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Abstract

This thesis presents methods for comfortable sleep measurement at home.
Existing medical sleep measurement systems are costly, disturb sleep qual-
ity, and are only suited for short-term measurement. As sleeping problems
are affecting about 30% of the population, new approaches for everyday
sleep measurement are needed. We present sleep measurement methods that
are based on measuring the body with practically unnoticeable force sensors
installed in the bed. The sensors pick up forces caused by heartbeats, respi-
ration, and movements, so those physiological parameters can be measured.
Based on the parameters, the quality and quantity of sleep is analyzed and
presented to the user.

In the first part of the thesis, we propose new signal processing algorithms
for measuring heart rate and respiration during sleep. The proposed heart
rate detection method enables measurement of heart rate variability from
a ballistocardiogram signal, which represents the mechanical activity of the
heart. A heartbeat model is adaptively inferred from the signal using a clus-
tering algorithm, and the model is utilized in detecting heartbeat intervals
in the signal. We also propose a novel method for extracting respiration rate
variation from a force sensor signal. The method solves a problem present
with some respiration sensors, where erroneous cyclicity arises in the signal
and may cause incorrect measurement. The correct respiration cycles are
found by filtering the input signal with multiple filters and selecting correct
results with heuristics. The accuracy of heart rate measurement has been
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validated with a clinical study of 60 people and the respiration rate method
has been tested with a one-person case study.

In the second part of the thesis, we describe an e-health system for sleep
measurement in the home environment. The system measures sleep auto-
matically, by uploading measured force sensor signals to a web service. The
sleep information is presented to the user in a web interface. Such easy-to-
use sleep measurement may help individuals to tackle sleeping problems.
The user can track important aspects of sleep such as sleep quantity and
nocturnal heart rate and learn how different lifestyle choices affect sleep.

Computing Reviews (1998) Categories and Subject
Descriptors:
H.3.5 Online Information Services
I.5.3 Clustering
I.5.4 Applications
J.3 Life and Medical Sciences

General Terms:
Algorithms, Experimentation

Additional Key Words and Phrases:
Signal Processing, Sleep Measurement, Ballistocardiography, Clustering,
Respiration, Heart Rate, E-health
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Chapter 1

Introduction

This thesis is about sleep measurement methods that do not disturb sleep.
The methods developed here are based on an unnoticeable force sensor that
is placed in the bed. This is a significant improvement over mainstream
sleep monitoring systems since they require the use of wearable sensors that
can degrade the quality of sleep. The unobtrusive measurement approach is
particularly attractive for long-term use at home — even months or years
— because the sensors are not expensive and no discomfort is caused to the
user. The body of this thesis deals with the scientific challenges of providing
accurate measurements in such setting. First, however, I give an overview
of the motivation and context of this work.

1.1 Motivation and goals

Long-term sleep measurement allows new possibilities for improving sleep,
which in turn has positive health effects. We have identified two primary
means of such sleep improvement: self-tracking of sleep and long-term sleep
measurement as part of medical sleep disorder treatment. With self-tracking,
the user measures sleep over long terms, learns from the measurement what
is wrong with their sleep, and acts to remove the possible causes of the sleep-
ing problems. The measurement can be likened to a scale in weight loss —
the problem (obesity, sleep deficit) is easier to solve when progress can be
measured. With medical sleep disorder treatment, long-term sleep measure-
ment data is provided to the sleep doctor, for following up the efficacy of
treatment and monitoring the course of the sleep disorder.

New approaches for improving sleep can have a big impact on public
health, because insufficient sleep quality and quantity are common health
problems in the Western world. It has been estimated that about 30% of
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2 1 Introduction

the population have the symptoms of insomnia, the most prevalent sleep
disorder [73]. Another sleep disorder with major health effects, sleep apnea,
has a prevalence of 3% – 8% in men (depending on the population sample)
and 2% in women in the most affected age group of 40 to 65 years [73].
Obesity significantly increases the risk of sleep apnea [32]. With overweight
increasing globally [79], sleep apnea will become more and more prevalent.
In year 2000 in the U.S. alone, sleep apnea-related traffic accidents cost 1400
lives and $15.8 billion, making it a serious public-health concern [84]. The
new methods presented in this thesis have the potential of making sleep
measurement more commonplace, which improves the chances of getting
treated.

The established practice of medical sleep monitoring, polysomnography,
involves wearing multiple electrophysiological sensors for a single night, at
a sleep laboratory or at home [41]. It provides clinically valuable informa-
tion, but is expensive and uncomfortable. More long-term and comfortable
measurements can be done with actigraphy [69], where the overall sleeping
patterns of a patient are measured with a wrist-worn movement sensor.

We have chosen to measure sleep with unobtrusive force sensors. The
idea is to measure the forces caused by the body on the bed with a flexible
film sensor that is placed below the bed sheet (Figure 1.1). These measurable
forces are mainly caused by respiration, heartbeats and movements. While
various force sensors have been used for sleep measurement for over 35
years [4], our aim is to make long-term sleep measurement practical by
developing novel signal analysis methods for convenient and economical
sensor technology. Alternative unobtrusive measurement methods include
e.g. Doppler radars that measure the movements of the body, including
respiration and heart activity [111, 98, 110].

The chosen measurement methodology poses scientific challenges, be-
cause physiological information (heart rate, respiration, etc.) cannot be
readily extracted from the signal, but require sophisticated signal analysis
methods. This thesis provides solutions to those challenges. From a prac-
tical point of view, the main novelty of our work is that the measurement
and signal analysis methods have been integrated into systems that enable
measuring sleep conveniently at home. These systems belong to the field of
e-health, which includes, among others, the use of interactive technologies
for improved health care [31, 1].

The ultimate aim of this research work is to develop practical and novel
methods for sleep monitoring. They should be validated with reference mea-
surements in realistic scenarios, so that their applicability and usefulness can
be evaluated. As of January 2014, two products have been released that in-
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Figure 1.1: The piezoelectric film sensor (a) and a recorded 12-second signal
excerpt (b). The sensor is covered with a bed sheet to conceal it and make
it more comfortable to sleep on. The cyclic low-frequency phenomenon with
around four-second period in the signal is respiration. The heartbeat is the
fluctuation that recurs around every second (red ellipses).



4 1 Introduction

corporate adaptations of the algorithms described in this thesis: Beddit Pro
(in early 2012) and Beddit (in late 2013)1.

In the rest of this chapter, I summarize the contributions of this thesis
and of the original papers. After that, Chapter 2 gives a brief overview of
sleep physiology. Chapters 3 and 4 describe the contributions of the thesis in
detail, with signal analysis methods presented in Chapter 3 and an e-health
system in Chapter 4. These chapters also contain sections on previous work
related to their specific topics. Finally, conclusions are presented in Chapter
5.

1.2 Contributions of the thesis

The contributions of this thesis are

a) signal processing methods for measuring heart rate based on a force
sensor signal (Papers I-III)

b) signal processing methods for measuring respiration rate variability
based on a force sensor signal (Paper IV)

c) an e-health system for long-term sleep measurement (Paper V).

How the contributions and Papers I-V are related to each other is shown
in Figure 1.2, which presents the flow of information in the e-health system
of Paper V. The outputs from the signal processing methods are presented to
the user in the e-health system and also used as inputs to high-level analyses
like sleep staging. Such cardio-respiratory sleep staging [51, 80, 21, 66, 25]
has been one of the motivations for the research on the signal processing
methods, although the actual sleep staging methods are left outside the
scope of this thesis. The contributions have been presented in the five orig-
inal papers, as described below.

Paper I We introduce a linear latent variable model for the respiratory
variation of the heartbeat shape. The model describes the effect of respira-
tion on the shapes of individual heartbeats. Having a precise model for this
known source of variation helps distinguish it from other variation sources
such as artifacts. Potential uses for the method are heart rate detection as
well as diagnostic applications, where the shape of the heartbeat needs to
be further analyzed.

1http://www.beddit.com/
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Force sensor 
measurement

Movement analysis
Heart rate analysis

(Papers I-III)
Respiration rate

analysis (Paper IV)

High-level analysis
methods. Displaying
sleep data to user.

E-health system for sleep 
measurement (Paper V)

Figure 1.2: Flow of information in the e-health system.

Paper II We propose a clustering method for detecting heartbeats from
a force sensor signal. The method has two uses: detection of heart rate
and learning a model for the heartbeat shape. Such unsupervised learning
functionality is utilized in the beat-to-beat heart rate measurement method
described in Paper III. Learning the heartbeat shape is difficult, due to
the shape’s variability across different subjects and different sleeping posi-
tions. The clustering method provides an efficient solution to the variability
problem.

Paper III We propose a method for measuring beat-to-beat heart rate
from force sensor signals. The clustering method of Paper II is used to learn
a model for the heartbeat shape. The model thus learned is then applied
to detecting individual beat-to-beat intervals from the signal. Clinical trials
consisting of 60 subjects were carried out to validate the precision of the
method. The beat-to-beat heart rate detection method is a component of
the e-health system described in Paper V.

Paper IV We propose a method for the detection of respiration rate
variability from force sensor signals. The force signal is filtered with multi-
ple parallel filters to extract the respiration cycles from other fluctuations
in the signal. Respiration variability measurement can be used in cardio-
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respiratory sleep staging and in the measurement of sleep-related respira-
tory issues. The method is a component of the e-health system described in
Paper V.

Paper V We describe an online e-health sleep measurement system. Sleep
is automatically measured with force sensors and the resulting sleep infor-
mation is presented to the user with a web interface. The system integrates
the above heart rate and respiration signal analysis methods. For example,
the variability of heart and respiration rates are used as inputs to a sleep
staging method, and heart rate information is provided to the user in the
form of a resting heart rate reading. The aims of the system are two-fold:
self-tracking and improvement of sleep for consumer use as well as long-term
medical sleep monitoring.



Chapter 2

Sleep physiology

2.1 Sleep stages

Sleep is a physiologic phenomenon that is controlled by the central nervous
system (CNS). Sleep is characterized by decreased mobility, lack or decrease
of consciousness and diminished sensory sensitivity.

It has been known for a long time that sleep is vital to both humans
and animals. Based on electroencephalographic (EEG) measurement, it was
found in the 1930s that the depth of sleep varies throughout the night,
from wakefulness to light sleep to deep sleep [27]. Rapid eye movement
sleep (REM) was discovered in 1953 [5], which established the still-valid
classification of CNS activity into three fundamentally distinct states: REM
sleep, non-REM sleep (NREM) and wakefulness. There is no physiological
clear-cut boundary between being awake and asleep, so it is natural to treat
wakefulness as one of the sleep stages, as I do in the following discussion.

REM sleep has also been called paradoxical sleep, because the neuronal
activity of the brain resembles the waking state, unlike in NREM sleep. A
peculiar feature of REM sleep is muscle paralysis, which blocks the neuronal
connection between the brain and most muscles. Muscle paralysis prevents
the awake-like brain activity from causing movement of the body during
sleep. Dreaming is more frequent and vivid during REM sleep, although
dreaming does occur also during NREM sleep [36, 92].

According to established guidelines of clinical sleep measurement [41],
NREM sleep is further categorized into three levels, with increasing sleep
depth: N1, N2 and N3. Stage N1 represents the drowsy state between wake-
fulness and sleep, and the depth of sleep is progressively increased in stages
N2 and N3.

A typical night of a healthy young adult consists of about five sleep
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8 2 Sleep physiology

Wake

N1

N2

N3

REM

24 1 2 3 4 765

Time of day (hours)

Figure 2.1: Sleep stages across a typical night. (Adapted from [62].)

brain activity 
(electroencephalogram, EEG)

eye movements
(electrooculogram, EOG)

muscle tension
(electromyogram, EMG)

Figure 2.2: Measurement sites of the electrophysiological signals for sleep
staging.

cycles, where sleep alternates between NREM and REM sleep in around 90-
minute periods. In the first third of the night, the cycles contain relatively
more of the deepest N3 sleep, whereas REM sleep dominates in the last
third. An exemplary plot (hypnogram) showing the sleep stages for a single
night is shown in Figure 2.1.

In addition to EEG, a few other electrophysiologic signals measured in
the head region are needed for detecting sleep stages: electrooculography
(EOG, eye movement electrical activity) and electromyography (EMG, elec-
trical muscle activity measured from the chin). The sites of measurement
are shown in Figure 2.2. The electrophysiological features of each sleep stage
are given in Table 2.1.



Sleep
stage

EEG, EMG, EOG
features

Movement, cardiac and
respiratory features

Wake EEG: Alpha activity (8-13
Hz) for ≥50% of the epoch.

Much movement. Increased
HRV. Stable respiration.

N1 EEG: Alpha activity for
<50% of the epoch.
Low-voltage mixed-frequency
activity. Vertex sharp waves.
EOG: Slow eye movements.

Little movement. Decreased
HRV. Instability in
respiration amplitude.

N2 EEG: Slow-wave activity
(0.5-2 Hz) for <20% of the
epoch. Sleep spindles or
K-complexes.

Little movement. Decreased
HRV. Stable respiration.

N3 EEG: Slow-wave activity for
≥20% of the epoch.

Little movement. Decreased
HRV. Very stable
respiration.

REM EEG: Low-voltage
mixed-frequency activity.
Saw-tooth waves (2-6 Hz).
EMG: Low activity. EOG:
Rapid eye movements.

Movements during phasic
REM. Increased HRV.
Unstable respiration.

Abbreviations EEG: electroencephalography; EOG: electrooculography;
EMG: electromyography; HRV: heart rate variability

Table 2.1: The electrophysiological features of sleep stages, according to
the American Association of Sleep Medicine (AASM) standard [41], are
given in the middle column. Sleep is classified into sleep stages in 30-second
epochs based on these features. How sleep stages affect movement, heart rate
and respiration is shown in the right column. See text for a more detailed
description.
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2.2 Movement, heart rate and respiration during
sleep

The effects of the different sleep stages can be seen in heart rate, respiration
and movement activity (see Table 2.1 for a summary). These observable
effects form the basis of force sensor sleep measurement, because heart rate,
respiration and movement can be measured with force sensors, as will be
described in Chapter 3.

The interaction between sleep stages and cardio-respiratory-movement
phenomena is mainly such that sleep stages cause the phenomena and not
vice versa. However, some respiratory phenomena such as sleep apnea can
indeed affect sleep stages (by causing awakenings).

Movement Compared to wakefulness, healthy NREM sleep consists of a
very low level of motility, because voluntary movements are absent. Most of
the duration of a REM episode is tonic, which means that muscle paraly-
sis is effective and no movement activity is present. However, the paralysis
mechanism is occasionally interrupted, causing involuntary phasic move-
ment events (mostly transient muscle twitches) of the body.

In summary, the level of movement activity is much smaller in sleep
than in wakefulness, although there is somewhat more movement in phasic
REM periods than in the rest of sleep.

As sleep correlates with a low level of motility, circadian rhythmicity
can be estimated with a method called actigraphy [69]. An accelerometer
sensor is worn on the wrist 24 hours a day, which allows estimating the
daily alternation between sleep and wakefulness. Due to its limited accu-
racy, actigraphy is typically used for the overall characterization of sleeping
patters over a period of at least a week.

Heart rate and respiration Marked changes can be seen in heart rate
and respiration across different sleep stages. These changes are caused by
various physiological mechanisms. For example, the autonomic coordination
between heart rate and respiration is strong in NREM sleep (heart rate
varies steadily in the phase of respiration) and weak in REM sleep (heart
rate is more erratic).

Various mathematical models have been proposed for describing heart
rate and respiration processes and their interactions in different sleep stages.
A convenient way to describe heart rate variability in different sleep stages is
to compute the variability in standard frequency bands: high frequency (HF,
0.15–0.40 Hz), low frequency (LF, 0.04–0.15 Hz), very low frequency (VLF,
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0.003–0.04 Hz) and ultra low frequency (ULF, 0.0001–0.003 Hz) [12, 97]. The
ratios between the frequency bands markedly change across sleep stages.
Another method for quantifying heart rate variability changes across sleep
stages is detrended fluctuation analysis [17, 100, 75] that estimates long-
range correlations and randomness of the heart rate time series. In addition,
arousal to a lighter sleep stage has been found to trigger transient increases
in heart rate [7].

The above models for measuring heart rate variability are indirectly also
measuring heart rate–respiration interaction. For example, spectral power
in the HF band is mainly caused by synchronization of heart rate with
respiration. However, some models quantify the interaction between heart
rate and respiration more explicitly, by directly modeling such interaction
[42, 80, 95, 24, 76].

The properties of breathing alone (without mention of heart rate) change
by sleep stage. In general, ventilation is reduced and respiration frequency
increased in sleep compared to wakefulness [29]. The variability of respi-
ration is high both at sleep onset [101] and in REM sleep [22, 63], with
NREM sleep being less variable. Comparing different NREM sleep stages,
N1 and N2 have more respiratory variation than N3 [61]. Similar to heart
rate, long-range correlations of respiration are present in REM but absent
in NREM [50].



12 2 Sleep physiology



Chapter 3

Unobtrusive cardiac and respiratory
measurement

This chapter describes the signal analysis methods proposed in Papers I-
IV. First, however, a compact review of unobtrusive cardiac and respiration
measurement sensors is given. Then, our signal analysis contributions for
cardiac measurement (Section 3.2) and respiration measurement (Section
3.3) are presented. Those sections also contain brief reviews of previous
signal analysis methods for the respective tasks.

3.1 Unobtrusive sensors

Sensors that cause no discomfort are often called “unobtrusive”. One way
to draw the line between unobtrusive sensors and others is to require that
sensing must not involve electrodes or any other wearable parts. Unobtrusive
sensors measure the body either in the platform supporting the body (beds,
chairs, weighing scales) or remotely, using e.g. radar technology. Heart rate
and respiration can be measured unobtrusively, because respiration and the
beating of the heart cause small movements of the body. Although wearable
sensors may became very comfortable in the near future (e.g. rings or sensor
garments), I exclude them from the following discussion, because current
wearable technology does not yet provide a fully unobtrusive experience.

In the following, I give a short review of measurement methods that
are applicable to unobtrusive sleep monitoring in the home environment.
Various sensors exist and a detailed evaluation of their strengths and weak-
nesses is outside the scope of this thesis. A practical evaluation takes place
commercially: the most appropriate sensors for unobtrusive measurement
are likely to be found in successful products.

13



14 3 Unobtrusive cardiac and respiratory measurement

(a) (b)

Figure 3.1: Early BCG recordings by Gordon [37], measured with a weigh-
ing machine, (a), and a bed suspended with ropes, (b). The labels in (b)
correspond to different features of a single heartbeat, as identified by Gor-
don.

Ballistocardiography Measurement of mechanical cardiac activity from
the platform supporting the body is called ballistocardiography (BCG). The
term comes from the Greek word ballein, to throw. The heart throws, or
pumps, blood to the artery, which causes the body to move during each
cardiac cycle.

The first documented measurements on how the beating of the heart
causes the body to move have been traced back to the late 19th century
[37]. J. W. Gordon measured cardiac activity by tracing the movements
of the index of a weighing machine (Figure 3.1a) and by measuring the
footward movements of a light bed that was swung with four ropes (Figure
3.1b). It was not until the work of Isaac Starr from the 1930s that the
method started to gain medical prominence [91, 87]. Starr’s key contribution
was the introduction of high-frequency BCG, where it was not the actual
displacement of the body that was measured, but rather the force that the
displacement exerted on the supporting platform. Previous experimenters
had measured displacement directly, and did not get good results as the low-
frequency respiratory phenomenon interfered with the cardiac activity. One
such device measuring displacement is shown in Figure 3.2. Measurement of
force effectively acts as a high-pass filter and thus diminishes the respiratory
artifact. Ballistocardiography was to become a clinically significant tool,
but the development of other methods such as electrocardiography led to a
drastic lessening of BCG research activities from late 1950s [87, 34, ch. 2].

One of the reasons for the decline of BCG was that the recording appa-
ratus was expensive and cumbersome. That is no longer the case. Recently,
various convenient and inexpensive sensors have been developed for mea-
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Figure 3.2: Henderson’s device [40] is based on measuring the displacement
of the bed, “T”, by amplifying the footward movement (horizontal movement
in the figure) of the bed with levers and graphing it on a revolving drum.
The bed is suspended so that it can move freely in the footward direction.

suring the mechanical activity of the heart. Chair sensors [56] are designed
to be used as diagnostic devices, so that cardiac diagnoses can be performed
while the patient sits on the chair. Similarly, a sensor embedded in a conven-
tional weighing scale [43] enables making diagnostic cardiac measurements
whenever the patient visits the scale.

Various sensors for measuring the BCG of a sleeping person have been
developed, including bed post sensors [13], a pillow sensor [18], different
kinds of mattress sensors [46, 19, 58, 39, 57] and an infrared sensor placed
under the mattress [14]. A notable example is the static charge-sensitive bed
[4], developed in the late 1970s, to measure sleep quality using unobtrusive
measurement of respiration, heart rate and movement. The bed sensors
do not strictly match the original definition of BCG as force measurement
along a defined axis (e.g. head-to-foot), because the subject changes sleeping
posture during the night. For convenience, all these measurement methods
are called BCG here.

Bed electrocardiography Although conventional electrocardiography
requires wearing adhesive electrodes, there are ways to measure the ECG
during sleep without disturbance. Textile ECG electrodes [45, 28, 74] mea-
sure the electrical activity by using conducting sheet material as the elec-
trode. A drawback of the method is that only limited parts of the skin area
can be covered in cloth, to avoid insulating the electrodes from the skin.

Capacitive ECG avoids the insulation problem by measuring electrical
displacement currents caused by the changing potential distribution of the
heart [99, 108]. These currents can be measured with an electrode that is
close to the skin, but not in direct contact.
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Radar measurement The movements of the chest caused by respira-
tion and heart can be measured with radio frequency radar sensors [67, 68,
110, 25]. The radar is positioned close to the bed so that radiation can be
directed towards the body of the sleeping person. Radar measurement has
been used in consumer products that measure sleep quality (GEAR4 Renew
SleepClock1, Omron Sleep Design HSL-1012).

Force sensor respiration measurement Most of the BCG and radar
sensors mentioned above are also capable of measuring respiratory activity,
because respiration causes the chest to move measurably. However, some
systems have been developed for the unobtrusive measurement of just res-
piration and movement activity [9, 8, 11]. Respiration events such as central
sleep apneas can be detected with such measurement, which could be used
in sleep disorder diagnosis.

The primary sensor used in this thesis is of the ballistocardiography type and
also measures breathing activity. The sensor (Figure 1.1) is made of flexible
piezoelectric material, measures 4 cm by 70 cm and is 0.2 mm thick. It is
attached to the mattress with adhesive tape, just beneath the bed sheet.
The micro-movements of the body caused by heartbeats and respiration
are detected by the sensor, enabling physiological measurement. Obviously,
gross movements of the sleeper are also detected. This “bed film sensor”
type has been used by many researchers [46, 57, 106, 78, 16, 3] and provides
a good cardiorespiratory signal without causing discomfort.

It is natural to compare bed film sensors to two alternatives for mea-
suring heart rate, respiration and movements: radar sensors and load cells.
Radar sensors [67, 68, 110, 25] measure movement of the body from a dis-
tance and the signal contains information on heart rate, respiration as well
as movements. Load cells are force sensors that are installed to the support
of the bed (e.g. bed post) [13, 21, 23, 9]. Most load cells measure movement
and respiration, and some are sensitive enough for detecting heart rate.
These three similar modes of measurement (bed film sensor, radar, load
cell) all have their advantages and drawbacks. The main difference between
bed film sensors and load cells is that film sensors have a more localized area
of measurement (subject needs to be on the sensor) than load cells (sub-
ject is measured anywhere on the bed). Thus, load cells are not suitable for
double beds, where both subjects’ signals would get mixed, but measure a
single subject well. The radar signal is similar to those from bed film sensors

1http://renewsleepclock.com/
2http://www.healthcare.omron.co.jp/product/hsl/hsl-101.html
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and load cells, but the setup of measurement differs. Radars are normally
positioned above the bed, pointing at the subject, whereas bed film sensors
and load cells are installed to the bed.

In Papers I, II and IV, we used a different ballistocardiographic sensor,
which is placed under the bedpost (see Figure 3.10a on page 31). The switch
to the current sensor was made in late 2011, to better measure respiration
activity. The main difference between the sensors is that in the current sen-
sor the amplitude of the respiration waveform is 5 to 10 times the heartbeat
amplitude, whereas in the old sensor they are about equal. The signal anal-
ysis methods presented in this thesis are applicable to both sensor types due
to the similarity of the signals. In fact, the method presented in Paper III
has been validated with measurements from both sensor types. This illus-
trates the power of adaptive methods in generalizing to different settings.

3.2 Heart rate measurement signal analysis meth-
ods

There are three main contributions for heart rate measurement: a model
for respiratory variation of heartbeats (Paper I, Section 3.2.2), a cluster-
ing method for learning the heartbeat shape (Paper II, Section 3.2.3) and
a method for measuring beat-to-beat heart rate (Paper III, Section 3.2.4).
The clustering method is a component of the beat-to-beat heart rate mea-
surement method.

3.2.1 Background and related work

Measuring the heart rate from BCG or similar mechanical signals is a much
more difficult task than electrocardiogram (ECG) heart rate measurement,
the most commonplace cardiac measurement method. Individual heartbeats
can be detected in an ECG signal relatively easily, by locating a clear spike
(called the QRS complex, from the consecutive named spikes Q, R, S of the
ECG heartbeat) that accompanies each heartbeat. However, with BCG,
the cardiac impulses are less pronounced and more variable than the salient
shape of the QRS complex. The relation between BCG and ECG is shown
in Figure 3.3. Each ECG heartbeat signal consists of a clear spike (the QRS
complex), which is followed by an impulse in the BCG around 80 ms later
[30]. The ECG spike precedes the impulse in the BCG, because electrical
activity causes the mechanical contraction of the heart. Various methods
have been proposed for the measurement of beat-to-beat heart rate in BCG
signals. They are reviewed next.
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Figure 3.3: A 10-second excerpt of synchronized ballistocardiography (top)
and electrocardiography (bottom) signals.

Many algorithms are based on pre-processing the BCG signal with dig-
ital filters such as wavelets, and detecting peaks [111, 13, 49, 71, 35] or
slightly more complex features [2, 88, 109, 66, 33] (typically a “W” shape)
in the signal. The problem with these methods is that they make strong as-
sumptions about the shapes of the heartbeats in the signal. The properties
of the BCG signal vary in practice so much that no simple filtering rule can
be devised for accurate and reliable heartbeat detection.

Not all methods make equally strong assumptions about the shapes of
heartbeats in the BCG signal. The clustering method proposed in Paper
II detects the heartbeats directly with little prior information about the
heartbeat shape. A similar approach has been employed by Rosales et al.
[81]. The problem with these methods is that they do not model the region
between the detected heartbeat positions. Therefore, it is difficult to infer
if two consecutive detected heartbeat positions form a genuine beat-to-beat
interval or if there is a heartbeat between them that was missed by the
clustering procedure. One promising method uses k-means clustering to
extract a template for the heartbeat shape and detects heartbeats and beat-
to-beat intervals with the template [15].

One group of methods does not try to detect beat-to-beat intervals by
first finding heartbeat positions, but estimates a “fundamental frequency”
of short segments and infers beat-to-beat intervals that way [58, 103, 16].
The method by Brüser et al. [16] has been validated with 33 test subjects
and can be considered to represent the state of the art.

The contributions of Papers I-III will be summarized in the following
three sections.

3.2.2 Respiration variation model for the heartbeat shape

The model for the respiratory variation of heartbeat shape described below
has originally been presented in Paper I.
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Figure 3.4: A BCG signal segment containing three respiration cycles. Each
ti denotes the onset of the ith heartbeat (x-axis, time in seconds). The signal
has been acquired with the bedpost sensor (Figure 3.10a) and has been
high-pass filtered to remove the low-frequency trend caused by respiration.

Various beat-to-beat heart rate measurement methods [48, 15, 86, 93] are
based on quantifying the difference between signal segments and a heartbeat
shape model. Heartbeats are detected where the model fits the signal well.
The quantification will be more precise if the physiological variation in the
heartbeat shape can be taken into account when matching the heartbeat
shape to the signal.

Short-term changes in BCG heartbeat shape have been found to be
caused mostly by respiration [90, p. 191]. See Figure 3.4 for an example of
the respiratory effect in the signal. A common model for the variation is
that the heartbeat shape varies by amplitude [48, 44, 15, etc.]. However,
with some measurement setups, amplitude variation is not an adequate
model for the respiratory variation. For example, with seismocardiogram
measurement, a specific feature of the seismocardiogram heartbeat (called
the S1-S2 interval) has been found to vary by respiration [72].

Our model describes an individual heartbeat shape xi as a weighted
sum of a mean heartbeat vector µ and a respiratory component vector
w. Vector w represents the direction of the respiratory variation and is
weighted by a respiration phase variable zi, which describes the magnitude
of the respiratory effect and normally follows the phase of respiration [89].
The formal description of the model is

xi = wzi + µ+ ε (3.1)

where ε is a noise term. Compare that to the amplitude variation model,

xi = ziµ+ ε,

where the heartbeat vector is simply a scaled mean heartbeat vector.
The result of applying the model to test signals is shown in Figure 3.5.

Our model was found to describe the respiratory variation better than the
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xi xi − µ ε, resp. model ε, ampl. model
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Figure 3.5: N heartbeat waveforms (x1,x2, . . . ,xN ) are plotted in the first
column, with the context before and after each xi shown in black. The mean
heartbeat µ (- - -) and variation vectorw (-----) are shown as black lines. The
second column contains the heartbeat waveforms minus the mean heartbeat
(x1 − µ,x2 − µ, . . . ,xN − µ). The error terms ε of the respiratory model
and amplitude model are in the third and fourth columns, respectively. The
color of each line shows the value of the respiratory latent variable zi of each
heartbeat (see colorbar) in all the four columns. The vertical dimension is
in arbitrary units and is identical for all the plots in the figure.

amplitude variation model, as measured with Bayesian information criterion
[54] (see Paper I for details). The criterion gives an estimate of how suitable
a model is for describing observed data, in this case heartbeat vectors.

3.2.3 Inferring the heartbeat shape with clustering

The following clustering method was originally presented in Paper II and
its details have been refined in Paper III.

The heartbeat impulses in a BCG signal vary across subjects and within
a measurement night across different sleeping postures. One strategy for
detecting heartbeats in a flexible manner is to first learn the shape of the
heartbeat and then use the shape for detecting heartbeat positions.

We have developed a clustering method for the learning task. The clus-
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tering method is applied on a segment of the signal: within the segment,
we look for clusters of short signal windows that are similar to each other.
Windowing and clustering are performed as follows. First, the segment is di-
vided into overlapping 0.4-second windows so that each window is centered
at an extremum of the derivative of the signal. Figure 3.6 illustrates this
process. The window center positions are shown as upward lines in Figure
3.6a and all the 0.4-second signal windows are overlaid in Figure 3.6b.

In our implementation, the clustering method is applied to a 15-second
signal segment at a time, and the densest four-item cluster is selected to
represent the heartbeat shape. A longer segment would contain more heart-
beats and thus improve the estimation of the shape, while a shorter segment
would make the estimation of the shape more rapid (useful in real-time mon-
itoring applications).

The signal windows are clustered using complete-link agglomerative
clustering. Figure 3.6c shows the densest (smallest complete-link distance)
four-item cluster of signal windows (these window positions are in Figure
3.6a as downward lines). If the complete-link distance of the densest four-
item cluster is below a fixed threshold, the heartbeat shape is estimated with
the technique described below. Otherwise, the above procedure is repeated
after 15 seconds.

The heartbeat shape is now estimated as follows. First, 2.5-second signal
windows (shape windows) centered at the four cluster signal windows are
extracted (Figure 3.6d). To estimate the length of the heartbeat shape, a
heart valve signal (HVS) is calculated [15]. This is done by taking the point-
wise average of squared and low-pass filtered shape windows (Figure 3.6e).
The local minima of the HVS around the center of the segment (vertical
lines in Figures 3.6e-f) determine the length of the heartbeat shape (Figure
3.6f).

The heartbeat learning method is used in measuring beat-to-beat heart
rate, as will be described below.

3.2.4 Measuring beat-to-beat heart rate

The beat-to-beat heart rate measurement method described below has orig-
inally been proposed in Paper III.

The purpose of the method is to extract heart rate variability infor-
mation by finding time intervals between consecutive heartbeat positions
(beat-to-beat intervals). The algorithm has to accomplish two tasks: find
heartbeat positions for the start and end of each interval, and assure that
the start and end positions are consecutive heartbeats, i.e., that there are
no missed heartbeats between them.
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Figure 3.6: (a): A 8-second signal segment (shown for improved clarity,
although the method uses 15-second segments). The center positions of the
signal windows are shown as vertical upward lines, and of the densest cluster
as downward lines. (b): All 0.4-second signal windows overlaid. (c): The
signal windows of the densest cluster of four windows. (d): 2.5-second shape
windows that are used for extracting the heartbeat shape model. (e): The
computed heart valve signal (HVS). (f): The heartbeat shape is extracted by
taking the point-wise mean of the shape windows between the local minima
of the HVS. (g): The vector µ is formed by taking the computed heartbeat
shape and filling the rest of the vector with zeros.
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First, the heartbeat model parameter µ is estimated with the clustering
method described in Section 3.2.3. The model is then used for detecting
beat-to-beat intervals and periodically updated based on the detected beat-
to-beat intervals.

The detection of heartbeat positions is limited to a set of candidate
positions. They are found by locating local maxima of the cross-correlation
between the observed signal and the heartbeat shape mean vector µ.

Beat-to-beat intervals are detected by finding pairs of consecutive heart-
beat positions that match the signal well. A potential interval-start heart-
beat position ta is fixed to a candidate position and different candidate
positions are tried for the interval-end heartbeat position tb. If a tb candi-
date results in a plausible beat-to-beat interval (small-enough residual, see
(3.3) below) and the amplitudes of the two heartbeats are similar enough
(the larger amplitude is less than 2 times the other), the beat-to-beat in-
terval (ta, tb) is output. A large amplitude difference between consecutive
heartbeats is physiologically unlikely, so such cases are discarded as proba-
ble false detections.

How well the two heartbeat positions match the signal is calculated
by constructing a synthetic signal segment based on the positions and the
heartbeat model, and computing the difference between the observed and
synthetic signals. This computation is visualized in Figure 3.7 with two
cases. The residual is much higher in the case where the heartbeat interval
does not match the signal well.

First, synthetic heartbeat vectors xa and xb are constructed by fitting
the heartbeat vector model (3.1) to the signal at positions ta and tb. The
fitting is done by minimizing the mean-square error between the model
(3.1) and the observed signal s, by adjusting only parameter zi in (3.1).
The mean-square error for the heartbeat position ta is given by

average
(
(sj − (zaµ) [j − ta])

2
)

(3.2)

where j goes from 0 to the length of the heartbeat shape. Parameter za
is optimized to minimize the mean-square error, which gives the synthetic
heartbeat vector xa = zaµ. The heartbeat vector for position tb (xb) is
constructed in the same way. The reconstructed two-beat region is then
obtained as a superposition of xa and xb.

Then, the modeling error εj concerning the pair of heartbeat positions
ta and tb is calculated, as

εj = sj − (xa[j − ta] + xb[j − tb]) (3.3)

over the region ta ≤ j ≤ ta+(tb − ta)×2, that is, over a region that consists
of both heartbeats. The heartbeat interval (ta, tb) is accepted if the average
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Figure 3.7: Beat-to-beat interval evaluation in cases where the residual is
low (a, b, c in the upper panel) and high (a, b, c in the lower panel). (a):
Candidate heartbeat vectors xa (dotted line) and xb (dashed line). (b): The
reconstruction of the beat-to-beat interval (black) and the observed signal
(gray). (c): The computed residual (3.3).
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of the square residual ε2j over the region is below a fixed threshold and the
amplitude comparison criterion given above is satisfied.

The vector µ is re-estimated every 20 new beat-to-beat interval detec-
tions, using the latest 100 detected beat-to-beat interval start positions.
The model is updated continuously, because the shape of the heartbeat can
drift slowly, for example due to changes in average heart rate. Vector µ
is estimated with the method by Inan et al. [44], by taking an ensemble
average so that the interference of adjacent heartbeats is cancelled. The
ensemble averaging method produces heartbeat vectors where the effect of
the preceding and following heartbeats have been cancelled.

Updating µ as described above handles cases where the heartbeat shape
changes slowly. However, changes e.g. in sleeping posture can alter the heart-
beat shape so much that it needs to be fully re-initialized. To account
for such changes, four “instances” of the beat-to-beat interval detection
method described above are run in parallel. Every 20 seconds, the instance
with fewest heartbeat detections in the preceding 20-second period is re-
initialized with the clustering method. The instance with most detections
in that 20-second period is set to be the “active” instance. The beat-to-beat
intervals are taken from the active instance for each 20-second period.

The beat-to-beat intervals produced by the above method are post-
processed by removing probably incorrect beat-to-beat intervals from the
data. The median m of the previous 15 detected beat-to-beat intervals is
calculated for each new interval. If the new beat-to-beat interval is in range
m/1.6 . . .m × 1.6 it is accepted and rejected otherwise. These limits have
been chosen as a suitable trade-off between 1) detecting as many beat-to-
beat intervals as possible and 2) detecting as few incorrect beat-to-beat
intervals as possible.

3.2.5 Evaluation

The model for the respiratory variation of heartbeat shape (Section 3.2.2)
has been evaluated with Bayesian information criteria (see Paper I for de-
tails). The beat-to-beat heart rate measurement methods described in Pa-
pers II and III have been evaluated as part of a clinical study in Paper III.
Results from the study will be described next.

The performance of the method was tested with overnight recordings
from 60 people: 40 patients were measured at a local sleep clinic and 20
volunteers in their homes. At the clinic, the BCG signal was measured from
a standard consumer bed with the bedpost sensor, and the film sensor was
used at home. In total 46 overnight recordings had a successfully acquired
ECG reference and those were used in the validation. A relatively high



26 3 Unobtrusive cardiac and respiratory measurement

600 800 1000 1200 1400 1600 1800

(ECG+BCG)/2 (milliseconds)

−150

−100

−50

0

50

100

150

E
C

G
-B

C
G

(m
ill

is
ec

on
ds

)

Figure 3.8: Bland-Altman plot of the difference between detected BCG beat-
to-beat intervals and ECG reference. Out of the 770676 detected beat-to-
beat intervals, 30000 have been randomly selected to make the plot easier to
read. The upper dashed horizontal line denotes the average Emean statistic
across all subjects (the other line is its negation).

number of failed measurements was caused by an experimental measurement
setup that was required due to the new sensor technology.

For each beat-to-beat interval detected from the BCG signal, a cor-
responding reference beat-to-beat interval was sought from the reference
ECG signal. The resulting differences between BCG and ECG beat-to-beat
intervals from the whole study are visualized in Figure 3.8.

The performance of the method was evaluated with various statistics,
computed separately for each test subject (see Table I in Paper III for full
results). For example, coverage, precision and mean beat-to-beat interval
error (Emean) were calculated. Coverage is the ratio between the number of
detected BCG and ECG intervals. Precision is the ratio correct/(correct+
incorrect) where correct and incorrect beat-to-beat interval detections are
separated with a 30 ms threshold.

The performance of the method varies strongly by test subject. The
subjects have different degrees of cardiac problems and sleeping disorders.
This causes the signal quality to vary: the signals are very clear in some
cases and full of movements and other distortion in other cases. However,
the demographic parameters (age, BMI (body mass index), and sex) do not
have a strong effect on the results. With the signals measured at home (film
sensor), the bed types and measurement setups vary, with some subjects
sleeping in double beds with a partner and some sleeping alone. These
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measurement differences likely explain some of the variability in the results.
The two key accuracy parameters are coverage and Emean. There is large

variability in coverage. In the best case, 94.0% of the heartbeats have been
detected, whereas in the worst case, only 8.19% have been detected. Average
coverage is 54.07%, so on average over half of the heartbeats are detected.
The cause for the lowest coverage value 8.19% is not completely clear. How-
ever, based on inspection of the signal, the primary cause is probably that
the sensor has not been placed properly under the subject, as the signal
quality is not optimal.

The average of the mean error (Emean) across all test subjects is 13.2 ms.
The sensor used seems to have an effect on accuracy. Out of the 46 subjects,
the 16 worst measurements by mean error (Emean) have been acquired with
the bedpost sensor. The largest Emean statistic with the bedpost sensor is
33.9 ms but only 12.8 ms with the film sensor.

3.2.6 Discussion

We have proposed methods for modeling the respiratory variation of heart-
beat shapes and detecting beat-to-beat heart rate from BCG signals. The
respiratory variation model could potentially be used in heart rate analysis
methods or diagnostic applications, because it allows modeling the heart-
beat shape with improved precision. Although the Bayesian information
criterion analysis shows that the model is suitable for heartbeat modeling,
its real utility can only be tested in real use, such as a diagnostic applica-
tion. Until then, it remains open what the true benefits of such heartbeat
modeling are.

The proposed method for beat-to-beat detection has been validated with
a clinical study (see Table I in Paper III for full results) and is in use in
the e-health system described in Chapter 4.2. The clinical validation shows
that the beat-to-beat detection method has fairly good precision despite the
large variation in the test subjects and measurement setups. The method
measures beat-to-beat intervals with around 13 ms precision. In the best
cases, over 90% of the heartbeats have been detected with good precision,
which should be enough for detailed heart rate variability (HRV) analyses,
whereas in the worst cases, the number of detected heartbeats is sufficient
for estimating only the overall trend of resting heart rate. The average error
in resting heart rate is less than 1 BPM with most subjects, which enables
sufficiently precise average HR measurement for many applications. In the
e-health system described in Chapter 4.2, both HRV and resting heart rate
measurement are utilized. If coverage is sufficient, stress reactions of the user
are estimated based on HRV, whereas only the resting heart rate number
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Figure 3.9: Screenshots from the Beddit smartphone app. The
summary of a single night’s sleep information is shown.

and curve are given if coverage is low.
The method contains some parameters, such as modeling residual thresh-

old (see (3.3)), amplitude difference threshold as well as the parameters of
the post-processing step. How those parameters should be set depends on
the needs of the application and qualities of the signal. Some applications
require as many detections as possible, whereas in other cases precision is
more important.

The precision of the method is similar to the two state-of-the-art meth-
ods by Brüser et al. [15, 16]. Their reported mean absolute errors are 16.6
ms and 7.1 ms, respectively. The errors are similar to the mean absolute
error 13.2 ms of the method proposed here. Exact comparison is difficult,
because the test subjects’ physiology and measurement environment have
a large effect on the result.

Future work in the development of the method should study how the
inter-subject variability in the method’s performance is related to differ-
ent measurement setups (bed type, sensor position, sensor installation)
and physiological differences between people. Moreover, the simple post-
processing step should be replaced with a more physiologically justified
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model. The utility of the method for HRV analysis should be studied by
measuring how well BCG and ECG measurements agree on computed HRV
parameters.

An example application of BCG heart rate measurement is in the “Bed-
dit” sleep monitoring product, which acquires a BCG signal from a film
sensor over Bluetooth, and displays the sleep measurement results in a
smartphone app. Heart rate measurement is utilized in the app by display-
ing the resting heart rate (average over the night) in each night’s overview
(see Figure 3.9). Changes in resting heart rate correlate e.g. with stress
[104, 64, 10], alcohol consumption [82] and overtraining [105], which helps
the user to understand what kind of lifestyle choices affect health.

3.3 Respiration signal analysis methods

This section describes the respiration signal analysis method proposed in
Paper IV. The aim of the method is to quantify respiratory variation based
on force sensor measurement. The variation information can be used e.g. in
sleep staging [80, 22] and an adaptation of the method is indeed a component
of the e-health system described in Section 4.2.

3.3.1 Background and related work

There are three main motivations for measuring respiration unobtrusively
during sleep. First, respiration conveys information about the general condi-
tion of the patient, so the deterioration of health can be detected with respi-
ration monitoring [94, 47]. Second, sleep-related breathing disorders (SRBD)
such as sleep apnea represent a major share of sleeping problems. Sleep ap-
nea is underdiagnosed and new unobtrusive measurement methods have a
potential to help that, as was recently demonstrated by Beattie et al. [9].
Third, the structure of sleep can be analyzed based on respiration, because
sleep stages have differing effects on respiration (see Section 2.2).

Respiration rate analysis methods detect respiration rate either as an
average respiration cycle length over a time window, or by finding the length
of each individual respiration cycle. The average respiration cycle length
can be detected using autocorrelation [6] or by taking a discrete Fourier
transform (DFT) of the signal and finding a peak corresponding to the
respiration frequency [107]. The methods for finding individual respiration
cycle lengths are typically based on filtering the signal to emphasize the
respiration frequency and detecting the respiration cycles by zero-crossing
or peak detection [38, 58, 111, 26].
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An alternative way to quantify respiration variability is not to detect
individual respiration cycles but process the whole signal with DFT [52].

3.3.2 Methods for detecting respiration cycles

We have proposed a method for extracting individual respiration cycle
lengths from a force sensor signal (Paper IV). The difference to existing
methods is that the force sensor signal is filtered in a special way, which
allows detecting the respiration cycles correctly in signals that do not have
a single near-sinusoidal pattern at the respiratory frequency, but have a
more complex morphology. A problematic signal morphology is visualized
in Figure 3.10, where, in addition to the respiration phenomenon at 4-second
intervals, there is a positive deflection between consecutive respiration cy-
cle peaks. We have noticed the phenomenon with the two types of force
sensors used by us: flexible film sensor (Figure 1.1) and the bedpost sen-
sor (Figure 3.10a). Various previously presented methods [80, 26, 59] might
detect twice the real respiratory frequency when the disturbing deflections
are strong enough.

The method we proposed addresses the challenging respiration cycle
morphology of force sensor signals by low-pass filtering the signal at different
cut-off frequencies and, at consecutive time instants, selecting one of them to
be used for the determination of respiration cycle lengths. The method can
be described with the four successive steps below. The steps are visualized
with a flowchart in Figure 3.11.

Step 1: Removal of movement sections Before the respiration cycles
are analyzed, parts of the signal that contain gross movements are discarded
from further processing. This is done by discarding those 30-second signal
regions that have a peak-to-peak value over twice the average.

Step 2: Low-pass filtering the signal The respiration signal is low-
pass filtered at four cut-off frequencies: 0.154 Hz, 0.22 Hz, 0.33 Hz and
0.5 Hz. Each frequency is the previous multiplied by 1.5. That is based on
the assumption that the signal contains a respiration frequency at f Hz
and potentially a disturbing phenomenon at around 2×f Hz. Therefore, at
least one of the filters will result in an output signal that has the respiration
frequency intact but the disturbance removed. For example, when the force
signal of Figure 3.10 is filtered with the four filters, cut-off frequencies 0.33
Hz and 0.5 Hz retain the respiratory frequency but suppress the higher-
frequency artifact.
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Figure 3.10: (a) The bedpost sensor used in Paper IV. (b) A signal excerpt
showing three respiration cycles of a low-pass filtered force signal and an
airflow pressure reference signal. The force signal is in practice more dif-
ficult to analyze for respiration cycles than the airflow signal. It contains
two deflections per respiration cycle, compared to the single clear dip per
respiration cycle in the airflow signal.
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Figure 3.11: A flowchart description of the respiration cycle detection
method.

The assumption that there may be a disturbing phenomenon at 2 × f
Hz is motivated by the physiological fact that each respiration cycle has two
events causing a deflection in the signal: inspiration and expiration.

Step 3: Detection of respiration cycles The respiration cycles are
detected from each filtered signal. A respiration cycle begins at a local
maximum and ends at the next local maximum in the signal. In addition,
the amplitude of each respiration cycle is calculated by taking the difference
between the signal value of the local maximum that starts the cycle and the
minimal signal value in the cycle.

Step 4: Choosing correct respiration cycle lengths A final sequence
of respiration cycle lengths is compiled from the four signals based on the
stability of respiration cycle amplitudes in each signal.

The measurement time is divided into three-second intervals. For each
three-second interval in the measurement period, the respiration cycle lengths
are selected from the filtered signal whose respiration cycle amplitudes ex-
hibit least variability. The variability is calculated as the maximal absolute
difference between two successive log-amplitudes, among the last five respi-
ration cycle amplitudes before the interval.

The correct signal is typically selected, because the signal that contains
frequencies up to the respiratory frequency is more stable in its amplitude
than a signal that also contains higher-frequency disturbing phenomena.
When the cut-off frequency is below the respiratory frequency, only un-
systematic low-frequency phenomena remain. They have a high amplitude
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Figure 3.12: Two signal excerpts acquired at the sleep clinic. (a) The force
sensor signal. (b) The reference airflow signal. (c) Regions discarded because
of movements. (d) Reference respiration cycle lengths are shown as gray
squares and the calculated cycle lengths as diagonal crosses. In the top
example, the measurement is practically uninterrupted, whereas there are
occasional movements in the bottom example.
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Figure 3.13: (a) 300-second synthetic respiration signal whose cycle length
changes smoothly from 12 to 2 seconds. (b)-(e) The four low-pass filtered
signals. In the beginning (0-80 sec) the first filter extracts the correct res-
piration cycles, in 30-120 sec the second filter, in 80-220 sec the third filter
and in 150-300 sec the fourth filter.

variation, so the signal is not selected for the determination of the respira-
tion cycle lengths.

An exemplary respiration cycle detection result of the algorithm in
shown in Figure 3.12.

3.3.3 Evaluation

The method was evaluated both with synthetic data and reference signals
measured at a sleep clinic.

A synthetic 300-second signal with the challenging signal morphology
characteristics was created (Figure 3.13). In the signal, the cycle length of
a sinusoidal signal changes smoothly from 12 to 2 seconds, and the artifact
signal is added as a sinusoid with half the cycle length. The method suc-
ceeded to detect the correct respiration cycle lengths over the whole signal.
This verifies the point that if the disturbing phenomenon is at double the
respiration frequency, filtering will remove it.

In the evaluation with real data, a 5.5-hour airflow signal was acquired
from a patient at a sleep clinic, and a simultaneous force sensor signal
was acquired with a bedpost sensor. The movement suppression procedure
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Figure 3.14: (a): Respiration cycle lengths detected from the force sensor
signal with the proposed method. (b): Reference respiration cycle lengths.

discarded 27% of the recording time. Of the detected respiration cycles,
86.5% deviated less than 0.25 seconds from the reference and 98.5% less
than 1 second. These signals and results are visualized in Figures 3.12 and
3.14.

3.3.4 Discussion

The proposed respiration cycle detection method makes it possible to quan-
tify the variation of the respiration rate, as individual respiration cycles are
detected. The empirical results show that the proposed method detects the
respiration cycles of the reference rather accurately and with few incorrect
values.

Breathing during sleep can become disturbed, for example, with sleep
apnea, and it is unclear how the proposed method would work with dis-
turbed breathing. The method does quantify respiratory variation precisely
in the one tested case of healthy breathing. It is possible that the increased
variability of respiration caused by sleep apnea can be detected with the
proposed method, but more data is needed to investigate that further.

The variation of respiration changes by sleep stage, so the method can
work as a building block for respiratory sleep staging methods. For example,
the respiration variability features described by Redmond et al. [80] can be
extracted from force sensor measurements with the proposed method.

The method solves the problem of having a disturbing phenomenon
at about double the respiration frequency. The problem is present with
both of the sensors used in the this research work and it is likely to arise
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with other similar force sensors, too. In fact, this method does have some
applicability for others, as it has been developed further by Vehkaoja et al.
[102]. They improved the selection of the low-pass filtered signal from which
the respiration cycle lengths are taken. While our method chooses a single
filtered signal based on amplitude variation, they compute four respiration
cycle candidates (intervals between successive maxima, successive minima as
well as between successive rising and falling zero-crossings) for each filtered
signal. At one-second intervals, the respiration cycle length candidates are
clustered and the densest cluster is used as the result. Effectively, the most
common interval across the total 16 candidates (4 candidates for each of
the 4 signals) is sought. They tested the method with ten subjects and,
on average, 82% of the respiration cycles were detected and 95.5% of them
deviated less than 0.25 seconds from the reference.



Chapter 4

Long-term sleep measurement at
home

An overview of the e-health system proposed in Paper V is described in this
chapter. Adaptations of the signal analysis methods described in Chapter 3
are used in the system.

4.1 Background and related work

Recently, new devices for the measurement of sleep quality have emerged.
These devices are usually based on actigraphy, they are not intended for
diagnosis, and they have no medical device approval [55]. Instead, they are
inexpensive and are sold directly to customers for self-help use. Zeo Sleep
Manager measures both movement and EEG, and its accuracy has been
validated using polysomnography reference measurement [85]. GEAR4 Re-
new SleepClock and Omron Sleep Design HSL-101 are based on a radar
sensor and infer sleep quality based on movement and respiration mea-
surement. Fitbit, Lark, BodyMedia FIT, Jawbone UP, SleepTracker, Mis-
fit Shine, Withings Pulse, WakeMate and Polar Loop are based on wrist
actigraph measurement. Many of these devices have a web application for
viewing the measurements and a smartphone interface.

Some e-health telemonitoring applications for unobtrusive sleep moni-
toring exist [20, 60]. Sleep is measured with sensors installed in the mattress
and the signals are sent over the Internet for physicians to analyze. The e-
health system developed by us differs from previous work in that the sleep
information is provided directly to the subject of measurement, without
necessarily needing a healthcare provider for interpretation. An overview of
the system is given next.

37
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Figure 4.1: Analysis flowchart.

4.2 E-health system for unobtrusive sleep measure-
ment

System overview The e-health system is a fully automated web appli-
cation for sleep monitoring in the home environment. The novelty of the
approach is that the sleep information produced by unobtrusive measure-
ment is presented to the user with a web service, which also provides sleep
coaching.

As an overview, the service works as follows. The force sensor (Figure
1.1), placed under the bed sheet or mattress topper, measures the mechan-
ical vibrations of the person. These signals are automatically sent to a web
server for analysis. The server first infers the heart rate (Papers I-III), res-
piration rate (Paper IV), and activity information from the signals, as the
data is received. Based on this information, sleep is analyzed (as batch
processing, typically in the morning). Finally, various aspects of sleep are
presented to the user on a web site. A daily view shows features such as
sleep stages, whereas a timeline view shows trends and long-term changes
in sleep quality.

The force signal from the sensor is sampled at 140 Hz. Additionally,
temperature, ambient noise level, and brightness are measured periodically.
They are used to evaluate the quality of the sleeping environment. This
information, about 300 kilobytes of compressed data per hour, is sent to
the server as it is measured.

A flowchart of the analyses that follow is shown in Figure 4.1. When the
server receives the signal from the sensor, heart rate variability and respira-
tion rate variability information is extracted as explained in Sections 3.2.4
and 3.3.2, respectively. Movement information is analyzed by detecting dis-
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crete events of movement from the BCG signal. That is done by dividing
the high-pass filtered (cut-off frequency 5 Hz) signal into three-second win-
dows. Each window is detected as movement if the difference between signal
minimum and maximum in the segment is above a fixed threshold. Based
on those results, the following sleep analyses are calculated in the morning:

• Sleep staging into the following phases: wakefulness, REM sleep, light
sleep and deep sleep

• Stress reactions (based on heart rate variability) [83]

• Heart rate curve and average heart rate

• Restlessness index, calculated based on detected movement events

The sleep staging is carried out by an algorithm that utilizes heart rate
variation, respiratory variation and activity information (cf. Sections 3.3
and 3.2, [80, 53, 22, 21, 65]). As no eye movement activity is measured, the
exact detection of rapid eye movement sleep (REM) periods is not possi-
ble. Estimation of REM periods is based on quantifying the variation of
respiration and heart rate as well as measuring movements.

As of November 2013, sleep staging is being further developed to a
simpler system where sleep is classified into only two types: normal sleep and
deep sleep. The simplification improves understanding of the measurements
as well as classification accuracy.

Use case: Sleep discovery web application The primary use case for
the sleep measurement system is a web application by which users may
monitor their sleep and make discoveries about their sleep and lifestyle.
Sleep information is presented so that the relevant features of sleep can be
detected easily.

The sleep of a single night is presented with detailed structure (Figure
4.2b-c). The main feature is the hypnogram, where sleep is divided into
wakefulness, REM sleep, light sleep and deep sleep. The overall restlessness
of sleep is visualized with a plot that shows how much movement there
is in different parts of the night, with 5-minute resolution. The heart rate
information is shown as a trend curve and as a single resting heart rate
number that corresponds to the lowest point on the curve. Stress reactions
are estimated as the reciprocal of HF frequency band heart rate variability
[83, 10] and stress is displayed as a relative number between 0% and 100%.
Temperature, brightness and noise level measurements are shown as plots
for the period of the whole night, to facilitate detecting sleeping environment
problems.



(a)

Figure 4.2: (a) The timeline and naviga-
tion view containing sleep times, user-entered
tags, resting heart rates, and relative stress
reaction values for each day. (b) Night sum-
mary figures. (c) Detailed night information,
including sleep stages and a guide to their in-
terpretation, actigraphy, heart rate, ambient
noise, ambient luminosity, room temperature,
relative stress reactions and resting heart rate
figures. (d) Logged entries for the previous
and following day along with their compari-
son to the intended goal.
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The other way to visualize sleep is a timeline view (Figure 4.2a), where
sleep information from a time period is summarized. In addition to dis-
playing sleep amounts for each night in the period, summary figures and
relevant cyclic phenomena are shown.

No self-help program can help if it is left unused. To make use as easy
as possible, the measurement device is designed to work fully automatically
and the user is reminded to check their sleep with daily emails. By clicking
a link in the email, the user can tell whether they feel refreshed or tired,
and describe the previous evening with simple tags (stress, alcohol, caffeine,
television, exercise etc.). The logged information is shown in the timeline
view along with sleep information (Figure 4.2a). This helps to recognize, for
example, that alcohol consumption or stress in the evening leads to feeling
tired in the daytime. Goals can be set for sleep time and for things that
the user has logged (Figure 4.2d). We assume that the user can set sensible
sleep time goals after some use of the system.

Use case: Long-term medical sleep monitoring The unobtrusive
sleep measurement method makes it possible to monitor patients with sleep
problems for months or even years in their normal sleeping environment.

The presentation of sleep information in medical use has different needs
from the self-help application. In medical use, the users of the web applica-
tion are sleep doctors who interpret measurements from their patients. The
following information is visualized: time in bed, actigram, heart rate and
respiration rate, as well as measurements of the sleeping environment. The
actigram is shown instead of sleep stages, because sleep doctors are used
to EEG-based sleep stages rather than the awake, REM, light sleep, deep
sleep classification of cardio-respiratory sleep staging. For analysis of sleep-
related breathing disorders (SRBD), the raw force sensor signal is provided
to the sleep doctor. The measured signal is similar to a signal from a static
charge sensitive bed, which have been used for preliminary apnea analysis
[77].

The advantages of the presented approach over wrist actigraphy in med-
ical use are: 1) measurement is unobtrusive, 2) respiratory and cardiac in-
formation is measured in addition to activity. The drawback compared to
actigraphy is that daytime activity cannot be measured.

The method is likely particularly suitable for diagnosing periodic hyper-
somnias, where long measurement terms are required for characterizing the
circadian patterns.
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4.3 Discussion

The e-health system has been available for consumers since early 2012 (Bed-
dit Pro). Although no comprehensive experimental data is available, user
feedback has been collected actively. Positive feedback has been received
about the unobtrusive measurement that does not disturb sleep. A minor-
ity of users have had difficulties setting up the Internet connection for the
system, as it does require some level of computer literacy.

The overall aim of the system in consumer use is to motivate improving
lifestyle habits with the help of sleep measurement. More research would
be needed to determine how exactly the system is being used and how the
users utilize the sleep measurement in their lives.

The system has already been in medical use in clinical studies. It has
been integrated in a commercial research data analysis system VivoSense®

by Vivonoetics, Inc., which makes the research use easier1. In one study,
the treatment of obesity-related sleeping disorders was studied with the e-
health system [96]. The patients in the study were given exercise and diet
interventions, whose effect on the sleep disorders was then measured. The
results from the study remain to be published.

Utilizing the e-health system in the follow-up of sleep disorder patients
is being piloted. The sleep doctor has access to the patient’s sleep measure-
ments with a web application tailored for clinical use. The physician can
follow the overall status of the patient, such as long-term circadian rhythms.

1http://vivonoetics.com/products/vivosense/
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Chapter 5

Conclusions

The contributions of this thesis are fundamental building blocks for sys-
tems that measure sleep with force sensors. The signal analysis methods
have been evaluated with reference recordings from clinical studies and the
e-health system has been adapted into two commercial products. I next
discuss the significance of the methods developed here and possibilities for
future work.

The proposed heart rate and respiration rate detection methods al-
low monitoring during sleep with comfortable bed sensors. The heart rate
method has been validated with a 60-person clinical study. Because of a
fairly large number of subjects, it is likely that the method’s accuracy in
real use corresponds to the results of the study. The respiration rate method
was tested with only a single subject, so its accuracy in real use is more un-
certain. However, a 10-subject independent validation has been carried out
with a modification of the method, showing good accuracy [102].

As the heart and respiration rate measurement methods are building
blocks in e-health systems, their accuracy should eventually be tested from
a viewpoint of the end user of the system. For example, if heart rate mea-
surement is used for deriving a resting heart rate reading for each night, it
should be evaluated whether heart rate measurement accuracy is suitable
for that purpose. These system-level evaluations are left for future work and
are not part of this thesis.

The broader theme of this thesis is long-term sleep measurement. Short-
term medical sleep measurement (days or weeks) for diagnostic purposes
is an established field, while consumer products for sleep tracking have
become available just in recent years. Today, the tracking of health-related
information (heart rate and speed during exercise, daily movement activity,
weight, diet) is popular, but sleep measurement has not yet established a
mainstream position. Self-tracking of sleep is likely to become popular in
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the near future, because its measurement can help people improve their
sleep. When sleeping problems are objectively quantified, the motivation
for solving them is likely to improve.

The methods proposed in this thesis allow unobtrusive sleep measure-
ment, where the primary measured parameter is the movement of the body,
and where higher-level parameters such as respiration, heart rate, sleep
stages and sleep-related breathing disorders are inferred from the move-
ment signal. Unobtrusive sleep measurement techniques will likely have a
prominent role in the near future. Currently, most sleep self-tracking con-
sumer devices are based on wearable sensors such as wristbands, watches
or headbands. With unobtrusive measurement, the user of the device has
the benefit that absolutely no disturbance to sleep is caused. Such comfort
of use is an important factor, as it improves the chances that the habit of
measuring sleep becomes long-lasting.

Some ideas from the research have been picked up by other researchers.
The respiration rate variability method described in Paper IV has been
developed further by Vehkaoja et al. [102]. The clustering method from
Paper II seems to have been influential, because a few heartbeat detection
methods utilizing clustering in a similar way have recently been proposed
[15, 81].

Research on unobtrusive sleep measurement is fertile ground. There is
potential for major public health impacts in the development of systems
that help people improve their sleep and become aware of potential sleep
disorders. One clear direction based on the work in this thesis is to study how
to best get people to improve their sleeping. The e-health system for sleep
measurement presented in Chapter 4 has the potential to motivate sleep
improvement, but its efficacy should be studied quantitatively. It would be
good to know what kind of sleep coaching mechanisms are most effective
and if established behavioral treatment approaches for insomnia [70] could
be used with an e-health sleep coaching system.

This research continues as a commercial enterprise. So far, two sleep
monitoring products have been brought to the market: Beddit Pro and
Beddit. In total 5031 Beddit devices were sold in a 10-week crowdfunding
campaign in 20131, which shows that there is customer interest for unob-
trusive sleep measurement products. The products are based on the sensor
in Figure 1.1 and provide the sleep information to the user with a web inter-
face and smartphone app. The aim is to make sleep monitoring a convenient
and commonplace activity and that way improve the sleep and well-being
of people. The methods developed in this thesis help reach that goal.

1http://igg.me/at/beddit-sleep-tracker



References

[1] D. K. Ahern, J. M. Kreslake, and J. M. Phalen. What is eHealth (6):
Perspectives on the evolution of eHealth research. Journal of Medical
Internet Research, 8(1), Mar. 2006.

[2] A. Akhbardeh, B. Kaminska, and K. Tavakolian. BSeg++: A modified
blind segmentation method for ballistocardiogram cycle extraction.
In 29th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, pages 1896–1899, Lyon, France, 2007.

[3] J. Alametsa, E. Rauhala, E. Huupponen, A. Saastamoinen, A. Varri,
A. Joutsen, J. Hasan, and S.-L. Himanen. Automatic detection of
spiking events in EMFi sheet during sleep. Medical Engineering &
Physics, 28(3):267–275, Apr. 2006.

[4] J. Alihanka and K. Vaahtoranta. A static charge sensitive bed.
A new method for recording body movements during sleep. Elec-
troencephalography and Clinical Neurophysiology, 46(6):731–734, June
1979.

[5] E. Aserinsky and N. Kleitman. Regularly occurring periods of
eye motility, and concomitant phenomena, during sleep. Science,
118(3062):273–274, Sept. 1953.

[6] L. Barna, J. Dougherty, J. Astola, and A. Värri. Estimation of respi-
ratory rate with the ballistocardiographic chair. Technical Report 2,
Tampere University of Technology, Institute of Signal Processing,
2007.

[7] M. Basner, B. Griefahn, U. Müller, G. Plath, and A. Samel. An
ECG-based algorithm for the automatic identification of autonomic
activations associated with cortical arousal. Sleep, 30(10):1349–1361,
2007.

47



48 References

[8] Z. Beattie, C. Hagen, M. Pavel, and T. Hayes. Classification of breath-
ing events using load cells under the bed. In 31st Annual International
Conference of the IEEE Engineering in Medicine and Biology Society,
pages 3921–3924, Minneapolis, MN, USA, Sept. 2009.

[9] Z. T. Beattie, T. L. Hayes, C. Guilleminault, and C. C. Hagen. Accu-
rate scoring of the apnea–hypopnea index using a simple non-contact
breathing sensor. Journal of Sleep Research, 22(3):356–362, 2013.

[10] G. G. Berntson and J. T. Cacioppo. Heart rate variability: Stress and
psychiatric conditions. In M. Malik and A. J. Camm, editors, Dy-
namic Electrocardiography, pages 57–64. Blackwell Publishing, Elms-
ford, NY, USA, 2007.

[11] R. B. Berry, G. L. Koch, S. Trautz, and M. H. Wagner. Comparison
of respiratory event detection by a polyvinylidene fluoride film air-
flow sensor and a pneumotachograph in sleep apnea patients. Chest,
128(3):1331–1338, Sept. 2005.

[12] M. H. Bonnet and D. L. Arand. Heart rate variability: sleep stage,
time of night, and arousal influences. Electroencephalography and Clin-
ical Neurophysiology, 102(5):390–396, May 1997.

[13] M. Brink, C. H. Müller, and C. Schierz. Contact-free measurement
of heart rate, respiration rate, and body movements during sleep.
Behavior Research Methods, 38(3):511–521, 2006.

[14] C. Bruser, A. Kerekes, S. Winter, and S. Leonhardt. Multi-channel
optical sensor-array for measuring ballistocardiograms and respiratory
activity in bed. In 34th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, pages 5042–5045, San
Diego, CA, USA, 2012.

[15] C. Bruser, K. Stadlthanner, S. de Waele, and S. Leonhardt. Adap-
tive beat-to-beat heart rate estimation in ballistocardiograms. IEEE
Transactions on Information Technology in Biomedicine, 15(5):778–
786, Sept. 2011.

[16] C. Brüser, S. Winter, and S. Leonhardt. Robust inter-beat interval
estimation in cardiac vibration signals. Physiological Measurement,
34(2):123–138, Feb. 2013.

[17] A. Bunde, S. Havlin, J. W. Kantelhardt, T. Penzel, J.-H. Peter, and
K. Voigt. Correlated and uncorrelated regions in heart-rate fluctua-
tions during sleep. Physical Review Letters, 85(17):3736, Oct. 2000.



References 49

[18] J.-Y. Cha, H.-S. Choi, J.-Y. Shin, and K.-J. Lee. Unconstrained res-
piration and heart rate monitoring system based on a PPG pillow
during sleep. In 30th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, pages 3224–3226, Van-
couver, Canada, 2008.

[19] Y. Chee, J. Han, J. Youn, and K. Park. Air mattress sensor system
with balancing tube for unconstrained measurement of respiration
and heart beat movements. Physiological Measurement, 26(4):413–
422, 2005.

[20] C.-M. Cheng, Y.-L. Hsu, and C.-M. Young. Development of a
portable device for telemonitoring of physical activities during sleep.
Telemedicine and e-Health, 14(10):1044–1056, Dec. 2008.

[21] B. H. Choi, G. S. Chung, J.-S. Lee, D.-U. Jeong, and K. S. Park. Slow-
wave sleep estimation on a load-cell-installed bed: a non-constrained
method. Physiological Measurement, 30(11):1163–1170, Nov. 2009.

[22] G. Chung, B. Choi, J.-S. Lee, J. Lee, D.-U. Jeong, and K. S. Park.
REM sleep estimation only using respiratory dynamics. Physiological
Measurement, 30(12):1327–1340, 2009.

[23] G. S. Chung, J. S. Lee, S. H. Hwang, Y. K. Lim, D.-U. Jeong, and
K. S. Park. Wakefulness estimation only using ballistocardiogram:
Nonintrusive method for sleep monitoring. In 32nd Annual Interna-
tional Conference of the IEEE Engineering in Medicine and Biology
Society, pages 2459–2462, 2010.

[24] D. Cysarz, R. Zerm, H. Bettermann, M. Frühwirth, M. Moser, and
M. Kröz. Comparison of respiratory rates derived from heart rate vari-
ability, ECG amplitude, and nasal/oral airflow. Annals of Biomedical
Engineering, 36(12):2085–2094, Dec. 2008.

[25] P. de Chazal, N. Fox, E. O’Hare, C. Heneghan, A. Zaffaroni, P. Boyle,
S. Smith, C. O’Connell, and W. T. McNicholas. Sleep/wake measure-
ment using a non-contact biomotion sensor. Journal of Sleep Research,
20(2):356–366, June 2011.

[26] P. de Chazal, E. O’Hare, N. Fox, and C. Heneghan. Assessment
of sleep/wake patterns using a non-contact biomotion sensor. In
30th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, pages 514–517, Vancouver, Canada,
2008.



50 References

[27] W. C. Dement. Chapter 1 — History of sleep physiology and medicine.
In M. H. Kryger, T. Roth, and W. C. Dement, editors, Principles and
Practice of Sleep Medicine, pages 3–15. W.B. Saunders, Philadelphia,
5th edition, 2011.

[28] S. Devot, A. Bianchi, E. Naujokat, M. Mendez, A. Brauers, and
S. Cerutti. Sleep monitoring through a textile recording system. In
29th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, pages 2560–2563, Lyon, France, 2007.

[29] N. J. Douglas, D. P. White, C. K. Pickett, J. V. Weil, and C. W.
Zwillich. Respiration during sleep in normal man. Thorax, 37(11):840–
844, Nov. 1982.

[30] M. Etemadi, O. Inan, R. Wiard, G. Kovacs, and L. Giovangrandi.
Non-invasive assessment of cardiac contractility on a weighing scale.
In 31st Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, pages 6773–6776, Minneapolis, MN,
USA, 2009.

[31] G. Eysenbach. What is e-health? Journal of Medical Internet Re-
search, 3(2), June 2001.

[32] M. Fogelholm, E. Kronholm, K. Kukkonen-Harjula, T. Partonen,
M. Partinen, and M. Härmä. Sleep-related disturbances and phys-
ical inactivity are independently associated with obesity in adults.
International Journal of Obesity, 31(11):1713–1721, June 2007.

[33] D. Friedrich, X. L. Aubert, H. Führ, and A. Brauers. Heart rate esti-
mation on a beat-to-beat basis via ballistocardiography — A hybrid
approach. In 32nd Annual International Conference of the IEEE En-
gineering in Medicine and Biology Society, pages 4048–4051, Buenos
Aires, Argentina, 2010.

[34] L. Giovangrandi, O. T. Inan, R. M. Wiard, M. Etemadi, and G. T. A.
Kovacs. Ballistocardiography – A method worth revisiting. In
33rd Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, pages 4279–4282, Boston, MA, USA,
Sept. 2011.

[35] R. González-Landaeta, O. Casas, and R. Pallàs-Areny. Heart rate de-
tection from an electronic weighing scale. Physiological Measurement,
29(8):979–988, 2008.



References 51

[36] D. R. Goodenough, H. B. Lewis, A. Shapiro, L. Jaret, and I. Sleser.
Dream reporting following abrupt and gradual awakenings from dif-
ferent types of sleep. Journal of Personality and Social Psychology,
2(2):170–179, 1965.

[37] J. W. Gordon. Certain molar movements of the human body produced
by the circulation of the blood. Journal of Anatomy and Physiology,
11(3):533–536, 1877.

[38] T. Harada, A. Sakata, T. Mori, and T. Sato. Sensor pillow system:
Monitoring respiration and body movement in sleep. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, volume 1,
pages 351–356, Takamatsu, Japan, 2000.

[39] D. Heise and M. Skubic. Monitoring pulse and respiration with a non-
invasive hydraulic bed sensor. In 32nd Annual International Confer-
ence of the IEEE Engineering in Medicine and Biology Society, pages
2119–2123, Buenos Aires, Argentina, 2010.

[40] Y. Henderson. The mass-movements of the circulation as shown by
a recoil curve. American Journal of Physiology, 14(3):287–298, Sept.
1905.

[41] C. Iber, S. Ancoli-Israel, A. Chesson, and S. F. Quan. The AASM
manual for the scoring of sleep and associated events: rules, terminol-
ogy and technical specifications. American Academy of Sleep Medicine,
Westchester, IL, USA, 2007.

[42] Y. Ichimaru, K. Clark, J. Ringler, and W. Weiss. Effect of sleep
stage on the relationship between respiration and heart rate variabil-
ity. In Computers in Cardiology 1990, pages 657–660, Chicago, IL,
USA, 1990.

[43] O. T. Inan, M. Etemadi, R. M. Wiard, L. Giovangrandi, and G. T. A.
Kovacs. Robust ballistocardiogram acquisition for home monitoring.
Physiological Measurement, 30(2):169–185, 2009.

[44] O. T. Inan, M. Etemadi, R. M. Wiard, G. T. A. Kovacs, and L. Gio-
vangrandi. Novel methods for estimating the ballistocardiogram signal
using a simultaneously acquired electrocardiogram. In 31st Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society, pages 5334–5347, Minneapolis, MN, USA, 2009.



52 References

[45] M. Ishijima. Cardiopulmonary monitoring by textile electrodes with-
out subject-awareness of being monitored. Medical & Biological En-
gineering & Computing, 35(6):685–690, Nov. 1997.

[46] J. L. Jacobs, P. Embree, M. Glei, S. Christensen, and P. K. Sulli-
van. Characterization of a novel heart and respiratory rate sensor.
In 26th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, volume 1, pages 2223–2226, San Fran-
cisco, CA, USA, 2004.

[47] T. Jacques, G. A. Harrison, M.-L. McLaws, and G. Kilborn. Signs
of critical conditions and emergency responses (SOCCER): A model
for predicting adverse events in the inpatient setting. Resuscitation,
69(2):175–183, May 2006.

[48] B. H. Jansen, B. H. Larson, and K. Shankar. Monitoring of the ballis-
tocardiogram with the static charge sensitive bed. IEEE Transactions
on Biomedical Engineering, 38(8):748–751, Aug. 1991.

[49] J. Jin, X. Wang, S. Li, and Y. Wu. A novel heart rate detection
algorithm in ballistocardiogram based on wavelet transform. In Second
International Workshop on Knowledge Discovery and Data Mining,
pages 76–79, Moscow, Russia, 2009.

[50] J. W. Kantelhardt, T. Penzel, S. Rostig, H. F. Becker, S. Havlin, and
A. Bunde. Breathing during REM and non-REM sleep: correlated
versus uncorrelated behaviour. Physica A: Statistical Mechanics and
its Applications, 319:447–457, Mar. 2003.

[51] W. Karlen and D. Floreano. Adaptive sleep–wake discrimination
for wearable devices. IEEE Transactions on Biomedical Engineering,
58(4):920–926, Apr. 2011.

[52] W. Karlen, C. Mattiussi, and D. Floreano. Adaptive sleep/wake clas-
sification based on cardiorespiratory signals for wearable devices. In
IEEE Biomedical Circuits and Systems Conference, pages 203–206,
Montreal, Canada, 2007.

[53] W. Karlen, C. Mattiussi, and D. Floreano. Improving actigraph
sleep/wake classification with cardio-respiratory signals. In 30th An-
nual International Conference of the IEEE Engineering in Medicine
and Biology Society, pages 5262–5265, Vancouver, Canada, 2008.



References 53

[54] R. E. Kass and A. E. Raftery. Bayes factors. Journal of the American
Statistical Association, 90(430):773–795, June 1995.

[55] J. M. Kelly, R. E. Strecker, and M. T. Bianchi. Recent developments in
home sleep-monitoring devices. ISRN Neurology, 2012:768794, 2012.

[56] T. Koivistoinen, S. Junnila, A. Varri, and T. Koobi. A new method
for measuring the ballistocardiogram using EMFi sensors in a normal
chair. In 26th Annual International Conference of the IEEE Engi-
neering in Medicine and Biology Society, volume 1, pages 2026–2029,
San Francisco, CA, USA, 2004.

[57] J. Kortelainen, M. van Gils, and J. Parkka. Multichannel bed pressure
sensor for sleep monitoring. In Computing in Cardiology 2012, pages
313–316, Krakow, Poland, 2012.

[58] J. Kortelainen and J. Virkkala. FFT averaging of multichannel BCG
signals from bed mattress sensor to improve estimation of heart beat
interval. In 29th Annual International Conference of the IEEE En-
gineering in Medicine and Biology Society, pages 6685–6688, Lyon,
France, 2007.

[59] J. M. Kortelainen and J. Virkkala. PCA model for recording respira-
tion and posture with multichannel BCG sensor in bed mattress. In
4th pHealth Conference, Chalkidiki, Greece, June 2007.

[60] D. Krefting, S. Canisius, J. Wu, R. Siewert, S. Specovius, K. Kesper,
and T. Penzel. Personal health systems for diagnostics of sleep disor-
ders using new sensors and grid technology. In 6th IEEE International
Conference on Digital Ecosystems Technologies, pages 1–6, Campione
d’Italia, Italy, 2012.

[61] J. Krieger. Chapter 19 - Respiratory physiology: Breathing in normal
subjects. In M. H. Kryger, T. Roth, and W. C. Dement, editors, Prin-
ciples and Practice of Sleep Medicine, pages 232–244. W.B. Saunders,
Philadelphia, 4th edition, 2005.

[62] P. M. Krueger and E. M. Friedman. Sleep duration in the United
States: A cross-sectional population-based study. American Journal
of Epidemiology, 169(9):1052–1063, May 2009.

[63] X. Long, J. Foussier, P. Fonseca, R. Haakma, and R. M. Aarts. Res-
piration amplitude analysis for REM and NREM sleep classification.
In 35th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, pages 5017–5020, Osaka, Japan, 2013.



54 References

[64] D. Lucini, G. Norbiato, M. Clerici, and M. Pagani. Hemodynamic
and autonomic adjustments to real life stress conditions in humans.
Hypertension, 39(1):184–188, Jan. 2002.

[65] D. Mack, J. Patrie, R. Felder, P. Suratt, and M. Alwan. Sleep as-
sessment using a passive ballistocardiography-based system: Prelimi-
nary validation. In 31st Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, pages 4319–4322, Min-
neapolis, MN, USA, 2009.

[66] D. Mack, J. Patrie, P. Suratt, R. Felder, and M. Alwan. Development
and preliminary validation of heart rate and breathing rate detec-
tion using a passive, ballistocardiography-based sleep monitoring sys-
tem. IEEE Transactions on Information Technology in Biomedicine,
13(1):111–120, 2009.

[67] F. Michahelles, R. Wicki, and B. Schiele. Less contact: Heart-rate
detection without even touching the user. In Eighth International
Symposium on Wearable Computers, volume 1, pages 4–7, Arlington,
VA, USA, 2004.

[68] F. Mohammad-Zadeh, F. Taghibakhsh, and B. Kaminska. Contact-
less heart monitoring (CHM). In Canadian Conference on Electrical
and Computer Engineering, CCECE’07, pages 583–585, Vancouver,
Canada, 2007.

[69] T. Morgenthaler, C. Alessi, L. Friedman, J. Owens, V. Kapur,
B. Boehlecke, T. Brown, A. Chesson Jr., J. Coleman, T. Lee-Chiong,
J. Pancer, and T. Swick. Practice parameters for the use of actigraphy
in the assessment of sleep and sleep disorders: An update for 2007.
Sleep, 30(4):519–529, 2007.

[70] C. M. Morin, A. Vallieres, B. Guay, H. Ivers, J. Savard, C. Merette,
C. Bastien, and L. Baillargeon. Cognitive behavioral therapy, singly
and combined with medication, for persistent insomnia: A randomized
controlled trial. JAMA, 301(19):2005–2015, 2009.

[71] Y.-H. Noh, S.-Y. Ye, and D.-U. Jeong. Development of the BCG fea-
ture extraction methods for unconstrained heart monitoring. In 5th
International Conference on Computer Sciences and Convergence In-
formation Technology, pages 923–928, Seoul, South Korea, Nov. 2010.



References 55

[72] K. Pandia, O. T. Inan, G. T. A. Kovacs, and L. Giovangrandi. Ex-
tracting respiratory information from seismocardiogram signals ac-
quired on the chest using a miniature accelerometer. Physiological
Measurement, 33(10):1643–1660, Oct. 2012.

[73] M. Partinen and C. Hublin. Chapter 61 - Epidemiology of sleep dis-
orders. In M. H. Kryger, T. Roth, and W. C. Dement, editors, Prin-
ciples and Practice of Sleep Medicine, pages 694–715. W.B. Saunders,
Philadelphia, 5th edition, 2011.

[74] M. Peltokangas, J. Verho, and A. Vehkaoja. Unobtrusive night-time
EKG and HRV monitoring system. In 10th International Workshop
on Biomedical Engineering, pages 1–5, Kos, Greece, Oct. 2011.

[75] T. Penzel, J. Kantelhardt, L. Grote, J. Peter, and A. Bunde. Com-
parison of detrended fluctuation analysis and spectral analysis for
heart rate variability in sleep and sleep apnea. IEEE Transactions on
Biomedical Engineering, 50(10):1143–1151, 2003.

[76] T. Penzel, N. Wessel, M. Riedl, J. W. Kantelhardt, S. Rostig, M. Glos,
A. Suhrbier, H. Malberg, and I. Fietze. Cardiovascular and respiratory
dynamics during normal and pathological sleep. Chaos, 17(1):015116,
2007.

[77] O. Polo, L. Brissaud, B. Sales, A. Besset, and M. Billiard. The va-
lidity of the static charge sensitive bed in detecting obstructive sleep
apnoeas. European Respiratory Journal, 1(4):330–336, Apr. 1988.

[78] S. Rajala and J. Lekkala. Film-type sensor materials PVDF and EMFi
in measurement of cardiorespiratory signals – A review. IEEE Sensors
Journal, 12(3):439–446, Mar. 2012.

[79] A. Ramachandran and C. Snehalatha. Rising burden of obesity in
Asia. Journal of Obesity, 2010:868573, Aug. 2010.

[80] S. Redmond, P. de Chazal, C. O’Brien, S. Ryan, W. McNicholas, and
C. Heneghan. Sleep staging using cardiorespiratory signals. Somnolo-
gie, 11(4):245–256, 2007.

[81] L. Rosales, M. Skubic, D. Heise, M. J. Devaney, and M. Schaumburg.
Heartbeat detection from a hydraulic bed sensor using a clustering
approach. In 34th Annual International Conference of the IEEE Engi-
neering in Medicine and Biology Society, pages 2383–2387, San Diego,
CA, USA, 2012.



56 References

[82] Y. Sagawa, H. Kondo, N. Matsubuchi, T. Takemura, H. Kanayama,
Y. Kaneko, T. Kanbayashi, Y. Hishikawa, and T. Shimizu. Alcohol has
a dose-related effect on parasympathetic nerve activity during sleep.
Alcoholism: Clinical and Experimental Research, 35(11):2093–2100,
2011.

[83] M. Sakakibara, T. Kanematsu, F. Yasuma, and J. Hayano. Impact of
real-world stress on cardiorespiratory resting function during sleep in
daily life. Psychophysiology, 45(4):667–670, 2008.

[84] A. Sassani, L. J. Findley, M. Kryger, E. Goldlust, C. George, and
T. M. Davidson. Reducing motor-vehicle collisions, costs, and fatali-
ties by treating obstructive sleep apnea syndrome. Sleep, 27(3):453–
458, May 2004.

[85] J. R. Shambroom, S. E. Fábregas, and J. Johnstone. Validation of an
automated wireless system to monitor sleep in healthy adults. Journal
of Sleep Research, 21(2):221–230, 2012.

[86] J. H. Shin, B. H. Choi, Y. G. Lim, D. U. Jeong, and K. S. Park.
Automatic ballistocardiogram (BCG) beat detection using a template
matching approach. In 30th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, pages 1144–1146,
Vancouver, Canada, 2008.

[87] N. T. Smith. Ballistocardiography. In A. M. Weissler, editor, Non-
invasive cardiology; clinical cardiology monographs. Grune & Stratton
Inc., New York, NY, USA, 1974.

[88] P. Smrcka, M. Jirina, K. Hana, and Z. Trefny. New robust methods
for pseudo-period detection in seismocardiographic signal. In Proceed-
ings of the Fourth IASTED International Conference on Biomedical
Engineering, pages 259–263, Innsbruck, Austria, 2006.

[89] I. Starr and C. K. Friedland. On the cause of the respiratory variation
of the ballistocardiogram, with a note on sinus arrhythmia. Journal
of Clinical Investigation, 25(1):53–64, 1946.

[90] I. Starr and A. Noordergraaf. Ballistocardiography in cardiovascular
research. North-Holland Publishing Company, Amsterdam, Nether-
lands, 1967.

[91] I. Starr, A. J. Rawson, H. A. Schroeder, and N. R. Joseph. Studies
on the estimation of cardiac output in man, and of abnormalities



References 57

in cardiac function, from the heart’s recoil and the blood’s impacts;
the ballistocardiogram. American Journal of Physiology, 127(1):1–28,
1939.

[92] R. Stickgold, A. Malia, R. Fosse, R. Propper, and J. A. Hobson. Brain-
mind states: I. Longitudinal field study of sleep/wake factors influenc-
ing mentation report length. Sleep, 24(2):171–179, Mar. 2001.

[93] B. Su, K. Ho, M. Skubic, and L. Rosales. Pulse rate estimation using
hydraulic bed sensor. In 34th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, pages 2587 –2590,
San Diego, CA, USA, Sept. 2012.

[94] C. P. Subbe, M. Kruger, P. Rutherford, and L. Gemmel. Valida-
tion of a modified early warning score in medical admissions. QJM,
94(10):521–526, Oct. 2001.

[95] A. Suhrbier, M. Riedl, H. Malberg, T. Penzel, G. Bretthauer,
J. Kurths, and N. Wessel. Cardiovascular regulation during sleep
quantified by symbolic coupling traces. Chaos, 20(4):045124, 2010.

[96] X. Tan, A. Saarinen, T. M. Mikkola, J. Tenhunen, S. Martin-
mäki, A. Rahikainen, S. Cheng, N. Eklund, S. Pekkala, P. Wiklund,
E. Munukka, X. Wen, F. Cong, X. Wang, Y. Zhang, I. Tarkka, Y. Sun,
M. Partinen, M. Alen, and S. Cheng. Effects of exercise and diet in-
terventions on obesity-related sleep disorders in men: Study protocol
for a randomized controlled trial. Trials, 14(1):235, July 2013.

[97] Task Force of the European Society of Cardiology and the North
American Society of Pacing Electrophysiology. Heart rate variability:
Standards of measurement, physiological interpretation, and clinical
use. Circulation, 93(5):1043–1065, Mar. 1996.

[98] K. Tavakolian, F. M. Zadeh, Y. Chuo, A. Vaseghi, and B. Kamin-
ska. Development of a novel contactless mechanocardiograph device.
International Journal of Telemedicine and Applications, 2008:436870,
2008.

[99] D. Teichmann, C. Bruser, B. Eilebrecht, A. Abbas, N. Blanik, and
S. Leonhardt. Non-contact monitoring techniques — Principles and
applications. In 34th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, pages 1302 –1305, San
Diego, CA, USA, Sept. 2012.



58 References

[100] S. Telser, M. Staudacher, B. Hennig, Y. Ploner, A. Amann, H. Hinter-
huber, and M. Ritsch-Marte. Temporally resolved fluctuation analysis
of sleep ECG. Journal of Biological Physics, 33(1):19–33, 2007.

[101] J. Trinder, F. Whitworth, A. Kay, and P. Wilkin. Respiratory insta-
bility during sleep onset. Journal of Applied Physiology, 73(6):2462–
2469, Dec. 1992.

[102] A. Vehkaoja, M. Peltokangas, J. Verho, and J. Lekkala. Combining the
information of unconstrained electrocardiography and ballistography
in the detection of night-time heart rate and respiration rate. Interna-
tional Journal of Monitoring and Surveillance Technologies Research,
1(3):52–67, 2013.

[103] A. Vehkaoja, S. Rajala, P. Kumpulainen, and J. Lekkala. Correlation
approach for the detection of the heartbeat intervals using force sen-
sors placed under the bed posts. Journal of Medical Engineering &
Technology, 37(5):327–333, July 2013.

[104] T. G. M. Vrijkotte, L. J. P. Van Doornen, and E. J. C. De Geus.
Effects of work stress on ambulatory blood pressure, heart rate, and
heart rate variability. Hypertension, 35(4):880–886, Apr. 2000.

[105] M. R. Waldeck and M. I. Lambert. Heart rate during sleep: impli-
cations for monitoring training status. Journal of Sports Science and
Medicine, 2:133–138, 2003.

[106] F. Wang, M. Tanaka, and S. Chonan. Development of a PVDF
piezopolymer sensor for unconstrained in-sleep cardiorespiratory mon-
itoring. Journal of Intelligent Material Systems and Structures,
14(3):185–190, Mar. 2003.

[107] K. Watanabe, T. Watanabe, H. Watanabe, H. Ando, T. Ishikawa, and
K. Kobayashi. Noninvasive measurement of heartbeat, respiration,
snoring and body movements of a subject in bed via a pneumatic
method. IEEE Transactions on Biomedical Engineering, 52(12):2100–
2107, 2005.

[108] M. B. Weil, M. Oehler, M. Schilling, and L. S. Maier. First clinical
evaluation of a novel capacitive ECG system in patients with acute
myocardial infarction. Clinical Research in Cardiology, 101(3):165–
174, Mar. 2012.



References 59

[109] W. Xu, W. Sandham, A. Fisher, and M. Conway. Detection of the
seismocardiogram W complex based on multiscale edges. In 18th An-
nual International Conference of the IEEE Engineering in Medicine
and Biology Society, volume 3, pages 1023–1024, Amsterdam, Nether-
lands, 1996.

[110] M. Zakrzewski, A. Kolinummi, and J. Vanhala. Contactless and unob-
trusive measurement of heart rate in home environment. In 28th An-
nual International Conference of the IEEE Engineering in Medicine
and Biology Society, pages 2060–2063, New York, NY, USA, 2006.

[111] X. Zhu, W. Chen, T. Nemoto, Y. Kanemitsu, K.-I. Kitamura, K.-I.
Yamakoshi, and D. Wei. Real-time monitoring of respiration rhythm
and pulse rate during sleep. IEEE Transactions on Biomedical Engi-
neering, 53(12):2553–2563, 2006.


