3,010 research outputs found

    Improved transistor-controlled and commutated brushless DC motors for electric vehicle propulsion

    Get PDF
    The development, design, construction, and testing processes of two electronically (transistor) controlled and commutated permanent magnet brushless dc machine systems, for propulsion of electric vehicles are detailed. One machine system was designed and constructed using samarium cobalt for permanent magnets, which supply the rotor (field) excitation. Meanwhile, the other machine system was designed and constructed with strontium ferrite permanent magnets as the source of rotor (field) excitation. These machine systems were designed for continuous rated power output of 15 hp (11.2 kw), and a peak one minute rated power output of 35 hp (26.1 kw). Both power ratings are for a rated voltage of 115 volts dc, assuming a voltage drop in the source (battery) of about 5 volts. That is, an internal source voltage of 120 volts dc. Machine-power conditioner system computer-aided simulations were used extensively in the design process. These simulations relied heavily on the magnetic field analysis in these machines using the method of finite elements, as well as methods of modeling of the machine power conditioner system dynamic interaction. These simulation processes are detailed. Testing revealed that typical machine system efficiencies at 15 hp (11.2 kw) were about 88% and 84% for the samarium cobalt and strontium ferrite based machine systems, respectively. Both systems met the peak one minute rating of 35 hp

    On the reliability of electrical drives for safety-critical applications

    Get PDF
    The aim of this work is to present some issues related to fault tolerant electric drives,which are able to overcome different types of faults occurring in the sensors, in thepower converter and in the electrical machine, without compromising the overallfunctionality of the system. These features are of utmost importance in safety-criticalapplications. In this paper, the reliability of both commercial and innovative driveconfigurations, which use redundant hardware and suitable control algorithms, will beinvestigated for the most common types of fault: besides standard three phase motordrives, also multiphase topologies, open-end winding solutions, multi-machineconfigurations will be analyzed, applied to various electric motor technologies. Thecomplexity of hardware and control strategies will also be compared in this paper, sincethis has a tremendous impact on the investment costs

    Extended Kalman filter based sliding mode control of parallel-connected two five-phase PMSM drive system

    Get PDF
    This paper presents sliding mode control of sensor-less parallel-connected two five-phase permanent magnet synchronous machines (PMSMs) fed by a single five-leg inverter. For both machines, the rotor speeds and rotor positions as well as load torques are estimated by using Extended Kalman Filter (EKF) scheme. Fully decoupled control of both machines is possible via an appropriate phase transposition while connecting the stator windings parallel and employing proposed speed sensor-less method. In the resulting parallel-connected two-machine drive, the independent control of each machine in the group is achieved by controlling the stator currents and speed of each machine under vector control consideration. The effectiveness of the proposed Extended Kalman Filter in conjunction with the sliding mode control is confirmed through application of different load torques for wide speed range operation. Comparison between sliding mode control and PI control of the proposed two-motor drive is provided. The speed response shows a short rise time, an overshoot during reverse operation and settling times is 0.075 s when PI control is used. The speed response obtained by SMC is without overshoot and follows its reference and settling time is 0.028 s. Simulation results confirm that, in transient periods, sliding mode controller remarkably outperforms its counterpart PI controller

    Extended Kalman filter based sliding mode control of parallel-connected two five-phase PMSM drive system

    Get PDF
    This paper presents sliding mode control of sensor-less parallel-connected two five-phase permanent magnet synchronous machines (PMSMs) fed by a single five-leg inverter. For both machines, the rotor speeds and rotor positions as well as load torques are estimated by using Extended Kalman Filter (EKF) scheme. Fully decoupled control of both machines is possible via an appropriate phase transposition while connecting the stator windings parallel and employing proposed speed sensor-less method. In the resulting parallel-connected two-machine drive, the independent control of each machine in the group is achieved by controlling the stator currents and speed of each machine under vector control consideration. The effectiveness of the proposed Extended Kalman Filter in conjunction with the sliding mode control is confirmed through application of different load torques for wide speed range operation. Comparison between sliding mode control and PI control of the proposed two-motor drive is provided. The speed response shows a short rise time, an overshoot during reverse operation and settling times is 0.075 s when PI control is used. The speed response obtained by SMC is without overshoot and follows its reference and settling time is 0.028 s. Simulation results confirm that, in transient periods, sliding mode controller remarkably outperforms its counterpart PI controller. 2018 by the authors.Scopu

    Torque Ripple Sensor and Mitigation Mechanism

    Get PDF
    A torque ripple sensor and method for torque ripple sensing and/or mitigation. A piezoelectric sensor is positioned relative to a motor so that torque fluctuations due to torque ripple of the motor are transmitted to the sensor, resulting in strain of a piezoelectric element. A resulting signal can be amplified and conditioned for determining a magnitude of the torque ripple and/or fed into a feedback loop for applying current control or a counter-torque to the motor for torque ripple mitigation

    Rotor Position Identification for Brushless DC motor

    Get PDF
    Permanent magnet BLDC motors are characterized by a central magnetic core, called the rotor, and fixed electric coils (usually six) equally spaced in a ring around the core, called the stator. Motor movement is controlled by alternately energizing and de-energizing the stator coils to create a rotating magnetic field that propels the rotor. In order for this process to work correctly, BLDC motors required a technology called electronic commutation, in which the coil currents must be very carefully synchronized to rotor position to ensure that the rotating field is correctly aligned with the permanent magnetic field in the rotor. Usually rotor position is measured by external sensors such as Hall-effect sensors and optical encoders and these external sensors increase the system cost and reduces reliability. In order to control the price and make it more reliable this thesis propose to infer the rotor position from voltage and current measurement of motor. The most common approaches to sensorless control are based on the measurement of the electromotive force (back-EMF), that is induced by the rotor motion. As the back-EMF is nearly zero at very low speed and at stationary position, and can not be measured. Therefore a separate algorithm is required for start-up and control at low speed. The other method of sensorless control involves the inference of rotor position from the variation in inductance caused by rotor position. This thesis presents a prototype system for sensorless control of BLDC motors over the entire speed range of the motor, including stall (zero speed) conditions using the voltage and current signals from the motor

    Position estimation and performance prediction for permanent-magnet motor drives

    Get PDF
    PhD ThesisThis thesis presents a theoretical and experimental development of a novel position estimator, a simulation model, and an analytical solution for brushless PM motor drive. The operation of the drive, the position estimation model of the test motor, development of hardware, and basic operation of inverter are discussed. Starting with the well-known continuous-time model of brushless PM motor, a sampled-data model is developed that is suitable for th6, application of real-time position estimator. An analytical methodo f calculating the steady-stateb ehaviouro f the brushlessP M motor for 1200in verter operation is presentedT. he analysisa ssumesth at the machinea ir gap is free of saliency effects, and has sinusoidal back EMF. The analytical solution is derived for 60" electrical of the whole period. By experimental results, it is shown that the method of analysis is adequate to predict Ihe motor's performance for typical operating points including phase advance and phase delay operation. C) I A computer simulation model for prediction of the performance of brushless PM moto rs is presented. The model is formulated entirely in the natural abc frame of reference, which allows direct comparison of the simulation and corresponding experimental results. The equations and diagrams are put into a convenient form for the simulation and future developments and library modules. The simulation model and corresponding experimental data of the brushless PM motor drive is given. The thesis describes a modem solution to real-time rotor position estimation, which has been subject to intense research activity for the last 15 years. The implemented new algorithm for shaft position sensorless operation of PM motors is based on the flux linkage and line current estimation. The position estimation algorithm has also been verified by both off-line and on-line experiments (accomplished by a DSP, TMS320C30), and a wide range of steady-statea nd transient results have been 0gi0v en including starting from rest. The position estimation method effectively moves the position measurement point in the drive from the mechanical side to the motor's terminals. As well as eliminating the mechanical shaft position sensor, the investigated method can be used for high performance torque control of brushless PM motors. The thesis demonstrates that, in contrast to many other "sensorless" schemes, the new position estimation method is able to work effectively over the full operating range of the drive, and is applicable to a wide range of motor/converter types. Since the hardware is straightforward, only the new position estimation algorithm differentiates a system. Therefore, if a DSP control system is already implemented in the drive, the position estimator can be implemented at low cost.Istanbul Technical University and Higher Education Counci

    Multiphase induction motor drives - a technology status review

    Get PDF
    The area of multiphase variable-speed motor drives in general and multiphase induction motor drives in particular has experienced a substantial growth since the beginning of this century. Research has been conducted worldwide and numerous interesting developments have been reported in the literature. An attempt is made to provide a detailed overview of the current state-of-the-art in this area. The elaborated aspects include advantages of multiphase induction machines, modelling of multiphase induction machines, basic vector control and direct torque control schemes and PWM control of multiphase voltage source inverters. The authors also provide a detailed survey of the control strategies for five-phase and asymmetrical six-phase induction motor drives, as well as an overview of the approaches to the design of fault tolerant strategies for post-fault drive operation, and a discussion of multiphase multi-motor drives with single inverter supply. Experimental results, collected from various multiphase induction motor drive laboratory rigs, are also included to facilitate the understanding of the drive operatio

    Sensorless position estimation in fault-tolerant permanent magnet AC motor drives with redundancy.

    Get PDF
    Safety critical applications are heavily dependent on fault-tolerant motor drives being capable of continuing to operate satisfactorily under faults. This research utilizes a fault-tolerant PMAC motor drive with redundancy involving dual drives to provide parallel redundancy where each drive has electrically, magnetically, thermally and physically independent phases to improve its fault-tolerant capabilities. PMAC motor drives can offer high power and torque densities which are essential in high performance applications, for example, more-electric airplanes. In this thesis, two sensorless algorithms are proposed to estimate the rotor position in a fault-tolerant three-phase surface-mounted sinusoidal PMAC motor drive with redundancy under normal and faulted operating conditions. The key aims are to improve the reliability by eliminating the use of a position sensor which is one of major sources of failures, as well as by offering fault-tolerant position estimation. The algorithms utilize measurements of the winding currents and phase voltages, to compute flux linkage increments without integration, hence producing the predicted position values. Estimation errors due measurements are compensated for by a modified phase-locked loop technique which forces the predicted positions to track the flux linkage increments, finally generating the rotor position estimate. The fault-tolerant three-phase sensorless position estimation method utilizes the measured data from the three phase windings in each drive, consequently obtaining a total of two position estimates. However, the fault-tolerant two-phase sensorless position estimation method uses measurements from pairs of phases and produces three position estimates for each drive. Therefore, six position estimates are available in the dual drive system. In normal operation, all of these position estimates can be averaged to achieve a final rotor angle estimate in both schemes. Under faulted operating conditions, on the other hand, a final position estimate should be achieved by averaging position estimates obtained with measurements from healthy phases since unacceptable estimation errors can be created by making use of measured values from phases with failures. In order to validate the effectiveness of the proposed fault-tolerant sensorless position estimation schemes, the algorithms were tested using both simulated data and offline measured data from an experimental fault-tolerant PMAC motor drive system. In the healthy condition, both techniques presented good performance with acceptable accuracies under low and high steady-state speeds, starting from standstill and step load changes. In addition, they had robustness against parameter variations and measurement errors, as well as the ability to recover quickly from large incorrect initial position information. Under faulted operating conditions such as sensor failures, however, the two-phase sensorless method was more reliable than the threephase sensorless method since it could operate even with a faulty phase.Thesis (Ph.D.) -- University of Adelaide, School of Electrical and Electronic Engineering, 201
    corecore