
M
oham

m
ad Fattah

F 7
A

N
N

A
LES U

N
IV

ERSITATIS TU
RK

U
EN

SIS

ISBN 978-951-29-8708-5 (PRINT)
ISBN 978-951-29-8709-2 (PDF)
ISSN 2736-9390 (PRINT)
ISSN 2736-9684 (ONLINE)

Pa
in

os
al

am
a,

 T
ur

ku
, F

in
la

nd
 2

02
1

TURUN YLIOPISTON JULKAISUJA – ANNALES UNIVERSITATIS TURKUENSIS

SARJA – SER. F OSA – TOM. 7 | TECHNICA – INFORMATICA | TURKU 2021

RUN-TIME MANAGEMENT
OF MANY-CORE SOCS

A communication-centric approach

Mohammad Fattah

RUN-TIME MANAGEMENT OF
MANY-CORE SOCS

A communication-centric approach

Mohammad Fattah

TURUN YLIOPISTON JULKAISUJA – ANNALES UNIVERSITATIS TURKUENSIS
SARJA – SER. F OSA – TOM. 7 | TECHNICA – INFORMATICA | TURKU 2021

University of Turku

Faculty of Technology
Department of Computing
Information and Communication Technology
Doctoral Programme in Mathematics and Computer Sciences (MATTI)

Supervised by

Professor Juha Plosila
University of Turku

Professor Pasi Liljeberg
University of Turku

Professor Hannu Tenhunen
University of Turku

Reviewed by

Professor Jüri Vain
Tallinn University of Technology

Professor Timo D. Hämäläinen
Tampere University

Opponent

Professor Peeter Ellervee
Tallinn University of Technology

The originality of this publication has been checked in accordance with the University
of Turku quality assurance system using the Turnitin OriginalityCheck service.

ISBN 978-951-29-8708-5 (PRINT)
ISBN 978-951-29-8709-2 (PDF)
ISSN 2736-9390 (PRINT)
ISSN 2736-9684 (ONLINE)
Painosalama, Turku, Finland, 2021

Mom...

UNIVERSITY OF TURKU
Faculty of Technology
Department of Computing
Information and Communication Technology
FATTAH, MOHAMMAD: Run-Time Management of Many-Core SoCs
Doctoral dissertation, 151 pp.
Doctoral Programme in Mathematics and Computer Sciences (MATTI)
November 2021

ABSTRACT

The single core performance hit the power and complexity limits in the begin-
ning of this century, moving the industry towards the design of multi- and many-core
system-on-chips (SoCs). The on-chip communication between the cores plays a crit-
ical role in the performance of these SoCs, with power dissipation, communication
latency, scalability to many cores, and reliability against the transistor failures as the
main design challenges. Accordingly, we dedicate this thesis to the communication-
centered management of the many-core SoCs, with the goal to advance the state-of-
the-art in addressing these challenges. To this end, we contribute to on-chip commu-
nication of many-core SoCs in three main directions.

First, we start with a synthesizable SoC with full system simulation. We demon-
strate the importance of the networking overhead in a practical system, and propose
our sophisticated network interface (NI) that offloads the work from SW to HW. Our
results show around 5x and up to 50x higher network performance, compared to
previous works. As the second direction of this thesis, we study the significance of
run-time application mapping. We demonstrate that contiguous application mapping
not only improves the network latency (by 23%) and power dissipation (by 50%),
but also improves the system throughput (by 3%) and quality-of-service (QoS) of
soft real-time applications (up to 100x less deadline misses). Also our hierarchi-
cal run-time application mapping provides 99.41% successful mapping when up to
8 links are broken. As the final direction of the thesis, we propose a fault-tolerant
routing algorithm, the maze-routing. It is the first-in-class algorithm that provides
guaranteed delivery, a fully-distributed solution, low area overhead (by 16x), and
instantaneous reconfiguration (vs. 40K cycles down time of previous works), all at
the same time. Besides the individual goals of each contribution, when applicable,
we ensure that our solutions scale to extreme network sizes like 12x12 and 16x16.
This thesis concludes that the communication overhead and its optimization play a
significant role in the performance of many-core SoCs.

KEYWORDS: Network-on-chip, Many-core SoCs, Run-time application mapping,
Fault-tolerance, Routing algorithm

v

TURUN YLIOPISTO
Teknillinen tiedekunta
Tietotekniikan laitos
Tieto- ja viestintätekniikka
FATTAH, MOHAMMAD: Run-Time Management of Many-Core SoCs
Väitöskirja, 151 s.
Matemaattis-tietotekninen tohtoriohjelma (MATTI)
Marraskuu 2021

TIIVISTELMÄ

Yksittäisen ytimen suorituskyky on rajoittunut tehonkulutuksen ja kompleksisuuden
osalta. Ytimien välinen viestinvälitys vaikuttaa merkittävästi järjestelmäpiirin su-
osituskykyyn, tehonkulutukseen, viipeeseen, skaalautuvuuteen ja luotettavuuteen.
Toimiala on siirtynyt käyttämään moniydin- (engl. multi-core) ja tosimoniydin-
ratkaisuihin (engl. many-core) perustuvia järjestelmäpiirejä (engl. System-on-Chip).
Tämä väitöskirja keskittyy tosimoniydinjärjestelmien viestinvälityksen haasteisiin ja
käsittelee kolmea keskeistä tosimoniydinjärjestelmän viestinvälityksen haastetta.

Ensimmäiseksi tutkimme syntetisoituvia järjestelmäpiirejä järjestelmäsimuloin-
neilla. Osoitamme, että toimivassa järjestelmässä viestienvälityksen kustannus (engl.
overhead) on merkittävä ja esittelemme kehittämämme verkkorajapinnan ohjelmisto-
jen ja verkon välille, jossa työtä siirretään laitteistolta ohjelmistojen suoritettavaksi.
Tulokset osoittavat noin viisinkertaisen ja jopa viisikymmenkertaisen suorituskyky-
parannuksen verrattuna aikaisempiin töihin. Toiseksi tutkimme ajonaikaista sovel-
luksen mappauksen (engl. mapping) merkitystä tosimoniydinjärjestelmäpiirin sisäisessä
viestinvälityksessä. Osoitamme, että jatkuva sovelluksen mappaus ei pelkästään
paranna verkon latenssia (23 %) ja tehonkulutusta (50 %), vaan myös parantaa lieven-
netyssä reaaliaikaisuudessa (engl. soft real-time) järjestelmän läpäisyä (3 %) ja
palvelunlaatua (jopa 100 kertaa vähemmän määräajan ylityksiä). Osoitamme myös,
että esittelemänne hierarkinen ajonaikainen sovellusmappaus tuottaa 99,41 % on-
nistumisen, kun jopa kahdeksan viestilinkkiä on pois käytöstä. Viimeiseksi ehdo-
tamme vikasietoista reititysalgoritmia, joka tarjoaa samanaikaisesti useita hyödyl-
lisiä ominaisuuksia: taattu toimitus, täysin hajautettu toteutus, pieni pinta-ala ja
uudelleenkonfiguroinnin matala kustannus. Edellä mainittujen löydösten lisäksi skaalau-
tuvuus on tärkeää ottaa huomioon. Väitöskirjassa esitetyt ratkaisut skaalautuvat aina
12x12 ja 16x16 viestintäverkkojen kokoon asti. Väitöskirja toteaa viestinvälityksen
kustannuksen ja viestinvälityksen optimoinnin vaikuttavan merkittävästi tosimoniy-
dinjärjestelmäpiirien suorituskykyyn.

ASIASANAT: tosimoniydinjärjestelmäpiiri, ajonaikainen sovelluksen mappaus, vikasi-
etoisuus, reititysalgoritmi

vi

Acknowledgements

I carried out the research in this dissertation at the Department of Computing, Uni-
versity of Turku, from March 2011 to December 2015. However, it took me another
six years to finalize my dissertation as several pivotal events occurred in my personal
life during that period. Looking back, an abundance of people and organizations sup-
ported me both professionally and personally, and I am sincerely grateful to them.

First of all, I would like to express my gratitude to my supervisors Professor
Juha Plosila and Professor Pasi Liljeberg, and my research director Professor Hannu
Tenhunen. I started as a young researcher, and throughout the years, their inspiration,
wisdom and encouragement has helped me to become who I am today. Juha and Pasi,
it was priceless to not only have your guidance during my research, but also to have
your support throughout the tough and rough times.

I would like to thank Professor Jüri Vain from Tallinn University of Technology
and Professor Timo D. Hämäläinen from Tampere University of Technology, for their
detailed reviews and constructive comments on my dissertation.

The Graduate School in Electronics, Telecommunication and Automation (GETA)
is gratefully acknowledged. In addition to funding my doctoral studies, it supported
the two valuable and unforgettable research visits I had during this time. I am also
grateful to the Ulla Tuominen Foundation and Elisa HPY Research Foundation for
financially supporting my research.

I had the privilege to conduct two research visits during this time, which led to
two of the publications presented int this thesis. I wish to express my great appre-
ciation to Associate Professor Maurizio Palesi from University of Catania for his
guidance and supervision. I would like to thank him, Salvatore, Paolo, Antonio,
Davide and others for making me feel at home. Also, I wish to express my great
appreciation to Professor Onur Mutlu from Carnegie Mellon University for his guid-
ance and valuable time. I would like to thank him, Samira, Yoongu, Justin, Yixin,
Lavanya, Vivek, and others for the many interesting discussions we had, and all that
I learned from them.

I would like to thank all of my co-authors for their efforts, insights, and fruitful
collaboration. In particular, I am grateful to Masoud Daneshtalab for his valuable
contributions, Hashem Haghbayan for our valuable discussions, Antti Airola and
Tapio Pahikkala for their great algorithmic insights, and Rachata Ausavarungnirun
for being a great collaborator. I would like to thank Ali Hazmi and Kari Pietikäinen,

vii

Mohammad Fattah

my colleagues at Nokia, for giving me one last push to bring this thesis to comple-
tion. I would like to thank my dear friends, Maria and Jarkko for all the fun we
had together, Johanna and Matti for being fantastic friends, and my Iranian friends,
Maryam, Faezeh, Sanaz, Mojtaba, Hossein, Ali, Erfan, and Farrokh for the great
times we spent together.

It is impossible to imagine my dissertation without the love, patience and support
of my parents. I am blessed to have parents that valued education, and sacrificed so
much to support me. Their support and encouragement over the years has been
the greatest gift I have ever had. My great dad (extended to Abbasali), I am so
lucky to have your support and delicate care to shield me against all distractions
and adversities. My perfect mom (extended to Parvaneh– butterfly in English), you
always offered me the peace of mind and confidence in all that was out there. I
wish I could share this very moment with you. This thesis’ dedication extends to
your memory, who would be with me forever. Zahra, Zohreh, and Ali, my beloved
siblings, thank you for your encouragements and most importantly for being at home,
when I have been away.

Finally, and with all my heart, I am grateful to my family in Finland. Narges,
my adorable love, you have been an amazing friend ever since we met in Turku, an
understanding and caring wife, and an incredible mother. Thank you for walking
hand-in-hand with me through thick and thin. Your support and encouragement have
been essential during the course of this dissertation. Soren, my happy little boy, you
might be still too young to follow all the details. But when you read these words, I
would like you to know that no matter what, I will always love you so much.

November 2021
Mohammad Fattah

viii

Table of Contents

Acknowledgements . vii

Table of Contents . ix

Abbreviations . xii

List of Original Publications . xv

1 Introduction . 1
1.1 Background . 2

1.1.1 Many-Core Architectures 4
1.1.2 Workloads of Many-Core Architectures 4
1.1.3 Communication-Centric Design of Many-Core Archi-

tectures . 8
1.2 Design Challenges . 9

1.2.1 Power . 9
1.2.2 Communication Latency 10
1.2.3 Reliability . 11
1.2.4 Scalability . 12

1.3 Research Questions . 12
1.4 Summary of Research Contributions 14

1.4.1 Transport Layer Aware Network Interface 15
1.4.2 Run-Time Application Mapping 16
1.4.3 Fault-Tolerant Routing 19

1.5 Methodology . 20
1.6 Thesis Organization . 21

2 Transport Layer Aware Network Interface 23
2.1 Related Works . 23
2.2 Transport Layer Functionality 24
2.3 Kernel Overhead . 25
2.4 Tra-NI Design . 26
2.5 Experimental Setup . 27

ix

Mohammad Fattah

2.6 Results . 28

3 Run-Time Application Mapping 30
3.1 Related Works . 31
3.2 Validation Environment . 33

3.2.1 In-House System-C Simulation 33
3.3 Contiguous Application Mapping 34

3.3.1 Quantifying the Contiguousness 35
3.3.2 CoNA and SHiC Methods 35
3.3.3 Communication Performance Evaluation 38
3.3.4 Scalability Analysis 39

3.4 Adjustable Contiguity . 39
3.4.1 The Middle 𝛼 Value 41

3.5 Providing QoS . 42
3.5.1 Evaluation of Missed Deadlines 42

3.6 Test-Aware Mapping . 44
3.6.1 Overhead Evaluation 44

3.7 Fault-Aware Application Mapping 45
3.7.1 Reliability of SHiFA 47
3.7.2 SHiFA Scalibility Evaluation 48
3.7.3 Limitations of SHiFA 48

3.8 Summary . 50

4 Fault-Tolerant Routing . 51
4.1 Related Works . 51
4.2 Maze-Routing Algorithm . 54
4.3 Experimental Setup . 56
4.4 Results . 56

5 Description of Papers . 58
5.1 Overview of Original Papers 58

5.1.1 Paper I- Exploration of MPSoC Monitoring and Man-
agement Systems . 58

5.1.2 Paper II- Transport Layer Aware Design of Network
Interface in Many-Core Systems 58

5.1.3 Paper III- CoNA: Dynamic Application Mapping for
Congestion Reduction in Many-Core Systems . . . 59

5.1.4 Paper IV- Smart Hill Climbing for Agile Dynamic Map-
ping in Many-Core Systems 59

5.1.5 Paper V- Adjustable Contiguity of Run-Time Task Al-
location in Networked Many-Core Systems 60

x

TABLE OF CONTENTS

5.1.6 Paper VI- Mixed-Criticality Run-Time Task Mapping
for NoC-Based Many-Core Systems 60

5.1.7 Paper VII- A Power-Aware Approach for Online Test
Scheduling in Many-core Architectures 61

5.1.8 Paper VIII- SHiFA: System-Level Hierarchy in Run-
Time Fault-Aware Management of Many-Core Sys-
tems . 61

5.1.9 Paper IX- A Low-Overhead, Fully-Distributed, Guaranteed-
Delivery Routing Algorithm for Faulty Network-on-
Chips . 61

6 Conclusion and Discussion . 63
6.1 Future Work . 64

List of References . 66

Original Publications . 73

xi

Abbreviations

AM Application Manager .18, 45–49

AXI Advanced Extensible Interface . 24

BN Best Neighbor . 31

CASqA Contiguity Adjustable Square Allocation 40–42, 47, 48, 50, 64

CoNA Contiguous Neighborhood Allocation 20, 35, 36, 38, 39, 58, 59

CPU Central Processing Unit . 1, 2, 4, 16, 27, 30, 33, 34, 42

DMA Direct Memory Access . 27

DTL Device Transaction Level .24

ENIAC Electronic Numerical Integrator And Computer . 1

FF First Free . 31

FIFO First-in First-out . 26

flit Flow Control Digit . 23

FLOPS Floating Point Operations Per Second . 2

FPGA Field-programmable Gate Array . 27, 28, 32

GALS Globally-asynchronous Locally-synchronous . 23

GEA Gaussian Elimination Application . 24, 25, 30

IC Integrated Circuits . 1

ILP Instruction-level Parallelism . 2–4

IP Intellectual Property . 24

IPC Instruction Per Cycle . 2

LBDR Logic-based Distributed Routing . 52

xii

TABLE OF CONTENTS

LBDRe LBDR-extended . 52

LLC Last Level Cache . 64

MD Manhattan Distance . 34, 54

MM Mobile Master . 18, 45–48

MPI Message Passing Interface . 24

MPSoC Multi-processor System-on-chip . 14, 20, 32

MRD Mapped Region Dispersion . 34, 35

MTTF Mean-time-to-failure . 13

NI Network Interface . v, 14, 15, 20, 23, 24, 26–28, 58

NMRD Normalized MRD . 35

NN Nearest Neighbor . 31, 39, 41

NoC Network-on-chip . 12–21, 23, 24, 27, 30–35, 38, 39, 41, 42, 45, 47, 51, 52, 61,
63

OCP Open Core Protocol .24

OS Operating System . 23, 25, 27, 40, 58, 60

PE Processing Element 12, 14, 16–18, 24, 26, 27, 30, 32–34, 39, 42, 45, 47, 48, 53,
63

PL Path Load . 31

QoS Quality-of-service . v, 10, 17, 42, 50, 63

RQ Research Question . 12, 13, 21

RTL Register-transfer Level . 27, 33

SCC Single-chip Cloud Computer . 14, 28, 63

SF Square Factor . 36, 38, 44

SHiC Smart Hill Climbing . 35, 38–40, 46, 48, 59

SHiFA System-level Hierarchical Fault-aware . 45, 47–50, 63

SoC System-on-chip . v, 27, 63, 64

xiii

Mohammad Fattah

TG Task Graph. .49

uLBDR Universal-LBDR . 52

VIP Virtual Point-to-point . 32

xiv

List of Original Publications

This dissertation is based on the following original publications, which are referred
to in the text by their Roman numerals. Some ideas and figures of the dissertation
might have appeared previously in the these publications.

I Mohammad Fattah, Masoud Daneshtalab, Pasi Liljeberg, Juha Plosila.
Exploration of MPSoC Monitoring and Management Systems. In 6th In-
ternational Workshop on Reconfigurable Communication-centric Systems-
on-Chip (ReCoSoC), pp. 1–3, 20–22 June 2011, Montpellier, France.

II Mohammad Fattah, Masoud Daneshtalab, Pasi Liljeberg, Juha Plosila.
Transport Layer Aware Design of Network Interface in Many-Core Sys-
tems. In 7th International Workshop on Reconfigurable Communication-
centric Systems-on-Chip (ReCoSoC), pp. 1–7, 9–11 July 2012, York, UK.

III Mohamamd Fattah, Marco Ramirez, Masoud Daneshtalab, Pasi Liljeberg,
Juha Plosila. CoNA: Dynamic Application Mapping for Congestion Re-
duction in Many-Core Systems. In IEEE 30th International Conference
on Computer Design (ICCD), pp. 364–370, Sept. 30 2012–Oct. 3 2012,
Montreal, QC, Canada.

IV Mohammad Fattah, Masoud Daneshtalab, Pasi Liljeberg, Juha Plosila.
Smart Hill Climbing for Agile Dynamic Mapping in Many-Core Systems.
In 50th ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–
6, May 29 2013–June 7 2013, Austin, TX.

V Mohammad Fattah, Pasi Liljeberg, Juha Plosila, Hannu Tenhunen. Ad-
justable Contiguity of Run-Time Task Allocation in Networked Many-
Core Systems. In 19th Asia and South Pacific Design Automation Confer-
ence (ASP-DAC), pp. 349–354, 20–23 Jan. 2014, Singapore.

VI Mohammad Fattah, Amir-Mohammad Rahmani, Thomas Canhao Xu, Anil
Kanduri, Pasi Liljeberg, Juha Plosila, Hannu Tenhunen. Mixed-Criticality
Run-Time Task Mapping for NoC-Based Many-Core Systems. In 22nd
Euromicro International Conference on Parallel, Distributed and Network-
Based Processing (PDP), pp. 458–465, 12–14 Feb. 2014, Torino, Italy.

xv

Mohammad Fattah

VII Mohammad-Hashem Haghbayan, Amir-Mohamad Rahmani, Antonio Miele,
Mohammad Fattah, Juha Plosila, Pasi Liljeberg, Hannu Tenhunen. A
Power-Aware Approach for Online Test Scheduling in Many-core Archi-
tectures. In IEEE Transactions on Computers, no. 99, pp. 730–743.

VIII Mohammad Fattah, Maurizio Palesi, Pasi Liljeberg, Juha Plosila, Hannu
Tenhunen. SHiFA: System-Level Hierarchy in Run-Time Fault-Aware
Management of Many-Core Systems. In 51st ACM/EDAC/IEEE Design
Automation Conference (DAC), pp. 1–6, 1–5 June 2014, San Francisco,
CA.

IX Mohammad Fattah, Antti Airola, Rachata Ausavarungnirun, Nima Mirzaei,
Pasi Liljeberg, Juha Plosila, Siamak Mohammadi, Tapio Pahikkala, Onur
Mutlu, Hannu Tenhunen. A Low-Overhead, Fully-Distributed, Guaranteed-
Delivery Routing Algorithm for Faulty Network-on-Chips. In 9th Inter-
national Symposium on Networks-on-Chip (NOCS), pp. 18:1–18:8, 28–30
Sept. 2015, Vancouver, BC, Canada.

The list of original publications have been reproduced with the permission of the
copyright holders.

xvi

1 Introduction

Since the early days of digital computers, mankind has always been seeking for more
and more computing power. Advances in computer design has enabled the develop-
ment of programs and applications that were hard, if not impossible, to imagine in
early days of computers. Many scientific discoveries and advances in different as-
pects of human life (such as economy, health, etc.) has become real because of the
increasing computing power that has become increasingly time and price affordable
from day to day.

Early digital computers were electromechanical, where calculations were per-
formed by driving mechanical relays using electric switches. In 1941, the Ger-
man engineer Konard Zuse invented Z3, the world’s first electromechanical pro-
grammable digital computer [99; 108]. 2000 relays were incorporating in Z3 to
perform 22-bit arithmetic at clock frequency of 5 to 10 Hz. Nevertheless, all-electric
computers quickly replaced the electromechanical computers, caused by the inven-
tion of vacuum tubes.

In 1946, electronic numerical integrator and computer (ENIAC) [31] was an-
nounced as the world’s first electronic general purpose computer. 17,468 vacuum
tubes along with several crystal diodes, relays, resistors and capacitors were building
up ENIAC to perform 10 digit operations at clock frequency of 5000 Hz; thousand
times faster than Z3– the electromechanical computer.

Later on, the invention of bipolar transistors (in 1947), and integrated circuitss
(ICs)— in 1959, revolutionized the use and computing power of digital computers.
The IC design enabled the integration of the central processing unit (CPU) of a dig-
ital computer into one IC (or at most few), called a microprocessor. In 1971, Intel
announced the world’s first microprocessor available in the market, the Intel 4004
[1]. 2,300 transistors of 10 𝜇m feature size were put together to perform 4-bit oper-
ations at clock frequency of 740 kHz. This offered a computing power almost equal
to that of ENIAC, with several orders of magnitude less weight, power consumption,
and size characteristics1.

Ever since, as predicted by Gordon E. Moore at 1965 [72] (known as Moore’s
law), the number of transistors integrated in a single chip has been doubled almost
every 18 months. This is realized by continues shrinkage in the feature size of transis-

1ENIAC was 27,000 kg, consuming 150kW of electricity and occupying 167 m2 of area

1

Mohammad Fattah

tors, as well as advances in manufacturing technologies. To keep up the performance
of microprocessors with the number of integrated transistors, paradigm shifts and
design innovations are being deployed to mitigate new challenges and bottlenecks
introduced as a result of the transistor scaling. Continuous research is needed to pre-
dict, identify and find solutions to challenges and bottlenecks of delivering steady
performance improvements with regards to increasing transistor count. This thesis is
willing to be a very small step in this direction.

1.1 Background

Until the early days of this century, microprocessors used to have a single CPU,
known as single-core processors or uniprocessors. Essentially, there was no need
to put more CPUs into a microprocessor, because their speed, measured as floating
point operations per second (FLOPS), used to follow the Moore’s law by exploiting
two main techniques; instruction-level parallelism (ILP), and clock frequency scal-
ing [51]. ILP methods try to potentially overlap and parallelize execution of different
instructions, leading to execution of more instruction per cycle (IPC). Example ILP
methods are using deeper pipelines, larger out of order execution buffers, higher
instruction-fetch bandwidth (i.e. superscalar architectures), and so on. The design
complexity and transistors count increase with the degree of utilized ILP. That said,
the continuation of Moore’s law worked as an enabler to higher IPC values. The
frequency scaling, on the other hand, is the other main reason for speedup of micro-
processors. Capacitance of transistors decrease with their feature size, in which, they
can switch in a higher frequency. As a result of IPC and frequency improvements,
the speed of microprocessors increased with the number of integrated transistors; i.e.
followed the Moore’s law.

Although Moore’s law was still in place, around 2005, the performance of single-
core processors became difficult to improve. First, the gains of ILP methods greatly
diminished. Not only there is a limited amount of ILP in a single instruction stream to
harvest [51], but also, fundamental circuit limitations manifest when increasing the
degree of utilized ILP methods [78]. Moreover, the frequency scaling, as the second
knob for higher speed, has hit to the power wall [14]. That is, scaling the frequency
in smaller technology nodes generates heat at a rate faster than can be transferred to
the ambient. As technology scales further, the reduction of supply voltage (𝑉𝐷𝐷) is
slowed down and leakage current portion is increased. Thus, in order for transistors
to switch in a faster frequency,they should be supplied with higher voltage (𝑉𝐷𝐷)
than expected. With respect to the 𝑉𝐷𝐷value, however, the leakage (a.k.a. static:
𝑃𝑠𝑡𝑎𝑡.) and switching (a.k.a dynamic: 𝑃𝑑𝑦𝑛.) power of transistors increase linearly
and quadratically, respectively. Since increasing the frequency (𝐹𝑟𝑒𝑞.) requires lin-
ear increase of 𝑉𝐷𝐷, the operating frequency has linear and power of 3 relation,

2

Introduction

respectively, to the static and dynamic power consumption of a processor:

𝑃𝑠𝑡𝑎𝑡. ∝ 𝐹𝑟𝑒𝑞.

𝑃𝑑𝑦𝑛. ∝ 𝐹𝑟𝑒𝑞.3
(1)

Figure 1. Frequency and ILP gains stopped, but Moore’s law continued [94].

In summary, increasing the degree of ILP methods faced diminishing returns
and increasing microprocessors frequency led to excessive heat dissipation, making
the case for higher speed in single-core microprocessors impractical and expensive.
Fig. 1 shows the above mentioned trend, for Intel microprocessors, since 1970 until
2010. As can be seen, the Moore’s law has been in place and the total number of
transistors has been increasing exponentially (green data points). However, around
2003, the ILP performance reached its limits, shown as Perf/Clock trend line, where
no more performance is achieved per clock cycle using ILP methods. In addition, the
frequency scaling of microprocessors has stopped (dark blue line) around the same
time.

3

Mohammad Fattah

2

4

8

16

32

2004 2006 2008 2010 2012 2014 2016 2018

#C
o
re
s

year

Server Desktop Trend (Server) Trend (Desktop)

Figure 2. The maximum core count available by Intel in each year.2

1.1.1 Many-Core Architectures

As mentioned earlier, around 2005, the performance of single-core microprocessors
started to lag behind the capacity offered by Moore’s law. As a result, industry ex-
perienced a big paradigm shift towards the multi-core processor design. Instead of
using the additional transistor capacity to design a complexer uniprocessor, it is used
to accommodate multiple of simpler cores. Theoretically, this multiplies the perfor-
mance of the microprocessor design, while ILP and frequency scaling limitations are
removed from the equation.

Since then, the number of cores in a single processor is gradually increasing,
to the point where we do not have only multiple but many cores on a single chip.
To better illustrate this trend, we have gathered the information of different CPU
models offered by Intel in every year. CPUs are partitioned into two main categories,
the desktop processors and the server processors (called Xeon processors by Intel).
Fig. 2 demonstrates the maximum number of cores available in a single processor by
each year. As can be seen from the trend lines, the number of cores is double every
8 years in desktop market, while doubled every 4 years in server processors.

1.1.2 Workloads of Many-Core Architectures

In single-core era, software was written sequentially; as a sequence of machine in-
structions. It was the hardware responsibility to dynamically find instructions that
are independent and parallelize (overlap) their execution. Parallel execution of in-
structions is allowed as long as it keeps the illusion of a sequential processor to the
software side. Detecting the dependencies between different instructions and cor-
rectly scheduling their execution is a difficult task. ILP methods ease the software

2The data is extracted from CPU-World website: http://www.cpu-world.com/

4

Introduction

0

5

10

15

20

0 10 20 30 40 50 60 70

Sp
e

e
d

u
p

Number of Cores (N)

s = 1%

s = 5%

s = 10%

s = 15%

s = 30%

Figure 3. According to Amdahl’s law, the achievable speed up is severely limited by serial
bottleneck.

development, as programmers do not need to think in parallel. Software programs
are developed without considering different dependencies and the hardware takes
care of the rest in providing high-speed execution.

By end of single-core era and introduction of multi-core processors, however,
the available parallelism is exposed to the programmers. Now, programmers need
to think in parallel, partition an application into parallel tasks and take care of the
dependencies between them. Accordingly, a parallelized application will be a set
of smaller tasks that communicate and cooperate to solve the larger problem of the
sequential application [3].

However, not all parts of an application are always parallelizable. Some parts,
known as the serial portion (𝑠), have to run sequentially; i.e. there are no other tasks
to be executed in parallel with them. Accordingly, known as Amdahl’s law or serial
bottleneck [4], the maximum achievable speed up is limited by the serial portion of
an application:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
1

𝑠+ 1−𝑠
𝑁

(2)

Where, 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 is the maximum achievable speedup by running the application
on 𝑁 processors, compared to on 1 processor. The effect of the serial portion (𝑠) is
shown in Fig. 3. For instance, when there is only 5% of serial code, the maximum
speedup is around 15 on a 64-core processor, where theoretically (i.e. 𝑁 → +∞) it
cannot exceed 20.

Hence, even though having many-(small-)cores rather than few-(large-)cores po-
tentially provides a higher speedup, many-cores are not favorable as long as we want
to parallelize one application. The high performance of many-core systems can be
utilized by having several applications, where each is parallelized on few cores of the
system [16]. To better visualize this, let us assume that for a given transistor count,

5

Mohammad Fattah

0

5

10

15

20

25

30

35

R
e

la
ti

ve
 S

p
e

e
d

u
p

8 big cores

64 medium cores

128 small cores

Figure 4. Relative speedup (compared to one big core) of running 1 to 16 applications (𝑠 = 5%)
on the same die size divided between different number of cores.

we have 3 microprocessor design options; to have 1) 8 big cores, 2) 64 medium cores,
or 3) 128 small cores. Saying that one big core has a relative speed of 1, according
to Pollack’s rule, the relative speed of each medium and small core will be 0.35 and
0.25, respectively. As Amdahl’s law implies, running an application with 5% serial
portion on 8 powerful cores will be faster than running it on 128 cores which each is
a fourth powerful. However, the story will be different if we have multiple applica-
tions. Fig. 4 shows the case where we have multiple applications (𝑠 = 5%) running
in parallel on each design option. As can be seen, 128 small cores demonstrate better
speedup than 8 big cores as we increase the number of parallel applications. Note
that the 𝑀𝑎𝑥.(𝑠 = 0%) is the maximum speedup of each design option if we had
0% of serial portion.

In summary, one of the main distinguishing characteristics of many-core archi-
tectures is their workloads. Parallel applications, with different requirements and
characteristics, enter and leave the system during run-time, with no a priori knowl-
edge. One main example is the cloud computing servers where several users with
different requirements (e.g. core count) share the same host machine; i.e. micropro-
cessor.

Nevertheless, there are two main programming models for parallel tasks of an
application to communicate, synchronize and cooperate; namely message-passing
and shared-memory [3]. In message-passing, the communication happens through
explicit messages, while a shared address space is used for communication in shared-
memory model.

For instance, if task 𝑇𝐴 wants to hand the result of its computation, 𝑋 , to another
task 𝑇𝐵 , the following is done. In a shared-memory programming model, once 𝑇𝐴

has the result ready in 𝑋 sets a flag variable 𝑓𝑙𝑎𝑔 so that the 𝑇𝐵 can be notified
and read the 𝑋 value. As can be seen, in this scenario, we assume that 𝑋 and 𝑓𝑙𝑎𝑔

variables are shared between two parallel tasks. On the other hand, in a message-

6

Introduction

t0

t2 t1

t4

t3

t5 t6

t7 t8

Figure 5. Gaussian Elimination application with 9 tasks and 11 edges

passing model, 𝑇𝐴 will have an explicit 𝑠𝑒𝑛𝑑 command, which takes destination 𝑇𝐵

and the data to be sent 𝑋 as arguments. The receiver, 𝑇𝐵 , also will use an explicit
𝑟𝑒𝑐𝑒𝑖𝑣𝑒 command with the source 𝑇𝐴 and the place to store the received data 𝑋𝑐𝑜𝑝𝑦

as arguments. As can be seen, in shared-memory model, the communication and
synchronization is implicit and through shared memory space (variables), whereas
in message-passing model, explicit communication primitives are used to exchange
data while variables are private to each task. Note that parallel tasks of shared-
memory applications are usually referred to as threads. We will use the same notion
throughout this thesis; tasks are referring to parallel entities of a message-passing
application, while threads are those of a shared-memory application.

Compared to message-passing model, where, programmer needs to take care of
sharing required data among parallel tasks, the shared-memory model is closer to
sequential programming, hence an easier choice for developers. On the other hand,
and from the architecture design point of view, the networking overhead is optimized
in message-passing, as only the required data is shared among different processors.

A message-passing application is often represented as a directed task graph 𝐴𝑝 =

𝑇𝐺(𝑇,𝐸). A vertex 𝑡𝑖 ∈ 𝑇 represents a task in the application, while edges 𝑒𝑖,𝑗 ∈ 𝐸

stand for communication from 𝑡𝑖 to 𝑡𝑗 . Task graph of Gaussian Elimination appli-
cation [5] with 9 parallel tasks is shown in Fig. 5. Each edge (𝑒𝑖,𝑗) may also have
a weight 𝑤𝑖,𝑗 which determines communication volume between the two task. Task
graphs can be built based on the application flow or by profiling it.

7

Mohammad Fattah

T0,0

PE4,2

R4,2

T0,4

T4,0

T4,2

T4,4

Figure 6. A 5x5 many-core architecture connected by a mesh network-on-chip.

1.1.3 Communication-Centric Design of Many-Core Architectures

As stated by Almasi [3], a parallel computer (a many-core architecture in our case)
is a set of processing elements that can communicate and cooperate. Traditionally,
shared buses are used as the communication infrastructure of microprocessors. As
the bus is a shared medium, the throughput per core decreases with the increase of
connected cores. Moreover, the wire length increases with the number of connected
cores, which decreases the aggregated throughput. As a result, however, shared buses
cannot scale to connect growing number of cores in many-core processors.

Network-on-chips (NoCs) have emerged as a promising solution for communi-
cation infrastructure of such systems [26]. Compared to traditional or hierarchical
bus architectures, NoCs provide a scalable and regular infrastructure to connect com-
ponents of many-core architectures. Instead of shared channels of bus architectures,
NoCs are composed of routers and links. Each core is connected to a router, and
injects messages to and receives them from the network through its router. Routers
are connected together via links and forward messages from source core to the des-
tination core. Fig. 6 shows a generalized 25-core architecture connected by a mesh
on-chip network. Each core, encapsulated in a processing element (PE), can com-
municate with other cores through the network. In addition to the core, a PE may
contain cache slices, a network interface, and so on.

NoC design is compromised of several aspects [27, Chapter 1]; namely, topol-
ogy, routing algorithm, flow control and output scheduling. The network topology
concerns the connection pattern between routers of the network, while the flow con-
trol mechanism addresses the way messages traverse a path in the network. The path
taken by a message from source to destination is determined by the routing algo-
rithm. Whilst, the output scheduling arbitrates between several messages that want
to leave a router through the same link.

Similar to programming models of parallel applications, PEs of a many-core sys-

8

Introduction

tem may communicate in either message-passing or shared-memory models. Mes-
sages that are mainly exchanged between cores will vary depending on the utilized
communication model. Coherency and synchronization messages dominate in the
shared-memory model, while explicit messages of running tasks are exchanged in a
message-passing NoC architecture.

Pros and Cons of Each Communication Model The message-passing and shared-
memory programming and architecture models come with their particular benefits
and costs. From programming point of view, shared-memory model is easier to uti-
lize. As the memory address space is shared between threads, the programmer does
not need to concern about partitioning of the data. Whereas in message-passing
paradigm, the programmer needs to explicitly take care of data partitioning. Coher-
ence protocols of shared-memory architectures, on the other hand, generate excessive
network traffic for broadcasting messages, and require long tags to store sharers of
each cache line. Both of which, impose scalability issues [69] when increasing the
number of cores.

1.2 Design Challenges

As mentioned in Chapter 1.1.1, many-core architectures are proposed to mainly over-
come the power issues of ever sophisticating single-core microprocessors. However,
designing efficient many-cores leads to challenges of its own. These challenges may
arise as a result of the massive parallelism of these architectures or aggressive shrink-
age of the transistors feature size. This section explains these challenges, particularly
from the on-chip communication point of view, which motivate the research ques-
tions of this thesis and its contributions.

1.2.1 Power

As mentioned, the power dissipation has been the main motivation to move from
single-core microprocessors to multi- and many-core architectures. Compared to
multi-cores, more number of smaller cores are integrated in a many-core system. As
the size and complexity of a single core decreases, the relative size of the communi-
cation fabric (NoC) increases, resulting in increased share of NoC in the total power
consumption of the chip. In 16-core Raw processor [97], for instance, 36% of the
total chip power is dissipated in NoC fabric.

Hence, the NoC power consumption is a major challenge in design of many-core
systems. Assuming a minimally-routed mesh network, as shown in [104; 103], the
dynamic energy consumed to send a packet from a source node (𝑠𝑟𝑐) to a destination

9

Mohammad Fattah

(𝑑𝑠𝑡) is:

𝐸𝑝𝑎𝑐𝑘𝑒𝑡 = #𝐹𝑙𝑖𝑡𝑠× 𝐸𝑓𝑙𝑖𝑡 (3)

where, #𝐹𝑙𝑖𝑡𝑠 is the number of flits in that packet, while the energy consumed
per flit of communication, indicated as 𝐸𝑓𝑙𝑖𝑡, is:

𝐸𝑓𝑙𝑖𝑡 = 𝐸𝑅 × (𝑀𝐷(𝑠𝑟𝑐, 𝑑𝑠𝑡) + 1) + 𝐸𝑤𝑖𝑟𝑒 ×𝑀𝐷(𝑠𝑟𝑐, 𝑑𝑠𝑡)

= 𝑀𝐷(𝑠𝑟𝑐, 𝑑𝑠𝑡)× (𝐸𝑅 + 𝐸𝑤𝑖𝑟𝑒) + 𝐸𝑅

(4)

where, 𝐸𝑅 and 𝐸𝑤𝑖𝑟𝑒 are, respectively, the average energy consumed in each
router and link of the path between source and destination. Also, 𝑀𝐷(𝑠𝑟𝑐, 𝑑𝑠𝑡)

indicates the Manhattan Distance between source and destination; i.e. the path length
between 𝑠𝑟𝑐 and 𝑑𝑠𝑡. As shown, the path length between the source and destination
directly contributes to the dynamic power dissipation of the network.

Accordingly, the first motivation behind this thesis is to reduce the effect of power
challenge in the on-chip network of many-core systems. We introduce several run-
time application mapping algorithms that decrease the average hop counts that the
network flits traverse in the network. Resulting in reduced power consumption of the
NoC fabric.

1.2.2 Communication Latency

As explained in Chapter 1.1.2, Amdahl’s law (equation 2) states that the speedup of
a parallel application is limited by its serial portion; also know as serial bottleneck.
What is not entered into the equation is the overhead of parallelizing the parallel
portion. Amdahl’s law assumes that the parallel portion of an application is perfectly
parallelizable; i.e. it can be divided into 𝑁 identical parts with no extra overhead.

Nevertheless, there are three main bottlenecks in parallelizing the parallel potion
of an application. First, load imbalance: the parallel tasks may not have equal ex-
ecution times. Resource contention in accessing the shared resources is the second
bottleneck. Though we have 𝑁 number of cores to run parallel tasks on them, not all
the hardware resources are (can be) replicated.

The communication and synchronization overhead is the third bottleneck, which
is the concern of this thesis. Parallel tasks of an application need to share and ex-
change data, which happens through the underlying on-chip network. The com-
munication does not happen in zero-time, and the latency is increased by network
contention. This adds up to the execution time of a parallel application and re-
duces the practical speedup. Moreover, the unpredictable communication latency
can cause deadline misses in real-time applications, which reduces the QoS expe-
rienced by users. A real-time application is preferred to have predictable latencies
with decreased worst-case latencies.

10

Introduction

Accordingly, one of the motivations behind this thesis is to tackle this challenge.
We aim to propose solutions that decrease the average and worst-case latency of the
on-chip network. As explained, this potentially leads to improved execution time
and QoS of the running applications and the many-core system.

Worth noting, however, as minimizing the serial portion of an application is more
of a programming challenge, it falls beyond the scope of this thesis. Also, we assume
that the serial bottleneck is backed up by running multiple parallel applications on a
many-core system.

1.2.3 Reliability

Another major challenge of aggressive scaling of feature size is the reduced reliabil-
ity of on-chip components [15]. The source of faults in the components can be either
static or dynamic. Static faults happen during fabrication process and mainly occur
due to device variations; i.e. differences in devices, from each other and what they
are designed to be. Dynamic faults occur during run-time and can be permanent,
transient, or intermittent [64]. Intermittent and transient faults mainly occur due to
dynamic sources of variation as discussed in [15]. In intermittent faults, transistors
timing and power characteristics fluctuates over time due to different dynamic mech-
anisms; e.g. change of the power density (Watts per square centimeter) across the
chip area. This can, in turn, cause different components of the chip to periodically go
faulty and back. Memory cells and logic latches are usually (and randomly) flipped
in transient faults, caused by the alpha particles and cosmic rays that hit the silicon
chips.

Permanent faults, on the other hand, occur due to different device aging and
wear-out mechanisms [93; 57]; such as hot carrier injection (HCI), negative bias
temperature instability (NBTI), electromigration, gate oxide breakdown, etc. These
mechanisms are expected to be aggravated by technology shrinkage and cause more
failed components during system operation, as devices age. In this thesis, we mainly
focus on run-time permanent failures.

Hence, this is crucial to design different methods that test the system, detect
faults, and adapt to them during run-time. The ultimate goals is to deliver reliable
many-core systems with long lifetime, built from unreliable transistors and devices
that fail much faster than the expected mean-time-to-failure (MTTF) of the whole
system. The first step towards this goal is to detect such component failures early in
time, by realizing some online test mechanisms. Online testing is required to ensure
that the system is yet reliable and detect if a component has failed. When a failure
is detected, run-time fault-tolerant methods are needed to adapt to the new situation
and resume normal operation of system with minimal performance degradations.

Permanent faults may occur in PE or NoC component of a many-core system,
wherein NoC faults can be more serious and challenging. Though faulty PEs degrade

11

Mohammad Fattah

the system performance, they can be simply ignored as many-core systems provide
inherent redundancy of PEs. However, a fault in a router or link of the on-chip
network can potentially cripple system performance and perhaps even more severely
become a single point of failure [45]; as NoC provides the communication substrate
between the system components.

1.2.4 Scalability

Besides the above mentioned challenges, many-cores are recognized by their dy-
namic nature. Their workload, power dissipation, and utilization characteristics are
dynamic and change during run-time, permanent faults occur randomly over time
and so on. Hence, addressing aforementioned challenges cannot be complete with-
out considering their dynamic nature.

Last but not least, we take scalability as one of the aims behind the proposals of
this thesis. The proposed solutions need to scale by the core count, and increased
dynamicity of the system. In other words, our power, speedup, and reliability perfor-
mance needs to scale by the problem size.

1.3 Research Questions
The main motivation of this thesis is to address different challenges that the emer-
gence of many-core architectures will raise (discussed in Chapter 1.2). Power issues
are still going to be there, while speedup of parallel applications are not as promising
as we wish, and it is hard to scale the monitoring and management algorithms to
the many number of cores. In addition, reliability challenges get more severe as the
technology is shrunk more and more. Scalability challenges raise in addressing these
issues, especially when considering the dynamic nature of many-core systems. The
communication substrate (realized by network-on-chips (NoCs)), as the main facil-
itator of the existing parallelism, has a major contribution in these challenges. NoC
is going to have more contribution in the power dissipation of the whole system;
as processing elements (PEs) get simpler and smaller. Execution time of running
applications is affected by communication of their parallel tasks. While, failures in
the NoC components can lead to a single point of failure. Accordingly, we set the
objective of this thesis as follows:

To investigate the main contributors in the power, latency, and reliability
challenges of on-chip communication in many-core architectures, given
their dynamic natures, and to propose scalable solutions to improve the
state-of-the-art.

We set one or two research questions (RQs) in accordance to each design chal-
lenge to help this thesis in achieving its objective. Each RQ tries to narrow down

12

Introduction

the research focus, and pose questions on identifying the run-time bottlenecks or
resolving the challenges.

Power

As mentioned in Chapter 1.2.1, the dynamic power dissipation of NoC fabric depends
on the paths that packets traverse. The longer the path a packet takes, more power
the NoC consumes. In the first RQ, we question the potential NoC power saving can
be obtained through run-time placement of tasks on system cores, and try to come
up with solutions to harvest this potential:

RQ.1. How can we reduce the on-chip communication power through
run-time application mapping algorithms?

Communication Latency

Execution time of a parallel application is affected by its communication latency,
discussed in Chapter 1.2.2. There are several steps involved in communication be-
tween two tasks, contributing to the latency. The residing cores of tasks and their
potential other sharer tasks are chosen dynamically during run-time. In this thesis,
we question the main run-time dependent contributors to the network latency, and
look for different architecture- and system-level solutions to reduce their share:

RQ.2.1. What are the main run-time contributors to communication la-
tency?

RQ.2.2. How can we reduce impact of different contributors to commu-
nication latency, and how the system performance is affected?

Reliability

Aggressive scaling of transistor feature size has led to serious reliability challenges
in the design of future many-core systems. System components may fail early in
time, well before the expected mean-time-to-failure (MTTF) of the whole device.
Online testing and run-time fault adaptation mechanisms are two main ingredients of
designing fault-tolerant systems. Online testing methods periodically disable differ-
ent system components to validate their correct functionality, which can potentially
lead to degraded performance of the system. This thesis questions ways to reduce the
degraded performance of online testing methods, and architecture- and system-level
solutions to tolerate run-time permanent faults in NoC fabric components:

RQ.3.1. How to incorporate online testing methods providing minimal
run-time performance degradation?

13

Mohammad Fattah

RQ.3.2. How can we recover from failures in the NoC components?

Scalability

Many-core systems will be dynamic and variant in nature in many different aspects.
Upon making decisions during run-time, there will be enormous number of different
metrics to be considered. The approach to make run-time management system scale
with the growing number of cores is questioned in this thesis:

RQ.4. How can we make run-time management methods scale with the
number of cores?

1.4 Summary of Research Contributions
This section briefly explains the main contributions that this thesis makes. These
contributions provide novel system- and architecture-level answers in addressing
different challenges of many-core systems design, discussed in Chapter 1.2. As
aforementioned, the main focus of this thesis is the communication fabric— i.e. the
network-on-chip (NoC), and the dynamic nature of many-cores; i.e. the running set
of applications changes over time with no prior knowledge, while NoC components
and cores may fail randomly during run-time.

This dissertation addresses different communication-centric challenges of dy-
namic many-core architectures in three major directions. First, based on the ob-
servation that in conventional systems kernel SW imposes a significant overhead in
handling the transport-layer in communication between parallel tasks, we propose a
NI architecture design that operates in transport layer (Tra-NI). Our method moves
a significant portion of communication handling from kernel software to NI hard-
ware, where improves the communication performance several folds. Second, we
highlight the importance of, and propose several algorithms for, run-time task map-
ping in many-cores. Through different proposed algorithms, we address our different
challenges of interest, mainly in NoC fabric of many-cores. Third, based on the ob-
servation that system-level mechanisms (including our mapping algorithm) are not
sufficient for guaranteeing a reliable communication, we propose Maze-Routing, a
routing algorithm that tolerates run-time permanent failures of NoC components with
a set of unique features.

System Model: The contributions of this dissertation are well tailored for a many-
core architecture with following characteristics3, also depicted in Fig. 7. Both ap-
plications and PEs of the system communicate and synchronize through message-
passing model. That said, applications are composed of parallel tasks, with their

3Except for our last contribution, Maze-Routing algorithm, which is more general.

14

Introduction

Master

t2 t5

t0 t1

t3 t6

T0,4

T4,0

t7

t4

t8

T4,4

Kernel

Process 1

App: Gaussian

Elimination

Task: 6

...

rec(msg1, t3);

...

rec(msg2, t4);

...

Send(t8, msg3);

Process P

App: ...

Task: ...

...

Mem

CPU

$

NI

R3,3

t0

t2 t1

t4

t3

t5 t6

t7 t8

Gaussian Elimination Application

Figure 7. A 5x5 many-core architectural model of this dissertation. Message-passing
communication model is used, where cores have private access to their local memory. A light
kernel is running on each core, supporting multitasking.

own private memory, which communicate and synchronize through explicit mes-
sages. Similarly, cores have access to their own local memory and connect together
through a mesh NoC fabric. Each core has a light kernel in the background that
handles the system run-time, and may run several tasks of potentially different appli-
cations; i.e. supports multitasking. Moreover, the system is managed by one of the
cores, called the master core (usually the 𝑇0,0 in this dissertation), which interacts
with user as well. Application execution requests (with number of required cores)
are sent to master, where it maps the parallel tasks onto the available cores. Note
that our system model is derived from real platforms, namely Intel single-chip cloud
computer (SCC) [54] and HeMPS [18] multi-processor system-on-chip (MPSoC).

1.4.1 Transport Layer Aware Network Interface

In the first contribution of this dissertation, we identified the detrimental overhead
of protocol handling of transport layer in (kernel) software, and hence proposed our
transport layer NI architecture design. In conventional networks, the communication
fabric (i.e. NoC in many-core architectures) works in network layer, according to
stack protocol of ISO-OSI reference model [88]. In other words, it routes packets
from source nodes to destination nodes. When packets reach their destination, the
kernel is in charge of bookkeeping and establishing end-to-end communication be-
tween parallel tasks. As studied in [12] for computer networks, this involves several
context switching and data copying which imposes significant overhead (hundreds
of clock cycles, in best cases). This overhead is tolerable in computer networks due
to the high latency of the network layer (in order of milliseconds) and its offered
flexibility [95]. However, in many-core microprocessors, where the NoC latency is
around tens of clock cycles, the kernel overhead in the end-to-end communication

15

Mohammad Fattah

latency severely limits the speedup of parallel applications. This problem, as will be
discussed in Chapter 2.1, exists in both HeMPS MPSoC and Intel SCC platforms.

To reduce the kernel overhead, our Tra-NI design [38] depacketizes, stores, and
retrieves transport-layer messages in the hardware level. According to our experi-
ments, using Tra-NI, the kernel is interrupted around 50% times less (which trans-
lates to less context-switching), and most of its work in packet handling is moved to
the hardware; i.e. communication is done faster while more CPU time is utilized by
actual tasks rather than the kernel. As a result, the network latency is decreased by
more than 4 times, and the end-to-end communication throughput is increased by up
to 4.7 times. We discuss the conventional kernel overhead and our Tra-NI design, its
functionality and benefits in Chapter 2 in more details.

1.4.2 Run-Time Application Mapping

The run-time application mapping procedure of the master core tries to map tasks of a
requested application, in an optimal way, onto a set of system PEs that is determined
by the run-time application mapping algorithm. Due to system dynamics, the set
of available PEs changes over time and the algorithm output for a given application
cannot be thought in design-time; i.e. the mapping algorithm needs to decide during
run-time and upon arrival of application execution request. This dissertation dedi-
cates a large portion of its effort in exploring potentials of different run-time mapping
algorithms. We propose different algorithms that significantly reduce NoC dynamic
power dissipation and improve the system performance. Also, we develop algo-
rithms to tolerate run-time permanent failures of NoC components at system level or
mitigate performance penalties of online testing methods. In most of our proposed
algorithms, scalability over system size is of main concern. Following, we briefly
describe different proposed run-time application mapping algorithms, and main ob-
tained results in addressing different challenges. Later in Chapter 3, we explain each
contribution in more details with wider results, and critically discuss them.

As shown in equations (3) and (4), the NoC power is a function of both packet
length and path length. Hence, a run-time mapping algorithm should place tasks with
heavier communication (i.e. tasks with higher 𝑤𝑖,𝑗 values) in closer PEs to reduce the
dissipated NoC power. Accordingly, a contiguous set of PEs is preferred for tasks
of an application, as also studied in literature [24]. One of the main contributions
of this dissertation is identifying the importance of first node selection in obtaining
a contiguous mapping [39]. A proper first node selection algorithm selects a PE in
which there are just enough number of PEs around it for tasks of the application.
Accordingly, the application will be mapped on a contiguous set of PEs while the
remaining PEs are not fragmented. We use our task mapping algorithm [35] after
which the first node is selected using our agile algorithm [39], namely SHiC. Com-
pared to state-of-the-art [24], we achieve up to 33% and 25% reduction in power and

16

Introduction

average latency of NoC fabric, respectively. Also, as a scalability analysis, when
increasing the many-core size from 8x8 to 20x20 cores, our method results in almost
constant average latency and NoC power dissipation per application.

Contiguous mapping places communicating tasks in close proximity which re-
duces the network congestion. Consequently, the average latency of packets is de-
creased as our results demonstrated. Also, contiguous mapping relatively isolates
traffic of different applications and reduces their interference from execution of each
other. In turn, applications will experience a more balanced latency with significantly
decreased worst-case latency.

In our next contribution, we utilize the aforementioned benefits of contiguous
mapping in average latency reduction. Given the dynamic workload of the many-
cores, it is not always possible to map an application onto a contiguous set of PEs. A
non-contiguous mapping increases the communication latency and hence execution
time of running applications. On the other hand, limiting the system to only con-
tiguous mappings keeps applications wait for contiguous PEs to free up, reducing
the overall system throughput. Our contiguity adjustable mapping algorithm [40],
namely CASqA, defines an 𝛼 parameter (0 ≤ 𝛼 ≤ 1) in which determines the
level of allowed dispersion (non-contentiousness) in PE selection. Strictly contigu-
ous mapping is determined by 𝛼 = 0.0, while 𝛼 = 1.0 determines conventional
non-contiguous mapping. Surprisingly, results demonstrate that partially contiguous
mapping (0 < 𝛼 < 1) can even increase the system throughput over the conven-
tional non-contiguous mapping. Similarly, with smaller 𝛼 values, up to 35% saving
in NoC power dissipation can be achieved, while maintaining the same throughput
as non-contiguous mapping.

We utilize balanced latency benefits of contiguous mapping in our next contri-
bution. As shown in Fig. 8, compared to non-contiguous mapping in CASqA al-
gorithm, different NoC latency metrics are significantly smaller for 𝛼 = 0.0. Par-
ticularly, the worst-case latency of the network is more than 10 times smaller when
restricting to only contiguous mappings. We use this insight to offer a better QoS to
real-time applications [42]. Once a real-time application is requested for execution,
instead of dispersing the selected set of PEs, we use the multitasking capabilities of
each PE to keep the mapping result contiguous. Consequently, packets of the real-
time application are delivered with a more balanced latency values. For instance,
results show over 50% improvement in worst-case latency and up to 33% times im-
provement in deadline misses for MPEG-4 video stream coding application [82].

So far, our run-time mapping algorithms were concerned about NoC power dis-
sipation, application execution time, and the scalability of methods over system size.
As a step further in contributions of this thesis, we explore potentials of run-time
mapping algorithms in reliability assurance of many-cores. Online testing methods
are required to ensure correct functioning of system components and to detect when
they go faulty. Once a component goes under test, it becomes unavailable until it is

17

Mohammad Fattah

1

10

100

1000

10000

0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L(
w

o
rs

t-
ca

se
)

L(
av

g)
 &

 S
t.

 D
ev

.

α(Dispersion Level)

Average latency

Standard deviation

Worst-case latency

Figure 8. Different NoC latency metrics of CASqA [40] algorithm for different 𝛼 (allowed
dispersion level) values [42].

tested and continuation of its correct functioning is validated. Cores need to be tested
after they are being utilized more than a specific threshold; e.g. 10M instructions are
executed. Though a core might pass its testing threshold, we might not be able to
schedule online testing on it as it is busy executing an application task and/or there
might not be enough power budget for testing at that moment. Note that test methods
are power hungry as they active all modules of a component in short period of time.
Accordingly, at a given time, there might be several cores to be tested, while we can-
not test all due to power budget limits. On the other hand, testing a core releases it
for further deployment by application tasks. Hence, testing cores that can benefit ex-
ecution of future applications is preferred. Because of the preference of a contiguous
application mapping, in our next contribution [49], we propose a test-aware mapping
and test scheduling algorithm which frees up contiguous regions of cores for future
applications. Results demonstrate competitive throughput of the system compared to
many-cores without testing.

As our last contribution in run-time mapping algorithms, instead of architectural
methods, we propose to tolerate run-time failures of NoC components at system-
level. Accordingly, our SHiFA [41] approach maps applications onto PEs such that
their communication will not require the use of faulty elements. To novelties are
utilized to make SHiFA scalable and increase accessible PEs of the system. First,
the system master has mobility features, called mobile master (MM); i.e. it can mi-
grate from one PE to another. Also, SHiFA works in a hierarchical manner, where
the actual application mapping is done by application managers (AMs). A high-
level representation of SHiFA hierarchy and its fault-aware application mapping is
demonstrated in Fig. 9 (a) and (b), respectively. As can be seen, all the tasks of the
application are mapped onto PEs accessible by AM and none of the communications
go through the crossed faulty node. When up to 8 links are broken and by utilizing a

18

Introduction

t0 t2 t3

t1 t5 t8

t4 t6 t7

(b)

Inaccessible

centrally by MM
Mobile Master

MM

AM

×

MM

(a)

Application Manager Faulty Node
Inaccessible

hierarchically by AM

Figure 9. SHiFA demonstration: (a) using XY routing and within the same architectural limitations,
7 nodes can be accessed by AM out of 8 nodes that are not accessible by MM. (b) A feasible
mapping solution of Gaussian Elimination application. [41]

simple routing algorithm, results show 100% accessibility of PEs and 99.41% of suc-
cessful mapping. Also, different scalability analysis show a significant improvement
compared to the state-of-the-art approaches.

1.4.3 Fault-Tolerant Routing

In the last contribution of this thesis, we propose a routing algorithm to tolerates
faults in NoC components [36], namely Maze-routing algorithm. Maze-routing is
the first algorithm that provides four important properties at the same time. First,
it is fully-distributed where no centralized component is utilized. Second, it pro-
vides guaranteed delivery (i.e. full fault coverage), which is to guarantee to deliver
packets when a path exists between nodes, or otherwise indicate that destination is
unreachable, while the deadlock and livelock are avoided. Moreover, it imposes low
area cost as well as low reconfiguration overhead upon new faults. The main moti-
vation behind this work is that in our previous contribution (SHiFA approach [41]),
we observed that a system-level only method cannot be sufficient as they can lead to
deadlocks.

Briefly describing, our Maze-routing algorithm works as follows. A packet can
be in either normal or traversal modes. In normal mode, each router forwards the
packet to a productive output port4, as long as possible. When the packet enters a
router with faulty components such that a productive output port does not exist, the
packet goes to traversal mode. In this mode, the packet traverses around the faulty
region hop by hop until it enters a node where it is safe to revert back to normal
mode. This procedure continues until the packet reaches its destination or one of the

4A productive output port is one that moves the packet closer to its destination

19

Mohammad Fattah

Table 1. Validation environments used for different contributions of the thesis.

Methodology Description
FPGA prototype HeMPS-based full system stack with a 5x5 mesh
In-house simulator Message-passing transaction-level application models with

Noxim-based cycle-accurate NoC
NOCulator Cycle-accurate NoC with shared memory trace-based applica-

tion models

routers it visits detects that the destination is unreachable. We formally prove that
our method provides guaranteed delivery.

Our evaluations show that Maze-routing has 16X less area overhead than other
algorithms that provide guaranteed delivery. Moreover, it delivers high performance
in presence of faults. When up to 5 links are broken, it provides 50% higher satura-
tion throughput compared to the state-of-the-art.

1.5 Methodology
Building real many-core systems will be very costly; both money-wise and time-
wise. Hence, we need to use simulators to validate new ideas and algorithms quickly
and cheaply. As shown in table 1, in this thesis, We use three different simulation
environments.

HeMPS MPSoC platform [18] is used in the beginning to validate our NI de-
sign, Tra-NI, and run-time application mapping, contiguous neighborhood alloca-
tion (CoNA). We made major modifications to HeMPS platform to match it to our
research requirements, details of which will be presented in Section 2.5. HeMPS pro-
vides a synthesizable full system model of a many-core architecture, which makes the
results robust and reliable. However, using full system prototype comes along with
its own issues. For instance, as the system is modeled mainly in VHDL, the simu-
lation is very slow, and debugging is extremely difficult. Due to lack of commercial
tooling, debugging application-level C code boils down to tracing signal values and
absolute memory locations in RTL simulations. Also, exploration of new ideas are
usually challenged by the practical limitations of the system, like how much mem-
ory or how many cores the FPGA could fit. These technical limits make the research
extremely challenging and laborious, with usually limited value add to the research
topic.

Limitations of a real system prototype motivated us to develop our own in-house
System-C simulator. For the network-on-chip model, we took the Noxim [81; 21]
simulator and pruned the code to run faster the specific use-cases of this thesis. Then
we added the PE models, similar to the HeMPS platform. The PEs have their own
local memory, and can execute message-passing applications in transaction level.

20

Introduction

Tasks, running on PEs, send and receive messages to/from the network, and spend
clock cycles in between. As our run-time mapping algorithms are validated on this
platform, we elaborate it more in Chapter 3.

The last contribution of this thesis (Maze-routing algorithm) is based on deflection-
based [75; 33] routing methods, which is not supported by Noxim. Consequently,
we validated our contribution using NOCulator [32; 33] simulator, which supports
deflection-based NoC models. As NOCulator, originally, did not support faulty net-
works, we added the fault models as well as our maze-routng algorithm on top. Un-
like HeMPS and our Noxim-based simulation environment, NOCulator is based on
shared memory many-core architectures. The NoC model is cycle-accurate, while
the PEs model the memory access traces of applications.

1.6 Thesis Organization
This thesis is composed of two parts. First, we briefly explain the conducted research,
within 6 chapters. Then, we present the original publications made through this
thesis work. It consists of 9 original research papers, published by the author and his
collaborators.

Fig. 10 shows the navigation of the first part of this thesis, containing the research
questions (RQs) answered in each chapter, included papers, and used methodologies
for result validation. Chapter 1 provides a background on the research topic and its
design challenges. Also, it proposes the research questions that this thesis is aimed
at investigating them, and briefs the contributions of this thesis. Chapter 2 explains
our transport layer aware network interface design, Tra-NI, and the obtained results.
Chapter 3 explores different contributions of this thesis in run-time application map-
ping of many-core processors. Chapter 4 elaborates our unique fault-tolerant routing
algorithm for mesh NoCs. Chapter 5 summarizes the original publications included
in this thesis, describes the author’s contribution. Finally, Chapter 6 concludes and
discusses this thesis. It summarizes our research contributions, achievements, and
limitations. Moreover, it points out few areas, where future research and study is
needed.

21

Mohammad Fattah

Run-Time Management of Many-Core SoCs: A communication-centric approach

Main Topic Chapter
Research
Questions Publications Methodology

1
Introduction

Run-time
management of
many-core SoCs

Paper I

In
tr

od
uc

ti
o

n
R

es
e

ar
ch

D

ir
ec

ti
on

 1

2
Network
Interface

RQ 2.1
RQ 2.2

Paper II

R
es

e
ar

ch

D
ir

ec
ti

on
 2

3
Application

Mapping

RQ 4

RQ 3.1

RQ 3.2

Paper III

Papers IV, V

Paper VIII

FPGA
Prototype

In-house
system-C

Simulation

Paper VI

Paper VII

RQ 1

RQ 2.1

RQ 2.2

R
es

e
ar

ch

D
ir

ec
ti

on
 3

4
Fault-Tolerant

Routing

Paper IX
NOCulator

In
cl

u
de

d
Pa

p
er

s

5
Description
of Papers

RQ 2.2
RQ 3.2
RQ 4

Papers I – IX

C
on

cl
us

io
n

6
Conclusion

and Discussion
Future Work

Figure 10. Navigation of the Thesis.

22

2 Transport Layer Aware Network
Interface

In the message passing communication model, tasks communicate using explicit
messages. The two fundamental functions in the message passing model are send
and receive primitives. To keep the underlying hardware transparent to the ap-
plication design, tasks send and receive data using their task ID as the sender and
receiving addresses. These application level messages need to be transformed into
formats, understandable by physical routers and links; e.g. a set of flow control digits
(flits). According to ISO-OSI standard model [88], this is done through two layers
of translation. First, the transport layer takes the application data, encapsulates it in
a segment and generates network packets. Network packets are then translated into
sequence of flits in the network layer, routed towards destination with NoC routers
and links. Conventionally, the transport layer is implemented by operating system
(OS) software, while the network layer is implemented by network interfaces (NIs)
hardware.

In this chapter, as the first contribution of this dissertation, we investigate the
OS overhead in implementing the transport layer in many-core architectures. We
propose a network interface (NI) architecture (Tra-NI) with understandings about
the transport layer, in which, the OS software overhead is offloaded to the NI hard-
ware [38]. More details about this contribution, and obtained results can be found
in II

2.1 Related Works
As the name represents, network interfaces (NIs) interface between two sides of a
network that have different communication protocol; i.e. they establish a conversa-
tion between two parties who do not speak the same language. Accordingly, existing
NIs can be categorized based on the two protocol ends they work with. In the fol-
lowing, we review some of existing NI designs, proposed for different protocols and
scenarios of NoC architectures.

Several network interfaces are proposed that work in the physical layer of globally-
asynchronous locally-synchronous (GALS) systems [68; 76; 79; 98]. They deal with
meta-stability issues when signals are sent/received to/from the NoC, which is asyn-
chronous or operating in a different frequency than cores.

23

Mohammad Fattah

A NI design for serial NoCs is proposed in [65], which works in several layers
and converts serial bit-stream of the network to data packets of the system cores and
back. It (de-)packetizes the data (network layer), offers error detection and retrans-
mission (data link-layer) and scrambles the bit-stream (physical layer).

Kim et. al, propose NIUGAP [62], a NI which reorders packets that arrive out-
of-order in the network interface. It uses gray codes to efficiently synchronizes the
packet delivery in the network layer. An AXI compliant NI is designed in [28] that
reorders the memory accesses that are delivered (to PEs) out-of-order.

Several NIs are proposed for different master/slave shared-memory transaction
models [67; 8; 44], such as OCP, AXI, and/or DTL. They interface between the
read/write transactions issued by cores and the packet transmission happening in the
network. Radulescu et al., [84] proposed a NI which offers guaranteed service. Their
work supports existing bus protocols such as AXI, OCP, and DTL. Similarly, Attia
et. al [8] designed a NI compliant with OCP. Master and slave type NIs are used to
connect master/slave intellectual property (IP) cores to NoC. To reduce area over-
head, several IPs of the same type can connect to one NI where buffer space is shared
between them. In another design [25], they utilize stoppable clock techniques to re-
duce the power consumption of their NI. Another OCP compliant NI which shares
the buffer space between several master/slave cores is presented in [44]. In [91],
authors propose a NI with worst-case guarantees. Their work eliminates the need for
buffers and credit based flow control, which significantly improves the area footprint
of their work.

2.2 Transport Layer Functionality

In the message passing communication model, tasks communicate using explicit
messages. For instance, message passing interface (MPI) standardizes several key
functions for communication between parallel tasks in the message passing model [102].
Nonetheless, functions send and receive are the two fundamental primitives in
the message passing model. In its simplest form, each task of a parallel application
has a unique identification number (task ID), where the communication is addressed
through it.

Fig. 11 shows a pseudo-code for tasks 3 and 4 (𝑡3 and 𝑡4) of the Gaussian elim-
ination application (see Fig. 5). As can be seen, tasks communicate with each other
through their task ID number, while do not now about the physical core in which
tasks are mapped onto. In other words, the transport layer keeps the networking
and architectural details transparent to running tasks. In the following we present a
very high level description of the transport layer services in establishing communi-
cation between two tasks. Note that while there are more services associated with
the transport layer, they fall beyond the concerns of this dissertation.

24

Transport Layer Aware Network Interface

Process m of PE3,3

Task 3 of GEA

...

Rec(msg1, t0);

...

...

...

Send(t6, msg2);

...

Process n of PE4,3

Task 6 of GEA

...

Rec(msg1, t3);

...

rec(msg2, t4);

...

Send(t8, msg3);

...msg2

GEA|t3|t6 data

4,3 GEA|t3|t6 data

GEA|t3|t6 data

R3,3 R4,3

msg1

Application
Layer

Transport
Layer

Network
Layer

data

segment

packet

4,3 GEA|t3|t6 data

Figure 11. Different layers in communication between tasks.

Sender side: Once a source task wants to send a piece of data to a destination
task, the transport layer service encapsulates the data into a message unit, called data
segment. Then, the data segment is attached to the network packet addressed to the
physical address of the receiving task; i.e. the core in which the destination task
is mapped onto. This is shown in the left side of Fig. 11 for task 3 of Gaussian
elimination application (GEA) mapped onto PE3,3.

Receiver side: On the other side of the communication, the transport layer de-
multiplexes the incoming data segments and passes the encapsulated data to the cor-
rect communication streams. Right side of Fig. 11 shows this procedure for task 6 of
GEA running on PE4,3. It looks up the incoming messages and passes the message
from the appropriate application and task ID to the receive function. Also, the
task execution is suspended in case the requested message is not yet arrived, and is
resumed after message arrival. Moreover, due to existing multitasking, the transport
layer service is responsible for correct sharing of access to the network hardware.

2.3 Kernel Overhead
In conventional systems, the transport layer is implemented by the operating sys-
tem [96]. Since the network layer is handled by hardware and the transport layer by

25

Mohammad Fattah

OS software, the transport layer significantly penalizes the communication between
two tasks [95]. This becomes more of an issue in on-chip many-core architectures
because of two main reasons. First, the network delay is much smaller than that
of computer networks. Moreover, the on-chip communication is one of the main
elements in exploiting the existing parallelism of many-core architectures. In the
following, we describe the main kernel overheads in providing the transport layer
services.

Sender side: The send function makes a system call and causes a context switch
to the kernel mode; with penalty of 𝑃𝑐𝑜𝑛𝑡𝑒𝑥𝑡 associated with it. The context switch
is necessary as the kernel and not the program code knows about the physical PE of
the destination task, and to manage concurrent accesses to the network. The kernel
packetizes the data (data→segment→packet– 𝑃𝑝𝑎𝑐𝑘), and injects it out to the network
(𝑃𝑚𝑒𝑚→𝑁𝐼).

Receiver side: Same as sending messages, the receive function makes a sys-
tem call with 𝑃𝑐𝑜𝑛𝑡𝑒𝑥𝑡 penalty. The kernel searches its buffer space (𝑃𝑠𝑒𝑎𝑟𝑐ℎ) for the
requested message, with different consequences based on the search result, as fol-
lows. If the requested packet is already delivered, it has made a hardware interrupt
on its arrival (𝑃𝑐𝑜𝑛𝑡𝑒𝑥𝑡), and the kernel has depacketized (𝑃𝑑𝑒𝑝𝑎𝑐𝑘) the packet, picked
a buffer space to place the segment (since no task has been awaiting for the packet at
that time– 𝑃𝑝𝑙𝑎𝑐𝑒), and performed the data copy (𝑃𝑁𝐼→𝑚𝑒𝑚). Now the requested data
is copied from the kernel buffer to task memory and the task execution is resumed
(𝑃𝑚𝑒𝑚→𝑚𝑒𝑚). Otherwise, the task is suspended. Once the requested message ar-
rives, a hardware interrupt is made (𝑃𝑐𝑜𝑛𝑡𝑒𝑥𝑡), the segment is depacketized (𝑃𝑑𝑒𝑝𝑎𝑐𝑘)
and since the task is waiting for that message, the data is directly copied to the task
memory (𝑃𝑚𝑒𝑚→𝑁𝐼), bypassing the kernel buffers. Finally, the execution of the sus-
pended task is resumed. Note that the depacketizing and search penalties are taken
into account, because a simple FIFO cannot be utilized for the kernel buffer. Packets
are not necessarily requested in the same order as they arrive and there can be sev-
eral packets with the same segment header; i.e. the kernel needs to give packets an
ordering number.

2.4 Tra-NI Design
As can be intuitively derived, the kernel overhead in the receiver side is significantly
larger than that in the sender side, especially when a message is arrived before it is
requested by receive function. Accordingly, we design a transport layer aware
network interface (Tra-NI), which the heaviest kernel functionalities in the receiver
side are performed in hardware. Fig. 12 shows the block diagram of our proposed
design.

26

Transport Layer Aware Network Interface

Send Block

Data-Link

Interface
To NoC

Receive Block

NI Dual Port Memory

d
a
ta

a
d

d
re

ss

Data Packets Buffer

Kernel Interface

Controller

Shared

controlling

registers

Transport Layer

Depacketizing

Controller

Control Packets FIFO

From NoCdata out

send

lookup

interrupt
read available
read

data in Sending

FIFO
send available

Packetizer
flits

Figure 12. Tra-NI block diagram, redrawn from [38].

As can be seen in Fig. 12, instead of the kernel, Tra-NI holds the buffer for
storing incoming messages. When receive function is called, the kernel issues a
lookup, where Tra-NI searches its buffer, and returns the requested packet if found,
otherwise it informs the kernel about the lookup failure and stores the pending re-
quest. Once a packet of a pending request arrives at Tra-NI, it interrupts the kernel
to copy the packet and resume the execution of the suspended requesting task. As a
result, our design moves 𝑃𝑑𝑒𝑝𝑎𝑐𝑘, 𝑃𝑝𝑙𝑎𝑐𝑒, and 𝑃𝑠𝑒𝑎𝑟𝑐ℎ to Tra-NI hardware with signif-
icant speedup. Moreover, no software based memory to memory copy is performed
(𝑃𝑚𝑒𝑚→𝑚𝑒𝑚) anymore, while one less context switch is occurred when the packet is
arrived before it is requested by a task.

2.5 Experimental Setup

HeMPS [18] (version 3.9) is a register-transfer level (RTL) model of a message-
passing many-core SoC architecture, which connects plasma processors [85] using
HERMES NoC [74]. Each core runs a light OS to support multitasking and com-
munication between tasks. The HeMPS Generator framework [73] generates syn-

27

Mohammad Fattah

thesizeble RTL model using VHDL well tailored for field-programmable gate array
(FPGA) synthesis. HeMPS platform is very similar to our system model, described
in Fig. 7. In addition to the local memory, CPU, and NI, each PE also includes a
direct memory access (DMA) module to speed up data copy between NI and local
memory. The system master loads the binary code of each running task from its
connected application repository and sends it to plasma cores for execution.

As mentioned above, each core of the HeMPS version 3.9 platform supports
multitasking. Even so, it does not support random execution requests during run-
time nor multiple executions of the same application. Structure of the application
repository as well as the C code of the kernels in both master and other cores are
modified to enable these essential features needed for different contributions of this
dissertations.

Extending HeMPS to support run-time execution of independent applications,
different related work in run-time application mapping algorithms are implemented
in kernel code of the master core. Alongside, we realized the performance-killing
bottleneck of protocol handling in plasma kernels, which fades away any potential
benefit of different mapping algorithms. Accordingly, this led us to the first contri-
bution of this thesis, Tra-NI [38], to improve the execution time of applications by
improving their communication speed. We synthesized a 5x5 prototype of our mod-
ified HeMPS platform on Xilinx Virtex-6 FPGAs. As reported in [35], some parts of
results are extracted using the FPGA prototype.

2.6 Results
As explained in Chapter 2.5, we used HeMPS [18] platform to validate our NI design,
while kernels are modified to support run-time application execution requests and
multiple executions of the same application. Tra-NI is developed in VHDL and
utilized in a 6x6 network operating at 100 MHZ.

Performance: Two showcase applications are developed to measure the main per-
formance improvements obtained using our Tra-NI. An application, called flow, where
a source task constantly sends messages to a sink task; and a ping-pong application
where a message is ping ponged between them. The flow represents the producer
consumer type of applications, while ping-pong is for collaborative applications. In
relation to conventional NI design, our results represent 4.78 times higher bandwidth
between source and sink tasks, and 39% bandwidth improvement for the ping-pong
application. In other words, using Tra-NI, the ping-pong application can inject its
data with rate of up to 0.19 flits/cycle. As reported in [70], this value is only 0.004
flits/cycle when running ping-pong application on Intel SCC platform. In both exper-
iments, the exchanged data chunks are 128 flits long. This 50 times higher injection
rate is obtained while the Intel SCC platform cannot support multitasking. More

28

Transport Layer Aware Network Interface

detailed results can be found in our original publication [38].

29

3 Run-Time Application Mapping

In the second direction of our contributions, we deal with run-time resource manage-
ment of many-core architectures. In particular, we propose different algorithms on
how to map tasks of a parallel application onto cores that are currently available. We
study that how the mapping algorithm can be utilized to tackle different challenges
of many-core architectures.

Application mapping: As mentioned in Chapter 1.1.2, a message-passing appli-
cation (such as GEA shown in Fig. 5) is often represented as a directed task graph
𝐴𝑝 = 𝑇𝐺(𝑇,𝐸). 𝑇 is the set of tasks (𝑡𝑖 ∈ 𝑇) and 𝐸 is the set of edges (𝑒𝑖,𝑗 ∈ 𝐸),
representing data communication from 𝑡𝑖 to 𝑡𝑗 . We denote the number of tasks (|𝑇 |)
as the application size, which is the number of available PE required for its execu-
tion. Similarly, we use an architecture graph 𝐴𝐺(𝑁,𝐿) to model our many-core
system shown in Fig. 7. Nodes (𝑛𝑥,𝑦 ∈ 𝑁) are composed of a router and a PE, con-
nected together through on-chip links (𝑙𝑛𝑎,𝑛𝑏

∈ 𝐿). Due to the dynamic workload, at
any given time, a changing subset of nodes (𝑁 ′ ⊆ 𝑁) will be available for running
new applications. Accordingly, the run-time application mapping can be defined as
a mapping function from set of application tasks (𝑇) onto the available set of nodes
(𝑁 ′) of the moment:

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑚𝑎𝑝 : 𝑇 → 𝑁 ′ 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠

𝑚𝑎𝑝(𝑡𝑖) = 𝑛𝑥,𝑦 𝑠.𝑡. ∀𝑡𝑖 ∈ 𝑇, ∃𝑛𝑥,𝑦 ∈ 𝑁 ′ (5)

For the sake of simplicity and without loss of generality, in our proposed mapping
algorithms we assume that once a core is allocated to a task, it becomes unavailable.
Hence, once an application is mapped then 𝑁 ′ ← 𝑁 ′ −𝑚𝑎𝑝(𝐴𝑝), and once leaving
𝑁 ′ ← 𝑁 ′ + 𝑚𝑎𝑝(𝐴𝑝). In the general case of multitasking per core, a core can be
assumed available if there are enough CPU and networking resources left for a new
task.

Congestion: During execution of different applications, packets will content for
the NoC resources, causing network congestion. The network congestion signifi-
cantly increases the packets latency and limits the maximum achievable through-
put [27]. From our application mapping perspective, we define two types of con-

30

Run-Time Application Mapping

gestion: external and internal. External (a.k.a. inter-application) congestion occurs
when packets of different applications content for network resources. Whereas, in-
ternal (a.k.a. intra-application) congestion is due to contention between packets of
the same application.

3.1 Related Works
There are enormous number of works proposed in literature to cope with spatial
mapping of applications onto system cores. Most of these works deal with static
application mapping for multi-core embedded systems where the set of running ap-
plications are known and fixed in design-time. On the other hand, several works, like
us, deal with dynamic workloads of many-core systems, where the set of running
applications is unknown beforehand and changes during run-time. In this section,
we explore different existing works of the latter group. Each of these works have
different optimization metrics and try to achieve different goals.

Carvalho et al. [19; 20] propose a variety of different mapping algorithms; such
as nearest neighbor (NN), path load (PL) and best neighbor (BN). The main ob-
jective of the proposed algorithms is to reduce network congestion and accordingly
improve applications execution time. The proposed algorithms are compared against
a naive first free (FF) algorithm, which is to map the application tasks onto the first
available cores regardless of the application task graph and with no optimization met-
ric. These works use a clustering mechanism to map the first task of an application.
The first task is mapped onto the closest core to the system master among a set of
sparse cores (cluster nodes); i.e. an application is mapped only when a cluster node
is available. In NN algorithm, each task of an application is mapped onto the nearest
available neighbor of its communicating task, regardless of the communication vol-
umes (𝑤𝑖,𝑗 values in Fig. 5). Accordingly, NN tries to reduce network congestion by
generally placing communicating tasks in closest neighborhood. The PL algorithm,
on the other hand, examines all the available cores and maps a task onto the core
in which the total channel loads of the communicating tasks is minimized. Though
PL achieves better results than NN, it is computationally intensive. Accordingly, BN
works like NN, where the PL algorithm is used to select a core among the nearest
neighbors.

The run-time mapping algorithm is divided into two steps in [24]; region selec-
tion, and task allocation. In the region selection step, they try to find a set of cores
such that it is contiguous and makes the least fragmentation in the remaining set of
available cores. The closest available core to the system master is selected as the first
node in the region, and the region is formed around this core. Afterward, the applica-
tion tasks are allocated to the selected region of cores aiming at reducing NoC power,
by allocating the tasks with higher communication volumes first. Later, the user be-
havior is incorporated into their mapping algorithm [22]. Applications are tagged as

31

Mohammad Fattah

either critical or non-critical, using tree-based model learning. Congestion reduction
is the main goal in mapping of critical applications, while non-critical applications
are mapped by their conventional algorithm.

A heuristic for run-time application mapping in heterogeneous MPSoCs with
FPGA tiles is proposed in [77]. The algorithm, implemented in three steps, aims at
reducing the on-chip communication power. In the first step, tasks are prioritized
based on their computation and communication demands. Then, available cores are
prioritized based on their load. Accordingly, the most prior task is mapped onto the
most prior core. The two last steps are done for all tasks, and backtracking is used
if no solution found. This work implies a high computation complexity due to the
backtracking, and use of complex optimization target functions.

Asadinia et al. [7] reduced network congestion, using their virtual point-to-point
(VIP) connections [71]. Accordingly, when two communicating tasks are not placed
on neighboring nodes, a VIP connection is established between them. This work,
however, relies on the customized VIP design, where they can easily become fully
occupied depending on the application task graph.

Some researchers, on the other hand, proposed decentralized algorithms to achieve
a better scalability over the number of cores. ADAM [34] is an agent-based ap-
proach to distributed run-time application mapping of many-core systems. Cluster
and global agents of the system, which are distributed over the whole system, use a
negotiation policy to implement the approach. The high complexity of the negotia-
tion policy makes ADAM suitable for many-core systems with beyond 100 cores.

Another decentralized mapping algorithm is proposed in [105] for tree-structured
task graphs. In addition to tasks, the algorithm maps edges of a given application;
i.e. the routing algorithm for the application. The central master maps the root
task, where other tasks are mapped by their parents; given the tree-structure of task
graph. The work tries to minimize the load on network links and the distance be-
tween communication tasks to achieve better latency results. Authors, however, do
not address their approach in monitoring the load put on network links. STDM [53]
and DistRM [63] are other decentralized methods, which try to improve over cen-
tralized and/or other decentralized methods. They start application mapping from a
random node and explore neighboring nodes to collect enough resources. In case
of unavailability of resources around the randomly selected node, DistRM explores
distant nodes as well, while STDM selects a new random node until several times.

Network power and latency optimization is the main objective of the above men-
tioned works, where a regular mesh NoC is considered. Whereas, in recent years,
run-time application mapping has gained attraction to achieve goals other than NoC
metrics optimization.

As a fault-tolerant run-time application mapping, FARM [23] approach considers
failures in PEs (but not in NoC links and routers). Accordingly, failed PEs are omit-
ted from application mapping. Also, once a PE breaks while running an application,

32

Run-Time Application Mapping

spare-cores are used to migrate running tasks them.
Run-time application mapping is used to improve the thermal profile of many-

core systems [30; 58; 61]. The main goal of these works is to achieve a higher
system utilization, while preventing thermal violation of the system. Accordingly,
cores voltage and frequency are adjusted and applications are mapped and migrated
such that the same amount of job is done while leading to a lower chip temperature.
The decreased temperature compared to the peak safe temperature leaves room for
additional system utilization.

Variation, reliability and aging of transistors are also considered in several works [48;
59; 60; 89]. These methods consider variation in their algorithm to achieve better sys-
tem utilization within a smaller power budget. Also, different mapping techniques
are utilized to improve system reliability and slow down its aging over time, with
minimal sacrifice in the system performance.

Worth noting, as mentioned in Chapter 1.4.2, our findings in optimizing the NoC
metrics show that a contiguous application mapping is significantly beneficial. How-
ever, as described by some of recent works [48; 58; 89], seeking for a contiguous
mapping might not be enough for thermal and/or aging optimization of many-core
systems. Moreover, although the mentioned works may favor/search for a contigu-
ous mapping, they have no limit on the contiguity of the solutions and allow any level
of dispersion.

3.2 Validation Environment
As mentioned in 2.5, technical challenges of RTL full-system simulation motivated
us to develop our own System-C simulator. We use this simulation environment to
validate our different run-time mapping algorithm proposals. The simulator maps
applications, described by task graphs, onto system PEs and extracts different run-
time metrics per application execution, such as execution time, network latencies,
power dissipation per application and so on.

3.2.1 In-House System-C Simulation

We selected the Noxim simulator [81; 21] to model the the communication archi-
tecture of our many-core system model. Noxim is a cycle accurate network-on-chip
simulator developed in System-C. It provides a very detailed model of NoC archi-
tecture and can be configured for a variety of different parameters; e.g. network
dimensions, routing algorithm, selection strategy, buffers depths, etc.

To model the PEs of our system model (Fig. 7), we replaced Noxim PEs with
models of our own. In Noxim, each processing element can only generate synthetic
traffic in a specific rate and in accordance to a traffic pattern. Whereas, in our system
model, processing elements execute message-passing applications where tasks run-

33

Mohammad Fattah

ning on each CPU receive data from and send it to other tasks according to the asso-
ciated task graph. Accordingly, each processing element of our simulator runs in two
modes: user mode and kernel mode. In the user mode, the behavior of the allocated
tasks are emulated, where each task is composed of three main primitives, Compute
N, Send ti N, and Receive ti. Compute basically elapses N clock cycles as a
high-level model of performing calculations. Send sends a data packet of length N to
task ti. Similarly, Receive waits until a message is received from ti. Moreover,
there is a Loop N primitive, which repeats the same behavior for N times. In the
kernel mode, on the other hand, the processing element is in charge of multitasking,
inter-task communication, and communicating with master PE.

Accordingly, the following scenario happens once an application is going to be
executed on our many-core simulator. The system master maps application tasks
on the system PEs according to their availability using the active mapping algorithm.
Once the target PE of each task is determined, the system master sends the behavioral
model of each task along with the mapping result of the application to the target PE.
The kernel of target PEs load their task model into their local memory, and pass the
CPU to running tasks. Once a task needs to send or receive some data, the control
is passed to the kernel mode, where the logical task addresses (ti) are translated to
physical PE addresses, the intended data is sent/received, and finally the user mode
is set back. Once a task finishes its execution, the kernel informs the system master.
An application is considered terminated, when all of its tasks are terminated.

3.3 Contiguous Application Mapping

As one of our main contributions in this direction, we elaborate benefits of contigu-
ous application mapping, and propose different solutions to obtain it. Contiguous
mapping is to map tasks of an application onto contiguous set of nodes with no frag-
mentation between them. This reduces the average hop count in packet traversal
between communicating tasks; i.e. improves the NoC power dissipation according
to equation (3), while isolates the communication of different applications from each
other; i.e. reduces the external congestion and thus the average packet latency of the
network. As opposed to contiguous mapping, a dispersed application mapping maps
tasks of an application onto distant and fragmented set of nodes. This increases the
average hop count between tasks of an application, resulting in higher NoC power,
and places tasks of different applications between each other, leading to increased
external congestion. Accordingly, we prefer to map an application as contiguous as
possible. A near-contiguous allocation that not only maps tasks onto neighboring
nodes, but also does not lead to fragmentation of remaining available nodes, 𝑁 ′.

34

Run-Time Application Mapping

3.3.1 Quantifying the Contiguousness

The contiguousness of a a mapped application (𝐴𝑝) can be measured as the the av-
erage pairwise Manhattan distance (MD) between the allocated nodes [10], called
mapped region dispersion (MRD):

𝑀𝑅𝐷𝑚𝑎𝑝(𝐴𝑝) =

∑︀
𝑡𝑖,𝑡𝑗∈𝑇 𝑀𝐷(𝑚𝑎𝑝(𝑡𝑖),𝑚𝑎𝑝(𝑡𝑗))(︂

|𝑇 |
2

)︂ (6)

The most contiguous set of nodes; i.e. the one with the least MRD value is
almost circular [10]. However, due to the mesh topology of the NoC, a circular
region leads to irregularity and fragmentation of remaining nodes (𝑁 ′) in the long
term. Hence, square regions, as the closest rectangular shape to a circle, would
be preferred in our problem at hand. The the MRD of a square with |𝑇 | nodes is
𝑀𝑅𝐷𝑆𝑄|𝑇 | = 2 ×

√︀
|𝑇 |/3. Accordingly, in order to normalize the MRD so that

contiguousness of two applications with different sizes can be compared, we define
normalized MRD (NMRD) as:

𝑁𝑀𝑅𝐷𝑚𝑎𝑝(𝐴𝑝) = 1 +
|𝑀𝑅𝐷𝑚𝑎𝑝(𝐴𝑝) −𝑀𝑅𝐷𝑆𝑄|𝑇 | |

𝑀𝑅𝐷𝑆𝑄|𝑇 |

(7)

Accordingly, NMRD defines a normalized metric for evaluating the contiguous-
ness of a mapping result, where 𝑁𝑀𝑅𝐷 = 1 means a strictly-contiguous allocation.
To evaluate the representativeness of the NMRD metric, we ran 32000 different ap-
plications on a fully loaded 16x16 network. We extracted the applications execution
time and the NoC power in accordance to the NMRD of the mapping result. Fig. 13
represents the normalized values of the obtained results. As can be seen, both the
NoC power and the execution time of applications increase by the NMRD of their
mapping result.

3.3.2 CoNA and SHiC Methods

Related work, generally, emphasizes on which task of an application to map first
and how to map other tasks in relation to the already mapped tasks; e.g. [24; 19].
As opposed to related work, we introduce and highlight the importance of first node
selection (instead of first task selection) in achieving a contiguous mapping. The
mapping algorithms, in general, start from the first node and try to allocate required
number of nodes from the neighboring area [19; 24; 7; 34; 53; 63; 105]. Accordingly,
an optimal first node needs to have just enough number of nodes around it to obtain
contiguity of the mapped application, while preventing fragmentation in 𝑁 ′.

Finding a contiguous set of nodes is a polynomial problem [29], with complexity
of 𝑂(|𝑁 |3) where |𝑁 | is the number of cores. Since strictly contiguous mapping

35

Mohammad Fattah

2750

3000

3250

3500

0.6

0.7

0.8

0.9

1

N
o

rm
al

iz
e

d
 E

n
e

rg
y

an
d

 L
at

e
n

cy
 o

f
n

et
w

o
rk

 Latency Energy

0.98

1

1.02

1.04

1.06

1.08

1.1

0.8

1

1.2

1.4

1.6

1.8

2

1 1.2 1.4 1.6 1.8 2

N
o

rm
al

iz
e

d
 e

xe
cu

ti
o

n
 t

im
e

N
o

rm
al

iz
e

d
 p

o
w

e
r

NMRD

NoC Power Execution time

Figure 13. The normalized execution time and NoC power dissipation as a function of the NMRD
values.

is not always possible, especially in a fully loaded system, while other aspects such
as fragmentation of remaining nodes are of interest; however, the best first node
selection problem turns into a clustering problem [46] with NP-hard complexity.
Indeed, proposed methods need to be scalable, which makes use of heuristics with
faster but approximate resolution an inevitable choice.

We first propose CoNA algorithm [35], wherein, the first node is the nearest one
to system master, among the ones with the highest number of available immediate
neighbors1. This ensures that the selected first node has a minimum number of avail-
able nodes and some level of contiguity is attained. Besides the first node selection,
the CoNA algorithm deals with placement of other tasks of an application. It assume
the task graph to be undirected and traverses it in the breadth-first order, beginning
from the first task. Since first node has the maximum number of available neighbors,
to further avoid congestion, first task is the one with the highest number of connec-
tions to other tasks. Accordingly, each task, which is met through a task preceding it
(called parent), is placed on the closest node to its parent. If more than one closest
node exists, the one fitting into a smaller square with first node is picked. A high
level pseudo code of CoNA is described in Alg. 1.

Although CoNA improves the contiguousness of mapping over related work, its
first node selection algorithm lacks an important point. An optimal first node is not
only a function of the current configuration of the system (reflected as 𝑁 ′), but also
a function of the incoming application. For instance, as shown in Fig. 14 (a), CoNA
selects 𝑛1,1 as the first node despite the application size. While this results in the
least fragmentation for an application with 8 tasks– Fig. 14 (b), dispersion happens
for an application with 12 tasks– Fig. 14 (c). This motives our next contribution to
select the first node in a wiser manner.

1A node may have up to 4 available immediate neighbors.

36

Run-Time Application Mapping

ALGORITHM 1: The contiguous neighborhood allocation (CoNA)
mapping algorithm.

input : The application to be mapped: 𝐴𝑝 = 𝑇𝐺(𝐴,𝐸).
𝑡𝑓 : The fist task of 𝐴𝑝.
𝑁 ′: Set of available nodes.

output : 𝑚𝑎𝑝 : 𝑇 → 𝑁 ′

variables: 𝑡𝑐: the current task to be mapped; initialized to 𝑡𝑓 .
𝑡𝑝: parent of 𝑡𝑐.
𝑛𝑓 : The first node to be mapped on.
�̄� ⊂ 𝑁 ′: Set of candidate nodes for mapping 𝑡𝑐.

1 𝑛𝑓 ← The node ∈ 𝑁 ′ with the highest number of available neighbors and
the least MD to system master;

2 map(𝑡𝑐)← 𝑛𝑓 ;
3 repeat
4 𝑡𝑐 ← next task in breadth-first order;
5 �̄� ← nodes ∈ 𝑁 ′ with the least MD to map(𝑡𝑝);
6 map(𝑡𝑐)← the node ∈ �̄� which fits into the smallest square with 𝑛𝑓 ;
7 until all tasks are mapped;

* *

* *

* *

* *

* *

Master

CoNA

* *
App 1

App 3

App 2

X 0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

Y

* *

* *

* *

* *

* *

Master

CoNA

* *
App 1

App 3

App 2

X 0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

Y

(a) (b)

* *

* *

* *

* *

* *

Master

CoNA

* *
App 1

App 3

App 2

X 0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

Y

(c)

Figure 14. CoNA does not consider the application size in its first node selection method.

37

Mohammad Fattah

* * * *

* *

Master

* *
App 1

App 3

App 2

X 0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

Y
X 0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

Y

* * * *

* *

Master

*

*

* *

n7,1

*App 2
App 1

App 3

openDir

Figure 15. The square factor calculation for 𝑛7,1.

To overcome this issue, we need to count the number of available nodes around
a candidate first node , and compare it with the application size. The closer number
to the application size, the better option for the first node selection. Accordingly,
we approximate the number of available nodes around a candidate first node using
our square factor metric. The 𝑠𝑞𝑢𝑎𝑟𝑒𝑓𝑎𝑐𝑡𝑜𝑟(SF)𝑥,𝑦 approximates the number of
contiguous available nodes around 𝑛𝑥,𝑦 ∈ 𝑁 ′ which are organized in an almost
square shape. To calculate SF𝑥,𝑦, we first model each running application as a
rectangle, and then find the largest square centered around 𝑛𝑥,𝑦, where it has no
overlap with mesh borders nor existing rectangles (currently running applications).
This is shown in Fig. 15 for 𝑛7,1. The square factor value will be the square area
plus the nodes around it, which are not in the rectangles (marked with asterisk); i.e.
SF7,1= 9+5 = 14. In other words, this node is the best first node for an application

with 14 tasks.
Given the square factor of each node, our SHiC algorithm [39] tries to find a

node with 𝑆𝐹 value close to the application size. To avoid exhaustive search over
the mesh area for finding the node with the best SF value, we adapt random-restart
stochastic hill climbing. SHiC is equipped with an 𝑜𝑝𝑒𝑛𝐷𝑖𝑟 value calculated along
with 𝑆𝐹 , which helps the random walk to be wiser and reach to optimal nodes faster.

3.3.3 Communication Performance Evaluation

In this section, we evaluate the communication power and latency of our proposed
first node selection and mapping algorithms. We modeled a 16x16 many-core pro-
cessor which is 80% loaded, with applications of size 4 to 35 tasks. We tried differ-
ent first node selection algorithms in combination with mapping algorithms. Table
2 shows the extracted average network latency (𝐿𝑎𝑣𝑔) and NoC power dissipation
per flit (𝐸𝑓𝑙𝑖𝑡) normalized to SHiC case. As can be seen, our SHiC first node se-
lection method used with CoNA mapping algorithm obtained over 50% reduction in
network power dissipation compared to INC algorithm, while the network latency is
decreased by 23%.

Results also demonstrate the high influence of first node selection method, com-
pared to the mapping algorithm itself. When CoNA mapping algorithm is used with

38

Run-Time Application Mapping

Table 2. Communication power and latency results of different first node and run-time mapping
methods, derived from [39].

mapping CoNA INC [24]
first node SHiC Exh. SF CoNA NN [19] INC SHiC INC
𝐿𝑎𝑣𝑔 40 39 41 43 42 42 52
𝐸𝑓𝑙𝑖𝑡 1.00 0.97 1.07 1.23 1.20 1.06 1.48

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

8x8 12x12 16x16 20x20

N
o

rm
al

iz
e

d
 N

et
w

o
rk

 P
o

w
e

r

system size

SHiC/CoNA NN/NN

(a) Normalized NoC power

36

38

40

42

44

46

48

8x8 12x12 16x16 20x20
A

ve
ra

ge
 p

ac
ke

t
la

te
n

cy
 (

cy
cl

e
s)

system size

SHiC/CoNA NN/NN

(b) Average packet latency

Figure 16. Scalability of results quality over system size

INC first node selection, the power dissipation is increased by 29%, while the oppo-
site combination (i.e. using SHiC with INC mapping) leads to only 4% more power
dissipation.

3.3.4 Scalability Analysis

The time complexity of our CoNA mapping algorithm is 𝑂(|𝑇 |×|𝑁 |), which is linear
to both network and application size. Also, the SHiC method works in polynomial
time 𝑂(|𝑁 |2). This is faster than searching for contiguous regions 𝑂(|𝑁 |3), with
worse results), and significantly better than deterministic clustering methods with
NP-hard complexities. Furthermore, we studied how the quality of results scale with
the system size, as shown in Fig. 16. Moving from a 36-core processor to a 400-
core processor, when the processor is 80% loaded, the SHiC/CoNA method adds up
to the NoC power by only 13% while the average packet latency is kept almost the
same. On the other hand, the sate-of-the-art method, NN, results in linear increase
of network power and latency with the system size.

3.4 Adjustable Contiguity
As results demonstrated in our previous contributions, improving contiguousness of
allocations reduces the power dissipation and latency of the NoC fabric, which in
turn, decreases the execution time of applications. Hence, limiting applications to
map only onto contiguous node can significantly improve their execution time and

39

Mohammad Fattah

the NoC power. As a contiguous allocation may not always exist, however, applica-
tions have to wait until the required contiguous region is freed. In turn, the actual
turn-around time of applications will increase, which makes strictly-contiguous allo-
cation a downgrading solution. This reasoning motivates the related work (including
our previous contributions) to come up with techniques to improve the contiguous-
ness of the mapping, while dispersion is not a restriction. When a contiguous allo-
cation is not possible, further nodes are explored until the required number of PEs
are collected. In other words, while a contiguous allocation is preferred, they tend to
stay non-contiguous mapping algorithms.

In this contribution of the thesis, we look at the intermediate area between the
two extreme cases of non-contiguous and strictly-contiguous mapping. That is, we
do not restrict to only contiguous mappings, but put a limit on how much dispersion
is allowed. We propose contiguity adjustable square allocation (CASqA) algorithm,
where an 𝛼 parameter (shown as superscript) is defined as the contiguity probe;
i.e. CASqA0.0 and CASqA1.0 stand for the two ends of the spectrum– strictly-
contiguous and non-contiguous, respectively.

At a high-level, CASqA works as follows. As explained in previous section, a
mapping region is preferred to be square shaped. Accordingly, after allocating the
first node (provided by SHiC), CASqA explores the first square around it (a 3x3
square) and looks for available nodes. Once all the available nodes in the current
square are allocated, the square is expanded (into a 5x5 square) and nodes of next
layer are explored. The square expansion continues until the square size (e.g. the 5x5
square has 25 nodes) becomes greater than or equal to the application size; i.e. |𝑇 | ≤
𝐴𝑟𝑒𝑎𝑠𝑞𝑢𝑎𝑟𝑒. If all the tasks are already allocated at this point, this means that the
application could be mapped on a contiguous squared-shaped region. Otherwise, the
expansion continues conditionally, given an iterator counter 𝑖 = 1. At each iteration,
the expansion continues only if # 𝑢𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑎𝑠𝑘𝑠 < |𝑇 |×𝛼𝑖. In CASqA0.0 case,
the square expansion stops at this point, while the stop condition is never satisfied
for CASqA1.0, and expansion continues until all tasks are mapped. As an example
let us assume mapping of an application with 22 tasks with CASqA0.5. At first,
the exploration square is expanded up to 5x5, where 25 nodes are already explored.
At this point, the square is expanded (to 7x7) if less than 22 × 0.5 = 11 tasks are
remained unallocated. After all nodes of the 7x7 square are explored, we expand the
square (to 9x9) only if less than 22 × 0.52 = 5.5 tasks are left for allocation. As
can be seen, CASqA provides the user or the operating system with a probe to adjust
the level of desired contiguousness. In case that an application cannot be mapped
around the selected first node with the given 𝛼 values, new first nodes are tried until
the application is mapped; i.e. a better first node is found or a suitable region is freed.

40

Run-Time Application Mapping

0.5

0.6

0.7

0.8

0.9

1

1.1

0.8

0.85

0.9

0.95

1

1.05

0 0.2 0.4 0.6 0.8 1

N
o

rm
al

iz
e

d
 P

o
w

e
r

R
e

la
ti

ve
 p

e
rf

o
rm

an
ce

α, allowed level of dispersion

Throughput Execution time NoC power

Figure 17. Normalized throughput of the system, along with average execution time and NoC
power per application for different 𝛼 values in CASqA method.

3.4.1 The Middle 𝛼 Value

We evaluated the CASqA algorithm with different 𝛼 values in 256-core processor on
our system-C many-core simulator, running a set of 100 different synthetic applica-
tions with 4 to 35 different task. On average, tasks inject between 0.05 to 0.07 flits
per cycle that is counted as a light load for the network.

Fig. 17 shows the normalized average execution time of applications, NoC power
dissipated per application, and throughput of the whole system 2 as a function of the
𝛼 value. As expected, while a strictly contiguous mapping improves the execution
time of each application (8̃%), it reduces the system throughput up to 15%. However,
for 𝛼 values around 0.6, the execution time improvements dominates the additional
waiting time of applications, resulting in slightly increased throughput (3̃%) com-
pared to 𝛼 = 1 case.

Although the throughput improvements might seem negligible, it is obtained in
addition to around 25% NoC power saving per application, compared to the non-
contiguous case. From a different perspective, with 𝛼 ≈ 0.4, the same throughput
as the non-contiguous mapping can be obtained while the NoC power is reduced by
35%. In comparison, NN [19] method shows 56% and 35% higher NoC power and
average packet latency, respectively, compared with CASqA(𝛼 = 0.5).

Optimal 𝛼 value: The optimal 𝛼 value will depend on the application. The more
communication intensive an application is, the smaller optimal 𝛼 value will get. In
our experiments, communication-intensity of applications are similar. A more thor-
ough analysis and further algorithm development are required to dynamically adapt
the 𝛼 value to the application characteristics.

2Throughput is defined as the number of applications executed per unit of time.

41

Mohammad Fattah

Table 3. Packet latency characteristics using CASqA𝛼 mapping algorithm.

𝛼 = 0.0 𝛼 = 1.0 Relation
Average 38.74 54.91 42%
Standard deviation 20.05 57.69 2.9 times
Worst-case 638 8663 13.6 times

3.5 Providing QoS
Applications running on many-core processors have different characteristics and re-
quirements. While some are average-performance-oriented, real-time applications
have tight performance constraints. They have strait timing constrains [90], where
tasks must meet completion time bounds (i.e. deadline) to correctly perform their
computation. Communication deadlines are one of the main aspects that affect func-
tionality of real-time applications. That is, the packet latency of the application traffic
in the NoC infrastructure must be lower than a specific bound. In contrast with re-
lated works that propose architectural methods (e.g. priority virtual channels), as
next contribution of this dissertation, we utilize our CASqA method and its insights
to improve the quality of packets delivery for soft real-time applications.

In CASqA0.0, the execution time of applications is reduced due to the reduction
of the average packet latency. More importantly, our analysis reveal that contiguous
application mapping significantly improves the worst-case and standard deviation of
packet latencies, as summarized in Table 3. This motivates us to force contiguous
mapping for real-time applications to meet more deadlines and improve the offered
quality-of-service. As a result, once a real-time application is requested for exe-
cution, instead of expanding the exploration square, we locate real-time tasks on
unavailable PEs of the same square. This is shown in Fig. 18, where the real-time
application (shown by “o") is mapped contiguously (Fig. 18b) instead of being scat-
tered around (Fig. 18a) the first node (indicated by “X"). Moreover , once a real-time
task is co-located on a PE by other tasks, in our technique, the kernel scheduler pri-
oritizes it over other tasks. In other words, the CPU is passed to other tasks only
when the real-time task is suspended due to an undelivered receive call, and is
preempted back as soon as it arrives.

3.5.1 Evaluation of Missed Deadlines

To examine effectiveness of our method, we added three real-time applications to our
application set: MPEG-4, UAV, and VOPD. Accordingly, we measured the amount of
missed deadline for each application, as shown in Fig. 19. We compared our method
(QoS-mapping) to the case where our technique is disabled (norm.-mapping); i.e.
all applications, including real-time ones, are mapped as usual. Moreover, to com-

42

Run-Time Application Mapping

o

o

o

o

X

o

o o

o o

o

1
2 3

4

5 6

(a) Normal application mapping.

o

o

o

X

o

o o

o o o o

1
2 3

4

5 6

(b) Real-time application mapping.

Figure 18. Improving the QoS through contiguous application mapping.

pare with architectural methods, we simulated the case where the traffic of real-time
applications is isolated from and prioritized over normal traffic in the network (QoS-
NoC). Note that results are normalized to the norm.-mapping case. As can be
seen, our proposed algorithm significantly improves the quality-of-service offered
by real-time applications. In addition, our system-level method outperforms archi-
tectural enhancements for some applications, while their combination achieves the
best results.

0

0.2

0.4

0.6

0.8

1

1.2

MPEG-4 UAV VOPD

m
is

se
d

 d
e

ad
lin

e
s

application

norm.-mapping QoS-mapping

QoS-NoC QoS-(mapping+NoC)

Figure 19. Missed deadlines of different real-time applications.

43

Mohammad Fattah

3.6 Test-Aware Mapping
Until now, contributions of our run-time application mapping methods are focused
on power and performance of many-core architectures. In order to widen the scope
of this thesis, in the following contributions, we take into account the decreasing reli-
ability of on-chip components. Accordingly, in our first contribution, we consider the
case where online testing methods are frequently executed on different cores. While
online testing methods are necessary to ensure the continuous correct functioning of
cores, there are two caveats associated with them. Though shortly, online testing
keeps the cores under test busy where no task can be mapped on them, hindering the
system throughput and performance. Moreover, test methods acquire a high power
budget as they try to activate and examine all components in a short time.

The testing frequency needs to be proportional to the stress it has been affected
with; i.e. the more intensive a core is being utilized, the more critical to be tested.
Accordingly, each core is assigned a test criticality value (𝑡𝑐𝑥,𝑦) associated , where
𝑡𝑐𝑖,𝑗 > 0.0 indicates that the corresponding core needs to be tested. However, there
might not be enough power budget available for testing at the moment or the core
may be allocated, making it impractical to test the core immediately.

Accordingly, we prevent the cores with 𝑡𝑐𝑖,𝑗 > 0.0 from being allocated to new
applications, leaving them available for later testing. In order to prevent dispersion
of applications due to untested cores, we exclude such cores from our SF calcula-
tions. Hence, an application is not dispersed due to a core being test critical. On the
other hand, there might be several candidate cores to select from when possible to
run test methods. Among the available cores with 𝑡𝑐𝑖,𝑗 > 0.0, we select the ones that
enhance mapping of future applications; i.e. the cores that lead to more contiguous-
ness. Therefore, cores with higher SF values are prior for being tested. We define a
test ranking 𝑡𝑟𝑥,𝑦 metric that integrates the SF𝑥,𝑦 value with the 𝑡𝑐𝑥,𝑦 value:

𝑡𝑟𝑥,𝑦 = 𝑡𝑐𝑥,𝑦 +

√︀
𝑆𝐹𝑥,𝑦

|𝑁 | (8)

Once possible to put a core under test, the one with the highest 𝑡𝑟 value is se-
lected. Note that the square root of the SF is calculated to limit its impact to the cases
where two cores have close 𝑡𝑐 values.

3.6.1 Overhead Evaluation

In order to measure benefits of our proposed method, we simulated a system using
three different methods. First, a system where there is no online testing. Second,
our method, and third, a method where a fixed number of cores can go under test
(fixed_test) with no specific algorithm for test scheduling [50].

Fig. 20 shows the extracted throughput of each method for different system sizes.

44

Run-Time Application Mapping

0.6

0.7

0.8

0.9

1

1.1

8x8 12x12 16x16

n
o

rm
al

iz
e

d
 t

h
ro

u
gh

p
u

t

system size

no testing our method fixed_test

Figure 20. Normalized system throughput using different test scheduling methods.

As graphs demonstrate, we can obtain a high throughput level compared to naive
approaches, very close to a system with no online testing overhead. Also, our method
scales with the system size, with slight performance drop.

3.7 Fault-Aware Application Mapping
Online testing methods will pinpoint the components that become faulty. A faulty
component may be part of the PE or the NoC components. When some link or
routers fail in the network, some node pairs cannot exchange packets anymore, with
the conventional NoC architectures. Several researchers have proposed architectural
methods to overcome the situation. In contrast, we propose to turn around network
failures at system-level; i.e. by exploiting application mapping. The motivation is
to minimize the architectural overhead, while improving the fault-tolerance. To the
best of our knowledge, this is the first work considering the imperfect network in its
run-time application mapping algorithm for many-core architectures.

In this contribution, we propose system-level hierarchical fault-aware (SHiFA)
approach to tolerating faults of NoC components. SHiFA is composed of two main
parts: the hierarchy, and the fault-aware run-time mapping. That is, once a link
or router fails, our method does not try to find a solution to keep the connectivity
between disconnected nodes. Instead, it maps the applications such that their com-
munication does not require the faulty component.

An important complication is that in order for a core to be allocated, it needs to
be accessible by the system master. However, this can severely limit the utilizable

45

Mohammad Fattah

MM

AM

×

Mobile MasterMM

Application Manager

Faulty Node

Inaccessible

centrally by MM

Inaccessible

hierarchically by AM

Figure 21. The system-level hierachy of SHiFA increases the utilizable nodes. The XY routing is
assumed.

cores. In order to overcome the issue, SHiFA utilizes a system-level hierarchy. In
other words, the kernels running on each core are grouped into 3 categories. First,
the system master is equipped with a mobility feature and turns into a mobile mas-
ter (MM), responsible for the whole system. Application managers (AMs) run in the
second layer of the hierarchy, being responsible for mapping and (fault) management
of their own applications. In the lowest level, normal kernels are, as usual, multitask-
ing and handling the transport layer for the running tasks. As a result, in order for
a core to be allocated, it does not necessarily need to be reachable by the MM but
just the AM. This is illustrated in Fig. 21, where shaded nodes cannot be reached by
the MM. Nonetheless, the selected AM can utilize 7 of them. Note that a kernel can
play each of the roles, based on the run-time circumstances and SHiFA procedures,
which will be explained below.

The mobile master: It coordinates the whole system and keeps the big picture of
it, with two major responsibilities, AM selection and mobility. Upon entering new
applications, it promotes a normal kernel to an AM. We utilize our SHiC algorithm
incorporated with tabu search [47] to pick candidate nodes. If a kernel rejects the
MM request for promotion, it is sent to the tabu list, until the current configuration
of the system changes; e.g. when an application is terminated, or a new fault is
occurred. An AM may reject the promotion request as it has been busy, or fails
to find a feasible mapping for the application. On successful AM promotions, the
AM reports the rectangle model (refer to Fig. 15) of its allocated cores back to MM.
Accordingly, instead of the full system picture, MM only keeps the rectangular model
of running applications. Mobility of MM is defined to increase number of reachable
nodes and prevent it from being isolated. Upon new failures, MM may migrate to
another core with a higher accessibility to other cores. As MM does not keep heavy

46

Run-Time Application Mapping

information (as it is distributed among AMs), the migration is expected to be light.

Application managers: They map, migrate, and remap their application of respon-
sibility. Once a kernel is assigned to map an application (promotion request), it starts
exploring the cores surrounding it, and tried to find a feasible mapping for the ap-
plication. It sends them reservation request, and considers them in allocation in case
of positive response. In case a feasible mapping is found, the AM allocates tasks
to the reserved cores and releases those cores not finally included in the mapping.
Otherwise, it releases all cores it reserved during exploration. Finally it reports back
to MM about the mapping result. To find a feasible mapping, AMs adapt a fault-
aware variation of CASqA algorithm, where the exploration square can be extended
until twice the application size cores are explored. This ensures a contiguous map-
ping, while limits the complexity of mapping. On the other hand, if a new failure
that inflicts the application communication happens, AM tries to resolve the matter
by migration few tasks or remapping the application from scratch. If no solution is
found, the MM can be involved to migrate or restart the application in a healthier
region.

3.7.1 Reliability of SHiFA

We implemented SHiFA in our System-C simulator to evaluate different aspects of
it. We also added 9 different real applications to the application repository to have
more realistic results, namely MPEG4 decoder [11], a video object plane decoder
(VOPD) [100], and double video object plane decoder (DVOPD) [83], a generic
multi-media system (MMS) which includes a H.263 video encoder, a H.263 video
decoder, a MP3 audio encoder and a MP3 audio decoder [55], a picture-in-picture
application (PIP) [56] and a multi-window display (MWD) application [100]. Unless
for scalability analysis, we utilized a 12x12 processor in our simulations.

In the first reliability analysis, we study the enhancements achieved by proposed
hierarchy. Accordingly, portion of nodes that can be promoted as AM along with
those that can be allocated by AMs are measured. Results show that 1̃00% of nodes
can potentially be allocated by AMs, when up to 8 links are broken in the network.
We generated 100 random fault patterns, where we obtained full (100%) accessibility
in all patterns. However, as our space exploration is not inclusive, we use the notion
of 1̃00% for accuracy. Results also demonstrate that a more sophisticated routing
algorithm enhances the obtained results, especially for higher fault rates, while it is
not mandatory.

In addition for PEs to be accessible by AMs, feasible mappings require that the
communication between tasks are not needing the failed components. Hence, the
high rate of PEs accessible by AMs does not directly translate to feasible mappings.

As our next reliability measurement, we analyzed the average success rate of

47

Mohammad Fattah

Table 4. Success rates for arbitrary AM selection, derived from [41].

Method SHiFA D&C
NoC routing XY OE OE

broken 1 99.85 99.93 99.52
links 8 98.04 99.41 96.47

10% 89.19 96.45 85

AMs in mapping applications. Accordingly, for a given fault pattern, all potential
AMs are assigned to map each of the 9 real applications, where the success rates
are averaged per fault count. Table 4 shows the extracted results. For the sake of
comparison, we also implemented a fault-aware adaptation of the distributed D&C
mapping algorithm [6]. For instance, when up to 10% of the links are broken using
the odd-even (OE) routing algorithm, an arbitrary AM can find a feasible mapping
with 96.45% chance for the application. In other words, SHiFA may fail to map
an incoming application 4.2 times less than D&C method. Note worthy, as SHiFA
utilizes the CASqA mapping algorithm, its mapping quality in terms of NoC power
and latency outperforms related work.

3.7.2 SHiFA Scalibility Evaluation

For the scalability analysis, we compared SHiFA with literature in two aspects. First,
how many AMs requests are generated before a successful AM are found. Second,
how much time is spent on executing the mapping algorithm. The scalability is
analyzed over the number of cores and the fault count. In all settings, SHiFA finds
a successful AM on average in 5 times less trials than random distributed methods
(e.g. [6; 63; 53]). Besides having 50% faster computation time when there is no
fault, SHiFA mapping algorithm experiences only 60% increase when up to 10% of
the routers are failed, compared to D&C method with 16 times increase. Moreover,
the mapping time increases by 80 times in D&C when moving form 36-cores to
256-cores, while again, SHiFA only shows 50% increase in computation time.

3.7.3 Limitations of SHiFA

As results demonstrated, SHiFA is able to map applications at run-time in a fault-
aware manner. The proposed hierarchy greatly increased the allocatable PEs, while
SHiC combined with tabu search significantly decreased the mapping trials com-
pared to random scenarios. Finally, our fault-aware mapping algorithm, derived from
CASqA, is able to find a feasible mapping in most of the times even in high fault
rates.

Nonetheless, there are two assumptions in SHiFA, which limits its applicability

48

Run-Time Application Mapping

0

10

20

30

40

50

60

70

80

90

100

Avg. 32 tasks Avg. 32 tasks

XY OE

%
 o

f
su

cc
e

ss

routing algorithm

Known TG Complete TG

Figure 22. Comparing the success rate of arbitrary AM selection, when the application TG is
known or assumed to be complete.

and potentials in practice. First, SHiFA, like most of fault-tolerant methods (e.g. [45;
80; 13; 87; 86; 92]), assumes a fault-free control network. That is, SHiFA requires
a guaranteed negotiations between kernels. AMs need to report back to MM and
normal kernels to their AM. In order to resolve this, we suggested, though in a
separate virtual channel, to use the same faulty network for control packets, while
violating the turn-model rules. This can potentially lead to deadlock for control
packets, though the probability would be low.

Second, SHiFA relies on the assumption that the communication pattern of each
application is known; i.e. its task graph. As this may not be always the case, SHiFA
needs to assume a complete task graph for unknown applications; i.e. an application
where all the tasks want to communicate with each other. Hence, the possibility to
find a feasible mapping will significantly drop. This is shown in Fig. 22 for 144-core
processor with 10% of faulty links, where applications are assumed to have the same
number of tasks as our set of real applications. The possibility to find a feasible
mapping has an adverse relation to the application size. For instance, when the task
graph (TG) is to be unknown in DVOPD application with 32 tasks, there is only 10%
(or even 3%) chance that an arbitrary AM can find a feasible mapping using odd-even
(or XY) routing algorithm.

Note that other run-time mapping contributions of this dissertation make the
same assumption of the TG being known. However, their correct functionality is not
relied on this assumption. Particularly since we focus on contiguity of the mapped
regions, where the within region allocation is a side work of our contributions.

This motives the next direction of contribution explore in this thesis. That is,

49

Mohammad Fattah

the design of an architecture-level method to tolerant run-time permanent faults. A
fault-tolerant routing algorithm, with no reliance on any fault-free components, with
high fault coverage.

3.8 Summary
In this chapter, we briefed our run-time mapping algorithms towards communication-
centric management of many-core systems. First, we demonstrated benefits of con-
tiguous allocation, and proposed methods to improve contiguity of mapping results.
Through which, we obtained significant network power and latency improvements,
while stayed scalable for high core counts. Then, we took a deeper look at contigu-
ous mapping, and proposed CASqA. Significant power saving achieved by limiting
the allowed dispersion of the mapping, without hindering the system throughput.
This led us to proving better quality-of-service, by limiting real-time applications
to strictly contiguous mapping solutions. Results showed a meaningful degrade of
missed deadlines.

Tackling the reliability challenge, we proposed two main solutions. A mecha-
nism to run online-testing methods with minimized throughput penalties, and SHiFA,
a fault-aware mapping algorithm that deals with faulty networks. While providing
noticeable performance records, our methods proved to scale well with the core count
and fault count.

In the next chapter, we explore our fault-tolerant routing algorithm that is moti-
vated by the limitations of our SHiFA mechanism.

50

4 Fault-Tolerant Routing

As the last direction of our contributions, we cope with the reliability issues of fu-
ture many-core processors at architecture level. While failures may happen all over
the chip, we focus on the faults affecting the NoC routers and links, since a healthy
communication substrate is critical to correct functioning of the whole system. Ac-
cordingly, we propose a fault-tolerant routing algorithm, called maze-routing.

We set four goals in our design aiming at making our algorithm practical. First,
due to the extremely reduced reliability of aggressively shrunk transistors, we cannot
be limited to the fault count. Our algorithm needs to tolerate any number of failure
regardless of their location in the network, and moreover, detect disconnected nodes.
We name this goal full (fault) coverage. Second, as also explained in previously in
Chapter 3.7.3, we must not assume any oracle fault-free component in the network.
Hence, a practical routing algorithm needs to be fully-distributed, where each com-
ponent works independently. Third, a practical algorithm should not lead to heavy
implementations overheads, as each single transistor contributes to the failure rate
of a component. Thus, it needs to have low area overhead. Fourth, as explained in
Chapter 3.6, components going under test are disabled similar to faulty ones; though
for a short period but frequently. Disabling network components should not interrupt
the network operation, as they are tested periodically and frequently. As a result, in
order to be practical, a fault-tolerant method needs to impose low reconfiguration
overhead. Elaborated in Chapter 4.1, to the best of our knowledge, maze-routing is
the first to satisfy all of these goals together.

4.1 Related Works
There are plenty of methods to detect and tolerate different types of faults (perma-
nent, transient, etc.) in NoC components. To be concise, however, we only explore
works similar to our Maze-routing algorithm, in which a routing algorithms is pro-
posed to tolerate permanent faults in NoC links and routers. As we set four goals
in the design of a practical fault-tolerant routing algorithm1, we explain each work
based on its relation to these goals, summarized in Table 5.

Zhang et al. [107] prose a variation of X-Y routing algorithm which reconfig-

1A detailed explanation of each goals is presented in Chapter 4.2.

51

Mohammad Fattah

Table 5. Comparison of state-of-the-art. Desirable characteristics are in bold [36].

Coverage Reconfiguration 𝑂(Area) 𝑂(Reconf.)
Zhang et al. [107] few fully dist. low on the fly
LBDR [87] moderate central low N/A
d2-LBDR [13] moderate central low N/A
OSR-Lite [92] moderate central high moderate
TOSR [9] moderate distributed high fast
BLINC [66] moderate distributed high fast
Wachter et al. [101] high distributed high slow
Fick et al. [45] high distributed high slow
Face routing [17] high fully dist. excessive on the fly
FTDR-H [43] high fully dist. high fast
uLBDR [86] full central high excessive
uDIREC [80] full central high excessive
ARIADNE [2] full distributed high slow

ures if one of its 8 surrounding routers are faulty. The algorithm imposes low area
overhead, works in a distributed manner, and reconfigures according to the fault pat-
tern on the fly. However, the algorithm can only work with one-faulty-router (or
one-faulty-region) cases.

In order to implement adaptive routing algorithms without routing tables, a set of
algorithms are proposed based on logic-based distributed routing (LBDR) method [13;
87; 86]. Initially, Rodrigo et al. [87] introduce LBDR method and an extension
of it— LBDR-extended (LBDRe). LBDR can be reconfigured, using 12 bits per
router, to implement a variety of different routing algorithms with a very simple
logic. LBDRe require 24 configuration bits, and can support a wider range of rout-
ing configurations. Hence, LBDR and LBDRe impose very low area overhead while
covering a moderate number of NoC faults. Nevertheless, these methods need a cen-
tralized controller to calculate reconfiguration bits of each router, based on the fault
pattern. Authors later introduce universal-LBDR (uLBDR) to achieve full coverage,
which uses 18 configuration bits per router. However, in order for the method to work
“an exhaustive search algorithm that tests all the paths in a recursive way for every
source-destination pair" is needed. Moreover, as reported in [13], uLBDR imposes
3x area overhead as it needs virtual cut through switching with FORK modules and
complex arbitration. To remove the high area overhead of uLBDR, authors propose
d2-LBDR method [13]. It uses a distance register and a new deroute mechanism,
which removes the switching and arbitration complexity of uLBDR. Accordingly,
d2-LBDR removes the area overhead of uLBDR with sacrificing the achieved fault
coverage.

In their OSR-Lite method, Strano et al. [92] utilize two instances of uLBDR

52

Fault-Tolerant Routing

to achieve faster reconfiguration and avoid deadlock while transitioning from one
routing configuration to another one. Similar to uLBDR, OSR-Lite imposes high
area overhead and requires a central controller, while provides a better reconfigura-
tion speed (few hundreds of clock cycles). Later, Balboni et al. [9] try to improve
over OSR-Lite, by proposing tunneled OSR (TOSR) method. They take advantage
of multiple physical NoCs, available at some many-core systems (e.g. Tile micro-
processors [106]). As such, TOSR works in a distributed manner and reconfigures
the network upon new faults much faster than OSR-Lite (within tens of clock cy-
cles). Nevertheless, it provides a moderate fault coverage while imposes high area
overheads– it uses uLBDR in each physical router along with a small routing table.

One of the first distributed algorithms dealing with high number of failures is
proposed by Fick et al. [45]. Upon new faults, their algorithm works in lockstep and
reconfiguration messages are exchanged between reconfiguration units residing in
each router. However, in their paper they assume that “routers know when they need
to invoke the algorithm and how to resume operation after reconfiguration finishes".
This introduces a synchronization point in the algorithm and breaks the distributed
manner of the algorithm. ARIADNE [2] is introduced later to mitigate this problem
and provide full fault coverage. Similarly, routers of ARIADNE work in lockstep and
exchange reconfiguration messages. One router (the one detecting the new failure)
initiates the reconfiguration and other routers operate normally, until the reconfig-
uration message is propagated to them. On the other hand, these works pause the
normal operation of the network for a long time. For instance, it takes 10K cycles for
ARIADNE to reconfigure the network and revert its normal operation. Authors of
the same research group, later propose BLINC [66] to overcome the slow reconfigu-
ration of ARIADNE, sacrificing the full fault coverage. It reconfigures the network
within tens of cycles and works in a distributed manner. All of these works, however,
use routing tables and impose high area overheads.

In a different work, Parikh et al. [80] introduce uDIREC. Unlike other works that
disable both direction links in case of failure, they use a finer fault model where a
link can be faulty in one direction and healthy in other direction. Accordingly, more
number of links are available to the network to utilize, and some PE may get isolated
later than usual. Their work, however, uses a centralized controller with excessive
reconfiguration complexity; e.g. it takes around 100 ms to reconfigure the network.
In addition, they take use of routing tables that imposes high area overhead.

While one of the main challenges of the explained works is to avoid deadlock
in case of failures, deflection-based routers [75] have the interesting feature of being
deadlock-free in essence. Similar to our Maze-routing algorithm, Feng et al. [43]
take advantage of this property in their proposed FTDR-H algorithm. They use rein-
forcement learning algorithms to learn optimal paths to destinations and update the
routing tables accordingly. FTDR-H works in a fully distributed manner and con-
verges to the optimal path quickly, whereas, its routing table imposes a high area

53

Mohammad Fattah

overhead.
As an inspiration to our Maze-routing algorithm, face routing algorithm [17]

is developed for ad hoc wireless networks. Face routing has interesting features
that satisfy most two main goals of our contribution. It works in a fully distributed
manner and finds the path to destination on the fly; i.e. there is no reconfiguration
phase and overhead. It also guarantees to find a path to destination. However, it does
not provide a method to detect it when destinations become unreachable. Moreover,
it needs to store real (vs. integer) values in the packets header and requires floating-
point operations at each input port of the router. While, floating-point operations are
known for their area and power hungry characteristics.

In summary, as can be seen in Table 5, none of the previously presented works
satisfy all design goals of this dissertation at the same time. They do not provide full
fault coverage, or if do so, impose high area and reconfiguration overheads. They
might work in a fully distributed manner, but then other goals are left unaddressed.
Whereas our Maze-routing algorithm achieves all at once.

4.2 Maze-Routing Algorithm
Maze-routing stores 4 variables in the packet header: MD𝑏𝑒𝑠𝑡, 𝑚𝑜𝑑𝑒, N𝑡𝑟𝑎𝑣 and
DIR𝑡𝑟𝑎𝑣. The first to are used to deliver the packet to destination, while other two
are to detect when the destination is not reachable. The distributed implementation
of maze-routing algorithm is presented in IX. However, for the sake of simplicity, Al-
gorithm 2 describes its functionality from a central point of view. A packet may be
routed either in 𝑛𝑜𝑟𝑚𝑎𝑙 (line 4) or 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙 (lines 6-19) modes. Initially, a packet
is in 𝑛𝑜𝑟𝑚𝑎𝑙 mode and each router tries to forward it to a productive output; i.e an
output in which the MD to destination is decreased. In case a productive output does
not exist, the packet enters the 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙 mode, wherein right/left hand-rules (↱ / ↰)
are selected arbitrarily. Accordingly, the selected hand-rule is followed for selecting
the output to forward the packet to. The 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙 mode continues until it is safe to
exit to 𝑛𝑜𝑟𝑚𝑎𝑙 mode (line 12), or the destination is detected unreachable (line 14).
When a path between source and destination exists, maze-routing algorithms guaran-
tees that we will exist 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙 mode (to the 𝑛𝑜𝑟𝑚𝑎𝑙 mode) in a finite step. Since
a packet in 𝑛𝑜𝑟𝑚𝑎𝑙 mode gets one hop closer to destination at each iteration (by tak-
ing a productive output), this guarantees that we will definitely reach destination in
a finite number of steps. On the other hand, the destination is detected unreachable
(line 13), if (i) the packet returns to its initial router in which entered the 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙

mode–𝑐𝑢𝑟 = N𝑡𝑟𝑎𝑣 and (ii) is about to repeat the same path–DIR𝑡𝑟𝑎𝑣 = DIRℎ𝑎𝑛𝑑.
This implies that the packet will turn around the network through the same path for-
ever without being delivered to destination. Maze-routing algorithm guarantees that
the packet is detected unreachable iff there is no path to destination. A more thorough
explanation of the algorithm along with the formal proof of its correct functionality

54

Fault-Tolerant Routing

is presented in IX.

ALGORITHM 2: The maze-routing algorithm.
input : 𝑠𝑟𝑐: Coordinates of the source router.

𝑑𝑠𝑡: Coordinates of the destination router.
output : Path from 𝑠𝑟𝑐 to 𝑑𝑠𝑡 or indicating an unreachable 𝑑𝑠𝑡.
variables: 𝑐𝑢𝑟: Coordinates of the current router.

MD𝑏𝑒𝑠𝑡: The smallest MD to 𝑑𝑠𝑡 we ever reached so far.
ℎ𝑎𝑛𝑑− 𝑟𝑢𝑙𝑒: The hand-rule followed in the 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙 mode.
DIRℎ𝑎𝑛𝑑: The direction in which the ℎ𝑎𝑛𝑑− 𝑟𝑢𝑙𝑒 directs to.
N𝑡𝑟𝑎𝑣: Coordinates in which we enter 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙 mode.
DIR𝑡𝑟𝑎𝑣: Direction at which we exit N𝑡𝑟𝑎𝑣 for first time.

1 MD𝑏𝑒𝑠𝑡 ← MD(𝑠𝑟𝑐, 𝑑𝑠𝑡);
2 while 𝑐𝑢𝑟 ̸= 𝑑𝑠𝑡 do
3 if ∃ a productive output then
4 Take the productive output;
5 else
6 MD𝑏𝑒𝑠𝑡 ← MD(𝑐𝑢𝑟, 𝑑𝑠𝑡);
7 N𝑡𝑟𝑎𝑣 ← 𝑐𝑢𝑟;
8 ℎ𝑎𝑛𝑑 𝑟𝑢𝑙𝑒←↱ / ↰;
9 Imagine a line between 𝑐𝑢𝑟 and 𝑑𝑠𝑡;

10 DIR𝑡𝑟𝑎𝑣 ← the first output in the left/right of the line;
11 Take DIR𝑡𝑟𝑎𝑣 and go to the next router;
12 while MD(𝑐𝑢𝑟, 𝑑𝑠𝑡) ̸= MD𝑏𝑒𝑠𝑡 or ∄ a productive output do
13 if 𝑐𝑢𝑟 = N𝑡𝑟𝑎𝑣 and DIR𝑡𝑟𝑎𝑣 = DIRℎ𝑎𝑛𝑑 then
14 return 𝑑𝑠𝑡 is unreachable;
15 else
16 Follow DIRℎ𝑎𝑛𝑑;
17 end
18 end
19 end
20 end
21 return 𝑑𝑠𝑡 reached;

As can be intuitively seen, maze-routing algorithm needs to have no limit on
the output directions it picks. In a wormhole switched network, this can lead to
deadlock. To avoid deadlocks, we take advantage of deflection based router archi-
tectures [75; 33] where deadlock is prevented in essence with possibility of arbitrary
output selection. However, flits might get deflected to the outputs other than their
request, making deflected packet not to follow maze-routing algorithm anymore. To
resolve this and keep the guarantees of maze-routing, we reset the algorithm every

55

Mohammad Fattah

Ej
ec

t

B
u

ff
er

 In
je

ct

Ej
ec

t

In
je

ct

MR

Si
lv

er
 F

lit

B
u

ff
er

 E
je

ct

D
ef

le
ct

io
n

Side Buffer
N

E

S

W

N

E

S

W

MR

MR

MR

Figure 23. The maze-routing algorithm implemented in the minBD [33] architecture.

time the flit is deflected. That is, once a flit is deflected to a router other than what
maze-routing directs to, the algorithm is restarted from line 1; i.e. it exits to 𝑛𝑜𝑟𝑚𝑎𝑙

mode and/or resets the MD𝑏𝑒𝑠𝑡 value accordingly.

4.3 Experimental Setup
We used NOCulator [32; 33] to implement and validate our maze-routing algorithm.
The main motivation for using NOCulator is its support of deflection based router
architectures as needed in our algorithm, whereas, Noxim simulator only supports
wormhole switching strategy. Similar to Noxim, NOCulator supports a wide range
of configuration parameters. Unlike HeMPS and our in-house simulator, on the other
hand, NOCulator models shared-memory many-core architectures. Accordingly, we
validated Maze-routing using shared-memory SPEC2006 benchmarks [52]. We re-
leased the source code of the developed algorithm and the router architecture on
GitHub [37] as a branch of the original simulator.

4.4 Results
As explained in Chapter 1.5, we use NOCulator [32] to model an 8x8 processor
with deflection-based routers. We implemented our maze-routing algorithm inside
the minBD router [33], and published the source-code on GitHub [37]. The resultant
router architecture is shown in Fig. 23. The deflection module is in charge of resetting
the MD𝑏𝑒𝑠𝑡 and 𝑚𝑜𝑑𝑒 values if the flit is deflected.

Reliability: As mentioned, we formally prove that maze-routing algorithm will
find the path to destination, and detects when no path exists. This is achieved while
each router only knows about the health status of its own links. Hence, the fault-
tolerance is delivered in a fully-distributed manner. As there is one instance of maze-
routing algorithm per input port (shown as MR in Fig. 23), transistor failures in each
module only disables the associated input/output link, while the rest of the router can

56

Fault-Tolerant Routing

work normally. In addition, we measured the area overhead of our routing algorithm
in comparison to the smallest routing table utilized in literature that provides full
fault coverage, like us. Maze-routing implementation requires 3.8 and 15.9 times
less silicon area for 8x8 and 16x16 meshes, respectively.

Performance: We ran two sets of experiments to measure performance of maze-
routing algorithm. First, a set of simulations where 1 link in the network is disabled
and put under test is executed. Results demonstrate instantaneous adaptation of the
network with only 0.25 cycle increase in the average network latency per disabled
link, when nodes are injecting to the network with a rate as high as 0.2 flits/cycle.
In comparison, the network operation is interrupted for at least tens of cycles [9; 66]
for works with limited coverage, while it takes 40,000 cycles for the network to
retain its steady-state latency once a link is disabled in methods with full fault cover-
age [2]. Finally, we compared the average network latency and saturation throughput
of an 8x8-processor under synthetic and real application traffics, when up to 5 ran-
dom links are broken. Since maze-routing is fully-distributed, its path selection may
become suboptimal and lead to non-minimal routes. Accordingly, in low injection
rates, it shows around 0.5 to 1.0 cycles higher average network latency than state-of-
the-art for both synthetic and real traffics. On the other hand, thanks to the offered
path divergence, it leads to 50% higher saturation throughput under synthetic traffic
and up to halved average latency for real applications.

57

5 Description of Papers

5.1 Overview of Original Papers
5.1.1 Paper I- Exploration of MPSoC Monitoring and Manage-

ment Systems

As MPSoCs are rapidly growing with their core count, their resource monitoring and
management is becoming more challenging than ever. In this paper, we review differ-
ent monitoring and management schemes used in many-core MPSoCs. In addition,
we make a qualitative comparison between distributed and central schemes. To have
the scalability of distributed methods, while keeping the holisticness of a central one,
hierarchical management systems are advocated.

Author’s contribution: The author contributed by reviewing the state-of-the-art,
write-up and presentation, under the guidance of coauthors. Mohammad Fattah is
the main author of this paper.

5.1.2 Paper II- Transport Layer Aware Design of Network Inter-
face in Many-Core Systems

In parallel processing platforms, including the many-core SoCs, data communica-
tion is one of the major bottlenecks. A significant effort is done in literature to re-
duce the network latency. In a message-passing architecture, the OS is providing the
transport-layer services to the communicating tasks. In this paper, we demonstrate
that the OS overhead in providing transport services has a much bigger impact on
the communication performance, compared to underlying network. As a solution,
we propose a NI architecture (Tra-NI) with understandings about the transport layer,
in which, the OS software overhead is offloaded to the NI hardware. Simulation re-
sults demonstrate 4 times improvement in the end to end network latency and 4.7
times higher achievable communication throughput.

Author’s contribution: The main idea presented in this paper, its implementation,
write-up and presentation was developed by the author under the guidance of the
coauthors. Mohammad Fattah is the main author of this paper.

58

Description of Papers

5.1.3 Paper III- CoNA: Dynamic Application Mapping for Con-
gestion Reduction in Many-Core Systems

In this paper, we propose an application mapping algorithm for dynamic workload of
many-core systems. Our contiguous neighborhood allocation (CoNA) algorithm tries
to minimize on-chip network congestion at two levels. Inter application congestion
by aiming a contiguous set of nodes for a given application, and intra application
congestion by placing the communicating tasks in a close proximity. Our algorithm is
composed of three main novelties. 1) First node selection; to improve the contiguity
of selected nodes, CoNA takes the status of neighboring nodes into account when
selecting the first node. 2) First task to map; to provide the largest possible number
of available nodes around the first task, our algorithm selects the task with the largest
number of edges to be mapped onto the first node. 3) Contiguous neighborhood
allocation; to minimize inter-application congestion, among suitable nodes for a task,
CoNA selects the one which fits in the smallest square with the first node. Our
fully synthesizable design shows 16% less average network latency, and up to 40%
improvement in different network metrics.

Author’s contribution: The main idea presented in this paper, SW implementa-
tion, write-up and presentation was developed by the author, while the FPGA imple-
mentation and bring-up was realized by Marco Ramirez, under the guidance of the
coauthors. Mohammad Fattah is the main author of this paper.

5.1.4 Paper IV- Smart Hill Climbing for Agile Dynamic Mapping
in Many-Core Systems

In this paper, we utilize stochastic hill climbing algorithm to improve our first node
selection method. We first motivate the importance of first node selection in many-
core systems, where not only a contiguous set of nodes is desired, but also it is desired
to incur minimum fragmentation to the remaining available nodes. Then, we approx-
imate the available area around a given node, namely the square factor. Finally, our
smart hill climbing (SHiC) algorithm climbs the network nodes to find the one that
has the required number of nodes around it, using the square factor. The application
mapping starts around the selected first node. Followed by our CoNA mapping algo-
rithm, SHiC provides the best network performance compared to existing heuristics
in the literature. Moreover, our results show that other heuristics would benefit sig-
nificantly from using SHiC as their first node selection method, which proves the
importance of the first node selection algorithm.

Author’s contribution: The main idea presented in this paper, implementation,
write-up and presentation was developed by the author under the guidance of the

59

Mohammad Fattah

coauthors. Also, the author developed the simulation environment described in Sec-
tion 3.2 of the thesis, and Section 5 of this paper, on top of the Noxim simulator.
Mohammad Fattah is the main author of this paper.

5.1.5 Paper V- Adjustable Contiguity of Run-Time Task Alloca-
tion in Networked Many-Core Systems

In this paper, we propose a run-time mapping algorithm where the dispersion level
of allocated nodes (𝛼) can be controlled. In other words, the OS or the user can
select to allocate an application to strictly contiguous nodes (𝛼 = 0.0), to any
set of nodes with best effort contiguousness (𝛼 = 1.0), or something in between.
Strictly contiguous allocation improves the network performance and the execution
time of applications. However, as applications need to wait until a contiguous al-
location is possible, it limits the achievable throughput of the system and increases
the turnaround time of applications. As a result, in order to obtained the maximum
system throughput, state-of-the-art considers only best effort contiguousness, with
no dispersion limit on the allocated nodes. On the contrary, our results demonstrate
that even a higher system throughput (by 3%) is possible when some dispersion limit
is imposed (𝛼 < 1.0). More importantly, by limiting the dispersion level of allocated
nodes, one can achieve the same system throughput (compared to 𝛼 = 1.0), while
reducing the network power dissipation by 35%.

Author’s contribution: The main idea presented in this paper, implementation,
write-up and presentation was developed by the author under the guidance of the
coauthors. Mohammad Fattah is the main author of this paper.

5.1.6 Paper VI- Mixed-Criticality Run-Time Task Mapping for
NoC-Based Many-Core Systems

In this paper, we propose to take advantages of strictly contiguous task allocation
methods for mapping of applications with soft real-time requirements. Contiguous
allocation reduces network congestion between different applications. As a result, it
considerably improves the network latency, its worst-case and the standard deviation.
On the other hand, for non-critical applications, we do no strict to only contiguous
mapping to improve the system throughput. Our results demonstrate up to 50% better
worst-case latencies and even 100 time less deadline misses for some applications.

Author’s contribution: The main idea presented in this paper, implementation and
presentation was developed by the author, under the guidance of his supervisory
team. The paper was also written jointly by authors. Mohammad Fattah is the main
author of this paper.

60

Description of Papers

5.1.7 Paper VII- A Power-Aware Approach for Online Test Schedul-
ing in Many-core Architectures

In this paper, we propose an online test scheduling algorithm for power limited many-
core systems. We first define a test critically metric to determine the cores that need
to go under test. However, as test routines are power hungry in nature, there might
not be enough power budget for a core to be tested immediately, leading to scenarios
where there are more cores to be tested than the power limit permits. A test rank-
ing metric is defined that incorporates the run-time status of allocated nodes with
their test criticallity, to increase the priority of the cores that benefit the system per-
formance as well. Our results show significant improvement in system throughput
(˜15%) compared to methods that have no specific algorithm for test scheduling.

Author’s contribution: The author proposed the power aware mapping algorithm
and contributed to the write-up of the associated section of the paper.

5.1.8 Paper VIII- SHiFA: System-Level Hierarchy in Run-Time
Fault-Aware Management of Many-Core Systems

In this paper, we introduce a hierarchical resource management scheme for the run-
time application mapping of many-core systems. The scheme takes into account the
faultiness of the network nodes and links, and ensures that the communication of
an application tasks are feasible given the routing algorithm and the partial network.
Upon arrival of a new application, we we first find an accessible node to offload the
application mapping to it. The node then searches its neighboring accessible nodes
for finding a feasible mapping. In case the node fails to find a feasible mapping, due
to existing faults, a new node is searched to offload the mapping. Using simply XY
routing in a 12x12 network and when up to 8 links are broken, our method shows up
to 100% PEs being utilizable, and around 98% of mapping requests being successful.

Author’s contribution: The main idea presented in this paper, implementation,
write-up and presentation was developed by the author under the guidance of the
coauthors. Mohammad Fattah is the main author of this paper.

5.1.9 Paper IX- A Low-Overhead, Fully-Distributed, Guaranteed-
Delivery Routing Algorithm for Faulty Network-on-Chips

In this paper, we propose the maze-routing algorithm for the faulty NoCs. Maze-
routing is the first-in-class algorithm that provides all of the followings together: it
is fully distributed, guarantees the delivery, imposes low area overhead, and adapts
to new faults on the fly. The algorithm provides 16x less area overhead compared

61

Mohammad Fattah

to other algorithms that provide guaranteed delivery, while can achieve up to 50%
higher saturation throughput.

Author’s contribution: The author contributed to the development of the main
idea, the presentation and most of the simulations and write-up, under the guidance
of the supervisory team. Mohammad Fattah is the main author of this paper.

62

6 Conclusion and Discussion

The number of cores on many-core SoCs continues to grow as we have reached
the limits of a single core performance. In this dissertation, we demonstrated the
importance of the communication overhead in the design of many-core SoCs, and
put forward several contributions to tackle these challenges, in three main directions.

First, we demonstrated the significance of the end points overhead in the commu-
nication performance, and proposed a network interface that would offload the work
from application and kernel SW instances (Paper II). After radically squeezing the
contribution of the network interface, we started to see the importance of run-time
application mapping in the communication and overall system performance. This
led us to the second direction of this dissertation, where we developed several meth-
ods for run-time application mapping. We showcased the importance of contiguous
application mapping in improving network performance (Paper III and Paper IV).
Then, we elaborated that contiguousness can be exploited, counter-intuitively, to im-
prove the throughput of the system (Paper V), and to provide quality-of-service in a
system with soft real-time applications (Paper VI). Later, we studied how run-time
application mapping can help the testability and fault-tolerance of many-core sys-
tems. We reduced the impact of putting cores under test on the system throughput
(Paper VII), in the emergence of dark-silicon many-core SoCs. We also proposed
SHiFA, a hierarchical mapping approach to tackle the faultiness of network elements
(Paper VIII). SHiFA, however, suffered from the assumption of a fault-free control
network, through which, the fault information of the main NoC of the system is dis-
tributed between the nodes. Tackling this shortcoming paved our path to the third
direction of this dissertation. We proposed the maze-routing algorithm (Paper IX),
the first algorithm that could provide all of the claimed advantages at the same time.

Throughout this thesis, wherever applicable, we assumed a message-passing
model for both the applications and the system, in contrast to a shared-memory
paradigm. In the early stages of this work, there was a live debate on how the future
of many-core SoCs will look like. Some favoring shared-memory systems for its
obvious SW benefits, while others were speculating the rise of the message-passing
paradigm due to the practical limits of building coherent many-core SoCs. Intel SCC
platform was one example of early SoCs built, supporting the latter. However, such
SoCs are not commercially available these days, showing the importance of SW de-
mands (i.e., the industry goes where the customer wants). Moreover, in our system

63

Mohammad Fattah

model, we assumed that each PE had its own local memory accessible to it, without
a need to go off the node (to a far cache or off-chip DRAM). This assumption is
motivated by the technology advancements allowing 3D integration of DRAM dies
on top of logic silicons.

6.1 Future Work
This dissertation can be advanced in several directions, to explore new ideas and
to improve some of the shortcomings. In this section, we go through some of the
thoughts.

Multitasking: In the mapping algorithms proposed in this dissertation, we as-
sumed cores running a single task at a time. However, cores are usually multitasking
in commercial environments. To advance the depth of this research, adding the mul-
titasking angle to the run-time mapping algorithms can be pursued. Finding optimum
collocations brings significant challenges to the algorithm design.

Mixed contiguity: In our CASqA approach, we assumed the same 𝛼 value for all
the running applications. However, applications are different in their network insen-
sitivity. The more the tasks of an application would need network access, the more
it benefits from contiguous mapping. One possible future direction is to study the
optimum 𝛼 value according to the application profile, and how different applications
would impact each other.

Migration: In this thesis, we assumed the mapping is fixed, once it is decided.
However, the system and even the individual applications may benefit from migrating
few tasks to more contiguous nodes once a free space is available. This especially
seems advantageous when multitasking is part of the system. We believe there is a
lot to discover in this direction.

Shared memory: In our opinion, this research work can be enriched significantly
by considering the shared-memory SoCs. We think that similar to message-passing
applications, one may see benefits in using traits of our innovations in shared-memory
systems. For instance, by limiting the network traffic and conflict induced by an ap-
plication with assigning a limited number of contiguous last level cache (LLC) slices
to it, according to the application and overall system circumstances.

Path optimization: While maze-routing guaranteed the delivery in presence of
faulty network elements, it does not guarantee to find an optimum path. The algo-
rithm is deciding on local information which leads to suboptimal paths, and deflec-

64

Conclusion and Discussion

tion routing adds to the number of hops that a flit may traverse under heavy traffic.
Last but not least, we suggest that improving the path selection in maze-routing can
be studied as a future direction. Methods like ant-colony can be used to keep the
algorithm fully-distributed.

65

List of References

[1] The Story of the Intel 4004. http://www.intel.com/museum/archives/4004.
htm. [Online; accessed 27-December-2015].

[2] Konstantinos Aisopos, Andrew DeOrio, Li-Shiuan Peh, and Valeria Bertacco. ARIADNE: Ag-
nostic Reconfiguration In A Disconnected Network Environment. In Parallel Architectures
and Compilation Techniques (PACT), 2011 International Conference on, pages 298–309. IEEE,
2011.

[3] George S Almasi and Allan Gottlieb. Highly Parallel Computing. Menlo Park, CA (USA);
Benjamin-Cummings Pub. Co., 1988.

[4] Gene M. Amdahl. Validity of the single processor approach to achieving large scale computing
capabilities. In Proceedings of the April 18-20, 1967, Spring Joint Computer Conference, AFIPS
’67 (Spring), pages 483–485, New York, NY, USA, 1967. ACM.

[5] Abdel Krim Amoura, Evripidis Bampis, and Jean-Claude Konig. Scheduling Algorithms For
Parallel Gaussian Elimination with Communication Costs. Parallel and Distributed Systems,
IEEE Transactions on, 9(7):679–686, 1998.

[6] Iraklis Anagnostopoulos, Alexandros Bartzas, Georgios Kathareios, and Dimitrios Soudris. A
Divide and Conquer based Distributed Run-time Mapping Methodology for Many-Core plat-
forms. In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2012, pages
111–116. IEEE, 2012.

[7] Marjan Asadinia, Mehdi Modarressi, Arash Tavakkol, and Hamid Sarbazi-Azad. Supporting
Non-contiguous Processor Allocation in Mesh-based CMPs Using Virtual Point-to-point Links.
In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2011, pages 1–6.
IEEE, 2011.

[8] Brahim Attia, Wissem Chouchene, Abdelkader Zitouni, and Rached Tourki. Network Inter-
face Sharing for SoCs based NoC. In Communications, Computing and Control Applications
(CCCA), 2011 International Conference on, pages 1–6. IEEE, 2011.

[9] Marco Balboni, José Flich, and Davide Bertozzi. Synergistic Use of Multiple On-Chip Networks
for Ultra-Low Latency and Scalable Distributed Routing Reconfiguration. In Proceedings of the
2015 Design, Automation & Test in Europe Conference & Exhibition, pages 806–811. EDA
Consortium, 2015.

[10] Carl M Bender, Michael A Bender, Erik D Demaine, and Sándor P Fekete. What is the optimal
shape of a city? Journal of Physics A: Mathematical and General, 37(1):147, 2004.

[11] Davide Bertozzi, Antoine Jalabert, Srinivasan Murali, Rutuparna Tamhankar, Stergios Ster-
giou, Luca Benini, and Giovanni De Micheli. NoC synthesis flow for customized domain spe-
cific multiprocessor systems-on-chip. IEEE Transactions on Parallel and Distributed Systems,
16(2):113–129, February 2005.

[12] Raoul AF Bhoedjang. Communication Architectures for Parallel-Programming Systems. Ams-
terdam: Vrije Universiteit, 2000.

[13] Rimpy Bishnoi, Vijay Laxmi, Manoj Singh Gaur, and José Flich. d2-LBDR: Distance-Driven
Routing to Handle Permanent Failures in 2D Mesh NoCs. In Proceedings of the 2015 Design,
Automation & Test in Europe Conference & Exhibition, pages 800–805. EDA Consortium, 2015.

[14] S. Borkar. Design Challenges of Technology Scaling. Micro, IEEE, 19(4):23–29, Jul 1999.

66

http://www.intel.com/museum/archives/4004.htm
http://www.intel.com/museum/archives/4004.htm

LIST OF REFERENCES

[15] Shekhar Borkar. Designing Reliable Systems from Unreliable Components: The Challenges of
Transistor Variability and Degradation. Micro, IEEE, 25(6):10–16, 2005.

[16] Shekhar Borkar. Thousand Core Chips: A Technology Perspective. In Proceedings of the 44th
Annual Design Automation Conference, DAC ’07, pages 746–749, New York, NY, USA, 2007.
ACM.

[17] Prosenjit Bose, Pat Morin, Ivan Stojmenović, and Jorge Urrutia. Routing with Guaranteed De-
livery in Ad Hoc Wireless Networks. Wireless networks, 7(6):609–616, 2001.

[18] E.A. Carara, R.P. de Oliveira, N.L.V. Calazans, and F.G. Moraes. HeMPS - A Framework for
NoC-based MPSoC Generation. In Circuits and Systems, 2009. ISCAS 2009. IEEE International
Symposium on, pages 1345–1348, May 2009.

[19] Ewerson Carvalho, Ney Calazans, and Fernando Moraes. Heuristics for Dynamic Task Mapping
in NoC-based Heterogeneous MPSoCs. In Rapid System Prototyping, 2007. RSP 2007. 18th
IEEE/IFIP International Workshop on, pages 34–40. IEEE, 2007.

[20] Ewerson Carvalho, Ney Calazans, and Fernando Moraes. Dynamic Task Mapping for MPSoCs.
Design & Test of Computers, IEEE, 27(5):26–35, 2010.

[21] Vincenzo Catania, Andrea Mineo, Salvatore Monteleone, and Maurizio and Palesi. Noxim:
An Open, Extensible and Cycle-accurate Network on Chip Simulator. In Application-specific
Systems, Architectures and Processors (ASAP), 2015 IEEE 26th International Conference on,
pages 162–163. IEEE, 2015.

[22] Chen-Ling Chou and Radu Marculescu. Run-Time Task Allocation Considering User Behavior
in Embedded Multiprocessor Networks-on-Chip. Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 29(1):78–91, 2010.

[23] Chen-Ling Chou and Radu Marculescu. FARM: Fault-Aware Resource Management in NoC-
Based Multiprocessor Platforms. In Design, Automation & Test in Europe Conference & Exhi-
bition (DATE), 2011, pages 1–6. IEEE, 2011.

[24] Chen-Ling Chou, Umit Y Ogras, and Radu Marculescu. Energy- and Performance-Aware Incre-
mental Mapping for Networks on Chip With Multiple Voltage Levels. Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, 27(10):1866–1879, 2008.

[25] Wissem Chouchene, Brahim Attia, Abdelkrim Zitouni, Nouredine Abid, and Rached Tourki. A
low power network interface for network on chip. In Systems, Signals and Devices (SSD), 2011
8th International Multi-Conference on, pages 1–6. IEEE, 2011.

[26] William J Dally and Brian Towles. Route Packets, Not Wires: On-Chip Interconnection Net-
works. In Design Automation Conference, 2001. Proceedings, pages 684–689. IEEE, 2001.

[27] William James Dally and Brian Patrick Towles. Principles and Practices of Interconnection
Networks. Elsevier, 2004.

[28] Masoud Daneshtalab, Masoumeh Ebrahimi, Pasi Liljeberg, Juha Plosila, and Hannu Tenhunen.
Memory-Efficient On-Chip Network with Adaptive Interfaces. Computer-Aided Design of Inte-
grated Circuits and Systems, IEEE Transactions on, 31(1):146–159, 2012.

[29] David P Dobkin, Herbert Edelsbrunner, and Mark H Overmars. Searching for Empty Convex
Polygons. Algorithmica, 5(1-4):561–571, 1990.

[30] Thomas Ebi, David Kramer, Wolfgang Karl, and Jörg Henkel. Economic Learning for Thermal-
aware Power Budgeting in Many-core Architectures. In Hardware/Software Codesign and Sys-
tem Synthesis (CODES+ ISSS), 2011 Proceedings of the 9th International Conference on, pages
189–196. IEEE, 2011.

[31] Jr John Presper Eckert and John W Mauchly. Electronic numerical integrator and computer,
February 4 1964. US Patent 3,120,606.

[32] Chris Fallin and Rachata Ausavarungnirun. NOCulator. https://github.com/
CMU-SAFARI/NOCulator/. [Online; accessed 27-December-2015].

[33] Chris Fallin, Greg Nazario, Xiangyao Yu, Kuo-Pin Chang, Rachata Ausavarungnirun, and Onur
Mutlu. MinBD: Minimally-Buffered Deflection Routing for Energy-Efficient Interconnect. In
Networks on Chip (NoCS), 2012 Sixth IEEE/ACM International Symposium on, pages 1–10.
IEEE, 2012.

67

https://github.com/CMU-SAFARI/NOCulator/
https://github.com/CMU-SAFARI/NOCulator/

Mohammad Fattah

[34] Al Faruque, Mohammad Abdullah, Rudolf Krist, and Jörg Henkel. ADAM: Run-time Agent-
based Distributed Application Mapping for on-chip Communication. In Proceedings of the 45th
annual Design Automation Conference, pages 760–765. ACM, 2008.

[35] Mohamamd Fattah, Marco Ramirez, Masoud Daneshtalab, Pasi Liljeberg, and Juha Plosila.
CoNA: Dynamic Application Mapping for Congestion Reduction in Many-Core Systems. In
Computer Design (ICCD), 2012 IEEE 30th International Conference on, pages 364–370. IEEE,
2012.

[36] Mohammad Fattah, Antti Airola, Rachata Ausavarungnirun, Nima Mirzaei, Pasi Liljeberg, Juha
Plosila, Siamak Mohammadi, Tapio Pahikkala, Onur Mutlu, and Hannu Tenhunen. A Low-
Overhead, Fully-Distributed, Guaranteed-Delivery Routing Algorithm for Faulty Network-on-
Chips. In Proceedings of the 9th International Symposium on Networks-on-Chip, NOCS ’15,
pages 18:1–18:8, New York, NY, USA, 2015. ACM.

[37] Mohammad Fattah and Rachata Ausavarungnirun. The Maze-routing algroithm. https://
github.com/CMU-SAFARI/NOCulator/tree/Maze-routing/. [Online; accessed
27-December-2015].

[38] Mohammad Fattah, Masoud Daneshtalab, Pasi Liljeberg, and Juha Plosila. Transport Layer
Aware Design of Network Interface in Many-Core Systems. In Reconfigurable Communication-
centric Systems-on-Chip (ReCoSoC), 2012 7th International Workshop on, pages 1–7. IEEE,
2012.

[39] Mohammad Fattah, Masoud Daneshtalab, Pasi Liljeberg, and Juha Plosila. Smart Hill Climbing
for Agile Dynamic Mapping in Many-Core Systems. In Proceedings of the 50th Annual Design
Automation Conference, page 39. ACM, 2013.

[40] Mohammad Fattah, Pasi Liljeberg, Juha Plosila, and Hannu Tenhunen. Adjustable Contiguity of
Run-Time Task Allocation in Networked Many-Core Systems. In Design Automation Confer-
ence (ASP-DAC), 2014 19th Asia and South Pacific, pages 349–354. IEEE, 2014.

[41] Mohammad Fattah, Maurizio Palesi, Pasi Liljeberg, Juha Plosila, and Hannu Tenhunen. SHiFA:
System-Level Hierarchy in Run-Time Fault-Aware Management of Many-Core Systems. In
Design Automation Conference (DAC), 2014 51st ACM/EDAC/IEEE, pages 1–6. IEEE, 2014.

[42] Mohammad Fattah, Amir-Mohammad Rahmani, Thomas Canhao Xu, Anil Kanduri, Pasi Lilje-
berg, Juha Plosila, and Hannu Tenhunen. Mixed-Criticality Run-Time Task Mapping for NoC-
Based Many-Core Systems. In Parallel, Distributed and Network-Based Processing (PDP),
2014 22nd Euromicro International Conference on, pages 458–465. IEEE, 2014.

[43] Chaochao Feng, Zhonghai Lu, Axel Jantsch, Minxuan Zhang, and Zuocheng Xing. Addressing
Transient and Permanent Faults in NoC With Efficient Fault-Tolerant Deflection Router. Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on, 21(6):1053–1066, 2013.

[44] Alberto Ferrante, Simone Medardoni, and Davide Bertozzi. Network Interface Sharing Tech-
niques for Area Optimized NoC Architectures. In Digital System Design Architectures, Methods
and Tools, 2008. DSD’08. 11th EUROMICRO Conference on, pages 10–17. IEEE, 2008.

[45] David Fick, Andrew DeOrio, Gregory Chen, Valeria Bertacco, Dennis Sylvester, and David
Blaauw. A Highly Resilient Routing Algorithm for Fault-Tolerant NoCs. In Proceedings of
the Conference on Design, Automation and Test in Europe, pages 21–26. European Design and
Automation Association, 2009.

[46] Santo Fortunato. Community detection in graphs. Physics Reports, 486(3):75–174, 2010.
[47] Fred Glover, Manuel Laguna, E Taillard, and D De Werra. Tabu Search. Baltzer Basel, 1993.
[48] Dennis Gnad, Muhammad Shafique, Florian Kriebel, Semeen Rehman, Duo Sun, and Jorg

Henkel. Hayat: Harnessing Dark Silicon and Variability for Aging Deceleration and Balanc-
ing. In Design Automation Conference (DAC), 2015 52nd ACM/EDAC/IEEE, pages 1–6. IEEE,
2015.

[49] Mohammad-Hashem Haghbayan, Amir-Mohamad Rahmani, Antonio Miele, Mohammad Fat-
tah, Juha Plosila, Pasi Liljeberg, and Hannu Tenhunen. A Power-Aware Approach for Online
Test Scheduling in Many-core Architectures. Computers, IEEE Transactions on, PP(99):730–
743, 2015.

68

https://github.com/CMU-SAFARI/NOCulator/tree/Maze-routing/
https://github.com/CMU-SAFARI/NOCulator/tree/Maze-routing/

LIST OF REFERENCES

[50] Mohammad-Hashem Haghbayan, Amir-Mohammad Rahmani, Pasi Liljeberg, Juha Plosila, and
Hannu Tenhunen. Energy-Efficient Concurrent Testing Approach for Many-Core Systems in the
Dark Silicon Age. In Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT),
2014 IEEE International Symposium on, pages 270–275. IEEE, 2014.

[51] John L Hennessy and David A Patterson. Computer Architecture: A Quantitative Approach.
Elsevier, 2011.

[52] John L Henning. SPEC CPU2006 Benchmark Descriptions. ACM SIGARCH Computer Archi-
tecture News, 34(4):1–17, 2006.

[53] Mohammad Hosseinabady and Jose Luis Nunez-Yanez. Run-time stochastic task mapping on
a large scale network-on-chip with dynamically reconfigurable tiles. IET computers & digital
techniques, 6(1):1–11, 2012.

[54] John Howard, Saurabh Dighe, Yatin Hoskote, Sriram Vangal, David Finan, Gregory Ruhl, Devon
Jenkins, Howard Wilson, Nitin Borkar, Gerhard Schrom, et al. A 48-Core IA-32 Message-
Passing Processor with DVFS in 45nm CMOS. In Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), 2010 IEEE International, pages 108–109. IEEE, 2010.

[55] Jingcao Hu and Radu Marculescu. Energy- and performance-aware mapping for regular NoC
architectures. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
24(4):551–562, April 2005.

[56] Egbert G. T. Jaspers and Peter H. N. de With. Chip-set for video display of multimedia informa-
tion. IEEE Transactions on Consumer Electronics, 45(3):706–715, August 1999.

[57] Solid State Technology Association JEDEC. Failure Mechanisms and Models for Semiconductor
Devices. JEDEC Publication JEP122G, 2010.

[58] Anil Kanduri, Mohammad-Hashem Haghbayan, Amir-Mohammad Rahmani, Pasi Liljeberg,
Axel Jantsch, and Hannu Tenhunen. . In Computer Design (ICCD), 2015 33rd IEEE Inter-
national Conference on, pages 573–580. IEEE, 2015.

[59] Nishit Kapadia and Sudeep Pasricha. VARSHA: Variation and Reliability-Aware Application
Scheduling with Adaptive Parallelism in the Dark-Silicon Era. In Proceedings of the 2015 De-
sign, Automation & Test in Europe Conference & Exhibition, pages 1060–1065. EDA Consor-
tium, 2015.

[60] Nishit Kapadia, Venkata Yaswanth Raparti, and Sudeep Pasricha. ARTEMIS: An Aging-Aware
Runtime Application Mapping Framework for 3D NoC-based Chip Multiprocessors. In Pro-
ceedings of the 9th International Symposium on Networks-on-Chip, page 31. ACM, 2015.

[61] Heba Khdr, Santiago Pagani, Muhammad Shafique, and Jörg Henkel. Thermal Constrained
Resource Management for Mixed ILP-TLP Workloads in Dark Silicon Chips. In Proceedings of
the 52nd Annual Design Automation Conference, page 179. ACM, 2015.

[62] Daewook Kim, Manho Kim, and Gerald E Sobelman. NIUGAP: Low Latency Network Interface
Architecture with Gray Code for Networks-on-Chip. In Circuits and Systems, 2006. ISCAS 2006.
Proceedings. 2006 IEEE International Symposium on, pages 4–pp. IEEE, 2006.

[63] Sebastian Kobbe, Lars Bauer, Daniel Lohmann, Wolfgang Schröder-Preikschat, and Jörg Henkel.
DistRM: Distributed Resource Management for On-Chip Many-Core Systems. In Proceedings
of the seventh IEEE/ACM/IFIP international conference on Hardware/software codesign and
system synthesis, pages 119–128. ACM, 2011.

[64] Israel Koren and C Mani Krishna. Fault-Tolerant Systems. Morgan Kaufmann, 2010.
[65] Yong-Long Lai, Shyue-Wen Yang, Ming-Hwa Sheu, Yin-Tsung Hwang, Hui-Yu Tang, and Pin-

Zhang Huang. A High-Speed Network Interface Design for Packet-Based NoC. In Communi-
cations, Circuits and Systems Proceedings, 2006 International Conference on, volume 4, pages
2667–2671. IEEE, 2006.

[66] Doowon Lee, Ritesh Parikh, and Valeria Bertacco. Brisk and Limited-Impact NoC Routing
Reconfiguration. In Design, Automation and Test in Europe Conference and Exhibition (DATE),
2014, pages 1–6. IEEE, 2014.

69

Mohammad Fattah

[67] Seung Eun Lee, Jun Ho Bahn, Yoon Seok Yang, and Nader Bagherzadeh. A Generic Network
Interface Architecture for a Networked Processor Array (NePA). In Architecture of Computing
Systems–ARCS 2008, pages 247–260. Springer, 2008.

[68] Daniele Ludovici, Alessandro Strano, and Davide Bertozzi. Architecture Design Principles for
the Integration of Synchronization Interfaces into Network-on-Chip Switches. In Network on
Chip Architectures, 2009. NoCArc 2009. 2nd International Workshop on, pages 31–36. IEEE,
2009.

[69] Milo MK Martin, Mark D Hill, and Daniel J Sorin. Why on-chip cache coherence is here to stay.
Communications of the ACM, 55(7):78–89, 2012.

[70] Timothy G Mattson, Michael Riepen, Thomas Lehnig, Paul Brett, Werner Haas, Patrick
Kennedy, Jason Howard, Sriram Vangal, Nitin Borkar, Greg Ruhl, et al. The 48-core SCC
processor: the programmer’s view. In Proceedings of the 2010 ACM/IEEE International Con-
ference for High Performance Computing, Networking, Storage and Analysis, pages 1–11. IEEE
Computer Society, 2010.

[71] Mehdi Modarressi, Arash Tavakkol, and Hamid Sarbazi-Azad. Virtual Point-to-Point Connec-
tions for NoCs. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 29(6):855–868, 2010.

[72] Gordon E Moore et al. Cramming more components onto integrated circuits. Electronics, pages
114–117, 1965.

[73] Fernando Moraes. HeMPS Generator Framework. https://corfu.pucrs.br/
redmine/projects/hemps. [Online; accessed 27-December-2015].

[74] Fernando Moraes, Ney Calazans, Aline Mello, Leandro Möller, and Luciano Ost. HERMES:
an infrastructure for low area overhead packet-switching networks on chip. INTEGRATION, the
VLSI journal, 38(1):69–93, 2004.

[75] Thomas Moscibroda and Onur Mutlu. A Case for Bufferless Routing in On-Chip Networks. In
ACM SIGARCH Computer Architecture News, volume 37, pages 196–207. ACM, 2009.

[76] Wu Ning, Ge Fen, and Wu Fei. Design of a GALS Wrapper for Network on Chip. In Computer
Science and Information Engineering, 2009 WRI World Congress on, volume 3, pages 592–595.
IEEE, 2009.

[77] Vincent Nollet, Prabhat Avasare, Hendrik Eeckhaut, Diederik Verkest, and Henk Corporaal.
Run-Time Management of a MPSoC Containing FPGA Fabric Tiles. Very Large Scale Integra-
tion (VLSI) Systems, IEEE Transactions on, 16(1):24–33, 2008.

[78] Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and Kunyung Chang. The
Case for a Single-chip Multiprocessor. In Proceedings of the Seventh International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS VII,
pages 2–11, New York, NY, USA, 1996. ACM.

[79] Tarik Ono and Mark Greenstreet. A Modular Synchronizing FIFO for NoCs. In Proceedings of
the 2009 3rd ACM/IEEE International Symposium on Networks-on-Chip, pages 224–233. IEEE
Computer Society, 2009.

[80] Ritesh Parikh and Valeria Bertacco. uDIREC: unified diagnosis and reconfiguration for frugal
bypass of NoC faults. In Proceedings of the 46th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 148–159. ACM, 2013.

[81] Davide Patti and Maurizio Palesi. Noxim: Network-on-chip simulator. https://github.
com/davidepatti/noxim. [Online; accessed 27-December-2015].

[82] Fernando CN Pereira and Touradj Ebrahimi. The MPEG-4 book. Prentice Hall Professional,
2002.

[83] Antonio Pullini, Federico Angiolini, Paolo Meloni, David Atienza, Srinivasan Murali, Luigi
Raffo, Giovanni De Micheli, and Luca Benini. Noc design and implementation in 65nm tech-
nology. In International Symposium on Networks-on-Chip, pages 273–282, 2007.

[84] Andrei Radulescu, John Dielissen, Santiago González Pestana, Om Prakash Gangwal, Edwin
Rijpkema, Paul Wielage, and Kees Goossens. An Efficient On-Chip NI Offering Guaranteed

70

https://corfu.pucrs.br/redmine/projects/hemps
https://corfu.pucrs.br/redmine/projects/hemps
https://github.com/davidepatti/noxim
https://github.com/davidepatti/noxim

LIST OF REFERENCES

Services, Shared-Memory Abstraction, and Flexible Network Configuration. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, 24(1):4–17, 2005.

[85] Steve Rhoads. Plasma RISC microprocessor. http://opencores.com/project,
plasma. [Online; accessed 27-December-2015].

[86] Samuel Rodrigo, Jose Flich, Antoni Roca, Simone Medardoni, Davide Bertozzi, Jorge Camacho,
Federico Silla, and Jose Duato. Cost-Efficient On-Chip Routing Implementations for CMP and
MPSoC Systems. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transac-
tions on, 30(4):534–547, 2011.

[87] Samuel Rodrigo, Simone Medardoni, Jose Flich, Davide Bertozzi, and Jose Duato. Efficient
implementation of distributed routing algorithms for NoCs. IET computers & digital techniques,
3(5):460–475, 2009.

[88] Marshall T Rose. The open book: a practical perspective on OSI. Prentice-Hall, Inc., 1990.
[89] Muhammad Shafique, Dennis Gnad, Siddharth Garg, and Jörg Henkel. Variability-Aware Dark

Silicon Management in On-Chip Many-Core Systems. In Proceedings of the 2015 Design, Au-
tomation & Test in Europe Conference & Exhibition, pages 387–392. EDA Consortium, 2015.

[90] Zheng Shi and Alan Burns. Real-Time Communication Analysis for On-Chip Networks with
Wormhole Switching. In Proceedings of the Second ACM/IEEE International Symposium on
Networks-on-Chip, pages 161–170. IEEE Computer Society, 2008.

[91] Jens Sparsø, Evangelia Kasapaki, and Martin Schoeberl. An Area-efficient Network Interface
for a TDM-based Network-on-Chip. In Proceedings of the Conference on Design, Automation
and Test in Europe, pages 1044–1047. EDA Consortium, 2013.

[92] Alessandro Strano, Davide Bertozzi, Francisco Trivino, José L Sánchez, Francisco J Alfaro, and
José Flich. OSR-Lite: Fast and Deadlock-Free NoC Reconfiguration Framework. In Embedded
Computer Systems (SAMOS), 2012 International Conference on, pages 86–95. IEEE, 2012.

[93] Alvin W Strong, Ernest Y Wu, Rolf-Peter Vollertsen, Jordi Sune, Giuseppe La Rosa, Timo-
thy D Sullivan, and Stewart E Rauch III. Reliability Wearout Mechanisms in Advanced CMOS
Technologies, volume 12. John Wiley & Sons, 2009.

[94] Herb Sutter. The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software.
Dr. Dobb’s journal, 30(3):202–210, 2005.

[95] Andrew S Tanenbaum. Computer networks, 5th edition. Prentice Hall PTR, 2011.
[96] Andrew S Tanenbaum and Herbert Bos. Modern Operating Systems. Prentice Hall Press, 2014.
[97] Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzlaff, Fae Ghodrat, Ben Green-

wald, Henry Hoffman, Paul Johnson, Jae-Wook Lee, Walter Lee, et al. The raw microproces-
sor: A computational fabric for software circuits and general-purpose programs. IEEE micro,
22(2):25–35, 2002.

[98] Yvain Thonnart, Edith Beigné, and Pascal Vivet. Design and Implementation of a GALS Adapter
for ANoC based Architectures. In Asynchronous Circuits and Systems, 2009. ASYNC’09. 15th
IEEE Symposium on, pages 13–22. IEEE, 2009.

[99] Peggy Salz Trautman. A Computer Pioneer Rediscovered, 50 Years On. The New York Times,
April 1994.

[100] Erik B. van der Tol and Egbert G.T. Jaspers. Mapping of MPEG-4 decoding on a flexible archi-
tecture platform. Media Processors, 4674:362–375, 2002.

[101] Eduardo Wachter, Augusto Erichsen, Alexandre Amory, and Fernando Moraes. Topology-
Agnostic Fault-Tolerant NoC Routing Method. In Proceedings of the Conference on Design,
Automation and Test in Europe, pages 1595–1600. EDA Consortium, 2013.

[102] David W Walker and Jack J Dongarra. MPI: a Standard Message Passing Interface. Supercom-
puter, 12:56–68, 1996.

[103] Hangsheng Wang, Li-Shiuan Peh, and Sharad Malik. Power-driven Design of Router Microar-
chitectures in On-chip Networks. In Proceedings of the 36th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 36, pages 105–, Washington, DC, USA, 2003. IEEE
Computer Society.

71

http://opencores.com/project,plasma
http://opencores.com/project,plasma

[104] HangSheng Wang, Xinping Zhu, Li-Shiuan Peh, and Sharad Malik. Orion: A Power-
performance Simulator for Interconnection Networks. In Proceedings of the 35th Annual
ACM/IEEE International Symposium on Microarchitecture, MICRO 35, pages 294–305, Los
Alamitos, CA, USA, 2002. IEEE Computer Society Press.

[105] Andreas Weichslgartner, Stefan Wildermann, and Jürgen Teich. Dynamic Decentralized Map-
ping of Tree-Structured Applications on NoC Architectures. In Networks on Chip (NoCS), 2011
Fifth IEEE/ACM International Symposium on, pages 201–208. IEEE, 2011.

[106] David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao, Bruce Edwards, Carl Ramey,
Matthew Mattina, Chyi-Chang Miao, John F Brown III, and Anant Agarwal. On-Chip Intercon-
nection Architecture of the Tile Processor. IEEE micro, (5):15–31, 2007.

[107] Zhen Zhang, Alain Greiner, and Sami Taktak. A Reconfigurable Routing Algorithm for a Fault-
Tolerant 2D-Mesh Network-on-Chip. In Design Automation Conference, 2008. DAC 2008. 45th
ACM/IEEE, pages 441–446. IEEE, 2008.

[108] Konrad Zuse. The Computer— My Life. Springer-Verlag New York, Inc., New York, NY, USA,
1993.

Mohammad Fattah

72

M
oham

m
ad Fattah

F 7
A

N
N

A
LES U

N
IV

ERSITATIS TU
RK

U
EN

SIS

ISBN 978-951-29-8708-5 (PRINT)
ISBN 978-951-29-8709-2 (PDF)
ISSN 2736-9390 (PRINT)
ISSN 2736-9684 (ONLINE)

Pa
in

os
al

am
a,

 T
ur

ku
, F

in
la

nd
 2

02
1

TURUN YLIOPISTON JULKAISUJA – ANNALES UNIVERSITATIS TURKUENSIS

SARJA – SER. F OSA – TOM. 7 | TECHNICA – INFORMATICA | TURKU 2021

RUN-TIME MANAGEMENT
OF MANY-CORE SOCS

A communication-centric approach

Mohammad Fattah

	ABSTRACT
	TIIVISTELMÄ
	Acknowledgements
	Table of Contents
	Abbreviations
	List of Original Publications
	Introduction
	Background
	Many-Core Architectures
	Workloads of Many-Core Architectures
	Communication-Centric Design of Many-Core Architectures

	Design Challenges
	Power
	Communication Latency
	Reliability
	Scalability

	Research Questions
	Summary of Research Contributions
	Transport Layer Aware Network Interface
	Run-Time Application Mapping
	Fault-Tolerant Routing

	Methodology
	Thesis Organization

	Transport Layer Aware Network Interface
	Related Works
	Transport Layer Functionality
	Kernel Overhead
	Tra-NI Design
	Experimental Setup
	Results

	Run-Time Application Mapping
	Related Works
	Validation Environment
	In-House System-C Simulation

	Contiguous Application Mapping
	Quantifying the Contiguousness
	CoNA and SHiC Methods
	Communication Performance Evaluation
	Scalability Analysis

	Adjustable Contiguity
	The Middle Value

	Providing QoS
	Evaluation of Missed Deadlines

	Test-Aware Mapping
	Overhead Evaluation

	Fault-Aware Application Mapping
	Reliability of SHiFA
	SHiFA Scalibility Evaluation
	Limitations of SHiFA

	Summary

	Fault-Tolerant Routing
	Related Works
	Maze-Routing Algorithm
	Experimental Setup
	Results

	Description of Papers
	Overview of Original Papers
	Paper I- Exploration of MPSoC Monitoring and Management Systems
	Paper II- Transport Layer Aware Design of Network Interface in Many-Core Systems
	Paper III- CoNA: Dynamic Application Mapping for Congestion Reduction in Many-Core Systems
	Paper IV- Smart Hill Climbing for Agile Dynamic Mapping in Many-Core Systems
	Paper V- Adjustable Contiguity of Run-Time Task Allocation in Networked Many-Core Systems
	Paper VI- Mixed-Criticality Run-Time Task Mapping for NoC-Based Many-Core Systems
	Paper VII- A Power-Aware Approach for Online Test Scheduling in Many-core Architectures
	Paper VIII- SHiFA: System-Level Hierarchy in Run-Time Fault-Aware Management of Many-Core Systems
	Paper IX- A Low-Overhead, Fully-Distributed, Guaranteed-Delivery Routing Algorithm for Faulty Network-on-Chips

	Conclusion and Discussion
	Future Work

	List of References

 HistoryItem_V1
 InsertBlanks

 Where: before current page
 Number of pages: 2
 Page size: same as page 1

 Blanks
 0
 Always
 118
 2
 /E/Työt/Yksityiset/Rantaralli 2018/aikakortti_takasivu_2018.pdf
 1

 D:20211123101316
 708.6614
 Blank
 31.1811

 LAST-1
 Tall
 1289
 415
 AllDoc
 qi3alphabase[QI 3.0/QHI 3.0 alpha]
 1

 CurrentAVDoc

 SameAsPage
 BeforeCur

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 Page size: same as page 1

 Blanks
 0
 Always
 118
 1
 /E/Työt/Yksityiset/Rantaralli 2018/aikakortti_takasivu_2018.pdf
 1

 D:20211123101316
 708.6614
 Blank
 31.1811

 LAST-1
 Tall
 1289
 415
 AllDoc
 qi3alphabase[QI 3.0/QHI 3.0 alpha]
 1

 CurrentAVDoc

 SameAsPage
 AfterCur

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.929 x 9.843 inches / 176.0 x 250.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 -4

 D:20150206130427
 708.6614
 B5
 Blank
 498.8976

 Tall
 1
 0
 No
 1910
 350

 QI2.9[QI 2.9/QHI 1.1]
 None
 Right
 4.0096
 -0.2835

 Both
 89
 AllDoc
 97

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 169
 170
 169
 170

 1

 HistoryList_V1
 qi2base

