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Abstract 

Porphyrins and metalloporphyrins are used as photosensitizers in photocatalysis, photodynamic 

therapy (PDT), disinfection, degradation of persistent pollutants and other applications. 

Their mechanism of action involves intersystem crossing to triplet excited state followed 

by formation of singlet oxygen (1O2), which is a highly reactive species and mediates various 

oxidative processes. The design of advanced sensitizers based on porphyrin compounds have 

attracted significant attention in recent years. However, it is still difficult to predict the efficiency 

of singlet oxygen generation for a given structure. Our goal was to develop a quantitative 

structure-property relationship (QSPR) model for the fast virtual screening and prediction of 

singlet oxygen quantum yields for pophyrins and metalloporphyrins. We performed QSPR 

analysis of a dataset containing 32 compounds, including various porphyrins and their analogues 

(chlorins and bacteriochlorins). Quantum-chemical descriptors were calculated using Density 

Functional Theory (DFT), namely B3LYP and M062X functionals. Three different machine 

learning methods were used to develop QSPR models: random forest regression (RFR), support 

vector regression (SVR), and multiple linear regression (MLR). The optimal QSPR model 

«structure – singlet oxygen generation quantum yield» obtained using RFR method demonstrated 

high determination coefficient for the training set (R2 = 0.949) and the highest predicting ability 

for the test set (pred_R2 = 0.875). This proves that the developed QSPR method is realiable and 
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can be directly applied in the studies of singlet oxygen generation both for free base porphyrins 

and their metal complexes. We believe that QSPR approach developed in this study can be 

useful for the search of new poprhyrin photosensitizers with enhanced singlet oxygen generation 

ability. 

Keywords: porphyrins; photosensitization; singlet oxygen; Quantitative Structure-Property 

Relationship; machine learning. 
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1. Introduction 

Organic photosensitizers, efficiently forming long-living triplet excited states and 

singlet oxygen (1O2), found applications in various fields of technology, e.g. 

photocatalysis, disinfection, photodynamic therapy (PDT) and degradation of persistent 

pollutants [1]. In recent years there has been a growing number of studies devoted to 

synthesis and photophysical investigation of novel photosensitizers [2]. However, despite 

a great number of papers on this topic it is still challenging to design a photosensitizer 

with predetermined photophysical parameters, in particular absorption in a target region 

of spectrum, high triplet excited state yield and long lifetime. For this reason, 

development of structure-activity relationships for predicting photosensitizing ability of 

organic molecules is crucially important. 

Porphyrins represent a unique class of organic photosensitizers due to a 

combination of easily controllable photophysical properties and synthetic accessibility 

[3]. Porphyrins have multiple applications including drug delivery [4,5], bioimaging 

[6,7], and non-linear optics [8,9] to name a few. One of the most intriguing properties of 

porphyrins is their ability to produce singlet oxygen with high quantum yield under 

visible light irradiation, which is used for the treatment of skin diseases such as psoriasis 

[10], port-wine stains [11], as well as different types of cancer like mycosis fungoides (a 

type of a cutaneous T-cell lymphoma) [12], malignant mesothelioma [13], glioma [14], 

brain tumor [15], fibrosarcoma [16], colorectal cancer [17], osteosarcoma [18]. 

Porphyrins and metalloporphyrins are used in antimicrobial PDT [19-21]. Moreover, 

some of the photosensitizers are used for the photodynamic treatment of such skin 

diseases as vitiligo, psoriasis, etc. 

 In cells, porphyrins may participate in photooxidation reactions of electron donors 

(nucleic acids, peptides, lipids, and other biomolecules). This type of reactions relate to 

type I photooxidation mechanism: 

 P (S0) → 1P* → 3P*                                                        (eq. 1)  

3P* + D → P•- + D•+                                                        (eq. 2) 

Radical-anion of the porphyrin (P•-) may also transfer electron to O2 with formation of 

superoxide-anion radical O2•
-: 

P•- + O2 → P + O2•
-                                                          (eq. 3) 

Alternatively, reactive oxygen species (ROS), e.g. singlet oxygen is produced according 

to type II photooxidation mechanism: 

3P* + O2 → 1O2 + P                                                          (eq. 4)  
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As one can see both types of photooxidation reactions depend on the triplet state 

formation. We may see that an efficient porphyrin photoagent possesses: 1) good 

penetration into the cells; 2) high absorption coefficient in the red part of the visible 

spectrum; 3) high triplet state quantum yield; 4) long triplet state lifetimes; 5) high ROS 

generation efficiency, in particular, high quantum yield of singlet oxygen generation (Φ∆). 

The parent compound of porphyrins, porphine (structure I, Fig. 1), exhibits 

efficient intersystem crossing (ISC). Chemical modification of porphine scaffold allows to 

optimize its properties for practical applications. For instance, chlorin (II) and bacteriochlorin 

(III) derivatives possess intense absorption in the near-IR window of tissue and high values of 

ΦΔ, that makes them ideal photsensitizers [22]. Introduction of peripheral substituents into meso 

and  positions of the macrocycle can be used to modulate the wavelength of absorption maxima 

within the therapeutic window and tune the solubility. However, it is hard to predict the effect of 

substituents on ISC and in some cases functionalization (e.g. with strong electron accepting 

groups) can lead to reduced triplet state yields and lifetimes [23]. 

 

Fig. 1. a) Porphine (I), chlorin (II) and bacteriochlorin (III) scaffolds. b) General 

structures of photosensitizers investigated in this work.  

Quantitive Structure-Activity Relationship (QSAR) models are commonly used for 

the prediction of absorption, distribution, metabolism, excretion (ADME), toxicity, and 

selectivity towards certain cells in pharmacokinetics. To our knowledge QSAR models 

for the prediction of phototoxicity and for 1O2 generation quantum yield prediction are 
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rare. However, earlier we showed that Quantitive Structure-Property Relationship 

(QSPR) method may be used for the prediction of singlet oxygen generation quantum 

yield for organic sensitizers [24,25]. 

The quantum yield of singlet oxygen generation Φ∆ is a ratio between the amount of 

generated 1O2 molecules and the quantity of photons absorbed. Several parameters influence the 

generation of 1O2: steric and structural effects, triplet state energy (ET), oxidation potential, 

electronic configuration, solvent polarity, aggregation, and excimer formation [26]. Interaction 

both with singlet and triplet excited states of a sensitizer can lead to energy transfer. However, 

for most photosensitizers, the role of ground state molecular oxygen interaction with S1 state of 

the photosensitizer is limited to the enhancement of the triplet quantum yield, and the main 

pathway of 1O2 generation is O2 interaction with the first excited triplet state, T1 [26]. Thus, Φ∆ is 

determined as: 

ΦΔ = ΦT pT
O2fT

Δ  

 

where ΦT is the triplet state formation quantum yield, pT
O2 is the fraction of T1 state 

quenched by molecular oxygen, fT
Δ is the efficiency of 1O2 production during molecular 

oxygen quenching of T1. Because the intramolecular T1 to S0 transition is spin-forbidden, 

T1 states generally have long lifetimes, allowing almost complete quenching by O2 (pT
O2 

≈ 1) in air-equilibrated solutions. Incomplete quenching is observed only with triplet 

states possessing a short lifetime due to high chemical reactivity or fast intersystem 

crossing (ISC) (i.e., nπ* triplets), or in the presence of very high concentrations of other 

quenchers [26].  

The higher the rate of physical and chemical quenching of the triplets, the lower 

the efficiency of energy transfer from the triplet state sensitizer to O2 [27]: 

fT
Δ =  

ket[O2]

ket[O2] + kq
T[O2] + kp + kISC 

 

where ket is the rate of energy transfer reaction, kq
T is the rate constant of other possible 

processes involving 3P* and O2 (e.g. superoxide anion formation, quenching of 3P* by 

molecular oxygen leading to the ground state of both reactants); kp and kISC are the rate 

constant of radiative decay of the triplet state photosensitizer 3P* and the rate constant of 

non-radiative decay, respectively. It was found that magnitudes of kq
T and fT

Δ  are 

inversely correlated, and both parameters exhibit pronounced sensitivity to the oxidation 

potential [28]. 



 6 

The quantum yield of the triplet state formation depends on the rate of intersystem 

crossing k’ISC and the rates of competing processes:  

ΦT =
kISC

′

kISC
′ +  kq + kfl + kic  

 

where k’ISC is the rate constant of S-T intersystem crossing, kq is the rate constant of 

physical and chemical quenching of singlet excited state, kfl is the fluorescence rate 

constant, kic is the internal conversion rate constant (Fig. 2). ISC is governed by spin-orbit 

coupling (SOC) [29], which is a relativistic effect. SOC is enhanced in the presence of 

atoms with large nuclei (heavy atoms), such as transition metals and halogens (bromine 

and iodine). Introduction of heavy atoms into organic chromophores is a common 

strategy used to access efficient photosensitizers. However, incorporation of heavy atoms 

can lead to other problems, such as higher costs, toxicity, lower photostability and also a 

shortened triplet state lifetime [30]. These issues have stimulated much efforts in the field 

and photosensitizers with efficient ISC in the absence of any heavy atoms are being 

actively investigated [31,32]. 

There are qualitative rules, describing ISC. According to El-Sayed rule [33], S-T 

ISC is efficient between 1nπ* and 3ππ*, 1ππ* and 3nπ* states. Another generally known 

rule is the energy gap law which says that transition probability depends exponentially on 

the adiabatic energy difference ΔE, i.e., the smaller the energy gap the larger the 

transition probability [34]. In quantum chemistry approximate SOC operators and state-

of-the-art theoretical methods are used for evaluation of ISC rates. Since for 

pharmaceutical purposes it is required to perform virtual screening on large libraries of 

compounds, calculation of SOC operators for these purposes seems inappropriate. The 

alternative strategy proposed in this study is the application of the QSPR and machine 

learning methodology for the prediction of ΦΔ. 
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Fig. 2. Jablonski diagram, key processes for triplet state formation.  

Photosensitizer synthesis and experimental determination of singlet oxygen 

generation quantum yield is a time- and labor-consuming process. Therefore, preliminary, 

pre-synthetic screening of sensitizers for their ability to generate 1O2 would be of great 

value. That is why our goal was to build QSPR models predicting the quantum yield of 

1O2 generation.  

To develop a reliable QSPR model, we focused on a series of compounds, 

combining several classes of functionalized porphyrins and their analogues (Fig. 1b). It 

includes four sub-groups: 1) tetraphenyl porphyrins derivatives with different substituents 

in meso-phenyl rings and -positions of pyrrolic rings; 2) -alkyl substituted porphyrins; 

3) derivatives of etioporphyrin and deuteroporphyrin bearing electron donating or 

accepting groups; 4) chlorin and bacteriochlorin derivatives. In addition, zinc (II) 

complexes of six structurally different porphyrins were included into the dataset. 

Previously reported data on ΦΔ of these compounds in organic solvent were used for 

analysis. We performed QSPR analysis and optimized the model for predicting 

photosensitizing ability. We believe that the results of our study will be helpful for the 

virtual screening of new synthetic porphyrins and metalloporphyrins.  

2. Methods 

All porphyrin compounds studied in this work are poorly soluble in water, but possess 

good solubility in organic solvents. For this reason, experimental values of ΦΔ measured in 

toluene were used for analysis [35]. The activity of compounds, presented as Log ΦΔ, was used 
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as a dependent variable in the QSPR study. The porphyrins were divided into the training (80% 

of studied compounds) and test sets (20%) using random number generation. The requirements 

for the maximum and minimum values of Log ΦΔ in the test set were the following: 1) the 

maximum Log ΦΔ value should be less than or equal to the maximum value of the training set; 2) 

the minimum Log ΦΔ value should be higher than or equal to the minimum value of the training 

set.  

Two datasets were produced from the original one: 1) to simplify the task 26 free base 

porphyrins were included in the first dataset; 2) the second one consisted of free base porphyrins 

and corresponding zinc (II) porphyrins (32 molecules in total). Chemical structures of studied 

compounds are presented in the Supporting Information (Fig. S1). 

2.1 Geometry optimization  

Conformational analysis of porphyrin molecules was performed using Spartan v. 16 

modeling software from Wavefunction, Inc. (www.wavefun.com). Generation of low-energy 

conformers was performed using PM6 semi-empirical quantum-chemical method [36]. 

Geometry optimization was done using Density Functional Theory. We used two different 

methods for geometry optimization and molecular descriptors calculations. B3LYP [37,38] 

functional with 6-31G(d,p) basis set for all atoms and LANL2DZ basis set with effective core 

potential (ECP) [39-41] was used for iodine in Spartan v. 16. We used M06-2X [42,43] with 

mixed basis set of 6-31G(d,p) for all atoms and SDD basis set with ECP for iodine [44] in 

Gaussian v. 16 [45]. Optimized porphyrin metalloporphyrin geometries are presented on Fig. S2. 

2.2 Molecular descriptors  

Dragon v. 7.0 descriptors were calculated using online chemical modeling environment 

OCHEM [46]: a total of 5270 descriptors was calculated. The number of Dragon descriptors was 

reduced to 156 using Generic Algorithm v. 4.1 (a software developed in Jadavpur University 

(Kolkata, India) and available at http://dtclab.webs.com/software-tools). Twenty six quantum-

chemical descriptors like dipole moment, frontier molecular orbital energies, HOMO-LUMO 

gap, electronegativity, polarizability, reorganization energies were obtained at B3LYP/6-

31G(d,p),LANL2DZ and M06-2X/6-31G(d,p),SDD level of theory for the gas phase. Several 

parameters like singlet and triplet vertical excitation energies, and oscillator strength of S0S1 

and S0S2 electron transitions, as well as S-T energy gap, were calculated with Time-Dependent 

Density Functional Theory (TDDFT) and M06-2X functional.  
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2.3 Machine learning techniques. Model search 

Machine learning (ML) was performed using scikit-learn library of Python programming 

language. We used three different ML methods: support vector regression (SVR), multiple linear 

regression (MLR), and random forest regression (RFR) (Fig. 3). 

 

Fig. 3. Modeling workflow. 

The required MLR equation should have the following form:  

y = c+a1*x1+ … +an*xn 

where y is the dependent variable Log ΦΔ, c is a regression constant, a1 and an are regression 

coefficients, x1 and xn are independent variables. The equation obtained should contain a 

maximum of four descriptors for a training set of 21 compounds and five descriptors for a 

training set of 26 compounds (at least five compounds per molecular descriptor) to avoid over-

fitting.  

MLR model search was performed using Genetic Algorithm v. 4.1. SVR and RFR 

models search was done in scikit-learn using grid-search method and 5-fold cross validation. 

SVR model search was done by varying three parameters: C, epsilon, and kernel (linear, 

polynominal, sigmoid or radial basis function). RFR search was performed by changing the 

values of two parameters: number of estimators (trees) and maximal depth. Other parameters 

were used by default. 

We performed standard-scaling of descriptor values for SVR models. The idea of 

standard-scaling is to make the values of each descriptor in the dataset have zero mean and unit-

variance, according to the expression: 

𝑋 − 𝑚𝑒𝑎𝑛(𝑋)

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑋)
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2.4 Descriptors contribution to the model 

We estimated the contribution of each descriptor to the MLR models using following 

equation: 

𝛼(𝑥1) =  
𝑅2(𝑥1)

𝑅2(𝑥1) + ⋯ + 𝑅2(𝑥𝑛)
 × 100% 

where α(x1) is the relative contribution of the descriptor x1 to the model with several 

descriptors, 𝑅2(𝑥𝑛) is the determination coefficient of the nth descriptor towards Log ΦΔ. 

Relative contribution of descriptors in SVR and RFR models was evaluated by using the 

facilities implemented in these methods: feature importance was evaluated in RFR; in SVR with 

linear kernel coefficients of the descriptors were used for relative contribution calculation 

according to the following formula: 

𝛼(𝑥1) =  
𝑐𝑜𝑒𝑓(𝑥1)

∑ 𝑐𝑜𝑒𝑓(" + ") − ∑ 𝑐𝑜𝑒𝑓(" − ")
× 100% 

where 𝑐𝑜𝑒𝑓(𝑥1)  is the value of the coefficient for descriptor x1; ∑ 𝑐𝑜𝑒𝑓(" + ")  and 

∑ 𝑐𝑜𝑒𝑓(" − ")  are the sums of coefficients for all positive and negative coefficients, 

respectively.  

2.5 Statistical parameters  

Best QSPR models were selected on the basis of statistical parameters such as R2 

(coefficient of determination of the training set), q2 (internally cross-validated R2 using the 

leave-one-out (LOO) method), and pred_R2 (predictive R2 for the test set of compounds). Q2 and 

pred_R2 were used for model validation and comparison. QSPR models obtained were validated 

and tested for predicting ability using a test set of compounds.  

To calculate q2 parameter each molecule in the training set was excluded once and Log 

ΦΔ of the excluded molecule was predicted by using the model developed by the remaining 

compounds. Q2 describes the internal stability of a model and was calculated using the following 

formula: 

𝑞2 = 1 −
∑(𝑦𝑖 − ŷ𝑖)2

∑(𝑦𝑖 − 𝑦𝑚𝑒𝑎𝑛)2
 

where yi and ŷi are the actual and predicted Log ФΔ value of the ith molecule in the training set, 

respectively; ymean is the average Log ФΔ of all compounds in the training set.  

For external validation, the activity of each compound in the test set was predicted using 

the model developed by the training set. Pred_R2 indicates the predictive ability of the model. 

Pred_R2 was calculated according to the equation: 
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𝑝𝑟𝑒𝑑_𝑅2 = 1 −
∑(𝑦𝑎𝑐𝑡 − 𝑦𝑝𝑟𝑒𝑑)2

∑(𝑦𝑎𝑐𝑡 − 𝑦𝑚𝑒𝑎𝑛)2
 

where yact and ypred are the actual and predicted activity of the ith compound in the test set, 

respectively; ymean is the average Log ФΔ of all molecules in the training set. Both summations 

are over all compounds in the test set. 

3.    Results and Discussion 

To simplify the task we excluded metalloporphyrins and started with the analysis 

of a dataset consisting of 26 free base porphyrins [35]. Most of the compounds in this 

dataset are derivatives of tetraphenylporphyrin (TPP), containing different substituents in 

meso-phenyl groups. We also included various representatives of -alkyl-substituted 

porphyrins as well as derivatives of chlorin and bacteriochlorin. We used three different 

machine learning methods in our analysis: random forest (RFR), support vector 

regression (SVR), and multiple linear regression (MLR). Statistical parameters of the 

models obtained are summarized in Table 1.  

Table 1. Statistical parameters of three models predicting the quantum yield of singlet 

oxygen generation by porphyrins: support vector regression (SVR), multiple linear 

regression (MLR), and random forest (RFR).  

Parameter SVR MLR RFR 

R  0.984 0.929 0.981 

R2  0.968 0.863 0.962 

q2  0.561 0.733 0.787 

pred_R2  0.694 0.876 0.869 

RMSE  0.037 0.043 0.029 

max ΦΔ error (ΦΔ in %)  12.3 15.8 13.5 

RMS ΦΔ error (ΦΔ in %)  3.9 6.5 4.5 

 

A QSPR model is considered predictive if the following conditions are satisfied: 

R2 > 0.6, q2 > 0.6, and pred_R2 > 0.5 [47]. As can be seen from Table 1, all three models 

are sufficient. The SVR model has the highest values of R and R2 as well as the lowest 

values of maximum ΦΔ error (12.3 %) and root mean square ΦΔ error (3.9%). The MLR 

model has the highest value of the most important statistical parameter pred_R2. The RFR 

model is perhaps the most internally stable one (q2 = 0.787) and possesses the lowest 

value of root mean square error (0.029). 

3.1 Model 1 (support vector regression) 

Let’s regard the models obtained. Thus, we built a SVR model with linear kernel (Model 

1). The model possesses constants C and epsilon both equal to 0.0025. Linear kernel makes it 
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possible to evaluate descriptors contribution. The SVR model uses a full set of 182 descriptors, 

but the two most influential descriptors are MATS1m (relative contribution -1.7%) and HATS4m 

(1.5%). MATS1m is a Moran autocorrelation lag 1 / weighted by atomic masses (2D 

autocorrelation descriptor) [48]. The descriptor is inversely correlated with Log ФΔ. N-Methyl-

octaethylporphyrin has the highest value of MATS1m equal to 0.063, while tetra(4-

bromophenyl)porphyrin ((p-Br)4-TPP) has the lowest value equal to -0.002. In general, 

halogenated molecules have low values of the descriptor while halogen-free molecules have high 

values of MATS1m. That means that halogenation is favorable for high ΦΔ, which is a well-

known effect [49]. HATS4m is a leverage-weighted autocorrelation of lag 4 / weighted by atomic 

masses (GETAWAY descriptor) [50,51]. The descriptor is directly proportional to Log ΦΔ. The 

value of HATS3m is equal to zero for 10 compounds presented in the dataset (Table 2), while 

tetra(4-iodophenyl)porphyrin ((p-I)4-TPP) has the highest value of the descriptor equal to 0.134. 

Like MATS1m, HATS3m values significantly vary from halogenated compounds to halogen-free 

compounds. 
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Table 2. Values of two main descriptors used in Model 1 (support vector regression). 

Compound MATS1m HATS4m 

(m-Cl)4-TPP 0.005 0.109 

(o-Cl)4-TPP 0.005 0.112 

(o-F)4-TPP 0.027 0.072 

(p-Br)4-TPP test -0.002 0.095 

(p-Cl)4-TPP 0.005 0.062 

(p-F)4-TPP 0.027 0.049 

(p-I)4-TPP 0 0.134 

2,3,7,8-Tetraethylporphyrin 0.06 0.048 

2,3,12,13-Tetraethylporphyrin 0.06 0 

3,7,12,18-Tetramethyl-2,8-diethylporhyrin 0.06 0.045 

5,10,15-NO2-etioporphyrin I 0.061 0.065 

5,10-NO2-etioporphyrin I test 0.06 0.057 

5,15-NO2-etioporphyrin I 0.06 0 

5-CHO-Octaethylporphyrin 0.051 0 

5-NH2-etioporphyrin I 0.048 0 

5-NO2-etioporphyrin I 0.059 0 

Deuteroporphyrin-IX-DME test 0.052 0 

Etioporphyrin I 0.059 0 

N-CH3-Octaethylporphyrin test 0.063 0 

Octaethylchlorin 0.058 0.032 

Octaethylporphyrin 0.057 0 

Octamethyl-TPP 0.06 0.027 

Porphine test 0.048 0 

Tetraphenylchlorin 0.059 0.036 

Tetraphenyltetrahydroporphyrin 0.062 0.037 

TPP 0.056 0 
test designates the compounds belonging to the test set 

Experimental values of Log ΦΔ and values predicted by Model 1 for each porphyrin 

compound are presented in Table S1 and in Fig. 4. 

We randomly divided the dataset into the training and testing sets four times and tested 

the models to additionally confirm good quality of the model obtained. Thus, key parameters had 

the following value ranges after additional dataset splitting: R2 = 0.952-0.993, pred_R2 = 0.610-

0.691, q2 = 0.524-0.734, and RMSE = 0.019-0.037. These results show that Model 1 is tolerant 

to alternative dataset splitting, possesses high predicting ability and internal stability. 
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Fig. 4. Experimental vs. predicted Log ФΔ values for 26 free base porphyrins. 
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3.2 Model 2(multiple linear regression) 

Next, we obtained a linear regression equation predicting the ФΔ of 26 porphyrins. 

The equation is presented below: 

Log ФΔ = 1.829(+/-0.016) - 0.400(+/-0.228) MATS1e - 0.077(+/-0.026)*Eig02_EA(dm) + 

0.345(+/-0.146)*HATS3m - 0.271(+/-0.112)*S1_fOSC (Model 2) 

MATS1e (relative contribution -43.4%) is a Moran autocorrelation lag 1 / weighted by 

atomic Sanderson electronegativities [48]. MATS1e is inversely correlated with Log ФΔ. Among 

the studied compounds 5,10,15-NO2-etioporphyrin I has the highest value of MATS1e equal to 

0.279, while porphine has the value of the descriptor equal to -0.086 (Table 3). Electronegative 

nitrogen atoms are evenly distributed in porphine, which makes its MATS1e value low, while in 

5,10,15-NO2-etioporphyrin I, 5,10-NO2-etioporphyrin I, and 5,15-NO2-etioporphyrin I 

introduction of nitro groups results in asymmetrical distribution. Apparently, the main point is 

that MATS1e descriptor allows to distinguish molecules bearing electron accepting groups, e.g. 

nitro groups, from molecules lacking such groups.  

Table 3. Molecular descriptor values used in Model 2. 

compound MATS1e Eig02_EA(dm) HATS3m S1_ fOSC 

(m-Cl)4-TPP -0.04 0 0.155 0.0103 

(o-Cl)4-TPP -0.04 0 0.146 0.0015 

(o-F)4-TPP -0.026 0 0.095 0.0047 

(p-Br)4-TPP test -0.048 0 0.231 0.0203 

(p-Cl)4-TPP -0.04 0 0.125 0.0189 

(p-F)4-TPP -0.026 0 0.086 0.018 

(p-I)4-TPP -0.037 0 0.349 0.0209 

2,3,7,8-Tetraethylporphyrin -0.001 0 0.038 0.0062 

2,3,12,13-Tetraethylporphyrin -0.001 0 0 0.002 

3,7,12,18-Tetramethyl-2,8-

diethylporhyrin -0.001 0 0.039 0.0115 

5,10,15-NO2-etioporphyrin I 0.279 2.61 0.04 0.0121 

5,10-NO2-etioporphyrin I test 0.253 2.61 0.038 0.0117 

5,15-NO2-etioporphyrin I 0.253 2.61 0 0.0168 

5-CHO-Octaethylporphyrin 0.004 0 0 0.0282 

5-NH2-etioporphyrin I -0.045 0 0 0.0165 

5-NO2-etioporphyrin I 0.202 0 0 0.0155 

Deuteroporphyrin-IX-DME test -0.026 2.44 0 0.0109 

Etioporphyrin I 0.017 0 0 0.016 

N-CH3-Octaethylporphyrin test 0.073 0 0 0.0131 

Octaethylchlorin 0.033 0 0.024 0.1429 

Octaethylporphyrin 0.029 0 0 0.0159 

Octamethyl-TPP 0.016 0 0.035 0.0131 

Porphine test -0.086 0 0 0.0022 

Tetraphenylchlorin -0.01 0 0.047 0.0771 

Tetraphenyltetrahydroporphyrin -0.004 0.6 0.048 0.4625 

TPP -0.016 0 0 0.0165 
test designates the compounds belonging to the test set 
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Eig02_EA(dm) (relative contribution -37.2%) is an eigenvalue No 2 from the edge 

adjacency matrix weighted by dipole moment. The descriptor is inversely correlated with Log 

ФΔ. 5,10,15-NO2-etioporphyrin I, 5,10-NO2-etioporphyrin I, and 5,15-NO2-etioporphyrin I have 

the highest values of Eig02_EA(dm) equal to 2.61, while for most of other compounds it is equal 

to 0. Similarly to MATS1e, Eig02_EA(dm) allows to distinguish molecules bearing electron 

accepting groups. High values of Eig02_EA(dm) for nitro-substituted porphyrins allow to predict 

that such compounds have lower values of 1O2 generation quantum yield than other porphyrins 

in the dataset. 

HATS3m (relative contribution 16.1%) is a leverage-weighted autocorrelation of lag 3 / 

weighted by atomic masses (GETAWAY descriptor) [50,51]. High HATS3m is favorable for 

high Log ΦΔ. The value of HATS3m is equal to zero for 11 compounds presented in the dataset, 

while (p-I)4-TPP)  has the highest value of the descriptor equal to 0.349. Apparently, 

introduction of halogens, especially bromine and iodine, increases ФΔ values, which is a well-

known effect [52,53]. 

S1_fOSC (relative contribution -3.2%) is an oscillator strength for the first electronic 

transition S0S1 calculated with M06-2X/6-31G(d,p),SDD method in the gas phase. The 

descriptor is inversely correlated with Log ФΔ and has a minor contribution to Model 2. 

Tetraphenyltetrahydroporphyrin has the highest value of S1_fOSC equal to 0.4625 while (o-Cl)4-

TPP has the lowest value of the descriptor (0.015). According to Kasha’s rule, emission always 

occurs from the lowest excited state of the same multiplicity (S1). The oscillator strength of a 

transition between the ground state and the excited state is related directly to the intensity of 

emission [54,55]. Apparently, molecules with higher S1_fOSC possess higher emission rate and 

lower intersystem crossing rate (a competing process), which results in the decrease of both ФT 

and ФΔ.  

Experimental and predicted by the MLR model ΦΔ values for each porphyrin compound 

are presented in Table S2 and in Fig. 4. 

We randomly splitted the dataset four times and tested the model performance in each 

case. Key statistical parameters had the following value ranges: R2 = 0.844-0.922, pred_R2 = 

0.646-0.905, q2 = 0.495-0.827, and RMSE = 0.034-0.040. As one can see, statistical parameters 

after alternative dataset splitting are sufficient.  

3.3 Model 3 (random forest regression) 

Next, we have developed a random forest regression model (Model 3). The model 

selected 54 descriptors out of the total of 182 descriptors; eight trees with a maximal depth equal 

to 10 were used by the RFR model. Two descriptors have a relative contribution more than 10%. 

We regarded these descriptors in details.  
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nDB (relative contribution -37.9%) is a number of double bonds in the molecule 

(constitutional descriptor). nDB is inversely correlated with Log ФΔ. 5,10,15-NO2-etioporphyrin 

I and tetraphenyltetrahydroporphyrin have the highest value of this descriptor equal to 8 while 

octaethylchlorin and tetraphenylchlorin have the lowest value of nDB equal to 1 (Table 4). Two 

possible interpretations of the role of nDB descriptor can be proposed. First, increasing the 

number of the double bonds leads to extension of the π system, and consequently to higher 

values of molecular extinction coefficients and red shift of the absorption maxima. Secondly, 

singlet oxygen may take part in [4+2] cycloaddition reaction with porphyrin molecules. Such 

photooxidation processes involving singlet oxygen are common for electron-rich aromatic 

compounds [26], including π-extended porphyrins [56,57]. Thus, molecules having higher 

number of double bonds are more likely to react with 1O2 and are expected to have lower values 

of ФΔ. Porphyrins chemically quench 1O2 with the rate constants lying in the range 1×104 - 1×108 

M-1 s-1 [58]. 

Table 4. Values of two main descriptors used in Model 3 (random forest). 

compound nDB SpDiam_EA(bo) 
(m-Cl)4-TPP 2 7.57 

(o-Cl)4-TPP 2 7.58 

(o-F)4-TPP 2 7.58 

(p-Br)4-TPP test 2 7.56 

(p-Cl)4-TPP 2 7.56 

(p-F)4-TPP 2 7.56 

(p-I)4-TPP 2 7.56 

2,3,7,8-Tetraethylporphyrin 2 7.54 

2,3,12,13-Tetraethylporphyrin 2 7.54 

3,7,12,18-Tetramethyl-2,8-diethylporhyrin 2 7.53 

5,10,15-NO2-etioporphyrin I 8 7.78 

5,10-NO2-etioporphyrin I test 6 7.73 

5,15-NO2-etioporphyrin I 6 7.71 

5-CHO-Octaethylporphyrin 3 7.65 

5-NH2-etioporphyrin I 2 7.63 

5-NO2-etioporphyrin I 4 7.69 

Deuteroporphyrin-IX-DME test 4 7.53 

Etioporphyrin I 2 7.56 

N-CH3-Octaethylporphyrin test 2 7.7 

Octaethylchlorin 1 7.56 

Octaethylporphyrin 2 7.57 

Octamethyl-TPP 2 7.77 

Porphine test 2 7.22 

Tetraphenylchlorin 1 7.55 

Tetraphenyltetrahydroporphyrin 8 7.79 

TPP 2 7.56 
test designates the compounds belonging to the test set 

SpDiam_EA(bo) (relative contribution -17.8%) is a spectral diameter from edge 

adjacency matrix weighted by bond order [59-61]. The descriptor is inversely correlated with 

Log ФΔ. Tetraphenyltetrahydroporphyrin has the highest value of the descriptor equal to 7.79, 
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while porphine has the lowest value equal to 7.22 (Table 4). Bulky substituents are known to 

hinder the interaction between triplet excited states of porphyrin molecules and ground state 

molecular oxygen, resulting in lower 1O2 quantum yields [62]. 

Experimental and predicted by random forest model (Model 3) Log ΦΔ values for each 

porphyrin compound are presented in Table S3 and in Fig. 4. 

After getting a proof-of-principle for QSPR application in the study of singlet 

oxygen generation by free base porphyrins, we decided to extend this method to a larger 

dataset of molecules, which includes corresponding metalloporphyrins. A dataset 

consisting of twenty-six free base porphyrins and six zinc (II) porphyrins was analyzed. 

Statistical parameters of the models obtained are summarized in Table 5.  

Table 5. Statistical parameters of support vector regression (SVR), multiple linear 

regression (MLR), and random forest (RFR) models predicting the quantum yield of 

singlet oxygen generation by porphyrins and metalloporphyrins. 

Parameter SVR MLR RFR 

R  0.995 0.943 0.974 

R2  0.991 0.889 0.949 

q2  0.842 0.744 0.619 

pred_R2  0.801 0.866 0.875 

RMSE  0.029 0.045 0.034 

max ΦΔ error (ΦΔ in %)  14.5 21.9 9.2 

RMS ΦΔ error (ΦΔ in %)  3.5 7.0 4.1 

 

As one can see from Table 5, the statistical parameters of all three models are sufficient. 

The SVR model has the best values of R, R2, q2, root mean square error, and root mean square 

ΦΔ error. The RFR model has the best values of maximum ΦΔ error and pred_R2. Pred_R2 is 

probably the most important parameter evaluating the predictive ability of the model towards the 

test set. We suppose that RFR model is the optimal QSPR model «structure – singlet oxygen 

generation quantum yield» since it possesses high determination coefficient for the training set 

(R2 = 0.949) and the highest predicting ability towards the test set (pred_R2 = 0.875). 

Key statistical parameters after alternative splitting had the following value ranges, 

according to Model 3: R2 = 0.926-0.961, pred_R2 = 0.611-0.812, q2 = 0.620-0.783, and RMSE = 

0.023-0.035. As one can see, the statistical parameters after alternative dataset splitting are 

sufficient. However, SVR model (Model 1) possesses highest determination coefficients; MLR 

model possesses the highest predicting ability towards the test sets, but in one of the splittings q2 

is barely sufficient (0.495). Nevertheless, we suppose that all three models possess satisfactory 

tolerance to alternative dataset splitting. 
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3.4 Model 4 (SVR) 

We built a support vector regression (SVR) model with linear kernel (Model 4). The 

model possesses constants C and epsilon both equal to 0.005. Linear kernel allows to evaluate  

relative contributions of the descriptors in the model. The SVR model uses a full set of 182 

descriptors, but the two most influential are S1_energy (relative contribution 3.1%) and 

Eig02_EA(dm) (-2.5%). S1_energy is an energy of the first electronic transition S0S1 

calculated with M06-2X/6-31G(d,p) method for the gas phase. The descriptor is directly 

proportional to Log ФΔ. Zn-Etioporphyrin possesses the highest value of S1 state energy (2.437 

eV) while octamethyl-TPP has the lowest value of S1_energy equal to 2.036 eV. Hence, the 

importance of S0S1 transition arises again: see Model 2 for comparison. We suppose that the 

role of S1 state energy reveals a well-known phenomenon that higher S1 energy is proportional to 

a lower rate of chemical quenching of 1O2 [26]. the compounds  capable of 1O2 quenching either 

do not generate singlet oxygen or do it less efficiently. Eig02_EA(dm) is an eigenvalue No 2 

from edge adjacency matrix weighted by dipole moment, which was previously used in Model 2 

and allows to distinguish molecules with strong electron accepting groups.  

Table 6. Values of the two main descriptors used in Model 4 (support vector regression). 

Compound S1_energy, eV Eig02_EA(dm) 

(m-Cl)4-TPP 2.179 0 

(o-Cl)4-TPP 2.209 0 

(o-F)4-TPP 2.180 0 

(p-Br)4-TPP test 2.161 0 

(p-Cl)4-TPP 2.162 0 

(p-F)4-TPP 2.161 0 

(p-I)4-TPP 2.162 0 

2,3,7,8-Tetraethylporphyrin 2.298 0 

2,3,12,13-Tetraethylporphyrin 2.279 0 

3,7,12,18-Tetramethyl-2,8-diethylporhyrin 2.267 0 

5,10,15-NO2-etioporphyrin I 2.240 2.61 

5,10-NO2-etioporphyrin I test 2.248 2.61 

5,15-NO2-etioporphyrin I 2.250 2.61 

5-CHO-Octaethylporphyrin 2.196 0 

5-NH2-etioporphyrin I 2.303 0 

5-NO2-etioporphyrin I 2.254 0 

Deuteroporphyrin-IX-DME test 2.263 2.44 

Etioporphyrin I 2.253 0 

N-CH3-Octaethylporphyrin test 2.196 0 

Octaethylchlorin 2.189 0 

Octaethylporphyrin 2.253 0 

Octamethyl-TPP 2.036 0 

Porphine test 2.294 0 

Tetraphenylchlorin 2.197 0 

Tetraphenyltetrahydroporphyrin 2.313 0.6 

TPP 2.165 0 

Zn-(5,10-NO2)etioporphyrin I 2.429 2.61 

Zn-(5,15-NO2)etioporphyrin I 2.430 2.61 

Zn-(o-F)4-TPP 2.375 0 
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Zn-Etioporphyrin 2.437 0 

Zn-Octaethylporphyrin test 2.433 0 

Zn-TPP 2.355 0 
test designates the compounds belonging to the test set 

Experimental values of Log ΦΔ and values predicted by Model 4 for each porphyrin and 

metalloporphyrin compound are presented in Table S4 and in Fig. 5. 
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Fig. 5. Experimental vs. predicted Log ФΔ for the dataset combining free base porphyrins and 

metalloporphyrins. 
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We randomly divided the dataset into the training and testing sets four times and tested 

the models to additionally confirm good quality of the Model 4. Main statistical parameters had 

the following value ranges after additional dataset splitting: R2 = 0.976-0.985, pred_R2 = 0.567-

0.881, q2 = 0.654-0.799, and RMSE = 0.016-0.031. These results show that Model 4 is tolerant 

to alternative splitting and possesses high predicting ability and stability: determination 

coefficients R2 are especially high. 

3.5 Model 5 (MLR) 

We obtained a linear regression equation predicting Log ФΔ of 32 compounds. The 

equation is following: 

Log ФΔ = -0.470(+/-0.682) - 0.052(+/-0.024* Eig02_EA(dm) - 0.660(+/-0.229)*MATS1e 

+ 0.362(+/-0.138)*SpMax4_Bh(p) + 0.112(+/-0.175)*S1_fOSC +  

0.343(+/-0.096)*HL_Gap (Model 5) 

Eig02_EA(dm) (relative contribution -37.2%) is an eigenvalue No 2 from edge adjacency 

matrix weighted by dipole moment. The descriptor was used in Model 2. It is inversely 

correlated with Log Ф. Eig02_EA(dm) allows to distinguish molecules with electron accepting 

groups, which have a negative influence on 1O2 generation quantum yields . 

MATS1e (relative contribution -36.9%) is a Moran autocorrelation lag 1 / weighted by 

atomic Sanderson electronegativities [48]. MATS1e is inversely correlated with Log ФΔ. As well 

as Eig02_EA(dm), MATS1e allows to distinguish molecules bearing electron accepting groups.  

Table 7. Molecular descriptor values used in Model 5 (MLR). 

compound MATS1e SpMax4_Bh(p) S1_fOSC HL_Gap, eV 

(m-Cl)4-TPP -0.04 3.86 0.0103 2.74 

(o-Cl)4-TPP -0.04 3.86 0.0015 2.8 

(o-F)4-TPP -0.026 3.84 0.0047 2.75 

(p-Br)4-TPP test -0.048 3.87 0.0203 2.68 

(p-Cl)4-TPP -0.04 3.86 0.0189 2.69 

(p-F)4-TPP -0.026 3.84 0.018 2.74 

(p-I)4-TPP -0.037 4.02 0.0209 2.68 

2,3,7,8-Tetraethylporphyrin -0.001 3.63 0.0062 2.93 

2,3,12,13-Tetraethylporphyrin -0.001 3.62 0.002 2.9 

3,7,12,18-Tetramethyl-2,8-diethylporhyrin -0.001 3.67 0.0115 2.95 

5,10,15-NO2-etioporphyrin I 0.279 3.71 0.0121 2.82 

5,10-NO2-etioporphyrin I test 0.253 3.71 0.0117 2.92 

5,15-NO2-etioporphyrin I 0.253 3.71 0.0168 2.86 

5-CHO-Octaethylporphyrin 0.004 3.74 0.0282 2.72 

5-NH2-etioporphyrin I -0.045 3.71 0.0165 2.61 

5-NO2-etioporphyrin I 0.202 3.71 0.0155 2.89 

Deuteroporphyrin-IX-DME test -0.026 3.68 0.0109 2.94 

Etioporphyrin I 0.017 3.71 0.016 2.94 

N-CH3-Octaethylporphyrin test 0.073 3.74 0.0131 2.89 

Octaethylchlorin 0.033 3.73 0.1429 2.59 
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Octaethylporphyrin 0.029 3.74 0.0159 2.94 

Octamethyl-TPP 0.016 3.84 0.0131 2.49 

Porphine test -0.086 3.54 0.0022 2.91 

Tetraphenylchlorin -0.01 3.84 0.0771 2.64 

Tetraphenyltetrahydroporphyrin -0.004 3.84 0.4625 2.15 

TPP -0.016 3.84 0.0165 2.69 

Zn-(5,10-NO2)etioporphyrin I 0.253 3.71 0.0271 2.92 

Zn-(5,15-NO2)etioporphyrin I 0.253 3.71 0.0528 2.89 

Zn-(o-F)4-TPP -0.026 3.84 0.0026 2.92 

Zn-Etioporphyrin 0.017 3.71 0.0355 2.94 

Zn-Octaethylporphyrin test 0.029 3.74 0.0349 2.95 

Zn-TPP -0.016 3.84 0.0146 2.95 
test designates the compounds belonging to the test set 

SpMax4_Bh(p) (relative contribution 16.3%) is a largest eigenvalue No 4 of Burden 

matrix weighted by polarizability [63]. The descriptor is directly correlated with Log ФΔ. 

Porphine has the lowest value of the descriptor (3.54) while (p-I)4-TPP has the highest value of 

SpMax4_Bh(p) equal to 4.02 (see Table 7). The diagonal elements are roughly proportional to 

the polarizability of the atoms. The larger the polarizability of the atoms the larger the 

SpMax4_Bh(p) value, which leads to a increase in Log ФΔ. 

S1_fOSC (relative contribution 8.4%) is an oscillator strength for the first electronic 

transition S0S1 calculated with M06-2X/6-31G(d,p),SDD method in the gas phase. The 

descriptor is directly correlated with Log ФΔ. It was already involved in Model 2 and was 

inversely correlated with Log ФΔ. However, in Model 5 it is directly proportional to Log ФΔ. It 

reveals that metalloporphyrins, which were added to the dataset, have a relatively high values of 

S1_fOSC (Table 7) and have high values of Log ФΔ. Nevertheless, the descriptor is barely 

correlated with Log ФΔ: R2 = 0.0029. 

HL_Gap (relative contribution 1.2%) is a HOMO-LUMO gap calculated at B3LYP/6-

31G(d,p) level of theory for the gas phase. The descriptor is directly correlated with Log ФΔ and 

has a minor contribution to the model. Several compounds including 3,7,12,18-tetramethyl-2,8-

diethylporhyrin, Zn-octaethylporphyrin, and Zn-TPP possess the highest value of HOMO-

LUMO gap equal to 2.95 eV (see Table 7) while tetraphenyltetrahydroporphyrin has the lowest 

value of HOMO-LUMO gap (2.15 eV). HL_Gap descriptor reflects the fact that S1 state energy 

affects the rate of chemical quenching of 1O2 [26]. Thus, the molecules with low HL_Gap value 

participate in 1O2 quenching and do not generate singlet oxygen or do it less efficiently. 

Experimental value of Log ΦΔ and values by Model 5 for each porphyrin and 

metalloporphyrin compound are presented in Table S5 and in Fig. 5. 

We additionally splitted the dataset four times and tested the model performance in each 

case. The statistical parameters had following value ranges: R2 = 0.891-0.936, pred_R2 = 0.719-

0.791, q2 = 0.745-0.873, and RMSE = 0.030-0.047. Thus, statistical parameters after alternative 
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dataset splitting are sufficient for Model 5. R2 parameter values of Model 4 (SVR) are higher, 

but the key parameter pred_R2 is higher for Model 5. 

3.6 Model 6 (RFR) 

Next, we have built a random forest regression model (Model 6). The model used 70 

descriptors and 12 trees with a maximal depth equal to 80. Two descriptors had a relative 

contribution more than 10%. We will regard these descriptors in details.  

SpDiam_EA(bo) (relative contribution -37.4%) is a spectral diameter from edge 

adjacency matrix weighted by bond order [59-61]. The descriptor is inversely correlated with 

Log ФΔ. It was already used in Model 3. Tetraphenyltetrahydroporphyrin has the highest value 

of SpDiam_EA(bo) equal to 7.79 while porphine has the lowest value of SpDiam_EA(bo) equal 

to 7.22 (Table 8). Apparently, bulky substituents are unfavorable for high quantum yield of 1O2 

generation as they hinder the interaction of excited states of porphyrin and metalloporphyrin 

compounds with triplet state molecular oxygen that leads to reduced ФΔ values. 

Table 8. Molecular descriptor values used in Model 6 (RFR). 

Compound SpDiam_EA(bo) saaNH 

(m-Cl)4-TPP 7.57 7.47 

(o-Cl)4-TPP 7.58 7.43 

(o-F)4-TPP 7.58 6.84 

(p-Br)4-TPP test 7.56 7.62 

(p-Cl)4-TPP 7.56 7.5 

(p-F)4-TPP 7.56 7.15 

(p-I)4-TPP 7.56 7.68 

2,3,7,8-Tetraethylporphyrin 7.54 7.2 

2,3,12,13-Tetraethylporphyrin 7.54 7.3 

3,7,12,18-Tetramethyl-2,8-diethylporhyrin 7.53 7.23 

5,10,15-NO2-etioporphyrin I 7.78 6.29 

5,10-NO2-etioporphyrin I test 7.73 6.68 

5,15-NO2-etioporphyrin I 7.71 6.68 

5-CHO-Octaethylporphyrin 7.65 7.51 

5-NH2-etioporphyrin I 7.63 7.38 

5-NO2-etioporphyrin I 7.69 7.07 

Deuteroporphyrin-IX-DME test 7.53 7.07 

Etioporphyrin I 7.56 7.45 

N-CH3-Octaethylporphyrin test 7.7 3.84 

Octaethylchlorin 7.56 7.7 

Octaethylporphyrin 7.57 7.66 

Octamethyl-TPP 7.77 8.1 

Porphine test 7.22 6.75 

Tetraphenylchlorin 7.55 7.67 

Tetraphenyltetrahydroporphyrin 7.79 3.83 

TPP 7.56 7.61 

Zn-(5,10-NO2)etioporphyrin I 7.73 6.68 

Zn-(5,15-NO2)etioporphyrin I 7.71 6.68 

Zn-(o-F)4-TPP 7.58 6.84 

Zn-Etioporphyrin 7.56 7.45 

Zn-Octaethylporphyrin test 7.57 7.66 

Zn-TPP 7.56 7.61 
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test designates the compounds belonging to the test set 

 

SaaNH (relative contribution 12.7%) is an atom-type electrotopological E-state index for 

aNHa groups (NH groups accompanied with two aromatic bonds). The descriptor is directly 

proportional to Log ФΔ. Octamethyl-TPP has the highest value of SaaNH equal to 8.1 while 

tetraphenyltetrahydroporphyrin has the lowest value of SaaNH equal to 3.83 (Table 8). E-state 

indices are a combination of electronic, topological, and valence state information that 

summarizes information related to atom types and electron accessibility that are influenced by all 

of the structural features of a molecule [64-66]. SaaNH emphasizes electronic molecular 

information. For instance, octamethyl-TPP possesses electron donating methyl groups and an 

extended π-conjugated system, which leads to an increase in SaaNH value. On the other hand, in 

tetraphenyltetrahydroporphyrin the conjugation is blocked by saturation of pyrrole rings, which 

leads to a pronounced decrease of Log ФΔ. 

Experimental values of Log ΦΔ and values predicted by Model 6 for each porphyrin and 

metalloporphyrin compound are presented in Table S6 and in Fig. 5. As one can see, the highest 

residual Log ФΔ is equal to 0.07 for Model 6, which is lower than for Model 4 (0.10) and Model 

5 (0.13). We may assume that RFR model (Model 6) is superior to SVR and MLR models. 

We also calculated vertical S1 and T1 energies of all porphyrin compounds. Surprisingly, 

the singlet-triplet energy gap was not found to play a role in any of the models. In fact, the 

determination coefficient R2 between S-T gap values and Log ΦΔ was equal to 0.02. This is 

consistent with our previous work on furocoumarins, which demonstrated that S-T gap does not 

influence the Log ΦT prediction [25]. 

Key statistical parameters after alternative splitting had the following value ranges, 

according to Model 6: R2 = 0.940-0.968, pred_R2 = 0.569-0.828, q2 = 0.560-0.669, and RMSE = 

0.024-0.034. The statistical parameters after alternative dataset splitting are sufficient: thus, all 

three models possess satisfactory tolerance to alternative dataset splitting. SVR model (Model 4) 

possesses the highest determination coefficients towards the training set as compared to Model 5 

and Model 6. However, the MLR model possesses the highest predicting ability towards the test 

set and the highest internal stability (q2).  

Thus, we proved that QSPR method is applicable to the study of singlet oxygen 

generation not only for free base porphyrins, but also for metalloporphyrins. The developed 

models deliver reasonable results and are theoretically well interpretable. 
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4. Conclusion 

In this study, a QSPR approach for predicting the efficiency of singlet oxygen generation 

by free base pophyrins and metalloporphyrins was developed. Three different methods of 

machine learning were applied: support vector regression (SVR), multiple linear regression 

(MLR), and random forest regression (RFR). 

First, a dataset consisting of 26 free base porphyrins was studied and three models 

predicting ΦΔ values were developed. All three models were found to be sufficient. The 

SVR model was found to be most accurate in the prediction of ΦΔ for the training set of 

compounds. The MLR model showed the best performance for predicting ΦΔ for the test 

set. The RFR model was found to be the most internally stable one (q2 = 0.787). Thus, we 

proved that QSPR methodology is applicable to the study of 1O2 generation by 

porphyrins. 

Second, we examined the activity for a larger set of molecules, comprised of 26 free base 

porphyrins and six metalloporphyrins. All three models were found to be sufficient. The SVR 

model performed as the best one in predicting ΦΔ for the training set and was the most internally 

stable one (q2 = 0.842). The RFR model showed the best performance in predicting ΦΔ for the 

test set (pred_R2 = 0.875). The MLR model showed the best tolerance to alternative dataset 

splitting. Thus, we showed that QSPR methodology is applicable to the study of 1O2 generation 

by coordination compounds, in particular, metalloporphyrins. 

The models were built using a combination of autocorrelation, GETAWAY, topological, 

and quantum-chemical descriptors. SpDiam_EA(bo), Eig02_EA(dm), MATS1e, and S1 state 

energy descriptors were found to be most influential. Relative contribution of the descriptors to 

the models was evaluated and interpreted taking into account structural and electronic effects in 

the molecules. MLR models provided valuable information about the descriptors involved. For 

example, it proves that halogenation of porhyrins increases ΦΔ, while introduction of nitro 

groups has a negative influence on ΦΔ.  

Machine learning and QSPR are largely used nowadays in photochemistry. For example, 

they are applied for the prediction of photovoltaic properties of new materials [67,68]. When we 

began our studies in 2016 [24], there were almost no works dedicated to 1O2 generation analysis 

with QSPR, but now our studies belong to a new emerging field of knowledge [69]. The 

developed models can be used not only for PDT, but also for the PUVA-therapy of such diseases 

as psoriasis and vitiligo [25]. We believe that the QSPR models developed in our study will be 

useful for the screening and design of free base porphyrin and metalloporphyrin photosensitizers 

with high singlet oxygen generation quantum yields.  

 



 27 

Conflicts of Interest  

There are no conflicts to declare.  

 

References 

[1] Lacombe S, Pigota T. Materials for selective photo-oxygenation vs. photocatalysis: 

preparation, properties and applications in environmental and health fields. Catal Sci Technol 

2016;6:1571-1592 

[2] Zhao J, Wu W, Sun J, Guo S. Triplet photosensitizers: from molecular design to 

applications. Chem Soc Rev 2013;42:5323-5351. 

[3] Vicente MD, Smith KM. Syntheses and Functionalizations of Porphyrin 

Macrocycles. Curr Org Synth 2014;11:3–28. 

[4] Cannon JB. Pharmaceutics and drug delivery aspects of heme and porphyrin therapy. J 

Pharm Sci 1993;82:435-446. 

[5] Bera K, Maiti S, Maity M, Mandal C, Maiti NC. Porphyrin–Gold Nanomaterial for 

Efficient Drug Delivery to Cancerous Cells. ACS Omega 2018;3:4602-4619. 

[6] Imran M, Ramzan M, Qureshi AK, Khan MA, Tariq M. Emerging Applications of 

Porphyrins and Metalloporphyrins in Biomedicine and Diagnostic Magnetic Resonance Imaging. 

Biosensors (Basel) 2018;8(4). 

[7] Dommaschk M, Gröbner J, Wellm V, Hövener JB, Riedel C, Herges R. Dendronised 

Ni(ii) porphyrins as photoswitchable contrast agents for MRI. Phys Chem Chem Phys 

2019;21:24296-24299. 

[8] Khadria A, Fleischhauer J, Boczarow I, Wilkinson JD, Kohl MM, Anderson HL. 

Porphyrin Dyes for Nonlinear Optical Imaging of Live Cells. iScience 2018;4:153-163. 

[9] Senge OM, Fazekas M, Notaras EGA, Blau WJ, Zawandzka M, Locos OB, Ni 

Mhuircheartaigh EM. Nonlinear Optical Properties of Porphyrins. Adv Mater 2007;19:2737-

2774. 

[10] Spikes JD, Jori G. Photodynamic Therapy of Tumours and Other Diseases Using 

Porphyrins. Laser Med Sci 1987;2:3-15. 

[11] Tournas JA, Lai J, Truitt A, Huang YC, Osann KE, Choi B, Kelly KM. Combined 

benzoporphyrin derivative monoacid ring photodynamic therapy and pulsed dye laser for port 

wine stain birthmarks. Photodiagnosis Photodyn Ther 2009;6:195–199. 

[12] Wan MT, Lin JY. Current evidence and applications of photodynamic therapy in 

dermatology. Clin Cosmet Investig Dermatol 2014;7:145-163. 



 28 

[13] Clarke CP, Knight SR, Daniel FJ, Seevanayagam S. Management of malignant 

mesothelioma by decortication and adjunct phototherapy. Asian Cardiovasc Thorac 

Ann 2006;14:206–209. 

[14] Stylli SS, Kaye AH, MacGregor L, Howes M, Rajendra P. Photodynamic therapy of 

high grade glioma - long term survival. J Clin Neurosci 2005;12:389–398. 

[15] Stylli SS, Howes M, MacGregor L, Rajendra P, Kaye AH. Photodynamic therapy of 

brain tumours: evaluation of porphyrin uptake versus clinical outcome. J Clin Neurosci 

2004;11(6):584-596. 

[16] Qiu H, Kim MM, Penjweini R, Finlay JC, Busch TM, Wang T, Guo W, Cengel KA, 

Simone CB 2nd, Glatstein E, Zhu TC. A Comparison of Dose Metrics to Predict Local Tumor 

Control for Photofrin-mediated Photodynamic Therapy. Photochem Photobiol 2017;93(4):1115-

1122. 

[17] Sun BO, Li W, Liu N. Curative effect of the recent photofrin photodynamic adjuvant 

treatment on young patients with advanced colorectal cancer. Oncol Lett 2016;11:2071–2074. 

[18] Duchi S, Sotgiu G, Lucarelli E, Ballestri M, Dozza B, Santi S, Guerrini A, Dambruoso 

P, Giannini S, Donati D, Ferroni C, Varchi G. Mesenchymal stem cells as delivery vehicle of 

porphyrin loaded nanoparticles: effective photoinduced in vitro killing of osteosarcoma. J 

Control Release 2013;168(2):225-237. 

[19] Marciel L, Teles L, Moreira B, Pacheco M, Lourenço LM, Neves MG, Tomé JP, 

Faustino MA, Almeida A. An effective and potentially safe blood disinfection protocol using 

tetrapyrrolic photosensitizers. Future Med Chem 2017;9(4):365-379. 

[20] Marciel L, Mesquita MQ, Ferreira R, Moreira B, Pms Neves MG, F Faustino MA, 

Almeida A. An efficient formulation based on cationic porphyrins to photoinactivate 

Staphylococcus aureus and Escherichia coli. Future Med Chem 2018;10(15):1821-1833. 

[21] Sobotta L, Skupin-Mrugalska P, Piskorz J, Mielcarek J. Porphyrinoid photosensitizers 

mediated photodynamic inactivation against bacteria. Eur J Med Chem 2019;175:72-106. 

[22] Singh S, Aggarwal A, Thompson S, Tome JP, Zhu X, Samaroo D, Vinodu M, Gao R, 

Drain CM. Synthesis and Photophysical Properties of Thioglycosylated Chlorins, 

Isobacteriochlorins, and Bacteriochlorins for Bioimaging and Diagnostics. Bioconjugate Chem 

2010;21:2136-2146. 

[23] De Souza TGB, Vivas MG, Mendonça CR, Plunkett S, Filatov MA, Senge MO, De 

Boni L. Studying the intersystem crossing rate and triplet quantum yield of meso-substituted 

porphyrins by means of pulse train fluorescence technique. J Porphyrins Phthalocyanines 

2016;20:282–291. 



 29 

[24] Buglak AA, Telegina TA, Kritsky MS. A quantitative structure-property relationship 

(QSPR) study of singlet oxygen generation by pteridines. Photochem Photobiol Sci 

2016;15:801-811. 

[25] Buglak AA, Kononov AI. Triplet state generation by furocoumarins revisited: a 

combined QSPR/DFT approach. New J Chem 2018;42:14424-14432.  

[26] Schweitzer C, Schmidt R. Physical Mechanisms of Generation and Deactivation of 

Singlet Oxygen. Chem Rev 2003;103(5):1685-1757.  

[27] Braun AM, Oliveros E. Applications of singlet oxygen reactions: mechanistic and 

kinetic investigations. Pure Appl Chem 1990;62:1467-1476. 

[28] Wilkinson F, McGarvey DJ, Olea AF. Excited Triplet State Interactions with Molecular 

Oxygen: Influence of Charge Transfer on the Bimolecular Quenching Rate Constants and the 

Yields of Singlet Oxygen [O*2(1.DELTA.g)] for Substituted Naphthalenes in Various Solvents. 

J Phys Chem 1994;98:3762–3769. 

[29] Marian CM. Spin–orbit coupling and intersystem crossing in molecules. Comput Mol 

Sci 2012;2(2):187–203.  

[30] Cowan DO, Drisko RL. The Triplet State. In: Cowan DO, editor. Elements of Organic 

Photochemistry. Springer: Boston; 1976. p. 205-266. 

[31] Zhao J, Chen K, Hou Y, Che Y, Liu L, Jia D. Recent progress in heavy atom-free 

organic compounds showing unexpected intersystem crossing (ISC) ability. Org Biomol Chem 

2018,16, 3692-3701   

[32] M.A. Filatov. Heavy-atom-free BODIPY photosensitizers with intersystem crossing 

mediated by intramolecular photoinduced electron transfer. Org. Biomol. Chem., 2020, 18, 10-

27. 

[33] El-Sayed MA. Spin-Orbit Coupling and the Radiationless Processes in Nitrogen 

Heterocyclics. J Chem Phys 1963;38:2834.  

[34] Englman R, Jortner J. The energy gap law for radiationless transitions in large 

molecules. Mol Phys 1970;18:145–164.  

[35] Ganzha VA, Gurinovich GP, Dzhagarov BM, Egorova GD, Sagun EI, Shul’ga AM. 

Influence of the molecular structure on the quenching of triplet states of porphyrins by molecular 

oxygen. J Appl Spectrosc 1989;50:402–406. 

[36] Stewart JJ. Optimization of parameters for semiempirical methods V: modification of 

NDDO approximations and application to 70 elements. J Mol Model 2007;13(12):1173-213. 

[37] Becke AD. Density-functional exchange-energy approximation with correct asymptotic 

behavior. Phys Rev A 1988;38(6):3098–3100.  



 30 

[38] Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy 

formula into a functional of the electron density. Phys Rev B 1988;37(2):785–789. 

[39] Hay PJ, Wadt WR. Ab initio effective core potentials for molecular calculations – 

potentials for the transition-metal atoms Sc to Hg. J Chem Phys 1985;82:270-283. 

[40] Wadt WR, Hay PJ. Ab initio effective core potentials for molecular calculations – 

potentials for main group elements Na to Bi. J Chem Phys 1985;82:284-298. 

[41] Hay PJ, Wadt WR. Ab initio effective core potentials for molecular calculations – 

potentials for K to Au including the outermost core orbitals. J Chem Phys 1985;82:299-310. 

[42] Zhao Y, Truhlar DG. The M06 Suite of Density Functionals for Main Group 

Thermochemistry, Thermochemical Kinetics, Noncovalent interactions, Excited States, and 

Transition Elements: Two New Functionals and Systematic Testing of Four M06 Functionals 

and Twelve Other Functionals. Theor Chem Acc 2008;120:215-241.  

[43] Zhao Y, Truhlar DG. Density Functionals with Broad Applicability in Chemistry. Acc 

Chem Res 2008;41:157-167.  

[44] Leininger T, Nicklass A, Stoll H. The accuracy of the pseudopotential approximation. 

II. A comparison of various core sizes for indium pseudopotentials in calculations for 

spectroscopic constants of InH, InF, and InCl. J Chem Phys 1996;105:1052. 

[45] Frisch MJT, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, 

Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, 

Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, 

Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, 

Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota 

K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, 

Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, 

Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, 

Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, 

Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 16, Revision 

C.01, Gaussian, Inc.: Wallingford CT, 2016.  

[46] Sushko I, Novotarskyi S, Körner R, Pandey AK, Rupp M, Teetz W, Brandmaier S, 

Abdelaziz A, Prokopenko VV, Tanchuk VY, Todeschini R, Varnek A, Marcou G, Ertl P, 

Potemkin V, Grishina M, Gasteiger J, Schwab C, Baskin II, Palyulin VA, Radchenko EV, Welsh 

WJ, Kholodovych V, Chekmarev D, Cherkasov A, Aires-de-Sousa J, Zhang QY, Bender A, 

Nigsch F, Patiny L, Williams A, Tkachenko V, Tetko IV. Online chemical modeling 

environment (OCHEM): web platform for data storage, model development and publishing of 

chemical information. J Comput Aided Mol Des 2011;25(6):533-554. 



 31 

[47] Golbraikh A, Tropsha A. Beware of q2! J Mol Graph Model 2002;20(4):269-276. 

[48] Moran PA. Notes on continuous stochastic phenomena. Biometrika 1950;37(1-2):17-

23. 

[49] Zhang XF, Xu HJ. Influence of halogenation and aggregation on photosensitizing 

properties of zinc phthalocyanine (ZnPC). J Chem Soc, Faraday Trans 1993;89:3347-3351. 

[50] Consonni V,Todeschini R, Pavan MJ. Structure/response correlations and 

similarity/diversity analysis by GETAWAY descriptors. 1. Theory of the novel 3D molecular 

descriptors. Chem Inf Comp Sci 2002;42:682-692. 

[51] Consonni V, Todeschini R, Pavan M, Gramatica P. Structure/response correlations and 

similarity/diversity analysis by GETAWAY descriptors. 2. Application of the novel 3D 

molecular descriptors to QSAR/QSPR studies. J Chem Inf Comp Sci 2002;42:693-705 

[52] Shao W, Wang H, He S, Shi L, Peng K, Lin Y, Zhang L, Ji L, Liu H. Photophysical 

properties and singlet oxygen generation of three sets of halogenated corroles. J Phys Chem B 

2012;116(49):14228-14234. 

[53] Marin DM, Payerpaj S, Collier GS, Ortiz AL, Singh G, Jones M, Walter MG. Efficient 

intersystem crossing using singly halogenated carbomethoxyphenyl porphyrins measured using 

delayed fluorescence, chemical quenching, and singlet oxygen emission. Phys Chem Chem Phys 

2015;17(43):29090-29096. 

[54] Robinson JW. Atomic Spectroscopy. 2nd ed. CRC Press: Boca-Raton; 1996. 

[55] Demtröder W. Laser Spectroscopy: Basic Concepts and Instrumentation. 3rd ed. 

Springer: Berlin; 2003. 

[56] Filatov MA, Baluschev S, Ilieva IZ, Enkelmann V, Miteva T, Landfester K, 

Aleshchenkov SE, Cheprakov AV. Tetraaryltetraanthra[2,3]porphyrins: Synthesis, Structure, and 

Optical Properties. J Org Chem 2012;77(24):11119-11131. 

[57] Filatov MA, Heinrich E, Busko D, Ilieva IZ, Landfester K, Baluschev S. Reversible 

oxygen addition on a triplet sensitizer molecule: protection from excited state depopulation. Phys 

Chem Chem Phys 2015;17:6501-6510. 

[58] Krasnovskiĭ AA Jr, Venediktov EA, Chernenko OM. Quenching of singlet oxygen with 

chlorophylls and porphyrins. Biofizika 1982;27(6):966-972. 

[59] Estrada E. Spectral Moments of Edge Adjacency Matrix in Molecular Graphs. 1. 

Definition and Applications to the Prediction of Physical Properties of Alkanes. J Chem Inf 

Model 1996;36:844-849. 

[60] Estrada E. Spectral Moments of the Edge Adjacency Matrix of Molecular Graphs. 2. 

Molecules Containing Heteroatoms and QSAR Applications. Chem Inf Model 1997;37:320-328. 



 32 

[61] Estrada E. Spectral Moments of Edge Adjacency Matrix in Molecular Graphs. 3. 

Molecules Containing Cycles. Chem Inf Model 1998;38:23-27. 

[62] Filatov MA, Baluschev S, Landfester K. Protection of densely populated excited triplet 

state ensembles against deactivation by molecular oxygen. Chem Soc Rev 2016;45:4668-4689. 

[63] Todeschini R, Consonni V. Molecular Descriptors for Chemoinformatics. 2nd ed. 

Wiley: New York; 2009. 

[64] Kier LB, Hall LH. An Electrotopological State Index for Atoms in Molecules. Pharm 

Res 1990;7:801-807. 

[65] Hall LH, Kier LB. Electrotopological State Indices for Atom Types: A Novel 

Combination of Electronic, Topological, and Valence State Information. J Chem Inf Comput Sci 

1995;35:1039-1045. 

[66] Kier LB, Hall LH. Molecular Structure Description: The Electrotopological State. 

Academic Press: London, 1999. 

[67] Sun W, Zheng Y, Yang K, Zhang Q, Shah AA, Wu Z, Sun Y, Feng L, Chen D, Zeyun 

Xiao, Shirong Lu, Yong Li, Kuan Sun. Machine learning–assisted molecular design and 

efficiency prediction for high-performance organic photovoltaic materials. Sci Adv 

2019;5(11):eaay4275. 

[68] Sun W, Li M, Li Y, Wu Z, Sun Y, Lu S, Xiao Z, Zhao B, Sun K. The Use of Deep 

Learning to Fast Evaluate Organic Photovoltaic Materials. Adv Theory Simul 2019;2(1): 

1800116. 

[69] Zhao J, Zhou Y, Li C, Xie Q, Chen J, Chen G, Peijnenburg WJGM, Zhang YN, Qu J. 

Development of a quantitative structure-activity relationship model for mechanistic 

interpretation and quantum yield prediction of singlet oxygen generation from dissolved organic 

matter. Sci Total Environ 2020;712:136450. 


	Singlet oxygen generation by porphyrins and metalloporphyrins revisited: A quantitative structure-property relationship (QSPR) study
	tmp.1597168203.pdf.zjAio



