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ABSTRACT

This thesis work summarizes and compares the existing wavelet de-noising methods.

Most popular methods o f wavelet transform, adaptive thresholding, and musical noise 

suppression have been analyzed theoretically and evaluated through Matlab simulation.

Based on the above work, a new speech enhancement system using adaptive wavelet de- 

noising is proposed. Each step o f the standard wavelet thresholding is improved by 

optimized adaptive algorithms. The Quantile based adaptive noise estimate and the 

posteriori SNR based threshold adjuster are compensatory to each other. The combination 

o f them integrates the advantages o f these two approaches and balances the effects o f 

noise removal and speech preservation. In order to improve the final perceptual quality, 

an innovative musical noise analysis and smoothing algorithm and a Teager Energy 

Operator based silent segment smoothing module are also introduced into the system. 

The experimental results have demonstrated the capability o f the proposed system in both 

stationary and non-stationary noise environments.
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CHAPTER I

1. INTRODUCTION

1.1 Speech Enhancement

Speech enhancement is the term used to describe algorithms or devices whose function is 

to improve the perceptual quality or decrease the hearing fatigue o f a noisy speech. The 

application o f speech enhancement includes multimedia and wireless communications, 

air-ground communication systems in which the pilot’s speech is corrupted by cockpit 

noise, teleconference systems and paging systems, etc. And it can also work as a front- 

end processing module to increase the robustness o f speech processing applications.

In literature, a number o f speech enhancement techniques have been proposed in the 

recent three decades [Ephraim2003] [Gustafsson2001] [Zhang2003]. According to the 

number o f channels used in the noise suppression, these techniques can be classified into 

the single-channel systems or the multi-channel systems. Multi-channel systems use two 

or multiple channels in the speech noise suppression process, o f which the dual-channel 

systems are most commonly seen. Although these systems are powerful, especially in 

suppressing noises corrupted by nonlinear models, they are complicated and expensive. 

Single-channel systems only use one channel in the speech noise reduction process. Its 

principle is illustrated in Figurel-1. Where, s(n )  is the digital representation o f clean 

speech signal, w(n) denotes the noise signal, and y ( n ) represents the noise corrupted 

speech signal. The major task for a single-channel system is to design an effective and 

efficient noise suppressor module, which could precisely recover the original clean 

speech from a noisy input without excessive spectral distortions. Although a single

channel system’s performance is highly limited by the noise conditions, it is used widely 

because it is easier and less costly to build. In this thesis, only a single-channel system is 

considered.

1
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w(ri) Noise Suppressor

y(r i)  =  s{ri) + w {n )

Noise
Estimate

Spectral
Analysis

Noise

Suppression

Spectral

Synthesis

Figure 1-1 Single-channel speech enhancement system

As shown in Figure 1-1, the noise suppressor usually consists o f four parts, spectral 

analysis, noise estimate, noise suppression, and spectral synthesis. The most popular 

spectral analysis method is Fourier transform. It provides the frequency response of 

signal that helps in differentiating signal and noise. However, the time-domain 

information is lost. To improve the performance o f time-domain analysis, the wavelet 

transform has been studied widely in the recent twenty years. In this section, speech 

enhancements based on both Fourier transform and wavelet transform are discussed. 

Before that, the human auditory system is introduced.

1.1.1 Human Auditory System

The hearing system converts sound waves into mechanical energy and finally into 

electrical impulses perceived by the brain. It consists o f the ear, auditory nerve fibers and 

a part o f the brain. The ear contains three parts, i.e., the outer ear, the middle ear and the 

inner ear. The structure o f it is shown in Figure 1-2 [Webl].

The outer part o f the ear consists o f the pinna (auricle), the ear canal (external auditory 

meatus) and the eardrum (tympanic membrane). The sound pressure in the air is collected 

by the pinna, amplified and conveyed by the ear canal, and then makes the ear drum 

vibrate. The sound energy is converted into the mechanical energy in this way.

2
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Figure 1-2 Simplified structure of the ear

[Webl]

The middle ear is an air-filled space containing the three smallest bones in the human 

body, including the hammer (malleus), anvil (incus) and stirrup (stapes). These bones 

form a system o f levers which vibrate along with the eardrum. This vibration amplifies 

the sound and carries it to the inner ear via the oval window.

The inner ear has a great role in both hearing and the body balance. The hearing organ is 

a bony cone-shaped spiral called cochlea which is filled with fluids. The Cochlea is the 

part o f the inner ear which converts incoming vibrations from the middle ear into the 

electrical impulses. The frequency-dependent response o f the cochlea is an important 

feature for both speech enhancement and coding research. Especially, the frequency 

selectivity o f masking effects, generally described in terms o f Critical Bands (CB), can be 

used to lighten the over suppression, and increase the coding efficiency.

The frequency function o f the cochlea can be best modeled as a set o f continuous 

differential equations. However, for implementation purposes, it is normally modeled in

3
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discrete sections as a bank o f bandpass filters [Gui2005]. Although the modeling o f the 

cochlea function has been an active research area for many years, there are still 

ambiguities in its mechanism such as the frequency selectivity o f the auditory system and 

the nonlinear behavior o f the cochlea.

1.1.2 Speech Enhancement Based on Fourier Transform

De-noising is a process o f deriving an estimator o f the original signal from the observed 

corrupted signal. However, it is always difficult to separate the speech signal and the 

noise signal in time domain. The difference between the original signal 5 and noise w  

may be more obvious in other domains. Noise is often considered to have more high 

frequency energy than the normal signal. Thus, in frequency domain, removing the high 

frequency contents o f the corrupted signal y  may reduce the influence of the noise w,  as 

illustrated in Figure 1-3.

Time Domain Frequency Domain

The Fourier transform is a traditional tool to convert the time domain signal into the 

frequency domain. Many speech enhancement methods have been developed based on 

the Fourier transform, such as Wiener Filtering, Iterative Wiener Filtering, Improved 

Iterative Wiener Filtering, Constrained Iterative Wiener Filtering, and the most popular 

Spectral Subtraction. The Fourier transform helps in differentiating signal and noise by 

giving the frequency response o f the signal. However, the methods based on it tend to 

distort the signal since the high frequency component o f the signal will also be removed.

Figure 1-3 Time domain to frequency domain analysis

4
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Even if  the high frequency components o f some signal should not be removed, the 

Fourier approach will still remove it since de-noising cannot be localized. Conversely, for 

those parts whose high frequency components should be removed, the Fourier approach 

cannot particularly take care o f it. In the mean time, time information is lost after the 

Fourier transformation, which can be observed in Figure 1-4 (b).

Time 

(a) Time Domain

✓J

5
f

Urn

Time Resolution

(c) Time-frequency resolution o f STFT

g
I

So,

Amolitnde

(b) Frequency Domain

©
a i
**
d
j

5-j

Time Resolution

(d) Time-frequency resolution of WT

Figure 1-4 Different domain description

One main assumption in using DFT for calculation o f the spectrum of a discrete signal is

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



that the observed signal is stationary during the observation time. In other words, the 

spectrum o f the signal is assumed to remain the same during the observation time. For 

most practical signals, this assumption is not valid. For example, in speech signals, the 

spectrum of the signal may vary significantly from one point to another. This depends on 

the contents o f the speech and the sampling period.

The short-time Fourier transform (STFT), is a Fourier-related transform used to 

determine the sinusoidal frequency and phase content o f local sections o f a signal as it 

changes over time. The Fourier transform is modified such that a two-dimensional time- 

frequency representation o f the signal is obtained. This method depends on a window 

function as shown in Figure 1-4 (c).

The main purpose o f the window in the time-dependent Fourier transform is to limit the 

extent of the transformed sequence so that the spectral characteristics are reasonably 

stationary over the duration o f the window function. The more rapidly the signal 

characteristics change, the shorter the window should be. The resolution in frequency 

depends on the duration o f the window function.

In discrete STFT (DSTFT), the fine resolution in the frequency domain is corresponding 

to the relative wide window in time domain which may not be proper since the signal is 

assumed short-time stationary. Based on this trade off, the window function is 

determined. In general, for DSTFT, after selecting the window function, the frequency 

and time resolutions are fixed for all frequencies and all times respectively. This 

approach does not allow any variation in resolutions in terms o f time or frequency.

1.1.3 Speech Enhancement based on Wavelet transform

Wavelet transform can be defined for different class o f functions. The intention in this 

transformation is to address some o f the shortcomings o f the STFT. Instead o f fixing the

6
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time and the frequency resolutions, one can let both resolutions vary in time-frequency 

plane in order to obtain a multi-resolution analysis.

In terms o f the filter bank terminology, the analysis filter bank consists o f band-pass 

filters with constant relative bandwidth (so-called .constant-Q. analysis). The way that the 

time-frequency plane is resolved in this approach is as shown in Figure 1-4(d). In this 

case, the frequency responses o f the analysis filters in the filter bank are regularly spaced 

in a logarithmic scale.

With this approach, the analysis is localized, and the time information is also reserved. 

The time resolution becomes quite good at high frequencies, while the frequency 

resolution is quite good at low frequencies. In 1995, Donoho and Johnstone proposed a 

new algorithm using wavelet thresholding for de-noising signals corrupted by Gaussian 

white noise [Donoho 1995]. After that wavelet de-noising has become an extremely 

popular research topic and a new option for the development o f speech enhancement 

methods as well.

The general procedure o f wavelet de-noising can be illustrated as below, in Figure 1-5

Non-liner Shrinkage

D e-noising

(Threshold)

Wavelet Transform 

(Decompose)

Linear Forward

W j \ c l c i  h a i l s t o r m  

( R e c o n s l i u U )

Linear Inverse

Figure 1-5 Principle of wavelet de-noising

1.2 Motivation

As discussed above, the wavelet transform has provided new opportunities to improve the 

perceptual effect o f speech enhancement. In deed, a lot o f research has been performed 

on high quality speech enhancement by wavelet de-noising over the past decade. Beyond 

the standard soft thresholding proposed by Donoho and Johnstone, new methods have

7
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been developed to achieve outputs friendlier to human subjective perception. In 

literature, methods based on perceptual models which map the filter banks in the human 

inner ear, and other new adaptive technologies, are also presented. Different concepts and 

algorithms have been tried separately. However, not much work has been undertaken to 

analyze and compare them. Do they really improve the de-noising result? Which method 

is the most effective and efficient one? Which technology is worth further research?

What other opportunities should be explored in the future work? With a strong interest in 

wavelet speech enhancement application and ambition to answer these questions, the 

perceptual adaptive wavelet de-noising has been selected as the topic o f this thesis.

1.3 Objective

The objectives o f this thesis work include summarizing and comparing the existing 

wavelet de-noising methods, so that an optimized perceptual adaptive wavelet de-noising 

algorithm which is effective in both stationary and non-stationary noise environments can 

be proposed.

8
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CHAPTER II

2. SURVEY OF WAVELET DE-NOISING

Nowadays many computer software packages contain fast and efficient algorithms to 

perform wavelet transforms. Due to such easy accessibility, wavelets have quickly gained 

popularity among scientists and engineers, both in theoretical research and in 

applications. Wavelets have been widely applied in such research areas as image 

processing, computer vision, network management, data mining, and o f course, speech 

processing. In 1995, Donoho and Johnstone proposed the famous method de-noising by 

wavelet soft thresholding [Donoho 1995a] [Donoho 1995b] [Johnstone1997], This method 

has been used as a standard wavelet de-noising procedure for many years. Based on this 

fundamental procedure, various wavelet de-noising algorithms have been developed. The 

SureShrink is a relative mature one, followed by different effort trying to achieve a 

perceptual adaptive wavelet speech enhancement [Donoho 1995c]. A brief survey of the 

wavelet de-noising technology is presented in this chapter to help understand the 

remainder o f this thesis.

2.1 Wavelet Theory

2.1.1 Introduction to Wavelet

Wavelet theory is the mathematics associated with building a model for a signal, system, 

or process with a set o f little waves or “wavelets”. They must be oscillatory (waves) and 

have amplitudes, which quickly decay to zero in both the positive and negative directions 

(little). A wavelet is a waveform o f effectively limited duration that has an average value 

o f zero. Unlike sine waves (the basis o f Fourier analysis), which are smooth and 

predictable, wavelets tend to be irregular and asymmetric as shown in Figure 2-1 [Web 2]. 

The advantage o f wavelet is that signals with sharp changes are better analyzed with an 

irregular wavelet than with a smooth sinusoid. Also, local features can be described better 

with wavelets that have local extent.

9
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Sine Wave Wavelet (db10)

Figure 2-1 Shape of sinusoidal and Daubechies wavelet

[Web 2]

2.1.2 Continuous Wavelet Transform

The results o f the Fourier transform are the Fourier coefficients F(a>) , which when 

multiplied by a sinusoid o f frequency m yield the constituent sinusoidal components of 

the original signal. Similarly, the continuous wavelet transform (CWT) is defined as the 

sum over all time o f the signal multiplied by scaled, shifted versions o f the wavelet 

function^ . The results o f the CWT are many wavelet coefficients Clf/, which are a

function o f scale and position, as illustrated in Figure2-2[Web 3].

Multiplying each coefficient by the appropriately scaled and shifted wavelet yields the 

constituent wavelets o f the original signal.

+oo
Cw  = J f(t)//( scale, position )dt (2-1)

—oo

M faotof

Transform

Sigml Gmstitmnt wavelets of different scales and positions

Figure 2-2 Continuous wavelet transform

[Web 3]
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Scaling

Scaling a wavelet simply means stretching or compressing it. The scale factor a is related 

(inversely) to the frequency.

Low scale a => Compressed wavelet => Rapidly changing details => High frequency® . 

High scale a => Stretched wavelet => Slowly changing, features => Low frequency®.

Shifting

Shifting a wavelet simply means delaying (or hastening) its onset, as shown in Figure 2- 

3. Mathematically, delaying a function y/(t) by k is represented by y/ ( t -k ) .

Wavelet function

0

Shifted wavelet function
¥ (0  yff-Jr)

Figure 2-3 Wavelet shifting

[Web 3]

The continuous wavelet transform is the sum over all time o f the signal multiplied by 

scaled, shifted versions o f the wavelet. This process produces wavelet coefficients that 

are a function o f scale and position.

2.1.3 Discrete Wavelet Transform

It turns out that, if  we choose scales and positions based on powers o f two, called dyadic 

scales and positions, then, our analysis will be much more efficient and be as accurate as 

the CWT. This kind o f analysis is called the discrete wavelet transform (DWT). Taking 

into account the non-stationary characteristic o f real signals, the DWT provides high time 

resolution and low frequency resolution for high frequencies.

11
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The DWT o f a signal x[ri\ is calculated by passing it through a series o f filters. First the 

samples are passed through a low pass filter with impulse response g[n\. The signal is 

also decomposed simultaneously using a high-pass filter h[n\.The outputs giving the 

detailed coefficients (from the high-pass filter) and approximation coefficients (from the 

low-pass). Since half the frequencies o f the signal have now been removed, half the 

samples can be discarding according to Nyquist’s rule. The filter outputs are then down- 

sampled (or sub-sampled) by 2:

k--<X>

00

TAlg/,[«]= ^ x [ k ] - h [ 2 n - k ]

(2-2)

(2-3)
it =-00

This decomposition is repeated to further increase the frequency resolution and the 

approximation coefficients decomposed with high and low pass filters and then down- 

sampled. This is represented as a binary tree with nodes representing a sub-space with 

different time-frequency localizations. The tree is known as a filter bank. Figure 2-4 

[Web 4] represents a three level filter bank.

x[nj“

— p g[tlj

m

iM

H  ........"-I / — x  f ...............  ®
gin] —*(4,2)—— ► hfnj >(4«2)— t*

;+ 2 .

Level 3 
coefiRciems

m Level!
coefficients

Level 1 
coefficients

Figure 2-4 A three level filter bank

[Web 4]

At each level in the above diagram the signal is decomposed into low and high 

frequencies. Due to the decomposition process the input signal must be a multiple o f 2" 

where n is the number o f levels.

12

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



2.1.3 Wavelet Packet Transform

The wavelet packet method, a wavelet transform where the signal is passed though more 

filters than the DWT, is a generalization o f decomposition process that offers a richer 

range o f capabilities for signal analysis. In the DWT, each level is calculated by passing 

the previous approximation coefficients though a high and low pass filters. However in 

the Wavelet packet decomposition (WPD), both the detail and approximation coefficients 

are decomposed, as represented in Figure 2-5 [Web 5]. The wavelet packet analysis 

offers much better frequency resolution than the simple wavelet analysis. In this way, 

subbands with smaller bandwidth across the whole spectrum can be achieved after the 

decomposition. The rough frequency analysis at the high frequency part becomes much 

more delicate.

m

m

Figure 2-5 Multilevel wavelet packet decomposition
[Web5]

2.2 Standard De-noising Procedure Using Universal Threshold

As discussed above, some o f the resulting wavelet coefficients correspond to details in 

the data set (high frequency sub-bands). According to Donoho and Johnstone’s research, 

if  the details are small, they might be omitted without substantially affecting the main 

features o f the data set. The idea o f thresholding is to set all high frequency sub-band

13
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coefficients that are less than a particular threshold to zero. These coefficients are used in 

an inverse wavelet transformation to reconstruct the data set.

The general de-noising procedure involves three steps. The basic version o f the procedure 

follows the steps described below.

1. Decompose - Choose a wavelet, choose a level N i . Compute the wavelet 

decomposition o f the signal 5 at level N i .

2. Threshold detail coefficients - For each level from 1 to N i , select a threshold and 

apply soft or hard thresholding to the detail coefficients.

3. Reconstruct - Compute wavelet reconstruction using the original approximation 

coefficients o f level N i  and the modified detail coefficients o f levels from 1 to N i .

2.2.1 Soft Thresholding

Basically, wavelet de-noising methods involve either hard or soft thresholding. In the 

hard thresholding method, the coefficient is set to a specific value when its magnitude 

exceeds the threshold. On the other hand, soft thresholding shrinks or scales the 

coefficient that exceeds the threshold value. Hard thresholding is the simplest method. 

Soft thresholding has nice mathematical properties and the corresponding theoretical 

results are available.

Let Y denote the input, T denote the threshold.

The Hard Thresholding function is presented as

(2-4)

The Soft Thresholding function is presented as

14
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TWff 7", -  J s8n<r ) ( ly l -  £ T a s iTHRs (Y,T)  - 1 0 j7 | <7 . < « )

Their difference can be seen more clearly in Figure 2-6. Apparently, the hard procedure 

creates discontinuities at x = ± T , while the soft procedure does not.

Original Hard Thresholed Soft Thresholed

o 10

Figure 2-6 Hard thresholding and soft thresholding
[Web 7]

2.2.2 Noise Estimation

The adequate value for threshold can be determined in many ways. A universal threshold 

for discrete wavelet transform (DWT) has been introduced by Donoho [Donoho 1995a] 

as:

T = (2 . 6)

and for wavelet packet transform (WPT) case, the threshold value is determined as:

T  =  & p l o g ( N l o g 2( N ) )  (2_7)

where N  is the length o f noisy signal and & is the standard deviation o f the noise, a  is 

estimated by:

<7 = M AD /0.6745 = Median(\c\)/0.6745

where c is the coefficient sequence from wavelet transform.

15
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Donoho provide strong theoretical support to this classic wavelet de-noising algorithm.

He proved that the theoretical advantages are really due to the wavelet basis 

[Donohol995a] [Donoho 1995b]. That is the foundation o f various successful applications 

of wavelet de-noising.

This algorithm is simple and effective for removing Gaussian noise. However, the 

universal threshold is not effective for de-noising o f colored and non-stationary noises in 

noisy speech signals. The universal method assumes that noise spectrum is white whereas 

normally it is colored in real life. So, the universal wavelet shrinkage does not result in 

good speech quality and cannot remove colored noises effectively. Another shortcoming 

o f it is that the shrinkage of the unvoiced segments o f speech which contain many noise

like speech components, leading to degraded speech quality. Also, the use o f a universal 

threshold for all wavelet packet bands often results in poor correlation between the mean 

squared error criterion and the subjective quality in the presence o f correlated noise and 

time-frequency discontinuities.

2.3 SureShrink

Donoho developed another wavelet shrinkage scheme (SureShrink) based on Stein’s 

Unbiased Estimate o f Risk (Sure) [Donoho 1995c]. SureShrink is a procedure which 

suppresses noise by thresholding the empirical wavelet coefficients. The thresholding is 

adaptive: a threshold level is assigned to each dyadic resolution level by the principle of 

minimizing the Sure for threshold estimates.

SureShrink is smoothness-adaptive: if  the unknown function contains jumps, the 

reconstruction (essentially) does also; if  the unknown function has a smooth piece, the 

reconstruction is (essentially) as smooth as the mother wavelet will allow. The procedure 

is in a sense optimally smoothness-adaptive: it is near-minimax simultaneously over a 

whole interval o f the Besov scale; the size o f this interval depends on the choi ce of 

mother wavelet. Examples o f SureShrink are given: the advantages o f the method are
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particularly evident when the underlying function has jump discontinuities on a smooth 

background.

7In 1981, Stein [Steinl981] introduced a method for estimating the loss w - w in an 

unbiased fashion, where w  is an estimator o f  w . If  w  can be written as y  + g ( y ) , where 

g = (gt )?_j is weakly differentiable, then

E\\w-w\\2 = E \ \ g ( y ) f  + a 2 n + 2cr2V - g ( y ) \  (2-9)

5 7
where V • g ( y )  = £ — g i , a  is noise variance.

i &

Applying Sure to wavelet shrinkage, we have

E\\w -  w p  = y  + <y2 n + 2 a 2 V ■ g ( y )

= l ( \ y i \  a  A )2 + a 2 n -  2 a 2 -#{i: \y i \< a } |

= E{SURE(A,y)}  (2-10)

The best X is the one that can minimize SURE(A,y)  and£||w-wj|2 .

^best = a r gmin  SURE(X,y) (2-11)

Therefore the SureShrink Algorithm can be summarized as

1. Wavelet Decomposition

y ij = w { x i \  i = = 0,1..., J  (2-12)

2. Sure Shrinkage: For each level evaluate Xbest based on SURE. Then apply 

wavelet shrinkage

n , j  = *1S W j  ’ Xbest - j ) (2-13)

3. Inverse transform

x = W T {wj  (2-14)

17
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From the above discussion, it can be seen that SureShrink is adaptive to signal because 

Xjjest is directly evaluated from the observed data. Ai,est can be level dependent which 

means that different scale o f wavelet coefficients may have different Aj,est. Compared 

with the standard wavelet shrinkage, the SURE threshold selection rules are more 

conservative, that is proved later by the simulation results in this thesis.

2.4 Latest Development

As discussed above, there are some problems with the universal wavelet thresholding 

method when it is applied to the noisy speech corrupted by real-life noise. Although 

SureShrink has the contribution to make the shrinkage adaptive to signal, it tends to be 

too conservative. A  lot o f background noise is left while the distortion o f the speech part 

is reduced. Therefore, in recent ten years, authors have been working on the development 

o f adaptive de-noising schemes with better trade-off between noise suppression and 

speech distortion control. A more precise definition o f the problem and analysis o f the 

possibility o f relevant improvement will be provided in this section.

2.4.1 A More Precise Definition

As assumed in chapter I, the observed data consists o f the clean signal s ( t )  and additive 

noise w (t)

y ( t )  = s ( t )  + w ( t)  (2-15)

Then, for the standard universal thresholding there are three steps as shown below 

[Taswell2000]

Y = W ( y )    — »  Z  = D ( Y ,X ) ................> S  = W~]( Z )
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where W (■) and W ~}(■) denote the forward and inverse wavelet transform operators; 

D(% X) denote the de-noising operator with soft threshold X . And the nonlinear 

thresholding can be illustrated as

D (U ,A )  = sgn(U ) max( 0, ||f7| -  A\) (2-16)

The operator D (U ,A )  nulls all values o f U  for which | U  | = A and shrinks toward the 

origin by an amount A all values o f U  for which | U \ > A . It is the latter aspect that has 

led to D (U ,A )  being called the shrinkage operator in addition to the soft thresholding 

operator.

In the case o f adaptive thresholding, the threshold A does not only depend on sample size 

« but also on U . Then de-nosing procedure is extended to four steps as shown below

Y = W ( y ) ............► A = d ( Y ) ............ *  Z  = D (Y ,A ) ...........► S  = W ~! ( Z )

where d(Y) is the adaptive thresholding operator.

Apparently, we can generate many different kinds o f wavelet shrinkage de-noising 

procedures by combining different choices for 1¥ (• ) ,  d ( ■) and D ( ) .

2.4.2 Research Direction

The definition above has made the further work clearer. In other words, to improve the 

wavelet de-noising, there are three directions to go. The first one is to build a more 

effective decomposition structure to model the human auditory filter banks. The 

decomposition should have a proper subband width to make sure the time-frequency 

analysis delicate enough. Besides, the ideal state is that it could accurately map the 

critical bands, so that the auditory masking rules could be used to avoid the over 

suppression and consequently improve the perceptual performance o f the speech 

enhancement.
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The accuracy o f noise estimate has always been crucial for the right thresholding. 

Therefore, one task is to develop a more accurate noise estimate algorithm under real-life 

noise situation. The adaptive noise estimation algorithm is a noise estimation technique 

that is updated adaptively and continuously from the nearest previous speech frames 

without explicit speech pause detection. An effective adaptive noise estimation algorithm 

should have the ability to track the change o f the SNR rapidly.

Furthermore, the thresholding algorithm is another handle for us to adjust the noise 

suppression. It could also be adaptive in order to yield a smoother output. In addition, 

musical noise is a typical problem with blind source separation using a time-ffequency 

mask. Musical noise has been widely considered in the field o f single channel speech 

enhancement with spectral subtraction. Thus, it is also necessary to add a musical noise 

control module after the general thresholding.

In literature, the authors have actually followed these three directions o f investigation to 

pursue the further improvement in this area. These new methods will be discussed one by 

one in the following chapter III and IV.
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CHAPTER III

3. PERCEPTUAL WAVELET THRESHOLDING

3.1 Critical Bands

Auditory perception is based on a critical band analysis in the inner ear. A critical band 

is the bandwidth around a center frequency beyond which subjective responses of the 

hearing system abruptly change. The notion was first introduced by Fletcher (1940) and 

has played an important role when constructing the perceptual wavelets [Viragl999] 

[Camera 1999]. Later in this chapter, the relationship between critical bands and the 

simultaneous masking property o f the human auditory system will be discussed.

Generally, the human auditory frequency range is divided into 25 critical bands which 

spread from 20Hz to 20 kHz [Viragl999] [Camerol999], as shown in Table 3-1. These 

critical bands can be thought as a bunch of filters with non-uniform temporal and spectral 

response, working as a central analysis mechanism in the inner ear, illustrated in Figure 

3-1. The critical bandwidth (CBW) o f these filters is o f approximately 100 Hz below 500 

Hz. Above 500Hz, the bandwidth corresponds to about 20% o f the center frequency 

value.

According to Fletcher’s experiment, in order to measure the bandwidth o f a critical band 

centered at any frequency, a tonal signal inaudible is made by a narrowband noise 

centered at that frequency. If  the bandwidth o f the noise increases, the level of the 

inaudible sinusoid increases. When the bandwidth of the noise exceeds a certain value,

i.e., the critical bandwidth, the level o f the sinusoid input remains almost constant. Figure 

3-2 [Moorel996] shows how the threshold changes as a function o f the noise bandwidth. 

When the noise bandwidth becomes wider than the critical bandwidth, here which is 

around 300Hz for 2 kHz signal, the threshold level tends to be flat.
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Table 3-1 Critical bands in the range of 0~22 kHz

[Viragl999] [Camerol999]

Critical Band 
Number(Bark)

Frequency(Hz)
Lower
Cutoff
Frequency

upper
Cutoff
Frequency

Critical
Band
Width

Center
Frequency-

0 0 100 100 50
1 100 200 100 150
.2 200 300 100 250
3 300 400 100 350
4 400 510 110 450
5 510 630 120 570
6 630 770 140 700
7 770 920 150 840
8 920 1080 160 1000
9 1080 1270 190 1170
10 1270 1480 210 1370
11 1480 1720 240 1600
12 1720 2000 280 1850
13 2000 2320 320 2150
14 2320 2700 380 2500
15 2700 3150 450 2900
16 3150 3700 550 3400
17 3700 4400 700 4000
18 4400 5300 900 4800
19 5300 64O0; 1100 5800
20 ■6400 7700 1300 7000
21 7700 9500 1800 8600
22 9500 12000 2500 10750
23 12000 15500 3500 13750
24 15500 22050 6550 18775
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Figure 3-1 Example of non-uniform Alter banks in the inner ear

[Moore1996]
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Figure 3-2 Threshold of a just audible 2 kHz test tone

[Moore1996]

The critical band scale, or Bark scale, is indispensable for the study o f auditory masking 

since it represents the natural scale o f the inner ear, and all models o f masking require 

some kind o f critical band analysis. The distance from one critical band center to the 

center o f the next band is 1 Bark. Thus, the human auditory frequency range covers 

approximately 25 Barks. The center frequency location o f these subbands is known as the
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critical band rate and approximately follows the expression [Zwickerl999]:

z = 13arctan(7.6 x 10“4/ )  + 3.5arctan(1.33 x 1(T4/ ) 2 (3-1)

where z denotes the critical ban number (in Bark), /  is the frequency (in Hz) which can

be calculated by the following formula

/  = 650 x sinh(z / 7) (3-2)

The corresponding bandwidth is also a function o f the frequency, shown as 

[Zwickerl999]

B W ( f )  = 25 + 75 x [l +1.4 x ( /  /1000)2 f 69 (3-3)

3.2 Absolute Threshold of Hearing

Not all the sounds can be heard by human ear. Whether the human ear responses to a 

sound depends on its frequency arrange and intensity. Normally, the frequency response 

scope of a young people is 20 Hz ~ 20 kHz. When the sound pressure is above 0 dB, it 

can be heard by human auditory system. A sound with magnitude over 120 dB can make 

our ear uncomfortable.

The absolute threshold o f hearing (AHT), or threshold in quiet, is the minimum average 

sound pressure level (SPL) for the human ear to detect any stimulus. This threshold is 

frequency dependent and can be closely modeled by a non-linear function o f frequency, 

as shown in Figure 3-3[Zwickerl999][Web 6]. The following formula expresses the 

threshold in quiet at frequency /  (in Hz) [Terhardtl982]

Tq = 3 .6 4 (//1 0 0 0 )“°8 -6 .5 e x p (-0 .6 ( //1 0 0 0 -3 .3 )2)+  1(T3(/7 1 0 0 0 )4 dB (3-4)
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!

Figure 3-3 Absolute threshold of hearing

[Zwicker 1999] [Web 6]

3.3 Auditory Masking

Auditory masking is a phenomenon connected to the hearing perception o f neighbouring 

signal components. It indicates that a weaker audio signal becomes inaudible (masked) 

by a louder signal occurring simultaneously or close in time. This explains why people 

need to raise their voice to make them understood in a very noisy environment. In speech 

enhancement, the masker is the original input signal, and the maskee is background noise. 

The masking phenomena can be exploited to reduce the mis-suppression in a situation 

with high signal-to-noise radio.

Two main categories o f masking, depending on the time and frequency location o f the 

masker and maskee, may be considered. When both signals occur at the same time, 

masking is considered simultaneous and is modeled in the frequency domain. On the 

other hand, if  B either precedes or succeeds A, masking is termed temporal or non- 

simultaneous [Camerol999].

3.3.1 Simultaneous Masking

Simultaneous masking indicates the masking phenomenon among the different frequency
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components o f sounds occurring at the same time.

As shown in literature, the nature o f the masker being noise-like or tonal has an impact 

on the masking curve. For instance, the maximum of the masking curve due to a single 

tone is sharper (peaky) [Zwickerl999]. Additionally the distance between the masker 

level and the masking threshold is greater for tonal signals.

T2

0 ''
0

1
&

5 20a 10
Critical band rate? [Bark}

Figure 3-4 Simultaneous masking 

Top: Tone masker. Bottom: Noise-like masker (one Bark wide)

[Camerol999, p6]

This masking threshold has been modeled by a spreading function centered on the 

masker, which illustrating the shape o f the energy distribution (excitation pattern) along 

the basilar membrane. Based on the psychoacoustic findings, the spreading function is a 

function o f the frequency and the level o f the masker. In almost all masking models a 

triangular shape (on a critical band scale) is assumed for the spreading function, as shown 

in Figure 3-4[Camerol999]. The patterns lying completely below the masking threshold 

are totally masked, whereas those lying only partially below it are partially masked. 

Additionally, the masking threshold offset o f tone-like signal and noise-like signal is
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different, as can be seen from the figure.

Different slopes o f the function on both sides have been reported in the literature. In this 

thesis Johnston’s Masking Model [J.D.Johnstonl988] was adopted. In order to calculate 

the masking threshold, the power in each critical band is found; then the Bark power 

spectrum will be spread over all critical bands through convolving the Bark spectrum 

with the following spreading function

S F (z ' )  = 15.81 + 7.5(z' + 0 .4 7 4 ) -17.5(1 + ( z ' + 0.474) 2 ) 0 J  (3-5)

where z ' is the separation between critical bands. As can be seen, this spreading function 

is independent o f the level and frequency o f the masker.

For the noise-masking-tone, the masking threshold is 5.5 dB below the spread spectrum. 

For the tone-masking-noise the masking threshold is (14.5+ / ' )  dB below the spread

spectrum, where i' is the bark frequency o f the masking signal [J.D.Johnstonl988]. In

order to determine the nature o f the signal as being tone-like or noise-like, the spectral 

flatness measure which is defined as follows is used

SFM  = 10 log jo (— ) dB (3-6)
Am

where Gm and Am  are the geometric mean and arithmetic mean respectively. The 

tonality factor is then defined as

, . SFM
a =min(~FFG f*'7)

SFM max

where SFM m;a corresponds to a signal which is assumed to be a pure tone and is set to 

-60 dB; a zero value for SFM  represents noise. To find the masking threshold the
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following offset is subtracted from the spread spectrum (in dB)

O(i ')  = a ' (14.5 + i')  + 5.5(1 - a ' )  (3-8)

Finally the masking threshold is compared with the threshold o f hearing to make sure that 

it is not below the threshold o f hearing.

3.3.2 Temporal Masking

Besides the frequency domain masking phenomena, two main time domain masking 

phenomena have been observed in human audition: pre-masking, which is also called 

backward masking, and post-masking, which is also termed forward masking. They are 

both depicted in Figure 3-5[Camerol999]. Maskees lying below the two decaying curves 

are inaudible. Post-masking has a more important effect than pre-masking since it has a 

longer duration. Pre-masking appears approximately 20 ms before the masker, whereas 

post-masking lasts for about 100 to 200 ms. Temporal masking is maximum for signals 

close in frequency and within the same critical band. The full effect o f temporal masking 

is closely related to the duration o f the masker. Maximum masking is produced by 

maskers lasting about 200ms. Below that value, the masking threshold shows faster decay 

slopes and, hence, a shorter duration. This clearly suggests that temporal masking is a 

highly nonlinear effect. According to several researches,

■m

J
1

SB

ft

Figure 3-5 The temporal masking

[Camerol999, p6]
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These two kinds o f masking are widely accepted as separate mechanisms for the purpose 

of modeling. However, they are closely interconnected. In this thesis, only simultaneous 

masking threshold is considered.

3.4 Critical Bands Analysis in the Time-Frequency Domain

3.4.1 Critical Band Modeling

Within the 0~8 kHz frequency scope, there are 21 critical bands as shown in T'able 3-1. 

Compared with other conventional transform tools, the discrete wavelet packet transform 

(DWPT) provides a much more accurate mapping o f the critical bands, as observed from 

Figure 3-6 [Blackl995, p i] . By using a six level DWPT, the minimum frequency 

bandwidth o f 125Hz can be achieved, that is close to the 100 Hz bandwidth of low 

frequency critical bands.

In literature, different models have been proposed [Shao2005] [Pinte'rl996] [Blackl995] 

For use here, the Daubechies wavelet was selected as the mother wavelet, since it has the 

best preservation frequency selectivity as the number o f stages o f the DWPT increases. It 

has been proven by simulation that db8 and dblO are the best choice to describe speech 

signals. However, there is a limit o f decomposition level at a particular frame length and 

particular wavelet. For example, if  the frame length is 256, the maximal decomposition 

level achieved with db8 is four. Thus, only dbl or db2 is available for six level mapping 

in this case. Figure 3-7 shows the DWPT mapped critical bands.
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Figure 3-7 DWPT mapped 21 critical bands for 8 kHz speech signal

The resulting critical bands rate and bandwidth are plotted in Figure 3-8 [Camerol999], 

along with the corresponding model of real critical bands. As can be seen, the DWPT
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mapping results are very close to the factors o f real critical bands and then provides a 

delicate time-frequency analysis.

10*

10

O  10'

10

mock!
DWPT

. .
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/■

Ccttfer fr^qucjsev (Hacf

Figure 3-8 DWPT modeled critical band

Top: critical band rate Bottom: critical bandwidth 

[Camera 1999, p5]

3.4.2 Noise Masking Threshold

In time-frequency domain, steps for calculating simultaneous masking threshold can be 

summarized as:

1) Modeling critical bands using 6-level wavelet packet decomposition and compute the 

energy o f each subband (Bark power spectrum).

N .
P x j ( n ) =  Z C j j ( n ) 2 , j  = 1,2...21 (3-9)

i - 1

where n is the frame index, j  is the subband (Bark) index, ct j (n) denotes the i th 

coefficient in subband j .
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2) Convolving the Bark spectrum with the following spreading function

21
P x S j ( n ) =  Z SF ( j J ' ) P x j ' ( n )  (3-10)

j ' = l

S F ( j J ' )  = 15.81 + 7.5((y"  f )  + 0.474) -17.5(1 + ( ( j  -  f )  + 0.474)2)0'5 (3-11)

3) Subtraction o f a relative threshold offset depending on the noise-like or tone-like 

nature o f the masker. For the noise-masking-tone, the masking threshold is 5.5 dB below 

the spread spectrum. For the tone-masking-noise the masking threshold is (14.5+ j ) dB 

below the spread spectrum, where j  is the critical band index. In order to determine 

whether the nature o f the signal is tone-like or noise-like, the spectral flatness measure 

which is defined as follows is used

( F K t o ) 1" '
SFM  = 101og10( i=i

nji=i
-) dB (3-12)

The tonality factor is given by equation (3-4) as a '  = min(-
SFM 

SFM J)
max

where SFM max corresponds to a signal which is assumed to be a pure tone and set to

-60 dB; a zero value for SFM  represents noise. To find the masking threshold the 

following offset is subtracted from the spread spectrum (in dB)

O j  = a '  (14.5 + j )  + 5 . 5 ( l - a ' )  (3-13)

Then, the simultaneous masking threshold is obtained from the following formula

32

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



NMTj  = P xS j  - 1 0 ° >  / 10 (3-14)

4) Finally, NMTj is compared in each critical band with the maximal threshold in quiet, 

and the maximum o f each value retained, giving FNM T . . The absolute threshold of 

hearing (threshold in quiet) is computed by

where / '  denotes the frequency with the j th  subband (approximate Bark), step by one.

3.5 Perceptual Wavelet Subtraction

To achieve a perceptual speech enhancement, authors have used auditory masking 

properties to perform adaptive subtractive technique in Fourier domain [Viragl999] and 

wavelet domain [Camerol999]. Figure 3-9 [Camerol999] shows the system structure of 

the perceptual wavelet subtraction. In wavelet domain, after the perceptual transform, a 

rough subtraction is performed first using the following formula

X  j  = Y j  -  D j  (3-16)

where D 2} is the averaged noise estimate calculated with a speech pause detector. Then 

noise masking threshold values are extracted from X 2. To reduce the effect of residual

noise, a parametric-type approach using an over-subtraction factor a  and a spectral 

flooring factor //was introduced into the algorithm. With the DWPT, this approach can 

be expressed as [Camerol999]

Tq max = max( Tq ( / ' ) )  dB (3-15)

otherwise
(3-17)
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The parameters a } and rjj are dependent on the time-frequency masking threshold in the 

j th  subband. The adaptation rule follows sigmoid curves with a min = 1, « max = 3,

Vmia = 0 , 77^ =0.01.

Figure 3-9 System block of perceptual wavelet subtraction

[Camerol999, p9]

 y.t W Pf

5 l l

Noise 
JlSsififitrtion

Masfcffig
'fhw htild

IJ E T
w n

Snteiwiwii

:t
*/i

Since the noise masking threshold (NMT) has a smoother evolution than the SNR and the 

adaptation based on NMT is better correlated with perception than using the SNR, using 

it rather than the SNR to track the noise change takes some advantages. However, this 

method is involved in much more complex computation, which is very disadvantageous 

for the real-life application.
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CHAPTER IV

4. ADAPTIVE THRESHOLD

Although standard wavelet soft thresholding has been proven to be effective for removing 

Gaussian white noise, it is obvious that the function o f this simple method is restricted 

due to the time invariable algorithm and rough frequency-domain division. In real world, 

the background noise generally shows uneven power spectral intensity, which may also 

be time-variant. In other words, the speech signal may be polluted by a non-stationary 

noise with different local SNR at different time segments or frequency sub-bands. Thus, 

using a time-frequency invariable threshold results in over suppression at high SNR parts 

and deficient restraining at low SNR parts.

Among recent literature, two basic adaptive approaches have been studied to improve the 

accuracy o f the standard thresholding. One o f them is adaptive noise estimate, and the 

other is using a thresholding adjuster to track the changing o f local SNR. In this chapter, 

these two methods will be introduced. In the mean time, methods for removing the 

musical noise are discussed in this chapter too. Finally, a new adaptive wavelet speech 

enhancement system is proposed.

4.1 Adaptive Noise Estimate

Instantaneous noise spectrum estimation is a critical component o f single channel speech 

enhancement. Adaptive noise estimation algorithm is a noise estimation technique that is 

updated adaptively and continuously from the nearest previous speech frames without 

explicit speech pause detection.

4.1.1 Quantile-based Time-frequency Noise Estimate
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4.1.1.1 Quantile

Quantiles are essentially points taken at regular intervals from the cumulative distribution 

function o f a random variable. Dividing ordered data into q essentially equal-sized data 

subsets is the motivation for q -quantiles; the quantiles are the data values marking the 

boundaries between consecutive subsets. Put another way, the k th q -quantile is the 

value x such that the probability that a random variables will be less than x is at most 

k / q and the probability that a random variable will be less than or equal to x is at least 

k / q.  There are q -  1 quantiles, with k an integer satisfying 0 < k <q ■

If  instead o f using integers k and q , the p  -quantile is based on a real number p  with 

0< p  <1 then this becomes: The p  -quantile o f the distribution o f a random variable X  

can be defined as the value(s) x such that,

\ P { X < x ) > p
(4-1)

[P (X  > x ) > \ - p

4.1.1.2 Quantile-based Time-frequency Noise Estimate

The Quantile-based Time-frequency Noise Estimate (QBNE) method was originally 

proposed by V. Stahl and A. Fischer in 2000 [Stahl2000]. The principle idea derives from 

a minimum statistic algorithm by Martin in [Martini 993] [M artini994]. The main idea of 

QBNE is to use the quantile value o f a set o f noisy signal energy as the noise estimate, so 

that to balance the current noise estimate using the data o f previous frames.

Given a noisy speech x ( t ) , a buffer is used to store the power o f the signal P x j  ( n ) over a 

pre-defined duration L . The buffer contents are sorted and the q -th quantile is taken as 

the noise estimated power P n j ( n ) . Where, n denotes the frame index and j  is the index 

o f subbands. c t j ( n ' )  is the wavelet coefficient. The process can be summarized as
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follows [Fu2003] [Bai2003] [Lee2004] and shown in Figure 4-l[Fu2003].

1. Take the Wavelet Packet Transform and obtain cUJ («')

2
P x j ( n ' ) =  "Z \ c i j ( n ' ) \  , n f =  n - L  +  l , . . . , n - l , n  (4-2)

i=l

2. Sort P x j  (n ) in ascending order and re-index

P x j  ( 1 ) <  P x j  ( 2 ) < P x j  (3  ) < . . . <  P x j  ( L )  (4-3)

3. select the q  -th quantile P x j  (qL)

4. Assign noise estimate

P n j ( n ) = P x j ( q L )  (4-4)

& j ( n )  =  J P n j ( n )  (4-5)

n* fi'am

Figure 4-1 Quantile-based time-frequency noise estimate

[Fu2003, p4]

The parameter q normally takes a value o f 0.5 in [Fu2003], which represents the median. 

However, some experimental results show the probability of having more than 20% 

duration being silence for various segment lengths [Ris2001]. For example, when the 

time segment length is 600ms, the probability o f having more than 20% silence is greater 

than 85%. This indicates that the median assumption is too aggressive, leading to the 

increased likelihood o f overestimating the noise level. Thus some authors chose a level 

associated with q=0.2[Lee2004] [Ris2001] [Stahl2000]. In addition, instead o f using the 

quantile itself, the arithmetic mean o f the lower 20% (i.e., q < 0.2) o f the noisy speech 

power spectrum was used as the noise estimation. According to their experiments, this 

“low energy envelope” tracking method generally obtains better estimates compared to
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other published quantile methods [Stahl2000]. Then the forth steps above can be 

modified to

<r , 0 ) =J  S P x j ( n ' )  / i n t ( q - L )
\int( q -L )

(4-6)
n ' = l

For speech enhancement application, the threshold for j  -th subband at the n -th 

frame, l j (n) is estimated as

QBNE is a statistics based adaptive time-ffequency dependent noise estimation method.

It is effective for tracking the slowly varying non-stationary noises and then improves the 

accuracy o f noise deduction. However, the QBNE is inaccurate at frequencies where the 

speech components are consistently dominant [Lee2004]. Thus, it will over suppress the 

speech components when the local SNR is high, while it works well in the case with low

4.1.2 Exponential Smoothing and Sigmoid Tracking with PSNR

4.1.2.1 Exponential Smoothing

In statistics, smoothing method refers to calculating a weighted average among the latest 

data and the previous statistic, so that the estimate is closer to the real data. Exponential 

smoothing is a particular type o f moving average technique, a smoothing method applied 

to tim e series data. The sim p lest form  o f  exponential sm ooth ing  is  g iv en  by the form ulas

X j ( n )  = 6 j ( n ) - ^ 2 l o g ( N  ■l og2 N ) (4-7)

SNR.

s n = x . (4-8)

s t =  a x t +  (1 -  a ) 5 f_1 (4-9)
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where a  is the smoothing parameter, and 0< a  <1, s0 is the first statistic, s t is the latest 

smoothed statistic, x, is the real data.

Values o f a  close to unity have less o f a smoothing effect and give greater weight to 

recent changes in the data, while values o f a  closer to zero have a greater smoothing 

effect, and are less responsive to recent changes. The term “Exponential” means , as time 

passes, the smoothed statistic st becomes the weighted average o f a number o f the past 

observations x t~„, and the weights assigned to previous observations are in general
9 i

proportional to the terms o f the geometric progression {1, (1 -a), ( 1 - a ) , (1 -a ) , ...}. 

There is no formally correct procedure for choosing a. Sometimes the statistician's 

judgment is used to choose an appropriate factor. Alternatively, a statistical technique 

may be used to optimize the value o f a.

Recently, some researchers have tried to use exponential smoothing to achieve adaptive 

noise estimate. The application is given as

P n j  ( n ) - a j ( n ) - P n j  ( n - l )  + ( l - a  j ( n ) ) -  P x j  (n )  (4-10)

In [Lei2005], the sigmoid function is used to update the smooth parameter aj(n)  by a 

posteriori signal-to-noise ratio ( PSNR ). The definition o f PSNR is given as

PSNRj  ( n )  = P x j  ( n ) / P n j ( n - l )  (4-11)

where, P n j  ( n - l ) \ s  the average o f the noise estimates o f the previous m  frames adjacent 

to frame n - 1 and given in form

_ / m
Pn j ( n - l )  = — I  Pn j ( n - i )  (4-12)

m i=J
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4.1.2.2 Sigmoid Function

The smoothing parameter o f j  -th subband at the n -th frame a ^ n )  is then adaptively 

changed as a sigmoid function o f the P SN R .

a J (n) = j^-af PSNRj fnJ- T)  (4‘13)

where, a and T  are the slope and center-offset o f the sigmoid function respectively. 

Sigmoid functions with different slopes are shown in Figure 4-2 [Lin 2003]. As can be 

seen, the slope becomes sharper when the value o f a raises.

0 .8 -

0 .7 -

0 .6 -

0 .5 -

a=2
0 .3 -

0 .2 - a=lfZ

a= l(3

- 0.1
■10 -9 -0 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 A 5 6 7 S 9 10

PSNR

Figure 4-2 Sigmoid function

[Lin2003, pi]

Thus the smoothing parameter a^r i)  is closed to 0 when the speech is absent in frame n ,

that is, the estimate o f noise power in frame n rapidly follows the power o f the noisy 

signal in the absence o f  speech. On the other hand, if  the speech is present, the new noisy 

signal power is much larger than the previous noise estimate. Then the value o f the 

smoothing parameter a } (n) increases rapidly with increasing P S N R . So the noise update 

is slower or almost stops because o f the large value o f smoothing parameter.
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4.2 Adaptive Threshold Adjuster

In addition to the adaptive noise estimate, setting an adjuster to modulate the standard 

threshold value is another way to lighten the inaccurate noise suppression [Lei2005] 

[Lin2003] [Hu2004].

4.2.1 Posteriori SNR Time-Adaptive Threshold

As discussed in 4.1.2, the smoothing parameter a ,(n )  rapidly follows the change

o f  PSNR , and its value is among the range o f 0 to 1. Therefore, it is an idea adaptive 

threshold adjuster. The time-adapted wavelet threshold is then defined as

0 0  = Kj  0 0 0  -  a j 0 0 )  (4-i4)

where, the standard level-dependent threshold A0J is calculated by

%  (n )  = a  j  (n )  • p l o g ( N  j )  (4-15)

In this way, the threshold values are adapted to the SNR values across speech frames. For 

a speech-dominated frame, the increased SNR value results in lower threshold. The 

wavelet threshold o f the corresponding frame should be adapted to smaller value so that 

the speech distortion can be reduced. On the contrary, the wavelet coefficients are almost 

determined by the noise component in a noise-dominated frame. More background noise 

can be removed by having larger wavelet threshold.

Finally, the noise components are suppressed by the soft thresholding to the decomposed 

noisy wavelet packet coefficients. The processing steps are shown in Figure 4-3.
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Figure 4-3 Posteriori SNR time-adaptive thresholding

4.2.2 Smoothed Hard Thresholding with Aggravated Threshold Value

As speech signal is a non-stationary signal, the signal-to-noise ratio o f speech segments 

fluctuates across time. And this information could be used to adapt the threshold values. 

An aggravated threshold algorithm is proposed in [Ghanbari2005] to track a VAD based 

segmental signal-to-ratio ( SSNR ).

Here, the SSNR is defined as

Px ; (n )
SSNRj (n )  = lO lo g jo  (4-16)

J Pn j ( n )

where, P x j ( n ) denotes the energy o f the noisy signal at j  -th subband and frame n , and 

P n j f n ) is the noise estimate at j  -th subband and frame n , which is defined as the signal 

energy o f the latest silence segments.

The tracking function is:

7 »  =

S SN R,(n )

A0j(n)( 1 + e * ),SSNRj(n)>  0

l A . j i n lS SNR j i ^KO
(4-17)
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MAD An) ,-------------
where, 2<r < 3, and A0j(ri) = ( ■■) /̂21og(jV; ) is the standard threshold.

As shown in Figure 4-4 [Ghanbari2005], the adaptive threshold value is an exponential 

function o f the VAD (voice activity detector) based SSNR . When the SSNR is smaller 

than 0, which means the estimated noise energy is stronger than that o f the clean signal, 

the threshold value is doubled, and much more noise will be removed. On the other hand, 

as the SSNR rises from 0, the threshold decreases exponentially to the standard threshold 

value.

r  = 2.2

Figure 4-4 Aggravated threshold

[Ghanbari2005, p3]

Compared to Donoho’s universal algorithm, this algorithm aggravates the threshold value 

dramatically. It removes the noise more completely, but in the mean time, it also results 

in more serious speech distortion.

To resolve these problems, the authors used a modified hard threshold to smooth the 

thresholding results. This function can be described as:

c,in) =

cAn),

s ign{c(n)) M ”)|
T j i n f -1

\CM ) \  * Tj(n) 

\cj{n)\<Tj{n)
(4-18)
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As shown in Figure 4-5[Ghanbari2005], when the coefficients are under the threshold, 

they are non-lineally shrinked instead o f being set to zero. It partly avoids the over

threshold o f speech components o f the signal and reduces the musical noise as well.

Figure 4-5 Smoothed hard thresholding

[Ghanbari2005, p3]

However, since the noise estimate is derived from the VAD, the inaccurate factors of 

VAD will be passed to the threshold calculation, and finally lead to inaccurate de- 

noising. Besides, the minimum value o f the threshold is the universal threshold value. It 

means when the SSNR rises to a high value, the threshold keeps higher than necessary.

4.2.3 Teager Energy Operator

The Teager energy operator (TEO) is a powerful nonlinear operator proposed by

H.M.Teager and S.M.Teager [Teagerl990]. It is defined in both the continuous and 

discrete domains and is very useful for analyzing single component signals from an 

energy point-of —view. It has been successfully used in various speech applications 

[Bahoura2001].

For a given band-limited discrete speech signal y(n ) , the discrete-time TEO can be 

approximated by
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y / [y (n) ]  = y 2 ( n ) - y ( n  + l ) y ( n - l ) (4-19)

where, the energy operator spans three adjacent samples o f the signal and is still a very 

local property o f the signal.

This operator is able to effectively track the change in both amplitude and frequency of 

the signal [Teagerl990] [Caimsl996] [Kaiserl990] [Kaiserl993] [Jablounl999] 

[Chen2004]. Particularly, it is applied to the wavelet coefficients to enhance the 

discriminability o f speech and non-speech frames in each subband generated from PWPD 

[Jablounl999], as shown in Figure 4-6. When the TEO is high, it indicates that the 

current frame tends to speech segment, while the current frame will be judged to be pure 

noise frame when the TEO is close to 0. Thus the threshold algorithm can be designed to 

track the change o f the TEO, so that to achieve the adaptive effect.

si2242
0.10.1

- 0.1■0.1 ______ I______ I______ I______ !______ I______ I______
0 0.5 1 1.5 2 2.5 3 3.5

si2242 hite„oisy[.dBw n

_________________ I_________________ l_________________ I______________ _ J _________________ L________________ I_________________

0 0.5 1 1.5 2 2.5 3 3.5

si2242noisyTEO

-5
0 0.5 1 1.5 2 Z 5  3 3.5

x 104

Figure 4-6 Teager’s energy operator

Top: clean signal; middle: noisy signal; bottom: TEOs of the noisy signal
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Applying the TEO algorithm to the wavelet domain, the TEO coefficients is obtained by

TeoiJ(n) = i//[ciJ (ri)] (4-20)

where, i is the coefficient index, j  is the subband index from the Wavelet Package 

Decomposition.

Then, an initial mask is obtained by smoothing the TEO coefficients using an HR low- 

pass filter,

M i J(n) = TeoiJ (n)* H i(n) (4-21)

A threshold adjuster is defined as [Jablounl999]

a i j (n) =

0, =  0

m ax(M i j («)) ’
otherwise

(4-22)

Therefore, the time adaptive threshold is defined as

(4-23)

Finally, this threshold is applied into the soft thresholding. Figure 4-7 shows the complete 

algorithm.
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Figure 4-7 Adaptive thresholding tracking the change of Teager’s energy operator

[Chen2004, p!32]

4.3 Musical Noise Suppression

Musical noise is a typical problem in the field o f single channel speech enhancement with 

spectral subtraction and wavelet thresholding. Musical noise is heard when an output has 

isolated peaks and/or short ridges in its spectrogram. It sounds metallic or tin-like. 

Generally, different frame length and overlapping rate result in different de-noising effect 

and different intensity o f residual musical noise. Thus the frame length can not be too 

short, and the overlapped part should not be less than 50%. Other than optimizing the 

frame length and overlapping rate, several methods have been provided in literature to 

remove or smooth these isolated peaks and short ridges. In this thesis, a time-frequency 

adaptive smoothing method is also proposed to improve the musical noise suppression.

4.3.1 Floor Construction

Floor construction is the simplest method to smooth the residual noise. Using this method, 

the processed coefficients are set to a relatively low value instead o f zero, such as setting 

them to 1/10 o f the original magnitude. Thus, a spectral floor is built up to reduce the 

difference from peak to peak. Normally, some light background noise will be introduced 

into the signal again, but the uncomfortable feeling of musical noise is lightened.

4.3.2 Adaptive Minimizing

An effective musical noise suppression method used with spectral subtraction, is derived
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from Boll’s research in [Bolll979]. It replays each spectral coefficient after subtraction 

by the corresponding minimum spectral intensity value among the adjacent frames. 

Assume the maximal value o f the residual noise measured during non-speech segment 

is max|W (<y)|. Then, the smoothing algorithm is

where, n is the frame index, j  is subband index, and / is coefficient index in a subband.

silent segment.

A drawback o f this method is that it evidently increases the computational complexity.

4.3.3 Silent Segment Musical Noise Suppression

Profiting from the auditory masking phenomenon, the musical noise in speech frames is 

not as noticeable as in non-speech segment. Therefore, if  the musical noise residual in 

silent segment could be mostly removed, the final de-noising result will be improved. In 

order to smooth the suppression result, some white noise at a proper intensity is added to 

the silent segment.

\Sm (w)\>max\W(co)\ 

< max jfV( m j|
(4-24)

where, m is the frame index, and to is frequency.

If we transfer this method into the wavelet domain, it can be defined as

> max cr,

min|c(J. 0')|> |cUj («)| < max|ov; 0 ) |
, ri -  n -1 , n, n +1 (4-25)

max cr^. (.y)| denotes the maximal coefficient value o f the residual noise measured during
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Similar to the algorithm in 4.3.2, this method depends on the result from VAD.

4.3.4 Adaptive Smoothing Based on Energy Analysis

Observing the musical noise through a spectrogram, it can be seen that this kind o f noise 

has two peculiarities. One is they are isolate, and the other is they are scattered. It 

indicates that within an appropriate number o f frames surrounding the noise, the local 

energies o f these frames are noticeably uneven. In other word, within a speech or low- 

noise background segment at same length, the local energy o f each frame is close to the 

average energy o f this segment. Therefore, an adaptive algorithm based on local energy 

analysis is proposed in this research work.

Figure 4-8 Time-frequency energy analysis

For a 16 kHz sampled signal, if we set the frame length equal to 256, then the time 

duration o f each frame is 16ms. Assume the clean speech rich 16 o f 0.45s is polluted by 

white noise, and the signal-to-noise ratio is 5dB. Its spectrogram after adaptive 

thresholding is shown in Figure 4-8. Here 3 frames are selected as the processing 

segment mapping to 48ms. As can be seen, if the center frame is speech frame, the total 

energy o f the segment is bigger than 2.5 times o f the maximal energy in this segment, 

otherwise, the total energy is much smaller.

If the frame is musical noise, the coefficients will be set to the corresponding mean value 

o f the segment. The mathematic model o f this algorithm is illustrated as
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fCjt j ( n ) ,  sum (PxT(n'))>  max PxT(n')*  2.5
C i j ( n )  = \ j I , r i  = n - 1 ,  n, n + 1 (4-26)

\ s ig n (c j j (n ) )m e a n \c i j (n ' ) \ ,  su m (PxT (n '))< m axP xT (n ')*  2.5

where, PxT  is the frame energy after adaptive thresholding.

Furthermore, since the frequency of human speech concentrates under 4 kHz, if the 

suppression at frequencies higher than 4 kHz is intensified, it will not have obvious 

damage to the speech parts. Thus, the above formula can be modified to

fc i j ( n ) ,  sum(PxT(n'))  > max PxT(n')*  (p
c i j ( n )  = \ j | , n ' = n - l , n , n  + 1

sign( c(t j ( n  ))mean\c^ j ( n ' )\, otherwise

(4-27)

when f j< 4 k H z ,  <p=2.5

when f  j  > 4kHz, q> = 1.8

Compared to the conventional methods, the proposed algorithm does not depend on voice 

activity detector, so that reducing the computation complexity. Moreover, using the mean 

value instead o f the minimum value o f the coefficients yields a smoother output.

4.4 Optimized Perceptual Adaptive Wavelet De-noising

In this thesis, a new speech enhancement system using adaptive wavelet de-noising is 

proposed. This algorithm uses wavelet packet transform to map the filter banks in the 

human inner ear. Adaptive noise estimate and threshold adjuster are adopted to track the 

local signal-to-noise ratio.

Compared to other adaptive threshold methods, the Quantile based noise estimate 

(QBNE) works well when the input SNR is low, reducing the residual noise evidently. 

That has been proven by the simulation results in chapter V. The problem of this method 

is over suppressing speech components due to universal statistic algorithm. It means the
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thresholding is too aggressive when the local SNR is high. Thus, if  a parameter is used to 

track the variety o f the local SNR and adjust the final threshold, the thresholding could be 

more accurate.

On the other hand, the posteriori SNR time-adaptive threshold is a good adaptive 

thresholding adjuster. According to the simulation results, it works well on tracking the 

transformation o f local signal-to-noise ratio under a non-stationary noise situation. The 

exponential smoothing and sigmoid function provide proper and continual adaptive 

performance. Additionally, this algorithm extracts the noise power from the noisy speech 

signal alone, avoiding the voice activity detection. But, compared to the QBNE based 

method, there is more residual noise left. This shortcoming mostly comes from the 

inaccurate noise estimate.

It is interesting that these two methods are compensatory to each other. The QBNE 

provides a good adaptive noise estimate, while the PSNR contributes the ability of 

tracking the local SNR. Therefore, an optimized thresholding method may be obtained 

through combining them together.

To build such a system, the QBNE based threshold has been used as the basic adaptive 

threshold, replacing the original standard threshold. And the PSNR based smoothing 

parameter has been used as the thresholding adjustor. The system blocks are shown in 

Figure 4-9. Here, the posterior SNR is modified into standard SNR format instead o f a 

ratio, so that the sigmoid function can reflect the local SNR intuitively. The modified 

PSNR is presented as

P S N R j ( n )  =  10  lo g ( P Xj ( n ) / P r t j ( n - l ) )  (4-28)

The fourth part o f the optimized system is the new algorithm for musical noise 

suppression discussed in 4.3.4. The isolated and scattered musical noise components are 

extracted from the first-step de-noising result, based on the adaptive local energy
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analysis. And then, these musical noise coefficients are set to coefficient average o f the 

adjoining frontward and backward frames. The contribution o f this new method is that 

the analysis model describes the properties o f the musical noise, so that the corresponding 

noise suppression becomes more accurate.

y*( 0

<*)

WPT

sm

Silent Segment 
Sotootiuag» VAD (TEO) —  ►

Figure 4-9 Proposed adaptive wavelet speech enhancement system

After the wavelet domain processing, a novel time domain silent segment smoothing 

module was also added into the system. The purpose o f this module is to smooth the 

residual noise left in silent segment, in order to improve the final perceptual effect. Multi

frame TEO analysis is adopted to perform the voice activity detection. The processing 

can be decomposed into four steps:

1) To calculate the TEO value o f each frame

y / [ y ( n) ]  - y ^ ( n ) - y ( n  + l ) y ( n - l )  (4-29)

where, n is the frame index.
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2) Take the TEO absolute values o f current frame and three previous frames for 

calculating the ratio o f minimum and maximal TEO absolute value within these 

four frames.

TEOmjn = min(abs(TEO( 1: Lj £ q  ))  (4-30)

TEOmax = max(abs(TEO( 1:  LfEO ))  (4-31)

where, Ljeq  is the number o f frame in the processing segment, equal to 4. 

Then, the expected ratio is presented as

M  = TEOmjn /TEOm ax  (4-32)

3) Perform judgment. When M  is smaller than a particular value a , it means the 

TEO values in the processing segment are even. When TEOmax is smaller than

another particular small valued , it means the TEO values in the processing

segment are quite small. According to the previous waveform analysis in 4.2.3, 

they are just the two properties o f the silent segment waveform. Thus, if  these two 

conditions are satisfied, we consider the current segment as silent segment.

SilentSegment, an d(M  < a,TEOmax < b )  (4  33)
SpeechSegment, otherwise

where, F  works as the flag o f the judgment.

4) Smooth the samples o f the silent segment. Here we use a mean value filter to 

perform the smoothing to each sample within the current segment.
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CHAPTER V

5. SIMULATION AND RESULTS ANALYSIS

In chapter III and IV, the latest algorithms o f perceptual adaptive wavelet speech 

enhancement have been introduced. An innovative combination o f QBNE and PSNR, a 

new method o f musical noise suppression, a new TEO based time-domain silent segment 

processing module, and the optimized wavelet speech enhancement system are proposed. 

It is an important part o f this thesis work to comparing and evaluating these methods 

through Matlab simulation. This chapter will discuss the details o f Matlab simulation 

followed by the analysis o f the results.

5.1 Matlab Simulation Setup

5.1.1 Speech

The original speeches used for simulation and test are taken from the famous TIMIT 

speech databases. TIMIT is a corpus o f phonetically labelled transcribed speech of 

American English speakers o f different sexes and dialects. It has been widely used for the 

acquisition o f acoustic-phonetic knowledge and for the development and evaluation of 

automatic speech recognition systems. This database was commissioned by DARPA and 

worked on by many sites, including Texas Instruments (TI) and Massachusetts Institute 

o f Technology (MIT), hence the corpus was named.

TIMIT contains a total o f 6300 sentences, 10 sentences spoken by each o f 630 speakers 

from 8 major dialect regions o f the United States, including New England, Northern, 

North Midland, South Midland, Southern, New York City, Western and Army Brat.

These sentences are assorted into three types. The dialect sentences (the SA sentences) 

were meant to expose the dialectal variants o f the speakers and were read by all 630 

speakers. The phonetically-compact sentences (the SX sentences) were designed to 

provide a good coverage o f pairs o f phones, with extra occurrences o f phonetic contexts 

thought to be either difficult or o f particular interest. The phonetically-diverse sentences
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(the SI sentences) were selected from existing text sources, so as to add diversity in 

sentence types and phonetic contexts.

In this thesis, 16 sentences spoken by 8 female and 8 male from 8 dialect regions are 

selected from TIMIT as the benchmark speech signals. All of them are sampled at 16 

kHz, and quantized into 16 bits.

5.1.2 Noise

Both stationary and non-stationary noises are considered in this thesis. The stationary 

artificial noises, such as White Gaussian Noise (WGN), are generated at desired intensity 

using Matlab function directly. And the real-life noises are selected from the NOISEX-92 

database. In the area o f speech processing researches, NOISEX-92 is a well known 

standard noise database, recording various real-life noises. Fifteen stationary and non- 

stationary noise samples are involved in the simulation, including WGN, pink noise, 

voice babble, HF radio channel noise, factory floor noise, je t cockpit noise, destroyer 

engine room noise, F-16 cockpit noise, military vehicle noises, tank noise, machine gun 

noise, and car interior noise. All o f the noises are down-sampled from 19.98 kHz to 16 

kHz, equal to the sampling rate o f the speech signals.

To simulate a typical non-stationary noise, several stationary noises are randomly mixed 

together segment by segment in this thesis. For example, it is assumed that the white 

Gaussian noise is the basic background noise, and the first one second o f the signal is 

also polluted by speech babble, while the remaining parts are polluted by pink or car 

interior noise. The process is illustrated in Figure 5-1. Since the power level o f each noise 

is unequal, a slowly varying input signal-to-noise ratio can be achieved within the whole 

noisy signal.
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Noisy Speech

Speech babble Pink Car interior noise

Speech

White Noise

Figure 5-1 Creation of non-stationary noise

5.1.3 Noisy Signals

The noisy signal is generated by adding a noise signal w(n) to a clean speech signal s (n ) . 

Thus the noisy signal is given by

y ( n )  = s ( n ) + X ■ w ( n ) (5-1)

where, parameter X decides the intensity o f the noise signal added to the clean speech, 

thus decides the signal-to-noise ratio.

Assuming a noisy signal at SNRjnpul is tested, then

y y o )
SNRinput = 101og10 - (5-2)

2 ^ X w  {n)

The value o f 256 is taken as the length o f each frame here, mapping to 16 ms o f 16 kHz 

signals. These frames are overlapped by each other at the overlapping rate 50%.
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The Matlab simulation setup is summarized in Table 5-1

Table 5-1 Matlab simulation setup

Type Source Sampling rate Length

speech 8 femal,8 male TIMIT 16 kHz 2s~4s

noise WGN Matlab 16 kHz /

15 Real-life Noisex-92 19.98 kHz /

Artificial

non-stationary

proposed 16 kHz /

Value

SNRinpul 0dB~15dB

Frame length 256 samples, 16 ms

Overlapping 50%

5.2 Evaluation Methods

Quality measure o f speech enhancement is generally classified into subjective evaluation 

and objective evaluation. Subjective measures evaluate the perceptual quality o f a speech 

based on the subjective rating by human listeners. Currently the most accurate and 

preferable method o f speech enhancement rating is subjective evaluation [Hu2006]. This 

method, however, is time consuming and costly. Comparing to subjective evaluation, 

quantized objective measures are faster and more economical, but shows low correlation 

with the subjective speech quality [Quackenbushl988]. Spectrogram accurately reflects 

the dissimilarity between the original clean speech and processed signal by making the 

speech visible. It is sorted into objective measures in this thesis.

5.2.1 Subjective Evaluation
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The subjective evaluation in this thesis research is derived from ITU-T recommendation 

P.835 and was conducted by Dynastat, Inc [Hu2006]. In order to reduce the listener’s 

uncertainty in a subjective test, three components of a noisy speech signal, the speech 

signal, the background noise and the overall effect, are considered. The process o f rating 

the enhanced speech is:

1. Rating the speech signal alone using a five-point scale o f signal distortion (SIG) 

(Table 5-2).

2. Rating the background noise alone using a five-point scale o f background 

intrusiveness (BAK) (Table 5-3).

3. Rating the overall effect using a five-point scale o f the Mean Opinion Score 

(Table 5-4).

Five male and female listeners attended the subjective test. Sixteen sentences from 

TIMIT, polluted by sixteen different types o f noise at different input signal-to-noise ratio, 

are evaluated.

Table 5-2 Scale of signal distortion (SIG)

[Hu2006, p2]

5- Very natural, no degradation

4- Fairly natural, little degradation

3- Somewhat natural, somewhat degraded

2- Fairly unnatural, fairly degraded

1- Very unnatural, very degraded
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Table 5-3 Scale of background intrusiveness (BAK)

[Hu2006, p2]

5- not noticeable

4- somewhat noticeable

3- Noticeable but not intrusive

2- Fairly conspicuous, somewhat intrusive

1- Very conspicuous, very intrusive

Table 5-4 Scale of overall effect

5- excellent

4- good

3- fair

2- poor 

1- bad

Previous researches proved that the overall subjective evaluation is influenced more by 

speech distortion. A regression analysis was designed to substantiate this phenomenon 

[Hu2006]. As shown in equation (5-4), the predicted overall score was considered as the 

function o f the rating score o f the speech and noise distortion.

R-ovrl ~  0.0783 + 0.571 • R SjG +0.366 ’ R g ^  (5-4)

where Rovrl is the predicted overall rating, RSfG and RBAK denote the SIG and BAK

rating respectively. According to Y. Hu and P.C. Loizou’s test results, the predicted 

overall rating scores are quite close to the real overall rating. It confirms that listeners 

integrate the effects o f both speech signal and background distortion when making their 

ratings. And, these two types o f distortion contribute differently to the overall evaluation.
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Listeners seem to pay more attention to the speech distortion rather than to the 

background noise.

5.2.2 Objective Evaluation

Objective measures are the methods using mathematical models to evaluate the 

processing quality. Different several objective speech quality measures have been widely 

used including global SNR, segmental SNR(segSNR), weighted-slope spectral (WSS) 

distance, perceptual evaluation o f speech quality, log likelihood ratio (LLR) and Itakura- 

Saito (IS) distance measure, etc[Hu2006]. As the most popular evaluation indexes, SNR 

and segSNR are recruited in the simulation work o f this thesis.

5.2.2.1 Global SNR and Segmental SNR

Global SNR (SNR) is defined as the ratio o f the clean speech power to the noise power, 

obtained globally from the time domain. The calculation o f input SNR and output SNR 

uses the unit o f decibels (dB) and is defined as

N - l

SNRinput = 1 0 -log 10
n = 0 

N - 1
] [ V ( m)
n = 0

(5-5)

SNR0UlpUll= 1 0 -log 10

N - 1

n - 0
N - 1
2 ] ( s(« ) -5 (« ) )2
«=0

(5-6)

where s(n) is the clean speech, w(n) is the additive background noise, and s(n) is the 

processed speech signal.
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Segmental SNR (segSNR) is used more widely for its higher correlation degree to the 

subjective results. Instead o f taking the global data for the calculation, this method takes 

over short segments o f the speech signal and then recruits the mean SNR value o f the 

overall segments as the evaluation result. It can be denoted as

N m + N - l  ,
Z s 2 ( n)

   ( 5 _ 7 )

N m + N - l  ,  y ’
Z ( s ( n ) - s ( n ) ) 2 

n-N m

where L  is the total number o f the frames, Nm represents the number o f samples in each 

frame.

Both o f global SNR and segmental SNR result low correlation with overall subjective 

evaluation. Thus they only work as accessory evaluation measures in this thesis.

5.2.1.2 Spectrogram Analysis

The spectrogram is color-based visualizations o f the evolution o f the power spectrum of a 

speech signal as it changes over time. It is generally created by calculating the frequency 

spectrum o f windowed frames (STFT) o f a compound signal. In a spectrogram, the 

horizontal dimension represents time and the vertical dimension represents frequency. 

Each thin vertical slice o f the spectrogram shows the spectrum during a short period of 

time, using darkness to stand for amplitude. Darker areas show those frequencies where 

the simple component waves have high amplitude. An example o f spectrogram is shown 

in Figure 5-2. The content o f sentence si2242 from TIMIT database is “twenty two and 

twenty three”.
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Figure 5-2 Spectrogram of speech signal si2242 from TIMIT

Spectrograms are widely used for speech and audio analysis. As we can see from above 

figure, spectrogram reflects all the information o f frequency, signal intensity, and time 

period. For the clean signal, the background is pure and smooth, without abrupt change. 

While the signal is polluted by a noise, its spectrogram shows a noisy background as 

displayed in Figure 5-3. According to the experiment results, spectrograms are highly 

correlated to the subject evaluation. In the mean time, it remains the advantage of 

objective measures, low time consuming and low cost. The shortcoming o f this method is 

that it is not quantized, thus not as convenient as a quality indicator for researchers.

Figure 5-3 Spectrogram of white noisy si2242 at SNR=5dB

5.3 Matlab Simulation and Results

In this section, Matlab simulation steps and results o f each method will be presented. 

Algorithms are grouped according to the methodology they use. Most comparisons in this 

section depend on the subjective measures, spectrogram and time-domain plot, which are 

highly correlative with human subjective response. SNR and segSNR are recruited to 

prove the rough tendency o f enhancement results. As shown in Table 5-1,16 sentences, 

17 noise situations, and 4 SNR are involved in the whole experiment. Since the 

experiment results for different speech and noises tend to be consistent, only 2 sentences

62

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



(one female and one male), 2 noises (WGN and artificial non-stationary noise), and 3 

SNR are explained in this section.

Here Daubechies wavelets are selected as the mother wavelet, since they best preserve 

the frequency selectivity as the number o f stages o f the DWPT increases. It has been 

proven that db8 or dblO is the best to describe speech signals. However, there is a limit of 

decomposition level at a particular frame length and particular wavelet. For example, if 

the frame length is 256, the maximal decomposition level achieved with db8 is four. Thus, 

only dbl or db2 is available for six level mapping for the perceptual wavelet thresholding. 

From this point, db2 is o f benefit to more delicate frequency analysis. To select a proper 

mother wavelet for DWPT and PWT decomposition, all o f db2, db4 and db8 were tried in 

this thesis work. Results o f these three wavelets, however, are approximately the same. 

Therefore, 4-level DWPT decomposition with wavelet db8 for and 6-level PWT 

decomposition with wavelet db2 are adopted.

5.3.1 Standard Wavelet De-noising and SureShrink

The purpose o f the comparison within this group is to set the better algorithm and the 

corresponding results as the benchmark o f the following simulation and analysis. Figure

5-4, 5-5, and 5-6 illustrate the time-domain waveform o f the signals corrupted by 

Gaussian White Noise, with different SNRinput, before and after the processing.

Obviously, the standard wavelet de-noising with universal threshold removes more 

background noise than the SureShrink does. However, it evidently distorts the speech 

components in the mean time.
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d)
Figure 5-4 Time-domain waveforms with SNRinpUt =0dB 

(a) Clean Signal (b) WGN noisy signal(c) Enhanced signal by standard 

wavelet de-nosing (d) Enhanced signal by Sureshrink

c)
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Figure 5-5 Time-domain waveforms with SNRinpiIt =5dB 

(a) Clean Signal (b) WGN noisy signal(c) Enhanced signal by standard 

wavelet de-nosing (d) Enhanced signal by Sureshrink

c)

d)
Figure 5-6 Time-domain waveforms with SNRinput =10dB 

(a) Clean Signal (b) WGN noisy signal (c) Enhanced signal by standard 

wavelet de-nosing (d) Enhanced signal by Sureshrink

The same tendency is reflected by the spectrograms, as shown in Figure 5-7. The 

standard method, shown in (c0~2), sacrifices the speech fidelity, while performs well in 

removing the background noise. Furthermore, since the standard soft threshold does not 

process the approximate part o f the decomposed signal, evident residual noise in the 

corresponding frequency subband has been left. On the contrary, the SureShrink, shown
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in (d0~2), leaves more background noises, but gets ahead o f the standard method by 

remaining the speech components well. As discussed before, the overall subjective 

evaluation is influenced more by speech distortion, thus SureShrink is supposed to yield 

better subjective effects.

This hypothesize has been proved in Table 5-5. The SureShrink provides better 

subjective evaluation scores than the standard method does, and the standard method 

even gives worse subjective scores than the noisy signal. Under the real-life noise and 

the mixed non-stationary noise (MNSN) situation, the simulations yielded similar results. 

Thus, SureShrink was selected as the benchmark o f the following comparison.

■■13 <M ** <l» 1 i.J 1/1 1.4 !.» i

(a) Clean Signal

(bO)WGN noisy signal OdB (cO) Enhanced by standard ST (dO) Enhanced by SureShrink

Sllllllill

(bl)WGN noisy signal 5dB (cl) Enhanced by standard ST (dl) Enhanced by SureShrink
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(b2)WGN noisy signal lOdB (c2) Enhanced by standard ST (d2) Enhanced by SureShrink

Figure 5-7 Spectrograms of si2242

Table 5-5 Subjective evaluation of standard threshold and SureShrink

Speech SNR ;npllt

Noise

Type

Noisy Speech Standard T SureShrink

SIG BAK ORL SIG BAK ORL SIG BAK ORL

Si2242

OdB WGN 4 1 2.572 2 2 1.796 4 2 2.938

MNSN 4 1 2.572 2 2 1.796 4 2 2.938

5dB WGN 4 2 2.938 2 3 2.162 4 3 3.304

MNSN 4 2 2.938 2 3 2.162 4 3 3.304

10 dB WGN 4 3 3.304 3 3 2.733 4 4 3.67

MNSN 4 3 3.304 3 3 2.733 4 4 3.67

5.3.2 Perceptual Wavelet Thresholding

The simulation o f this method was performed with 6-level PWT wavelet decomposition. 

Minimum 125 kHz bandwidth was achieved. Noise masking threshold was used to adjust 

the noise suppression. The results are shown in Figure 5-8 as below.

(a) Clean Signal (b) WGN noisy signal at 5dB (c) Enhanced by PWT
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(al) Clean Signal (bl) non-stationary noisy signal at 5dB (cl) Enhanced by PWT 

Figure 5-8 Spectrograms of perceptual wavelet thresholding

It can be seen from the spectrogram (c) and (c l) that most noises during the silent 

segments were removed. However, the speech components were distorted evidently. 

Especially, those abrupt cuts at the edge o f speech parts result in unexpected and sharp 

noise, which make the subjective effect quite bad as shown in Table5-6.

Another disadvantage o f this method is high computation complex. Complicated 

decomposition and processing steps make real-time speech enhancement even harder.

Table 5-6 Subjective evaluation of SureShrink and perceptual wavelet thresholding

Speech SNRinput

Noise

Type

Noisy Speech SureShrink PWT

SIG BAK ORL SIG BAK ORL SIG BAK ORL

Si2242

OdB WGN 4 1 2.572 4 2 2.94 2 2 1.79

MNSN 4 1 2.572 4 2 2.94 2 2 1.79

5dB WGN 4 2 2.938 4 3 3.304 3 3 2.73

MNSN 4 2 2.938 4 3 3.304 3 3 2.73

10 dB WGN 4 3 3.304 4 3 3.304 3 4 3.10

MNSN 4 3 3.304 4 3 3.304 3 4 3.10

68

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



5.3.3 Comparison of Adaptive Threshold Algorithms

In chapter IV, two types o f adaptive algorithms are introduced, the adaptive estimation 

and the adaptive adjuster. Four adaptive speech enhancement methods were discussed in 

detail. They are

1. Quantile-based Time-frequency Noise Estimate combined with standard soft 

threshold (QBNE)

2. Posteriori SNR Time-Adaptive Threshold (PSNRAT)

3. Smoothed Hard Thresholding with Aggravated Threshold Value (SHTAT)

4. Teager Energy Operator based Adaptive Threshold ( TEOAT)

Since the spectrogram is highly correlated to human subjective evaluation, the 

comparison in this group will primarily depend on it. Figure 5-9 illustrates the de-noising 

of 5dB WGN corrupted si2242, from a female speaker. It can be seen that the method of 

SHTAT (a) damage the speech signal too much. Although TEOAT (f) works gently, it is 

not satisfying with some evident distortion and weak de-noising result. Correspondingly, 

QBNE (c) and PSNRAT (d) show better performance with low-level distortion and 

effective de-noising. Comparing to the traditional SureShrink (g) algorithm, QBNE (c) 

removed much more noises, however, introduced noticeable residual musical noise and 

slight speech distortion. Some speech edge components had been cut as shown in 

spectrogram (c). PSNRAT (d) get an advantage over QBNE (c) o f remaining the details 

o f speech components though it resulted in slightly heavier residual noise.

(a) Clean Signal 
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(b) 5dB WGN corrupted si2242 (c) Enhanced by QBNE (d) Enhanced by PSNRAT

(e) Enhanced by SHTAT (f) Enhanced by TEOAT (g) Enhanced by SureShrink 

Figure 5-9 De-noising of 5dB WGN corrupted si2242

In Figure 5-10, the de-noising o f 5dB non-stationary noise corrupted sa2, from a male 

speaker, is shown. The similar results as those under WGN situation were obtained. 

Among all the four algorithms, QBNE (c) and PSNRAT (d) provided distinctly better de- 

noising result, over the SureShrink algorithm too. The former gives a clearer background 

but worse distortion, while the latter shows a better trade-off between the concern o f de- 

noising and reducing the speech distortion.

(a) Clean Signal
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(b) 5dB NSN corrupted sa2 (c) Enhanced by QBNE (d) Enhanced by PSNRAT

(e) Enhanced by SHTAT (f) Enhanced by TEOAT (g) Enhanced by SureShrink 

Figure 5-10 De-noising of 5dB non-stationary noise corrupted sa2

5.3.4 Comparison of Musical Noise Suppression Methods

Although QBNE and PSNRAT have better de-noising effect than the traditional standard 

method, noticeable residual noises are left. In this section, the four musical noise 

suppression methods introduced in chapter 4 are compared within a group. These four 

methods include Floor Construction, Adaptive Minimizing, proposed Adaptive 

Smoothing, Silent Segment Suppression combined with Adaptive Smoothing.

Both QBNE and PSNRAT are recruited.

For the QBNE based musical noise suppression, each simulation result from each method 

is shown in Figure 5-11. Obviously, musical noise suppression by proposed Adaptive 

Smoothing (e) is much more effective than floor construction and adaptive minimizing, 

maintaining the speech well and smoothed most musical noise. The musical noise 

suppression by silent segment suppression combined with Adaptive Smoothing (f) is
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obtained from suppressing the silent segment from the whole signal already processed by 

adaptive smoothing. There is an abrupt change between the speech and silent segment, 

though a certain amount o f Gaussian White noise has been added to the signal. This steep 

edge yields an annoying sound embed in the whole signal. In worse cases, the inaccurate 

voice activity detection may result in incorrect suppression o f speech parts.

(a) (b) (c)

(d) (e) (f)

Figure 5-11 Musical noise suppression of 5dB GWN corrupted si2242 based on QBNE 

(a) Clean Signal (b) Enhanced signal by PSNRAT (c) Musical noise suppression by Floor 

Construction (d) by Adaptive Minimizing (e) by proposed Adaptive Smoothing (f) by 

Silent Segment Suppression combined with Adaptive Smoothing

For the PSNRAT based musical noise suppression, the simulation similar results shown 

in Figure 5-12. Among the four methods, the proposed Adaptive Smoothing (e) yields 

best musical noise suppression result. There is more residual noise left because the 

PSNRAT brings heavier residual noise to this processing part. However, since the human 

auditory system is more sensitive to the speech distortion than to the background noise, 

PSNRAT still gets a little bit higher score than QBNE does, as shown in Table 5-7.
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Figure 5-12 Musical noise suppression of 5dB GWN corrupted si2242 based on PSNRAT 

(a) Clean Signal (b) Enhanced signal by PSNRAT (c) Musical noise suppression by Floor 

Construction (d) by Adaptive Minimizing (e) by proposed Adaptive Smoothing (f) by 

Silent Segment Suppression combined with Adaptive Smoothing

Table 5-7 Subjective evaluation of musical noise suppression by proposed adaptive smoothing

Noise Noisy Speech QBNE based PSNRAT based

Speech SNRlnput Type SIG BAK ORL SIG BAK ORL SIG BAK ORL

Si2242 5dB WGN 4 2 2.938 3 4 3.0987 4 3 3.304

5.3.5 Proposed Adaptive Wavelet Speech Enhancement System

The principle and structure o f the proposed optimized adaptive wavelet speech 

enhancement system was introduced in chapter IV. This section will focus on the 

comparison among the traditional standard soft thresholding, SureShrink, QBNE
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thresholding, PSNR thresholding, and the proposed system. Two typical noise cases are 

recruited, WGN and Babble (non-stationary).

i) WGN Environment

Figure 5-13 illustrates the waveforms o f the signals before and after the enhancement. It 

is obvious that (g) Enhanced signal by proposed system has a stronger effect o f removing 

background noises than the other methods do.

(a) Clean signal o f sx366

(b) Corrupted signal

(c) Enhanced signal by standard ST

(d) Enhanced signal by SureShrink

(e) Enhanced signal by QBNE thresholding
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(f) Enhanced signal by PSNR thresholding

(g) Enhanced signal by proposed system

Figure 5-13 Waveform comparison with GWN (SNRinput=5dB)

The spectrogram comparison is shown in Figure 5-14. Compared with (b) Corrupted 

signal, the proposed system (g) yielded a good de-noising result, w ith cleaner background 

than others. Although some speech distortion was introduced into the output signal, most 

major components were saved. Thus, the subjective evaluation o f the speech distortion, 

which will be discussed later, is close to that from the SureShrink processing.

(a) Clean Speech (sx366)

(b) Noisy Speech (White Noise, SNR=5dB)

(c) Enhanced Speech (Standard Soft T)
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(d) Enhanced Speech (SURE)

(e) Enhanced Speech (QBNE)

mmmmmtmmammm
4:“ l fc ' " “ ’i ! k ;  t M m T

» -  . a  *  ^ Iiesm m m ii

(f) Enhanced Speech (PSNR)

m m iMM * . ^  *  /

(g) Enhanced Speech (Proposed System)
i l ^ H mm
^  ■ j j .  ^  ^  • “ ' * •• ^

Figure 5-14 Spectrogram comparison with GWN (SNRinput=5dB)

The global SNR values for sentence sx366, corrupted by the WGN at a variety of 

SNRinput conditions from 0 dB to 15 dB, enhanced by these five methods, are illustrated 

in Figure 5-15. Curve yielded by optimized proposed system is staying higher than other 

curves when the SNRinput is at the range from OdB to 15dB. One exception is the point 

o f  OdB, but the output SN R  o f  the proposed system  is still very close to the best one, 

QBNE thresholding. When the SNRinput becomes better, the curves o f PSNR 

thresholding and SureShrink run closer. The simulation results indicate that the proposed 

system is more effective than the other methods when the input SNR is lower than 15dB. 

It can be observed that when the input SNR is low, like lower than 5dB, the optimized
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QBNE works effectively. But when the input SNR goes higher, especially when higher 

than 8dB, this method may result in a quite low output SNR.

Global SNR (White Noise)
14

12

8

6 -jl/ p^'
V '

4

2

00 5 10 15
White noisy SNRinput {«3B)

Figure 5-15 Global SNR output with GWN

Figure 5-16 illustrates the segmental SNR of the GWN noisy signal with SNRinput from 

OdB to 15dB. Obviously, the proposed system works best and yields the highest line.

segSNR {White Noise)
10

0

6

4

2

I0

-2

-4
~o

450 5 TO 15
WMe noise segStMnput (dB) 

Figure 5-16 segSNR output with GWN
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ii) Non-stationary noise environment

As introduced above, non-stationary noise shows a slow varying local SNR and 

frequency composition. The non-stationary noise presented in this section is Babble. 

Figure 5-17 illustrates the waveforms o f the signals before and after the enhancement. 

Similar to the results o f WGN de-noising, (g) Enhanced signal by the proposed system 

has a much stronger effect o f removing background noises than other method yield. In 

the mean time it performances well in preserving the speech components.

(a) Clean signal o f sx366

(b) Noisy Speech (Babble, SNR=0dB)

(c) Enhanced Speech (Standard Soft T)

(d) Enhanced Speech (SURE)

(e) Enhanced Speech (QBNE)
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(f) Enhanced Speech (PSNR)

(g) Enhanced Speech (Proposed System)

Figure 5-17 Waveform comparison with non-stationary noise (SNRinput=()dB)

The spectrograms in Figure 5-18 indicate that the proposed system works well in the non- 

stationary environment, suppressing the background noise effectively, and recovering 

most important speech components which were not overwhelmed by the noise. The low 

frequency noise is left in (c). It proves the shortcoming o f the standard soft thresholding. 

The result yielded from SureShrink algorithm has a blur speech part surrounded by the 

noises, which is not a satisfied enhancement effect.

(a) Clean signal o f sx366

(b) Noisy Speech (Babble, SNR=0dB)
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(c) Enhanced Speech (Standard Soft T)
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(f) Enhanced Speech (PSNR)

(g) Enhanced Speech (Proposed System)
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Figure 5-18 Spectrogram comparison with non-stationary noise (SNRinput=OdB)

The global SNR output (Figure 5-19) and segSNR output (Figure 5-20) with non- 

stationary noise also have the same tendency as those in the case o f GWN. The proposed 

system takes the advantage over the traditional standard soft thresholding and 

SureShrink at the range o f OdB to 15dB (SNRinput).
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Global SNR (Babble Noise)
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Figure 5-19 Global SNR output with non-stationary noise
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Figure 5-20 segSNR output with non-stationary noise

Other than objective measures, subjective evaluations derived from ITU-T 

recommendation P.835 were also adopted in this section. Table 5-6 shows the subjective 

evaluation scores o f the sentence sx366 corrupted by the WGN and babble noise at OdB, 

5dB, and lOdB SNRinput respectively. The optimized system has the highest scores in
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both noise environments with different SNRinput. It proves that the proposed system 

improves the perceptual speech enhancement evidently, comparing to the SureShrink.

Table 5-8 Subjective evaluation of SureShrink and proposed System

Noise Noisy Speech SureShrink Proposed System

Speech SNRinput Type SIG BAK ORL SIG BAK ORL SIG BAK ORL

OdB WGN 4 1 2.572 4 1 2.572 4 2 2.938

Babble 4 1 2.572 4 1 2.572 4 2 2.938

Sx366 5dB WGN 4 1 2.572 4 2 2.938 4 3 3.304

Babble 4 1 2.572 4 2 2.938 4 3 3.304

10 dB WGN 4 2 2.938 4 3 3.304 4 4 3.67

Babble 4 2 2.938 4 3 3.304 4 4 3.67
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CHAPTER VI 

6. CONCLUSION AND FUTURE WORK

The purpose o f this research is to summary and compare the latest wavelet de-noising 

algorithms, and to propose an optimal wavelet speech enhancement method. Chapter I 

and II introduced the basic research background and the problem, followed by Chapter III 

and IV discussing the principles o f five perceptual and adaptive methods, including four 

musical noise suppression methods as well. Three parts o f improvement were proposed.

A novel adaptive wavelet speech enhancement system was also introduced. In Chapter V 

the Matlab simulation was determined to produce the best results o f all the methods 

discussed in this thesis. The standard speech and noise database, TIMIT and Noise92 

were selected as the signal sources. Both stationary and non-stationary noise 

environments were considered. The comparison consisted o f subjective evaluation and 

several objective evaluation methods. Since it is highly correlated to subjective 

evaluation result, the spectrogram had been used as a major evaluation tool.

After large amounts o f simulation and comparison, the advantages and disadvantages of 

these methods have been presented.

■ Traditional Wavelet De-noising: To evaluate the standard methods, the simulation 

results o f Standard Soft Thresholding and SureShrink were compared first. It is clear 

that, the standard soft Thresholding removes a lot o f noise in both white noise and 

non-stationary noise environment, however, distorts the speech components badly in 

the whole spectrum due to the using o f universal threshold algorithm. In addition, 

since the thresholding is only performed at the detail parts on the decomposition tree, 

the low frequency noise is left in the output signal. SureShrink is adaptive to signal, 

and provides smoother thresholding results. In other word, the speech signal is 

preserved better. Although SureShrink is not powerful enough for noise removing, it
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shows a better performance in subjective evaluation. Thus, this method was picked as 

the benchmark o f the following comparison.

■ Perceptual Wavelet Thresholding (PWT): A perceptual time-frequency analysis 

model were designed to map the critical bands. This model has approximate center 

frequency and bandwidth values to the parameters o f auditory filter banks. The noise 

suppression in wavelet domain depends on a voice activity detector (VAD). The 

accuracy o f the VAD has a great impact on the performance o f this method. Because 

o f the inaccuracy o f the VAD, this method has led to an unsatisfied speech 

enhancement. Another noticeable disadvantage o f this method is complicated 

calculation.

■ Adaptive Thresholding: Within this group, four algorithms were discussed. The 

SHTAT (Smoothed Hard Thresholding with Aggravated Threshold) is a method 

depending on VAD as well. It has been proven that the aggravating standard 

threshold is not proper since the speech parts have been damaged too much.

TEO is a good indicator o f speech activity, useful for distinguishing the noise and 

speech components. However, the current algorithm o f TEOAT is not accurate 

enough and shows an unstable effect in different cases.

QBNE (Quantile-based Time-frequency Noise Estimate) performances well when the 

input SNR is lower than 5 dB, but worse when the background noise is weak. It 

reduces the residual noise evidently, however, over suppresses speech components 

due to universal statistic algorithm.

PSNRAT( Posteriori SNR Time-Adaptive Thresholding) performances well in 

tracking the local SNR. It yields more residual noise than QBNE does, but also 

reduces the speech distortion most effectively.
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It has been proven that the adaptive threshold algorithms work better than the 

traditional wavelet de-noising algorithms, especially under low SNR situation.

■ Musical Noise Suppression: The Floor Construction is simple but not effective. 

Adaptive Minimizing is time adaptive, but depending on the VAD, introducing errors 

in local noise estimate. Silent Segment Musical Noise Suppression was designed to 

remove all the noise in the silent segment, however, depending on the VAD. Thus, it 

takes a high risk o f cutting off the speech frames and introducing heavier musical 

noise. The new adaptive algorithm o f musical noise suppression based on the local 

energy analysis possesses the advantage o f time-adaptive algorithm, describing the 

properties o f the musical noise, has been proven effective when the input SNR is in 

the range o f OdB tol5dB.

Based on the above work, a new speech enhancement system using adaptive wavelet de- 

noising was proposed. Each step o f the standard wavelet thresholding was improved by 

optimized adaptive algorithms. The Quantile based adaptive noise estimate and the 

posteriori SNR based threshold adjuster are compensatory to each other. The combination 

of them has achieved a very good tradeoff between noise suppression and speech 

reserving, in both stationary and non-stationary noise environments. Another contribution 

of this paper is introducing a successful innovative musical noise analysis and 

suppression algorithm. The TEO based silent segments smoothing has also been 

demonstrated to increase the perceptual quality o f the output speech. The experimental 

results demonstrated the capability o f the proposed system in both stationary and non- 

stationary noise environments.

For the future work, TEO is a simple but effective technology worth for further study too. 

The idea o f local energy analysis could be used to distinguish the speech signal and noise 

signal. In addition, the performance o f the quantile-based time-frequency noise estimate 

in a very low SNR environment is also impressive. We can infer that this statistical 

algorithm could be modified to meet the request o f higher SNR environment. An adaptive
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quantile-based noise estimator can probably help us to achieve more accurate noise 

suppression.

One limit o f the wavelet thresholding is that it cannot be exactly accurate. It assumes that 

the noise coefficients have smaller abstract values than the speech coefficients, but it may 

not be the truth in real life, especially in a low SNR environment. Extracting a satisfying 

estimate from the corrupted signal is always very hard. Therefore, incorrect estimate 

leads to improper results. If  the goal of the speech processing is much higher perceptual 

quality, more aspects o f human speech characteristics have to be considered, and more 

complicated speech models should be built up to recover the speech from the noise mixed 

signal.
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