207 research outputs found

    Automated detection and analysis of fluorescence changes evoked by molecular signalling

    Get PDF
    Fluorescent dyes and genetically encoded fluorescence indicators (GEFI) are common tools for visualizing concentration changes of specific ions and messenger molecules during intra- as well as intercellular communication. While fluorescent dyes have to be directly loaded into target cells and function only transiently, the expression of GEFIs can be controlled in a cell and time-specific fashion, even allowing long-term analysis in living organisms. Dye and GEFI based fluorescence fluctuations, recorded using advanced imaging technologies, are the foundation for the analysis of physiological molecular signaling. Analyzing the plethora of complex fluorescence signals is a laborious and time-consuming task. An automated analysis of fluorescent signals circumvents user bias and time constraints. However, it requires to overcome several challenges, including correct estimation of fluorescence fluctuations at basal concentrations of messenger molecules, detection and extraction of events themselves, proper segmentation of neighboring events as well as tracking of propagating events. Moreover, event detection algorithms need to be sensitive enough to accurately capture localized and low amplitude events exhibiting a limited spatial extent. This thesis presents three novel algorithms, PBasE, CoRoDe and KalEve, for the automated analysis of fluorescence events, developed to overcome the aforementioned challenges. The algorithms are integrated into a graphical application called MSparkles, specifically designed for the analysis of fluorescence signals, developed in MATLAB. The capabilities of the algorithms are demonstrated by analyzing astroglial Ca2+ events, recorded in anesthetized and awake mice, visualized using genetically encoded Ca2+ indicators (GECIs) GCaMP3 as well as GCaMP5. The results were compared to those obtained by other software packages. In addition, the analysis of neuronal Na+ events recorded in acute brain slices using SBFI-AM serve to indicate the putatively broad application range of the presented algorithms. Finally, due to increasing evidence of the pivotal role of astrocytes in neurodegenerative diseases such as epilepsy, a metric to assess the synchronous occurrence of fluorescence events is introduced. In a proof-of-principle analysis, this metric is used to correlate astroglial Ca2+ events with EEG measurementsFluoreszenzfarbstoffe und genetisch kodierte Fluoreszenzindikatoren (GEFI) sind gängige Werkzeuge zur Visualisierung von Konzentrationsänderungen bestimmter Ionen und Botenmoleküle der intra- sowie interzellulären Kommunikation. Während Fluoreszenzfarbstoffe direkt in die Zielzellen eingebracht werden müssen und nur über einen begrenzten Zeitraum funktionieren, kann die Expression von GEFIs zell- und zeitspezifisch gesteuert werden, was darüber hinaus Langzeitanalysen in lebenden Organismen ermöglicht. Farbstoff- und GEFI-basierte Fluoreszenzfluktuationen, die mit Hilfe moderner bildgebender Verfahren aufgezeichnet werden, bilden die Grundlage für die Analyse physiologischer molekularer Kommunikation. Die Analyse einer großen Zahl komplexer Fluoreszenzsignale ist jedoch eine schwierige und zeitaufwändige Aufgabe. Eine automatisierte Analyse ist dagegen weniger zeitaufwändig und unabhängig von der Voreingenommenheit des Anwenders. Allerdings müssen hierzu mehrere Herausforderungen bewältigt werden. Unter anderem die korrekte Schätzung von Fluoreszenzschwankungen bei Basalkonzentrationen von Botenmolekülen, die Detektion und Extraktion von Signalen selbst, die korrekte Segmentierung benachbarter Signale sowie die Verfolgung sich ausbreitender Signale. Darüber hinaus müssen die Algorithmen zur Signalerkennung empfindlich genug sein, um lokalisierte Signale mit geringer Amplitude sowie begrenzter räumlicher Ausdehnung genau zu erfassen. In dieser Arbeit werden drei neue Algorithmen, PBasE, CoRoDe und KalEve, für die automatische Extraktion und Analyse von Fluoreszenzsignalen vorgestellt, die entwickelt wurden, um die oben genannten Herausforderungen zu bewältigen. Die Algorithmen sind in eine grafische Anwendung namens MSparkles integriert, die speziell für die Analyse von Fluoreszenzsignalen entwickelt und in MATLAB implementiert wurde. Die Fähigkeiten der Algorithmen werden anhand der Analyse astroglialer Ca2+-Signale demonstriert, die in narkotisierten sowie wachen Mäusen aufgezeichnet und mit den genetisch kodierten Ca2+-Indikatoren (GECIs) GCaMP3 und GCaMP5 visualisiert wurden. Erlangte Ergebnisse werden anschließend mit denen anderer Softwarepakete verglichen. Darüber hinaus dient die Analyse neuronaler Na+-Signale, die in akuten Hirnschnitten mit SBFI-AM aufgezeichnet wurden, dazu, den breiten Anwendungsbereich der Algorithmen aufzuzeigen. Zu guter Letzt wird aufgrund der zunehmenden Indizien auf die zentrale Rolle von Astrozyten bei neurodegenerativen Erkrankungen wie Epilepsie eine Metrik zur Bewertung des synchronen Auftretens fluoreszenter Signale eingeführt. In einer Proof-of-Principle-Analyse wird diese Metrik verwendet, um astrogliale Ca2+-Signale mit EEG-Messungen zu korrelieren

    Combining electro- and magnetoencephalography data using directional archetypal analysis

    Get PDF
    Metastable microstates in electro- and magnetoencephalographic (EEG and MEG) measurements are usually determined using modified k-means accounting for polarity invariant states. However, hard state assignment approaches assume that the brain traverses microstates in a discrete rather than continuous fashion. We present multimodal, multisubject directional archetypal analysis as a scale and polarity invariant extension to archetypal analysis using a loss function based on the Watson distribution. With this method, EEG/MEG microstates are modeled using subject- and modality-specific archetypes that are representative, distinct topographic maps between which the brain continuously traverses. Archetypes are specified as convex combinations of unit norm input data based on a shared generator matrix, thus assuming that the timing of neural responses to stimuli is consistent across subjects and modalities. The input data is reconstructed as convex combinations of archetypes using a subject- and modality-specific continuous archetypal mixing matrix. We showcase the model on synthetic data and an openly available face perception event-related potential data set with concurrently recorded EEG and MEG. In synthetic and unimodal experiments, we compare our model to conventional Euclidean multisubject archetypal analysis. We also contrast our model to a directional clustering model with discrete state assignments to highlight the advantages of modeling state trajectories rather than hard assignments. We find that our approach successfully models scale and polarity invariant data, such as microstates, accounting for intersubject and intermodal variability. The model is readily extendable to other modalities ensuring component correspondence while elucidating spatiotemporal signal variability

    Dynamic inverse problem solution considering non-homogeneous source distribution with frequency spatio temporal constraints applied to brain activity reconstruction

    Get PDF
    Para reconstruir la actividad cerebral es necesario estimular la ubicación de las fuentes activas del cerebro. El método de localización de fuentes usando electroencefalogramas es usado para esta tarea por su alta resolución temporal. Este método de resolver un problema inverso mal planteado, el cual no tiene una solución única debido al que el números de variables desconocidas es mas grande que el numero de variables conocidas. por lo tanto el método presenta una baja resolución espacial..

    Advanced Signal Processing Solutions for Brain-Computer Interfaces: From Theory to Practice

    Get PDF
    As the field of Brain-Computer Interfaces (BCI) is rapidly evolving within both academia and industry, the necessity of improving the signal processing module of such systems becomes of significant practical and theoretical importance. Additionally, the employment of Electroencephalography (EEG) headset, which is considered as the best non-invasive modality for collecting brain signals, offers a relatively more user-friendly experience, affordability, and flexibility of design to the developers of a BCI system. Motivated by the aforementioned facts, the thesis investigates several venues through which an EEG-based BCI can more accurately interpret the users' intention. The first part of the thesis is devoted to development of theoretical approaches by which the dimensionality of the collected EEG signals can be reduced with minimum information loss. In this part, two novel frameworks are proposed based on graph signal processing theory, referred to as the GD-BCI and the GDR-BCI, where the geometrical structure of the EEG electrodes are employed to define and configure the underlying graphs. The second part of the thesis is devoted to seeking practical, yet facile-to-implement, solutions to improve the classification accuracy of BCI systems. Finally, in the last part of the thesis, inspired by the recent surge of interest in hybrid BCIs, a novel framework is proposed for cuff-less blood pressure estimation to be further coupled with an EEG-based BCI. Referred to as the WAKE-BPAT, the proposed framework simultaneously processes Electrocardiography (ECG) and Photoplethysmogram (PPG) signals via an adaptive Kalman filtering approach

    Time-Frequency Mixed-Norm Estimates: Sparse M/EEG imaging with non-stationary source activations

    Get PDF
    International audienceMagnetoencephalography (MEG) and electroencephalography (EEG) allow functional brain imaging with high temporal resolution. While solving the inverse problem independently at every time point can give an image of the active brain at every millisecond, such a procedure does not capitalize on the temporal dynamics of the signal. Linear inverse methods (Minimum-norm, dSPM, sLORETA, beamformers) typically assume that the signal is stationary: regularization parameter and data covariance are independent of time and the time varying signal-to-noise ratio (SNR). Other recently proposed non-linear inverse solvers promoting focal activations estimate the sources in both space and time while also assuming stationary sources during a time interval. However such an hypothesis only holds for short time intervals. To overcome this limitation, we propose time-frequency mixed-norm estimates (TF-MxNE), which use time-frequency analysis to regularize the ill-posed inverse problem. This method makes use of structured sparse priors defined in the time-frequency domain, offering more accurate estimates by capturing the non-stationary and transient nature of brain signals. State-of-the-art convex optimization procedures based on proximal operators are employed, allowing the derivation of a fast estimation algorithm. The accuracy of the TF-MxNE is compared to recently proposed inverse solvers with help of simulations and by analyzing publicly available MEG datasets

    Personalised Signal Processing for Cortical and Cardiac Applications

    Get PDF
    Biomedical signals reflect alterations in human physiological parameters in both healthy and pathological conditions. Their inherent variability over time and across individuals reduces the reproducibility of results and utility of biomedical signals. Personalisation of signal processing schemes by including parameters associated with the sources of inter-session and inter-subject variability can promote the usability of biomedical signals for larger cohorts. This thesis explores strategies for personalising signal processing techniques for the assessment of cortical and cardiac electrophysiological phenomena. A sensorimotor rhythm-based brain-computer interface (BCI) exploits changes in electroencephalogram (EEG) during motor imagery tasks and can establish a direct communication link between the brain and a computer, which may augment motor performance. Dealing with the variability inherent in EEG signals is not trivial and yet to be understood comprehensively to deliver BCI technology for practical use. A waveletbased signal processing method has been applied to model inter-subject associative source activations, leading to a more generalised BCI design. Intracardiac electrograms (EGM) are important for mapping electrical activation across the heart. Multiple variables, including bipolar vector orientation relative to the wave propagation vector, inter-electrode spacing, impact EGM recording. In this thesis, intracardiac EGM recorded with a customised array of electrodes were analysed to assess the impact of bipolar vector orientation and inter-electrode spacing on atrial fibrillation mapping. A novel spatial filtering method has been proposed to reduce the measurement uncertainty due to bipolar vector orientation. Besides, an independent component analysis-based filtering has been proposed as a potential preprocessing method for eliminating ventricular far-field artefact.Thesis (MPhil) -- University of Adelaide, School of Electrical & Electronic Engineering, 202
    corecore