603 research outputs found

    Dictionary Learning-Based Speech Enhancement

    Get PDF

    Denoising sound signals in a bioinspired non-negative spectro-temporal domain

    Get PDF
    The representation of sound signals at the cochlea and auditory cortical level has been studied as an alternative to classical analysis methods. In this work, we put forward a recently proposed feature extraction method called approximate auditory cortical representation, based on an approximation to the statistics of discharge patterns at the primary auditory cortex. The approach here proposed estimates a non-negative sparse coding with a combined dictionary of atoms. These atoms represent the spectro-temporal receptive fields of the auditory cortical neurons, and are calculated from the auditory spectrograms of clean signal and noise. The denoising is carried out on noisy signals by the reconstruction of the signal discarding the atoms corresponding to the noise. Experiments are presented using synthetic (chirps) and real data (speech), in the presence of additive noise. For the evaluation of the new method and its variants, we used two objective measures: the perceptual evaluation of speech quality and the segmental signal-to-noise ratio. Results show that the proposed method improves the quality of the signals, mainly under severe degradation.Fil: Martínez, César Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Goddard, J.. Universidad Autónoma Metropolitana; MéxicoFil: Di Persia, Leandro Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentin

    Low Rank and Sparsity Analysis Applied to Speech Enhancement via Online Estimated Dictionary

    Get PDF
    In this letter, we propose an online estimated local dictionary based single-channel speech enhancement algorithm, which focuses on low-rank and sparse matrix decomposition. In the proposed algorithm, a noisy speech spectrogram can be decomposed into low-rank background noise components and an activation of the online speech dictionary, on which both low-rank and sparsity constraints are imposed. This decomposition takes the advantage of local estimated exemplar’s high expressiveness on speech components and also accommodates nonstationary background noise. The local dictionary can be obtained through estimating the speech presence probability (SPP) by applying expectation–maximal algorithm, in which a generalized Gamma prior for speech magnitude spectrum is used. The proposed algorithm is evaluated using signal-to-distortion ratio, and perceptual evaluation of speech quality. The results show that the proposed algorithm achieves significant improvements at various SNRs when compared to four other speech enhancement algorithms, including improved Karhunen–Loeve transform approach, SPP-based MMSE, nonnegative matrix factorization-based robust principal component analysis (RPCA), and RPCA

    Adaptive Hidden Markov Noise Modelling for Speech Enhancement

    Get PDF
    A robust and reliable noise estimation algorithm is required in many speech enhancement systems. The aim of this thesis is to propose and evaluate a robust noise estimation algorithm for highly non-stationary noisy environments. In this work, we model the non-stationary noise using a set of discrete states with each state representing a distinct noise power spectrum. In this approach, the state sequence over time is conveniently represented by a Hidden Markov Model (HMM). In this thesis, we first present an online HMM re-estimation framework that models time-varying noise using a Hidden Markov Model and tracks changes in noise characteristics by a sequential model update procedure that tracks the noise characteristics during the absence of speech. In addition the algorithm will when necessary create new model states to represent novel noise spectra and will merge existing states that have similar characteristics. We then extend our work in robust noise estimation during speech activity by incorporating a speech model into our existing noise model. The noise characteristics within each state are updated based on a speech presence probability which is derived from a modified Minima controlled recursive averaging method. We have demonstrated the effectiveness of our noise HMM in tracking both stationary and highly non-stationary noise, and shown that it gives improved performance over other conventional noise estimation methods when it is incorporated into a standard speech enhancement algorithm

    A new weighted NMF algorithm for missing data interpolation and its application to speech enhancement

    Get PDF
    In this paper we present a novel weighted NMF (WNMF) algorithm for interpolating missing data. The proposed approach has a computational cost equivalent to that of standard NMF and, additionally, has the flexibility to control the degree of interpolation in the missing data regions. Existing WNMF methods do not offer this capability and, thereby, tend to overestimate the values in the masked regions. By constraining the estimates of the missing-data regions, the proposed approach allows for a better trade-off in the interpolation. We further demonstrate the applicability of WNMF and missing data estimation to the problem of speech enhancement. In this preliminary work, we consider the improvement obtainable by applying the proposed method to ideal binary mask-based gain functions. The instrumental quality metrics (PESQ and SNR) clearly indicate the added benefit of the missing data interpolation, compared to the output of the ideal binary mask. This preliminary work opens up novel possibilities not only in the field of speech enhancement but also, more generally, in the field of missing data interpolation using NMF

    Speech enhancement by perceptual adaptive wavelet de-noising

    Get PDF
    This thesis work summarizes and compares the existing wavelet de-noising methods. Most popular methods of wavelet transform, adaptive thresholding, and musical noise suppression have been analyzed theoretically and evaluated through Matlab simulation. Based on the above work, a new speech enhancement system using adaptive wavelet de-noising is proposed. Each step of the standard wavelet thresholding is improved by optimized adaptive algorithms. The Quantile based adaptive noise estimate and the posteriori SNR based threshold adjuster are compensatory to each other. The combination of them integrates the advantages of these two approaches and balances the effects of noise removal and speech preservation. In order to improve the final perceptual quality, an innovative musical noise analysis and smoothing algorithm and a Teager Energy Operator based silent segment smoothing module are also introduced into the system. The experimental results have demonstrated the capability of the proposed system in both stationary and non-stationary noise environments
    • …
    corecore