
HAL Id: inria-00637763
https://hal.inria.fr/inria-00637763

Submitted on 2 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contracts for Model Execution Verification
Eric Cariou, Cyril Ballagny, Alexandre Feugas, Franck Barbier

To cite this version:
Eric Cariou, Cyril Ballagny, Alexandre Feugas, Franck Barbier. Contracts for Model Execution Verifi-
cation. ECMFA’11, Jun 2011, Birmingham, United Kingdom. �10.1007/978-3-642-21470-7_2�. �inria-
00637763�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49949222?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00637763
https://hal.archives-ouvertes.fr

Contracts for Model Execution Verification

Eric Cariou1, Cyril Ballagny2, Alexandre Feugas3, and Franck Barbier1

1 University of Pau / Liuppa, B.P. 1155, 64013 Pau Cedex, France
{Eric.Cariou, Franck.Barbier}@univ-pau.fr

2
Softeam, Objecteering Software, 8 Parc Ariane, 78284 Guyancourt Cedex, France

Cyril.Ballagny@softeam.fr
3
Inria Lille-Nord Europe / Lifl Cnrs Umr 8022 / University of Lille 1
Cité scientifique, Bât. M3, 59655 Villeneuve d’Ascq Cedex, France

Alexandre.Feugas@inria.fr

Abstract. One of the main goals of model-driven engineering is the ma-
nipulation of models as exclusive software artifacts. Model execution is
in particular a means to substitute models for code. We focus in this
paper on verifying model executions. We use a contract-based approach
to specify an execution semantics for a meta-model. We show that an
execution semantics is a seamless extension of a rigorous meta-model
specification and is composed of complementary levels, from static el-
ement definition to dynamic elements, execution specifications as well.
We use model transformation contracts for controlling the dynamic con-
sistent evolution of a model during its execution. As an illustration, we
apply our approach to UML state machines using OCL as the contract
expression language.

Keywords: design by contract, runtime verification, model execution,
model-driven engineering, UML state machines, OCL

1 Introduction

One of the main goals of Model-Driven Engineering (MDE) is to cope with
models as final software artifacts. This can be performed by directly executing
the model itself; the model is thus the “code” that is executed. Being able to
execute a model is a key challenge for MDE. It also requires to ensuring that the
execution has been performed correctly, by applying verification or validation
techniques. In this paper, we focus on the verification of model execution.

Programming and design by contract have shown their interest in verifying
the execution of software systems [2,12,13]. Contracts ensure a sufficient con-
fidence on the software system through a lightweight verification approach at
runtime. We propose to apply design by contract principles to the context of
model execution. We aim at ensuring that a model execution, realized by any
tool or engine, is correct with respect to the defined semantics. The first step
to execute a model is thus to define its execution semantics, in a specification
and verification purpose. This requires the definition of a rigorous meta-model
including the specification of the state of the model during its execution. A given

execution engine can then execute a model by defining its new state at each ex-
ecution step. If considering that each modification of the model state is a model
transformation, a model execution can be seen as a serie of endogenous model
transformations. Accordingly, we can use model transformation techniques for
verifying model execution, namely model transformation contracts [5].

The rest of the paper is organized as follows. Section 2 defines the require-
ments on meta-models for being able to execute a model and how contracts can
be applied to define an execution semantics and verify a model execution. Sec-
tion 3 describes the execution of UML state machines, including the required
extension of the UML meta-model [16] and the associated execution engine.
Section 4 defines an execution contract example, showing the feasibility of our
approach. Then, before concluding, we review related works.

2 Verifying Model Execution through Contracts

In this section, we first recall the concept of contract and its application to model
transformations. We next explain how a model execution can be seen as a suite
of model transformations. Then we discuss the kinds of semantics we need for
being able to specify the execution of a model and show that contracts – and
model transformation contracts – can be used in this context.

2.1 Contracts and Model Transformation Contracts

Programming and design by contract [2,12,13] consist in specifying what a soft-
ware component, a program or a model does, in order to know how to properly
use it. Design by contract also allows at runtime the assessment of what has
been computed with respect to the expressed contracts. A contract is composed
of two kinds of constraints:

– Invariants that have to be respected by software elements;
– Specification of operations on the software elements through pre and post-

conditions. A pre-condition defines the state of a system to be respected
before its associated operation can be called in a safe mode. Post-conditions
establish the state of a system to respect after calls. If a pre-condition is vio-
lated, post-conditions are not ensured and the system can be in an abnormal
state.

In the MDE context, a meta-model is a structural diagram defining the kinds
of model elements and their relations. But this structural view is rarely suffi-
cient for expressing all relations among elements, we need to complement it with
well-formedness rules. They are additional constraints expressed in a dedicated
language, such as OCL (Object Constraint Language [15]). Contract invariants
can be typically this kind of rules, and operations are any kind of model manip-
ulation and modification, such as model transformations.

In [5], an approach for specifying contracts on model transformation opera-
tions using OCL has been proposed. These contracts describe expected model

transformation behaviors. Formally, constraints on the state of a model before
the transformation (source model) are offered. Similar constraints on the state
of the model after the transformation (target model) are offered as well. Post-
conditions guarantee that a target model is a valid result of a transformation
with respect to a source model. Pre-conditions ensure that a source model can
effectively be transformed. A couple of pre and post-conditions for specifying a
transformation can also be organized via three distinct sets of constraints:

– Constraints on the source model: constraints to be respected by a model to
be able to be transformed;

– Constraints on the target model: general constraints (independently of the
source model) to be respected by a model for being a valid result of the
transformation;

– Constraints on element evolution: constraints to be respected on the evolu-
tion of elements between the source and the target models, in order to ensure
that the target model is the correct transformation result according to the
source model content.

2.2 Model Execution as Model Transformations

Closed

OffOff
Power

Closed

Baking

Power

Power

Open

OpenClosed

Wattage

Off

Power

Off

Power

Open

Off

Power

Power

OpenClosed

Off

Off

Wattage

Off

Power

DoorClosed

DoorOpen

DoorOpen

PausedBaking

H*
DoorClosed

DoorOpen

DoorOpen

Step 2

Step 1

Step 3

refine_state(bakingState, refinedBakingState)

Step 4

run_to_completion(doorOpenEvent)

run_to_completion(doorClosedEvent)

Paused
600 W. 900 W.

H*
DoorClosed

DoorOpen

DoorOpen

PausedBaking

H*
DoorClosed

DoorOpen

DoorOpen

PausedBaking

H*

Fig. 1. Model execution example: a UML state machine of a microwave

Figure 1 shows an execution example of a UML state machine specifying the
behavior of a microwave. The microwave can be in two main states depending
on the state of the door: open or closed. When the door is closed, the power
button allows a cycle from baking to putting the microwave off. When opening
the door, if the microwave was baking, it gets in a pause mode. Otherwise, it
gets in off mode. Closing the door leads to come back in the previous mode
when the door was closed, either baking or being off (this is specified thanks
to the history state of the state Closed). The state machine is represented in
conformity with the common graphical syntax of UML state machines, except
coloring leaf active states in grey. Indeed, we must know at a given time which
states of the machine are currently active4. Then, active states fully belong to
the model specification.

The figure shows several steps of the model execution. At the first step, the
microwave is in baking mode with the door closed. Then, the user opens the
door – the event DoorOpen is generated – and the microwave gets in the pause
mode (step 2). When the user closes the door, this activates back the baking
state (step 3). The last step of the example shows a particular execution step of
the model: the state machine refinement. The single baking state is replaced by a
composite state defining several power positions. This refinement is made during
the execution of the model, at runtime. This kind of structural modification is
typically what can be done for supporting adaptation at runtime [1].

As seen in the figure, each model execution step is associated with an op-
eration: run to completion(Event) or refine state(State, State). Indeed,
the easiest way to specify a semantics for an execution is to link it to opera-
tions associated with meta-model elements. This allows the discretization and
the reification of the execution process. Concretely, these operations are either
explicitly defined on meta-elements or only implicit to be used for supporting
the semantics at runtime. Here, the StateMachine UML meta-element can own
these operations.

Each call of such an operation makes the model evolve by realizing an exe-
cution step. In other words, the model is transformed at each execution step. In
the example, either the active states are changing (run to completion) or the
structure of the state machine is dynamically modified (refine state). Even
if changing the active states modifies only marginally the model, it is a model
transformation. As a result, an execution of a model can be considered as a suite
of model transformations associated with the execution operations. These trans-
formations are endogenous because all models conform to the same meta-model
during the execution.

2.3 An Approach for Verifying Model Execution

Requirements on Meta-models for Executing Models. As already stated
by previous works (such as [7,9,18]), a model execution requires that its meta-

4 The UML meta-model does not include the specification of the current active states
of a state machine. We have then extended it, as described in section 3.1.

model defines several kinds of element specification, such as dynamic ones. Here,
we propose our own meta-model part classification for an execution specification.

For state machines, in addition to the specification of the states, we must
know at a given time which of its states are the active ones. For a model execu-
tion, its meta-model must then contain two kinds of meta-elements:

– Static part: structural definition of the model elements defining the static
view of a model. For a state machine, it defines the concepts of State, Tran-
sition, Event, ...

– Dynamic part: structural definition of the elements specifying the execution
state of a model. For a state machine, it will notably define the concept of
Active State.

Defining the structure of the elements is not enough for specifying all the
constraints on these elements and their relationships: we need to add to the
meta-model structure the “well-formedness rules”. They are defined through a
constraint language, such as OCL for instance. Well-formedness rules are de-
fined for the static part but also for the dynamic part of the meta-model. For
instance, for the static part of a state machine, one can specify that two differ-
ent transitions associated with the same event and the same guard cannot be
assigned to the same source state. For the dynamic part of a state machine, one
can specify that two exclusive states can not be active at the same time (like
Open and Closed on Figure 1).

The meta-model structure and its well-formedness rules are not sufficient for
fully specifying an execution semantics, even when including a dynamic part. For
instance, in the context of state machines, if an event occurs and if associated
transitions exist on current active states, the processing of this event by the
execution engine implies that these transitions will be triggered. This model
evolution between execution steps must also be defined as a set of constraints or
rules we are calling “well-evolution rules”.

These well-evolution rules can, like the well-formedness rules, be defined on
the static and the dynamic parts of the meta-model. For the dynamic part, they
embody constraints on the model evolution during its execution, such as the
event management policy specifying which states have to be activated according
to an event occurence. For the static part, this implies that the model (its “static”
elements) can be modified during the execution. On a state machine, states and
transitions can change during the execution (such as on Figure 1, step 4). This
is what can be typically done in an adaptation context. The well-evolution rules
then define the constraints of this adaptation, i.e., its semantics.

Classification of Semantic Levels. Several complementary levels of seman-
tics must be introduced in relation with the above discussion:

– Structural meta-model: definition of the static meta-elements and their re-
lationships (the static part with the associated well-formedness rules). This
structural meta-model is the common result of a meta-model definition when
no model execution aspect is taken into account.

– Executable meta-model5: addition to the structural meta-model of elements
allowing the execution of a model (the dynamic part with the associated
well-formedness rules).

– Execution semantics6: addition to the executable meta-model of semantics of
element evolution (the well-evolution rules added to the static and dynamic
parts).

Figure 2 summarizes the semantics levels. We differentiate the executable
meta-model from the full definition of the execution semantics. Indeed, the exe-
cutable meta-model is usually unique because one single kind of representation
of the model state during its execution is sufficient. However, it makes sense to
define different semantics of model evolution for a same meta-model. This allows
the definition of execution semantics variation points [8,10].

Well−Evolution Rules

W.−Form. Rules

Executable meta−model

Execution semantics

Static part

W.−Form. Rules

Dynamic part

Structural meta−model

Fig. 2. Semantics levels for a meta-model

Execution Semantics as Contracts. An execution semantics can be directly
expressed as a contract: a set of invariants and operation specifications through
couples of pre and post-conditions. The invariants are the well-formedness rules
of the executable meta-model and the specification of execution operations con-
tains the required well-evolution rules.

An important point to notice is about defining the execution semantics of
a meta-model through contracts. In our approach, this definition is done in a
“seamlessly way”. In other words, we use the same “technological space” to

5 We use the term of “executable meta-model” as a shortcut for expressing that models
conforming to this meta-model are executable, but the meta-model itself is not
directly executable.

6 To avoid any ambiguity: execution semantics is to be considered here as constraints
to be respected during the model evolution and not as how the execution is carried
out. We are not defining an operational semantics.

maintain in one and only one meta-model, structural aspects and the way they
may be subject to a well-established evolution: the execution semantics. As an
illustration, let us consider for instance the definition of a DSL (Domain Specific
Language) using the EMF framework7 and OCL. First, the Ecore meta-model
and OCL constraints are used for specifying the structural part and its associ-
ated well-formedness rules. Next, making this meta-model executable leads to
modifying the Ecore meta-model by adding new elements and their associated
well-formedness rules by means of OCL. Finally, a concrete execution semantics
for this meta-model supposes the introduction of the well-evolution rules. In this
respect, we demonstrated in [5] that model transformations – here the model
execution steps through associated operations – can be specified using standard
OCL. So, during all these stages of execution semantics specification, one re-
mains in the same “technological space” (Ecore and OCL) without requiring to
use and know specification techniques of another technological space (Petri nets,
temporal logic, graph transformations, ...) for defining some parts of the execu-
tion semantics. Moreover, these techniques are often formal and then harder to
accept by the designers who define meta-models and DSLs.

Model Execution Engine Requirements. Intuitively, one can consider that
managing a model execution and its contracts requires using an implementation
platform offering both execution and verification capabilities (such as for the
Eiffel language in a programming context [13]). This can be achieved by imple-
menting the model execution engine with a platform, such as Kermeta8, that
contains an action language for defining executable operations associated with
meta-elements and a constraint language that enables to specify invariants on
meta-elements and pre/post-conditions for their operations.

Our approach allows less restricting requirements. The main issue when eval-
uating the contract is checking pre and post-conditions. Indeed, this task is
strongly linked to the execution of the operations. As explained in [5] and sec-
tion 2.1, a couple of pre and post-conditions can be written under the form of
three sets of invariants. Then, an execution contract consists only of invariants.
Checking invariants on a model is made independently of the way the model is
handled, i.e., the way by which the model is executed. We then simply require
to couple the execution engine with a constraint evaluator. Besides, it is possible
to check the contract at any time when the models are available, not only at the
execution time. So, the contract evaluation can become an independent task of
the model execution whether the execution engine is capable to store models.

As an intermediate conclusion, we rely on lesser assumptions as possible
about the model execution engine or the virtual machine interpreting the model.
The imposed basic requirements are the fact that the engine supports the op-
erations characterizing the key execution steps and is able to store and manage
the current state of the model before and after each execution step.

7 Eclipse Modeling Framework: http://www.eclipse.org/emf/
8 http://www.kermeta.org

Contract Evaluation and Usage. Depending on the model execution engine
capabilities, there are two main contract checking times. The first one is during
the model execution: if the execution engine is coupled with a contract evaluator
(typically an OCL evaluator), at each required execution step, the contract can
be checked. The second one is a posteriori : the execution engine stores the model
state after each required execution step, building in this way an execution trace.
Afterwards, the contract will be checked on models from this trace.

The completeness of the contract has an influence on the contract usage
for ensuring confidence on the execution engine. As defined in [12], a complete
contract is a contract that detects all possible errors on models.

Depending on the moment of the contract checking and its completeness,
execution contracts can be used in several ways, such as:

– In a debugging mode: for each step, a complete contract is checked and allows
the designer to detect programming errors through an adequate interaction
with the execution engine.

– With a complete contract and generation of execution traces, contracts can
be used for model-checking: they play the role of oracles. Several traces are
built with a set of different entry models. They simulate environment inter-
actions for covering, as much as possible, most of the test cases. Contracts
must then be valid for all execution traces.

– Considering a non-complete contract and evaluation at runtime, it supports
the management of some execution errors and adaptations to the context
during the model execution. In this case, a non-complete contract is usually
preferable to avoid performance overheads. Indeed, once the execution engine
tested, complete contracts are no longer required at runtime because of the
prior elimination of errors.

3 Execution of UML State Machines

3.1 Extension of the UML Meta-model

To be able to execute a UML state machine, the UML meta-model – more
precisely its part defining state machines ([16], Superstructure, chapter 15) –
must be enhanced to become an executable meta-model.

The static part of the UML meta-model (defining that a state machine owns
regions which themselves own states which are connected with transitions, ...)
has been kept without modification. As for the dynamic part, it globally aims
at specifying state machine instances in execution. For this, UML object dia-
grams are reused and extended. Figure 3 represents this dynamic part and its
relationships to existing meta-elements of the UML meta-model.

An object diagram enables to specify instances. The InstanceSpecification
meta-element represents an instance when it is associated with a Classifier

object, namely the Class meta-element. In addition, a class can own a state ma-
chine in order to model its behavior. In the UML meta-model, a state machine
is a kind of classifier, thus an instance specification can be linked to this state

activeContainer

StateMachineInstanceSpecification

InstanceSpecification
(from UML)

Element
(from UML)

Region
(from UML)

StateMachine
(from UML)

Class
(from UML)

Classifier
(from UML)

Behavior
(from UML)

ActiveRegion

ActiveState
State

(from UML)

{subsets classifier}
stateMachine0..1

activeRegion*
*

0..1 0..1

activeRegion*1

0..1
activeState

1

*

* *

*

activeSubmachine

1

1

regionhistoryConfiguration

classifier

0..1

*

state 1

activeSubvertex

Fig. 3. UML meta-model extension for specifying state machine instances

machine. Nevertheless, while there are meta-elements to specify what values of
attributes are for an object, there is no meta-element to specify what the current
state, a state machine object is in.

To move forward, we specialize the InstanceSpecificationmeta-element to
model an instance of a state machine. The association from this StateMachine-
InstanceSpecificationmeta-element to StateMachine is a subset of the pre-
existing association from InstanceSpecification to Classifier. The current
state of a state machine instance is characterized by an active state configuration,
i.e., the hierarchy of states which are active in the state machine at a particular
moment. To model this configuration, we have introduced the ActiveRegion

and ActiveStatemeta-elements. If an active state is a submachine state (i.e., a
state which is an alias to another state machine), a state machine instance can
be referenced from this active state (association from ActiveState to State-

MachineInstanceSpecification). If a region owns a history state (such as in
the example of Figure 1), the last active state configuration can be store (as-
sociation historyConfiguration from StateMachineInstanceSpecification

to ActiveRegion). Furthermore, cardinalities of associations ensure that: 1) an
active region only belongs to one state machine instance or to one active state;
2) an active region owns one and only one active state; 3) an active state is only
active in one region. As an example, when the 600W leaf state is active in the
microwave (cf. Figure 1, step 4), the active state configuration is the path from
the state machine to this active state, including the active Closed state and the
active Baking state.

Other well-formedness rules are required to complete the dynamic part defi-
nition. They ensure that: 1) the active regions and states of an instance belong
to the state machine whose instance is described; 2) an active composite state
(i.e., a state which owns regions) owns an active state for each one of its regions;
3) an active submachine state references a state machine instance which is the
submachine of this active state; 4) a history configuration is only referenced

when a history state exists. These rules are concretely defined as OCL invari-
ants. For example, here is the invariant for the well-formedness rule concerning
the activation of a composite state9:

context ActiveState inv activeComposite:
state.isComposite() implies (activeRegion -> size() = state.region -> size()
and activeRegion -> forAll(ar1, ar2 | state.region->exists(ar1.region) and

(ar1<> ar2 implies ar1.region <> ar2.region)))

3.2 MOCAS: a UML State Machine Execution Engine

We have implemented an engine, MOCAS10, for interpreting UML state ma-
chines. This engine is a Java library which relies on the Eclipse Modeling Frame-
work implementation of UML. It supports all state machine features: transition
guards, state invariants, submachine states, history states, change events, time
events, signal events, call operation actions, ... The engine interprets state ma-
chine models conforming to the UML meta-model as enhanced in this paper.

MOCAS implements a “default” semantics for UML state machine execution.
This supposes that some choices have been made for semantic variation points
of the UML meta-model or when points have not been clearly specified in the
UML documentation. However, MOCAS can be customized in order to realize
different semantics. By relying on execution contracts, we are able to verify at
runtime that an implementation respects the desired semantics.

Other execution engines could be used. We can for instance implement such
an engine using fUML [17]. As stated in section 2.3, if these engines are able
to store the executed model after each execution step or are associated with a
constraint checker, our approach can be applied, independently of the way these
engines are carrying out the execution and of their implementation technology.

4 Execution Contracts on UML State Machines

Checking invariants is easier compared to checking operation specifications. We
then focus in this section on the definition of a contract part for an execution
operation. As an example, we describe the semantics of the run to completion

operation for the execution of UML state machines. An operation specification
can be classically defined through pre and post-conditions but, as explained in
section 2.3, this restricts the usability of the contract. So, we present this op-
eration specification under the form of three sets of invariants, to widen the
possibility of evaluating and using contracts. To explain how to express an op-
eration specification in this way, we first detail some technical points.

9 The complete technical material presented in this paper is available online:
http://web.univ-pau.fr/%7Eecariou/contracts/

10 http://mocasengine.sourceforge.net/

4.1 Automatic Meta-model Modification

1

Error Warning Correct

modelName : String

ContractModelElement

ContractBase

Element (from UML)... ...

operationName : String

ContractOperation

Result

comment : String

1 element*

eval 0..1

name : String

ContractParameter

parameters*

returnValue

0..1

ContractEvaluation

globalResult : boolean

*

0..1 operation
elements

paramValue

Fig. 4. Automatic meta-model modification to support contract management and its
application to the UML meta-model

As stated in [5], a problem remains when evaluating OCL constraints: they
are expressed for a single context and, as a result, they relate to a single model.
When evaluating constraints on element evolution, we both need to reference
source and target model elements. The technical solution to this problem is to
concatenate all elements of these two models into a global one. This concatena-
tion is made possible by automatically modifying their meta-model.

The modification consists in adding elements to an existing meta-model
for which a transformation contract has to be checked (see Figure 4). First,
each existing meta-element is viewed as a specialization of ContractModelEl-
ement (for the UML meta-model, the meta-element Element simply becomes
a specialization of ContractModelElement as each meta-element of the UML
meta-model inherits directly or transitively from it). Then, each element of the
source or the target model will be tagged, respectively, with the “source” or
“target” string value through its inherited modelName attribute. Secondly, we
need to know the characteristics of the operation associated with the contract:
this is the role of ContractOperation referencing elements of the global model
for specifying parameters (the return value of operations as well). Lastly, the
ContractEvaluation element is in charge of the evaluation result of the con-
tract for embedded models. We offer the possibility of stating this result element
by element, showing when necessary if an element respects (Correct) or not
(Error) its part of the contract.

To sum up, when expressing the contract part for execution operations, we
rely on the modified meta-model version. The modification of the meta-model is
carried out automatically thanks to a dedicated tool. This tool is able to make
the modification for any Ecore meta-model (including the UML implementation
and then our extended version for managing state machine execution). It also
realizes the concatenation of a source and a target models into a global model
conforming to the modified meta-model. If instead of OCL, we use a constraint

language able to handle several models simultanely, all this will not be required.
Nevertheless, it will be useful to rely on it also in this case because it helps in
structuring the contracts as embedding in the same global model, the source and
the target models, the description of the operation and the contract evaluation
result. From a practical point of view, the contract is evaluated via an ATL11

transformation. Indeed, ATL offers a full OCL implementation and can then
easily be used to check OCL constraints [3].

4.2 Specification of the run to completion Operation

1 context StateMachineInstanceSpecification inv:
2 let evt : ContractParameter =

ContractParameter.allInstances() -> any(name = ’event’) in
3 (self = self.getSMI(’source’)) implies

self.transitionValidity(self.getSMI(’target’), evt.paramValue)

4 context StateMachineInstanceSpecification def : getSMI(name : String) :
StateMachineInstanceSpecification =

5 StateMachineInstanceSpecification.allInstances() -> any(smi |
smi.modelName = name and smi.activeState -> isEmpty())

6 context StateMachineInstanceSpecification def : transitionValidity(
smiTarget : StateMachineInstanceSpecification, event : Event): Boolean =

7 let activeStatesForEvent : Set(ActiveState) = self.activeLeaves() -> select(s |
s.state.hasTransitionForEvent(event)) in

8 let activeTransitions : Set(Transition) = activeStatesForEvent -> collect(s |
s.state.getTransitionForEvent(event)) in

9 activeTransitions -> forAll(t | t.hasBeenPassedInTarget(smiTarget))

10 context Transition def : hasBeenPassedInTarget(smiTarget :
StateMachineInstanceSpecification) : Boolean =

11 let targetTransition : Transition = smiTarget.getMappedTransition(self) in

12 let states = smiTarget.getActiveStates() -> collect (state) in
13 states -> exists (s | targetTransition.target = s) and
14 targetTransition.unactivateSourceState() implies

not(states -> exists (s | targetTransition.source = s))

Fig. 5. OCL invariant specifying the run to completion operation

Since there are no constraints to be respected for source and target models
of the transformation corresponding to the run to completion operation, we
only need to specify the element evolution between source and target models.
The main goal is to ensure that the right transitions are triggered for active

11 ATLAS Transformation Language: http://www.eclipse.org/m2m/atl/

states when the associated event occurs. Figure 5 shows an extract of this spec-
ification12. The following description is applied to the state machine execution
example of Figure 1 for the processing of the “DoorOpen” event, making the
microwave state machine passing from step 1 to step 2.

The invariant to be verified on the global model (concatenating the source
and the target models; each one containing one main state machine instance)
is specified at line 1. First, we retrieve the event associated with the operation
through contract parameters (line 2). Then (line 3), if the current state machine
instance is the source one (step 1 of Figure 1), it must be valid with respect to the
target one (step 2 of Figure 1) and this event, based on the transitionValidity
OCL operation evaluation (specified from lines 6 to 9). Retrieving a main state
machine instance in the global model is realized thanks to the getSMI OCL
operation, using the modelName attribute (lines 4 and 5).

To check a transition validity, on the source side, the set of transitions that
have to be triggered is computed, based on current active states and the parame-
ter event (lines 7 and 8). In our example, two transitions can be actually triggered
for the “DoorOpen” event, starting from the two active states of the state ma-
chine (the leaf state Baking and its container state Closed): the “external” one
from Closed to Open leading to the Off state of Open, or the “internal” one from
Baking to Paused. The choice of the transition is an execution semantic variation
point. It is concretely defined in the getTransitionForEvent OCL operation.
Following the UML common semantics, it returns here the most internal transi-
tion. Finally, each required transition has to be passed towards the target state
machine instance (line 9), through the validation of hasBeenPassedInTarget

(specified from lines 10 to 14).

A transition is passed on the target side when there is an active state asso-
ciated with the target state (Paused) of this transition (line 13) and when the
source state (Baking) of this transition is not anymore active13 (line 14) except
in particular cases (such as when the source and target states of the transition
are the same) checked by the unactivateSourceStateOCL operation. For that,
we need to point to the transition on target side that is equivalent (i.e., with
the same associated states and event) to the one on the source side (on which
the hasBeenPassedInTarget OCL operation is called, that is the current OCL
context). This is achieved by the mapping function getMappedTransition. As
explained in [5], mapping functions are key construction of our contracts and
can be automatically generated.

Finally, one may notice that the proposed contract is not a complete contract.
Indeed, not all required verifications on the model evolution are processed. We
need to check that the active states that do not correspond to eligible transitions
are not modified. We also need to verify that the structural part of the model
– its states and its transitions – are not modified. About this issue, this simply

12 For simplifying, transition guards are not taken into account.
13 To be complete, the state Closed must also be active. It is not necessary to check

this here because it is already specified through the well-formedness rules ensuring
the coherency of active state hierarchy (see section 3.1).

leads to verifying that each element of the source side has an equivalent element
on the target side, and vice-versa. As explained in [5], this is an unmodification
contract and it can be fully and automatically generated by means of our tool.
This feature greatly helps the writing of complete contracts.

5 Related Works

In the recent literature, as far as we know, there are no other design by contract
(or related) approaches than ours for model execution verification at runtime,
where models are considered in the context of MDE, that is UML, MOF or Ecore-
like models. The closest work is [14] that proposes a global method for trusting
model-driven components based on contracts, notably for expressing oracles in
model checking techniques. It classifies contracts as entities constituted by basic
and behavioral parts that can match this paper’s semantic levels. [14] points out
the problem of not having a standard for expressing contracts. Our approach can
be an answer to this problem since we propose a structured and implementable
approach for defining well-integrated contracts in executable models.

Even if the goal of [9,11] is the definition of an operational semantics for
visual models (typically UML ones), it can be adapted to be used in a verification
purpose. Its interests is to define model evolution during an execution through
UML collaboration diagrams. The drawback is that UML collaborations are
dedicated to UML and are rarely present under an equivalent form in other
technological spaces. This approach is then hard to generalize within a single
technological space. Moreover, collaboration diagrams are concretely specified
through graph transformations. This requires using another technological space.

Other techniques can be applied for verifying model execution. The main
research field is concerned with model-checking where program verification tech-
niques have been adapted to a modeling context. Not all of these works discuss
directly model execution verification but some of them focus on model trans-
formation verification. Indeed, as seen, model transformations are a way for ex-
pressing a part of a model execution semantics. In all these approaches, a trans-
lational semantics is defined: a model or a model transformation is specified in
another technological space in order to use third-party simulation and/or verifi-
cation tools. For instance, [4] verifies invariants or temporal constraints through
the Maude framework and LTL properties. [7] proposes prioritized timed Petri
nets while [19] stresses the expression of transformations towards colored Petri
nets. [6] allows the specification of a behavioral semantics through abstract state
machines (ASM). The major advantage of these approaches is the capability of
using robust and efficient model-checking techniques. However, they have two
main drawbacks. Firstly, the designer must master these technological spaces in
addition of the technological space in which the meta-model is defined. Secondly,
they require transformations of models from the meta-modeling technological
space to the one of the model-checking tools, and vice-versa. This implies a sup-
plementary work to ensure or prove the correctness of these transformations.
This leads to making these approaches harder to use than integrated contracts

as done in this paper, where a complete execution semantics is straightforwardly
available as a logical and natural extension of a rigorous meta-model specifica-
tion. Furthermore, these model checking approaches are usable at design time,
but they are not at runtime. They however offer more facilities to prove the cor-
rectness of special properties, such as temporal aspects. In this respect, they can
be used as a complementary approach to ours. Moreover, these model-checking
or testing techniques could be used to help in validating a contract. Indeed, it
can be sometimes difficult to ensure that a set of constraints covers all required
specifications and that some of these constraints are not mutually contradictory.

Lastly, discussion about other model transformation contract approaches and
the choice of OCL are available in the related works section of [5].

6 Conclusion

We present an approach for applying design by contract principles to model
execution. In this paper, execution contracts allow the verification of model exe-
cution at runtime. They can also be used for model-checking at design time. One
of the main interest of our approach is that a full execution semantics specified
through a contract is realized within a single technological space, in a seamlessly
way: an ordinary meta-model definition is directly enriched with execution spec-
ifications. We propose a progressive method for specifying a complete execution
semantics, starting from structural part definitions to behavorial specifications.
This method has the ability of defining execution semantic variants.

We have applied our approach to UML state machine execution. We have ex-
tended the UML meta-model for making state machines executable and defined
the execution semantics through operation specifications in OCL. We in effect
provide a support to verify the correctness of state machine execution for the
MOCAS platform.

This first experimentation has shown the feasibility of our approach. The
next step is to focus on usage of the contract evaluation. Notably, we plan to
implement model checking techniques using our execution contracts as test ora-
cles. The goal is to be able to execute an executable model through a framework
allowing the simulation of environment interactions. Then, several traces are
built with a set of different entry models and contracts must be valid for all
execution traces. Another perspective is using contract for managing software
adaptation at runtime. Indeed, the MOCAS platform not only executes state
machines, it is dedicated to performing adaptations of software components [1].
A direct application of execution contracts is to guiding the adaptation of the
executed components (e.g., refining the behavior of a component or changing an
operating mode of a component). Contracts can uncover a failure and lead to
executing recovering policies.

References

1. C. Ballagny, N. Hameurlain, and F. Barbier. MOCAS: A State-Based Compo-
nent Model for Self-Adaptation. In Third IEEE International Conference on Self-

Adaptive and Self-Organizing Systems (SASO ’09). IEEE Computer Society, 2009.
2. A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins. Making Components

Contract Aware. IEEE Computer, 32(7), 1999.
3. J. Bézivin and F. Jouault. Using ATL for Checking Models. In Intl. Workshop on

Graph and Model Transformation (GraMoT 2005), volume 152 of ENTCS, 2005.
4. A. Boronat, R. Heckel, and J. Meseguer. Rewriting Logic Semantics and Verifica-

tion of Model Transformations. In FASE ’09: Proceedings of the 12th International
Conference on Fundamental Approaches to Software Engineering, volume 5503 of
LNCS. Springer, 2009.

5. E. Cariou, N. Belloir, F. Barbier, and N. Djemam. OCL Contracts for the Verifi-
cation of Model Transformations. In Proceedings of the Workshop The Pragmatics
of OCL and Other Textual Specification Languages at MoDELS 2009, volume 24.
Electronic Communications of the EASST, 2009.

6. K. Chen, J. Sztipanovits, S. Abdelwalhed, and E. Jackson. Semantic Anchoring
with Model Transformations. In First European Conference on Model Driven Ar-
chitecture Foundations and Applications (ECMDA-FA ’05), volume 3748 of LNCS.
Springer, 2005.

7. B. Combemale, X. Crégut, P.-L. Garoche, and T. Xavier. Essay on Semantics
Definition in MDE – An Instrumented Approach for Model Verification. Journal
of Software, 4(9), 2009.

8. M. L. Crane and J. Dingel. UML vs. Classical vs. Rhapsody Statecharts: not all
Models are created Equal. Software and Systems Modeling, 6(4), 2007.

9. G. Engels, J. H. Hausmann, R. Heckel, and S. Sauer. Meta-Modeling: A Graphical
Approach to the Operational Semantics of Behavioral Diagrams in UML. In the 3rd
international conference on the Unified Modeling Language (UML 2000), volume
1939 of LNCS. Springer, 2000.

10. R. B. France, S. Ghosh, T. Dinh-Trong, and A. Solberg. Model-Driven Develop-
ment Using UML 2.0: Promises and Pitfalls. IEEE Computer, 39(2), 2006.

11. J. H. Hausmann. Dynamic Meta Modeling: A Semantics Description Technique
for Visual Modeling Languages. PhD thesis, University of Paderborn, 2005.

12. Y. Le Traon, B. Baudry, and J.-M. Jézéquel. Design by Contract to improve
Software Vigilance. IEEE Transaction on Software Engineering, 32(8), 2006.

13. B. Meyer. Applying “Design by Contract”. IEEE Computer (Special Issue on
Inheritance & Classification), 25(10):40–52, 1992.

14. J.-M. Mottu, B. Baudry, and Y. Le Traon. Reusable MDA Components: A Testing-
for-Trust Approach. In 9th International Conference on Model Driven Engineering
Languages and Systems (MoDELS ’06), volume 4199 of LNCS. Springer, 2006.

15. OMG. Object Constraint Language (OCL) Specification, version 2.0, 2006.
http://www.omg.org/spec/OCL/2.0/.

16. OMG. Unified Modeling Language (UML) Specification, version 2.2, 2009.
http://www.omg.org/spec/UML/2.2/.

17. OMG. Semantics of a Foundational Subset for Executable UML Models (fUML),
version 1.0, 2011. http://www.omg.org/spec/FUML/1.0/.

18. C. Pons and G. Baum. Formal Foundations of Object-Oriented Modeling Nota-
tions. In 3rd International Conference on Formal Engineering Methods (ICFEM
2000). IEEE, 2000.

19. M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, J. Schoenboeck, and
W. Schwinger. Right or Wrong? – Verification of Model Transformations using
Colored Petri Nets. In 9th OOPSLA Workshop on Domain-Specific Modeling
(DSM09), 2009.

