60 research outputs found

    TI2BioP — Topological Indices to BioPolymers. A Graphical– Numerical Approach for Bioinformatics

    Get PDF
    We developed a new graphical–numerical method called TI2BioP (Topological Indices to BioPolymers) to estimate topological indices (TIs) from two-dimensional (2D) graphical approaches for the natural biopolymers DNA, RNA and proteins The methodology mainly turns long biopolymeric sequences into 2D artificial graphs such as Cartesian and four-color maps but also reads other 2D graphs from the thermodynamic folding of DNA/RNA strings inferred from other programs. The topology of such 2D graphs is either encoded by node or adjacency matrixes for the calculation of the spectral moments as TIs. These numerical indices were used to build up alignment-free models to the functional classification of biosequences and to calculate alignment-free distances for phylogenetic purposes. The performance of the method was evaluated in highly diverse gene/protein classes, which represents a challenge for current bioinformatics algorithms. TI2BioP generally outperformed classical bioinformatics algorithms in the functional classification of Bacteriocins, ribonucleases III (RNases III), genomic internal transcribed spacer II (ITS2) and adenylation domains (A-domains) of nonribosomal peptide synthetases (NRPS) allowing the detection of new members in these target gene/protein classes. TI2BioP classification performance was contrasted and supported by predictions with sensitive alignment-based algorithms and experimental outcomes, respectively. The new ITS2 sequence isolated from Petrakia sp. was used in our graphical–numerical approach to estimate alignment-free distances for phylogenetic inferences. Despite TI2BioP having been developed for application in bioinformatics, it can be extended to predict interesting features of other biopolymers than DNA and protein sequences. TI2BioP version 2.0 is freely available from http://ti2biop.sourceforge.net/

    Singlet Oxygen Generation by Porphyrins and Metalloporphyrins Revisited: a Quantitative Structure-property Relationship (QSPR) Study

    Get PDF
    state followed by formation of singlet oxygen (1O2), which is a highly reactive species and mediates various oxidative processes. The design of advanced sensitizers based on porphyrin compounds have attracted significant attention in recent years. However, it is still difficult to predict the efficiency of singlet oxygen generation for a given structure. Our goal was to develop a quantitative structure-property relationship (QSPR) model for the fast virtual screening and prediction of singlet oxygen quantum yields for pophyrins and metalloporphyrins. We performed QSPR analysis of a dataset containing 32 compounds, including various porphyrins and their analogues (chlorins and bacteriochlorins). Quantum-chemical descriptors were calculated using Density Functional Theory (DFT), namely B3LYP and M062X functionals. Three different machine learning methods were used to develop QSPR models: random forest regression (RFR), support vector regression (SVR), and multiple linear regression (MLR). The optimal QSPR model «structure – singlet oxygen generation quantum yield» obtained using RFR method demonstrated high determination coefficient for the training set (R2 = 0.949) and the highest predicting ability for the test set (pred_R2 = 0.875). This proves that the developed QSPR method is realiable and can be directly applied in the studies of singlet oxygen generation both for free base porphyrins and their metal complexes. We believe that QSPR approach developed in this study can be useful for the search of new poprhyrin photosensitizers with enhanced singlet oxygen generation ability

    Modeling of the Acute Toxicity of Benzene Derivatives by Complementary QSAR Methods

    Get PDF
    A data set containing acute toxicity values (96-h LC50) of 69 substituted benzenes for fathead minnow (Pimephales promelas) was investigated with two Quantitative Structure- Activity Relationship (QSAR) models, either using or not using molecular descriptors, respectively. Recursive Neural Networks (RNN) derive a QSAR by direct treatment of the molecular structure, described through an appropriate graphical tool (variable-size labeled rooted ordered trees) by defining suitable representation rules. The input trees are encoded by an adaptive process able to learn, by tuning its free parameters, from a given set of structureactivity training examples. Owing to the use of a flexible encoding approach, the model is target invariant and does not need a priori definition of molecular descriptors. The results obtained in this study were analyzed together with those of a model based on molecular descriptors, i.e. a Multiple Linear Regression (MLR) model using CROatian MultiRegression selection of descriptors (CROMRsel). The comparison revealed interesting similarities that could lead to the development of a combined approach, exploiting the complementary characteristics of the two approaches

    An Alignment-Free Approach for Eukaryotic ITS2 Annotation and Phylogenetic Inference

    Get PDF
    The ITS2 gene class shows a high sequence divergence among its members that have complicated its annotation and its use for reconstructing phylogenies at a higher taxonomical level (beyond species and genus). Several alignment strategies have been implemented to improve the ITS2 annotation quality and its use for phylogenetic inferences. Although, alignment based methods have been exploited to the top of its complexity to tackle both issues, no alignment-free approaches have been able to successfully address both topics. By contrast, the use of simple alignment-free classifiers, like the topological indices (TIs) containing information about the sequence and structure of ITS2, may reveal to be a useful approach for the gene prediction and for assessing the phylogenetic relationships of the ITS2 class in eukaryotes. Thus, we used the TI2BioP (Topological Indices to BioPolymers) methodology [1], [2], freely available at http://ti2biop.sourceforge.net/ to calculate two different TIs. One class was derived from the ITS2 artificial 2D structures generated from DNA strings and the other from the secondary structure inferred from RNA folding algorithms. Two alignment-free models based on Artificial Neural Networks were developed for the ITS2 class prediction using the two classes of TIs referred above. Both models showed similar performances on the training and the test sets reaching values above 95% in the overall classification. Due to the importance of the ITS2 region for fungi identification, a novel ITS2 genomic sequence was isolated from Petrakia sp. This sequence and the test set were used to comparatively evaluate the conventional classification models based on multiple sequence alignments like Hidden Markov based approaches, revealing the success of our models to identify novel ITS2 members. The isolated sequence was assessed using traditional and alignment-free based techniques applied to phylogenetic inference to complement the taxonomy of the Petrakia sp. fungal isolate

    MI-NODES multiscale models of metabolic reactions, brain connectome, ecological, epidemic, world trade, and legal-social networks

    Get PDF
    [Abstract] Complex systems and networks appear in almost all areas of reality. We find then from proteins residue networks to Protein Interaction Networks (PINs). Chemical reactions form Metabolic Reactions Networks (MRNs) in living beings or Atmospheric reaction networks in planets and moons. Network of neurons appear in the worm C. elegans, in Human brain connectome, or in Artificial Neural Networks (ANNs). Infection spreading networks exist for contagious outbreaks networks in humans and in malware epidemiology for infection with viral software in internet or wireless networks. Social-legal networks with different rules evolved from swarm intelligence, to hunter-gathered societies, or citation networks of U.S. Supreme Court. In all these cases, we can see the same question. Can we predict the links based on structural information? We propose to solve the problem using Quantitative Structure-Property Relationship (QSPR) techniques commonly used in chemo-informatics. In so doing, we need software able to transform all types of networks/graphs like drug structure, drug-target interactions, protein structure, protein interactions, metabolic reactions, brain connectome, or social networks into numerical parameters. Consequently, we need to process in alignment-free mode multitarget, multiscale, and multiplexing, information. Later, we have to seek the QSPR model with Machine Learning techniques. MI-NODES is this type of software. Here we review the evolution of the software from chemoinformatics to bioinformatics and systems biology. This is an effort to develop a universal tool to study structure-property relationships in complex systems

    Graph theory-based sequence descriptors as remote homology predictors

    Get PDF
    Indexación: Scopus.Alignment-free (AF) methodologies have increased in popularity in the last decades as alternative tools to alignment-based (AB) algorithms for performing comparative sequence analyses. They have been especially useful to detect remote homologs within the twilight zone of highly diverse gene/protein families and superfamilies. The most popular alignment-free methodologies, as well as their applications to classification problems, have been described in previous reviews. Despite a new set of graph theory-derived sequence/structural descriptors that have been gaining relevance in the detection of remote homology, they have been omitted as AF predictors when the topic is addressed. Here, we first go over the most popular AF approaches used for detecting homology signals within the twilight zone and then bring out the state-of-the-art tools encoding graph theory-derived sequence/structure descriptors and their success for identifying remote homologs. We also highlight the tendency of integrating AF features/measures with the AB ones, either into the same prediction model or by assembling the predictions from different algorithms using voting/weighting strategies, for improving the detection of remote signals. Lastly, we briefly discuss the efforts made to scale up AB and AF features/measures for the comparison of multiple genomes and proteomes. Alongside the achieved experiences in remote homology detection by both the most popular AF tools and other less known ones, we provide our own using the graphical–numerical methodologies, MARCH-INSIDE, TI2BioP, and ProtDCal. We also present a new Python-based tool (SeqDivA) with a friendly graphical user interface (GUI) for delimiting the twilight zone by using several similar criteria.https://www.mdpi.com/2218-273X/10/1/2

    Modeling of the acute toxicity of benzene derivatives by complementary QSAR methods

    Get PDF
    A data set containing acute toxicity values (96-h LC50) of 69 substituted benzenes for fathead minnow (Pimephales promelas) was investigated with two Quantitative Structure- Activity Relationship (QSAR) models, either using or not using molecular descriptors, respectively. Recursive Neural Networks (RNN) derive a QSAR by direct treatment of the molecular structure, described through an appropriate graphical tool (variable-size labeled rooted ordered trees) by defining suitable representation rules. The input trees are encoded by an adaptive process able to learn, by tuning its free parameters, from a given set of structureactivity training examples. Owing to the use of a flexible encoding approach, the model is target invariant and does not need a priori definition of molecular descriptors. The results obtained in this study were analyzed together with those of a model based on molecular descriptors, i.e. a Multiple Linear Regression (MLR) model using CROatian MultiRegression selection of descriptors (CROMRsel). The comparison revealed interesting similarities that could lead to the development of a combined approach, exploiting the complementary characteristics of the two approaches
    corecore