1,036 research outputs found

    A Bang-Bang All-Digital PLL for Frequency Synthesis

    Get PDF
    abstract: Phase locked loops are an integral part of any electronic system that requires a clock signal and find use in a broad range of applications such as clock and data recovery circuits for high speed serial I/O and frequency synthesizers for RF transceivers and ADCs. Traditionally, PLLs have been primarily analog in nature and since the development of the charge pump PLL, they have almost exclusively been analog. Recently, however, much research has been focused on ADPLLs because of their scalability, flexibility and higher noise immunity. This research investigates some of the latest all-digital PLL architectures and discusses the qualities and tradeoffs of each. A highly flexible and scalable all-digital PLL based frequency synthesizer is implemented in 180 nm CMOS process. This implementation makes use of a binary phase detector, also commonly called a bang-bang phase detector, which has potential of use in high-speed, sub-micron processes due to the simplicity of the phase detector which can be implemented with a simple D flip flop. Due to the nonlinearity introduced by the phase detector, there are certain performance limitations. This architecture incorporates a separate frequency control loop which can alleviate some of these limitations, such as lock range and acquisition time.Dissertation/ThesisM.S. Electrical Engineering 201

    Novel Systematic Phase Noise Reduction Techniques for Phase Interpolator Clock and Data Recovery

    Get PDF
    This work focused on high-speed source-synchronous clock and multi-channel data receivers for inter-chip communications. Designs of inter-chip communication are becoming increasingly difficult with the rise in clock rates and the reduction in voltage supplies. Data transmissions at rates of gigabits per second require a fast and accurate clock and data recovery system on the front end of receivers. Many designs allow for source-synchronous clocking architectures, but this work focused on a dual-loop with a phase-locked loop for frequency tracking and phase integrators for tracking each individual data lane. Limitations with the phase interpolator architecture cause systematic jitter, reducing the data eye. Various techniques exist that aim to reduce or eliminate this systematic jitter from phase interpolator architectures. A technique based on digital lock detection was developed for this work that eliminates the phase interpolator systematic jitter

    Application of Random Walk Model for Timing Recovery in Modern Mobile SATCOM Systems

    Get PDF
    In a modern mobile satellite communication (SATCOM) system, a ground terminal receiver receives a radio frequency signal that is demodulated to generate a baseband digital signal waveform containing a self-clocking bit stream of digital data. The received baseband digital signal waveform is recovered and tracked using a timing recovery loop (TRL). The traditional TRLs use early-and-late gates, digital transition tracking, filter-and-square, and delay-and-multiply functions. In bit timing detection, the bit stream is self-clocking and the timing differential dithers about correct bit timing in the TRLs. For mobile satellite communication environments, the traditional TRLs drop lock when the loop signal-to-noise ratio (SNR) is smaller than a threshold value or the residual Doppler frequency is larger than the operating loop bandwidth. After dropping lock, the traditional TRLs experience long hang up time due to the need to reacquire the timing pulses. Recently, random walk filters (RWF) have been adapted to improve the bit clock locking stability and are applied to recover bit timing information of a digital data stream. This chapter describes random walk model for timing jitter and discusses how RWF solution can address the timing recovery challenges in mobile satellite communication environments

    Influence of jitter on limit cycles in bang-bang clock and data recovery circuits

    Get PDF
    In bang-bang (BB) clock and data recovery circuits (CDR) limit cycles can occur, but these limit cycles are undesired for a good operation of the BB-CDR. Surprisingly, however, a little bit of noise in the system is beneficial, because it will quench the limit cycles. Until now, authors have always assumed that there is enough noise in a BB-CDR such that no limit cycle occurs. In this work, a pseudo-linear analysis based on describing functions is used to investigate this. In particular, the relationship between the input noise and the amplitude of eventual limit cycles is investigated. An important result of the theory is that it allows to quantify the influence of the different loop parameters on the minimal amount of input jitter needed to destroy the limit cycle. Additionally, for the case that there is not enough noise, the worst case amplitude of the limit cycle (which is unavoidable in this case) is quantified as well. The presented analysis exhibits excellent matching with time domain simulations and leads to very simple analytical expressions

    Clock And Data Recovery Using Bang-bang Pll’s

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2008Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2008Bu çalışmada, saat ve data işaretlerinin yeniden çıkarımında kullanılan iki konumlu faz kititlemeli çevrimlerden bahsedilmiştir. Sistem seviyesinde hızlı simülasyonlar yapabilmek amacıyla çevrim elemanlarının davranışsal modelleri geliştirilmiştir. İki konumlu kontrol sistemlerinin el ile analizinin oldukça zor olmasından dolayı modelleme zorunlu hale gelmektedir. Ayrıca gerçeklenen elemanların idealsizliklerinden kaynaklanan davranışlar da olabilidiğince modellenmeye çalışılmıştır. Söz konusu faz kilitlemeli çevrimlerin sistem seviyesinde sağlaması gereken özelliklerin kabaca hesaplanması ve datadaki değişim sıklığının bu özellikleri nasıl etkilediği anlatılmıştır. Çevrim elemanlarının tranzistör seviyesinde nasıl gerçeklendiklerinden bahsedilmiştir. Çok kullanılan bir ring osilatör yapısı olan simetrik yüklü osilatör (Maneatis yük) çevrimde etkili bir şekilde kullanabilmek amacıyla modifiye edilmiştir. Osilatörün üretim ve sıcaklık değişimlerini tolere edebilmesi için kazancının yüksek olması gerekir. Bu da sistemin harici gürültü kaynaklarına (besleme, taban gürültüsü gibi) olan duyarlılığını oldukça arttırmaktadır. Bu nedenle osilatörü otomatik olarak kalibre eden bir teknik geliştirilmiştir. Değişik faz kilitlemeli çevrimlere uygulanabilen teknik için osilatörün akım kontollü olması gerekmektedir. Frekans kitlenmesi gerçekleştikten sonra osilatörün akımı bir analog-sayısal çevirici ile örneklenmekte ve asıl sistem bu nokta etrafında daha dar bir bölgede çalışmaktadır. Ayrıca, sıcaklıktan kaynaklanabilecek değişimler de analog-sayısal dönüştürücünün refererans akımı üzerinden kompanze edilmektedir. Son olarak, tasarlanan sistemin simülasyon sonuçları verilmiştir. 0.18um CMOS teknolojisinde tasarlanan devre 5Gb/s data hızlarında çalışabilmektedir.In this work, bang-bang PLL structures, which are extensively used in clock and data recovery systems, are investigated. Behavioral models of loop elements are created to do faster simulations in system level. This step is mandatory in bang-bang systems, which are hard to analyze with simple calculations. Some non-idealities of real circuit elements are inserted to these models. System level design issues of bang-bang PLL’s are discussed and the effect of data transition density to system specifications is mentioned. Transistor level implementations of loop elements are described. A popular delay cell with symmetric loads (Maneatis cell) is modified to be used effectively in a bang-bang loop. Gain of the VCO seems very large after initial design, which is required to cover the operating frequency range over process and temperature corners. Large gain makes the system prone to external noise sources such as noise from power supply, substrate etc. Therefore, an automatic calibration method is developed to reduce the VCO gain. This technique can be applied to any current controlled oscillators in various phase locked loops. After frequency lock is achieved, current of the oscillator is sampled by a current mode ADC and a narrower range is generated around that point. Additionally, frequency variation due to temperature is compensated through the specifically designed reference current of ADC. Finally, simulation results of CDR and calibration circuits are given. CDR is designed in 0.18um CMOS technology and can operate at 5Gb/s data rate.Yüksek LisansM.Sc

    Dissertation review on a new control perspective on phase locked loops

    Get PDF
    The technique of phase-locked loop (PLL), an essential means for online frequency detection of incoming signal, which is widely used in our modern day communication system. PLL is traditionally viewed as a non-linear feedback control loop that will automatically locks the adjustable frequency of a local oscillator in reference to the incoming signal. However, the classic PLL technique has reviewed its first sign of weakness, limited convergence performance and complex in structure implementation. To overcome these weaknesses and to improve its current performance, the final outcome of the project is to bring about a better developed idea in frequency estimation compared with the present PLL technique.A new approach known as adaptive observer method, which allowed direct estimation on frequency of an incoming signal, was recently proposed in the control literature. The underlying principle of this project is to investigate the possible use of adaptive observer method for detecting frequencies directly from any sinusoidal signals, and as well as to improve its ability in terms of better performance. Both classic PLL technique and adaptive observer method are compared through several aspects, for instance theoretical study and software simulation. However, due to adaptive observer method is significantly over-performed the PLL technique at the stage of simulation

    Analysis of parameter-independent PLLs with bang-bang phase-detectors

    Get PDF
    The parameter-independent design of Phase-Locked Loops (PLLs) is investigated for the case that a bang-bang phase-detector is used. Two self-biased CMOS PLL structures are proposed and compared, one l eading to a completely parameter- and frequency independent behavior. If the PLL frequency operation is constant and known in advance, however, both structures can be made independent of the transisto r Vt and b parameters
    corecore