727 research outputs found

    Semi-supervised transductive speaker identification

    Get PDF
    We present an application of transductive semi-supervised learning to the problem of speaker identification. Formulating this problem as one of transduction is the most natural choice in some scenarios, such as when annotating archived speech data. Experiments with the CHAINS corpus show that, using the basic MFCC-encoding of recorded utterances, a well known simple semi-supervised algorithm, label spread, can solve this problem well. With only a small number of labelled utterances, the semi-supervised algorithm drastically outperforms a state of the art supervised support vector machine algorithm. Although we restrict ourselves to the transductive setting in this paper, the results encourage future work on semi-supervised learning for inductive speaker identification

    Models and analysis of vocal emissions for biomedical applications: 5th International Workshop: December 13-15, 2007, Firenze, Italy

    Get PDF
    The MAVEBA Workshop proceedings, held on a biannual basis, collect the scientific papers presented both as oral and poster contributions, during the conference. The main subjects are: development of theoretical and mechanical models as an aid to the study of main phonatory dysfunctions, as well as the biomedical engineering methods for the analysis of voice signals and images, as a support to clinical diagnosis and classification of vocal pathologies. The Workshop has the sponsorship of: Ente Cassa Risparmio di Firenze, COST Action 2103, Biomedical Signal Processing and Control Journal (Elsevier Eds.), IEEE Biomedical Engineering Soc. Special Issues of International Journals have been, and will be, published, collecting selected papers from the conference

    Euclidean distances as measures of speaker similarity including identical twin pairs: a forensic investigation using source and filter voice characteristics

    Get PDF
    AbstractThere is a growing consensus that hybrid approaches are necessary for successful speaker characterization in Forensic Speaker Comparison (FSC); hence this study explores the forensic potential of voice features combining source and filter characteristics. The former relate to the action of the vocal folds while the latter reflect the geometry of the speaker’s vocal tract. This set of features have been extracted from pause fillers, which are long enough for robust feature estimation while spontaneous enough to be extracted from voice samples in real forensic casework. Speaker similarity was measured using standardized Euclidean Distances (ED) between pairs of speakers: 54 different-speaker (DS) comparisons, 54 same-speaker (SS) comparisons and 12 comparisons between monozygotic twins (MZ). Results revealed that the differences between DS and SS comparisons were significant in both high quality and telephone-filtered recordings, with no false rejections and limited false acceptances; this finding suggests that this set of voice features is highly speaker-dependent and therefore forensically useful. Mean ED for MZ pairs lies between the average ED for SS comparisons and DS comparisons, as expected according to the literature on twin voices. Specific cases of MZ speakers with very high ED (i.e. strong dissimilarity) are discussed in the context of sociophonetic and twin studies. A preliminary simplification of the Vocal Profile Analysis (VPA) Scheme is proposed, which enables the quantification of voice quality features in the perceptual assessment of speaker similarity, and allows for the calculation of perceptual–acoustic correlations. The adequacy of z-score normalization for this study is also discussed, as well as the relevance of heat maps for detecting the so-called phantoms in recent approaches to the biometric menagerie

    Nasality in automatic speaker verification

    Get PDF

    Speech assessment and characterization for law enforcement applications

    No full text
    Speech signals acquired, transmitted or stored in non-ideal conditions are often degraded by one or more effects including, for example, additive noise. These degradations alter the signal properties in a manner that deteriorates the intelligibility or quality of the speech signal. In the law enforcement context such degradations are commonplace due to the limitations in the audio collection methodology, which is often required to be covert. In severe degradation conditions, the acquired signal may become unintelligible, losing its value in an investigation and in less severe conditions, a loss in signal quality may be encountered, which can lead to higher transcription time and cost. This thesis proposes a non-intrusive speech assessment framework from which algorithms for speech quality and intelligibility assessment are derived, to guide the collection and transcription of law enforcement audio. These methods are trained on a large database labelled using intrusive techniques (whose performance is verified with subjective scores) and shown to perform favorably when compared with existing non-intrusive techniques. Additionally, a non-intrusive CODEC identification and verification algorithm is developed which can identify a CODEC with an accuracy of 96.8 % and detect the presence of a CODEC with an accuracy higher than 97 % in the presence of additive noise. Finally, the speech description taxonomy framework is developed, with the aim of characterizing various aspects of a degraded speech signal, including the mechanism that results in a signal with particular characteristics, the vocabulary that can be used to describe those degradations and the measurable signal properties that can characterize the degradations. The taxonomy is implemented as a relational database that facilitates the modeling of the relationships between various attributes of a signal and promises to be a useful tool for training and guiding audio analysts
    • …
    corecore