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Abstract

Drowsy driving is one of the main causes of traffic accidents, with some solutions addressing this
problem by giving feedback when the driver is drowsy. However, few solutions tackle the problem
in a way that allows for portability and early prevision, through monitoring of the circadian rhythm.
This dissertation focuses on solving the portability issue, by developing a system for drowsiness
detection during driving. Wearable sensors and intelligent algorithms are used, for a low-cost,
portable, automated, and non-intrusive solution. Circadian rhythm and sleep stage concepts are
explored, as well as the clinically standardized methods for sleep analysis (polysomnography and
sleep questionnaires), and current methods for drowsy driving detection.

With these concepts in mind, the wearable sensors chosen for biosignal acquisition are Empat-
ica’s E4 wristband for heart activity acquisition, and Brainlink Pro for brain activity acquisition.
Recurring signal processing techniques and evaluation metrics used in similar studies are explored.
The proposed solution follows an algorithm flow of signal acquisition, pre-processing, feature ex-
traction, feature selection, and classification. Features used were mainly time-domain-based (e.g.,
statistics) and time-frequency-domain-based (e.g., wavelet transforms).

The algorithms were trained and validated through the use of a database developed for this
specific study, with 13 young adult participants (11 with normal last-night sleep, and 2 without any
last-night sleep). Participants were asked to answer to Pittsburgh and SATED questionnaires, after
which photoplethysmography and electroencephalhography physiological signals were acquired
during driving in a simulation environment. Some limitations of the use of wearable sensors
were found, nominally the reduced number of leads/electrodes reducing signal quality, the high
initial costs, unstable wireless connections, and the reduced real-time feedback provided by the
current iteration of the proposed solution. The proposed solution far surpasses existing ones in its
portability, with future work promising improved automation and speed.
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Resumo

A sonolência ao volante é uma das principais causas de acidentes de viação, com algumas soluções
resolvendo o problema através de feedback quando o condutor está sonolento. Contudo, poucas
soluções permitem portabilidade e previsão antecipada, através da monitorisação do ritmo circadi-
ano. Esta dissertação foca-se em resolver o problema da portabilidade, desenvolvendo um sistema
para deteção da sonolência na condução. Sensores vestíveis (do inglês wearable sensors) e algorit-
mos inteligentes são usados, para uma solução de baixo custo, portátil, automática, e não-intrusiva.
Conceitos relativos ao ritmo circadiano e estados do sono são explorados, assim como os métodos
clinicamente estandardizados para análise do sono (polisomnografia e questionários do sono) e
métodos atuais para deteção de sonolência ao volante.

Com estes conceitos em mente, os sensores vestíveis escolhidos para aquisição dos biosinais
são a banda de pulso E4 da Empatica para aquisição de atividade cardíaca, e Brainlink Pro para
aquisição de atividade cerebral. Tecnologias recorrentes de processamento de sinal e métricas
de avaliação utilizadas em estudos prévios são exploradas. A solução proposta segue o fluxo de
pré-processamento, extração e seleção de atributos, e classificação. Os atributos usados foram
principalmente nos domínios do tempo (por exemplo estatísticas) e tempo-frequência (por exem-
plo transformadas de wavelets).

Os algoritmos são treinados e validados pelo uso de uma base de dados criada expecificamente
para esta dissertação, com 13 participantes jovens adultos (11 com sono na noite passada normal,
e 2 de direta). Foi pedido aos participantes que respondessem aos questionários de Pittsburgh e
textitSatisfaction, Alertness, Timing, Efficiency and Duration, depois dos quais sinais fisiológicos
de fotopletismografia e eletroencefalografia foram adquiridos durante a condução em ambiente
simulado. Algumas limitações no uso de sensores wearable foram encontradas, nomeadamente o
número de elétrodos reduzido limitar a qualidade do sinal, o alto custo inicial, ligações wireless
instáveis, e o reduzido feedback em tempo real providenciado na iteração atual da solução pro-
posta. A solução proposta consegue distinguir-se pela sua portabilidade, com maior automação e
velocidade possíveis em trabalho futuro.
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Chapter 1

Introduction

This chapter includes the Motivation for the proposed solution, the general and focused disserta-

tion Objectives, and the Document Structure.

1.1 Motivation

In a growing society, sleep restrictions have a negative impact and risks from multiple factors. The

driving activity places highly complex perceptual, physical, and cognitive demands on the driver

(Sawyer et al., 2012). According to the AASM, being awake for at least 18 hours is the same as

someone having a blood alcohol content (BAC) of 0.05%, while being awake for at least 24 hours

is equal to having a blood alcohol content of 0.10%. This is higher than the legal limit (0.08%

BAC) in the USA. Therefore, methods for detecting sleepiness in driving are under investigation,

with promising results.

It is widely known that monotonous or nighttime driving for long periods often lowers driving

performance significantly. This contributes to it being one of the leading causes of injuries and

deaths from traffic accidents each year (Lin et al., 2014).

Even though a third of our life is spent sleeping (Mancia, 1993), sleeping disorders are very

common. 15 to 35% of the adult population complain of sleep quality disturbance (Breslau et al.,

1996). Sleep disturbances are also related to higher rates of depression, anxiety disorders, alcohol

abuse, or drug abuse.

To measure sleep quality, subjective methodologies can be used, predominately through ques-

tionnaires. However, these methods are not enough, since they rely on the self-awareness and hon-

esty of the subject. Then, objective measurements of sleep are required and thus enter polysomnog-

raphy (PSG). These tests tend to be made in a specialized facility overnight.

To find a response to drowsy driving, a change of paradigms is necessary, in which methods

for sleep evaluation need to be substituted for the automatic detection of sleep disturbances or

chronic sleep deprivation. This can be achieved by integrating intelligent algorithms that also

classify the circadian rhythm from a subject. A low-cost, portable, and non-intrusive solution is

ideal, to facilitate everyday usage.

1



Introduction 2

1.2 Objectives

The project “Sono ao Volante 2.0”, or Sleep at the Wheel 2.0, proceeds preliminary works (Nogueira

et al., 2018) (Oliveira et al., 2020), with the main objective of developing the first prototype of an

integrated data system that is non-intrusive and low-cost, which allows sleep prevision while driv-

ing and detection of disturbances or chronic sleep deprivation. The investigation aims to advance

science and technology in the resolution of the problem “sleep at the wheel”.

The contribution from this dissertation focuses on the use of wearable sensors and intelli-

gent algorithms, to conceive in detail the functional and technical architecture of a low-cost,

non-intrusive and portable system for sleep quality assessment in a preliminary proposal, and

for detection of drowsy driving episodes in a more advanced methodology. To do so, concepts in

sleep evaluation, driving monitoring, driving simulation, and signal processing practices must be

reviewed.

1.3 Document Structure

The document is divided into six chapters: Introduction, Methods for Sleep Evaluation, Signal Ac-

quisition and Processing, Methodology, Results and Discussion, and Conclusions. Excluding the

Introduction and Conclusions chapter, all chapter contain a final Lessons Learned and Limitations

section, in which the most important concepts are referenced, as well as current work limitations

and suggestions to solve them.

The 1st chapter, Introduction, contains a general overview of the Motivation, with sleep statis-

tics and concepts, as well as the project Objectives and Document Structure.

The 2nd chapter, Methods for Sleep Evaluation, is subdivided into Sleep and Circadian Rhythm,

Sleep Stages, Subjective Methods, Polysomnography, and Drowsy Driving Detection. The Sub-

jective Methods section includes a background for the Pittsburgh; and the SATED questionnaires.

The Polysomnography section includes the several types of signals used in sleep exams, as well

as a detailed overview of the most relevant signals for the dissertation plan.

The Drowsy Driving Detection section originates from the need for a safe and close-to-reality

driving environment to test the practicality of wearable sensors. It starts by studying the general-

ized Marketed Solutions, and then specifies further into BCI-based Studies, and Driving Simula-

tions that can be used in tandem with these studies.

The 3rd chapter, Signal Acquisition and Processing, includes a review on Wearable Sensors of

interest for the proposed applications as well as some concepts needed for signal acquisition. This

section is subdivided into two: Brain Activity Acquisition; and Heart Activity, Skin Conductivity,

and Temperature Acquisition, since the latter list of signals can be measured using similar de-

vices/wristbands. This chapter also includes Signal Processing, which includes a general overview

of the algorithm concepts referenced in related literature, and is subdivided in Pre-processing, Fea-

ture Extraction, Feature Selection, Classification, and Evaluation Metrics.
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The 4th chapter, Methodology, includes the Preliminary Work - Sensor Trial and Sleep Stud-

ies, Proposed Solution, Experimental Setup and Procedure, Dataset, Signal Processing Method,

Classification, and Evaluation Metrics. The first section explains how the first contact with the

sensors was performed, and a proposed solution more focused on signal acquisition during sleep,

being subdivided in Preliminary Solution Proposal, Preliminary Methodology and Preliminary

Proposed Evaluation. The Dataset section is subdivided in Acquisition and Study Subjects. The

Signal Processing Method section is subdivided in Pre-processing, Feature Extraction, and Fea-

ture Selection. The Classification section focuses on the classifiers used and their hyperparameters.

The Evaluation Metrics section presents some usual metrics used for classification evaluation.

The 5th chapter, Results and Discussion, includes Preliminary Results, Study Participants and

Sleep Questionnaires, Practice Run Discrimination, Individual Classification, and Sleep Depri-

vation Detection. The Preliminary Results section presents some examples of the biosignals ac-

quired during preliminary work, being subdivided into two sections: E4 Wristband and Neurosky

Brainlink Pro. The Study Participants and Sleep Questionnaires section provides statistics on the

participants of the study, as well as the results obtained from sleep questionnaires. The final three

sections explore the results obtained for the different classification methods employed.

The 6th chapter, Conclusions, is subdivided in Current Achievements and Limitations, and

Future Work. The first section focuses on the successes and limitations found during the project,

while the last section addresses proposes solutions to the current shortcomings.



Chapter 2

Methods for Sleep Evaluation

This chapter provides background for Sleep and Circadian Rhythm, and Sleep Stages, as more

theoretical sleep-centered concepts. Subjective and objective methods for sleep evaluation are

then tackled, with subjective methods focusing on sleep questionnaires, and objective methods on

polysomnography. Drowsy Driving Detection methods are then presented, which include Mar-

keted Solution, BCI-based Studies and Driving Simulations.

2.1 Sleep and Circadian Rhythm

Alertness and reaction time vary according to the circadian rhythm, which makes it an important

factor in this study. Living cells in animals have rhythmic variations in their function on a circadian

cycle (gan, 2019). If they are entrained, this process usually coincides with day-night light cycles

in the environment. If they are not entrained, they become asynchronous from the light-dark

cycle. The entrainment process is dependent on the suprachiasmatic nuclei, located above the

optic chiasm, bilaterally.

The sleep-wake cycle and the secretion of the pineal hormone melatonin are reliant on neuro-

hormonal signals that participate in this entrainment. According to (Leung and Martinez, 2020),

circadian rhythm biomarkers include cortisol levels, peak expiratory flow, blood lipids, DNA dam-

age, lipid peroxidation, protein oxidation, antioxidants, white blood cell counts, estradiol, pro-

gesterone, follicle-stimulating hormone, body temperature, blood pressure, and muscle strength.

Cellular responses include inflammatory response and cellular trafficking, while some affected

molecular processes include oxidative stress responses, DNA methylation, and histone modifica-

tion. Only signals which are measured during polysomnography exams are considered, as referred

in Section 2.4.

2.2 Sleep Stages

Two sleep stage sets of rules can be considered: the ones proposed by Rechtschaffen and Kales

(R&K), and the ones proposed by the American Academy of Sleep Medicine (AASM) (Moser

4
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et al., 2009). It is relevant to note that sleep stages are more spectral-like than discrete in their

evolution through the sleep cycle, so both rulings can be applied with the proper normative data to

make them practicable. With this in mind, the AASM method is the most recent (the R&K rules

have been the standard for approximately 40 years), so new normative data for the AASM is still

being established.

According to the R&K scoring rules, sleep can be divided in 7 distinct stages: wake, stage 1,

stage 2, stage 3, stage 4, stage of Rapid Eye Movement (REM), and movement time. Although this

standard can be of interest, it has also been under critics for leaving too much room for subjective

interpretation, leading to excess variability between exams due to the reliance on visual analysis

of sleep stages. These rules were also developed for a closed demographic (young healthy adults),

and do not always apply to certain patients and age groups.

The AASM method iterated the standard guidelines proposed by R&K, with a new guideline

for terminology, recording methods, and scoring rules. The review addresses the topics of digital

analysis and report parameters, visual scoring, arousal, cardiac and respiratory events, movements,

and children and young teenager specific scoring. In the AASM classification, stages S1 to S4 are

substituted by non-REM (NREM) N1 to N3, with N3 involving slow-wave sleep (corresponding

to stages S3 and S4 in the R&K terminology); and stage REM being presented as stage R.

Nevertheless, normal sleep is widely accepted to be characterized by a succession of four to

six cycles lasting around 90 minutes. The early cycles tend to be characterized by deep, slow sleep

with slow-wave activity, while the latter corresponds to REM, during which rapid eye movements

are observed and muscle tone ceases. The usual duration of sleep tends to vary between six and ten

hours, depending on several factors, with the most notable being age and genetics (Guillodo et al.,

2018). An example of a typical sleep cycle classified according to the AASM rules is presented in

Figure 1.

2.3 Subjective Methods

Subjective methods for sleep assessment are those that, contrarily to physiological signal acquisi-

tion methodologies, are reliant on the respondents own testimony. A clinical interview constitutes

the most critical first step in the evaluation of sleep related complaints, alongside the physical ex-

amination by a professional, which aids the generation of a multi-faceted diagnosis (Chokroverty

and Bhat, 2014). This chapter will focus on some existent self-administrated questionnaires used

for sleep quality assessment.

2.3.1 Pittsburgh Questionnaire

The Pittsburgh Sleep Quality Index (PSQI) is arguably the most utilized questionnaire for sleep

quality assessment (Mollayeva et al., 2016).

The PSQI insides on sleep quality during the previous month (Buysse et al., 1989). This

provides information about the night-to-night variations occurring in sleep quality, as well as the
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Figure 1: A typical example of a night’s sleep for a young adult. The night begins with deep
NREM sleep (N3) and then switches between NREM and REM sleep every 90 min approximately.
NREM sleep becomes lighter through the night and REM sleep episodes become longer. Modified
from Scammell et al. (2017).

duration, frequency, and severity of abnormal behavior duration and frequency over a long period

of time.

The PSQI is constituted by 19 self-rated questions and 5 questions rated by the bed partner or

roommate. The self-rated questions focus on a vast quantity of factors relating to sleep quality,

such as sleep duration, latency, frequency, and severity estimated for each specific sleep issue. The

19 items are grouped into 7 component scores, each weighted from 0 to 3. The seven scores are

then added to each other to obtain the global PSQI score, with a range 0-21. Higher scores are

associated with worse sleep quality.

The 7 components of the PSQI are subjective sleep quality, sleep duration, sleep latency, usual

sleep efficiency, sleep disturbances, use of sleeping medications, and daytime dysfunction. The

asked questions and scoring practice are shown in Figure B.1, in the Appendix.

2.3.2 Satisfaction, Alertness, Timing, Efficiency and Duration Questionnaire

A more recent and reliable approach to subjective sleep quality assessment is the Satisfaction,

Alertness, Timing, Efficiency and Duration Questionnaire (SATED) (Benítez et al., 2020). SATED

evaluates five dimensions of sleep health: 1) satisfaction, 2) alertness while awake, 3) timing,

4) efficiency, and 5) duration. Objective measures can be obtained from every level, excluding

satisfaction.

There is a question relating to each of these five dimensions. The subject is asked to provide

the frequency of meeting each dimension. Each question can be answered with a level ranging

from 0 to 2, with 0 for “never” or “rarely”,1 for “sometimes”, and 2 for “usually” or “always”.

Some versions of the questionnaire also divide 0 and 2 into two separate sub-levels.

The total score ranges from 0 to 10 points, from worst to best sleep quality, respectively.
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2.4 Polysomnography

Polysomnography (PSG) plays a critical role in confirming suspicions found in more subjective

exams and helps guide further diagnosis of sleep disorders (Chokroverty and Bhat, 2014). PSG

consists of the overnight recording of various physiological characteristics during sleep. These

recordings allow evaluation of sleep stages, alertness, cardiocirculatory functions, respiration, and

body movements. Electroencephalography (EEG), electrooculography (EOG), and electromyo-

graphy (EMG) applied to the chin area are of particular interest for sleep staging (Berry, 2012).

EMG measurements of the tibialis anterior may be requested in cases of sleepless leg syndrome

(Spiegelhalder et al., 2008). PSG also records single-channel electrocardiography (ECG), snor-

ing (via a sound recorder), movements, and behavior (via sound and video recording) typically.

Oronasal airflow is measure in the case of sleep apnea or obstructive lung disease, as well as res-

piratory effort and chest movement. It is worth noting that sleep apnea can also be detected and

classified via EEG and ECG analysis (Koçak et al., 2012) (Lee et al., 2002). Finger or pulse oxime-

try is also useful in this regard, being helpful in the general identification of hypopneic events in

general. Other less widespread techniques may be used, but they are not relevant for the focus of

this study.

The biosignal inputs obtained through PSG measurements have very small amplitudes, so am-

plification is required to obtain interpretable records. Frequency filtering is also pivotal to exclude

artifacts and analyze critical features. PSG equipment is then composed of both amplifiers, with

the function of amplifying and recording activity, and tunable filters for signal-specific frequency

sensitivity.

Low-pass (or high-frequency) filters allow the passage of lower frequencies while attenuating

higher frequencies, while high-pass (or low-frequency) filters do the opposite. PSG amplifiers also

contain a 60 Hz notch filter, which attenuates the main frequency. This is particularly valuable

in the North American power grid, to remove the predominant artifacts, but may also remove

important signal features from other components, so it is generally discouraged for use.

Differential amplifiers are used to augment the difference between two electrode inputs, which

is valuable for unwanted noise removal. The common-mode rejection ratio represents the ability

of noise suppression of an amplifier. In PSG amplifiers, this ratio must exceed 1000 to 1 ideally,

but most updated PSG amplifiers use an excess ratio of 10 000 to 1. Alternating current (AC)

amplifiers are used to record high frequencies, such as EEG, EOG, EMG, and ECG. Direct current

(DC) amplifiers have no low-pass filters, is typically used for low-frequency signals, such as pulse

oximetry and pressure readings. Both AC and DC amplifiers can be used for respiratory flow and

effort readings.

To facilitate sleep staging, the standard recording speed is 10 mm/sec, so that each monitor

corresponds to a 30 seconds epoch. EEG abnormalities, in the form of epileptiform activities, may

be better analyzed by slowing the recording to 30 mm/sec, or even 5 mm/sec for a 60 seconds

epoch for respiratory event visualization.

Sensitivity (microvolts per millimeter or millivolts per millimeter) regulation is necessary to
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obtain the wanted amplitudes for interpretation. Therefore, similarly to and speed settings, the

optimal sensitivity changes according to the physiological signal being focused.

2.4.1 Electroencephalography

EEG consists of the study of electrical fields from the brain recorded by amplifying voltage differ-

entials between electrodes typically placed in the scalp (Misra, 2018). EEG readings are usually

classified regarding abnormality by comparison with labeled data, and then further classified re-

garding epileptiform activity. Epileptiform activity in EEG signals may include spikes, sharp

waves, or spike-and-wave complexes that can be present not only during a seizure but also shortly

before it occurs or between seizures (Gajic et al., 2015).

EEG is mainly used in PSG recordings to distinguish between wakefulness and the various

sleep stages (Malhotra and Avidan, 2014).

2.4.1.1 EEG Acquisition

Electrodes conduct electrical potentials from the patient’s scalp to the EEG machine, through a

conductive interface. This interface constitutes a paste that also stabilizes the electrode, dimin-

ishing movement artifacts. The electrode material should constitute a good conductor. Electrode

placement rules for EEG follows the international 10-20 system, which assigns a number to each

EEG electrode to specify the location in the left or right hemisphere, as seen in Figure 2.a).

Figure 2: a) 10-20 Electrode Placement Map. The z location indicates the midline. The position
Cz corresponds to the vertex, being at the top of the head or in a mid-central position, modified
from Valiulis (2014). b) Electrode locations as recommended in 2007 by the AASM, modified
from Malhotra and Avidan (2014).
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The derivation for sleep studies recommended by the AASM (Ruehland et al., 2011) con-

sists of a minimum of three channels (F4-M1, C4-M1 and O2-M1) representing the right frontal,

central, and occipital electrodes, with corresponding backup electrodes over the left hemisphere

(F3-M2, C3-M2, O1-M2), all six referenced by the corresponding side’s contralateral mastoid

electrode, as seen in Figure 2.b).

However, it is worth noting that there are serious limitations to using just this minimum rec-

ommended montage. Even though it is sufficient for detection of posterior dominant rhythm in

wakefulness and major sleep phenomena (vertex sharp waves, steep spindles, and K complexes;

further description available at section 2.4.1.2), a single-hemisphere recording may result in inac-

curacies in lesion detection, or if a legion is present in the hemisphere of focus. The AASM also

considers acceptable the use of a derivation that includes the midline and a center channel (Fz-

Cz, C4-M1, Oz-Cz) (Duce et al., 2014), but this results in attenuation of important hemisphere

features. Therefore, a montage recording over the hemispheres and the temporal line is recom-

mended. A full seizure montage is recommended for nocturnal seizure studies, which includes

analysis of the temporal and parasagittal regions.

2.4.1.2 EEG Activity during Wakefulness and Sleep

Six EEG wave patterns are conventionally identified for differentiation of wake and sleep states,

as well as classification of the different sleep stages. These are alpha activity, theta activity, vertex

sharp waves, sleep spindles, K complexes, and slow-wave activity. Further description presented

in Table 1.

Table 1: Sleep Electroencephalographic Waveforms. (modified from Malhotra and Avidan
(2014)).
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Several EEG studies also suggest that delta (1-3 Hz), theta (4-7 Hz), and alpha (8-12 Hz)

activities are highly related to fatigue, drowsiness, and reduction of task performance (Lin et al.,

2014). The filter settings for PSG studies tend to be a low-pass filter of 0.3 Hz, a high-pass filter

of 35/70 Hz, and a time constant of 0.4 seconds, with a sensitivity of 5-7 µV/mm (Chokroverty

and Bhat, 2014).

2.4.2 Electrocardiography

The PSG often includes a single channel ECG, with one electrode placed over the sternum and the

other at a lateral chest region. This montage detects most arrhythmias. Gold cup electrodes are

used for the measurement. Sensitivity settings tend to begin at 1 mV/cm, with adjustments required

throughout the PSG study. Regarding filter settings, the time constant is set to 0.12 seconds, and

high-pass frequency filtering is required at 15 Hz and a low-pass filter at 1.0 Hz (Chokroverty and

Bhat, 2014). Single-lead measurements are limited for a more specific diagnosis, so follow up

PSG recordings with 12-lead ECGs may be required.

2.4.2.1 ECG Acquisition

ECG conventionally requires twelve leads, which are used to record the difference in potential

between electrodes placed on the surface of the body (Loscalzo, 2017). These leads are divided

into two distinct groups: six limb (extremity) leads and six chest (precordial) leads. The limb

leads record potentials transmitted onto the frontal plane, as seen in Figure 3.a), and the chest

leads record potentials transmitted onto the horizontal plane, as seen in Figure 3.b).

Figure 3: The six frontal planes (a) and six horizontal planes (b) leads allow for a 3D representation
of electrical cardiac activity.(modified from Loscalzo (2017)).

2.4.2.2 ECG Waveforms

The ECG waveforms are named alphabetically (Loscalzo, 2017). The P wave represents atrial de-

polarization. The QRS complex corresponds to ventricular depolarization, and the ST-T-U com-

plex (ST segment, T wave, and U wave) corresponds to ventricular repolarization. The J point
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represents the junction between the end of the QRS complex and the start of the ST segment. A

standard ECG wave is presented in Figure 4.

Figure 4: Classic ECG waveform. The R-R interval, corresponding to the time between consecu-
tive QRS complexes, is not shown. (extracted from Loscalzo (2017)).

There are four major ECG intervals: R-R, PR, QRS, and QT. For sleep studies, only R-R

and QRS are considered, as further discussed in Section 3.2.2.4. The heart rate (HR) in beats

per minute (bpm) can be quickly computed from the interbeat (R-R) interval by dividing 300 by

the number of large time units (0.20 s) between consecutive R waves, or 1500 by the number of

small units (0.04 s). The QRS interval has a usual duration of 100–110 ms or less and reflects the

duration of ventricular depolarization.

2.4.2.3 Important Cardiac Arrhythmias

According to the AASM (Caples et al., 2007), bradycardia during sleep should be defined in

people aged over 6 years old as a continual HR < 40 bpm. Furthermore, aystoles (characterized

by an absence of ventricular contraction) of duration ≤ 2 seconds during PSG can be detected in

normal adults. Consequently, longer asystoles (duration≥ 3 seconds) correspond to a pathological

indicator in symptomatic individuals and can be an indicator of sleep apnea.

Regarding tachycardias, sinus tachycardia during sleep can be defined in adults as a consistent

HR > 90 bpm. Wide complex tachycardia corresponds to a sustained rhythm lasting more than 3

cardiac cycles, with QRS duration≥ 120 ms and HR > 100 bpm. Narrow complex tachycardia is a

sustained rhythm that lasts more than 3 cardiac cycles with QRS duration < 120 ms and HR > 100

bpm. Atrial fibrillation can be described as an irregular ventricular rhythm, associated with the

substitution of P waves with quick oscillations or waves with an irregular shape, size, and timing.

It is also important to take into account that the average heart rate is lower during sleep than

wakefulness, and generally higher in females than males during sleep (Caples et al., 2007).
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2.4.3 Photoplethysmography

Plethysmography (PPG) or Blood Volume Pressure (BVP) measures changes in blood volume over

time in a body segment. The blood volume increases during systole and decreases during diastole,

with arterial inflow and venous outflow, respectively (Graham, 1996).

Finger or pulse PPG can be a good indicator for the prediction of the occurrence of sleep apnea

(Karmakar et al., 2014) and sleep stage prediction (Walch et al., 2019).

PPG can be used to determine the interbeat interval (IBI), which is the PPG equivalent to the

R-R interval in ECG (Tremper, 1989) (Sinex, 1999). Similarly, the IBI can then be converted to

HR and HRV.

For low-movement acquisitions such as during sleep, artifacts that are most often associated

with PPG can simply be filtered out with bandpass filters, with ranges in literature around 0.5-

5Hz (Ram et al., 2012) (Bagha and Shaw, 2011). Therefore, following the Nyquist theorem,

measurements should have a sampling rate of at least 10Hz. For high-movement acquisitions,

movement-related noise may need to be removed, with some studies relying on accelerometers to

do so accurately (Santos et al., 2012).

2.4.4 Electrodermal Activity

Electrodermal Activity (EDA) consists of the variation in skin conductance in response to sweat-

ing. It has been shown to have interesting applications for sleep stage scoring and daily sleep

monitoring systems (Hwang et al., 2017), respectively because high-frequency EDA patterns can

be ascertained during slow-wave sleep compared with other sleep stages, and skin conductance

progressively increases as a subject relaxes.

2.4.5 Temperature

It is well documented that, due to the effect of body temperature on the circadian rhythm, lower

environmental temperatures increase drowsiness, with higher temperatures also diminishing the

length of slow-wave and REM sleep stages (Sagot et al., 1987) (OKAMOTOMIZUNO et al.,

2005) (Muzet et al., 1983). Therefore, body temperature (BP) can be a method for sleep stage

classification and drowsiness prevision in this regard, considering that higher BP can be linked to

increased wakefulness, while lower BP can be indicators of increased drowsiness.

2.5 Drowsy Driving Detection

2.5.1 Marketed Solutions

Measures for drowsiness detection include vehicle based measures, such as lane position, steering

wheel movements, and pressure on acceleration pedal (Sikander and Anwar, 2019). Others are
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based on driver behavior, such as eye blink rate, eye closure, yawning, or head position. Physio-

logical based measures can be detected through heart beat (ECG or PPG) or brain activity (EEG).

These approaches are shown in Figure 5.

Figure 5: Approaches for Drowsiness Detection. (modified from Sikander and Anwar (2019)).

Multinational automobile companies are currently performing research on driver inattention

systems (Sikander and Anwar, 2019).

Toyota’s 2019 model Crown implemented a fatigue detection module, which was based on

eyelid activity. Toyota Safety Sense P is a newer system, which includes lane deviation.

Nissan implemented a system in the 2016 model Maxima that tracks the driver’s steering data

and alerts the driver when detecting any unusual deviation.

Volkswagen’s Rest Assist system has lane tracking, pedal, and steering wheel pattern recogni-

tion. When fatigue is detected, the system warns the driver by visual, auditory, or vibration (in the

steering wheel) feedback.

A study using Google Glasses (He et al., 2017) also had promising results, by measuring

increased eye blink frequency measurements (through a proximity sensor) in drowsy drivers.

HealthyRoad is a 2016 Portuguese startup in the automotive sector, that focuses on drivers’

facial features. The software evaluates drowsiness, fatigue, distraction, and stress. It is also able

to identify different drivers, including their sex and age, in order to create a driver’s profile. The

software’s main goals are to alert the driver of dangerous driving behavior, to give a better user

experience, and finally to support the other sensors in the vehicle to take action, if necessary.

2.5.2 BCI-based Studies

Alhola and Polo-Kantola (2007) documents a significant cognitive impairment effect of sleep de-

privation (SD), and distinguishes between chronic partial sleep restriction (with fewer hours of

sleep per night for 4 days or more) and full sleep deprivation (corresponding to 16h-18h-24h-36h

without sleeping with increasing SD cognitive impairment). It also puts and emphasis on self-

evaluation of cognitive performance with attention tests (i.e., reaction time, vigilance, addition
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or subtraction tasks, visual and auditory attention tasks), working/long-term memory tests (recall-

ing words, spaces, numbers), visual-motor performance, decision-making, and response inhibition

among other measures.

Regarding driver’s cognitive response to turning left or right, Taghizadeh-Sarabi et al. (2013)

presents a methodology using EEG and a Hopfield neural network. The signal was acquired

by a 19-channel montage during a simulator experiment, in which a driving pathway is presented

without obstacles and indications are given to the subject to turn left or right by means of keyboard

input. The study achieved a 97.6% accuracy.

When it comes to solutions for emergency braking prevention, EEG usage as shown promising

results in reading driver’s breaking intention prior to the action being performed (Lee et al., 2017).

The acquisition of driving data had a duration of 120 minutes, with two emergency situations and

a normal driving situation in a virtual driving environment. The EEG signal was recorded through

64 Ag/AgCl electrodes based on the modified International 10-20. A recurrent convolutional

neural network was employed to better capture contextual and spatial patterns of brain signal. The

solution was able to recognize the braking intention up to 380 ms prior to the action, with AUC

scores range between 0.61 and 0.81.

Although not the same as drowsy driving, driving fatigue also has a tremendous impact on road

safety. Hu (2017) develops an EEG-based solution for driving fatigue detection. The proposed

solution uses entropy-based features and an AdaBoost classifier. 28 young adults volunteered for

the experiment, with an unspecified number of minutes to practice in a driving simulation. The

driving procedures were divided according to duration in 20 minutes to 60-120 minutes, with the

final 5-minute signal acquisitions being labeled as normal or fatigued, respectively. The driving

environment set up for the experiment was a low-density traffic highway, to induce fatigued driving

in subjects. EOG response was used to confirm the existence of driving fatigue. The EEG was

acquired from 30 channels, with a bandpass filter of 0.15-45Hz during pre-processing. The study

achieved improved area under the receiver operating curve of 0.984, recall of 0.984, F1 score of

0.976 and Mathews correlation coefficient of 0.952.

Hernández et al. (2018) also focuses on anticipatory braking recognition to prevent traffic ac-

cidents. Seven EEG signals were recorded from the frontal, central and parietal lobes, as well as

EMG from the anterior tibial muscle from the right leg. The signals were recorded during a simula-

tion in which participants were asked to avoid collisions with obstacles by performing emergency

braking. Stress and fatigue were also factored in the study. The classification between braking

intention and normal driving was performed through support vector machines and convolutional

neural networks. A recognition of braking intention of 71% was achieved with both classifiers, in

addition to 80 and 88% accuracy of classification for SVM and CNN respectively.

2.5.3 Driving Simulations

The need for a safe and close-to-reality driving environment for this dissertation lead to the fol-

lowing review of driving simulations that can be used for dataset acquisition and testing of the

practicality of wearable sensors.
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Driving simulators present a promising environment for assessment of driving conditions, that

facilitates the measurement and recording of driver parameters (Taghizadeh-Sarabi et al., 2013)

(Imhoff et al., 2016) (Lee et al., 2017) (Hu, 2017) (Hernández et al., 2018). These simulations

have the upside of being safer than real life environments for drowsiness studies.

Studies show a significant impact of drowsiness in driving performance, with these effects

being more significant in monotonous or long-duration situations and landscapes (Soares et al.,

2020). Some documents include several metrics for the detection and prediction of sleepiness, as

mentioned in Section 2.5.1.

Some city driving simulators compatible with portable computer and offering compatibility

with simulation hardware (such as Logitech G series wheel, pedals, and gearbox) include Forward

Development’s City Car Driving and some Kunos Simulazioni’s Assetto Corsa mods. These

simulations provide replicability through predefined courses and different route and environment

settings (such as traffic level, traffic aggressiveness, climate, road type, or pedestrian density).

2.6 Lessons Learned and Limitations

Sleep questionnaires have the disadvantage of being too reliant on subject memory and honesty.

Besides, some questions related to sleep (e.g., if the person snores) can often only be answered

accurately if a bed partner/roommate is present. Therefore, in order to correctly assess subject

baseline sleep quality in the future, there are a few options: bed partners/roommates must be

included in the questionnaires, SATED objective measure may be employed, tests may be taken

from patients undergoing polysomnography exams in a sleep institution, or subjects may be subject

to drowsy driving detection methods available in the market (for example, through EOG signals).

Polysomnography signal acquisition is the current gold standard for circadian rhythm and

sleep stage monitoring and evaluation. The monitored indicators include electroencephalography,

electrocardiography, photoplethysmography, electrodermal activity, temperature, electromyogra-

phy, oronasal airflow, and electrooculography. Among these signals, electrodermal activity and

temperature have the lowest frequencies, which makes them better suited for long duration stud-

ies. EEG, ECG/PPG, EMG, and EOG also appear quite frequently in literature and marketed

solutions for drowsy driving detection.

Marketed solutions for the issue of drowsy driving are mostly integrated within automobiles.

Therefore, the development of portable solutions, nominally those that measure physiological sig-

nals or eye movement, can be of interest for solutions that work in all kinds of vehicles. As of now,

no marketed solution provides the portability and simple biosignal acquisition that characterizes

wearable sensors. However, a more thorough market analysis is necessary, in order to guarantee

that no overwhelming competitors appear in the future.

Overall, research shows promise in EEG usage for anticipatory braking recognition, while

methodologies involving turning being relatively absent in literature. Sleep deprivations appear

through a chronic restriction (with fewer hours of sleep per night during 4+ days) or full depriva-

tion (18+ hours without sleep during a single night), with both having a negative impact on driving
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performance. Furthermore, the usage of wearable devices is still lacking, with most studies utiliz-

ing equipment that lack portability and usability but provide more accurate results.

Driving simulations are often used in EEG-based studies, since they provide a safe environ-

ment for repeatable and fast data acquisition. These offer repeatability and safety. The need for

a safe and close-to-reality driving environment for this dissertation lead to the review of driving

simulations that can be used for dataset acquisition and testing of the practicality of wearable sen-

sors. Some promissing simulations include some Kunos Simulazioni’s Assetto Corsa mods, and

Forward Development’s City Car Driving. The latter presents compatibility with the Logitech
G27 wheel, pedals, and gear box.

More specific detection and/or prevention systems related to drowsy driving, such as braking

intention detection, can be of interest in future works.



Chapter 3

Signal Acquisition and Processing

This chapter focuses on background directed to the Wearable Sensors of focus (Brainlink Pro and

E4 wristband), and Signal Processing algorithms, including Pre-processing, Feature Extraction,

Feature Selection, Classification, and Evaluation Metrics.

3.1 Wearable Sensors

3.1.1 Brain Activity Acquisition

User acceptable and reliable EEG devices for real-time monitoring are still a challenging propo-

sition (Lin et al., 2014). Data acquisition from most EEG recording techniques requires skin

preparation and conductive gel to reach optimal electrical conductivity at the interface. These

procedures can be slow at the time of application and uncomfortable. Also, the gel may have to

be reapplied, since the reading decays in quality as the gel dries out. Therefore, the EEG system

needed must be a dry-electrode, both wearable and wireless, facilitating prolonged and portable

use. The system must also be able to capture the required brain signals for assessing wakefulness

and sleep stages.

According to LaRocco et al. (2020), some promising consumer EEG wearable headsets with

Bluetooth compatibility include InteraXon Muse, Neurosky Mindwave, OpenBCI, and Emotiv

Epoc and Insight. In Table 2, a comparison between these products is presented, in which Neu-

rosky Brainlink Pro and Muse S were also included.

Even though there is a decent amount of commercial headsets available in the market, a large

portion of them lacks in the number of electrodes, since they are more targeted for focus, relax-

ation, or gaming purposes. The ones with the better characteristics are Emotiv EPOC and Open

BCI, but the price of the latter exceeds most consumer capabilities. Therefore, Emotiv EPOC

seems to be the best candidate, as it offers a wide range of electrodes, which allow the recording

of signals from different brain regions, all at an accessible price counting that the shipping taxes

do not increase the cost too much.

Regarding Brainlink Pro, it can be of interest for the proposed solution, since the Fp1-Fp2

channel has been used in literature for sleep stage scoring, nominally by Lucey et al. (2016). This

17
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Table 2: Comparison of consumer EEG headsets (modified from LaRocco et al. (2020)).

study obtained a poor sensitivity of 0.2 for stage N1 due to the lack of occipital electrodes. The

study also found that sleep latency and REM onset latency readings were compromised relatively

to the PSG diagnosis, as well as sleep disturbance detection (e.g., sleep apnea). However, a strong

and substantial agreement ratio with PSG measurements — of 67 % — was verified overall, having

particularly found that REM assessment, combined with N2 and N3 sleep and frontal slow wave

activity can be well assessed through single-channel means. However, this study did not use

automatic means for sleep classification, which introduced subjective factors, due to the use of a

limited number of human EEG scorers, biased for standard PSG analysis.

3.1.2 Heart Activity, Skin Conductivity, and Temperature Acquisition

The Empatica E4 wristband has been the target of study for ECG applications that depend on

heart rate (HR) measurements, with promising results (Ollander et al., 2016) (Milstein and Gor-

don, 2020) (McCarthy et al., 2016). The wristband derives heart rate variability (HRV) from

Blood Volume Pressure (BVP), which is another designation for PPG. These studies also include

electrical conductivity in the skin, peripheral skin temperature, and motion-based activity. Addi-

tionally, the E4 possesses internal memory that allows for recording of up to 36 hours, with USB

connection to a device needed to recover the data; or a Bluetooth streaming mode that allows for

visualization of data in real-time. After recording, the data can be uploaded to the Empatica cloud

service and visualized or imported through a web dashboard. The device costs approximately 1

400 C.
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3.2 Signal Processing

The general structure found in ML systems for automatic sleep staging follows the phases of

pre-processing, feature extraction, and classification. Initially, the user’s biosignals are recorded,

followed by, a pre-processing stage, which includes filtering and artifact removal for signal en-

hancement. The resulting signals finally suffer feature extraction to return useful attributes for the

classification stage (Aboalayon et al., 2016) (van Wouwe et al., 2011) (Guillodo et al., 2018).Some

systems also include dimension reduction and feature selection, to generate new features with low-

dimensions derived from the input features.

Numerous single- or multi-channel techniques for automated sleep stage scoring appear in the

literature. Some of these studies are reviewed here. According to the detailed review of auto-

matic sleep stage classification, sleep stage characteristics’ extraction and sleep disorder detection

systems performed by Aboalayon et al. (2016), the most often used features, feature extraction,

classifiers, dimension reduction, and feature selection techniques in EEG-based signal processing

of sleep studies are listed in Table 3.

Table 3: Most often used EEG signal processing ML techniques in sleep studies. a) Features
and feature extraction techniques b) Classification techniques c) Feature selection and dimension
reduction techniques (modified from Aboalayon et al. (2016)).

Recent approaches employ Convolutional Neural Networks (CNNs) as classifiers, with promis-

ing results (Mousavi et al., 2019) (Supratak et al., 2017).

3.2.1 Pre-processing

The raw EEG signal has low signal-to-noise ratio, as well as surrounding artifacts that contaminate

measurements, nominally blinks and facial movements (EMG). As such, it is important to take
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signal processing steps that guarantee cleaning of the signal, so it presents mostly brain activity

data. With this is mind, a Butterworth Bandpass filter can be applied. In this filter, the frequency

response is very flat, leading to less signal distortion overall, as shown in Figure 6.

Figure 6: Butterworth bandpass filter response, compared to other filters. (modified from
www.CircuitsToday.com, last accessed 21/06/2021)

As mentioned in section 2.4.1.2, the activities of interest are mostly focused in the frequency

band between 0.5 and 50 Hz (Lin et al., 2014) (Chokroverty and Bhat, 2014), with 1Hz-30Hz also

being a valid interval, depending on the wave components of interest (nominally, alpha and beta

waves).

The attenuation of low frequencies allows for the removal of eye blink-related artifacts. For

the high cut-off frequency, the upper 50Hz limit allows for power line noise and muscle artifact

mitigation, while the 30Hz limit reduces some EEG frequency bands of interest.

However, it is worth noting that EEG wearables are better suited for brain activity related to

meditation and attention (Hunkin et al., 2020), which coincides with alpha and beta waves, in the

8-13Hz and 13-30Hz frequency ranges, respectively. Therefore, the 30Hz limit imposed on the

signal can better isolate this low-frequency EEG activity.

Regarding the BVP/PPG signal, frequency and shape are the main attributes to be mindful of

during processing, with signal amplitude being less relevant. The frequency range of the typical

PPG signal is 0.5-5Hz (Bagha and Shaw, 2011) (Islam et al., 2017), so Butterworth Bandpass

filtering can be performed with 0.5-10Hz cut-off frequency range, in order to obey to the Nyquist

principle. Movement related noise (i.e., abrupt movement of the wrist to which the sensor is

attached) can difficult significantly the extraction of relevant information, since the typical signal

frequency coincides with movement artifacts. Some strategies available for noise removal include

the discrimination of signal sections in which very high peaks appear (due to movement noise), or

by using accelerometer data to minimize PPG signal oscillations correlated with high movement.
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3.2.2 Feature Extraction

After pre-processing, extraction of relevant information from the signals must be performed. Fea-

tures can be associated to the Time Domain (recorded signal over time), the Frequency Domain

(recorded signal plotted along its frequency components) or the Time-Frequency Domain (non-

stationary frequency behavior).

3.2.2.1 Time-Domain Features

Some statistical features can be applied to 1-dimensional arrays. These include mean, standard

deviation, kurtosis, quartiles, and range, respectively shown in Equations 1 to 5.

X =
∑Xi

N
(1)

σ =

√
∑(Xi−X)

2

N
(2)

k =
∑(Xi−X)

4

σ4 (3)

Qq =
q
4
(N +1) (4)

R = max(X)−min(X) (5)

where X is the 1-dimensional array, Xi the ith element of X, N the number of elements in X,

overlineX the mean, σ the standard deviation, k the kurtosis, Qq de q-order quartile (q can be 1,2,

or 3, and Q2 is equivalent to the median), and R the range.

Other time-domain features employed include zero-crossings, which can be determined by the

number of sign changes in the signal, and entropy analysis, which can be extrapolated from 1D

signals, namely Shannon entropy, sample entropy, and spectral entropy (Acharya et al., 2015).

3.2.2.2 Frequency-Domain Features

Regarding frequency-domain features, Power Spectral Density (PSD) measures power over the

entire frequency range of the signal. There are several methods to perform this, such as the Welch

method (Welch, 1967), the multitaper method (Thomson et al., 2000) and the periodogram (Schus-

ter, 1906). After power spectrum calculation, the spectrum is averaged so the PSD is obtained.
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3.2.2.3 Time-Frequency-Domain Features

Time-frequency domain analysis can be performed through the Discrete Wavelet Transform (DWT)

or Continuous Wavelet Transform (CWT). Fundamentally, the wavelet transforms consist on shift-

ing a wavelet along a signal and computing the impulse response. The operation should allow only

changes in time extension, but not shape. When choosing wavelet parameters, there is a trade-off

between time resolution and frequency resolution (Percival and Mondal, 2012) (Samar et al., 1999)

(Sweeney, 2013). An example is shown in Figure 7.

Figure 7: Example of discrete wavelet transform, with different scales. the smaller scale wavelet is
good at originating a response from low-frequency regions of the raw signal (ERP), but with less
time extension, while the larger scale wavelet detects high-frequency regions of the raw signal, in
a larger extension. (sourced from Samar et al. (1999))

Some types of wavelets used for feature extraction in BCI-based studies are presented in Table

4.

Table 4: Common wavelet types in BCI-based studies. (modified from Sweeney (2013)).
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3.2.2.4 Heart Rate

The respiration rate (RR) is a pivotal sign for the detection of sleep-disordered breathing such as

apnea. ECG-derived respiration techniques are an alternative to more invasive types of measure-

ments, such as pressure and airflow sensors. The RSA method uses instantaneous heart rate vari-

ability to determine a respiratory signal. As described in Helfenbein et al. (2014), this method con-

sists of using instantaneous heart rate (IHR) variability, also known as respiratory sinus arrhyth-

mia. The phenomenon is linked with slight artery responses to pressure resultant from breathing.

The IHR wave can be obtained through the frequency domain of the heart rate variability (HRV)

frequency-domain. In general, IHR responds rapidly to respiration, increasing during inspiration

and drops during expiration.

As illustrated in Figure 8, the QRS complex R-R interval in the ECG is inverted for IHR

extrapolation, and then the IHR value is used as the respiration wave amplitude at each beat, as

shown by the height of the arrows in Figure 8.b). Using HR instead of R-R inverts the signal, so

the signal presents peaks after inspiration, and valleys after expiration. Cubic spline interpolation

is then performed to produce the final wave-form.

Figure 8: RSA-derived respiration. a) Varying R-R intervals (horizontal arrows), resulting from
QRS detection on the ECG. b) RSA-derived respiration wave computed from cubic spline inter-
polation using the IHR (which was acquired from the inverse of the RRs) as amplitude knots.
(modified from Helfenbein et al. (2014))

Similarly, the interbeat interval (IBI) can be obtained from the PPG signal, and extrapolated to

a Heart Rate (HR) signal. This is shown in Figure 9. The figure also shows the impact of motion

artifacts have on PPG acquisition.

3.2.3 Feature Selection

3.2.3.1 Correlation Coefficient

Correlation shows how related two variables, being expressed numerically by a coefficient (valued

between -1.0 and 1.0). A 1.0 coefficient means a perfect match between the two variables, while

a -1.0 coefficient means that the two variables have opposite behavior. A zero-valued correlation

implies no linear relationship between the variables (Schober et al., 2018).
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Figure 9: Derived interbeat interval from PPG signal. a) PPG/BVP signal, in which the lowest
peaks corresponding to a period of intense movement (red crosses) are discarded, while the good
heartbeats (green points) are selected. b) Derived interbeat signal consists of the time duration
between beats (di) in function of the final time (ti). (from Empatica web support, last accessed
21/06/2021)

In the feature matrix, the correlation coefficient is used as a threshold for the relationship

between the extracted features, allowing for the removal of closely-related ones. The Pearson’s

correlation coefficient, r, is calculated as follows:

r =
∑(X−X)(Y −Y )√
(X−X)2

√
(Y −Y )2

(6)

where X is the average of observations of variable X , and Y is the average of observations of

variable Y .

3.2.3.2 Chi-square Test

The chi-square distribution, χ2, with k degrees of freedom, is the distribution of a sum of the

squares of k independent random variables (McHugh, 2013).

The chi-square test is used in statistics to test the independence between two events, par-

ticularly, how the expected count and the observed count deviate from each other. Calculation

proceeds as follows:

χ
2
k = ∑

(Oi−Ei)
2

Ei
(7)

where O corresponds to the observed count, and E corresponds to the expected count. In

feature selection, the aim is to select features highly dependent on the response.

Larger χ2 values correlate with less independent features. Therefore, the higher the χ2, the

more dependent the feature is on the response, so it can be selected for model training.
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3.2.4 Classifiers

Some machine learning classification algorithms are listed and briefly explained in this section,

followed by background on hyperparameter tuning.

3.2.4.1 K Nearest Neighbors (KNN)

This model tries to find the most separated clusters of points in the feature dimension space, giving

each cluster a label. The value K corresponds to the number of labels to be predicted. Nearer points

are grouped in the same category (Zhang, 2016).

Weights are assigned to the contributions of the neighbors. A common weighting method

consists in giving each neighbor a weight inverse to the distance to the input, so that the nearer

neighbors contribute more to the average of the weights than the distant ones.

3.2.4.2 Support Vector Classifier (SVC)

SVC, also called Support Vector Machine (SVM) in literature, is an algorithm that finds the best

possible decision boundary between K clusters of data in a number of dimensions equal to the

number of features. The boundary is found according to the maximization of the margin, which is

the minimum distance between data instances and the boundary (Ben-Hur and Weston, 2009).

Besides being able to perform linear classification, SVMs can be applied in non-linear classi-

fication by mapping their inputs into a higher-dimension space (i.e., a kernel).

3.2.4.3 Decision Tree Classifier (DTC)

It is an algorithm that tries to classify the different labels by setting simple rules determined from

the input training data. Every rule corresponds to a node in the tree, with the uppermost node being

the root node. Every test leads to a different branch. The end result for each sample is the labeled

output (Song and Lu, 2015), also called the leaf node. Decision trees can easily be translated

to human-level thinking through a flowchart diagram, as shown in the hypothetical decision tree

shown in Figure 10.

This is a white box type ML algorithm, meaning that it shares internal decision-making logic,

contrary to black box algorithms such as Neural Networks. The decision tree is a non-parametric

method, meaning that it does not rely on any probability distribution assumptions.

3.2.4.4 Random Forest Classifier

It comprises an ensemble method for the DTC algorithm (i.e., multiple computation of the DTC).

The final output chosen corresponds to the one most frequent in the several DTC previsions, which

is found through averaging to improve the predictive accuracy and control over-fitting. Low cor-

relation between the trees is important to test the data according to variable conditions. Each tree

can either be trained with different sub-samples, or with the entire dataset.
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Figure 10: Hypothetical DTC flowchart diagram.

3.2.4.5 AdaBoost

Short for Adaptive Boosting, this algorithm is proposed by Freund and Schapire (1997), being

a meta-estimator that begins by fitting a classifier on the original dataset and then fits additional

copies of the classifier on the same dataset. This addition is performed with the weight of wrongly

classified instances being adjusted, so following classifiers focus more on hard-to-distinguish

cases.

AdaBoost is often considered one of the best out-of-the-box classifiers (Kégl, 2013), with

decision trees as the sub-learners, since it can detect the specificities of each training data, and

adapt itself to it in its sublevels.

3.2.4.6 Gaussian Naive Bayes Classifier

This algorithm utilizes the Bayes Theorem, described as follows:

P(CK |x) = P(CK)
P(x|CK)

P(x)
(8)

where CK is class K, and x = (x1, ...,xn) the instance to be classified (vector of length n being

the number of features). Therefore, P(CK) is the probability of any instance being of class CK ,

P(x|CK) is the probability of the instance being x knowing that the class is CK , P(x) the probability

of any instance being x, and P(CK |x) is the probability of instance x belonging to class CK .

The Gaussian variant of the Naive Bayes is intended to be applied to continuous data that

follows a Gaussian distribution. The likelihood of the features follows a Gaussian distribution.

The method also considers independence between classes (Rish, 2001).
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3.2.4.7 Gaussian Process Classifier

Gaussian processes are a generalization of the Gaussian probability distribution and can be used

as the basis for non-parametric classifications.

Like SVMs, they are a type of kernel model, and unlike SVMs, they are capable of predicting

highly calibrated class membership probabilities, although choosing the kernel used as the basis of

the method can be challenging. The Gaussian process also requires a link function that interprets

the internal kernel representation and predicts class membership probability. The logistic function

can be applied, allowing for binary classification.

3.2.4.8 Quadratic Discriminant Analysis (QDA)

Being a more general version of the linear discriminant analysis, in which normal distribution is

assumed, but covariance is not considered identical between classes. The classifier uses a quadratic

surface boundary to discriminate between classes (Tharwat, 2016).

If in the QDA model, the covariance matrices are assumed to be diagonal and the inputs are

assumed as conditionally independent in each class. The resulting classifier is equivalent to the

Gaussian Naive Bayes classifier.

3.2.4.9 Logistic Regression

This algorithm determines a threshold to distinguish between different labels (most often 1 or 0)

by minimizing the cost function. The sigmoid or logistic function maps any real value into another

value between 0 and 1. In machine learning, the sigmoid to map predictions to probabilities. These

probabilities can then be compared to a threshold value for classification, as shown in Figure 11.

Figure 11: Sigmoid function threshold example. A value between 0 and 1 is given to each data
point. The data points above the threshold correspond to one class (green), and the data points
below the threshold correspond to another (blue).
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3.2.4.10 Multi-Layer Perceptron (MLP)

This model corresponds to a neural network, in which each neuron corresponds to a coefficient

determined through the training data. In MLP, neurons are separated by at least three layers: an

input layer, an hidden layer, and an output layer. The input layer corresponds to the feature vectors,

and the output layer is the label vector. In between these there are the hidden layers, with multiple

architectures and nonlinear activation functions, that can be changed to better adapt to the dataset

(Murtagh, 1991). A hypothetical MLP structure is presented in Figure 12.

Figure 12: Hypothetical MLP neural network schematic.

In MLP and other neural networks, backpropagation training uses gradient descent of the error

function with respect to the neural network’s weights, in order to adjust them.

3.2.4.11 Hyperparameter Tuning

Machine learning algorithms tend to allow for flexibility, due to the various scenarios they can

be used on. The variation of several hyperparameters shape the model to fit the data as good

as possible. A grid search tunes these hyperparameters by iterating over a given list of possible

parameters and applying cross validation. The model with the best performance is then chosen.

3.2.5 Evaluation Metrics

Regarding evaluation metrics (Mousavi et al., 2019) (Supratak et al., 2017), some include overall

accuracy, precision, recall (sensitivity), specificity, and F1-score. These metrics can be defined as

follows:

Accuracy =
T P+T N

T N +FP+FP+FN
(9)
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Precision =
T P

T N +FP
(10)

Recall =
T P

T N +FN
(11)

Speci f icity =
T N

T N +FP
(12)

F1score = 2
Precision×Recall
Precision+Recall

(13)

where TP indicates the number of correctly labeled data points (e.g., sleep stages), TN (True

Negatives) indicates the number of data points correctly classified as not corresponding to other

class, FP (False Positives) the number of data points that were incorrectly labeled, and FN (False

Negatives) corresponding to the number of data points classified as a different class. Cohen’s

Kappa coefficient is another useful performance evaluation metric, which measures the agreement

between the decision of two entities (human or algorithmic) in the evaluation of the same data.

A receiver operating characteristic curve (ROC) is a graph showing the performance of a clas-

sification model at all classification thresholds. The curve plots recall (or true positive rate, TPR)

over false positive rate. The false positive rate, FPR, can be defined as follows:

FPR =
FP

FN +T N
(14)

A ROC curve plots TPR and FPR at different classification thresholds. Then, the area under

the curve (AUC) cam be computed. This consists of the integral calculus between (0,0) and (1,1)

of the curve, as shown in Figure 13.

Figure 13: AUC (area under ROC curve).

The AUC value ranges from 0.0 to 1.0. A model that predicts correctly 0% of the time has

AUC 0.0, while a model that predicts correctly 100% of the time has AUC 1.0.
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3.3 Lessons Learned and Limitations

The E4 wristband costs approximately 1 400 C, which can make it a difficult investment to under-

take for stakeholders.

The heart rate is one of the most relevant features that can be extracted from the PPG signal.

The removal of movement artifact could be explored in future work, in order to facilitate the

extraction of this feature.

Wearable devices for EEG acquisition are more suited to frontal-related activity acquisition,

nominally frontal and beta waves, which are highly activated during meditative or attentive states.

Further methods (such as pre-processing) have this limitation in mind.

Numerous features can easily be extracted from these methods, particularly the wavelet trans-

forms. This implies not only a considerable computation cost and extraction time, but also a great

number of features too similar to each other. Therefore, feature selection is a crucial step for

removing correlated features. Plus, through the chi-squared method, the features that are more as-

sociated to the given labels can be selected and, therefore, improve the data given to the classifier.

Regarding the classification stage, classifiers are made to be adaptive to each specific situation.

Therefore, hyperparameter tuning is an important step in improving classifier compatibility to the

dataset.



Chapter 4

Methodology

In this chapter, the preliminary envisioned solution, methodology, and evaluation are presented in

Section 4.1, followed by the final Proposed Solution. The latter differs from the system envisioned

in the preliminary work, switching its focus from sleep monitoring to drowsy driving detection.

This was primarily motivated by the lack of sleep studies occurring during the COVID-19 pan-

demic. The proposed solution’s methodology is divided in Experimental Setup and Procedure,

Dataset (including both acquisition and study subject gathering), Signal Processing Method (in-

cluding pre-processing, feature extraction, and feature selection), Classification and Evaluation

Metrics.

4.1 Preliminary Work - Sensor Trial and Sleep Studies

The following section relates to the work developed during the Monography writing.

4.1.1 Preliminary Solution Proposal

The proposed system can provide human interaction with digital devices by translating the dif-

ferent biosignals into a command or diagnosis. The system flow consists of signal acquisition,

followed by data processing, which includes pre-processing, feature extraction, and classification,

and ending in the output of a control command. The proposed system flow can be observed in

Figure 14.

Feature selection and dimension reduction may also be applied to improve already extracted

features. It is important to note that for an application that performs during driving (drowsiness

prevention), immediate feedback is needed to alert the driver (in the form of visual, auditory, or

proprioceptive stimuli). However, for the applications that perform during sleep exams (sleep

stage classification and sleep disturbance detection), real-time classification and feedback are not

a critical concern, while storing large quantities of raw data may be a requirement.

31
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Figure 14: Flow diagram of the preliminary proposed system.

4.1.2 Preliminary Methodology

Regarding the equipment, a personal computer is used for data manipulation, writing, and running

scripts. Further work with algorithms demanding more computational power may require the use

of a server with access to a Graphical Power Unit (GPU). Considering the current social distance

measures, a remote access connection with this machine may be needed.

Regarding the sensors, the dissertation will focus on the EEG headbands Neurosky Brain-
wave and Brainlink Pro, as they are some of the cheapest consumer-available wearable sensors

for EEG measurements, and developing sleep analysis and prediction systems with these low-lead

sensors could prove an important step for portability and comfort of use during driving or sleep.

For the ECG, temperature, and skin conductivity readings, the E4 wristband will be used, since it

has been previously used in literature for similar applications with promising results, is light and

comfortable to use, as well as having an interface especially thought for scientific research. The

Empatica cloud is also a valuable asset for this system, for dataset handling purposes.

The EEG signal is obtained via Bluetooth, with support from the Lucid Scribe software, which

has been used in other studies using similar EEG wearable devices (Subramanian et al., 2018)

(Bone et al., 2017) (Kadar and Iordachescu, 2017), for real-time visualization, recording and ex-

portation of the raw data to a Comma-Separated Values (CSV) file. This file is then read in Python

3.9 through the csvread library. The signals from the E4 wristband, as disclosed in Section 3.1.2,

can be uploaded directly to the E4 cloud via an intermediary mobile device with Bluetooth com-

patibility, and then exported through the web dashboard to a CSV file, that can also be read through

the csvread library in Python for further analysis.

After reading the data and translating it to a Python list/dictionary variable, visualization

through matplotlib can be performed. Then, pre-processing is performed, according to the method-

ology disclosed in Section 3.2.1, followed by feature extraction and classification, with possible
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dimension reduction and feature selection, according to information shown in Table 3 from Sec-

tion 3.2. Python libraries of interest for data processing include pyhrv, scikit-learn, keras, pandas,

seaborn, and numpy.

4.1.3 Preliminary Proposed Evaluation

The systems for sleep classification and prevention of drowsy driving will be trained and validated

with data obtained from a database of 20-30 sleep exams from different subjects (number limited

by the current pandemic status), which will be built during development. These exams will be

anonymized, to protect the privacy of the patients. The Laboratório de Inteligência Artificial e

Ciência de Computadores (LIACC) team is discussing with the Porto CUF Hospital the possibil-

ity of obtaining more PSG exam data, with 5 being gathered so far, in .xls format, as well as sleep

questionnaires targeting Transdev bus drivers. Public PSG datasets, such as the CAP sleep dataset

(Terzano et al., 2002), may also be used. If obstacles arise in the gathering of these resources,

a sufficient number of sleep exams may be gathered independently of CUF, from voluntary sub-

jects with the proper methodologies and precautions in mind. For the preliminary work, signals

extracted from and by the author were used for the development of the acquisition algorithms.

After gathering, processing, and classifying the data, evaluation metrics can be calculated for

different feature and classifier groups, as described in Section 3.2.5.

4.2 Proposed Solution

This system can provide human driver interaction with digital devices in the vehicle by translating

the different biosignals into a diagnosis of sleep deprivation. The system flow consists of signal ac-

quisition, followed by data processing, which includes pre-processing, feature extraction, feature

selection and classification. The proposed system flow can be observed in Figure 15.

Figure 15: Flow diagram of the proposed system.
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Upon detecting the drowsy driving state, an auditory, visual or haptic warning can be given

to the driver. However, this isn’t developed within this dissertation, with algorithm efficacy being

prioritized over real-time feedback.

4.3 Experimental Setup and Procedure

Figures 16 and 17 show the experimental setup.

Figure 16: Experimental setup picture. The larger screen (top-left) displays the simulation, while
the smaller screen (bottom-rigtht, corresponding to the main computer) serves as an interface with
the acquisition script for Brainlink Pro. To the bottom-left, the Logitech G27 wheel, pedals, and
gearbox can be seen. To the left, alcohol and tissue paper are used to clean the sensors, shown
slightly at center-left. The technician sits to the right of the driving volunteer during the session.

Volunteers read and sign an agreement of consent (shown in the Figures B.2 and B.3 of the

Appendix), and answer to a digital questionnaire including questions from the Pittsburgh and

SATED questionnaires, as well as the amount of hours of slept during the previous night. The

questions in the Pittsburgh questionnaire relating directed to the partners were not included for

practicality reasons. The complete Google Forms questionnaire is shown in the Appendix C. Vol-

unteers are also asked verbally if they had consumed coffee 12 hours previously to the experiment.

The sensors are placed and adjusted. In the case of Brainlink Pro, it is adjusted so as the two

forehead electrodes remain pressed to the forehead region, slightly above the eyebrows, with the

ground reference attached to the left ear. In the case of the E4 wristband, it is adjusted around the

left wrist according to Empatica’s guidelines. Both sensors are cleaned softly with a small amount

of alcohol and tissue between volunteers.
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Figure 17: Experimental setup diagram.

The Logitech G27 driving wheel, gearbox, and pedals are connected via USB to the main

computer, with Logitech’s Gaming Software Profiler running the default calibration sequence.

The wheel provides proprioceptive feedback during simulation. The distance to the pedals is

adjusted for each volunteer. The chair’s height is constant during all acquisitions. A dual display

screen is set up, with the larger one presenting the simulation environment to the volunteer and

technician, and the smaller one presenting the script and a real-time raw EEG signal graph to the

technician. The secondary screen is connected to the main computer via HDMI.

Sequentially, a practice run and an exam run are performed, both with 10-minute duration

and within the same route. The practice run serves as a way for the volunteers to get used to the

simulation specific conditions, such as controls, as well as the route itself. Signal acquisition is

performed during both runs. The sequence for each run is presented in Figure 18.

Figure 18: Acquisition sequence for each run (2 times, for practice and exam). The white blocks
represent simulation-related activities, the dark-gray blocks represent Brainlink Pro script-based
activities, and the light-gray block represents E4 wristband activity.
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For both runs, the City Car Driving simulation software is run, and the free driving option

is selected in the main menu. European Union traffic regulations are selected. In order to reduce

the amount of stressful situations presented to the subjects as well as sources of distraction, the

optional settings are set to: low traffic density (20%), quiet traffic, 0% pedestrian density, default

vehicle, spring, clean weather, daytime, violation pop-ups disabled, fuel consumption disabled,

radio disabled, and emergency situations disabled. The view is locked in first person, or in other

words, the driver’s perspective.

Upon initializing the simulation, Brainlink Pro’s acquisition is tested (this could not be per-

formed during loading due to the simulation bugging out), after which acquisition initiates for

Brainlink Pro, followed by E4’s acquisition (see Section 4.4.1). Finally, the volunteer starts up the

vehicle, and follows the instructions provided by the technician. The technician directs the driver

verbally according to a previously defined route, as shown in Figure 19.

Figure 19: GPS view map within the simulation. The experiment route is marked in blue. The red
mark corresponds to the starting location. The initial direction is given by START, following the
route counterclockwise, and ending through FINISH, at the starting location. The volunteer does
not see this map, with indications being given to him verbally.

The route is the same for every run, in order to limit route-dependent variables such as the

number of turns and stops the volunteer would be required to make. It is also designed to last

more than the acquisition’s 10-minute duration, as well as to provide a wide range of driving

situations to volunteers (e.g., roundabouts, traffic lights, highway segments).

The run finishes when Brainlink Pro’s script ended, regardless of where the subject is in the

route. E4 wristband’s acquisition is finished manually soon after. The simulation is restarted

between runs, to prevent it from bugging out.

After both runs finished, the volunteer removes the sensors, and answers to a final question-

naire, with questions regarding control, perception and overall difficulties found during the two

runs. Some issues found are commented in Section 4.8.
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4.4 Dataset

4.4.1 Acquisition

Before initializing the exams, Brainlink Pro’s acquisition is tested, in order to guarantee con-

nection and stable acquisition. The sensor is turned on by pressing the side button, which initiates

Bluetooth pairing mode. Connection with the main computer is established through the previously

configured COM door 3.

After testing, if the acquisition was not working as intended, the test is repeated. Otherwise,

a Python 2.7 acquisition script for the Brainlink Pro using the mindwave library for Python 2.7

is initiated. The technician inputs the desired label, with the following 30 seconds corresponding

to the preparation stage, in which no signal is acquired nor recorded. Afterwards, the 10-minute

acquisition is initiated, with a sampling rate of 60Hz, in which the timestamp, raw EEG, blink,

attention, meditation, delta, high-alpha, high-beta, low-alpha, low-beta, low-gamma, mid-gamma

and theta are recorded into a .csv file with the name of the number of the acquisition (for example,

00.csv for the first exam, 01.csv for the second and so on). For the purposes of this dissertation,

only the raw EEG signal is used, due to the low frequency found in other possibly useful signals.

Upon the end of the 10 minutes, the new label is appended into a Labels.csv file, with both the

filename and the corresponding label. The script then ends.

Regarding E4 wristband acquisition, this is performed via E4’s inbuilt recording feature. Ac-

quisition is initiated during Brainlink Pro script’s preparation stage. At the end of Brainlink Pro’s

script, the acquisition is stopped manually. Later, the E4 wristband is connected to a computer

via USB, where recorded sessions is uploaded to Empatica’s cloud via the E4 manager software.

Synced sessions can be searched by date, time and duration, as well as visualized and imported

from the E4 connect website. The imported .zip file, corresponding to the desired session, con-

tains a .csv for each of Empatica’s recorded signals: ACC.csv for accelerometer, BVP.csv for

blood volume pressure, EDA.csv for electrodermal activity, HR.csv for heart rate, IBI.csv for in-

terbeat interval and TEMP.csv for temperature. Each file also includes the sampling rate for the

respective signal in the first line. For the purposes of this dissertation, only the BVP.csv file, with

the PPG signal, is used.

The libraries used were: for input/output file handling, csv; for path handling, sys and global;

and for data visualization, matplotlib (Hunter, 2007).

4.4.2 Study Subjects

The study is being conducted in faculty ground during the morning, during the course of two work

weeks. Due to this, subjects are expected to be mostly young adults, aged 21 to 24 years old.

Driver’s license is mandatory. Regarding education level, most participants are graduated or have

completed high school. Participants are acquired through social network advertising.

In the first session, subjects are asked how many hours of sleep they had on the previous night.

Non-sleep deprived participants are asked if they want to leave their contact information for the
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scheduling of a non-mandatory second session, in which they are sleep-deprived. Participants

answer to both the Pittsburgh and SATED questionnaires during the first session through Google

Forms. No contact information is associated to the digital forms, in order to maintain subject

privacy. They also give feedback about difficulties found during the session. The complete Google

Forms questionnaire is shown in the Appendix C.

4.5 Signal Processing Method

For this dissertation, the signal processing algorithms were performed through Python 3.7, with the

PyCharm IDE. The libraries used were: pandas (Wes McKinney, 2010) and NumPy (Harris et al.,

2020) for data conversion and handling; sys and global for path handling; dateutil and datetime for

date and time-related operations; biosppy (Carreiras, 2015–) for pre-processing; scipy (Virtanen

et al., 2020), PyWavelets (Lee et al., 2019), mne (Gramfort et al., 2013), and pyEntropy for feature

extraction; and scikit-learn (Pedregosa et al., 2011) for data normalization, set splitting, feature

selection, classification and evaluation metrics.

The files and labels used for signal processing were changed according to one of the three

optional classification experiment modes selected: Practice Run Discrimination (in which the la-

bels are “Practice” or “Exam”), Individual Classification (in which the labels are “Individual” or

“Other”) and Sleep Deprivation Detection (in which the labels are “Exam SD”, for sleep-deprived

exams, or “Exam”, for non-sleep deprived exams).

4.5.1 Pre-processing

The sequence for pre-processing preparation and execution is presented in Figure 20.

Figure 20: Pre-processing operation sequence. The blocks above represent operations performed
to the raw EEG signal, and the blocks below operations performed to the BVP signal. In the
first operation, Timestamp syncing, initial and final times for each signal are compared, the non-
intersecting signal regions are discarded (crossed out regions). The 16-20 epoch number range
presented relates to a single acquisition session.

Before pre-processing can be applied, the data from obtained from the two sensors (BVP/PPG

from the E4 wristband and raw EEG from Brainlink Pro) must be synced timewise. To do so, the

initial and final timestamps of each signal are compared, and only the intersecting signals are used

for the remaining of signal processing.
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Following time syncing, the signals are divided into 30-second duration epochs, in order to

obtain more samples from the limited dataset, as well as samples that are more manageable for

analysis. In a preliminary state, 10-second duration epochs were applied, but this would limit

wavelet and heart rate feature extraction further on. Therefore, from an intersecting pair of signals

with roughly 9.5-minute duration, roughly 19 (9.5×2) epochs can be obtained. It is worth noting

that labels are given to each epoch according to the file from which the epoch originates.

Due to unexpected acquisition issues (low sampling frequency) for some Brainlink Pro ses-

sions, pairs of epochs in which raw EEG frequencies below 30Hz are dominant are discarded.

Then, the remaining raw EEG epochs are resampled to 30Hz. After syncing and epoching, the

actual pre-processing can be performed to each epoch. Firstly, the raw EEG mean is set to zero.

Bandpass filters are applied to both the BVP and EEG signals, with ranges 0.6875-10Hz and 4-

30Hz, respectively. No movement-noise filtering is performed at the current iteration.

4.5.2 Feature Extraction

The feature matrix is a list of lists, in which each row corresponds to a sample (or epoch) and

each column corresponds to a feature. Feature names are recorded in a separate 1D vector. After

extraction, the complete feature matrix was normalized column-wise, to the range 0-1.

4.5.2.1 Statistics

A custom-made function for 1-valued statistic extraction from a 1D array is implemented is several

stages of data processing. This function includes: sum of all values, value closest to the mean,

values closest to the quartiles (25, 50 and 75%), zero-crossings, standard deviation, kurtosis, range

(maximum minus minimum) and entropy. The function also returns the feature names, consisting

of the input signal name and the statistic as a suffix. The statistics function is firstly applied to the

pre-processed EEG and BVP.

4.5.2.2 Wavelets

Wavelet feature extraction is also performed, using the PyWavelets library functions, in both pre-

processed epochs. Two main types of wavelet transform are computed: a three-level DWT and a

morlet CWT. For the three-level DWT, types cycle between Daubechies 4, Daubechies 20, Coiflet

3, Haar, Symlet 4, and Discrete Meyer. Boundry conditions cycle between zero-padding, sym-

metrization and smooth padding. For the morlet CWT, widths cycle between the values 10, 15,

48, 72, 80 and 120. The wavelet transforms output coefficient arrays, which are then passed

through the 1D statistics function described in Section 4.5.2.1.

4.5.2.3 Heart Rate

For the extraction of the heart rate from the pre-processed BVP, the signal is initially inverted,

and peaks are found through a scipy library function, with a distance higher than 37. Peaks are
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then counted for the 30-second interval. To compute the heart rate for each epoch, Equation 15 is

performed.

HR =
Npeaks

∆t
(15)

where HR is the heart rate in beats per minute, ∆t the epoch duration in seconds (30 seconds),

and Npeaks the number of peaks found in the epoch.

4.5.2.4 Power Spectral Density

PSD feature extraction is performed in the pre-processed BVP and EEG signals. Using the scipy

library, welch and periodogram are extracted, and using the mne library, multitaper is extracted,

all using the default function parameters. Afterwards, statistics are extracted from the array of

powers, using the statistic extraction function described in Section 4.5.2.1.

4.5.2.5 Entropy

For the entropy feature extraction, pyEntropy functions are applied to the pre-processed epochs,

which allows for extraction of sample, Shannon, and spectral entropy, with default function pa-

rameters.

4.5.3 Feature Selection

The selected feature matrix is converted to a pandas data frame. The correlation matrix (with

dimensions number of features x number of features) is then obtained, consisting of a matrix

in which each value is the absolute correlation between the row feature and the column feature.

Only the upper triangle (from the diagonal line) of the correlation matrix is used, since values

are symmetric to the lower triangle. If any correlation value in a column is inferior to 0.95, that

column’s index is added to a list. The corresponding columns are dropped from the initial data

frame. The resulting data frame of selected features is reconverted to a list of lists.

Afterwards, from this matrix, the 30 best features are selected through the qui-squared test.

Thus, the 1893 extracted features were reduced to the 30 best.

4.6 Classification

The classifiers used are Nearest Neighbors, Radial Basis Function (RBF) SVM, Gaussian Process,

Decision Tree, Random Forest, Multi-layer Perceptron, AdaBoost, Naive Bayes, QDA, and Logist

Regression. The models are initialized through scikit-learn functions. The defined constant initial

conditions are the RBF kernel and one vs one decision function shape for the SVM, alpha equal

to 1 and maximum number of iterations of value 2000 for the Multi-Layer Perceptron, random

state value of 0 for the AdaBoost, liblinear solver and binary class mode (one versus rest) for the

Logistic Regression.
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The data is split into train and test sets, after which a hyperparameter grid search is performed.

The hyperparameter grid values are shown in Table 5.

Table 5: Hyperparameters for each classifier. Values are extracted according to scikit-learn
classifier-specific documentation, mainly parameter range and possible values.

Finally, each model is trained, and fitting to the test data is performed, in order to obtain a

vector of predicted labels for each model.

4.7 Evaluation Metrics

A scikit-learn classification report is used to evaluate the quality of predictions from each classifi-

cation algorithm. The predicted labels are compared to the input/real labels. The report includes

precision, recall and F1-score for each given class, as well as the accuracy of the classifier. The

macro average (averaging the unweighted mean per label) and weighted average (averaging the

support-weighted mean per label, i.e., the mean considering the real difference between class

sample sizes) of the previous four values is then calculated. The support value was omitted from

the report, as it did not add new information between classifiers (this valued is used as a metric of

sample size inequality) As an addition, also using scikit-learn, the ROC AUC score is computed

and added to the corresponding final report. An example of a final report for a single classifier is

shown in Table 6.

4.8 Lessons Learned and Limitations

The preliminary system could still be developed in future work, counting that access to sufficient

volunteers performing sleep exams can be established. The system also requires more computing
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Table 6: Example of report table for a single classifier. All numerical values are shown in per-
centage (all values range from 0 to 100). The classifier name is displayed in the first column
and the ROC AUC value in the second column. The remaining columns correspond to a default
classification report, with "Exam" and "Exam SD" being the two labels.

power due to the high duration signal acquisition, so a GPU may be needed going forward. Signal

processing could follow and approach similar to the one developed during the dissertation work.

A visual, auditory or haptic feedback device will be needed for a final solution. Adaptation of

the algorithms to real-time, or at least near it, will be required. Other constraints such as comfort

and battery life of the wearable sensors during long periods of usage will need to be addressed.

The development of a portable charging adaptor could be an option.

Regarding the signals used, only the raw EEG from the Brainlink Pro is used, due to an incom-

patibility issue with the mindwave library in Python 2.7 resulting low sampling rates for signals

other than the raw EEG. These low frequency regions were discarded prior to pre-processing. Fu-

ture work would require an acquisition protocol made from scratch, or the use of the software

LucidCode. However, this software has shown in preliminary work to be very processing heavy,

and it would be more so in conjunction with the driving simulation, so two computers or a high-

spec one would be required.

For the E4 wristband, the high-movement application of driving, in contrast to sleep, poses the

issue of movement-related noise, which introduces artifacts in the frequency band of the PPG sig-

nal. This is shown in Figure 9 in Section 3.2.2.4, from Empatica support. In the current iteration,

this noise is not extracted from the PPG signal. Due to Empatica’s policy, the secondary measures

IBI and HR, obtained from the PPG signal, are not computed in high-movement situations. There-

fore, both IBI.csv and HR.csv cannot be used in this work, but still have interesting applications

when it comes to the preliminary methodology proposal.

Regarding the heart rate feature extraction, as mentioned in the previous paragraph, movement

related noise in not filtered off the BVP signal, which may induce an inaccurate measure of heart

rate for some samples. Future filtering of movement-noise should be performed in the future,

using the accelerometer data provided by the E4 wristband.

More varied features can be implemented in future work, mainly in time-domain, to further

avoid feature correlation while maintaining a large amount of features. Regarding the PSD ex-

traction, parameter refinement for welch, periodogram, and multitaper functions may be needed

in future work.

The current experiment is still limited to drowsiness detection, instead of its prevision. Further
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work should focus on long-time acquisitions or several acquisitions at different times of the day,

in order to monitor and classify the circadian rhythm.



Chapter 5

Results and Discussion

This chapter includes the Preliminary Results, with the E4 wristband and Brainlink Pro acquisi-

tion. Following this, the section Study Participants and Sleep Questionnaires provides insight on

the acquired volunteers, demography, and sleep questionnaire results. The following three chap-

ter focus on three different dataset/label classification reports of evaluation metrics, consisting

on Practice Run Discrimination (practice vs exam run), Individual Classification (distinguishing

an individual from a non-sleep-deprived dataset) and Sleep Deprivation Detection (distinguishing

sleep-deprived exams from normal ones).

5.1 Preliminary Results

5.1.1 E4 Wristband Acquisition

With the Python application, data can also be visualized through the developed Python algorithm,

as seen in the examples from Figure 21.

Figure 21: Example of full night’s sleep signal acquisition for the E4 in Python. a) Heart Rate in
bpm for each data iteration. b) Skin temperature in °C for each data iteration.

44
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From a subjective observation of Figure 22, the medium HR seems to decline and rise in

cycles, while the temperature suffers a dip mid-sleep, which is congruent with literature.

Figure 22: Example of full night’s sleep data for the E4 in the Empatica dashboard. Heart Rate
(bpm) and Temperature (°C) evolution through time can be visualized, above and below respec-
tively. Values for specific times can be visualized by simply mousing over the corresponding graph
region.

5.1.2 Neurosky Brainlink Pro Acquisition

Acquisition works in tandem with the software Lucid Scribe, which allows for real-time data

visualization and recording. An example of the Lucid Scribe interface is seen in Figure 23, which

presents the raw Neurosky signal (contaminated with blink-related muscle motion), attention and

meditation levels (used for entertainment or therapy apps), the EEG signal, Blink Click, and Blink

Strength.

Figure 23: Lucid Scribe recording example from Neurosky Brainlink. Data is recorded in real-
time, with w signals or secondary derivations being shown as selected. Each signal or secondary
derivation is color labeled. Recorded data can be accessed through the date and time of recording
(Left “Explorer” bar).

Other signals of interest not shown in Figure 23 include Alpha, Delta, and Theta waves (in-

teresting for sleep studies, as mentioned in Section 2.4.1.2), as well as the derivation NeuroSky

REM.
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The recorded data can be read and visualized in a Python application, similar to the example

shown in Figure 21 for the E4.

5.2 Study Participants and Sleep Questionnaires

All the participants were young adults with driver’s license, aged 21 to 24 years old. For the non-

sleep deprived group, there were 11 participants in total, 9 male and 3 female. The education level

was mostly graduates, 8 out of 11, with the 3 remaining having completed high school. None of

the participants were previously diagnosed with any chronic sleep diseases. Approximately half

of the volunteers with good sleep quality claimed to have drunk coffee less than 12 hours before

the experiment.

Table 7: Normal sleep population questionnaire results. The table includes the number of hours
of sleep (Nsleep), PSQI and SATED score for each volunteer, as well as the mean and standard
deviation (STD).

SATED and Pittsburgh questionnaire results were calculated in Microsoft Excel. As seen in

Table 7, the normal sleep group presented a PSQI mean value of 6.73 and a standard deviation of

2.34, while SATED scores had a mean value of 5.68 and a standard deviation of 1.94. At their

extremes, these values are within the range of average sleep quality found in Manzar et al. (2016)

and Dalmases et al. (2018), for PSQI and SATED score respectively. The amount of sleep during

the night previous to the exams had a mean value of 7 hours, with a standard deviation of 1.5

hours.

Regarding the sleep-deprived dataset, data was obtained from 2 young adults, a female with

PSQI of 12 and SATED score of 1.5, and a male with PSQI of 7 and SATED score of 3. As

expected from bad sleep quality individuals, PSQI was higher than the normal and SATED was

below the normal in the female subject, while the male subject had normal PSQI and bad SATED.

Both individuals were awake for more than 24 hours. None of these individuals drunk coffee

12 hours previously to the experiment. Due to the low amount of sleep-deprived subjects, 10

exams were performed by the male individual: 5 under sleep-deprivation and 5 under a normal

sleep schedule. The normal sleep sessions were used for the classification performed in a single

individual, Section 5.4. This classification served as a comparison to the classification performed

in Section 5.5, with the complete non-sleep deprived group and sleep-deprived group.
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5.3 Practice Run Discrimination

It is worth noting that the ROC AUC could not be computed for the RBF SVM, due to issues with

the probability algorithm used for ROC AUC computation.

Regarding the practice (“Practice”) vs exam (“Exam”) classification, results are shown in Table

A.1 in the Appendix. The discussed results are shown in Table 8.

Table 8: Discussed practice run discrimination results.

Nearly all classifiers reached 65% averages and 70% ROC AUC, excluding Decision Tree and

QDA. The best classifier was AdaBoost, with averages and accuracy above 70%, and 76% ROC

AUC value. Closely behind were the MLP, Random Forest and Gaussian Process, all with the

same ROC AUC of 76%, but worse means and accuracy, slightly below 70%.

The Decision Tree classifier was the worst performing in this classification, with the most

discrepancy between classes. The values of precision, recall and F1-score were, respectively, 71%,

26% and 38% for the exam data, and 56%, 90% and 69% for the practice data. The macro averages

were 63%, 58% and 53% with the weighted averages being nearly identical. The accuracy and

ROC AUC for this classifier had both the value of 59%.

5.4 Individual Classification

Regarding the individual exams (“Individual”) vs other exams (“Other”) classification, results are

shown in Table A.2 in the Appendix. The discussed results are shown in Table 9.

For all classifiers, the “Individual” class had more precision than recall, with the opposite

being found in the “Other” class. F1-scores were better for the “Individual” class (except in Naive

Bayes).

The best performing classifier was Random Forest, with 84% AUC and 78% accuracy and

averages. MLP, Gaussian Process, Logistic Regression and Nearest Neighbors all attained ROC

AUC of 80%, accuracy of 70-76% and averages in the range 70-78%.
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Table 9: Discussed individual classification results.

The worst performing classifier was QDA, with 68 ROC AUC, accuracy and averages between

65-70%.

5.5 Sleep Deprivation Detection

Finally, for the sleep-deprived exam (“Exam SD”) vs non-sleep deprived exam (Exam) classifica-

tion, results are shown in Table A.3 in the Appendix. The discussed results are shown in Table

10.

Table 10: Discussed sleep deprivation detection results.

Overall, the “Exam SD” class achieved better recall than precision, with the opposite happen-

ing to the “Exam” class. F1-scores were overall better in the “Exam” class.

The obtained results for this classification were the best of all three datasets and labels. The

best classifier was Random Forest, with 95% ROC AUC, and accuracy and averages in the range
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87-89%. Closely behind where Naive Bayes, AdaBoost, MLP and Logistic regression, with ROC

AUC 90-94%, accuracies and averages between 78% and 89%.

The worst classifier was the Decision Tree, with 78% ROC AUC and 76-79% accuracy and

averages.

5.6 Lessons Learned and Limitations

Upon analysis of subject feedback, regarding the proposed solution, volunteers found that the

experience was mostly close to reality regarding control and perception, and the sensors were

comfortable to use. The main complaints presented were about the sensibility of the wheel being

too high and the pedals being too difficult to step on, compared to real vehicles. Better calibration

of the wheel can be achieved in future work through the Logitech software, with it not being

considered for this study due to it changing the experiment conditions between subjects. The

problem posed by the tough-to-press pedals can only be corrected through alternative equipment.

The Oculus Rift VR headset could be an option for more realistic visual and auditory stimuli,

since it is also compatible with the simulation software. However, it would not be practical to use

together with Brainlink Pro, and it would require an additional monetary cost for these experi-

ments. A more realistic approach would be to enhance the auditory experience by implementing

earphones, and visual perception by switching the display screen to other means more suited to

depth perception and larger field of view.

An auditory notification of termination of the Brainlink Pro’s acquisition script could be use-

ful in the future. However, real-time visualization is still needed. In order to guarantee sensor

connection and correct electrode placement. Automatic checks for these issues could also be of

interest.

The low amount of volunteers poses a threat to the statistical validity of further results, mainly

when it comes to gender inequality and age range, as well as the very low amount of sleep-

deprived individuals. Further work should invest in obtaining more volunteers (at least 30). The

sleep questionnaire results support that nearly study participants have sleep habits corresponding

to a young adult population, with some scoring worse than the norm.

Regarding classification results, practice run discrimination and individual classification had

comparable results to each other, both slightly above average (70 to 80%) regarding their evalu-

ation metric values. When it comes to the practice discrimination, results proved that while the

simulation environment had some impact on the performance of at least some subjects, this was

somewhat reduced by the 10-minute practice sequence. Regarding the individual classification, re-

sults don’t allow for completely discarding the effect of the low sample size in the sleep-deprived

population.

However, the results found in the discrimination of sleep-deprived exams were significantly

better than other dataset-label experiments, which leads us to believe that sleep deprivation clas-

sification is possible with the proposed methodology with very good evaluation metrics to back

them up (above 90%).
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The Decision Tree Classifier was the worst performing overall, which is to be expected due

to its simplicity. The best performing classifiers were Random Forest, Naive Bayes, AdaBoost,

MLP and Gaussian Process. Further hyperparameter tuning can be useful for future improvement

of these classifiers, as well as for attaining usability of the not so successful ones.



Chapter 6

Conclusions

This chapter is subdivided in Current Achievements and Limitations, and Future Work.

6.1 Current Achievements and Limitations

Sleep questionnaires have the disadvantage of being too reliant on the veracity of subject testi-

mony. Polysomnography and marketed solutions for drowsy driving assessment have validated

objective results, some of which are derived from physiological signals. However, these solutions

lack the portability that a solution integrating wearable devices offers.

The proposed system integrates commonly used algorithms in PPG and EEG-based Machine

Learning, obtaining promising results when it comes to the detection of last-night sleep depriva-

tion.

The preliminary solution (integrated with signal processing implemented in the final solution)

could also be relevant for sleep exams in general, since the current polysomnography montage is

uncomfortable for the subject, and analysis can be quickened and automated, with no significant

loss of efficacy. However, PSG is still a clinical gold standard that may be difficult to substitute in

the short term.

The proposed wearable devices have few leads/electrodes, which may decrease the quality of

the acquired signals and difficult the extrapolation of relevant information from ECG and EEG,

but research has shown that interesting results can be obtained from wearable devices. The sensors

are costly, particularly the E4 wristband, but it is expected that they become cheaper as research

in the field progresses.

The driving simulation revealed itself to be safe, repeatable, fast, and effective in its imple-

mentation, with future work addressing the issues found from the volunteers’ feedback: wheel

sensitivity too high, pedal sensitivity too low, unsatisfactory auditory perception, reduced field of

view.

The current iteration has low sample size, due to the low amount of volunteers acquired, which

may impair the statistical relevance of the results.

51
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The classification results were promising, with ROC AUC, precision, recall, f1-score, and

accuracy reaching values in the range 80-95%, in sleep deprivation detection. The best performing

classifiers were Random Forest, Naive Bayes, AdaBoost, MLP and Gaussian Process.

Acquisition issues were found while using the mindwave library with Brainlink Pro, with

significant sampling rate drops in some subjects. Heart rate measurements with the E4 wristband

were limited due to high movement noise during the experiment.

Overall, the proposed solution far surpasses the current solutions in portability and day-to-day

applicability, with most of the previously discussed issues being solvable with further research and

work.

6.2 Future Work

Future work should apply to other kinds of sleep deprivation, such as chronic sleep deprivation.

Also, it should implement the prediction of the sleep-deprived state through monitoring of the

circadian rhythm, in order to differentiate itself further from in-market solutions. Integration of

the sleep questionnaires with the objective sleep evaluation methods may be of interest for a future

circadian rythm monitoring system.

Real-time feedback should be a worry in the future: for the preliminary solution, because most

clinicians are used to work with immediate values or signal waves to perform their diagnosis;

and for the proposed solution, because of the urgency to warn the driver of the possible danger.

This would require real-time acquisition and visualization methods, with fast classification and

feedback. The final solution must also have some sort of auditory, visual, or vibratory feedback to

warn the driver of its sleep-deprived state.

Most of the problems found within the simulation can be solved through setting tuning, or

ultimately different hardware.

Expanding the dataset, particularly in the sleep-deprived population, is a big must in future

work, in order to guarantee the statistical relevance of the results. Further improvement of the

results can be obtained through hyperparameter tuning and larger sample size.

Further work with Brainlink Pro must find and alternative software for acquisition. Sugges-

tions include Lucid Code, developed during the preliminary work, or a costum acquisition script.

In a future iteration, movement noise removal must be applied in the PPG signal, in order to

provide good basis for interbeat interval, heart rate, and heart rate variability computation.
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Tables
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Tables 62

Table A.1: Practice vs Exam run classification results (in percent format).
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Table A.2: Single Individual’s vs Other’s run classification results (in percent format).
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Table A.3: Last Night Sleep Deprivation vs Non-Last Night Sleep Deprivation run classification
results (in percent format).



Appendix B

Figures

Figure B.1: PSQI questionnaire instructions, questions, components, and scoring (modified from
Aurora University document).
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Figures 66

Figure B.2: Agreement of consent, in Portuguese (page 1 of 2).
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Figure B.3: Agreement of consent, in Portuguese (page 2 of 2).



Appendix C

Questionnaire

Figure C.1: Page 1 of 18 of the PSQI, SATED and experimental feedback questionnaire, in Por-
tuguese. (exported from Google Forms)
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Questionnaire 69

Figure C.2: Page 2 of 18 of the PSQI, SATED and experimental feedback questionnaire, in Por-
tuguese. (exported from Google Forms)



Questionnaire 70

Figure C.3: Page 3 of 18 of the PSQI, SATED and experimental feedback questionnaire, in Por-
tuguese. (exported from Google Forms)



Questionnaire 71

Figure C.4: Page 4 of 18 of the PSQI, SATED and experimental feedback questionnaire, in Por-
tuguese. (exported from Google Forms)
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Figure C.5: Page 5 of 18 of the PSQI, SATED and experimental feedback questionnaire, in Por-
tuguese. (exported from Google Forms)



Questionnaire 73

Figure C.6: Page 6 of 18 of the PSQI, SATED and experimental feedback questionnaire, in Por-
tuguese. (exported from Google Forms)



Questionnaire 74

Figure C.7: Page 7 of 18 of the PSQI, SATED and experimental feedback questionnaire, in Por-
tuguese. (exported from Google Forms)



Questionnaire 75

Figure C.8: Page 8 of 18 of the PSQI, SATED and experimental feedback questionnaire, in Por-
tuguese. (exported from Google Forms)



Questionnaire 76

Figure C.9: Page 9 of 18 of the PSQI, SATED and experimental feedback questionnaire, in Por-
tuguese. (exported from Google Forms)



Questionnaire 77

Figure C.10: Page 10 of 18 of the PSQI, SATED and experimental feedback questionnaire, in
Portuguese. (exported from Google Forms)



Questionnaire 78

Figure C.11: Page 11 of 18 of the PSQI, SATED and experimental feedback questionnaire, in
Portuguese. (exported from Google Forms)



Questionnaire 79

Figure C.12: Page 12 of 18 of the PSQI, SATED and experimental feedback questionnaire, in
Portuguese. (exported from Google Forms)



Questionnaire 80

Figure C.13: Page 13 of 18 of the PSQI, SATED and experimental feedback questionnaire, in
Portuguese. (exported from Google Forms)



Questionnaire 81

Figure C.14: Page 14 of 18 of the PSQI, SATED and experimental feedback questionnaire, in
Portuguese. (exported from Google Forms)



Questionnaire 82

Figure C.15: Page 15 of 18 of the PSQI, SATED and experimental feedback questionnaire, in
Portuguese. (exported from Google Forms)



Questionnaire 83

Figure C.16: Page 16 of 18 of the PSQI, SATED and experimental feedback questionnaire, in
Portuguese. (exported from Google Forms)



Questionnaire 84

Figure C.17: Page 17 of 18 of the PSQI, SATED and experimental feedback questionnaire, in
Portuguese. (exported from Google Forms)



Questionnaire 85

Figure C.18: Page 18 of 18 of the PSQI, SATED and experimental feedback questionnaire, in
Portuguese. (exported from Google Forms)
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