architecture enjoys the freedom to adapt during runtime and

may very well increase the rate of successful transactions for a changing network compared to

static NoCs using the on-demand VCB assignment and the wXY-routing algorithm. Static NoCs

are fixed as far as VCB assignment is concerned and they cannot change their configuration

and placement of virtual transactions. Besides this unique feature, AdNoC also reduces the

total number of VCBs by 42%. All these unique properties puts AdNoC in a favorable position

compared to the existing static architectures for the next generation adaptive MPSoC design.

9.1.3 Configurable Links Increase Resource Utilization

In order to evaluate the proposed runtime configurable 2X-Link different simulations are per-

formed using the multi-media applications (see Figure 9.1) and the E3S benchmark [50] suite

(see Figure 9.3).

In Figure 9.12, the average throughput for different types of links for the Automotive application

which is mapped onto a 5 × 5 NoC having the link capacity of 15 MB/s for the Normal-Full-

9.1. EVALUATION OF THE PROPOSED ADNOC ARCHITECTURE 153

QNoC architecture Xpipe architecture AdNoC architecture
Different routing and buffer assignment scheme comparing

the proposed approach with QNoC and Xpipe architectures

Successful connections and required VCBs for different mapping

0

20

40

60

80

100

120

140

XY-1 XY-2 XY-3 fB-wXY-1 fB-wXY-2 dB-wXY-2 dB-wXY-3 dB-wXY-4

#o
f V

C
B

s
an

d
su

cc
es

s
ra

te
PIP (Successful transactions)

VOPD (Successful transactions)

MWD (Successful transactions)

PIP (Buffer bocks)

VOPD (Buffer bocks)

MWD (Buffer bocks)

Figure 9.9: Successful transactions and corresponding buffer requirement

Duplex-Links and for each half-duplex component of the 2X-Links, and 30MB/s for the TDD-
Links. The average throughput is calculated as follows:

Thaver = Thtot/(2 × ((M − 1) × N + (N − 1) × M)) (9.2)

In Equation 9.2, (M × N) is the dimension of the Mesh NoC and Thtot the total through-

put. In real-time applications, the higher the data injection rate, the earlier the deadline will

arrive. Therefore, to keep the deadline with a higher data injection rate, the bandwidth must be

increased to enhance the transmission ability (BWnew = BWunit × injection rate). It may

be observed from the figure that the average throughput of the NoC with the Normal-Full-
Duplex-Links is much lower than the average throughput of the NoC with the 2X-Links or the

TDD-Links at relatively high data injection rates. In scenarios, where there is only asymmet-

ric traffic on the NoC, there is no difference between the 2X-Link and the TDD-Link. On the

other hand, if bidirectional communication exists, the average throughput of the NoC with the

2X-Links is slightly lower than the NoC with the TDD-Links.

Figure 9.13 indicates the timeliness of the Telecom application (mapped onto a 5 × 5 NoC

having the link capacity of 20 MB/s for the Normal-Full-Duplex-Links and for each half of the

2X-Links and 40MB/s for the TDD-Links) with different data injection rate. The timeliness is

the ratio of the number of deadlines met to the total number of deadlines of a given application:

timeliness = # of deadlines met / # total deadlines (9.3)

From this figure, it can be seen that most of the time the timeliness of the Normal-Full-Duplex-
Links , is lower than the other two types of links.

154 CHAPTER 9. RESULTS AND CASE-STUDY ANALYSIS

QNoC architecture Xpipe architecture AdNoC architecture
Different routing and buffer assignment scheme comparing the

proposed approach with QNoC and Xpipe architectures

Higher resource utilization

Resource utilization for unit VCB

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

XY-1 XY-2 XY-3 fB-wXY-1 fB-wXY-2 dB-wXY-2 dB-wXY-3 dB-wXY-4

U
til

iz
at

io
n

ra
tio

 (s
uc

ce
ss

fu
l

tr
an

sa
ct

io
n/

un
it

VC
B

)

VOPD

MWD

PIP

Figure 9.10: Resource utilization for unit virtual channel buffer block

Figure 9.14 depicts the required link capacity of the NoC with three different types of links

when the multi-media application VOPD is running on the NoC (mapped onto a 5 × 5 NoC

having the link capacity of 500 MB/s for the Normal-Full-Duplex-Links, two times 500 MB/s

for the 2X-Links, and 1000MB/s for the TDD-Links). Obviously, the NoC with the Normal-
Full-Duplex-Links requires much more link capacity than the 2X-Links and the TDD-Links at

design-time. Since the 2X-Links can dynamically adapt their data-transmitting direction to meet

the bandwidth requirement and the TDD-Links support bidirectional communication, both of

them can guarantee the required bandwidth with lower link capacity compared to the Normal-
Full-Duplex-Links.

Fault-tolerance ability is important to the MPSoC design. In this simulation, it is focused on

the average timeliness of the NoC with different types of links when some links fail randomly.

The metric “average timeliness” is different from ”timeliness” shown in Figure 9.13 and it is

used to calculate the fault-tolerance ability. All the possible combinations of the failed-links are

enumerated and their average timeliness are calculated. The Tk,aver is defined as the average

ratio of the number of deadlines met to the total number of deadlines of a given application

when k links fail randomly. The equation is shown below. There, k represents the number of

failed-links, while #Comb is the un-ordered collection of k failed links among all the links.

Tk,aver = (

#Comb∑
i=1

timeliness) / (#Comb) (9.4)

The state-of-the-art Normal-Full-Duplex-Links are static. If one link fails, the NoC will lose

9.1. EVALUATION OF THE PROPOSED ADNOC ARCHITECTURE 155

Link capacity distribution

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9

Different mapping instances

M
ax

im
um

 li
nk

 c
ap

ac
ity

wXY

XY

wXY average

XY average

Figure 9.11: Utilization of the link capacity (VOPD application)

the ability to transmit data from the port which the link is tied to. Similar to the Normal-Full-
Duplex-Links, the TDD-Links also do not have the fault-tolerance ability. On the contrary, the

2X-Links can adapt their data-transmitting direction to meet the performance-related guarantees.

From the Figure 9.15 it can be seen that the average timeliness of the NoC with the 2X-Links
is much higher than the NoC with the Normal-Full-Duplex-Links (for the Robotic application

which is mapped onto 3 × 3 NoC having the link capacity of 30.7 MB/s for the Normal-Full-
Duplex-Links, two times 30.7 MB/s for the 2X-Links, and 61.4 MB/s for the TDD-Links). The

fault-tolerance ability (ftk) is calculated according to the following equation (NFDL represent

the Normal-Full-Duplex-Link):

ftk =
Tk,aver,2X−Links − Tk,aver,NFDL

1 − Tk,aver,NFDL

(9.5)

For a simple example, if the number of failed-links is 1, the fault-tolerance ability of the 2X-
Link is (97.50% − 94.17%)/(1 − 94.17%) = 57.12%. This result means that the NoC with

the 2X-Links can still work properly with the probability of 57.12%, when only one link fails

randomly.

In the scope of this work, load balancing means to spread communication over all the links to

avoid producing communication bottlenecks and to relieve the link resource congestion. The

advantage of applying load balancing techniques is that hardware resource utilization will be

optimized and therefore, it may make the system-on-chip communication more able to meet the

requirements of unforeseen traffic circumstance. In the simulation, the bandwidth occupancy
factor of each port is measured through BW occupancy factor = BWutilized/BW . The lower

the factor is, the higher the potential available link capacity is. Therefore, the NoC is more

flexible to support unforeseen traffic (e.g. new transactions etc.).

156 CHAPTER 9. RESULTS AND CASE-STUDY ANALYSIS

Average throughput of the Automotive application

1

1.5

2

2.5

3

3.5

4

4.5

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Data injection rate

Av
er

ag
e

th
ro

ug
hp

ut
 o

f e
ac

h
lin

k
(M

B
/s

) Normal-Full-Duplex-Links

2X-Links
TDD-Links

Figure 9.12: Average throughput of the Automotive application

Timeliness of the Telecom application

0

0.2

0.4

0.6

0.8

1

1.2

1 1.01 1.2 1.3 1.4 1.43 1.6 1.7 1.8 1.9 2 2.01 2.86 3.34 4.01 5.01 5.72 6.67 13.3 20 40

Data injection rate

H
it

ra
te

Normal-Full-Duplex-Links

2X-Links
TDD-Links

Figure 9.13: Timeliness of the Telecom application

Figure 9.16 (Consumer application is mapped onto 4 × 4 NoC having the link capacity of 9

MB/s for the Normal-Full-Duplex-Links, two times 9 MB/s for the 2X-Links, and 18 MB/s for

the TDD-Links) represents the bandwidth occupancy factor of all ports with different types of

links. Obviously, the bars of the 2X-Links (Figure 9.16 (b)) and the TDD-Links (Figure 9.16 (c))

are much lower and the communication is spread more homogeneously on the NoC than with

the Normal-Full-Duplex-Links (Figure 9.16 (a)). This indicates that the NoCs with the 2X-
Links and the TDD-Links have more potentially available link capacity than the NoC with the

Normal-Full-Duplex-Links.

In order to make the system-on-chip communication more adaptive, the wXY-routing algorithm

is additionally used to determine the communication route instead of the static XY-routing algo-

rithm. Figure 9.16 (d,e,f) depict the bandwidth occupancy factor using the wXY-routing algo-

rithm. According to the new route, bandwidth requirements of several links are changed. Even

9.1. EVALUATION OF THE PROPOSED ADNOC ARCHITECTURE 157

Required link capacity of the VOPD application

0

200

400

600

800

1000

1200

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Data injection rate

Li
nk

 c
ap

ac
ity

 (M
B

/s
)

Normal-Full-Duplex-Links

2X-Links
TDD-Links (half)

Figure 9.14: Appropriate link capacity of the VOPD application

Average timeliness and self-healing-ability of the
Robotic application with random failed links

97.50%
96.55%

95.03%

88.65%

92.34%

94.17%

84%

86%

88%

90%

92%

94%

96%

98%

100%

1 2 3

of failed-link

av
er

ag
e

Ti
m

el
in

es
s

(%
)

50%

52%

54%

56%

58%

60%

62%

64%

Se
lf-

he
al

in
g-

ab
ili

ty
 o

f 2
X-

Li
nk

s
(%

)
2X-LinksNormal-Full-Duplex-Links Self-healing-ability of 2X-Links

Figure 9.15: Average timeliness and fault-tolerance ability of the Robotic application

when using this adaptive routing algorithm, the result from the 2X-Links and the TDD-Links
are far better than using the Normal-Full-Duplex-Links as the routing algorithm alone cannot

compensate.

In the given experiments, it is observed that both the 2X-Link and the TDD-Link provide bet-

ter performance results than the Normal-Full-Duplex-Link considering the metrics: average
throughput, timeliness, required link capacity, and the traffic load balancing. The proposed

2X-Link provide fault-tolerance ability unlike both the Normal-Full-Duplex-Link and the TDD-
Link. Therefore, considering the area overhead and the lack of fault-tolerance ability of the

TDD-Links the 2X-Links have been integrated in the proposed runtime adaptive system-on-chip

communication architecture.

158 CHAPTER 9. RESULTS AND CASE-STUDY ANALYSIS

50 %

75 %

87.5 %

100 %

25 %

12.5 %

37.5 %

62.5 %

0 %

row 0

column 0
column 1

column 2
column 3row 1

row 2

row 3

d) BW occupancy factor of

all ports with wXY-routing

(Normal-Full-Duplex-Links)

0 %

33 %

67 %

100 %

B
W

o
c

c
u
p

a
n
c

y
fa

c
to

r
(%

)

row 0

column 0
column 1

column 2
column 3

row 1

row 2

row 3

e) BW occupancy factor of

all ports with wXY-routing

(2X-Links)

0 %

33 %

67 %

100 %

B
W

o
c

c
u
p

a
n
c

y
fa

c
to

r
(%

)

row 0

column 1
column 2

column 3
row 1

row 2

f) BW occupancy factor of

all ports with wXY-routing

(TDD-Links)

0 %

33 %

67 %

100 %

B
W

o
c

c
u
p

a
n
c

y
fa

c
to

r
(%

)

row 3 column 0

row 0

column 0
column 1

column 2
column 3row 1

row 2

row 3

a) BW occupancy factor

of all ports XY-routing

(Normal-Full-Duplex-Links)

0 %

33 %

67 %

100 %

B
W

o
c

c
u
p

a
n
c

y
fa

c
to

r
(%

)

row 0

column 0
column 1

column 2
column 3row 1

row 2

row 3

b) BW occupancy factor

of all ports XY-routing

(2X-Links)

0 %

33 %

67 %

100 %

B
W

o
c

c
u
p

a
n
c

y
fa

c
to

r
(%

)

row 0

column 0
column 1

column 2
column 3

row 1

row 2

row 3

c) BW occupancy factor

of all ports XY-routing

(TDD-Links)

0 %

33 %

67 %

100 %

B
W

o
c

c
u
p

a
n
c

y
fa

c
to

r
(%

)

Figure 9.16: Bandwidth occupancy factor of the Consumer application

9.1.4 Light-weight Monitoring Component

The proposed Runtime Observability infrastructure for the Adaptive Networks-on-Chip archi-
tecture (ROAdNoC) is evaluated with several parameters that directly influence the monitoring

traffic and bandwidth usage:

• The packet injection rate determines the arrival frequency of the new packets to the net-

work in each router.

• The packet flit size is responsible for the duration of traffic (along with the allocated

bandwidth slots).

• The allocated link bandwidth slots per transaction influence the number of simultaneous

transactions per link.

• The number of VCBs limits the number of simultaneous transactions per router.

A number of assumptions are made to determine the simulation parameters: the traffic distribu-

tion used is uniform, the data packet size is 200 flits, the monitoring packet size is 2 flits, and

the bandwidth is 20 slots. These parameters have been chosen to observe the effects of both

no-buffer-event and no-route-found-event.

For the first simulation the data packet injection rates are based on allocated bandwidth slots.

They are chosen as to supply a (near) continuous stream of data by using the highest possible

rates. For instance, a transaction allocated 1 slot out of 20 can at most send one flit every

20ns (20 cycles). Hence, the highest accommodatable data packet (200 flits) injection rate is

one packet every 4us. The traffic is streaming with packet injection being normally distributed

with some variance. This traffic is the worst case for VCB usage as continuous traffic also

requires constant VCB assignment. In the simulation, each router has 8 VCBs. For the adaptive

routing algorithm, the worst case is any slot value greater than 10 as each link can only transmit

one transaction of this type. The simulation results (Figure 9.17) show a gradually increasing

9.1. EVALUATION OF THE PROPOSED ADNOC ARCHITECTURE 159

0

0.5
(0.1%)

1
(0.2%)

1.5
(0.3%)

2
(0.4%)

2.5
(0.5%)

3
(0.6%)

3.5
(0.7%)

0
2.5

(50%)
(2 GB/s)

3.75
(75%)
3 GB/s

5
(100%)
(4GB/s)

A
ve
ra
ge

pe
r
ro
ut
er

in
je
ct
io
n
ra
te

M
on

ito
r
pa
ck
et
s/
10
00

cy
cl
es

(P
er
ce
nt

ba
nd

w
id
th

of
4G

B/
s)

Average per router injection rate
Data packets/1000 cycles

(Percent bandwidth of 4GB/s)

1.25
(25%)
(1 GB/s)

Monitoring traffic remains

under 1% of total traffic.

Monitering traffic rises

linearly with increase in

connection rate.

Here, packets (200 flits) are

injected at a rate of 1.25

packets every 1000 cycles.

This amounts to 1 GB/s, or

25% of the total bandwidth.

1.25 packets injected per

1000 cycles cause 0.65 (2

flit) monitoring packets to be

sent in the same time. This

results in a little bit more

than 0.1% of the total

bandwidth being used by

monitoring.

Non-intrusive monitoring

traffic, using the same

communication link along

with the regular traffic.

Figure 9.17: Monitoring packets injection and traffic density

monitoring packet injection rate for increasing traffic density. However, the monitoring traffic

remains low considering the overall link bandwidth – less than 0.7%.

Figure 9.18 shows the effect of different number of VCBs per router and allocated bandwidth

slots on the monitoring packet injection rate. There is a clear distinction between the low

bandwidth/continuous traffic on the left and the high bandwidth/burst traffic on the right. This is

due to the on-demand VCB assignment being the dominant cause of monitoring events in the left

part and the adaptive wXY-routing algorithm in the right part. The traffic generated by ROAdNoC
infrastructure cannot directly be compared to that of the Æthereal monitoring component. The

occurrence of events in Æthereal monitoring component is different to ROAdNoC infrastructure

as they are mainly managing events necessary for debugging whereas only types of events

that are needed to adapt the system-on-chip communication architecture are managed here.

Using only connection-opened-events and connection-closed-events to calculate the resulting

data rate assumes that all transactions are set up successfully and specifically no alert-events
occur. Under such circumstances the proposed ROAdNoC infrastructure would generate no

traffic. For comparison Æthereal is assumed to have a comparable routing algorithm which is

able to choose alternative routes. It is assumed to produce Æthereal NoC alert-events when

no route is found. Furthermore, it is assumed that any failed transaction attempts are resolved

through re-routing or (re-)mapping by ADAM algorithm if needed.

Taking the assumptions from [39] but expanding the traffic model by the number of successful

transactions setup by the initial attempt to set up 200 transactions, the two approaches may

be compared. To calculate the total monitoring traffic tM requires the number of unsuccessful

transactions u per second, the number of total transactions c per second (200), the monitoring

traffic for an unsuccessful transaction tu, and the monitoring traffic for a successful transaction

160 CHAPTER 9. RESULTS AND CASE-STUDY ANALYSIS

0

0.05
(0.005%)

0.1
(0.01%)

0.15
(0.015%)

0.2
(0.02%)

1 slot 5 slots 10 slots 15 slots 20 slots

A
ve
ra
ge

pe
r
ro
ut
er

in
je
ct
io
n
ra
te

M
on

ito
r
pa
ck
et
s/
10
00

cy
cl
es

(P
er
ce
nt

ba
nd

w
id
th

of
4G

B/
s)

Bandwidth slots (out of 20)
Using fixed injection rate: 0.25 packets/1000 cycles

VCB assignment

dominant

wXY-routing

dominant

4 VCBs

8 VCBs

16 VCBs

Number of

VCBs

Figure 9.18: Causes of monitoring events

ts. For the first attempt the monitoring traffic tM1 is calculated:

tM1 = u · tu + (c − u) · ts (9.6)

Unsuccessful transactions are assumed to be successful after they are re-routed causing the ad-

ditional monitoring traffic, tM2 to be u · ts. By adding tM1 and tM2 the total traffic is obtained

shown in Table 9.2. For the first comparison, the Æthereal monitoring component produces

both connection-opened/closed-events for successful transactions and alert-events for unsuc-

cessful ones. The unsuccessful ones then also produce connection-opened/closed-events as

they are established successfully after routing. However, since Æthereal can switch the moni-

toring of specific events on and off, a more direct comparison is given by limiting the Æthereal
monitoring to only alert-events. The results show that ROAdNoC infrastructure generates less

traffic even with the simple profile of the Æthereal monitoring. In conclusion, both monitoring

Successful Monitoring Æthereal Æthereal
transactions traffic (Alert & (Alert-events)

(ROAdNoC) Config.-events) only)

50 1.2KB/s 6.6KB/s 1.8KB/s

100 0.8KB/s 6KB/s 1.2KB/s

150 0.4KB/s 5.4KB/s 0.6KB/s

200 0KB/s 4.8KB/s 0KB/s

Table 9.2: Traffic comparison using 200 transactions/second

components are designed with entirely different goals in mind. The ROAdNoC infrastructure

9.2. SUMMARY OF THE EVALUATION 161

0

200

400

600

800

1000

1200

1400

1600

1 2 3
4

5

Re-send threshold

One

Three

Two

No Runtime
Observability

Time interval (ms)

U
ns

uc
ce

ss
fu

lc
on

ne
ct

io
ns

Figure 9.19: Unsuccessful transactions for various re-sending thresholds

is designed specifically to facilitate the adaptivity of the NoC and thus only monitors events

required to control the NoC configuration.

Figure 9.19 shows the effect of re-sending packets on the number of packets which are able

to be successfully transmitted for the E3S benchmark suite [50]. On an average, a re-sending

threshold of 1 is able to increase the success rate by 62% compared to the case without run-

time observability. For higher threshold values this value increases even further, allowing the

ROAdNoC infrastructure to avoid a costly (re-)mapping.

9.2 Summary of the Evaluation

In this chapter, both the system-level and the architecture-level adaptation are evaluated using

various benchmarks and the simulation tools presented in Chapter 8. Exploration for the system-
level adaptation shows, the proposed runtime application mapping algorithm ADAM obtains

10.7 times lower monitoring traffic compared to the centralized mapping schemes proposed in

the state-of-the-art works for a 64×64 NoC [37, 147]. The algorithm also requires less execution

cycles compared to a non-clustered centralized approach. It achieves for the experiment on an

average 7.1 times lower computational effort of the mapping algorithm compared to the simple

NN heuristics [31] in a 64 × 32 NoC.

Exploration for the architecture-level adaptation shows the following results: the 2X-Link, a

novel link for the architecture-level, provides a higher throughput of up to 36%, with an av-
erage throughput increase of 21.3%, compared to the Normal-Full-Duplex-Link and keeps

performance-related guarantees with as low as 50% of the Normal-Full-Duplex-Link capac-

162 CHAPTER 9. RESULTS AND CASE-STUDY ANALYSIS

ity. Simulation shows when some links fail randomly, the NoC with the 2X-Links can recover

from these faults with an average probability of 82.2% whereas these faults would be fatal for

the Normal-Full-Duplex-Links. It can be seen that up until now, the number of VCBs at one port

has typically been fixed at design-time. With on-demand VCB assignment, the VCBs are not tied

to ports, but only to the router itself. The router may distribute the VCBs to any route as needed

by assigning a transaction to the VCBs through the virtual channel arbiter and then assigning

the VCB to an output port. This adaptive buffer assignment increases the buffer utilization and

decreases the overall buffer use on an average of 42% in the case study analysis compared

to a fixed buffer assignment. It is shown that a runtime observability scheme (ROAdNoC) is

required for the runtime system in the architecture-level. ROAdNoC infrastructure is hardly

intrusive, i.e. in worst case it may require a mere 0.7% of the total link capacity. It analyzes the

communication architecture during runtime and self-adapts depending on the monitoring traffic

on when and how a certain router should be configured for a certain transaction. The runtime

observability scheme on an average increases the transaction success rate by 62% compared to

having no runtime observability for the E3S benchmark suite. Because of all the advantages

of the AdNoC architecture discussed above, the area overhead introduced by the architecture-
level adaptation (the area overhead stems from the wXY-routing algorithm, the 2X-Link, and the

monitoring component) may be traded-off against the flexibility to select an available route and

on-demand buffer assignment to that route for ensuring the QoS.

Chapter 10

Conclusion

This chapter summarizes the thesis and discusses possible future work.

10.1 Thesis Summary

In this thesis, the novel approach of an adaptive system-on-chip communication architecture is

presented. The AdNoC is implemented as a solution for the adaptive system-on-chip com-

munication architecture. Adaptivity is employed both in the system-level as well as in the

architecture-level. A runtime agent-based distributed application mapping is provided as a part

of the system-level adaptation for the next generation self-adaptive heterogeneous MPSoCs.

The architecture-level part of the runtime adaptive system-on-chip communication architec-

ture adapts the underlying interconnections on-demand in response to changing communication

requirements imposed by an application, i.e. runtime application mapping request from the

system-level due to reliability issues or user behavior.

The first algorithm for a runtime application mapping (as a part of the system-level) in a dis-

tributed manner using an agent-based approach is introduced in this thesis. The proposed ADAM
algorithm generates 10.7 times lower monitoring traffic compared to a centralized mapping al-

gorithms in a 64×64 NoC. ADAM also has a smaller number of execution cycles compared to a

non-clustered centralized approach. During the experiment, on an average 7.1 times lower com-

putational effort for the runtime mapping algorithm compared to the simple Nearest-Neighbor
(NN) heuristics on a 64 × 32 NoC is achieved. It is shown that the flexibility of a runtime

adaptive mapping, a 7.1 times lower computational effort and a 10.7 times lower monitoring

traffic counterbalance the optimization result (a mere 13.3% deviation) compared to the off-line

exhaustive and the runtime centralized application mapping algorithms.

To provide on-demand interconnections, a novel adaptive routing algorithm that meets Quality-
of-Service (QoS) requirements (bandwidth) is included in the architecture-level part. The rout-

ing algorithm makes decisions locally at each router depending on the available bandwidth in

each direction to the neighboring router. Dynamic connections are realized by re-assigning

a certain number of buffer blocks to different output ports of a router on-demand. It also

increases the resource utilization, especially buffer utilization, through the on-demand buffer

block assignment. Experiments show that the on-demand buffer assignment presented as a part

163

164 CHAPTER 10. CONCLUSION

of the architecture-level of the adaptive system increases the buffer utilization and decreases the

overall buffer use, on an average of 42% compared to a fixed buffer assignment where a fixed

number of buffer blocks is tied to the output port.

Furthermore, a runtime configurable link (the 2X-Link) is integrated in the architecture-level to

compliment the adaptive system-on-chip communication architecture. An increase in through-

put of up to 36% (21.3% on average) using either the 2X-Link or the TDD-Link compared to the

Normal-Full-Duplex-Link is achieved. The proposed 2X-Link (the TDD-Link also provide sim-

ilar result) can assure the performance-related guarantees with nearly 50% of the Normal-Full-
Duplex-Link capacity. The TDD-Link has no fault-tolerance ability and utilize more hardware

than the 2X-Link e.g. in a 7×7 NoC, TDD-Links require an additional 4116 slices more than the

2X-Links. Observation shows when some links fail randomly, the NoC with the 2X-Links can

recover from faults (at most 3 faults are considered) which would cause Normal-Full-Duplex-
Links to fail with an average probability of 82.2% for the E3S benchmark, the VOPD, and the

Robotic applications (the Normal-Full-Duplex-Links and the TDD-Links have no capability to

recover from unforeseen link faults).

It is demonstrated that in order to achieve successful runtime adaptation, runtime observabil-

ity is a must, as it provides necessary system information gathered on-the-fly. Therefore, a

comprehensive runtime observability infrastructure is included in the architecture-level part of

the proposed AdNoC architecture (ROAdNoC). It is hardly intrusive, i.e. in worst case it may

require a mere 0.7% of the total link capacity. Besides the main objective of achieving flexibil-

ity in the communication architecture for higher resource utilization, the hardware overhead at

architecture-level due to runtime observation is rather small (46 slices per router). As a result,

ROAdNoC increases the connection success rate by 62% in average compared to state-of-the-art

approaches.

The area overhead in the architecture-level is mainly contributed by the following parts: (1)

selector required for the on-demand VCB assignment (122 slices), (2) the wXY-routing algo-

rithm (129 slices), (3) the 2X-Link management (74 slices), and (4) runtime observability in-

frastructure (46 slices). These area overhead those stem from the architecture-level adaptation

can be traded-off against the flexibility to select an available route using the 2X-Links and the

on-demand buffer assignment (42% buffer saving) to that route for ensuring the QoS.

The proposed AdNoC architecture is capable of supporting deadlock-free data transmission and

meets required bandwidth guarantees for parallel transactions. Therefore, it is built on top of

the basic QoS-supported system-on-chip communication architecture. It is demonstrated that

the proposed link-arbitration algorithm, BAA, that manages the flow-control, is actually able to

provide a 100% guarantee of bandwidth with an average waste of only 3% (i.e. 97% utilization),

a value that has not been achieved by others so far. The QoS-supported system-on-chip commu-

nication architecture is also used for a case-study analysis for designing an application-specific

NoC. The buffer minimization methodology during application-specific NoC design shows that,

on an average, a 90.2% reduction in the number of VCBs compared to a fixed assignment for

the E3S embedded application benchmark suite may be achieved.

10.2. FUTURE WORK 165

10.2 Future Work

The work of this thesis may be further enhanced to build a complete reliable system from forth-

coming unreliable components in the late silicon era. This thesis shows the advantages of using

an adaptive system-on-chip communication architecture to tackle the upcoming challenges. A

statistical fault-model considering the communication behavior of the application may be de-

veloped to further facilitate the runtime adaption. An online fault detection scheme may also be

attached to enhance the functionality of the AdNoC architecture.

Different design-related issues for optimizing the router area, such as using a decomposed strat-

egy for VCB assignment, a faster and parallel routing hardware, etc. may be researched further

to optimize the current implementation of the AdNoC routers. In the system-level task-migration

issues, as well as (re-)clustering in a computationally inexpensive way may also be investigated.

In the current implementation, the initial design and resource allocation for the AdNoC architec-

ture have not been addressed. Therefore, an offline mechanism for characterizing the behavior

of the users and then clustering by behavior may be explored. The clustering of user behavior

may further reduce the initial hardware budget for the AdNoC architecture.

The NoC parameters, e.g. topology, floorplanning, and switching strategy, which are not cus-

tomized due to the targeted technology in the current AdNoC architecture, may be further ex-

plored by deploying reconfigurable hardware blocks (e.g. FPGA) in a distributed way in the

future MPSoC architecture.

Bibliography

[1] T. Ahonen, D. A. Sigüenza-Tortosa, H. Bin, and J. Nurmi. “Topology optimization for

application-specific networks-on-chip”. SLIP’04: Proceedings of the 2004 International
Workshop on System level interconnect prediction, pages 53–60, 2004.

[2] AMBA:. More information on AMBA AXI from ARM corporation is available at:.

http://www.arm.com/products/solutions/AMBAHomePage.html.

[3] AMBA:. Specification. ARM Inc., 1999.

[4] Arteris:. More information on Arteris at:. http://www.arteris.com/company.htm.

[5] G. Ascia, V. Catania, and M. Palesi. “Multi-objective mapping for mesh-based NoC

architectures”. CODES+ISSS’04: Proceedings of the 2nd IEEE/ACM/IFIP International
Conference on Hardware/software codesign and system synthesis, pages 182–187, 2004.

[6] T. Austin, V. Bertacco, S. Mahlke, and Y. Cao. “Reliable Systems on Unreliable Fabrics”.

IEEE Design & Test of Computers, 25(4):322–332, 2008.

[7] Y. Aydogan, C. B. Stunkel, C. Aykanat, and B. Abali. “Adaptive Source Routing in

Multistage Interconnection Networks”. IPPS’96: Proceedings of the 10th International
Parallel Processing Symposium, pages 258–267, 1996.

[8] P. Azad, A. Ude, T. Asfour, G. Cheng, and R. Dillmann. “Image-based Markerless 3D

Human Motion Capture using Multiple Cues”. International Workshop on Vision Based
Human-Robot Interaction, 2006.

[9] O. Babaoglu, G. Canright, A. Deutsch, G. A. D. Caro, F. Ducatelle, L. M. Gambardella,

N. Ganguly, M. Jelasity, R. Montemanni, A. Montresor, and T. Urnes. “Design pat-

terns from biology for distributed computing”. ACM Transactions on Autonomous and
Adaptive Systems (TAAS), 1(1):26–66, 2006.

[10] J. Bainbridge and S. Furber. “Chain: A Delay-Insensitive Chip Area Interconnect”. IEEE
Micro, 22(5):16–23, 2002.

[11] A. E. Barbour and A. S. Wojcik. “A General Constructive Approach to Fault-Tolerant

Design Using Redundancy”. IEEE Transaction on Computers, 38(1):15–29, 1989.

[12] J. Becker, K. Brändle, U. Brinkschulte, J. Henkel, W. Karl, T. Köster, M. Wenz, and

H. Wörn. “Digital On-Demand Computing Organism for Real-Time Systems”. ARCS’06
Workshops, pages 230–245, 2006.

167

168 Bibliography

[13] L. Benini and G. D. Micheli. “Powering networks on chips: energy-efficient and re-

liable interconnect design for SoCs”. ISSS’01: Proceedings of the 14th International
symposium on Systems synthesis, pages 33–38, 2001.

[14] L. Benini and G. D. Micheli. “Networks on Chips: A New SoC Paradigm”. Computer,

35(1):70–78, 2002.

[15] D. Bertozzi and L. Benini. “×pipes: A Network-on-Chip Architecture for Gigascale

Systems-on-Chip”. IEEE Circuits and Systems Magazine, 4(2):18–31, 2004.

[16] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini, and G. D.

Micheli. “NoC Synthesis Flow for Customized Domain Specific Multiprocessor

Systems-on-Chip”. IEEE Transactions on Parallel and Distributed Systems, pages 113–

129, 2005.

[17] S. Bertozzi, A. Acquaviva, D. Bertozzi, and A. Poggiali. “Supporting task migration

in multi-processor systems-on-chip: a feasibility study”. DATE’06: Proceedings of the
Conference on Design, Automation and Test in Europe, pages 15–20, 2006.

[18] A. Bieszczad, B. Pagurek, and T. White. “Mobile Agents for Network Management”.

IEEE Communications surveys and tutorials, 1(1):2–9, 1998.

[19] T. Bjerregaard and S. Mahadevan. “A survey of research and practices of Network-on-

Chip”. ACM Computing Surveys, 38(1):1, 2006.

[20] T. Bjerregaard and J. Sparsø. “A Router Architecture for Connection-Oriented Service

Guarantees in the MANGO Clockless Network-on-Chip”. DATE’05: Proceedings of the
Conference on Design, Automation and Test in Europe, pages 1226–1231, 2005.

[21] C. Bobda and A. Ahmadinia. “Dynamic Interconnection of Reconfigurable Modules on

Reconfigurable Devices”. IEEE Design & Test of Computers, 22(5):443–451, 2005.

[22] C. Bobda, A. Ahmadinia, M. Majer, J. Teich, S. P. Fekete, and J. van der Veen. “DyNoC:

A Dynamic Infrastructure for Communication in Dynamically Reconfigurable Devices”.

FPL’05: Proceedings of the International Conference on Field Programmable Logic and
Applications, pages 153–158, 2005.

[23] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny. “QNoC: QoS architecture and design

process for network on chip”. Journal of Systems Architecture, 50(2-3):105–128, 2004.

[24] E. Bolotin, A. Morgenshtein, I. Cidon, R. Ginosar, and A. Kolodny. “Automatic

hardware-efficient SoC integration by QoS network on chip”. ICECS’04: Proceedings
of the 11th IEEE International Conference on Electronics, Circuits and Systems, pages

479–482, 2004.

[25] S. Borkar. “Designing Reliable Systems from Unreliable Components: The Challenges

of Transistor Variability and Degradation”. IEEE Micro, 25(6):10–16, 2005.

[26] S. Borkar. “Thousand core chips: a technology perspective”. DAC’07: Proceedings of
the 44th Conference on Design Automation, pages 746–749, 2007.

Bibliography 169

[27] L. Braun, M. Hübner, J. Becker, T. Perschke, V. Schatz, and S. Bach. “Circuit Switched

Run-Time Adaptive Network-on-Chip for Image Processing Applications”. FPL‘07:
Proceedings of the International Conference on Field Programmable Logic and Appli-
cations, pages 688–691, 2007.

[28] H. Broersma, D. Paulusma, G. J. M. Smit, F. Vlaardingerbroek, and G. J. Woeginger.

“The Computational Complexity of the Minimum Weight Processor Assignment Prob-

lem”. WG’04: Proceedings of the 30th International Workshop on Graph-theoretic con-
cepts in computer science, pages 189–200, 2004.

[29] C. Busch, S. Surapaneni, and S. Tirthapura. “Analysis of link reversal routing algorithms

for mobile ad hoc networks”. SPAA’03: Proceedings of the 15th annual ACM symposium
on Parallel algorithms and architectures, pages 210–219, 2003.

[30] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli. “Theory of latency-

insensitive design”. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 20(9):1059–1076, 2001.

[31] E. Carvalho, N. Calazans, and F. Moraes. “Heuristics for Dynamic Task Mapping in

NoC-based Heterogeneous MPSoCs”. RSP’07: Proceedings of the 18th IEEE Interna-
tional Workshop on Rapid System Prototyping, pages 34–40, 2007.

[32] J. Chan and S. Parameswaran. “NoCGEN: A Template Based Reuse Methodology for

Networks on Chip Architecture”. VLSID’04: Proceedings of the 17th International Con-
ference on VLSI Design, pages 717–720, 2004.

[33] J. Chan and S. Parameswaran. “NoCOUT: NoC topology generation with mixed packet-

switched and point-to-point networks”. ASP-DAC’08: Proceedings of the 2008 Confer-
ence on Asia and South Pacific Design Automation, pages 265–270, 2008.

[34] V. Chandra, A. Xu, H. Schmit, and L. Pileggi. “An Interconnect Channel Design Method-

ology for High Performance Integrated Circuits”. DATE’04: Proceedings of the Confer-
ence on Design, Automation and Test in Europe, page 21138, 2004.

[35] X. Chen and L.-S. Peh. “Leakage power modeling and optimization in interconnection

networks”. ISLPED’03: Proceedings of the 2003 International symposium on Low power
electronics and design, pages 90–95, 2003.

[36] CHIPit:. More information on CHIPit is available at:. http://www.prodesign-europe.com/.

[37] C.-L. Chou and R. Marculescu. “Incremental run-time application mapping for homo-

geneous NoCs with multiple voltage levels”. CODES+ISSS’07: Proceedings of the 5th
IEEE/ACM International Conference on Hardware/software Codesign and System Syn-
thesis, pages 161–166, 2007.

[38] C.-L. Chou and R. Marculescu. “User-Aware Dynamic Task Allocation in Networks-

on-Chip”. DATE’08: Proceedings of the Conference on Design, Automation and Test in
Europe, pages 1232–1237, 2008.

[39] C. Ciordas, T. Basten, A. Rădulescu, K. Goossens, and J. V. Meerbergen. “An event-

170 Bibliography

based monitoring service for networks on chip”. ACM Transactions on Design Automa-
tion of Electronic Systems (TODAES), 10(4):702–723, 2005.

[40] C. Ciordas, A. Hansson, K. Goossens, and T. Basten. “A monitoring-aware network-on-

chip design flow”. Journal of Systems Architecture, 54(3-4):397–410, 2008.

[41] M. Coenen, S. Murali, A. Ruadulescu, K. Goossens, and G. De Micheli. “A buffer-

sizing algorithm for networks on chip using TDMA and credit-based end-to-end flow

control”. CODES+ISSS’06: Proceedings of the 4th International Conference on Hard-
ware/software codesign and system synthesis, pages 130–135, 2006.

[42] CoreConnect:. More information on CoreConnect from IBM is available at:.

http://www.ibm.com/chips/products/coreconnect.

[43] M. Dall’Osso, G. Biccari, L. Giovannini, D. Bertozzi, and L. Benini. “xpipes: a

Latency Insensitive Parameterized Network-on-chip Architecture For Multi-Processor

SoCs”. ICCD’03: Proceedings of the 21st International Conference on Computer De-
sign, page 536, 2003.

[44] W. J. Dally and B. Towles. “Route packets, not wires: on-chip interconnection networks”.

DAC’01: Proceedings of the 38th Conference on Design Automation, pages 684–689,

2001.

[45] M. Daneshtalab, A. Sobhani, A. Afzali-Kusha, O. Fatemi, and Z. Navabi. “NoC Hot Spot

minimization Using AntNet Dynamic Routing Algorithm”. ASAP’06: Proceedings of the
IEEE 17th International Conference on Application-specific Systems, Architectures and
Processors, pages 33–38, 2006.

[46] R. P. Dick, D. L. Rhodes, and W. Wolf. “TGFF: Task graphs for free”.

CODES/CASHE’98: Proceedings of the 6th International Workshop on Hard-
ware/software Codesign, pages 97–101, 1998.

[47] J. Duato, S. Yalamanchili, and L. M. Ni. “Interconnection Networks: An Engineering

Approach”. Morgan Kaufmann, 2003.

[48] T. Dumitras and R. Marculescu. “On-Chip Stochastic Communication”. DATE’03: Pro-
ceedings of the Conference on Design, Automation and Test in Europe, pages 10790–

10795, 2003.

[49] T. Dumitras and R. Marculescu. “Fault tolerant algorithms for network-on-chip inter-

connect”. Proceedings of the IEEE Computer society Annual Symposium on VLSI, pages

46– 51, 2004.

[50] E3S:. More information on E3S at:. http://ziyang.eecs.northwestern.edu/ dickrp/e3s/.

[51] R. Esmailzade, M. Nakagawa, and E. A. Sourour. “Time-division Duplex CDMA Com-

munications”. IEEE Wireless Communications, 4(2):51–56, 1997.

[52] M. A. A. Faruque, T. Ebi, and J. Henkel. “Run-time Adaptive on-chip Communication

Scheme”. ICCAD’07: Proceedings of the 2007 IEEE/ACM International Conference on
Computer-aided Design, pages 26–31, 2007.

Bibliography 171

[53] M. A. A. Faruque, T. Ebi, and J. Henkel. “ROAdNoC: Runtime Observability for

an Adaptive Network on Chip Architecture”. ICCAD’08: Proceedings of the 2008
IEEE/ACM International Conference on Computer-aided Design, pages 543–548, 2008.

[54] M. A. A. Faruque, T. Ebi, and J. Henkel. “Configurable Links for Runtime Adaptive On-

chip Communication”. DATE’09: Proceedings of the Conference on Design, Automation
and Test in Europe, pages 543–548, 2009.

[55] M. A. A. Faruque and J. Henkel. “Transaction Specific Virtual Channel Allocation in

QoS Supported On-chip Communication”. ASAP’07: Proceedings of the 18th Interna-
tional Conference on Application-specific Systems, Architectures and Processors, pages

76–81, 2007.

[56] M. A. A. Faruque and J. Henkel. “Minimizing Virtual Channel Buffer for Routers in

on-chip Communication Architectures”. DATE’08: Proceedings of the Conference on
Design, Automation and Test in Europe, pages 1238–1243, 2008.

[57] M. A. A. Faruque and J. Henkel. “QoS-Supported On-chip Communication for Multi-

Processors”. IJPP’08: Proceedings of the International Journal of Parallel Program-
ming, pages 114–139, 2008.

[58] M. A. A. Faruque, R. Krist, and J. Henkel. “ADAM: Run-time Agent-based Distributed

Application Mapping for on-chip Communication”. DAC’08: Proceedings of the 45th
Conference on Design Automation, pages 760–765, 2008.

[59] M. A. A. Faruque, G. Weiss, and J. Henkel. “Bounded arbitration algorithm for QoS-

supported on-chip communication”. CODES+ISSS’06: Proceedings of the 4th Interna-
tional Conference on Hardware/Software Codesign and System Synthesis, pages 76–81,

2006.

[60] M. A. A. Faruque, X. Ye, G. Weiss, and J. Henkel. “QoS-Supported Configurable Net-

works on Chip”. NOCS’06: Proceedings of the Workshop in Future Interconnects and
Network on Chip, page 42, 2006.

[61] C. J. Glass and L. M. Ni. ”Maximally Fully Adaptive Routing in 2D Meshes”. Proceed-
ings of the 1992 International Conference on Parallel Processing, I, Architecture:101–

104, 1992.

[62] C. J. Glass and L. M. Ni. “The turn model for adaptive routing”. SIGARCH Computer
Architecture News, 20(2):278–287, 1992.

[63] GNU-GCC:. More information on GNU GCC is available at:. http://gcc.gnu.org/.

[64] G. Goldszmidt and Y. Yemini. “Delegated Agents for Network Management”. IEEE
Communications Magazine, pages 66–70, 1998.

[65] K. Goossens, J. Dielissen, and A. Radulescu. “æthereal network on chip: concepts,

architectures, and implementations”. IEEE Design & Test of Computers, 22(5):414–421,

2005.

172 Bibliography

[66] P. Gratz, C. Kim, K. Sankaralingam, H. Hanson, P. Shivakumar, S. W. Keckler, and

D. Burger. “On-Chip Interconnection Networks of the TRIPS Chip”. IEEE Micro,

27(5):41–50, 2007.

[67] C. Grecu and M. Jones. “Performance Evaluation and Design Trade-Offs for Network-

on-Chip Interconnect Architectures”. IEEE Transaction on Computers, 54(8):1025–

1040, 2005.

[68] R. Guérin and V. Peris. “Quality-of-service in packet networks: basic mechanisms and

directions”. Computer Networks, 31(3):169–189, 1999.

[69] P. Guerrier and A. Greiner. “A generic architecture for on-chip packet-switched inter-

connections”. DATE’00: Proceedings of the Conference on Design, Automation and Test
in Europe, pages 250–256, 2000.

[70] A. Hansson, K. Goossens, and A. Rǎdulescu. “A unified approach to constrained map-

ping and routing on network-on-chip architectures”. CODES+ISSS’05: Proceedings of
the 3rd IEEE/ACM International Conference on Hardware/Software Codesign and Sys-
tem Synthesis, pages 75–80, 2005.

[71] M. D. Harmanci, N. P. Escudero, Y. Leblebici, and P. Ienne. “Providing QoS to

Connection-less Packet-switched NoC by Implementing DiffServ Functionalities”. In-
ternational Symposium on System-on-Chip, pages 37–40, 2004.

[72] M. D. Harmanci, N. P. Escudero, Y. Leblebici, and P. Ienne. “Quantitative modelling and

comparison of communication schemes to guarantee quality-of-service in networks-on-

chip”. ISCAS’05 (2): Proceedings of the IEEE International Symposium on Circuits and
Systems, pages 1782–1785, 2005.

[73] J. Henkel, W. Wolf, and S. Chakradhar. “On-chip networks: A scalable, communication-

centric embedded system design paradigm”. VLSID’04: Proceedings of the 17th Inter-
national Conference on VLSI Design, pages 845–851, 2004.

[74] R. Ho, K. Mai, and M. Horowitz. “The Future of Wires”. Proceedings of the IEEE, pages

490–504, 2001.

[75] P. Horn. “Autonomic Computing: IBM‘s Perspective on the State of Information Tech-

nology”. IBM Corporation, 2001.

[76] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar. “A 5-GHz Mesh Interconnect

for a Teraflops Processor”. IEEE Micro, 27(5):51–61, 2007.

[77] J. Hu and R. Marculescu. “Exploiting the Routing Flexibility for Energy/Performance

Aware Mapping of Regular NoC Architectures”. DATE’03: Proceedings of the Confer-
ence on Design, Automation and Test in Europe, pages 10688–10693, 2003.

[78] J. Hu and R. Marculescu. “Application-specific buffer space allocation for networks-

on-chip router design”. ICCAD’04: Proceedings of the 2004 IEEE/ACM International
Conference on Computer-aided Design, pages 354–361, 2004.

Bibliography 173

[79] J. Hu and R. Marculescu. “DyAD: smart routing for networks-on-chip”. DAC’04: Pro-
ceedings of the 41st Conference on Design Automation, pages 260–263, 2004.

[80] J. Hu and R. Marculescu. “Energy-Aware Communication and Task Scheduling for

Network-on-Chip Architectures under Real-Time Constraints”. DATE’04: Proceedings
of the Conference on Design, Automation and Test in Europe, pages 10234–10239, 2004.

[81] Y. Hu, H. Chen, Y. Zhu, A. A. Chien, and C.-K. Cheng. “Physical Synthesis of Energy-

Efficient Networks-on-Chip Through Topology Exploration and Wire Style Optimiza-

tionz”. ICCD’05: Proceedings of the 2005 International Conference on Computer De-
sign, pages 111–118, 2005.

[82] M. Hübner, L. Braun, D. Göhringer, and J. Becker. “Run-time reconfigurable adaptive

multilayer network-on-chip for FPGA-based systems”. IPDPS’08: Proceedings of the
22nd IEEE International Symposium on Parallel and Distributed Processing, pages 1–6,

2008.

[83] M. Hübner, M. Ullmann, L. Braun, A. Klausmann, and J. Becker. “Scalable Application-

Dependent Network on Chip Adaptivity for Dynamical Reconfigurable Real-Time Sys-

tems”. FPL‘04: Proceedings of the International Conference on Field Programmable
Logic and Applications, pages 1037–1041, 2004.

[84] iNoCs:. More information on iNoCs is available at:. http://inocs.com/index.php?id=1.

[85] “International Technology Roadmap for Semiconductors”. http://www.itrs.net. 2007

Edition.

[86] A. Jalabert, S. Murali, L. Benini, and G. D. Micheli. “×pipesCompiler: A Tool for

Instantiating Application Specific Networks on Chip”. DATE’04: Proceedings of the
Conference on Design, Automation and Test in Europe, pages 884–889, 2004.

[87] A. Jantsch and H. T. (Eds). “Networks-on-chip”. Kluwer, 2003.

[88] S. Jovanovic, C. Tanougast, C. Bobda, and S. Weber. “CuNoC: A Scalable Dynamic NoC

for Dynamically Reconfigurable FPGAs”. FPL’07: Proceedings of the International
Conference on Field Programmable Logic and Applications, pages 753–756, 2007.

[89] P. Kalla, X. S. Hu, and J. Henkel. “A flexible framework for communication evaluation

in SoC design”. International Journal of Parallel Programming, 36(5):457–477, 2008.

[90] W. Karl, M. Leberecht, and M. Oberhuber. “SCI Monitoring Hardware and Software:

Supporting Performance Evaluation and Debugging”. SCI: Scalable Coherent Inter-
face, Architecture and Software for High-Performance Compute Clusters, pages 417–

432, 1999.

[91] N. Kavaldjiev, G. J. M. Smit, and P. G. Jansen. “A Virtual Channel Router for On-chip

Networks”. Proceedings of the IEEE International SOC Conference, pages 289–293,

2004.

[92] N. Kavaldjiev, G. J. M. Smit, P. G. Jansen, and P. T. Wolkotte. “A Virtual Channel

Network-on-Chip for GT and BE traffic”. ISVLSI’06: Proceedings of the IEEE Computer

174 Bibliography

Society Annual Symposium on Emerging VLSI Technologies and Architectures, pages

211–216, 2006.

[93] M. E. Kreutz, L. Carro, C. A. Zeferino, and A. A. Susin. “Communication Architectures

for System-on-Chip”. SBCCI’01: Proceedings of the 14th symposium on Integrated
circuits and systems design, pages 14–19, 2001.

[94] S. Kumar, A. Jantsch, M. Millberg, J. Öberg, J.-P. Soininen, M. Forsell, K. Tiensyrjä, and

A. Hemani. “A Network on Chip Architecture and Design Methodology”. ISVLSI’02:
Proceedings of the IEEE Computer Society Annual Symposium on Emerging VLSI Tech-
nologies and Architectures, pages 117–124, 2002.

[95] R. Laddaga, M. L. Swinson, and P. Robertson. “Seeing Clearly and Moving Forward”.

IEEE Intelligent Systems, 15(6):46–50, 2000.

[96] H. G. Lee, N. Chang, Ü. Y. Ogras, and R. Marculescu. “On-chip communication archi-

tecture exploration: A quantitative evaluation of point-to-point, bus, and network-on-chip

approaches”. ACM Transaction on Design Automation Electronics System, 12(3), 2007.

[97] S.-J. Lee, K. Lee, and H.-J. Yoo. “Analysis and Implementation of Practical, Cost-

Effective Networks on Chips”. IEEE Design & Test of Computers, 22(5):422–433, 2005.

[98] T. Lei and S. Kumar. “A Two-step Genetic Algorithm for Mapping Task Graphs to a

Network on Chip Architecture”. DSD’03: Proceedings of the Euromicro Symposium on
Digital Systems Design, pages 180–189, 2003.

[99] J. Liang, A. Laffely, S. Srinivasan, and R. Tessier. “An architecture and compiler for

scalable on-chip communication”. IEEE Transaction Very Large Scale Integration (VLSI)
Systems, 12(7):711–726, 2004.

[100] G. Lipsa and A. Herkersdorf. “Towards a Framework and a Design Methodology for

Autonomic SoC”. ICAC’05: Proceedings of the Second International Conference on
Automatic Computing, pages 391–392, 2005.

[101] P. Lorenz. “Quality of Service in Communication Architectures”. IMSA, pages 270–275,

2002.

[102] Z. Lu, B. Yin, and A. Jantsch. “Connection-oriented Multicasting in Wormhole-switched

Networks on Chip”. ISVLSI’06: Proceedings of the IEEE Computer Society Annual
Symposium on Emerging VLSI Technologies and Architectures, pages 205–210, 2006.

[103] M. Majer, C. Bobda, A. Ahmadinia, and J. Teich. “Packet Routing in Dynamically

Changing Networks on Chip”. IPDPS’05: Proceedings of the 19th IEEE International
Parallel and Distributed Processing Symposium (IPDPS’05) - Workshop 3, pages 154 –

161, 2005.

[104] S. Manolache, P. Eles, and Z. Peng. “Fault and energy-aware communication mapping

with guaranteed latency for applications implemented on NoC”. DAC’05: Proceedings
of the 42nd Conference on Design Automation, pages 266–269, 2005.

Bibliography 175

[105] R. Marculescu, Ü. Y. Ogras, L.-S. Peh, N. D. E. Jerger, and Y. V. Hoskote. “Outstanding

Research Problems in NoC Design: System, Microarchitecture, and Circuit Perspec-

tives”. IEEE Transaction on CAD of Integrated Circuits and Systems, 28(1):3–21, 2009.

[106] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch. “Guaranteed Bandwidth Using Looped

Containers in Temporally Disjoint Networks within the Nostrum Network on Chip”.

DATE’04: Proceedings of the Conference on Design, Automation and Test in Europe,

page 20890, 2004.

[107] M. Millberg, E. Nilsson, R. Thid, S. Kumar, and A. Jantsch. “The Nostrum Backbone -

a Communication Protocol Stack for Networks on Chip”. International Conference on
VLSI Design, pages 693–696, 2004.

[108] ModelSim:. More information on ModelSim is available at:. http://www.model.com/.

[109] A. A. Morgan, H. Elmiligi, M. W. El-Kharashi, and F. Gebali. “Application-specific

networks-on-chip topology customization using network partitioning”. IFMT’08: Pro-
ceedings of the 1st International forum on Next-generation multicore/manycore technolo-
gies, pages 1–6, 2008.

[110] S. Murali, L. Benini, and G. Micheli. “Mapping and physical planning of networks-on-

chip architectures with quality-of-service guarantees”. ASP-DAC’05: Proceedings of the
2005 Conference on Asia South Pacific Design Automation, pages 27–32, 2005.

[111] S. Murali, M. Coenen, A. Radulescu, K. Goossens, and G. D. Micheli. “A methodology

for mapping multiple use-cases onto networks on chips”. DATE’06: Proceedings of the
Conference on Design, Automation and Test in Europe, pages 118–123, 2006.

[112] S. Murali, M. Coenen, A. Radulescu, K. Goossens, and G. D. Micheli. “Mapping and

configuration methods for multi-use-case networks on chips”. ASP-DAC’06: Proceed-
ings of the 2006 Conference on Asia South Pacific Design Automation, pages 146–151,

2006.

[113] S. Murali and G. D. Micheli. “Bandwidth-Constrained Mapping of Cores onto NoC

Architectures”. DATE’04: Proceedings of the Conference on Design, Automation and
Test in Europe, pages 20896–20901, 2004.

[114] S. Murali and G. D. Micheli. “SUNMAP: a tool for automatic topology selection and

generation for NoCs”. DAC’04: Proceedings of the 41st Conference on Design Automa-
tion, pages 914–919, 2004.

[115] Nexus:. More information on Nexus from Fulcrum Microsystems is available at:.

http://www.fulcrummicro.com/technology.htm, 2006.

[116] L. M. Ni and P. K. McKinley. “A Survey of Wormhole Routing Techniques in Direct

Networks”. IEEE Computer 26(2), pages 62–76, 1993.

[117] C. Nicopoulos, D. Park, J. Kim, N. Vijaykrishnan, M. S. Yousif, and C. R. Das. “ViChaR:

A Dynamic Virtual Channel Regulator for Network-on-Chip Routers”. MICRO’06: Pro-

176 Bibliography

ceedings of the 39th Annual IEEE/ACM International Symposium on Microarchitecture,

pages 333–346, 2006.

[118] E. Nilsson, M. Millberg, J. Oberg, and A. Jantsch. “Load Distribution with the Proximity

Congestion Awareness in a Network on Chip”. DATE’03: Proceedings of the Conference
on Design, Automation and Test in Europe, 01:11126–11131, 2003.

[119] V. Nollet, T. Marescaux, P. Avasare, D. Verkest, and J.-Y. Mignolet. “Centralized Run-

Time Resource Management in a Network-on-Chip Containing Reconfigurable Hard-

ware Tiles”. DATE’05: Proceedings of the Conference on Design, Automation and Test
in Europe, pages 234–239, 2005.

[120] V. Nollet, T. Marescaux, D. Verkest, J.-Y. Mignolet, and S. Vernalde. “Operating-system

controlled network on chip”. DAC’04: Proceedings of the 41th Conference on Design
Automation, pages 256–259, 2004.

[121] OCP:. More information on OCP at:. http://www.ocpip.org/.

[122] U. Y. Ogras, J. Hu, and R. Marculescu. “Key research problems in NoC design: a holistic

perspective”. CODES+ISSS’05: Proceedings of the 3rd IEEE/ACM/IFIP internation
Conference on Hardware/software codesign and system synthesis, pages 69–74, 2005.

[123] U. Y. Ogras and R. Marculescu. “Application-specific network-on-chip architecture

customization via long-range link insertion”. ICCAD’05: Proceedings of the 2005
IEEE/ACM International Conference on Computer-aided Design, pages 246–253, 2005.

[124] U. Y. Ogras and R. Marculescu. “Energy- and Performance-Driven NoC Communication

Architecture Synthesis Using a Decomposition Approach”. DATE’05: Proceedings of
the Conference on Design, Automation and Test in Europe, pages 352–357, 2005.

[125] OMNeT++:. More information on OMNeT++ at:. http://www.omnetpp.org/index.php.

[126] J. D. Owens, W. J. Dally, R. Ho, D. N. J. Jayasimha, S. W. Keckler, and L.-S. Peh.

“Research Challenges for On-Chip Interconnection Networks”. IEEE Micro, 27(5):96–

108, 2007.

[127] G. Palermo, G. Mariani, C. Silvano, R. Locatelli, and M. Coppola. “A topology design

customization approach for STNoC”. Nano-Net’07: Proceedings of the 2nd Interna-
tional Conference on Nano-Networks, pages 1–5, 2007.

[128] P. P. Pande, C. Grecu, A. Ivanov, R. Saleh, and G. D. Micheli. “Design, Synthesis, and

Test of Networks on Chips”. IEEE Design & Test of Computers, 22(5):404–413, 2005.

[129] V. D. Park and M. S. Corson. “A Highly Adaptive Distributed Routing Algorithm for

Mobile Wireless Networks”. INFOCOM’97: Proceedings of the INFOCOM ’97. 16th
Annual Joint Conference of the IEEE Computer and Communications Societies. Driving
the Information Revolution, pages 1405–1413, 1997.

[130] A. Pinto, L. P. Carloni, and A. L. Sangiovanni-Vincentelli. “Efficient Synthesis of Net-

works On Chip”. ICCD’03: Proceedings of the 21st International Conference on Com-
puter Design, pages 146–150, 2003.

Bibliography 177

[131] T. Pionteck, C. Albrecht, R. Koch, E. Maehle, M. Hübner, and J. Becker. “Communi-

cation Architectures for Dynamically Reconfigurable FPGA Designs”. IPDPS’07: Pro-
ceedings of the 21th IEEE International Symposium on Parallel and Distributed Process-
ing, pages 1–8, 2007.

[132] V. Rantala, T. Lehtonen, and J. Plosila. “Network on Chip routing Algorithms”. Turku
Centre for Computer Science Report No. TUCS 779, August 2006, 2006.

[133] E. Rijpkema, K. G. W. Goossens, A. Rădulescu, J. Dielissen, J. van Meerbergen,

P. Wielage, and E. Waterlander. “Trade Offs in the Design of a Router with Both Guar-

anteed and Best-Effort Services for Networks on Chip”. DATE’03: Proceedings of the
Conference on Design, Automation and Test in Europe, pages 10350–10355, 2003.

[134] L. G. Roberts. “The Evolution of Packet Switching”. Proceedings of IEEE, 66:1307–

1313, 1978.

[135] D. R. Rostislav, V. Vishnyakov, E. Friedman, and R. Ginosar. “An Asynchronous Router

for Multiple Service Levels Networks on Chip”. ASYNC’05: Proceedings of the 11th
IEEE International Symposium on Asynchronous Circuits and Systems, pages 44–53,

2005.

[136] A. Rădulescu, J. Dielissen, K. Goossens, E. Rijpkema, and P. Wielage. “An Efficient On-

Chip Network Interface Offering Guaranteed Services, Shared-Memory Abstraction, and

Flexible Network Configuration”. DATE’04: Proceedings of the Conference on Design,
Automation and Test in Europe, page 20878, 2004.

[137] S. Russ, J. Robinson, M. Gleeson, and J. Figueroa. “Dynamic Communication Mecha-

nism Switching in Hector”. Mississippi State Technical Report No. MSSU– EIRS–ERC–
97–8, September 1997. 17, 1997.

[138] R. H. S. Kubisch and D. Timmermann. “Adaptive Hardware In Autonomous And Evolv-

able Embedded Systems”. Proceedings of the embedded world 2006 Conference, pages

297–306, 2006.

[139] I. Saastamoinen, M. Alho, and J. Nurmi. “Buffer implementation for Proteo network-on-

chip”. ISCAS’03: Proceedings of the International Symposium on Circuits and Systems,

pages 113–116, 2003.

[140] F. A. Samman, T. Hollstein, and M. Glesner. “Multicast parallel pipeline router archi-

tecture for network-on-chip”. DATE’08: Proceedings of the Conference on Design, Au-
tomation and Test in Europe, pages 1396–1401, 2008.

[141] B. Sethuraman, P. Bhattacharya, J. Khan, and R. Vemuri. “LiPaR: A light-weight parallel

router for FPGA-based networks-on-chip”. GLSVSLI’05: Proceedings of the 15th ACM
Great Lakes symposium on VLSI, pages 452–457, 2005.

[142] L. Shang, L.-S. Peh, and N. K. Jha. “PowerHerd: dynamic satisfaction of peak power

constraints in interconnection networks”. ICS’03: Proceedings of the 17th annual Inter-
national Conference on Supercomputing, pages 98–108, 2003.

178 Bibliography

[143] D. Shin and J. Kim. “Power-aware communication optimization for networks-on-chips

with voltage scalable links”. CODES+ISSS’04: Proceedings of the 2nd IEEE/ACM/IFIP
International Conference on Hardware/software Codesign and System Synthesis, pages

170–175, 2004.

[144] D. Sigüenza. “PROTEO: The Development of a Practical Network-on-Chip”. PhD The-
sis: Tampere University of Technology, 2005.

[145] D. A. Sigüenza-Tortosa, T. Ahonen, and J. Nurmi. “Issues in the development of a

practical NoC: the Proteo concept”. Integration, 38(1):95–105, 2004.

[146] Silistix:. More information on Silistix is available at:. http://www.silistix.com/.

[147] L. Smit, G. Smit, J. Hurink, H. Broersma, D. Paulusma, and P. Wolkotte. “Run-time

Mapping of Applications to a Heterogeneous Reconfigurable Tiled System on Chip

Architecture”. FPL’04: Proceedings of the IEEE International Conference on Field-
Programmable Technology, pages 421–424, 2004.

[148] P. Smith and N. C. Hutchinson. “Heterogeneous Process Migration: The Tui System”.

Software – Practice and Experience, 28(6):611–639, 1998.

[149] SonicsMX:. More information on SonicsMX from Sonics Inc. is available at:.

http://www.sonicsinc.com/sonicsMX.htm.

[150] V. Soteriou and L.-S. Peh. “Design-Space Exploration of Power-Aware On/Off Inter-

connection Networks”. ICCD’04: Proceedings of the IEEE International Conference on
Computer Design (ICCD’04), pages 510–517, 2004.

[151] V. Soteriou, H. Wang, and L.-S. Peh. “A Statistical Traffic Model for On-Chip Intercon-

nection Networks”. MASCOTS’06: Proceedings of the 14th IEEE International Sympo-
sium on Modeling, Analysis, and Simulation, pages 104–116, 2006.

[152] K. Srinivasan and K. S. Chatha. “A low complexity heuristic for design of custom

network-on-chip architectures”. DATE’06: Proceedings of the Conference on Design,
Automation and Test in Europe, pages 130–135, 2006.

[153] K. Srinivasan, K. S. Chatha, and G. Konjevod. “Linear Programming based Techniques

for Synthesis of Network-on-Chip Architectures”. ICCD’04: Proceedings of the IEEE
International Conference on Computer Design, pages 422–429, 2004.

[154] K. Srinivasan, K. S. Chatha, and G. Konjevod. “Linear-programming-based techniques

for synthesis of network-on-chip architectures”. IEEE Transaction on Very Large Scale
Integration Systems (TVLSI), 14(4):407–420, 2006.

[155] STBus:. More information on STBus from STMicroelectronics is available at:.

http://www.st.com/stonline/products/technologies/soc/stbus.htm.

[156] M. B. Stensgaard and J. Sparsø. “ReNoC: A Network-on-Chip Architecture with Re-

configurable Topology”. NOCS’08: Second International Symposium on Networks-on-
Chips, pages 55–64, 2008.

Bibliography 179

[157] S. Stergiou, F. Angiolini, S. Carta, L. Raffo, D. Bertozzi, and G. D. Micheli. “Xpipes

lite: A synthesis oriented design library for networks on chips”. DATE’05: Proceedings
of the Conference on Design, Automation and Test in Europe, pages 1188–1193, 2005.

[158] STNoC:. “STNoC: Building a New System-on-Chip Paradigm”. 2005.

[159] T. Stutzle and M. Dorigo. “ACO algorithms for the quadratic assignment problem”. New
Ideas in Optimization, pages 33–50, 1999.

[160] D. Subramanian, P. Druschel, and J. Chen. “Ants and reinforcement learning: A case

study in routing in dynamic networks”. IJCAI’97: Proceedings of the International Joint
Conferences on Artificial Intelligence, pages 832–838, 1997.

[161] SYSTEMC:. More information on SYSTEMC at:. http://www.systemc.org/home.

[162] A. S. Tanenbaum. “Computer Networks”. Prentice Hall, 2003.

[163] R. F. Tinder. “Engineering Digital Design: Revised Second Edition”. Academic Press,

2000.

[164] D. S. Tortosa and J. Nurmi. “Proteo: A New Approach to Network-on-Chip”. Inter-
national Conference on Communication Systems and Networks CSN’02), pages 9–12,

2002.

[165] J. W. van den Brand, C. Ciordas, K. Goossens, and T. Basten. “Congestion-controlled

best-effort communication for networks-on-chip”. DATE’07: Proceedings of the Con-
ference on Design, Automation and Test in Europe, pages 948–953, 2007.

[166] G. Varatkar and R. Marculescu. “Traffic analysis for on-chip networks design of multime-

dia applications”. DAC’02: Proceedings of the 39th Conference on Design Automation,

pages 795–800, 2002.

[167] G. V. Varatkar and R. Marculescu. “On-chip traffic modeling and synthesis for MPEG-2

video applications”. IEEE Transaction on Very Large Scale Integration System (TVLSI),
12(1):108–119, 2004.

[168] E. G. Varthis and D. I. Fotiadis. “A comparison of Stop-and-Wait and Go-Back-N ARQ

Schemes for IEEE 802.11e Wireless Infrared Networks”. Computer Communications,

29(8):1015–1025, 2006.

[169] S. Vassiliadis and I. Sourdis. “FLUX Networks: Interconnects on Demand”. Proceedings
of the Embedded Computer Systems: Architectures, Modeling and Simulation, pages

160–167, 2006.

[170] P. Vellanki, N. Banerjee, and K. S. Chatha. “Quality-of-service and error control tech-

niques for mesh-based network-on-chip architectures”. Integration, the VLSI Journal,
38(3):353–382, 2005.

[171] VHDL:. A sample tutorial on VHDL is available at:. http://www.vhdl-online.de/.

[172] J. Wang, H. Zeng, K. Huang, G. Zhang, and Y. Tang. “Zero-efficient buffer design for

180 Bibliography

reliable network-on-chip in tiled chip-multi-processor”. DATE’08: Proceedings of the
Conference on Design, Automation and Test in Europe, pages 792–795, 2008.

[173] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mattina, C.-C.

Miao, J. F. B. III, and A. Agarwal. “On-Chip Interconnection Architecture of the Tile

Processor”. IEEE Micro, 27(5):15–31, 2007.

[174] P. Wielage and K. Goossens. “Networks on Silicon: Blessing or Nightmare?”. DSD’02:
Proceedings of the Euromicro Symposium on Digital Systems Design, pages 196–200,

2002.

[175] D. Wingard. “Micronetwork-based integration for SOCs”. DAC’01: Proceedings of the
38th Conference on Design Automation, pages 677–681, 2001.

[176] P. T. Wolkotte, G. J. M. Smit, G. K. Rauwerda, and L. T. Smit. “An Energy-Efficient Re-

configurable Circuit-Switched Network-on-Chip”. IPDPS’05: Proceedings of the 19th
IEEE International Parallel and Distributed Processing Symposium (IPDPS’05) - Work-
shop 3, pages 155–162, 2005.

[177] Xilinx:. ”More information on Xilinx at”. http://www.xilinx.com/.

[178] J. Xu, W. Wolf, J. Henkel, and S. Chakradhar. “A design methodology for application-

specific networks-on-chip”. Transaction on Embedded Computing Systems (TECS),
5(2):263–280, 2006.

[179] T. T. Ye and G. D. Micheli. “Physical Planning for Multiprocessor Networks and Switch

Fabrics”. ASAP’03: International Conference on Application-Specific Systems, Archi-
tectures and Processors, pages 97–107, 2003.

[180] K. H. Yum, E. J. Kim, C. R. Das, M. Yousif, and J. Duato. “Integrated Admission and

Congestion Control for QoS Support in Clusters”. CLUSTER’02: Proceedings of the
IEEE International Conference on Cluster Computing, pages 325–332, 2002.

[181] H. ZHANG. “Service Disciplines for Guaranteed Performance Service in Packet-

Switching Networks”. Proceedings of the IEEE, pages 1374–1396, 1995.

