858 research outputs found

    Enriching OCL Using Observational Mu-Calculus

    Get PDF
    Abstract. The Object Constraint Language is a textual specificatio

    A Historical Perspective on Runtime Assertion Checking in Software Development

    Get PDF
    This report presents initial results in the area of software testing and analysis produced as part of the Software Engineering Impact Project. The report describes the historical development of runtime assertion checking, including a description of the origins of and significant features associated with assertion checking mechanisms, and initial findings about current industrial use. A future report will provide a more comprehensive assessment of development practice, for which we invite readers of this report to contribute information

    Automated verification of model transformations based on visual contracts

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10515-012-0102-yModel-Driven Engineering promotes the use of models to conduct the different phases of the software development. In this way, models are transformed between different languages and notations until code is generated for the final application. Hence, the construction of correct Model-to-Model (M2M) transformations becomes a crucial aspect in this approach. Even though many languages and tools have been proposed to build and execute M2M transformations, there is scarce support to specify correctness requirements for such transformations in an implementation-independent way, i.e., irrespective of the actual transformation language used. In this paper we fill this gap by proposing a declarative language for the specification of visual contracts, enabling the verification of transformations defined with any transformation language. The verification is performed by compiling the contracts into QVT to detect disconformities of transformation results with respect to the contracts. As a proof of concept, we also report on a graphical modeling environment for the specification of contracts, and on its use for the verification of transformations in several case studies.This work has been funded by the Austrian Science Fund (FWF) under grant P21374-N13, the Spanish Ministry of Science under grants TIN2008-02081 and TIN2011-24139, and the R&D programme of the Madrid Region under project S2009/TIC-1650

    Metamodel-based model conformance and multiview consistency checking

    Get PDF
    Model-driven development, using languages such as UML and BON, often makes use of multiple diagrams (e.g., class and sequence diagrams) when modeling systems. These diagrams, presenting different views of a system of interest, may be inconsistent. A metamodel provides a unifying framework in which to ensure and check consistency, while at the same time providing the means to distinguish between valid and invalid models, that is, conformance. Two formal specifications of the metamodel for an object-oriented modeling language are presented, and it is shown how to use these specifications for model conformance and multiview consistency checking. Comparisons are made in terms of completeness and the level of automation each provide for checking multiview consistency and model conformance. The lessons learned from applying formal techniques to the problems of metamodeling, model conformance, and multiview consistency checking are summarized

    An Institutional Framework for Heterogeneous Formal Development in UML

    Get PDF
    We present a framework for formal software development with UML. In contrast to previous approaches that equip UML with a formal semantics, we follow an institution based heterogeneous approach. This can express suitable formal semantics of the different UML diagram types directly, without the need to map everything to one specific formalism (let it be first-order logic or graph grammars). We show how different aspects of the formal development process can be coherently formalised, ranging from requirements over design and Hoare-style conditions on code to the implementation itself. The framework can be used to verify consistency of different UML diagrams both horizontally (e.g., consistency among various requirements) as well as vertically (e.g., correctness of design or implementation w.r.t. the requirements)

    OCL Plus:Processes and Events in Object-Centred Planning

    Get PDF
    An important area in AI Planning is the expressiveness of planning domain specification languages such as PDDL, and their aptitude for modelling real applications. This paper presents OCLplus, an extension of a hierarchical object centred planning domain definition language, intended to support the representation of domains with continuous change. The main extension in OCLplus provides the capability of interconnection between the planners and the changes that are caused by other objects of the world. To this extent, the concept of event and process are introduced in the Hierarchical Task Network (HTN), object centred planning framework in which a process is responsible for either continuous or discrete changes, and an event is triggered if its precondition is met. We evaluate the use of OCLplus and compare it with a similar language, PDDL+

    Contracts for Model Execution Verification

    Get PDF
    International audienceOne of the main goals of model-driven engineering is the manipulation of models as exclusive software artifacts. Model execution is in particular a means to substitute models for code. We focus in this paper on verifying model executions. We use a contract-based approach to specify an execution semantics for a meta-model. We show that an execution semantics is a seamless extension of a rigorous meta-model specification and is composed of complementary levels, from static element definition to dynamic elements, execution specifications as well. We use model transformation contracts for controlling the dynamic consistent evolution of a model during its execution. As an illustration, we apply our approach to UML state machines using OCL as the contract expression language

    Visual Specification Patterns

    Get PDF
    Visual modelling notations such as constraint diagrams can be used for the behavioural specifications of software components. This includes specifying invariants on classes or types and preconditions and postconditions of operations. However, one current problem in specifying components comes from the fact that editing constraints manually is time consuming and error prone and so we may adopt a pattern-based approach to alleviate this problem. One way to simplify the definition of constraints is to identify and capture those recurring constraints in the form of visual specification patterns. Such patterns would facilitate the automatic generation of diagrammatic constraints. This paper identifies some specification patterns that frequently occur when specifying software components and provides a diagrammatic representation of these patterns. This will form the basis of a library of specification patterns that could be used in the context of tools. We also show how such patterns can be combined in order to specify more complex constraints
    corecore