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Abstract

We present an application of transductive semi-supervised learning to the problem of speaker identification. Formulating this problem
as one of transduction is the most natural choice in some scenarios, such as when annotating archived speech data. Experiments with
the CHAINS corpus show that, using the basic MFCC-encoding of recorded utterances, a well known simple semi-supervised algorithm,
label spread, can solve this problem well. With only a small number of labelled utterances, the semi-supervised algorithm drastically
outperforms a state of the art supervised support vector machine algorithm. Although we restrict ourselves to the transductive setting in
this paper, the results encourage future work on semi-supervised learning for inductive speaker identification.
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1. Introduction

An ever growing body of recorded audio material, such as
interviews, radio programmes, and legislative debates, can
be found in archives around the world. This material carries
a great potential value to broadcast companies as well as to
the public and to scholars in the humanities and social sci-
ences. However, without proper annotations, the material is
not accessible, and due to its sheer size, manual annotation
is in most cases an insurmountable task (Jong et al., 2008).
As a first step to overcome this barrier, we have investigated
the use of semi-supervised learning for automatic speaker
identification, in order to facilitate annotating such material
with least possible manual effort.

There are many dimensions along which recorded au-
dio material can be annotated. Higher order dimensions
of potential interest include the dimensions of gender, di-
alect, and emotion. In this paper we focus on the more
low level task of speaker identification. We hope, however,
that the same methods could be applicable for higher level
annotations as well.

Speaker identification is a variant of speech recognition
that amounts to identifying who, out of a group of speakers,
made a given utterance. In the closed set scenario, it is
a priori known that the utterance comes from a fixed set
of speakers. This is contrasted with the open set scenario,
in which the utterance could also come from some other
speaker, i.e., from the complement of a fixed closed set. In
this work we only consider the closed set scenario.

Most previous approaches to speaker identification have
framed the problem as one of inductive learning. The aim is
then to learn a classifier with optimal generalisation capabil-
ity, i.e., a classifier with maximal expected performance on
unseen utterances. We instead take a transductive approach,
in which the aim is reduced to learning a classifier with op-
timal performance on a finite set of instances, to which the
classifier is given access during training. Although trans-
ductive learning is limited compared to inductive learning,
in some cases it might be the most natural setting. This is
the case, for example, in corpus creation scenarios and with
annotation of archived speech, where the set of speakers is
fixed and the data is static, so that there is no need to make
generalisations beyond the given sample.

2. Semi-supervised learning

Most machine learning research have been focused on su-
pervised learning, in which the learner is given access to
only labelled data during training, or unsupervised learning,
in which the learner is only provided with unlabelled data.
In the last decade there has been a surge of interest in semi-
supervised learning, in which the learner is given access to
both labelled and unlabelled data examples during training.
The goal is to use as little labelled data as possible, since
the manual labelling is often expensive to produce, by lever-
aging much more cheaply obtained unlabelled data. For an
overview of this rapidly developing field, see Chapelle et al.
(2006b).

More formally, a semi-supervised learning problem has
the following setup. Let X be an input space; typically
a metric space. Let X, = {z;|z; € X}} | be a set of
unlabelled instances, drawn i.i.d. from some distribution on
X (the choice of indexing will soon become clear). Let )/
be an output space, and let X; = {z;|z; € X'} be a set
of labelled instances, with labels given by Y = {y;|y; €
VY, and with pairs (X;,Y) = {(z;,v;)}} drawni.i.d. from
some distribution on X x ).

In standard supervised learning one seeks to learn a map-
ping f : X — Y from the limited training data (X;,Y).
In the case of speaker identification, this amounts to learn-
ing a classification function that maps utterances to their
corresponding speaker. With semi-supervised learning, the
goal is to make use of the structure implicitly provided
by X, — which does not provide any information on the
mapping X +— ) — together with information on this map-
ping, provided by (X;,Y"). The hope is that a small set of
labelled instances can be compensated for by a large set of
unlabelled instances, which is much cheaper to get hold of.

A further distinction is made between inductive and trans-
ductive learning. In inductive learning the aim of the learner
is to find a classifier that labels instances, drawn i.i.d. from
the same underlying distribution as generated X', with as
small expected loss as possible. In a transductive learning
setting, in contrast, the aim of the learner is only to find an
optimal labelling Y = {y;}} of the set X; U X,,, with per-
formance usually only measured on {(x;,¥;)}}, ;. Which
loss function to use is determined based on the specific



problem at hand; in this work performance is measured
using the binary loss function.

There is an ongoing discussion in the machine learning
community as to whether transductive learning is an, in
principle, simpler problem than inductive learning, and thus
more appropriate when out-of-sample extensions are not re-
ally required. Chapelle et al. (2006a) present different views
on this issue. As discussed above, we are only concerned
with the transductive setting.

The central idea underlying all approaches to semi-
supervised learning is that the structure of the set X" alone,
can provide valuable information on the labelling of the
instances in X'. This notion is encoded in the clustering
assumption, which states that decision boundaries should
lie in low-density regions or, equivalently, that points be-
longing to the same cluster are likely to belong to the same
class; and the manifold assumption, according to which
the high-dimensional instance space X’ actually lies on a
low-dimensional manifold. One or both of these assump-
tions, together with the assumption of local consistency,
which states that nearby points are likely to share labels,
are assumed to hold by most semi-supervised algorithms
(Zhou et al., 2003; Chapelle et al., 2006b).

3. Data representation and distance
measures

In order to devise concrete algorithms based on the abstract
formulation of the semi-supervised learning problem above,
we need to choose a representation for the instances (utter-
ances), z; € &, and a measure of distances between pairs,
(x;,2;) € X, of instances. In this paper we assume that in-
stances are represented as real valued vectors in ™ and that
distances are computed by a positive semi-definite kernel
function K : X x X — RT. As for the representation of
the speakers, we assume that there are m different speakers,
indexed such that Y = {y;}7". This is a standard kernel
based classifier learning scenario; for a comprehensive in-
troduction to kernel methods in machine learning, see for
example, (Shawe-Taylor and Cristianini, 2004).

3.1. Utterance encoding

The predominant encoding methods used for speaker iden-
tification are the same as those used in automatic speech
recognition. This is in a way contradictory, since the goal
of speech recognition is to provide as speaker independent
models of content as possible, while the aim of speaker
identification is to provide models agnostic to speech con-
tent. Despite this contradiction, the same models seem to
work quite well for both tasks, at least under controlled
conditions; but see (Grimaldi and Cummins, 2008) for a re-
cent critique on the use of source-filter based encoding and
assumptions of local stationarity in speaker identification
and verification tasks. The main argument put forward in
the cited paper is that this encoding is highly sensitive to
speaking and channel conditions.

The most common encoding schemes for speech data are
linear filter cepstral coefficients (LFCCs), Mel-scale cepstral
coefficients (MFCCs), linear predictive coding coefficients

(LPCs) and perceptual linear prediction coefficients (PLPs)
(Holmes and Holmes, 2002). Of these MFCCs seem to be
the most popular for speaker identification and verification.
Since the focus of this work is on assessing the potential for
applying semi-supervised learning to speaker annotation,
rather than on optimal encoding, we use a standard MFCC
based encoding in which each utterance is represented as
a sequence of frames. Each frame is represented by a real
valued vector with elements corresponding to 12 cepstral
coefficients, mean energy level coefficient and the A ap-
proximation of the first and second order time derivatives
of these coefficients. This results in 39 dimensions for each
frame vector, with 100 frames being generated per second
with a window size of 25 milliseconds. We used the open
source HTK-toolkit, available at http://htk.eng.cam.ac.uk, to
extract these features, with configuration parameters accord-
ing to table 1. No additional pre-processing was performed,
except for that provided by HTK by default.

Parameter Setting
TARGETKIND MFCC_E_D_A
TARGETRATE 100 000
WINDOWSIZE 250 000
USEHAMMING T
PREEMCOEF 0.0

NUMCHANS 26
NUMCEPS 12
ENORMALISE T
LOFREQ 0
HIFREQ 8000

Table 1: HTK configuration for MFCC extraction

3.2. Kernel functions

As described in the previous section, each utterance is repre-
sented as a sequence of frame vectors capturing the locally
stationary spectral properties of the speech signal. In order
to use these frame vectors in the learning scenario sketched
above, we need to define a distance measure between pairs
of utterances, i.e., between pairs of sequences of frame
vectors.

The choice of an appropriate distance measure is depen-
dent on the learning algorithm. For example, a Gaussian
mixture model (GMM, briefly discussed below) does not
exploit any sequential information and only makes use of
frame level information — it is equivalent to a single state
hidden Markov model (HMM) — and implicitly makes use of
the standard Euclidian distance on $" in the computation
of the mixture memberships for each frame.

The kernel based methods that are the focus of this work
on the other hand rely on a distance measure on pairs of
sequences of frames. In order for theoretical results on
the convergence of these algorithms to hold, the distance
measure must be a positive semi-definite kernel function.
A substantial range of kernels defined on structured data,
such as sequences, have been proposed; see (Gértner, 2003)
for a survey. Kernels proposed for speaker verification and



identification include the computationally expensive Fisher
kernel (Haussler, 1999) used by Wan and Renals (2005)
and the mean and max' kernels employed by Mariéthoz and
Bengio (2007).

We take the following simple route to the problem of
handling the sequential structure of the instances. First
we sum the frame vectors for each utterance and then we
normalise the resulting utterance vectors to unit Euclidean
norm. Any valid kernel function could then be used to
compute the distance between utterance vectors, however
we again keep things simple and use a linear kernel:

Fiin (@i, 25) = ¢(x4) - p(x5),

where ¢(z) = S22, 2@ /| 272, 2|, 2 denotes the
tth frame vector of utterance x, T, is the total number of
frames in x, and - denotes the standard dot-product in R";
or as a radial basis function (RBF) kernel with variance o
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kwpe (i, x5) = exp <

In the case of the linear kernel, this scheme corresponds
to normalising each frame before computing the pair-wise
distances between all pairs of frames, which is a similar
operation to that performed by the mean kernel when a
linear kernel is used to compute distances between pairs of
frames.

A further issue in semi-supervised learning is whether the
clustering and manifold assumptions are plausible, given
the chosen representation and distance measure. The Mel-
scale cepstral coefficients are known to capture at least some
aspects of human speech that are specific to the speaker,
and since each speaker has a rather stable and characteristic
voice, utterances should form clusters under this encod-
ing. Furthermore, since the human vocal tract has limited
degrees of freedom, utterances should indeed be well de-
scribed by a manifold of lower dimension. Both assump-
tions should thus be considered plausible in this case.

4. Learning algorithms

The predominant framework for speaker identification and
verification is based on a generative Gaussian mixture
model (GMM) (Reynolds and Rose, 1995). The parame-
ters of the model are usually fit to the data using the method
of expectation maximisation (EM). For speaker identifi-
cation one can then use the n-way classification function
f(z) = argmax,, P(x|0,,)P(0,,), where 0,, are the pa-
rameters estimated for speaker y;, to predict the speaker
of utterance . Recently, discriminative frameworks, most
notably support vector machines (SVMs), that directly try
to model argmax, P(y;|z) instead of indirectly by way
of P(x|0)P(6) have gained popularity for speaker iden-
tification (Wan and Renals, 2005; Mariéthoz and Bengio,
2007).

In this work we are mainly interested in the semi-
supervised label spread algorithm described in the next

"Note that the max kernel is not a positive semi-definite func-
tion.

section. For comparison we also make use of the super-
vised SVM algorithm. Since this is a very well known algo-
rithm, we refer the reader to, for example, Vapnik (2000)
for a description. For the experiments below we used the
SVM implementation provided by the open source LIBSVM
library (Chang and Lin, 2001). We performed the experi-
ments using both the linear and RBF kernels described in
the previous section.

The label spread algorithm, introduced in (Zhou et al.,
2003), is a transductive semi-supervised learning algorithm
based on the clustering and manifold assumptions previ-
ously discussed. The idea is to find a labelling Y,, of the
set X, such that the labelling is smooth with respect to
local distances as well as with respect to the underlying
structure of the data; this is referred to as local and global
consistency, respectively.

Local distances are defined by means of the RBF kernel,
kry g, while the global structure is encoded by a normalised
version of the affinity matrix W, with W; = ket (24, ;)
fori = 1...14+wu,i # j and W;; = 0. This matrix
represents the edges of the graph of pair-wise weighted
distances between instances in X; U X,,, which captures
the geometry induced by both labelled and unlabelled data.

The idea of the label spread algorithm is to iteratively
let each instance spread information on its label to other
instances. The amount of information spread is dependent
on the geometry of the data, with nearby instances receiving
more information than distant instances. After convergence,
the labels will have spread in such a way that similar in-
stances have the same labels and instances belonging to the
same cluster — with clusters determined by the structure of
the graph GG — have the same labels.

The algorithm can be described as performing the follow-
ing steps (Zhou et al., 2003):

1. Compute the affinity matrix W as defined above and
sett = 0.

2. Form the normalised graph Laplacian L =
D~Y2WD=1/2 with D being the diagonal degree
matrix with D;; = Ej Wi]‘.

3. Initialise Y@ = (Y], ... Y,1.0,...,0)7, where Y;
is the class indicator row vector with all elements zero
except for element Y;; = y;.

4. Tterate Y1) = o LY ® + (1 — a)Y(© until conver-
gence to Y(O"), where « is a parameter in (0,1).

5. Label point z; according to f(z;) = argmax; Yigoo).

Zhou et al. (2003) give a proof of convergence for the above
algorithm, and they show that it has the closed form solution
Y () = (I — L)'y ©),

The introduction of the Laplacian, L, may be easier
grasped by formulating the above algorithm as the equiva-
lent regularised minimisation problem (Zhou et al., 2003):
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where p is a regularisation parameter.

By construction W;; is non-zero in regions where points
are close, and zero or small in regions where points are far
apart. The term W;; ||Yi/v/Dii — Y;/+ /Djj||2 will thus
penalise large variations of the labelling function in high-
density regions with respect to the manifold, in effect im-
plementing the clustering and manifold assumptions.

5. Experiments

In order to evaluate the different approaches described
above, we conducted a set of experiments in which we
investigated the following:

1. The potential for using the semi-supervised learning
algorithm — label spread — for transductive speaker
identification as compared to a reference inductive
supervised learning algorithm — the support vector
machine.

2. How the performance of these learning algorithms is
affected by the number of labelled instances.

3. The effect of the number of speakers on the algorithms’
learning performance.

All experiments where performed on datasets created
from data in the CHAINS corpus (Cummins et al., 2006).
This corpus contains utterances recorded under varying dif-
ferent speaking conditions. For these experiments we only
made use of the SLOW part, which is comprised of 33 utter-
ances each by 36 speakers. Each utterance is approximately
2-3 seconds in length.

From this corpus we generated a total of 4 x 7
datasets by varying the number of speakers, m &
{4,8,16,36}, and the number of labelled instances
from each class I; € {1,2,4,7,10,14,17}, correspond-
ing to proportions of labelled instances according to
{0.01,0.05,0.1,0.2,0.3,0.4,0.5}. For each dataset we ran
each learning algorithm 10 times, in order to reduce the
effects of random noise and to estimate the variance of the
classifier performance. For each run, the labelled part of
each of the datasets was picked by sampling /; utterances
from each speaker, without replacement.

Before turning to the results of the experiments on these
datasets there are two caveats. First, each of the algorithms
has parameters which need to be optimised, in order to get
maximum performance for each dataset. However, this goes
against the idea of using semi-supervised learning, in which
we want to annotate as few data points as possible. We
therefore cheated somewhat by running prior experiments
to determine reasonable parameter values. Fortunately, the
optimal parameter values were very stable in these exper-
iments, indicating that choosing a standard setting should
work well on similar datasets. Note that in the literature
on semi-supervised learning, it is customary to report best
parameter values in this way, though lately this has been
criticised.

2CHAINS is released under a Creative Commons licence, and
can be downloaded free of charge at http://chains.ucd.ie.

Second, by picking the labelled instances according to
the a priori known uniform distribution over classes we
are cheating as well. Since in general we cannot expect
to know the exact distribution over classes, we need to
randomly sample the set of labelled instances. When we are
selecting a very small number of labelled instances, we run
a significant risk of obtaining an erroneous estimate of the
label distribution. This can be a severe problem in practice,
since the algorithms in use are sensitive to this estimate. A
more systematic perturbation analysis is thus necessary in
order to assess the utility of these algorithms in real world
scenarios.

With these caveats in mind, the results of the experiments
are given in figure 1 (a-d). As indicated by these figures,
the performance of the semi-supervised learning algorithm
is vastly superior to the supervised algorithms when the
number of labelled instances is small. Even when only
one utterance is provided for each speaker, the label spread
algorithm gives rather useable results. When the proportion
of labelled examples is increased label spread performs on
par with the support vector machine with the RBF-kernel.

Since the label spread algorithm is more computationally
demanding, it does not make sense to apply it when more la-
belled training data is available. However, semi-supervised
algorithms generally perform better when more unlabelled
data is available as well. Unfortunately we were unable to
investigate this issue further, due to the small size of the
currently used corpus.

Although we have only presented results on speaker iden-
tification in this paper, when analysing the errors made by
the semi-supervised algorithm, we noted that errors were
much less common across gender and dialect borders, than
within. This suggest that the same method can be used for
annotating spoken data along other dimensions, such as
those mentioned in the introduction, as well. This would
be a particularly interesting possibility for scholars, who
could select an annotation dimension of choice, manually
annotate a small subset of their data along this dimension,
and let the semi-supervised algorithm do the rest.

6. Conclusions

We have shown that semi-supervised learning can be suc-
cessfully applied to the task of transductive speaker an-
notation. When the number of labelled utterances is very
small this method significantly outperforms inductive sup-
port vector machines, while performing on par when the
number of labelled utterances is increased. While the utility
of transductive learning might be limited compared to that
of inductive learning, these results should encourage fur-
ther work on using semi-supervised learning transductive
as well as for inductive speaker identification.

References

Chang, C. and C. Lin (2001). LIBSVM: a library for support
vector machines.

Chapelle, O., B. Scholkopf, and A. Zien (2006a). A dis-
cussion of Semi-Supervised learning and transduction.



Error rate, 4 speakers

¢4 SVM (Linear)
¥ v SVM (RBF)
e—e |abel Spread

0.035][,

0.03

0.025

0.02

Test error

0.015

0.01

0.005

1 2 4 7 10 14 17
# of labeled utterances per speaker (out of 33 utterances per speaker)

Error rate, 16 speakers

44 SVM (Linear)
025 - ¥.v SVM (RBF)
v e—e | abel Spread

0.2

o
o

Test error

0.1

0.05

. . . . . . .
1 2 4 7 10 14 17
# of labeled utterances per speaker (out of 33 utterances per speaker)

Error rate, 8 speakers

44 SVM (Linear)
. v v SVM (RBF)
o2ff. . e—e Label Spread |{

015

Test error

0.1

. . . . . .
1 2 4 7 10 14 17
# of labeled utterances per speaker (out of 33 utterances per speaker)

Error rate, 36 speakers

44 SVM (Linear)
¥ v SVM (RBF)
e—e |abel Spread

I
N N
IS 5}
—

o
w
[
e

Test error

o
o N o
N ol w

o
o

o

o
1=
@

o

. . . . . .
1 2 4 7 10 14 17
# of labeled utterances per speaker (out of 33 utterances per speaker)
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