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Low Rank and Sparsity Analysis Applied to Speech
Enhancement via Online Estimated Dictionary

Pengfei Sun, Student Member, and Jun Qin, Member, IEEE

Abstract—In this letter, we propose an online estimated dic-
tionary based single-channel speech enhancement algorithm,
which focuses on low-rank and sparse matrix decomposition.
In the proposed algorithm, a noisy speech spectrogram can be
decomposed into low rank background noise components and an
activation of the online speech dictionary, on which both low-rank
and sparsity constraints are imposed. This decomposition takes
the advantage of local estimated exemplar’s high expressiveness
on speech components and also accommodates nonstationary
background noise. The local dictionary can be obtained through
estimating the speech presence probability (SPP) by applying
Expectation-Maximal algorithm, in which a generalized Gamma
prior for speech magnitude spectrum is used. The proposed
algorithm is evaluated using signal-to-distortion ratio (SDR), and
perceptual evaluation of speech quality (PESQ). The results show
that the proposed algorithm achieves significant improvements
at various SNRs when compared to four other speech enhance-
ment algorithms, including improved Karhunen-Loeve transform
(KLT) approach, SPP based MMSE (MMSE-SPP), NMF based
RPCA (NMF-RPCA), and RPCA.

Index Terms—speech enhancement, online speech dictionary,
low rank, sparsity, speech presence probability.

I. INTRODUCTION

S INGLE channel speech enhancement is a key issue
in speech processing, aiming to improve the perfor-

mance of speech communication systems in noisy environ-
ments. Recently-developed robust principal component anal-
ysis (RPCA) has been shown effective in separating the
speech components from background noise [4], [14], [16]. This
approach decomposes the spectrogram matrix as the sum of
a sparse matrix and a low-rank matrix, representing speech
and noise, respectively [15]. Based on the observation that
unpredictable background noise is often less spectrally diverse
than the foreground speech, it regards that sparse matrix
represents the speech components while noise is included in
the low rank matrix [1]. Because the activation of the low-
rank components can be temporally variable, this unsupervised
decomposition can accommodate nonstationary noise [13].
However, the targeted speech may also contain low rank
components described by limited spectral bases, and these
low rank speech components can be wrongly decomposed
into noise matrix. Thus unsupervised decomposition may not
provide accurate separation of foreground and background in
certain circumstance, e.g., nonstationary noise [11].
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To avoid simply using sparsity to characterize speech spec-
trogram, incorporating the knowledge about the likely form
of the targeted speech has been introduced [2], [11]. Using
nonnegative matrix factorization (NMF) technique, pre-learned
explicit speech dictionary [3], [12] based on large dataset
can improve the performance of RPCA. The advantage of
the offline-trained global dictionary based RPCA approach
is its ability to maintain the flexibility to distinguish speech
and noise, and also avoid wrongly decomposing the low-rank
speech components into noise subspace. However, offline-
learned global basis spectra may either lead to a non-’sparse’
activation matrix or wrongly interpret background noise as
speech. This is intrinsically due to overfitting caused by limited
local speech eigenvectors and shared basis spectra between
speech and noise [3]. Recent study [10] indicates that exemplar
based dictionary can be more effective on covering speech
spectra convex hull. In addition, online trained dictionary [3]
presents a solution to achieve higher noise reduction whereas
lower speech distortion. To exploit the advantages of both, a
natural idea is to develop an online learned exemplar-structure
dictionary.

In this study, we propose an online estimated dictionary
based low rank and sparse decomposition (LDLSD) algorithm.
The developed local dictionary estimation inherits the merit of
both exemplar’s efficient explanation on the speech manifold
and adaptive speech subspace that alleviating the immediate
speech distortion [4]. In LDLSD algorithm, a semi-supervised
Expectation-Maximum (EM) algorithm based on a generalized
Gamma speech distribution model is used to calculate the
speech presence probability (SPP), and further obtain the
local estimated exemplar. Moreover, the activation matrix of
speech is optimized with respect to both low rank and sparsity
constraints to suppress the noise entries mixed in the exemplar.

II. PROPOSED SPEECH ENHANCEMENT METHOD

A. Model

RPCA related approaches generally decompose an input
spectrogram matrix Y ∈ RN×M as the summation of a low-
rank matrix L reflecting less spectrally diverse noise, and a
sparse matrix S, representing the sparsity of speech energy
as shown in (1). Outlying entries E are frequently added to
provide a relaxed estimation on the noise residuals [1], [14].

min
S,L

‖S‖1 + γl‖L‖∗ + γe‖E‖2F

s.t. Y = S + L+ E
(1)

‖ · ‖∗ is the nuclear norm of the matrix. The sparsity of
S is measured by the L1 norm ‖ · ‖1, and the Frobenious
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norm is used to represent the noise residual. Based on the
observation that speech spectrogram is sparsity in short time
period but with repeated structures (i.e., low-rank) within
several consecutive segments, S in (1) can be replaced by Y1S,
where as an explicit dictionary of speech spectral templates,
Y1 is multiplied by a set of temporal activation S. Generally,
Y1 is a global offline trained dictionary [2]. However, such
kind of final learned dictionary may lose focus on the inter-
mediate estimation of the local speech, and accordingly, is
not necessarily good enough to explain current speech frame.
Instead, an online speech exemplar can be estimated based on
SPP given by

Y1 = Y � P (2)

� refers to element-wise product of matrices, and P is the
SPP, for each frequency bin defined as

Pj = p {z1 | yj , λ}

=
p(yj | z1, λ)p(z1)∑n=1
n=0 p(yj | zn, λ)p(zn)

=
p(yj | z1, λ)w1∑n=1
n=0 p(yj | zn, λ)wn

(3)

where index n ∈ {1, 0} represents the case of speech present
and absent, respectively. wn is the corresponding the a priori
probability that (

∑
n wn = 1). λ , {µn, σn, wn} is the

parameter set (i.e., mean, variance, and priori) for the statistic
models of speech and noise. Considering noise obeys complex
Gaussian distribution, p(yj | z0, λ) should be Rayleigh distri-
bution, and specifically, p(yj | z1, λ) is assumed as generalized
Gamma distribution given by [6]

p(yj | z0, λ) =
yj
δ2
exp{−y2j /2δ2} (4)

p(yj | z1, λ) =
βν

Γ(ν)
yν−1
j exp{−βyj} (5)

where
δ = µ0

√
2/π;β = µ1/σ

2
1 ; ν = µ2

1/σ
2
1 (6)

Usually, the local exemplar Y1 promises a sparse activation
matrix S as the representation of individual speech segment
from the same subspace. However, in low SNR scenario,
the estimated local exemplar will be highly corrupted by
noise components, and such kind of speech ’bases’ is often
overcomplete. Hence there can be many feasible solutions to
Y = Y1S+L+E. To address this issue, both the most sparse
and lowest rank criteria are imposed on S. The main consid-
eration is that in the estimated dictionary, speech components
have larger or at least comparable magnitudes than noise
entries, and the low-rank constraint imposed on S obviously
utilizes the similar frequency structures in speech spectral
bases. Comparatively, the residual noises in the estimated
dictionary can be regarded as sparse components. Thus, we
seek a representation S by solving the following optimization
problem

min
S,L

‖S‖∗ + β‖A‖1 + γl‖L‖∗ + γe‖E‖2,1

s.t. Y = Y1S + L+ E,S = A.
(7)

where an auxiliary variable A is introduced to make the
objective function separable. ‖E‖2,1 =

∑M
i=1

√∑N
j=1E

2
ij is

called the `2,1 norm. The `2,1 norm encourages the columns
of E to be zero, which assumes that the outlying entries are
”sample-specific”.

B. Algorithm

For each row of spectrogram matrix, the probability density
function (PDF) is given by

p(y | λ) =
M∏
j=1

p(yj | λ) (8)

where p(yj |λ) =
∑
zn
p(yj |zn, λ)p(zn). The parameter set

λ is estimated by maximizing the above PDF function. The
following are the typical EM re-estimation formulas

ŵ0,n =
1

M

M∑
j=1

p(zn | yj , λ
′

0) (9)

µ̂0,n =

∑M
j=1 yjp(zn | yj , λ

′

0)

Mŵ0,n
(10)

σ̂2
0,n =

∑M
j=1(yj − µ̂0,n)2p(zn | yj , λ

′

0)

Mŵ0,n
(11)

where p(zn|yj , λ
′

0) is obtained through (3)-(6) with the old
parameter set λ

′

0. λ̂0 ∼ {ŵ0,n, µ̂0,n, σ̂
2
0,n} denotes the new

parameter set re-estimated from λ
′

0. In the next iteration, λ
′

0

is replaced by λ̂0. The initial parameters are obtained by K-
means, and the speech model parameter ν is fixed if the mean
values of speech and noise components are too close. This
iteration continues until EM algorithm converges. Based on the
obtained local SPP, an online updated schematic is proposed
[17] as described in Algorithm 1.

Comparing with conventional Gaussian speech model, the
generalized Gamma distribution is more restrictive on noise
basis spectra and can accurately pick up the speech compo-
nents [5]. In addition, the online update scheme allows the
parameter set to be highly descriptive on local distribution. To
solve (7), a recently developed method called the linearized
alternating direction method with adaptive penalty (LADMAP)
has been applied to obtain the optimization result [18]. The
augmented Lagrangian function of (7) is

L(S,A,L,E, ρ,∆1,∆2)

= ‖S‖∗ + β‖A‖1 + γl‖L‖∗ + γe‖E‖2,1

+
ρ

2
‖Y − Y1S − L− E +

∆1

ρ
‖2F +

ρ

2
‖S −A+

∆2

ρ
‖2F

(12)

where ∆1 and ∆2 are Lagrangian multipliers. With some
algebra, the updating schemes are outlined in Algorithm 2. Θ,
SR, and Ω are the singular value thresholding, shrinkage, and
the `2,1 minimization operator, respectively, and η = ‖Y1‖22
[18].
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Algorithm 1 Online estimated SPP by EM algorithm
Input:speech spectrogram matrix Y ∈ RN×M

Initialize:Set maxIter, tolerance ε, threshold θi, where Step1-3
is conducted in ith row, i≤ N .

Step 1 Pre-classification
1: Initialize λ

′

0 = {µ′0,n, σ
′

0,n, w
′

0,n} by K-means.
2: if |µ′0,1 − µ

′

0,0| ≤ θi then
3: Fixed ν;
4: end if

Step 2 EM based SPP
5: while ‖λ̂0 − λ

′

0‖ ≥ ε or (k ≤ maxIter) do
6: E-step : Calculate the expectation PDF in (8) by (3)-(6)
7: M-Step: Calculate the new parameter set λ̂0 =

{ŵ0,n, µ̂0,n, σ̂
2
0,n} by (9)-(11), and λ

′

0 ← λ̂0.
8: end while

Step 3 Online updated SPP
9: Input: λ̂0 → λj(j ≤M) and parameter α

10: update λ for each new input yj(j > M )

wj,n = αwj−1,n + (1−α)p(zn | yj , λj−1)

µj,n = α
wj−1,nµj−1,n

wj,n
+ (1− α)

p(zn | yj , λj−1)yj
wj,n

σ2
j,n = α

wj−1,nσ
2
j−1,n

wj,n

+(1− α)
p(zn | yj , λj−1)(yj − µj,n)2

wj,n

Output:SPP matrix Pij = p {z1 | yij , λ}

III. EXPERIMENTAL EVALUATION

The noisy speech signals were synthesized by adding speech
samples to different types of noises at various input SNRs(i.e.,
-10, -5, 0, 5, and 10 dB). Thirty speech samples were selected
from NOIZEUS database, and 30 were randomly selected from
IEEE wide band speech dataset [9]. Nine different noise sam-
ples were used, including six noises (i.e., car, babble, airport,
exhibition, restaurant, and train) from AURORA database,
two simulated noises (i.e., Gaussian and pink noise), and one
jackhammer noise sample from [9]. All signals were resampled
to 8 kHz sampling rate, and the spectrograms were calculated
with a window length of 32 ms, and a hop of 10 ms. The
performance of the proposed LDLSD algorithm was evaluated
by comparing with four other algorithms, including one con-
ventional subspace approach (i.e., KLT [7]), and three state-
of-the-arts (i.e.,MMSE-SPP [5], NMF-RPCA [2], and RPCA
[8]). In NMF-RPCA algorithm, the speech dictionary Y1 was
learned from the spectrograms of all 60 speech utterances used
in this study. Sparse NMF with a generalized KL-divergence
[2] was used to obtain the dictionary, which consisted of 300
bases. In other words, 5 basis vectors were extracted for each
speech utterance.

An intuitive comparison of the improved speech spectro-
gram by the proposed LDLSD and two RPCA based algo-
rithms has been shown in Fig.1. For NMF-RPCA, the artifi-
cial frequency components can be found around 2.7 second
(as circled in Fig.1c). It indicates that the global dictionary

Algorithm 2 Proposed model to solve problem (7)
Input:Speech spectrum matrix Y ∈ RN×M , estimated dictio-
nary Y1, parameters γl > 0 and γe > 0, ρ0 > 0, and µ > 1.
Initialize:Set maxIter, and tolerance ε False. Initialize S0, A0,
L0, E0 and ∆0 to zero.

1: while ‖Y −Y1Sk−Lk−Ek‖F /‖Y ‖F ≥ ε or k ≤ maxIter)
do

2: Update Sk+1, Ak+1, Lk+1, Ek+1:

Sk+1 =Θ 1
ηρk

([Y T1 (Y − Y1Sk − Lk − Ek +
∆1,k

ρk
)−

(Sk −Ak +
∆2,k

ρk
)]/η + Sk)

Ak+1 =SRβρ−1
k

(Sk+1 +
∆2,k

ρk
)

Lk+1 =Θ γl
ρk

(Y − Y1Ck+1 − Ek +
∆1,k

ρk
)

Ek+1 =Ω γe
ρk

(Y − Y1Sk+1 − Lk+1 +
∆1,k

ρk
)

3: Update the Lagrangian multipliers:

∆1,k+1 = ∆1,k+1 + ρk(Y − Y1Sk+1 − Lk+1 − Ek+1)

∆2,k+1 = ∆2,k+1 + ρk(Sk+1 −Ak+1)

ρk+1 = µρk.

4: end while
Output:Optimal active coefficient matrix S∗ = Sk

bases may lead to an overfitting situation. In addition, the
overlap of speech and noise basis convex hull can cause
speech-similar-structure noise components(as circled around
1 second in Fig.1c). For RPCA, low rank speech spectrum
ingredients are very likely to be wrongly decomposed into
noise subspace (as circled at the frequency band 0.5-1 kHz
in Fig.1f). Comparatively, the proposed LSLSD demonstrates
better decomposition results shown in Fig.1g and 1h. The
majority of noise components are correctly decomposed into
L. Moreover, the speech matrix Y1S in Fig.1g includes most
low frequency components, and has least signal distortions
than the speech matrix obtained by NMF-RPCA and RPCA
algorithms in Fig.1c and 1e.

Two metrics, signal-to-distortion ratio (SDR) calculated
by BSS EVAL package and perceptual evaluation of speech
quality (PESQ), are used to evaluate speech enhancement
algorithms. Figure 2a shows that the averaged SDRs of the
enhanced speeches by applying five different algorithms. The
proposed LDLSD algorithm demonstrates the highest SDRs
at all SNRs (-10, -5, 0, 5, and 10 dB). It indicates that
the proposed algorithm can more effectively separate speech
components from background noises. In addition, compared
with NMF-RPCA, the LDLSD has a comparable averaged
SDR at SNR = -10 dB, but demonstrates significantly higher
averaged SDRs than the NMF-RPCA at other SNRs (i.e., -5,
0, 5, and 10 dB).

The PESQ scores of enhanced speeches by five algorithms
are shown in Fig.2b. The LDLSD algorithm shows signifi-
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Fig. 1: The spectrograms of clean speech (a), noisy speech
with a pink noise (SNR = 0dB) (b), speech matrixes obtained
by NMF-RPCA (c), RPCA (e), and the proposed LDLSD (g)
algorithms, and noise matrixes obtained by NMF-RPCA (d),
RPCA(f), and LDLSD (h) algorithms.

Fig. 2: Averaged SDR (a) and PESQ (b) for enhanced speech
by applying five algorithms, including NMF-RPCA, KLT,
MMSE-SPP, the proposed LDLSD, and RPCA at various
SNRs (-10 dB < SNRs < 10 dB), and averaged across eight
different types of noise.

cantly higher PESQ improvements than other four algorithms,
averagely 0.2 higher than NMF-RPCA, 0.3 higher than RPCA,
and 0.4 higher than KLT. Especially at low SNRs (-10 and -5

dB), the low rank and sparse criteria imposed on the activation
matrix S help achieve a better performance than NMF-RPCA
algorithm.

In addition, the jackhammer noise, as a highly transient
noise, is applied to evaluate the performance of the proposed
algorithm. Figure 3 shows the SDRs and PESQ of the en-
hanced speeches from a jackhammer noise background at
various SNRs by five algorithms. The LDLSD demonstrates
an obvious advantage over other four algorithms on both
two metrics. In magnitude spectra space, the transient noises
(e.g., jackhammer noises) and global speech dictionary may
be partially overlapped, for example the impulsive components
are quite similar to the speech fricatives. This can cause an
ambiguity in speech and noise separation in NMF-RPCA.
Comparatively, the proposed LDLSD algorithm has two obvi-
ous merits: 1) the local estimated exemplar can help to exclude
most of the transient features; 2) the low rank constraint
imposed on the activation matrix S can also reduce the impact
of transient noise residuals in the online estimated dictionary
Y1.
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Fig. 3: Averaged SDR (a) and PESQ (b) for enhanced speech
corrupted by transient jackhammer noises, by applying five
algorithms.

IV. CONCLUSION

In this letter, we investigate how the SPP based local
speech dictionary can be employed in the subspace framework
to obtain the low rank and sparse components of speech
spectrogram for noisy speech enhancement. A local dictionary
based low rank and sparsity decomposition has been proposed
to separate the noise and speech components. An online
updated EM algorithm is introduced to obtain SPP matrix
according to the input noisy speech matrix. By multiplying
this SPP matrix element-wise, the broad bases in the speech
subspace can be reduced, which consequently improves the
accuracy of local speech dictionary. Moreover, the online
estimated dictionary is sufficient enough in basis subspace
to avoid speech distortion. Specifically, the most sparsity and
lowest rank criteria are both imposed to the activation matrix
to achieve a noise-resistant decomposition. The results show
that LDLSD algorithm obtains significant improvements at
various SNRs w.r.t SDR and PESQ, compared with four
algorithms, including KLT, MMSE-SPP, NMF-RPCAR and
PCA. The future work of this study includes investigation on
noise constraints, such as noise variance and noise modeling.
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