22 research outputs found

    Oil spill and ship detection using high resolution polarimetric X-band SAR data

    Get PDF
    Among illegal human activities, marine pollution and target detection are the key concern of Maritime Security and Safety. This thesis deals with oil spill and ship detection using high resolution X-band polarimetric SAR (PolSAR). Polarimetry aims at analysing the polarization state of a wave field, in order to obtain physical information from the observed object. In this dissertation PolSAR techniques are suggested as improvement of the current State-of-the-Art of SAR marine pollution and target detection, by examining in depth Near Real Time suitability

    Polarimetric Synthetic Aperture Radar

    Get PDF
    This open access book focuses on the practical application of electromagnetic polarimetry principles in Earth remote sensing with an educational purpose. In the last decade, the operations from fully polarimetric synthetic aperture radar such as the Japanese ALOS/PalSAR, the Canadian Radarsat-2 and the German TerraSAR-X and their easy data access for scientific use have developed further the research and data applications at L,C and X band. As a consequence, the wider distribution of polarimetric data sets across the remote sensing community boosted activity and development in polarimetric SAR applications, also in view of future missions. Numerous experiments with real data from spaceborne platforms are shown, with the aim of giving an up-to-date and complete treatment of the unique benefits of fully polarimetric synthetic aperture radar data in five different domains: forest, agriculture, cryosphere, urban and oceans

    Polarimetric Synthetic Aperture Radar, Principles and Application

    Get PDF
    Demonstrates the benefits of the usage of fully polarimetric synthetic aperture radar data in applications of Earth remote sensing, with educational and development purposes. Includes numerous up-to-date examples with real data from spaceborne platforms and possibility to use a software to support lecture practicals. Reviews theoretical principles in an intuitive way for each application topic. Covers in depth five application domains (forests, agriculture, cryosphere, urban, and oceans), with reference also to hazard monitorin

    The SAR Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation

    Get PDF
    This Synthetic Aperture Radar (SAR) handbook of applied methods for forest monitoring and biomass estimation has been developed by SERVIR in collaboration with SilvaCarbon to address pressing needs in the development of operational forest monitoring services. Despite the existence of SAR technology with all-weather capability for over 30 years, the applied use of this technology for operational purposes has proven difficult. This handbook seeks to provide understandable, easy-to-assimilate technical material to remote sensing specialists that may not have expertise on SAR but are interested in leveraging SAR technology in the forestry sector

    Information Extraction and Modeling from Remote Sensing Images: Application to the Enhancement of Digital Elevation Models

    Get PDF
    To deal with high complexity data such as remote sensing images presenting metric resolution over large areas, an innovative, fast and robust image processing system is presented. The modeling of increasing level of information is used to extract, represent and link image features to semantic content. The potential of the proposed techniques is demonstrated with an application to enhance and regularize digital elevation models based on information collected from RS images

    Application of DInSAR techniques to the monitoring of ground deformations

    Get PDF
    The aim of the present thesis has been to test the applicability of the innovative Advanced DInSAR techniques in the natural risk mitigation related to subsidence phenomena. In particular, two test sites have been chosen, both located within alluvial plains and affected by subsidence phenomena: Telese Terme (Italy) where no monitoring network has been installed in spite of the great amount of damaged buildings located in the urban area; Murcia city (Spain) where subsidence has caused damage to structures and infrastructures with an estimated cost of more than 50 million euros. In this second case, the institutions have required studies since '90. For this reason, 20 years of monitoring data are available which have allowed the implementation of an integrated monitoring system based upon satellite DInSAR, conventional field techniques and geotechnical data. Therefore these two areas have been chosen to test different approaches in the use of DInSAR results which can complete a monitoring network where available (as in the case of Murcia city) and replace it where it does not exist (as in the case of Telese Terme). In Murcia case study, the correlation between the temporal evolution of ground surface displacement measures (radar and in situ) and the piezometric groundwater level variation has been analysed to determine mechanisms and critical states of failure; this has permitted to implement a finite element model (FEM) of the phenomenon. Therefore, two models have been carried out: one (called "deep") up to the end of the gravel layer (where the pumping takes place) and one (called "shallow") up to the extensometers' base. The results of the deep model have been compared with DInSAR displacements time series which represent the whole deformation of the stratigraphic column. These comparisons have allowed the individuation of local anomalies of the stiffness values, and have permitted a best model calibration. Moreover, the shallow model results have been compared with the extensometers measurements. These comparisons have showed the occurrence of vertical anisotropies of the permeability. This hypothesis has been verified, analysing the available Lefranc's tests and the most detailed stratigraphic columns and a new model has been proposed. The geotechnical model results have been interpolated through the Ordinary Kriging Radar Errors (OKRE) technique. The achieved deformation maps have been used in the SAR images processing to allow the algorithm to better estimate the no-lineal part of the interferometric phase. In Telese Terme case study, radar measured displacements have allowed to understand the phenomenon spatial extension, its magnitude as same as its historical development. This has permitted the individuation of the causes which provoked damages for some "test buildings". For one of them, a structural model has been implemented; in this case, radar data have been used to verify if its structural response to the displacements detected by SAR corresponded to the overpassing of the limit states. The model results have turned out to have a good correspondence with the forensic analysis achieved in situ. All the proposed approaches could be applied to other scenarios affected by similar phenomena.El objetivo de la presente tesis ha sido probar la aplicabilidad de las técnicas innovadoras de DInSAR Advanced, en la mitigación de los riesgos naturales relacionados con fenómenos de subsidencia. En particular, se han elegido dos sitios de prueba, ambos ubicados en llanuras aluviales y afectados por fenómenos de subsidencia: Telese Terme (Italia) donde no se ha instalado red de vigilancia, a pesar de la gran cantidad de edificios dañados ubicadas en el área urbana y la ciudad de Murcia (España), donde la subsidencia ha causado daños a las estructuras e infraestructuras con un coste estimado de más de 50 millones de euros. En este segundo caso, las instituciones han requerido estudios desde los años 90.Por esta razón, se dispone de 20 años de datos monitorizados los cuales han permitido la implementación de un sistema integrado de vigilancia basado en el satélite dinSAR, técnicas de datos convencionales y datos geotécnicos. Por lo tanto, para probar diferentes enfoques en el uso de los resultados de DInSAR, se han escogidas estas dos áreas de modo que se pueda completar una red de monitoreo donde esté disponible (como en el caso de la ciudad de Murcia) y reemplazarla donde no existe (como en el caso de Telese Terme). En el caso de Murcia, se ha analizado la correlación entre la evolución temporal de las medidas de desplazamiento de la superficie del suelo (radar in situ) y la variación piezométrica del nivel de las aguas subterráneas para determinar los mecanismos y estados críticos de fracaso. Esto ha permitido poner en práctica un modelo de elementos finitos (FEM) del fenómeno. Teniendo en cuenta estos estudios, se han llevado a cabo dos modelos FEM: uno (llamado "(deep) profundo") hasta el extremo del nivel de grava (donde se lleva a cabo el bombeo) y uno (llamado "(shallow) superficial") hasta la base de los extensómetros. Los resultados del modelo de profundidad han sido comparados con las series temporales de deformación DInSAR que representan toda la deformación de la columna estratigráfica. Estas comparaciones han permitido a la individuación de las anomalías locales de los valores de rigidez, y han permitido una mejor calibración del modelo. Por otra parte, los resultados del modelo superficial (shallow), se han comparado con las mediciones extensométricas. Estas comparaciones han mostrado la ocurrencia de anisotropías verticales de la permeabilidad. Esta hipótesis ha sido verificada, analizando las pruebas disponibles de la Lefranc y las columnas estratigráficas más detalladas y se ha propuesto un nuevo modelo. Los resultados del modelo geotécnico han sido interpolados a través de la técnica "Ordinary Kriging Radar Errors" (OKRE). Los mapas de deformación obtenidos han sido utilizados en el procesado de imágenes SAR para permitir al algoritmo una mejor estimación de la parte no lineal de la fase interferométrica. En el caso de Telese Terme, los desplazamientos radar medidos han permitido comprender la extensión espacial del fenómeno, su magnitud y su desarrollo histórico. Esto ha permitido la individuación de las causas que provocaron daños en algunos edificios "de prueba". Para uno de ellos, se ha implementado un modelo estructural; en este caso, se han utilizados, los datos radar para verificar si su respuesta estructural a los desplazamientos detectados por SAR correspondían a la "superación de los estados límite". Los resultados del modelo han resultado tener una buena correspondencia con el análisis forense conseguida in situ. Todos los aproches propuestos se podrían aplicar a otros escenarios afectados por fenómenos similares

    Estimation of biophysical parameters in boreal forests from ERS and JERS SAR interferometry

    Get PDF
    The thesis describes investigations concerning the evaluation of ERS and JERS SAR images and repeat-pass interferometric SAR images for the retrieval of biophysical parameters in boreal forests. The availability of extensive data sets of images over several test sites located in Sweden, Finland and Siberia has allowed analysis of temporal dynamics of ERS and JERS backscatter and coherence, and of ERS interferometric phase. Modelling of backscatter, coherence and InSAR phase has been performed by means of the Water Cloud Model (WCM) and the Interferometric Water Cloud Model (IWCM); sensitivity analysis and implications for the retrieval of forest biophysical parameters have been thoroughly discussed. Model inversion has been carried out for stem volume retrieval using ERS coherence, ERS backscatter and JERS backscatter, whereas for tree height estimation the ERS interferometric phase has been used. Multi-temporal combination of ERS coherence images, and to a lesser extent of JERS backscatter images, can provide stem volume estimates comparable to stand-wise ground-based measurements. Since the information content of the interferometric phase is strongly degraded by phase noise and uncorrected atmospheric artefacts, the retrieved tree height shows large errors

    Remote Sensing of the Oceans

    Get PDF
    This book covers different topics in the framework of remote sensing of the oceans. Latest research advancements and brand-new studies are presented that address the exploitation of remote sensing instruments and simulation tools to improve the understanding of ocean processes and enable cutting-edge applications with the aim of preserving the ocean environment and supporting the blue economy. Hence, this book provides a reference framework for state-of-the-art remote sensing methods that deal with the generation of added-value products and the geophysical information retrieval in related fields, including: Oil spill detection and discrimination; Analysis of tropical cyclones and sea echoes; Shoreline and aquaculture area extraction; Monitoring coastal marine litter and moving vessels; Processing of SAR, HF radar and UAV measurements

    Elevation and Deformation Extraction from TomoSAR

    Get PDF
    3D SAR tomography (TomoSAR) and 4D SAR differential tomography (Diff-TomoSAR) exploit multi-baseline SAR data stacks to provide an essential innovation of SAR Interferometry for many applications, sensing complex scenes with multiple scatterers mapped into the same SAR pixel cell. However, these are still influenced by DEM uncertainty, temporal decorrelation, orbital, tropospheric and ionospheric phase distortion and height blurring. In this thesis, these techniques are explored. As part of this exploration, the systematic procedures for DEM generation, DEM quality assessment, DEM quality improvement and DEM applications are first studied. Besides, this thesis focuses on the whole cycle of systematic methods for 3D & 4D TomoSAR imaging for height and deformation retrieval, from the problem formation phase, through the development of methods to testing on real SAR data. After DEM generation introduction from spaceborne bistatic InSAR (TanDEM-X) and airborne photogrammetry (Bluesky), a new DEM co-registration method with line feature validation (river network line, ridgeline, valley line, crater boundary feature and so on) is developed and demonstrated to assist the study of a wide area DEM data quality. This DEM co-registration method aligns two DEMs irrespective of the linear distortion model, which improves the quality of DEM vertical comparison accuracy significantly and is suitable and helpful for DEM quality assessment. A systematic TomoSAR algorithm and method have been established, tested, analysed and demonstrated for various applications (urban buildings, bridges, dams) to achieve better 3D & 4D tomographic SAR imaging results. These include applying Cosmo-Skymed X band single-polarisation data over the Zipingpu dam, Dujiangyan, Sichuan, China, to map topography; and using ALOS L band data in the San Francisco Bay region to map urban building and bridge. A new ionospheric correction method based on the tile method employing IGS TEC data, a split-spectrum and an ionospheric model via least squares are developed to correct ionospheric distortion to improve the accuracy of 3D & 4D tomographic SAR imaging. Meanwhile, a pixel by pixel orbit baseline estimation method is developed to address the research gaps of baseline estimation for 3D & 4D spaceborne SAR tomography imaging. Moreover, a SAR tomography imaging algorithm and a differential tomography four-dimensional SAR imaging algorithm based on compressive sensing, SAR interferometry phase (InSAR) calibration reference to DEM with DEM error correction, a new phase error calibration and compensation algorithm, based on PS, SVD, PGA, weighted least squares and minimum entropy, are developed to obtain accurate 3D & 4D tomographic SAR imaging results. The new baseline estimation method and consequent TomoSAR processing results showed that an accurate baseline estimation is essential to build up the TomoSAR model. After baseline estimation, phase calibration experiments (via FFT and Capon method) indicate that a phase calibration step is indispensable for TomoSAR imaging, which eventually influences the inversion results. A super-resolution reconstruction CS based study demonstrates X band data with the CS method does not fit for forest reconstruction but works for reconstruction of large civil engineering structures such as dams and urban buildings. Meanwhile, the L band data with FFT, Capon and the CS method are shown to work for the reconstruction of large manmade structures (such as bridges) and urban buildings
    corecore