1,531 research outputs found

    Vauvojen unen luokittelu patja-sensorilla ja EKG:lla

    Get PDF
    Infants spend the majority of their time asleep. Although extensive studies have been carried out, the role of sleep for infant cognitive, psychomotor, temperament and developmental outcomes is not clear. The current contradictory results may be due to the limited precision when monitoring infant sleep for prolonged periods of time, from weeks to even months. Sleep-wake cycle can be assessed with sleep questionnaires and actigraphy, but they cannot separate sleep stages. The gold standard for sleep state annotation is polysomnography (PSG), which consist of several signal modalities such as electroencephalogram, electrooculogram, electrocardiogram (ECG), electromyogram, respiration sensor and pulse oximetry. A sleep clinician manually assigns sleep stages for 30 sec epochs based on the visual observation of these signals. Because method is obtrusive and laborious it is not suitable for monitoring long periods. There is, therefore, a need for an automatic and unobtrusive sleep staging approach. In this work, a set of classifiers for infant sleep staging was created and evaluated. The cardiorespiratory and gross body movement signals were used as an input. The different classifiers aim to distinguish between two or more different sleep states. The classifiers were built on a clinical sleep polysomnography data set of 48 infants with ages ranging from 1 week to 18 weeks old (a median of 5 weeks). Respiration and gross body movements were observed using an electromechanical film bed mattress sensor manufactured by Emfit Ltd. ECG of the PSG setup was used for extracting cardiac activity. Signals were preprocessed to remove artefacts and an extensive set of features (N=81) were extracted on which the classifiers were trained. The NREM3 vs other states classifier provided the most accurate results. The median accuracy was 0.822 (IQR: 0.724-0.914). This is comparable to previously published studies on other sleep classifiers, as well as to the level of clinical interrater agreement. Classification methods were confounded by the lack of muscle atonia and amount of gross body movements in REM sleep. The proposed method could be readily applied for home monitoring, as well as for monitoring in neonatal intensive care units.Vauvat nukkuvat suurimman osan vuorokaudesta. Vaikkakin laajasti on tutkittu unen vaikutusta lapsen kognitioon, psykomotoriikkaan, temperamenttiin ja kehitykseen, selkeää kuvaa ja yhtenäistä konsensusta tiedeyhteisössä ei ole saavutettu. Yksi syy tähän on että ei ole olemassa menetelmää, joka soveltuisi jatkuva-aikaiseen ja pitkäkestoiseen unitilan monitorointiin. Vauvojen uni-valve- sykliä voidaan selvittää vanhemmille suunnatuilla kyselyillä ja aktigrafialla, mutta näillä ei voi havaita unitilojen rakennetta. Kliinisenä standardina unitilojen seurannassa on polysomnografia, jossa samanaikaisesti mitataan mm. potilaan elektroenkelografiaa, elektro-okulografiaa, elektrokardiografiaa, electromyografiaa, hengitysinduktiivisesta pletysmografiaa, happisaturaatiota ja hengitysvirtauksia. Kliinikko suorittaa univaiheluokittelun signaaleista näkyvien, vaiheille tyypillisten, hahmojen perusteella. Työläyden ja häiritsevän mittausasetelman takia menetelmä ei sovellu pitkäaikaiseen seurantaan. On tarvetta kehittää tarkoitukseen sopivia automaattisia ja huomaamattomia unenseurantamenetelmiä. Tässä työssä kehitettiin ja testattiin sydämen syke-, hengitys ja liikeanalyysiin perustuvia koneluokittimia vauvojen unitilojen havainnointiin. Luokittimet opetettiin kliinisessa polysomnografiassa kerätyllä datalla 48 vauvasta, joiden ikä vaihteli 1. viikosta 18. viikkoon (mediaani 5 viikkoa). Vauvojen hengitystä ja liikkeitä seurattiin Emfit Oy:n valmistamalla elektromekaaniseen filmiin pohjatuvalla patja-sensorilla. Lisäksi ECG:lla seurattiin sydäntä ja opetuksessa käytettiin lääkärin suorittamaa PSG-pohjaista luokitusta. Esikäsittelyn jälkeen signaaleista laskettiin suuri joukko piirrevektoreita (N=81), joihin luokittelu perustuu. NREM3-univaiheen tunnistus onnistui parhaiten 0.822 mediaani-tarkkuudella ja [0.724,0.914] kvartaaleilla. Tulos on yhtenevä kirjallisuudessa esitettyjen arvojen kanssa ja vastaa kliinikkojen välistä toistettavuutta. Muilla luokittimilla univaiheet sekoituivat keskenään, mikä on oletattavasti selitettävissä aikuisista poikeavalla REM-unen aikaisella lihasjäykkyydellä ja kehon liikkeillä. Työ osoittaa, että menetelmällä voi seurata vauvojen uniluokkien oskillaatiota. Järjestelmää voisi käyttää kotiseurannassa tai vastasyntyneiden teholla unenvalvontaan

    Intelligent Biosignal Analysis Methods

    Get PDF
    This book describes recent efforts in improving intelligent systems for automatic biosignal analysis. It focuses on machine learning and deep learning methods used for classification of different organism states and disorders based on biomedical signals such as EEG, ECG, HRV, and others

    Unen mittaaminen voimasensoreilla

    Get PDF
    This thesis presents methods for comfortable sleep measurement at home. Existing medical sleep measurement systems are costly, disturb sleep quality, and are only suited for short-term measurement. As sleeping problems are affecting about 30% of the population, new approaches for everyday sleep measurement are needed. We present sleep measurement methods that are based on measuring the body with practically unnoticeable force sensors installed in the bed. The sensors pick up forces caused by heartbeats, respiration, and movements, so those physiological parameters can be measured. Based on the parameters, the quality and quantity of sleep is analyzed and presented to the user. In the first part of the thesis, we propose new signal processing algorithms for measuring heart rate and respiration during sleep. The proposed heart rate detection method enables measurement of heart rate variability from a ballistocardiogram signal, which represents the mechanical activity of the heart. A heartbeat model is adaptively inferred from the signal using a clustering algorithm, and the model is utilized in detecting heartbeat intervals in the signal. We also propose a novel method for extracting respiration rate variation from a force sensor signal. The method solves a problem present with some respiration sensors, where erroneous cyclicity arises in the signal and may cause incorrect measurement. The correct respiration cycles are found by filtering the input signal with multiple filters and selecting correct results with heuristics. The accuracy of heart rate measurement has been validated with a clinical study of 60 people and the respiration rate method has been tested with a one-person case study. In the second part of the thesis, we describe an e-health system for sleep measurement in the home environment. The system measures sleep automatically, by uploading measured force sensor signals to a web service. The sleep information is presented to the user in a web interface. Such easy-to-use sleep measurement may help individuals to tackle sleeping problems. The user can track important aspects of sleep such as sleep quantity and nocturnal heart rate and learn how different lifestyle choices affect sleep.Unen mittaaminen voimasensoreilla Noin joka kolmannella on ongelmia unen kanssa. Nukahtamisvaikeus, heräily, huono unen laatu sekä erilaiset unenaikaiset hengitysongelmat ovat yleisiä. Helppo ja mukava unen seuranta voisi auttaa unenlaadun parantamisessa. Nykyiset mittausmenetelmät ovat kuitenkin epämukavia ja suunniteltu lähinnä lääketieteellisten diagnoosien tekemiseen. Ne eivät siis sovellu unen mittaamiseen itsenäisesti kotona. Tämä väitöskirja esittelee uuden mittausmenetelmän, joka mahdollistaa unen määrän sekä laadun mittaamisen helposti omassa sängyssä. Lakanan alle laitetaan pehmeästä kalvosta tehty anturi, joka mittaa nukkujan liikkeitä, sydämen sykettä sekä hengitystä. Anturi tunnistaa näiden mittausten perusteella useita uneen liittyviä asioita, kuten unenmäärä, kuorsaaminen sekä yön aikana mitattu leposyke. Uni-informaatio näytetään laitteen käyttäjälle verkkopalvelun tai mobiililaitteen avulla. Väitöskirjassa esitellyn unenmittausmenetelmän etu on, että syke- ja hengitystieto saadaan mitattua siitä huolimatta että anturi ei ole suoraan kosketuksissa nukkujan kehon kanssa. Kehitetyt signaalinkäsittelymenetelmät pystyvät erottamaan signaalista sykkeen ja hengityksen, sillä erilaisten mittaushäiriöiden ilmaantuminen signaaliin on otettu huomioon. Uutta unimittausmenetelmää on ehditty jo soveltaa käytännössä. Kehitetty tuote toimii siten, että mittaus lähetetään sensorilta langattomasti mobiililaitteelle, jossa unitiedot näytetään käyttäjälle. Mobiilisovellus antaa ohjeita unen parantamiseksi mittausten sekä käyttäjän profiilin perusteella

    Multimodal Signal Processing for Diagnosis of Cardiorespiratory Disorders

    Get PDF
    This thesis addresses the use of multimodal signal processing to develop algorithms for the automated processing of two cardiorespiratory disorders. The aim of the first application of this thesis was to reduce false alarm rate in an intensive care unit. The goal was to detect five critical arrhythmias using processing of multimodal signals including photoplethysmography, arterial blood pressure, Lead II and augmented right arm electrocardiogram (ECG). A hierarchical approach was used to process the signals as well as a custom signal processing technique for each arrhythmia type. Sleep disorders are a prevalent health issue, currently costly and inconvenient to diagnose, as they normally require an overnight hospital stay by the patient. In the second application of this project, we designed automated signal processing algorithms for the diagnosis of sleep apnoea with a main focus on the ECG signal processing. We estimated the ECG-derived respiratory (EDR) signal using different methods: QRS-complex area, principal component analysis (PCA) and kernel PCA. We proposed two algorithms (segmented PCA and approximated PCA) for EDR estimation to enable applying the PCA method to overnight recordings and rectify the computational issues and memory requirement. We compared the EDR information against the chest respiratory effort signals. The performance was evaluated using three automated machine learning algorithms of linear discriminant analysis (LDA), extreme learning machine (ELM) and support vector machine (SVM) on two databases: the MIT PhysioNet database and the St. Vincent’s database. The results showed that the QRS area method for EDR estimation combined with the LDA classifier was the highest performing method and the EDR signals contain respiratory information useful for discriminating sleep apnoea. As a final step, heart rate variability (HRV) and cardiopulmonary coupling (CPC) features were extracted and combined with the EDR features and temporal optimisation techniques were applied. The cross-validation results of the minute-by-minute apnoea classification achieved an accuracy of 89%, a sensitivity of 90%, a specificity of 88%, and an AUC of 0.95 which is comparable to the best results reported in the literature

    Effects of circadian rhythm phase alteration on physiological and psychological variables: Implications to pilot performance (including a partially annotated bibliography)

    Get PDF
    The effects of environmental synchronizers upon circadian rhythmic stability in man and the deleterious alterations in performance and which result from changes in this stability are points of interest in a review of selected literature published between 1972 and 1980. A total of 2,084 references relevant to pilot performance and circadian phase alteration are cited and arranged in the following categories: (1) human performance, with focus on the effects of sleep loss or disturbance and fatigue; (2) phase shift in which ground based light/dark alteration and transmeridian flight studies are discussed; (3) shiftwork; (4)internal desynchronization which includes the effect of evironmental factors on rhythmic stability, and of rhythm disturbances on sleep and psychopathology; (5) chronotherapy, the application of methods to ameliorate desynchronization symptomatology; and (6) biorythm theory, in which the birthdate based biorythm method for predicting aircraft accident susceptability is critically analyzed. Annotations are provided for most citations

    Photoplethysmographic Waveform Versus Heart Rate Variability to Identify Low Stress States. Attention Test

    Get PDF
    Our long-term goal is the development of an automatic identifier of attentional states. In order to accomplish it, we should firstly be able to identify different states based on physiological signals. So, the first aim of this work is to identify the most appropriate features, to detect a subject high performance state. For that, a database of electrocardiographic (ECG) and photopletysmographic (PPG) signals is recorded in two unequivocally defined states (rest and attention task) from up to 50 subjects as a sample of the population. Time and frequency parameters of heart/pulse rate variability have been computed from the ECG/PPG signals respectively. Additionally, the respiratory rate has been estimated from both signals and also six morphological parameters from PPG. In total, twenty six features are obtained for each subject. They provide information about the autonomic nervous system and the physiological response of the subject to an attention demand task. Results show an increase of sympathetic activation when the subjects perform the attention test. The amplitude and width of the PPG pulse were more sensitive that the classical sympathetic markers (normalised power in LF and LF/HF ratio) for identifying this attentional state. State classification accuracy reaches a mean of 89 ±\pm 2%, a maximum of 93% and a minimum of 85%, in the hundred classifications made by only selecting four parameters extracted from the PPG signal (pulse amplitude, pulse width, pulse downward slope and mean pulse rate). These results suggest that attentional states could be identified by PPG
    corecore