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Montréal, Québec, Canada

June 2018

c© Golnar Kalantar, 2018



CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Golnar Kalantar

Entitled: Advanced Signal Processing Solutions for Brain-Computer Interfaces:

From Theory to Practice

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Quality Systems Engineering)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Name of the Chair

External Examiner
Dr. Name of External Examiner

Examiner
Dr. Name of Examiner One

Supervisor
Dr. Yong Zeng

Approved by
, Chair
Department of Concordia Institute for Information Systems Engi-
neering

2018
Amir Asif, Dean
Faculty of Engineering and Computer Science



Abstract

Advanced Signal Processing Solutions for Brain-Computer Interfaces: From Theory to
Practice

Golnar Kalantar

As the field of Brain-Computer Interfaces (BCI) is rapidly evolving within both academia and

industry, the necessity of improving the signal processing module of such systems becomes of sig-

nificant practical and theoretical importance. Additionally, the employment of Electroencephalog-

raphy (EEG) headset, which is considered as the best non-invasive modality for collecting brain

signals, offers a relatively more user-friendly experience, affordability, and flexibility of design to

the developers of a BCI system. Motivated by the aforementioned facts, the thesis investigates

several venues through which an EEG-based BCI can more accurately interpret the users’ inten-

tion. The first part of the thesis is devoted to development of theoretical approaches by which the

dimensionality of the collected EEG signals can be reduced with minimum information loss. In

this part, two novel frameworks are proposed based on graph signal processing theory, referred to

as the GD-BCI and the GDR-BCI, where the geometrical structure of the EEG electrodes are em-

ployed to define and configure the underlying graphs. The second part of the thesis is devoted to

seeking practical, yet facile-to-implement, solutions to improve the classification accuracy of BCI

systems. Finally, in the last part of the thesis, inspired by the recent surge of interest in hybrid BCIs,

a novel framework is proposed for cuff-less blood pressure estimation to be further coupled with

an EEG-based BCI. Referred to as the WAKE-BPAT, the proposed framework simultaneously pro-

cesses Electrocardiography (ECG) and Photoplethysmogram (PPG) signals via an adaptive Kalman

filtering approach.
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Chapter 1

Thesis Overview

1.1 Outline

Inside our heads, weighing about 1.5 kg, is an astonishing living organ consisting of billions of

tiny cells. It enables us to sense the world around us, to think and to talk. The human brain is the

most complex organ of the body, and arguably the most complex thing on earth. Since the original

demonstration that electrical activity generated by ensembles of cortical neurons can be employed

directly to control a robotic manipulator, research on brain-computer interfaces has experienced

impressive growth. Brain-computer interface is a device that translates neural activity of the brain

into commands driving a machine. Such a system consists of three major parts:

(1) A device to record the natural activity of the brain. The nature of these recordings can impose

certain constraints on the implementation and potential capabilities of the system;

(2) An effector, which is controlled by the neural signals. The effector can be anything from a

visual signal to, e.g., complicated robotic or prosthetic system, and;

(3) An algorithm that analyzes and interprets the neural signals as control commands. This algo-

rithm links the other two parts together. It determines which features of the recorded neural

activity will be employed, and therefore, should be produced by the user, and which control

commands can be created from the activity.
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Since the latter item is the part which plays the main role in correct interpretation of thoughts-into-

commands, the major and fundamental challenges in the field of brain-computer interfaces have

been declared and argued for this module. To be more specific and in particular, EEG-based BCI

systems often suffer from two main problems: (i) Low spatial resolution, though high temporal reso-

lution; and, (ii) Practical approaches through which the final accuracy of users’ intention translation

increases for BCI applications. The first propounded problem is more prominent while dealing with

large datasets collected via EEG headsets, making attempts to extract the most informative parts of

the data and to discard the rest, which calls for competent techniques to reduce the size of collected

data (signals) with minimal loss of information. The second issue mentioned requires creative solu-

tions to ensure the classifier is not defined too general, and is adaptive and robust enough in respect

to each subject’s data.

1.2 Thesis Contributions

Inspired by the stated issues, I have made some contributions [1–6] during my thesis research

work as briefly outlined below:

(1) The GD-BCI Framework [1]: This framework is a new graph-based approach, proposed to

spatiotemporally filter the data by taking into account both geometrical structure of the EEG

channels and the correlation between the EEG signals. The end goal is to identify the pattern

of the brain activity using a robust method for pre-processing, processing, and classification

of the EEG signals, with the main focus on data dimensionality reduction. The proposed

approach seeks for the most significant feature vectors required for better classification of

EEG signals, therefore, adaptively selects them through spectral decomposition of the data

using the graph Laplacian matrix. Then, the tangent space mapping method is applied to

vectorize the dimensionally reduced matrices and map them onto Euclidean space. After

that, the linear support vector machine algorithm is employed for classification. Experiments

are conducted on Dataset IVa from BCI Competition III, including data from five different

subjects consisting of the right hand and right foot motor imagery actions, and the results

show that the GD-BCI framework provides higher classification accuracy as compared to its
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counterparts.

• Pros and Cons: The GD-BCI framework proposes a graph-based approach which

brings about a higher classification accuracy, and configures the graph in a fashion that

the impact of active regions of the brain on the signals is taken into account. How-

ever, the impressive accuracies come with the price of an exhaustive search for a pair

of constants required for adjustment of the graph, which is not preferable in real-world

applications of BCI systems.

(2) The GDR-BCI Framework [2]: The GDR-BCI framework, is similar in nature to the

GD-BCI, and it capitalizes on the fact that functionality of different connectivity neighbor-

hoods varies based on the intensity of the performed activity and concentration level of the

subject. Initial functional clustering of EEG electrodes is built by designing a separate adja-

cency matrix for each identified functional cluster. A collapsing methodology is developed

based on total variation measures on graphs, i.e., the overall model will eventually be reduced

(collapsed) into two functional clusters. The experimental results based on the same Dataset

IVa from BCI Competition III show that the proposed method can provide higher classifica-

tion accuracy as compared to its counterparts

• Pros and Cons: The proposed framework offers two main superiorities over its state-

of-the-art counterparts and the GD-BCI: (i) First, the resulting dimensionality reduction

is subject-adaptive and respects the brain plasticity of subjects, and; (ii) Second, the

proposed methodology identifies active regions of the brain during the motor imagery

task, which can be used to re-align EEG electrodes to improve accuracy during consec-

utive data collection sessions. The only drawback this framework is the longer time of

processing as compared to its counterparts, as it includes the total variation graph loop

that evaluates each cluster.

(3) The Progressive Fusion of Multi-rate MI Classification for BCIs [3]: This framework ad-

dresses the issues arose in the case of limited number of training trials at hand. This approach

consists of two filters running in parallel namely: (i) The Progressive Filter: An efficient filter
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that performs both feature extraction and classification steps based on the set of all arriving

epochs to re-train progressively over time. (ii) The Active Filter: A simplified CSP-based

feature extraction approach running online based on pre-trained classifiers, i.e., a lighter ver-

sion of the Progressive Filter that runs faster than its counterpart. The proposed framework

is evaluated both based on dataset IVa from the BCI competition III, and through real data

collected via the Emotiv Epoc headset.

• Pros and Cons: The proposed framework is a great solution for practical BCI appli-

cations, especially those that function in a real-time manner. However, depending on

the capabilities of the implemented BCI system, this approach might be consuming

relatively more energy/memory space, which would not be optimal with respect to its

application.

(4) Improving the Accuracy of MI EEG-based BCIs Through Trimming the Epochs [4]:

This method is proposed to readjust the recorded epochs in a manner that most informative

parts of the signals are extracted and the segments of the epochs which do not include the

response of the subjects to the stimuli would be discarded. This approach is robust to the

different natures of the recorded datasets, and readjusts the data in a way that the most infor-

mative time interval within each epoch would be processed and further on, classified.

• Pros and Cons: The implementation of the proposed method on the dataset IVa from the

BCI competition III shows great potential for this approach, moreover, the processing

time that this technique adds to an original code is very small. However, for the approach

to be more robust regarding the final trimmed interval, it is important to take into account

additional methods to ensure the classifier is of low bias and low variance at the same

time, which might lead to an increase in the processing time.

(5) The WAKE-BPAT Framework [5]: The motivation behind this work was the recent urgency

to design continuous and cuff-less blood pressure (BP) monitoring solutions, not only for the

purpose of hybrid BCIs, but more importantly to prevent, detect, and treat hypertension. The

WAKE-BPAT framework is a novel wavelet-based feature extraction algorithm coupled with
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an adaptive and multiple-model Kalman filtering. This framework provides accurate and

dynamic BP estimates by extraction and fusion of different pulse arrival time (PAT) features.

Experimental evaluations of WAKE-BPAT based on a real dataset collected via Gen-1 device

confirms the superiority of the proposed framework in comparison to its counterparts.

• Pros and Cons: The proposed approach exhibits great potential, the processing steps

provide a solid robust framework to estimate the blood pressure through simultaneous

ECG and PPG signals. However, the BP estimation methods have not been excessively

tested as a module of hybrid BCI system and therefore, the effectiveness of such a

system is to be investigated furthermore.

1.3 Organization of the Thesis

To provide the relevant context, the rest of the thesis is organized as follows:

• Chapter 1 provides an overview and a summary of important contributions made in the thesis.

• Chapter 2 presents a comprehensive background and literature review on brain-computer in-

terfaces and their applications, as well as their modules and the corresponding processing

methods.

• Chapter 3 considers the problem of dimensionality reduction. Different graph-based dimen-

sionality reduction methods are proposed, introducing the GD-BCI and GD-BCI frameworks.

• Chapter 4 introduces two practical solutions to increase the accuracy of classification of BCI

systems.

• In Chapter 5, a background is provided on hybrid BCI systems, and a cuffless blood pressure

estimation framework, called the WAKE-BPAT, is proposed.

• Chapter 6 concludes the thesis and provides some directions for future work.
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Chapter 2

Background and Literature Review on

Brain Computer Interfacing

2.1 Brain Computer Interfaces: Why and How?

How do people with severe motor disabilities and/or speech problems manage to perform the

activities of their daily lives? You may have seen someone using a set of push buttons on a computer

or tablet that speaks for him/her, or those who use specialized physical devices, such as a wheelchair

or a robotic arm, to help them move around and do accomplish the tasks of their day. These devices

are known as Augmentative and Alternative Communication technologies (AAC), aiding those who

suffer from motor disabilities or severe speech problems to improve their quality of daily life, pos-

sibly without requiring a caregiver. Despite the success and public acceptance of the conventional

AAC, there have been people with certain need and requirements, due to their severe condition,

who are not able to take advantage of these means of communication. For instance, those who are

totally paralyzed, or “locked-in”, are restricted from both verbal and non-verbal communication,

even though they are conscious and alert [7]. The inability of communicating, neither emotions and

thoughts nor physical needs of one, calls for a technology capable of a deeper level of communica-

tion and of reaching out to the thoughts of the impaired users [8]. This is essentially the origin of

the recent upsurge in the field of Brain-Computer Interfaces (BCIs).
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2.1.1 Introduction to the BCIs

The BCI systems, while requiring no peripheral muscular activity, enable a user to use solely

his/her brain activities to send commands to an electrical device. BCI can be considered as a system

for which the input is the brain activity and the output is a set of device control signals, therefore, the

BCI system itself functions as a translator, measuring specific features of the brain signals. Jacques

Vidal [9] was the first researcher who proposed the term “brain-computer interface” in 1973, when

he presented a system that could interpret brain signals into computer control signals. BCI tech-

nology initially used to be unattractive for serious scientific investigation due to false assumptions

about its applications. The general public, as well as academia, often used to reject the idea of

successfully deciphering thoughts or intentions by means of brain activity in the past, as strange and

remote. Hence, investigation in the field of brain activity has usually been limited to the analysis of

neurological disorders in a clinical setting or the exploration of brain functions in laboratories. In

contrary, during the past two decades, experimental research into BCIs has expanded significantly,

with promising results presented for healthy people and few successful and practical controlled

clinical outcome studies for patients. BCIs are starting to prove their efficacy as assistive and reha-

bilitative technologies in patients who suffer from severe motor impairments. Moreover, recently,

several fruitful developments and expansions of its market for both healthy and unhealthy people

have emerged. This sparked progress is driven by the advancements in terms of effectiveness and

increase in the number of available technologies to record and process brain signals.

The BCI systems generally share the same principles, i.e. the detected brain signals are ampli-

fied and recorded, then filtered, smoothed, and classified according to relevant characteristics (e.g.,

sensorimotor rhythms over the motor cortex). After processing and decoding of the brain signals, the

output of the BCI can be used to control the movement of a prosthesis, orthosis, wheelchair, robot

or cursor, or to direct electrical stimulation of muscles [10]. Prior to naming the potential/active

practical areas of the BCI technology, it is of great importance to clarify the difference between a

tool, in this case a BCI, and an application. A tool in the present context is a device which is spec-

ified by the manner in which it performs its function, and applies to a wide variety of applications.

Its effectiveness and ease of use evaluates a tool’s performance, and its function remains the same,
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regardless of the purpose it is serving. On the other hand, an application is primarily described by

the purpose it serves, and its evaluation focuses on how well it fulfills serving the target purpose,

while it may also be described regarding the tool it employs.

Having the above definitions in mind, it can be said that BCIs are tools that record and analyze

brain activities, such as, Electroencephalography (EEG) signals, which will be discussed later in

details in Subsection 2.2. Moving a cursor, selection among two or more possible choices shown

to the subject of the study, or controlling a robot, are some examples of BCIs employed as suitable

and responsive tools to use. BCI applications are widely spread in various fields of research and

medical industry. Generally speaking, BCI applications can be classified into the following six main

categories:

(1)Medical; (2)Games and Entertainment;

(3)Educational and Self-Regulation; (4)Neuroergonomics and Smart Environment;

(5)Neuromarketing and Advertising, and; (6)Security and Authentication.

These applications are mostly in experimental research state and not all of them have been well-

established to be operable by general public. While working on either of these areas, the primary

concern of BCI developers must be the needs and priorities of the anticipated user, and researchers

must guard against the tendency to approach the parameters of the tools and their applications

as an abstract design exercise. BCI development requires an optimized design with well-defined

objectives, which should be based on not only a complete technical study, but also a thorough and

comprehensive behavioral analysis that essentially addresses the needs, desires, and incentives of the

users and their possible caregivers. Satisfying these conditions requires collaborative interactions

with the users, who must know how to use the technology and be persuaded that the technology

is both useful and safe. Also, essential is the cooperation of the relevant health care professionals,

who must be persuaded that the risk/benefit ratio is favorable, that the technology is safe and useful,

and that it is equal or superior to available alternatives.

In regards to the acquisition of brain activity and the modalities to do so, BCIs can be classified

into the following two main categories:
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• Invasive BCIs

Invasive BCIs are those that involve surgical implantation of electrodes, or multi-electrode

grids in the brain. These systems are intended to measure patterns of neurons’ activities in or-

der to enable the researchers to decode behaviourally relevant information from the acquired

data. The reason for such a risky and expensive intervention is to gain high signal-to-noise

ratio (SNR) electrical responses, recorded directly from the brain. This is in contrast to the

signals recorded from over the scalp, which is usually contaminated by the high amount of

noise, and these recordings are of low amplitude due to the nature of human scalp, result-

ing in low SNR. However, there is not enough evidence to justify this brutal operation, and

moreover, extensive work on brain plasticity [11] has shown that a plastic change in the adult

nervous system through learning is possible, if the respective neuronal circuit participates

functionally in the physiological tasks of that circuit. This implies that even if the advantages

of invasive BCI would overweigh its disadvantages, since the function map of the brain is

subject to change in response to the learning processes the person is exposed to, this approach

will not remain favorable in the long run.

In regards to implementation of Invasive BCIs, there are a few, yet of utmost importance

concerns that must be addressed prior to any practical experiment.

(1) Possible locations of implanted electrodes, number of electrodes to implant, and the

nature of the signals to record: In most BCI applications and the majority of the cases

in which BCI is used as a tool, the motor cortex of the brain is an obvious choice for

recording the signals; reasons being direct relevance to motory tasks and the relatively

better accessibility compared to other motor areas of the brain. In order to determine

and identify the appropriate locations for implantation, functional Magnetic Resonance

Imaging (fMRI), Magnetoencephalography (MEG), and other functional imaging tech-

niques are admittedly helpful [24]. Moreover, the number of electrodes to implant has

a direct relation with the location of the electrodes, the minimum SNR required for the

study, and the functional use of the signals, i.e., the purpose of the study/application and

the rate of information transfer to fulfill the specifications of the procedure.
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(2) User groups who might be best suited for implanted electrodes and the stability of the

recordings: Due to the severity operation required, it makes perfect sense to only pro-

ceed with invasive BCIs for patients with extreme conditions and needs. Patients who

are locked-in might benefit from invasive BCI technology if it is relatively safe and ef-

fective. Selected individuals with stroke, spinal cord injury, limb prostheses and other

conditions might Also benefit. It is of utmost importance to keep in mind that the in-

dividuals’ preferences play a key role in specifications and decisions about implantable

systems, in other words, a substantial functional advantage over the conventional non-

invasive systems must be proved to justify the implantation of the invasive electrodes.

Extensive researches on non-human subjects [12] has shown that stable recording has

been maintained over months, and in selected instances over the years. Positive results

regarding human subjects have also been observed sparsely in different research groups

around the world, however, this field is still in its infancy, requiring more research and

proven reliable outcomes. Also, prior to any implantation, tissue acceptance of the mi-

croelectrode has to be ensured.

(3) The ethical issues that must be considered in implanting recording electrodes in human

volunteers: It is perfectly clear that the patients must be informed of the risks and po-

tential dangers of the operation. Also, all the potential benefits of the system need to

be clearly and forcefully explained to the volunteers, especially because volunteers with

severe conditions tend to overestimate the benefits of the BCI, and they must be aware

of exact aid and service they will be provided with. An ethicist should be involved in

the earliest phases of any human research developing or testing invasive BCI methods.

Invasive BCIs are not the focus of this thesis, however, it is worth naming the following five

main types of brain activity that can be measured with invasive BCIs: (i) Local field poten-

tials (LFPs) [13]; (ii) Single-unit activity (SUA) [14]; (iii) Multi-unit activity (MUA) [15];

(iv) Electrocorticographic oscillations recorded from electrodes on the cortical surface (elec-

trocorticography, ECoG) [16]; and, (v) Calcium channel permeability [17].

• Non-Invasive BCIs
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Noninvasive BCIs are implemented without any sort of surgical implantation, as they enable

recording the brain signals from the external surface of the scalp. These systems are the most

widely researched BCIs due to their minimal risk and the relative convenience of conducting

studies and recruiting volunteers to participate in the study. Noninvasive interfaces are able

to detect seven types of brain signals.

(1) Slow cortical potentials

Slow cortical potentials (SCPs) are shifts in the cortical electrical activity lasting from

several hundred milliseconds to several seconds. These shifts might be initiated and trig-

gered by an external event, or induced by self. Their moderating impact on information

processing has been demonstrated in numerous studies, such as in [18].

(2) P300 Event Related Potential:

The P300 (P3) wave is an Event-Related Potential (ERP) component elicited in the

process of decision making. These waves’ occurrence does not link to the physical

attributes of a stimulus, but to a person’s reaction to it. In other words, the P300 is

known to reflect processes involved in stimulus evaluation or categorization. When

recorded by EEG, it surfaces as a positive deflection in voltage with a latency (delay

between stimulus and response) of roughly 250 to 500 ms.

(3) Steady-State Visual Evoked Potentials:

The Steady-State Visual Evoked Potentials (SSVEPs) are natural responses of the brain

to visual stimulation at specific frequencies. The brain starts generating electrical signals

at the frequencies ranging from 3.5 Hz to 75 Hz, or multiples of them, when the retina

is excited by a visual stimulus at the same frequencies. SSVEPs are useful in research

because of the excellent signal-to-noise ratio and relative immunity to artifacts [19].

(4) Error-related Negative Evoked Potentials:

The Error-related Negative (ERN) is a sharp negative going signal which begins about

the same time an incorrect motor response begins, (response-locked event-related po-

tential), and typically peaks from 80-150 milliseconds (ms) after the erroneous response

begins (or 40-80 ms after the onset of electromyographic activity). The ERN is observed
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after errors are committed during various choice tasks, even when the participant is not

explicitly aware of making the error.

(5) Blood-oxygen-level Dependent Contrast Imaging:

The firing of neurons causes a need for more energy to be provided quickly. Through a

process called the hemodynamic response, blood releases oxygen to the active neurons

at a greater rate than to inactive ones. This causes a change of the relative levels of

oxyhemoglobin and deoxyhemoglobin (oxygenated or deoxygenated blood) that can be

detected by their magnetic properties. This event can be measured by fMRI method.

(6) Cerebral Oxygenation Changes:

The Near-Infrared Spectroscopy (NIRS), as a methodology for functional neuroimaging,

is based on the fact that unlike visible light, near-infrared light (wavelength from 700 to

1000 nm) easily passes through biological tissues and is mainly absorbed by few chro-

mophores like hemoglobin with different absorption spectra for their oxygenationdeoxy-

genation states. The activation of brain regions causes an increased oxygen metabolic

rate and to initial deoxygenation of the tissue which is followed by increased regional

cerebral blood flow (rCBF). These metabolic changes enable researchers to study emo-

tional and cognitive tasks of the brain via measurements of functional NIRS [20].

(7) Sensorimotor rhythms

A Sensorimotor Rhythm (SMR) is a brain wave, the oscillatory idle rhythm of syn-

chronized electric brain activity. These brain waves appear in the recordings over the

sensorimotor cortex via modalities such as EEG. For most individuals, the frequency of

the SMR is in the range of 13 to 15 Hz, in cortical regions outside of the motor strip.

These frequencies relate to relaxed attention such as reading or engaging in a relaxing

hobby such as knitting.

Out of all the types above of noninvasive BCI signals, the focus of this thesis is on Sen-

sorimotor Rhythms. Such BCIs have been used with relatively satisfactory success, for in-

stance, Wolpaw and McFarland published the results of their study in 2004 [23], in which

they showed that patients with locked-in syndrome or high spinal cord lesions were able to
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use sensorimotor rhythms to control cursor movements or select letters or words from a com-

puter menu. EEG-based BCIs with the focus on sensorimotor rhythms will be fully discussed

throughout the remainder of the thesis. This completes an outline of invasive and noninvasive

BCIs.

As previously stated, BCIs fall into the category of communication and control systems and there-

fore, a BCI has an input, an output, and a translation algorithm that converts the former to the latter.

BCI input consists of a particular feature (or features) of brain activities and the methodology used

to measure that features. BCIs may focus on frequency-domain features (Spectral), time-domain

features (Temporal), or the features measured in respect to the location of the events taken place

on the scalp (Spatial). These features will be fully described and discussed later in Section 2.4.

Each BCI uses a particular algorithm to translate its input into output control signals. Due to the

high number of available techniques, the translation algorithm might include linear or nonlinear

models, or neural network, to name a few, or a hybrid combination of them. In many cases, BCIs

incorporate continual adaptation of important parameters to key aspects of the input provided by the

user in order to improve the accuracy of capturing the intention and its translation corresponding to

the cognitive learning curve the user takes while using the BCI system. BCI outputs can be cursor

movements, letter or icon selection, controlling a robot arm, or another form of device control, and

provide the feedback that the user and the BCI can use to adapt to optimize communication.

In addition to the three main components of a BCI, as a system, it has other distinctive charac-

teristics as well, which may be the reference of BCI’s evaluation, or comparison to its peer systems.

These include a BCI’s response time, speed and accuracy, the information transfer rate, type and

extent of user training required (which can be very crucial in terms of the target population of the

intended BCI application), appropriate user population, and required feedback technique by which

the user would remain motionless and well-understood by the system.

The focus of this thesis, although studying and practically experimenting input and output of

a BCI (Chapter 4), is mostly on the translation algorithms of a BCI. A BCI translation algorithm

is essentially a series of computations, arranged and formed in a fashion to most optimally turn

BCI system input features derived by the signal processing stage into actual device control com-

mands [24]. The diversity in translation algorithms is due in part to diversity in BCIs intended
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real-world applications. Nevertheless, in all cases the goal is to maximize performance and practi-

cability for the chosen application.

2.2 Electroencephalography (EEG)

The BCI systems, as the translators of the brain activities, evidently require at least one modality

to detect the user’s intention. Either flavors of these activities, spontaneous in the absence of exter-

nal stimuli, or evoked brain activity, as specific patterns elicited in the presence of external stimuli,

can be captured by either “electrophysiological” or “hemodynamic”-based modalities. When infor-

mation is exchanged between the electrochemical transmitters of the neurons, a set of electrophys-

iological activities is generated. The neurons generate ionic currents which flow within and across

neuronal assemblies. This flow, once large enough, causes electrical and magnetic fields, which

can be measured by means of Electroencephalography (EEG), Electrocorticography (ECoG), and

Magnetoencephalography (MEG). On the other hand, the hemodynamic response, is a process in

which the blood releases glucose to active neurons at a greater rate than in an area of inactivity.

This chemical change in the blood can be monitored by neuroimaging methods such as functional

Magnetic Resonance Imaging (fMRI), functional Near Infrared Spectroscopy (fNIRS), and Positron

Emission Tomography (PET) [25].

Hans Berger, a German psychiatrist, was the first to systematically study the electrical activities

of the human brain and to invent EEG [26]. His invention brought about a revolution and to date, a

considerable number of research results related to EEG-based BCIs have been reported in various

international journals, covering biomedical engineering, clinical neurology, neuroscience, and neu-

rorehabilitation, using EEG headsets. The reason for this popularity is that EEG, although owning

a few yet significant drawbacks, outweighs other modalities due to its minimal risk and the relative

convenience of conducting studies, as well as other technical distinct advantages, which will be

discussed further in this section.

EEG as a medical tool has become a routine clinical practice to distinguish epileptic seizures

from other types of spells, such as psychogenic non-epileptic seizures, syncope (fainting), sub-

cortical movement disorders, and migraine variants, to differentiate “organic” encephalopathy or
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delirium from primary psychiatric syndromes such as catatonia, to serve as an adjunct test of brain

death, to prognosticate, in certain instances, in patients with coma, and to determine whether to

wean anti-epileptic medications. However, EEG has been even more trending in research-related

practices, especially and extensively in neuroscience, cognitive science, cognitive psychology, neu-

rolinguistics, and psychophysiological research. The reason behind this trending interest, despite

the relatively poor spatial sensitivity of EEG, is the several advantages it possesses over other its

counterparts, as briefly outlined below.

EEG hardware is significantly and considerably more affordable by comparison with most other

techniques. Also, immobility of modalities such as fMRI, PET, or MEG, limit the flexibility of ex-

periment design and require a more complex, therefore costly, arrangements and setting at the data

collection venue, while EEG sensors can be placed anywhere on the scalp not requiring any specific

ambient conditions to work at. Moreover, EEG recordings hold a very high temporal resolution,

on the order of milliseconds rather than seconds, thus, for clinical and research settings, EEG is

commonly recorded at sampling rates above 250 Hz and up to 2000 Hz. Nowadays, modern EEG

data collection systems are capable of recording at sampling rates above 20,000 Hz if desired. EEG,

being absolutely silent while recording, enables researchers to not only study the responses to audi-

tory stimuli, but also to investigate and track the brain changes during different phases of life, e.g.,

EEG sleep analysis can indicate significant aspects of the timing of brain development, including

evaluation of adolescent brain maturation. Additionally, EEG, as a powerful tool to detect covert

processing (i.e., processing that does not require a response), is non-invasive and can be used in sub-

jects who are incapable of making a motor response. In contrast to all the useful advantages, EEG

also possesses disadvantages that researchers must take into account before adopting this technique

of recording as the tool by which they aim to answer the question of their study. The first drawback

of EEG recordings is a poor spatial resolution on the scalp as compared to techniques such as fMRI,

and in order to compensate for this downside, intense interpretation is required just to hypothesize

what areas are activated by a particular response. The quality of EEG signals is affected by scalp,

skull, and many other layers as well as background noise. Noise is key to EEG, insofar as it reduces

the SNR and therefore the ability to extract meaningful information from the recorded signals.

All in all, considering the pros above and cons, EEG has always been a strong candidate for
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BCI developments, especially since changes in cortical electrical activity resulting from mental

stimulation occur faster than the accompanying changes in hemodynamics. Many studies, namely,

[27] and [28], have reported successful utilization of EEG-based BCIs, particularly enabling able-

bodied users to generate fast and reliable control signals. In the interesting work of Moghimi et

al. [29], 39 studies reporting EEG-oriented BCI assessment by individuals with disabilities were

identified in the past decade and investigated, which shows EEG has been the most commonly and

widely used modality in BCIs.

In the interest of standardizing the placement of EEG electrodes, an internationally recognized

method is established, known as “10–20 system”. The system is based on the relationship between

the location of an electrode and the underlying area of cerebral cortex. The distances between

adjacent electrodes are either 10% or 20% of the total front-back or right-left distance of the skull;

that is the reason behind the name of this system. Each site has a letter to identify the lobe, and

a number to identify the hemisphere location. “F” stands for frontal, “T” for temporal, “C” for

central, “P” for parietal, and “O” for occipital. Even numbers refer to the electrodes placed on the

right hemisphere, and the odd numbers are allocated to the electrodes located on the left hemisphere.

To measure the distances and segmenting them, four anatomical landmarks are used: first, the nasion

which is the point between the forehead and the nose; second, the inion which is the lowest point of

the skull from the back of the head and is generally indicated by a prominent bump; the preauricular

points are anterior to the ears. Considering these main instructions, an example of a 10-20 system

EEG electrode placement is elucidated in Figure 2.1.

To understand the studies employing EEG as a tool for recording brain signals, it is considerably

important to be familiar with the EEG rhythmic activities and patterns. These activities are divided

into frequency bands. These designations arose because rhythmic activity within a certain frequency

range was noted to have a certain distribution over the scalp or a certain biological significance. The

first frequency band commonly is considered to begin from 1 Hz and the last one is capped by 40

Hz, whereas activity below or above this range is likely to be artifactual. The following categories,

provide an overview of the location and range of various meaningful and distinguishable brain signal

patterns for data analysis.
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Figure 2.1: An example of 10-20 setting of EEG electrodes placement [30].

• Delta Patterns

These patterns are ranged between 1–4 Hz with highest amplitudes and slowest waves. These

signals are usually captured from frontal (in adults) and posterior (in children) part of the

scalp. Delta waves are known as slow-wave sleep in adults and also are commonly observed

in babies.

• Theta Patterns

These patterns are ranged between 4 – 7 Hz. Theta signals are mostly found at the locations

of the scalp that are not related to the task at hand, therefore, they are normally considered

as “idling” waveforms. This category of signals has also been found to spike in situations

where a person is actively trying to repress a response or action. Moreover, this range has

been associated with reports of relaxed, meditative, and creative states.

• Alpha Patterns

These patterns are ranged between 7–13 Hz. These signals are often generated at the posterior

regions of the head (both sides) and are higher in amplitude on the dominant side. That is the

reason why Hans Berger named this EEG activity as the “Alpha Wave” or the “posterior basic

rhythm”. This category is famously known as resting/relaxing state, due to its generation

while the eyes are closed. It is interesting to know that one of the ways for EEG researchers

and engineers to test their application, is to ask the subjects to close their eyes and relax;
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the frequency content observed during this time has to be mostly focused at Alpha rhythms.

In addition to the basic posterior rhythm, there are other normal alpha rhythms such as the

mu rhythm (alpha activity in the contralateral sensory and motor cortical areas) that emerges

when the hands and arms are idle.

• Beta Patterns

These patterns are ranged between 14 – 30 Hz, and although being of high interest for cap-

turing as a response to stimuli, this category is of low amplitude, multiple and varying fre-

quencies are often associated with active, busy or anxious thinking and active concentration.

Low amplitude of Beta pattern makes it notably susceptible to contamination by artifacts and

noise. The location of signal generation on the scalp is at both sides, symmetrically dis-

tributed, and most evidently towards the frontal side of the head. These waves are generated

while the subject is actively calm and is focused and highly alert, thinking, especially, it is the

dominant rhythm in patients who are alert or anxious or who have their eyes open, namely,

the locked-in patients.

• Gamma Patterns

These patterns are seen at frequencies between 30–100 and are generated at the Somatosen-

sory cortex of the brain. This category of waveforms is displayed during cross-modal sen-

sory processing (a perception that combines two different senses, such as sound and sight).

Gamma patterns are thought to represent binding of different populations of neurons together

into a network for the purpose of carrying out a certain cognitive or motor function. Also

Gamma is appeared during short-term memory matching of recognized objects, sounds, or

tactile sensations.

• Mu Patterns

These patterns are ranged between 8–13 Hz and partly overlapped with other frequencies.

They are generated at the Sensorimotor cortex of the brain, and represent rest-state motor

neurons.

In awake people, primary sensory or motor cortical areas often display 8–12 Hz EEG activity
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when they are not engaged in processing sensory input or producing motor output. Computer-based

analyses reveal that idling waves are distinguished from each other by location, frequency, and/or

relationship to concurrent sensory input or motor output. These idling patterns are usually associated

with 18-26 Hz (range of Beta) rhythms. While some Beta patterns are harmonics of Mu patterns,

some are separable from them by topography and/or timing, and thus are independent brain signal

features [22]. Beta and Mu waves are associated with those cortical areas most directly connected to

the brains normal motor output channels, therefore, are leader choices for EEG-based BCIs which

enable the subject to command movements to the BCI, without any peripheral muscle movement.

As the last not least concept outlined before closing the discussion on EEG, it is important

to introduce the mental process, Motor Imagery (MI). MI is one of the most popular and widely

used techniques for the BCI systems to be efficient, as they are supposed to be highly accurate

and capable of well-interpretation by the quickest pace possible, regardless of the limitations of the

end-user. The MI is defined as mere imagination of a limb movement, with no actual movement

or peripheral (muscle) activation [31]. This mental execution of a movement is known to induce

brain activity in the same way performing an actual movement brings about the firing of neurons

in the brain [32]. According to this view, the main difference between performance and imagery is

that in the latter case execution would be blocked at some corticospinal level [33]. The variation in

brain activity is quantified from an Electrophysiological recording by EEG during the MI task. In

MI-based BCIs, patients often receive visual or kinesthetic feedback in order to promote the brain

response to the MI task. Increasing the accuracy of BCIs using this mental process is the focus of

my thesis throughout the next chapter.

This completes a brief discussion on BCIs, EEG, and essential knowledge for understanding the

applications of these two. Next, I will discuss the techniques and methods employed to process data

for an EEG-based BCI system.

2.3 Data Dimensionality Reduction

Through the recent advances in statistics, signal processing, machine learning, and information

theory, the size and the number of random variables, storing information regarding an ongoing study,
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are experiencing significant growth. As a first step to proceed on the data understanding, researchers

and engineers are often confronted with the problem of a proper and/or optimal selection of infor-

mation among numerous patterns in a set of data. The superficial dimensionality of data, or the

number of individual observations constituting one measurement vector, is often much greater than

the intrinsic dimensionality, the number of independent variables underlying the significant non-

random variations in the observations [34]. Therefore, to conclude the features and/or the attributes

of a set of data, the first step required is to reduce the dimensionality of the data. Dimensionality

reduction is defined as the process of reducing the number of random variables under consideration

by obtaining a set of key variables. Dimensionality reduction not only allows us to shift the focus

of processing on the more informative variables, but also results in, generally noticeably, speeding

up the processing and classification phase.

In comparison with other sorts of biomedical signals, EEG is considered to be excessively com-

plicated for an untrained observer to understand. Raw EEG signals are also extremely burden-

some to be directly processed, mostly, as a consequence of the high temporal resolution of EEG

technique and the spatial mapping of functions onto different regions of the brain and electrode

placement. Hence, prior to applying other processing methods to extract features and classify the

recorded data, dimensionality reduction is commonly used to determine a reduced feature set, in-

cluding only (more or less) the data needed for further quantifications, in respect to a negligible loss

of information during this process.

Principal Component Analysis (PCA) [35] and Singular-Value Decomposition (SVD) [36] are

known to be well-established methods for the purpose of dimensionality reduction. Percent Root-

mean-square Difference (PRD) [37] is also a method based on SVD which has been well-regarded

in Electrocardiography (ECG) processing and applies to EEG signals. This subsection serves to

provide an overview of the techniques above.

2.3.1 Principal Component Analysis (PCA)

The PCA is one of the most traditionally used techniques in EEG signal processing and BCI

module design [25]. This technique is a leader choice method both for dimensionality reduction

and feature extraction among its similar techniques in many fields of computer science as well. In
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the PCA, we seek to represent a given n-dimensional data in a lower-dimensional space. This will

reduce the degrees of freedom; reduce the space and time complexities. The objective is to represent

data in a space that best expresses the variation in a sum-squared error sense. The PCA functions

significantly better if an estimation of the number of independent components is known apriori.

The basic approach in principal components is theoretically rather simple. First, the n-dimensional

mean vector µ and n × n covariance matrix Σ are computed for the full data set. Next, the eigen-

vectors and eigenvalues are computed, and as the eigenvalues {λ1 ≥ λ2 ≥ ... ≥ λn} are sorted in

a descending order, so are the eigenvectors {e1, e2, ..., en} accordingly. Subsequently, a subset of

eigenvectors associated with the largest eigenvalues is chosen. In practice, this is done by looking

at the spectrum of eigenvectors. Often there is a clear distribution within the spectrum, implying

an inherent dimensionality of the subspace governing the signal. The other dimensions are noise.

Form a (m×m) matrixA whose columns consist of the m eigenvectors. Preprocessing of the data

is performed as follows

X̂ = AT × (X − X̄), (1)

where superscript T denotes transpose operator and X̄ is the matrix of PCA essentially rotates the

set of points around their mean in order to align with the principal components. This moves as much

of the variance as possible (using an orthogonal transformation) into the first few dimensions. The

values in the remaining dimensions, therefore, tend to be small and may be dropped with minimal

loss of information. The PCA has the distinction of being the optimal orthogonal transformation for

keeping the subspace that has the largest variance.

2.3.2 Singular Value Decomposition (SVD) and Percentage Root-mean-square Dif-

ference (PRD)

Several (if not all) data dimensionality reduction techniques are based on the decomposition

of a key matrix, into its eigenvectors and eigenvalues. The reason behind this approach is the fact

that through a canonical representation, there can be information retrieved that are just not obvious

to a researcher by a glance at the original matrix, information such as: the underlying probability

distribution of the matrix; similarities of random variables; the dependencies of random variables
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onto each other; and, many other useful key information [38]. In linear algebra, the SVD is a

factorization of a real or complex matrix. SVD is proposed as the generalization of the conventional

eigendecomposition of a positive semidefinite normal matrix (e.g., a symmetric matrix with positive

eigenvalues) to any (m×n) matrix via an extension of the polar decomposition. It has several useful

applications in signal processing and statistics, namely, computing the pseudoinverse, least squares

fitting of data, multivariable control, matrix approximation, and determining the rank, range and

null space of a matrix. However, in biomedical engineering, this approach can be the first step taken

towards dimension reduction of the data at hand. To outline the method, suppose X is an (m × n)

matrix which contains real or complex numbers. Then, there exists a factorization, called a singular

value decomposition ofX , of the form

X = UΣVH , (2)

where

• U is an (m×m) unitary matrix;

• Σ is a diagonal (m× n) matrix with non-negative real numbers on the diagonal;

• V is an (n× n) unitary matrix and V H is the Hermitian (conjugate) transpose of V .

Throughout the development of this thesis, I have been employing the SVD technique along with

a well-regarded yet straightforward measure, PRD, to evaluate the optimality of the dimensionality

reduction step. PRD is widely known for its noteworthy application for Electrocardiography (ECG)

signal processing techniques, for instance in [39] and [40]. While illustrating notable results in

ECG, during my thesis research work, PRD turned to be practically applicable for EEG signal

processing, once applied alongside the dimensionality reduction step. PRD can be considered as a

quality control measure, to address the main concern of the dimensionality reduction techniques,

which is the preserving the target parts of the signals while removing the redundant and irrelevant

information. PRD ensures that the signals matrices are reduced in size up to a certain amount of

information loss. For instance, suppose we have an estimation of irrelevant data contained within the

recorded signals, which is about p% of the entire data. PRD, utilizing SVD, decomposes the signals
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Algorithm 1 SVD–PRD DIMENSIONALITY REDUCTION

Input: {Original EEG (OEEG) signals X (Channels as the variables each containing same
length of time series signals) and the Percentage of acceptable error p%.

Output: {Minimum number of variables (channels) required to maintain the signals’ quality in
respect to the aforementioned error percentage.

1: Decompose OEEG by SVD : [U ,S,V ] = svd(X). Number of columns taken into account (k)
in U and V is set to 1.

2: Reconstruction Loop:
• First k diagonal element(s) of S and first k column(s) from U and V are chosen to

reconstruct the EEG Signal as X̂ (REEG), as per Equation 2.
• The PRD is computed as follows

PRD =

√√√√
∑

i,j(Xi,j − X̂i,j)2∑
i,j(Xi,j)2

× 100. (3)

• Evaluation
If: PRD 6 p%

break;
else:

k = k + 1;
3: Number of Variables Required: Final k will be the output of the function as the minimum

number of variables (channels) required for a more accurate dimension reduction.

and begins reconstructing them variable by variable. Every time data of each variable is added, the

reconstructed signals are evaluated and compared to the original one, and the error of compatibility

is computed. The algorithm keeps adding variables until the error is qual or less than p%. In order

to clarify the way PRD functions as described, the Algorithm 2.3.2, presents the pseudocode of the

PRD approach in details.

2.4 Feature Extraction

As discussed previously, different thinking activities result in different patterns of brain signals

and these mental tasks are of utmost importance while designing an experiment or an application

for BCIs. From this outlook, BCI is seen as a pattern recognition system that classifies each pattern

into a class according to its features. To elucidate this matter more clearly, it is important to define

a “feature”. During a phenomenon which is under observation of a machine learning/pattern recog-

nition outline, a feature is an individual measurable property or characteristic of that phenomenon
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under study. In other words, a feature is supposedly a variable/attribute which together with other

pearly chosen features can represent the data statistically and, if selected suitably, will contribute to

rather accurate classification of the entire dataset. However, choosing informative, discriminating

and independent features is a crucial step for the development of effective algorithms in pattern

recognition, classification and regression. Having said that, “feature extraction” is the process of

starting from an initial set of measured data and building the derived values (features), aiming to

provide a suitable feature set that would be informative, facilitating the subsequent learning and

generalization steps, and in some cases leading to better human interpretations.

BCIs extract some features from brain signals that reflect similarities to a certain class as well as

differences from the rest of the classes. The extracted features should be measured or derived from

the properties of the signals which contain the discriminative information needed to distinguish their

different types. However, the challenging issue of feature extraction in BCIs is that it is interwoven

with the fact that the information of interest in brain signals is hidden in a highly noisy environment,

and brain signals comprise a large number of simultaneous sources. A signal that may be of interest

could be overlapped in time and space by multiple signals from different brain tasks. For that reason,

in many cases, it is not enough to use simple methods such as a bandpass filter to extract the desired

band power.

From a signal processing point of view, feature extraction is done after preprocessing and data

dimension reduction, as an important step in the construction of any pattern classification and aims

at the extraction of the relevant information that characterizes each class. These feature vectors are

then used by classifiers to recognize the input unit with target output unit. The classifier’s task is

much more facilitated if it is to classify between different classes by looking at these features as

it allows fairly straightforward to distinguish. However, before concatenated into a single feature

vector, multiple features can be selected from different channels and from various time segments,

although, it is not desirable to process high dimensional features. In several neuroimaging studies,

the sample size, or the number of the subjects of the study, is often much less than the size of

scanned samples. Therefore, the number of features greatly outnumbers the number of the subjects.

This challenge is known as “curse of dimensionality” or “small-n-large-p” [41]. In order to choose

the most suitable features, one may attempt to examine all the possible subsets for the features,
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although, as the number of possibilities grows exponentially, this approach becomes more and more

impractical and exhaustive method of search. Obviously, there are more efficient and optimal feature

extraction methods to replace this exhaustive search.

Before moving forward to describing the feature extraction technique used in this thesis, it is

worth viewing feature extraction and classification from a big picture. The classification step, as

the final step of recognizing the patterns, can be done in three different ways: (i) Supervised; (ii)

Unsupervised; and, (iii) Semi-Supervised, which will be discussed more in details throughout the

next section. Note that the feature extraction techniques utilized for different parts of my thesis are

all chosen with regards to a supervised classification method. In order to select the most appropriate

classifier for a given BCI system, it is essential to clearly understand what features are used, what

their properties are and how they are used. The next two subsections are allocated to provide a brief

overview on Common Spatial Patterns (CSP) method.

2.4.1 Common Spatial Patterns

The Common spatial patterns is a particularly popular and powerful signal-processing technique

used for feature extraction in EEG-based BCIs. Originally, CSP has been designed for the analysis

of multichannel data belonging to 2-class problems. Nevertheless, some extensions for multiclass

BCIs have also been proposed, e.g., [42], which is not the focus of this thesis, thus, is not explained.

The CSP, as a mathematical algorithm, computes spatial filters that aim at achieving optimal

discrimination by separating a multivariate signal into additive subcomponents which have maxi-

mum differences in variance between two classes. Hence, the signal-to-noise ratio is increased and

adverse effects of volume conduction is reduced [43]. In other words, CSP projects multichannel

EEG signals into a subspace, where the differences between classes are highlighted and the similar-

ities are minimized. It aims to make the subsequent classification much more effective. The main

idea of the CSP approach is to employ a linear transform to project the multi-channel EEG data

onto a low-dimensional spatial subspace. The rows of the projection matrix which serves to this

goal consist of the associated weights of the channels. The CSP method is based on simultaneous

diagonalization of the covariance matrices of both classes. The Algorithm 2 describes the steps of

implementation of CSP.
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Algorithm 2 COMMON SPATIAL PATTERNS STEP BY STEP (FOR FEATURE VECTORS OF SIZE 2)

Input: {(a) Original EEG (OEEG) signals as a tensor of sizeNc×Nt×Ne; Nc being the number
of EEG channels, Nt denotes the number of time samples within each trial of performing the
task by the subject, andNe represents the number of times subject performed the task; (b) Labels
of OEEG, that indicate to which class each trial belongs.}

Output: {Feature Vectors, ready to be classified}
1: Covariance Matrices: Computing the sample covariance matrix corresponding to each trial
Xi as follows:

Ci =
XiX

T
i

Trace(XiX
T
i )

(4)

The superscript T indicates the transpose of the matrix.

2: Class Distinguisher Loop: Trial by trial, each Ci is assigned to its corresponding class, using
the labels.

3: Class Averages:
• The covariance matrices of each class are averaged resulting in C̄1 and C̄2 .
• The composite spatial covariance Cc is computed as follows.
Cc = C̄1 + C̄2.

4: Whitening Matrix:
• The composite spatial covariance is decomposed to its eigenvalues and eigenvectors , in

respect to the average covariance matrix of the first class, i.e.,
[EV ec,EV al] = eig(C̄c, C̄1).
•Whitening matrix is composed as follows.
W (:, 1) = EV ec(:, 1);
W (:, 2) = EV ec(:, end);

5: Finalizing the feature vectors:
• The Whitening matrix is applied to each trial of the original data, i.e.,
Zi = W t ×Xi ×Xt

i ×W .
• Feature vector corresponding to each trial’s Z is computed as follows.

fi = log
diagonal(Zi)

trace(Zi)
. (5)

The aforementioned algorithm is constructed for the case where it is preferred to utilize feature

vectors each including two elements. In the case where more elements are required, at Step 4,

symmetrically, an equal number of eigenvectors are retrieved and put together to build the whitening

matrix. This completes a brief outline over feature extraction. Throughout the next chapters, the

additional feature extraction methods will be described. Next section is allocated to explanation of

classification, the last step of processing data in any desired BCI.
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2.5 Classification

As stated previously, the primary goal of a BCI is to translate the intent of a subject directly

into control commands for a computer application, a neuroprosthesis, or any other external device.

In BCIs which take advantage of training data to build a model for translation of the features (su-

pervised learning), users are provided with instructions on how to perform a task as a response to a

stimulus. Thereafter, an often significant number of trials are required to calibrate a BCI and prepare

it for successful further analysis and interpretation. In most existing BCIs, this identification relies

on a classification algorithm, i.e., an algorithm that aims at automatically estimating the class of data

as represented by a feature vector. This objective can be accomplished by a statistical analysis of a

calibration measurement in which the subject performs well-defined mental acts, such as imagined

movements [44].

Classification is defined as the problem of statistically identifying to which of a set of categories

a new observation belongs. This problem attempts to learn the relationship between a set of feature

variables and a target variable of interest. Since many practical problems can be expressed as

associations between feature and target variables, this provides a broad range of applicability of this

model [45]. In the importance of clarification of the classification terminology, it is essential to

define a few terms used throughout this thesis:

• Trial & Epoch: During a run/experiment with an EEG-based BCI, the subject is asked to

perform the task related to the stimulus a certain number of times, each of these observations

is called a trial. The set of signals recorded during a trial is called an epoch.

• Label: In the event of knowing the intent of the subject associated with a trial beforehand,

this information is considered as a label.

• Training Data/Trials: The training data, as a part of collected data, consists of labeled trials

utilized to construct a classification model. These trials together are also called the training

data/dataset.

• Test Data/trials: The test trials, the rest of collected data, are those that are evaluated using

the generated model via the training trials, and the classification model assigns a label to each
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unlabeled test trial.

• Classification Accuracy: In the case that the grand truth, i.e. labels of the test data, is avail-

able, it is compared against the estimated label and overall performance of the classification

model is reported as the classification accuracy, often in percentage.

Based on the stated definition, a classifier is defined as a function or an algorithm that maps

every possible input available in the calibration (training) dataset to a finite set of decisions. In other

words, given a set of training data points along with their associated training labels, a classifier

determines the class label for an unlabeled test instance. Classification algorithms use the extracted

features as independent variables to define boundaries between the different targets in the feature

space. Building classification algorithms which are traditionally calibrated by users using a labeled

dataset, are also known as supervised learning.

Classification algorithms can be developed via either offline, online or both kinds of sessions.

The offline session involves the examination of datasets after the experiment is carried out. The

statistics of the data may be estimated from observations across entire sessions and long computa-

tional processes may be performed. While offline data analysis is valuable regarding studying the

behavior of brain signals and the effectiveness of the BCI processing algorithm, it does not address

real-time requirements. However, online sessions provide a means of BCI system evaluation in a

real-world environment. The data is processed causally and for higher efficiency of the processing

algorithm, it is implemented as a closed-loop system. Evidently, online analysis can yield solid

evidence of BCI system performance, and that is why offline simulation and cross-validation can be

valuable methods to develop and test new algorithms [25].

Regardless of the model selected as to define the classifier, there are four main steps to construct

a suitable and responsive classification model for the desired BCI system, as briefly outlined below:

(1) Choosing a model: There are several models of classifiers suggested and developed by re-

searchers over time, some are well-suited for image processing, some other are known to

work best for text-based data, and likewise for many other applications, also, the chosen

model needs to be compatible with the feature vectors. A few classification models that are

known to work best for BCI systems are described further in this section.
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(2) Training: Using the training data, the parameters of the chosen model are determined (learned).

In this step, the training epochs and their labels are employed to incrementally improve the

classification models’ ability to predict to which class the desired test epoch belongs. The

training process is initialized with some random values for the parameters of the model and

then attempting to predict the output with those values. Then, the model continues to learn

and tunes its parameters to improve the comparison results, trial by trial until it finds the best

fitting model. In the interest of determining how many trials out of the entire experiment

should be utilized as for the training purpose, a conventionally common rule of thumb is to

split into training-test by 70%–30% or 80%–20%; certainly, much of the applicability of this

convention depends on the size of the source dataset.

(3) Evaluation: Once the training is complete, the trained model has to be evaluated. This is

where that dataset that we set aside earlier comes into play. Evaluation enables the designer

of the BCI to test the constructed model against data that has never been used for training,

referred to as the test data. This is meant to be representative of how the model might perform

in the real world. The evaluation result is generally reported as “validation accuracy” in

percentage.

(4) Prediction: Prediction is the step where the question about the subject’s intent for each trial

is answered. The trained and evaluated model, if performing acceptably, are applied to the

test dataset, and for each trial, a label is predicted by the classifier. The comparison between

the grand truth and the estimated labels indicates the effectiveness of the classifier.

Training an algorithm and evaluating its statistical performance on the same data yields an

overoptimistic result. Therefore, it is beneficial to know how a model would perform when it is

applied to new data, beforehand. However, the test dataset is set aside to assess the predictive

performance of the models and to judge how they perform outside the samples the parameters

are learned from. In this case specifically, it is noteworthy to analyze the capability to accurately

translate the intent of the BCI user. In most real applications, only a limited amount of data is

available, which leads to the idea of splitting the data: Part of data (the training sample) is used

for training the algorithm, and the remaining data (the validation sample) are used for evaluating
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the performance of the algorithm. The validation sample can play the role of “new data”. “Cross-

validation” is the approach which is mainly used to serve this purpose and to estimate how accurately

a predictive model will perform in practice. The cross-validation technique used throughout this

thesis is called “k-fold cross-validation”. In k-fold cross-validation, the original training dataset is

randomly partitioned into k equal-sized subsets. Out of the k subsets, a single subset is preserved as

the validation data for evaluation of the model, and the remaining k − 1 subsets are used as to train

the classification model and tune the parameters. The cross-validation process is then repeated k

times, equal to the number of the folds, with each of the k subsets used exactly once as the validation

data. The k results from the folds can then be averaged to serve as a single performance estimation.

This way, all observations are used for both training and validation, and each observation is used for

validation exactly once.

Classifiers commonly face the main problem related to the pattern recognition task, the problem

of bias-variance tradeoff. This problem represents the natural trend of the classifiers towards a high

bias with low variance and vice versa. Stable classifiers are characterized by high bias with low

variance, while unstable classifiers show high variance with low bias. To achieve the lowest classifi-

cation error, bias and variance should be low simultaneously. A set of stabilization techniques such

as the combination of classifiers or regularization can be used to reduce the variance. In other words,

low-performance classifiers may occur as a result of not proper fitting of the classification model,

maybe because, the model is too simple to describe the target, or maybe the model is too complex

to express the target. Underfitting and Overfitting both are issues that lead to poor predictions on

new data sets, as shown in Fig. 2.2.

Underfitting occurs when a statistical model cannot capture the underlying trend of the data.

Intuitively speaking, underfitting occurs when the model or the algorithm does not fit the data well

enough. Specifically, underfitting occurs if the model or algorithm shows low variance but high

bias. Underfitting is often a result of an excessively simple model. On the other hand, overfitting

occurs when a statistical model captures the noise of the data. Intuitively speaking, overfitting

occurs when the model or the algorithm fits the data too well. Specifically, overfitting occurs if the

model or algorithm shows low bias but high variance. Overfitting is often a result of an excessively

complicated model, and it can be prevented by cross-validation. This completes a general overview
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Figure 2.2: The problem of Underfitting and Overfitting.

of the concept of classification and its essential terms related to it. Throughout the thesis, I have

taken advantage of classification models such as “Linear/Quadratic Discriminant” and “Support

Vector Machines”; a brief outline of each of these models is provided below.

• Linear and Quadratic Discriminant Analysis:

Linear Discriminant Analysis (LDA) is a simple classification model with rather acceptable

accuracies, [46] for instance, without requiring highly complex computations. LDA is usually

applied to classify patterns into two classes, although it is possible to extend the method

to multiples classes [47]. For a two-class problem, LDA assumes that the two classes are

linearly separable. In respect to this assumption, a linear discrimination function is defined in

a fashion that it represents a hyperplane in the feature space in order to distinguish the classes.

The class to which the feature vector belongs will depend on the side of the plane where the

vector is found. The decision plane can be elucidated mathematically as follows

g(fi) = aTfi + b0, (6)

where, a is the weight vector, T is the transpose operator, fi is the input feature vector

extracted from the training sets, and b0 is the threshold. The input feature vector is assigned

to one class or another on the basis of the sign of g(fi). There are several methods to compute

a, e.g., a may be calculated as follows,
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a = C−1c (µ2 − µ1), (7)

where the matrix Cc is given by

Cc =
C̄1 + C̄2

2
, (8)

and, C̄i is calculated in a similar manner as specified in Algorithm 2, and µi, the estimated

mean of class i is calculated as follows

µi =
1

n
×

n∑

i=1

Fi, (9)

where, Fi is a matrix containing n feature vectors of class i, as f1,f2,f3, ...,fn ∈ RNe .

LDA serves to create a new variable, which would be a combination of the original predictors

(features of the train set), which is accomplished through maximizing the differences between

the features of the predefined classes. As a result, a discriminant score is a weighted linear

combination of the predictors. The weights are estimated in a way that the differences be-

tween mean discriminant scores of each class have the maximum distance from all others.

Generally, those predictors which have large dissimilarities between class means will have

larger weights, at the same time weights will be small when class means are similar.

LDA assumes that the observations within each class are drawn from a multivariate Gaussian

distribution and the covariance of the predictor variables are common across all levels of the

responses (labels), however, Quadratic discriminant analysis (QDA) provides an alternative

approach. While utilizing QDA, it is assumed that the measurements from each class are

normally distributed. Unlike LDA, in QDA there is no assumption that the covariance of

each of the classes is identical. In the case where the feature vectors consist of two classes,

QDA seeks for surfaces separating the classes among conic sections (i.e. either a line, a circle

or ellipse, a parabola or a hyperbola). In this sense, we can state that a quadratic model is a

generalization of the linear model, and its use is justified by the desire to extend the classifier’s

ability to represent more complex separating surfaces. The QDA is very similar to the LDA

except that because the covariance matrix is not identical, quadratic terms are also involved.
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This approach allows for more flexibility for the covariance matrix, therefore, tends to fit the

data better than LDA, in contrast, it has more parameters to estimate.

• Support Vector Machines:

Support Vector Machine (SVM) is a discriminative classifier formally defined by a separating

hyperplane. In other words, given labeled training data (supervised learning), the algorithm

outputs an optimal hyperplane which categorizes new examples. In two dimensional space

this hyperplane is a line dividing a plane into two parts wherein each class lay on either side.

SVM is a classifier similar to LDA classifiers, however, in contrast, SVM selects the hy-

perplanes that maximize the margins, i.e., the distance between the nearest training samples

and the hyperplanes [48]. Due to highly accurate results, SVMs have been successfully used

in several BCI applications, namely, [35, 44, 49]. The majority of the similar classifiers use

hyperplanes to separate classes, based on a flat plane within the predictor space. Whereas

SVMs broaden the concept of hyperplane separation to data that cannot be separated lin-

early, by mapping the predictors onto a new, higher-dimensional space in which they can be

separated linearly.

The method is called as it is, for the support vectors, a subset of training points in the deci-

sion function, are lists of the predictor values, taken from cases that lie closest to the decision

boundary separating the classes. Computationally, finding the best location for the decision

plane is an optimization problem that makes uses of a kernel function to build linear bound-

aries through nonlinear transformations, or mappings, of the predictors. The intelligent com-

ponent of the SVM algorithm, however, is that it locates a hyperplane in the predictor space

which is stated regarding the input vectors and dot products in the feature space without ever

representing the space explicitly. SVM chooses one particular solution: the classifier which

separates the classes with maximal margin, as Fig. 2.3. The margin is defined as the width of

the largest ‘tube’ not containing samples that can be drawn around the decision boundary.

It should be noted that it is possible to create nonlinear decision boundaries, with only a

low increase of the classifiers complexity, by implicitly mapping the data to another space,

generally of much higher dimensionality [51].
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Figure 2.3: An example of possible and optimal hyperplanes [50]

This completes my overview of all the necessary concepts and methods for understanding BCIs,

before I move on to describing my contributions. Next three chapters describe the frameworks I

proposed and investigated during my research work.
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Chapter 3

Graph-based Frameworks for

Spatio-Temporal Filtering and

Dimensionality Reduction in MI

EEG-based BCIs

In this chapter, two frameworks, GD-BCI and GDR-BCI, are proposed to address the problem

of processing EEG signals for motor imagery brain-computer interfaces. The goal is to identify the

pattern of the brain activity using a robust method for pre-processing, processing, and classification

of the EEG signals. To this end, the GD-BCI framework is a new graph-based approach, proposed

to spatiotemporally filter the data by taking into account not only the geometrical structure of the

channels/electrodes, but also the correlation between the EEG signals. The most significant feature

vectors required for classification of EEG signals are adaptively selected through spectral decom-

position of the data using the graph Laplacian matrix. The tangent space mapping method is then

applied to bring the captured data into Euclidean space. In order to classify the dimensionally-

reduced EEG signals, the linear support vector machine algorithm is employed. Experiments are

conducted on Dataset IVa from BCI Competition III, including data from five different subjects
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consisting of the right hand and right foot motor imagery actions. The results show that the pro-

posed GC-BCI framework provides higher classification accuracy as compared to the other existing

methods. However, as the impressive accuracies come with the price of an exhaustive search for

a pair of constants required for adjustment of the graph, I sought for a solution to adaptively and

automatically configure the graph, hence, the second framework the GDR-BCI is developed.

In the GDR-BCI, similar to the one proposed in GD-BCI, by capitalizing the fact that function-

ality of different connectivity neighborhoods varies based on the intensity of the performed activity

and concentration level of the subject, an initial functional clustering of EEG electrodes are built

by designing a separate adjacency matrix for each identified functional cluster. Using a collaps-

ing methodology based on total variation measures on graphs, the overall model will eventually be

reduced (collapsed) into two functional clusters. The proposed framework offers two main superi-

orities over its state-of-the-art counterparts and the GD-BCI: (i) First, the resulting dimensionality

reduction is subject-adaptive and respects the brain plasticity of subjects, and; (ii) Second, the pro-

posed methodology identifies active regions of the brain during the motor imagery task, which can

be used to re-align EEG electrodes to improve accuracy during consecutive data collection sessions.

The experimental results based on the same Dataset IVa from BCI Competition III show that the

proposed method can provide higher classification accuracy as compared to its counterparts.

3.1 Introduction To Graph Signal Processing

In mathematics, graph theory proposes a “graph” as a structure corresponding to a set of objects

in which some pairs of the objects are in some sense “related”. It consists of a set of vertices or

nodes (objects) and a set of edges or connections indicating the presence of some of the interaction

(relation) between the vertices. Therefore, a graph can be defined as an ordered pair ofG = (V ,E)

comprising a set V of vertices, together with a set E of edges. Moreover, for a graph representing

a real-life model, e.g., when a graph is an abstract representation of a network of sensors, the

definition may be extended to G = (V ,E,K), where a number is assigned to each edge, together

summarized in matrix K. Due to this simple yet powerful and flexible structure, graphs offer the

ability to model massive amounts of data and complex interactions among them in a systematic,
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organizable, and processing-friendly manner. Graphs are generic data representation forms that are

useful for describing the geometric structures of data domains in numerous applications, including

social, energy, transportation, sensor, and neuronal networks. The weight associated with each edge

in the graph often represents the similarity between the two vertices it connects. The connectivities

and edge weights are either indicated by the physics of the problem at hand or inferred from the data.

On the other hand, growth of interest is widely observed in efficient signal processing techniques

for representation, analysis and processing of large datasets (big data) emerging in various fields

and applications. These datasets share common traits: their elements are related to each other

in a structured manner, e.g., through similarities or dependencies between data elements, and the

conventional methods to deal with them are inadequate. Hence, as a solution to address this issue,

the field of Graph Signal Processing (GSP) [52] has emerged to merge computational analysis of

the aforementioned signals/data with the graph theory.

Biological networks have proved to be a popular application domain for graph signal processing,

with recent research works focusing on the analysis of data from systems known to have a network

structure, especially, the human brain. The growing number of publications studying brain activity

or brain network features from a GSP perspective, namely, [53–56], indicates that these are promis-

ing applications in this field. Despite recent advances in the GSP field, however, its application for

EEG processing is still in its infancy.

As described in Chapter 2, EEG is widely used to capture brain waves and due to volume con-

duction, unprocessed EEG signals are known to have poor spatial resolution and a rather blurred

image of the brain activity is often obtained from multichannel EEG signals due to low SNR. The

field of GSP makes it possible to non-invasively infer the anatomical connectivity of distinct func-

tional regions of the cerebral cortex via utilization of a regular/weighted graph with the vertices

corresponding to different EEG channels. The connectivity between the nodes of the graph (chan-

nels of the EEG headset) can also be expressed through the physical distance between the electrodes.

During my research work in this thesis, I employed two GSP models for the purpose of dimension-

ality reduction. The explanation of each and the final results are presented in the following sections.
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Fig. 1. Block diagram of the proposed graph-based spatio-temporal filtering framework for brain-computer interface (GFBCI).

similarities within data samples. For instance, an image may be
represented by associating image pixels with graph nodes [19].
The corresponding graph can be analyzed using newly-defined
GSP techniques [16]. In brain imaging, it is now possible
to non-invasively infer the anatomical connectivity of distinct
functional regions of the cerebral cortex, and this connectivity
may be represented by a weighted graph with the vertices
corresponding to the functional regions of interest [18].

In view of this, in this work, we propose a new graph-based
framework for spatio-temporal filtering and feature selection
in motor imagery brain computer interface, referred to as
the GFBCI. The proposed GFBCI framework is realized by
taking into account not only the geometrical structure of
the electrode channels, but also the correlation coefficients
obtained from the EEG signals. The graph similarity and
Laplacian matrices are obtained. the spatio-temporal filtering
is performed in the graph Fourier transform is obtained as
a spectral decomposition of the graph which is later applied
to the EEG signals for dimensionality reduction purpose. A
tangent space mapping technique is employed to project data
from the Riemannian to the Euclidean domain. The PCA
method is applied for selecting the most significant features
for classification purpose. Finally, the linear support vector
machine is used to solve a two-class classification problem.

The paper is organized as follows. Section II formulates the
problem and presents the proposed GFBCI framework. Simu-
lation results are provided in Section III. Finally, Section IV
concludes the paper.

II. THE PROPOSED GFBCI FRAMEWORK

Throughout the paper, the following notation is used: non-
bold letter x denotes a scalar variable, lowercase bold letter x
represents a vector, and capital bold letter X denotes a matrix.
The real domain is represented by R. The transpose of a matrix
X is denoted by XT .

We consider supervised learning from EEG signals based
on the available set of EEG epochs (trials) denoted by Xi ∈
RNch×Nt , for (1 ≤ i ≤ NTrial), where NTrial is the total
number of trials used for processing; Nch is the number of
EEG channels (electrodes), and; Nt is the number of time
samples collected from each electrode in one trial. The training

dataset is denoted by {(Xi, li)}, for (1 ≤ i ≤ NTrial), where li
represents the label corresponding to the ith trial, e.g., li could
be “right foot” or “right hand”. Parameters rTR and rTS are
the number of eigenvectors required dimensionality reduction
process of training and test sets, respectively. For vector Xi,
the sample covariance matrix is defined as

Ci =
1

Nt − 1

(
Xi − µi

)(
Xi − µi

)T
, (1)

where µi is the column-wise mean of Xi. The proposed
GFBCI framework consists of the following main tasks: (i)
Pre-processing; (ii) Spatio-temporal filtering; (iii) Mapping to
tangent space; (iv) Feature selection; and (v) Classification.
Below and in each sub-section, the aforementioned tasks are
described in details.

A. Pre-Processing

Before processing EEG signals for classifying MI tasks, typ-
ically, a pre-processing step is required. At this stage, bandpass
filtering is applied to extract specific frequency contents of the
signal. This step is then followed by downsampling. The signal
used for processing is extracted from specific period of each
trial time interval. This step is conventionally done by selecting
a predefined time interval after a visual cue and selecting
one sample value out of n samples. In order to take into
consideration the most of subject’s response to each stimulus,
we have tested the use of other methods for data smoothing in
advance to the downsampling step, namely, simple averaging,
simple moving average, weighted moving average and moving
median. More specifically, instead of choosing randomly one
value, i.e., random selection, within the time interval between
the two consecutive visual cues, we apply the above methods.
It is experimentally found that using weighted moving average
as a smoothening filter provides a lower reconstruction error
after dimensionality reduction stage and results in a better
classification accuracy. In view of this, we use this filter in
the smoothening filter block of our proposed framework. In
the next subsection, we present our proposed graph-based
dimensionality reduction technique.

2

Figure 3.1: Block diagram of the proposed graph-based spatio-temporal filtering framework for
brain-computer interface (GD-BCI).

3.2 The GD-BCI Framework

In this framework, a new graph-based approach for spatiotemporal filtering and feature selection

in motor imagery brain-computer interfaces is proposed, referred to as the GD-BCI.

3.2.1 Framework Outline

The GD-BCI framework is realized by taking into account not only the geometrical structure of

the electrode channels, but also the correlation coefficients obtained from the EEG signals. In brief,

the graph similarity and Laplacian matrices are computed, the spatiotemporal filtering is performed

in the graph Fourier transform domain, which is obtained in a spectral decomposition of the graph

which is later applied to the EEG signals for dimensionality reduction purpose. A tangent space

mapping technique is employed to project data from the Riemannian to the Euclidean domain. The

PCA method is applied for selecting the most significant features for the classification task. Finally,

the linear SVM is used to solve a two-class classification problem.

We consider supervised learning from EEG signals based on the available set of EEG epochs

(trials) denoted by Xi ∈ RNch×Nt , for (1 ≤ i ≤ NTrial), where NTrial is the total number of trials

used for processing; Nch is the number of EEG channels (electrodes), and; Nt is the number of time

samples collected from each electrode in one trial. The training dataset is denoted by {(Xi, li)}, for

(1 ≤ i ≤ NTrial), where li represents the label corresponding to the ith trial, e.g., li could be “right

foot” or “right hand”. Parameters rTR and rTS are the numbers of eigenvectors required for the
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dimensionality reduction process of training and test sets, respectively. For vector Xi, the sample

covariance matrix is defined as

Ci =
1

Nt − 1

(
Xi − µi

)(
Xi − µi

)T
, (10)

where µi is the column-wise mean of Xi. The Eq. 10 above and the equation used in Step 2 of the

Algorithm 2.4.1 for computing the covariance are equivalent. The proposed GD-BCI framework

consists of the following main tasks, (as shown in Fig. 3.1): (i) Pre-processing; (ii) Spatio-temporal

filtering; (iii) Mapping to tangent space; (iv) Feature selection; and (v) Classification. Below and in

each sub-section, the aforementioned tasks are described in details.

3.2.2 Pre-Processing

Before processing EEG signals for classifying MI tasks, typically, a pre-processing step is re-

quired. At this stage, bandpass filtering is applied to extract specific frequency contents of the signal,

containing brain patterns regarding the motory tasks. This step is then followed by downsampling

in order to reduce the load of processing for the algorithm. The signal used for processing is ex-

tracted from a specific period of each trial time interval, i.e., as per the instructions given by the data

collectors, the time interval during which the subject is responding to a stimulus shown. This step

is conventionally done by selecting a predefined time interval after a visual cue and selecting one

sample value out of n samples. In order to take into consideration the most of subject’s response to

each stimulus, I have tested the use of other methods for data smoothing in advance to the down-

sampling step, namely, simple averaging, simple moving average, weighted moving average and

moving median. More specifically, instead of choosing randomly one value, i.e., random selection,

within the time interval between the two consecutive visual cues, I apply the above methods. It is

experimentally, as can be viewed in Table 3.1, found that using the weighted moving average as

a smoothening filter provides a lower reconstruction error after dimensionality reduction stage and

results in better classification accuracy.

The results in the first column of Table 3.1 are achieved by decomposing each trial utilizing

SVD, and then reconstructing the matrix of trials using 41 eigenvectors corresponding to the 41
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highest eigenvalues, and finally, measuring the difference (error) between the original and rebuilt

signals in percentage. The number 41 is chosen considering the method employed in [54] and the

downsampling approach they had is presented as RS. The second column, shows the measurement

of similarity of the original and reconstructed signals on the scale of 0–1. For this purpose, the

signals are reconstructed using a certain number of eigenvectors, corresponding to a measure known

as ‘expected variance’. It can be proved [57] that when the covariance of a matrix is computed and

then decomposed to its eigenvectors and eigenvalues, the eigenvector with the largest eigenvalue

will be the direction in which the most variance occurs. Consequently, if all the eigenvectors are put

together, the entire variance in the target matrix can be explained. This means, as a surrogate for

measuring the absolute value of variance explained, the simple fraction below can be an indicator

of the variance covered by the reconstructed matrix. For a covariance matrix of size (Nch × Nch),

Expected Variance is defined as follows

EV =

∑r
i=1 λi∑Nch
i=1 λi

× 100, (11)

where the largest r eigenvalues, and their associated eigenvectors, are put together for the purpose

of reconstruction of the data matrix, and λi is an eigenvalue retrieved from the decomposition of

the covariance matrix. Having that said, the second column of Table 3.1 is composed by first,

determining the number of eigenvectors/eigenvalues (r) required to cover EV ≥ 80%, and then

the matrix is reconstructed in the same manner as for the first column of Table 3.1, only by r

eigenvectors instead of 41. The last column of Table 3.1 shows the number of eigenvectors required

to ensure PRD of 2% or less. In view of this, I use this filter in the smoothening filter block of our

proposed framework. Next, I present my proposed graph-based dimensionality reduction technique.

3.2.3 Graph-based Spatio-Temporal Filtering

The aforementioned weighted graph G = (V,E,K) consists of a finite set V of vertices

(electrode channels) and a finite setE of edges with the corresponding weights [kpq]n×n ∈K. The
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Table 3.1: Average reconstruction error obtained using various data smoothening methods for train-
ing datasets.

FF: rTR = 41 EV: 80% PRD: 2%

AA
RS 4.32 0.90 69
SA 4.21 0.87 68
SMA 4.21 0.86 68
WMA 4.08 0.83 67
MM 4.33 0.91 69

AW
RS 3.39 0.68 59
SA 3.27 0.66 57
SMA 3.27 0.65 57
WMA 3.12 0.62 55
MM 3.39 0.69 59

AL
RS 3.63 0.68 58
SA 3.51 0.66 57
SMA 3.50 0.63 57
WMA 3.37 0.62 55
MM 3.62 0.69 58

AY
RS 4.20 0.68 64
SA 4.06 0.65 63
SMA 4.06 0.65 63
WMA 3.90 0.62 62
MM 3.19 0.69 64

AV
RS 4.39 0.83 67
SA 4.34 0.81 66
SMA 4.34 0.81 66
WMA 3.27 0.79 65
MM 3.41 0.85 67

weights kpq can be defined as a function of proximity between vertices (electrodes) p and q, as

KPG = exp

(
−D(p, q)2

2σ2d

)
, (12)
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where p and q are the electrode positions, and D(p, q) denotes the distance between the two elec-

trodes via the following equation

Dpq =
√
Xpq

2 + Ypq
2. (13)

In this framework, in order to take into account the dependencies of the data captured at each

electrode, a weight matrix is proposed which is a function of both the electrode proximity and

correlation coefficients obtained from the EEG signals.

KVPG = exp

(
−D(p, q)2

2σ2d

)
. exp

(
−(1− ‖ρ(p, q)‖)2

2σ2ρ

)
, (14)

where σd and σρ specify the amount of exponential decay rate, and

ρ(p, q) =
cpq√
cppcqq

, (15)

obtained using the elements of the covariance matrix C, given in Eq. (11). Accordingly, the degree

matrixD is defined using the weight matrix as

D = diag

{∑

q

k(1, q), ...,
∑

q

k(n, q)

}
. (16)

The graph Laplacian matrix is derived fromK and plays an important role in describing the under-

lying structure of the graph signal. The graph Laplacian and its normalized version are defined as

L = D −K and Lnormal = I −D−1/2KD−1/2, where I is the identity matrix. Spectral graph

theory studies the graph properties in terms of eigenvalues and eigenvectors associated with the

Laplacian matrix of the graph. The set of eigenvectors of Lnormal constitute the basis function for

the underlying signal defined on graph, and its eigenvalues are known as the corresponding graph

frequencies. The eigen decomposition of the real and symmetric normalized Laplacian is given by

Lnormal =
∑

i

λiuiu
T
i , (17)
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where {λi}i=1,...,n is the set of eigenvalues and {ui} the set of orthogonal eigenvectors used for

dimension reduction.

LetU contain the L’s first r eigenvectors corresponding to the first r eigenvalues of L sorted in

ascending order. The proposed spatiotemporal filtering on graph spectral theory employs matrix U

to represent the EEG signals with a lower number of features Fr as given by

Fr = UT
r X. (18)

It should be noted that the first r eigenvectors correspond to the first r low-frequency basis functions

in graph spectral domain. To perform dimensionality reduction, the value of r can be adaptively de-

termined for different subjects using the PRD method. The spatiotemporal filtering stage is followed

by mapping the data from the existing manifold to the Euclidean space. To this end, tangent space

mapping method is employed as a bridge operation to enable us to treat the data transferred to

Euclidean space as vectors. This mapping method is discussed next.

3.2.4 Tangent Space Mapping and Feature Extraction

A ‘manifold’ is a topological space that locally resembles Euclidean space near each point. In

other words, each point of an n-dimensional manifold has a neighborhood that is homeomorphic

to the Euclidean space of dimension n. Likewise, a Riemannian manifold is defined as a smooth

manifold with a smooth section of the positive-definite quadratic forms on the tangent space. Having

that said, it is known that the sample covariance matrices belong to the Riemannian manifold of the

symmetric and positive definite matrices. However, several significant and commonly used state-

of-the-art methods of machine learning, and specifically, classification techniques, such as those

introduced in Chapter 2, are mostly designed to be applied to datasets in the Euclidean space. Given

this, we employ the tangent space mapping technique [58] and the vectorizing approach that follows

it as the feature extraction method for the GD-BCI framework and then project data to Euclidean

space as vectors to proceed with the classification step.

To explain the utilized approach, let a Riemannian manifold S(n) be a space of (n×n) symmet-

ric positive definite matrices given by S(n) =
{
S ∈M(n),ST = S

}
, whereM(n) is the space of
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all square real matrices. The set of all the matrices is denoted as C(n) =
{
C ∈ S(n),uTCu > 0

}
,

which is not Euclidean. Tangent space mapping provides a Euclidean tangent space, TQC(n) at

the point Q, which approximates the aforementioned Riemannian manifold through the following

steps:

• Compute the set of sample covariance matrices for each trial as given in Eq. (10).

• Compute the mean Riemannian distance as

C̄ =
1

NTrial

NTrial∑

i=1

Ci. (19)

• Compute the map si from C to TQC(n) as

si = Upper
(

log
(
C̄

−1
2 CiC̄

−1
2

))
, (20)

where Upper(.) is used to weigh the upper triangular half of a matrix and vectorize it. In particular,

it assigns 1 as the weight for main diagonal and
√

2 for off-diagonal entries. The resulting feature

vectors are further trimmed and the most relevant ones are selected for classification purpose.

As per described in Chapter 2, the high dimensional features may lead to poor classification

performance. This is due to the fact that a large number of irrelevant features not only degrades

the generalization of the model, but also imposes a computational cost. Given this and in order to

determine the most significant feature vectors of si in the tangent space mapping process, which are

maximally related to the desired classes, we use a graph-based feature selection method similar to

what is given in Eq. (18). To this end, a weighted graph is built from si and the first 10 eigenvectors

of the corresponding Laplacian matrix are selected. The elected eigenvectors are then fed into the

classifier as its input. In addition, for PRD = 2%, eigenvectors are adaptively selected for each

subject. It should be noted that using the PRD method, one can adaptively compact feature vectors

for a better classification result.
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3.2.5 Classification

In order to classify the selected feature vectors as representative of the right hand or right foot

MIs, we employ the support vector machine (SVM) algorithm. The SVM uses training feature vec-

tors to learn a decision boundary that separates these two classes by projecting data into a higher

dimensional space using a kernel function. Once the decision boundary is learned, the SVM de-

termines the class membership of a newly-observed feature vector according to the side of the

boundary that the vector falls.

3.2.6 Simulations

The proposed framework is benchmarked on the dataset IVa from the BCI competition III taken

from http://www.bbci.de/competition/iii/. The EEG positioning is based on 10−20 standard system.

The dataset is composed of EEG recordings of 118 electrodes. The experiment is a classical cue-

based MI paradigm in which each of 5 subjects, namely, AA, AL, AV, AW, and AY, perform 280

trials of the right hand and right foot MIs. In the pre-processing step, the EEG signals are bandpass

filtered in the frequency band [8 − 30] Hz by a 5th order Butterworth filter. The time interval is

restricted to the segment located from 0.5s to 4s after the cue. The weighted moving average filter

is then applied to smoothen the data.

In order to obtain the most significant features for each subject, PRD is used to adaptively deter-

mine the required number of eigenvectors from which data can be reconstructed with a predefined

error. The corresponding size of datasets for different subjects is given in Table 3.2.

Table 3.2 illustrates the classification accuracy and its corresponding standard deviation aver-

aged over 400 runs, obtained using the proposed GD-BCI method using two graph construction

method, namely, physical graph (PG) and value-physical graph (VPG). It is seen from this table that

proposed a method using GD-BCI-VPG outperforms its GD-BCI-PG counterpart by almost 10%.

This is due to the fact that the GD-BCI-VPG is built using the electrode channel proximity (PG

case) as well as the correlation coefficients of the EEG signals, i.e., spatiotemporal filtering of the

EEG signals.

We now compare the performance of the proposed GD-BCI method to that obtained from the
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Table 3.2: Accuracy performance for predicting two classes and the corresponding standard devi-
ation obtained using the proposed GD-BCI framework with two graph construction methods: PG
and VPG

Subject AA (168 Train + 112 Test)
PRD<2.5% PRD<4.15%
rTR=rTS=60 rTR=41, rTS=43

VPG PG VPG PG
82.90±1.23 80.99±1.64 76.29±1.61 74.38±2.14

Subject AL (224 Train + 56 Test)
PRD2% PRD<3.5%

rTR=59, rTS=56 rTR=41, rTS=39
VPG PG VPG PG

97.37±0.30 97.62±0.23 97.62±0.27 97.38±0.31
Subject AW (56 Train + 224 Test)

PRD<2% PRD<3.3%
rTR=rTS=58 rTR=rTS=41

VPG PG VPG PG
92.58±2.82 91.30±2.75 93.70±2.21 90.83±3.14

Subject AV (84 Train + 196 Test)
PRD<2% PRD<4.29%

rTR=rTS=66 rTR=41, rTS=42
VPG PG VPG PG

65.79±2.97 66.87±2.69 66.99±2.83 64.21±3.32
Subject AY (28 Train + 252 Test)

PRD<2% PRD<4%
rTR=rTS=66 rTR=41, rTS=38

VPG PG VPG PG
83.14±5.76 68.82±5.67 80.29±4.64 84.32±4.61

other existing methods, in terms of the classification accuracy. Table 3.3 gives the comparison

results of the proposed method using VPG and PG and that provided by [54] and [59], when the

constant or adaptive number of features are selected. It is seen from this table that the proposed

method provides higher classification accuracy for various subjects as compared to those yielded

by [54] and [59]. In addition, the standard deviation of the classification accuracy obtained using

the proposed method is lower than that provided by [54].
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Table 3.3: Performance comparison of the proposed GD-BCI method in two-class classification
problem with that provided by [54] and [59].

GD-BCI-PG GD-BCI-VPG [54] [59]

PRD: rTR = 41 PRD: 2% PRD: rTR = 41 PRD 2% rTR = 41 rTR = 10

AA 74.38± 2.14 80.99± 1.64 76.29± 1.61 82.90± 1.23 81.43± 10.9 74.1

AL 97.38± 0.31 97.62± 0.23 97.62± 0.27 97.37± 0.30 97.50± 2.98 98.2

AW 90.83± 3.14 91.30± 2.75 93.70± 2.21 92.58± 2.82 98.57± 0.79 77.7

AV 64.21± 3.32 66.87± 2.69 66.99± 2.83 65.79± 2.97 69.29± 5.56 59.2

AY 84.32± 4.61 68.82± 5.67 80.29± 4.64 83.14± 5.76 93.93± 4.30 80.6

Average 82.22± 2.70 81.12± 2.60 82.98± 2.31 84.35± 2.69 88.14± 4.90 78.0

3.2.7 Conclusion

In this framework, a new dimensionality reduction and feature selection technique are proposed

for analyzing EEG signals obtained from an EEG-based BCI during MI tasks. The GD-BCI has

been established by leveraging the recent advances in the field of graph signal processing. The

proposed method is composed of an efficient graph-based dimensionality reduction technique fol-

lowed by tangent space mapping of the EEG signals to the Euclidean space. Experiments have been

conducted on a set of EEG signals obtained from the BCI competition. The results have shown

that the proposed method produces encouraging results providing high recognition accuracy for two

motory tasks classification. However, all these great advantages come with an undesirable price:

to determine the constants σd and σρ to configure the best-suited graph for each subject’s data, an

exhaustive search is required. The trial and error solution to find the proper σd and σρ is not prefer-

able in a real-world application. Therefore, I sought for an adaptive and systematic approach as

explained in the next section, to adjust the graph for each subject’s dataset without excessive trial

and error.
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3.3 GDR-BCI: Dimensionality Reduction of EEG Signals via Func-

tional Clustering and Total Variation Measure

In this framework, similar to the one proposed in GD-BCI, the observations obtained from the

EEG channels, a non-uniformly distributed sensor field, are taken into account in a manner that a

representation graph is formed using geographical distances between sensors to form connectivity

neighborhoods. However, by capitalizing on the fact that functionality of different connectivity

neighborhoods varies based on the intensity of the performed activity and concentration level of

the subject, an initial functional clustering of EEG electrodes was formed by designing a separate

adjacency matrix for each identified functional cluster.

3.3.1 Framework Outline

This framework contributes to detection of main EEG electrodes that capture the intention of

the subject due to the exposed stimulus. This purpose is achieved through an uncomplicated yet

straightforward and systematic method which separates the EEG electrodes in a desired number of

clusters. These clusters are formed under a biological constraint and then collapsed intelligently to

identify the two clusters that best spread over the active part of the brain during the motor imagery

task. In order to better perceive the impact of our proposed GSP-based approach for processing

EEG signals, widely used feature extraction/classification algorithms are coupled with the proposed

framework deliberately. The incentive of the proposed method roots back in the tendency of reduc-

ing the dimension of the dataset before processing it and without losing crucial information, and

also, in order to address challenges that previously proposed graph-based methods typically face,

i.e, formerly graph transforms applied to EEG datasets for dimensionality reduction were formed

empirically through trial and error for determining/tuning the constants required for selecting the

number of neighbors of each node. Via a change in the perspective of graph-based EEG signal pro-

cessing, I rather focus on deciding which nodes are capturing the intended activity, and thereafter,

are showing most relative activity to the purpose of the BCI, at the time of the experiment. It is im-

portant to note that this approach is subject-adaptive, technique-adaptive, applicable to multiclass

experiments, and has practical advantages for experiments with limited means of measurement at
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Figure 3.2: Functional clustering of human brain [60].

hand.

The electrodes of EEG headsets are often distributed over the subject’s skull in a consistent

geometrical structure, i.e., the arrangement or location of the electrodes of EEG recording device.

Hence, the neighborhood of each channel and their distances from other channels can be treated as

the required information for constructing a graph signal.

The GD-BCI framework involves a graph defined as a triplet G = (V,E,K), in which K

is a weighted adjacency matrix. Intuitively speaking, each element of K represents the weight of

the corresponding element in E. The matrix K is formulated as an exponential term including the

Euclidean distance as in (12) where as stated previously, the Euclidean distance between any two

channels is computed via the Eq. (13). The matrix KVPG takes into account the physical distance,

as well as the correlation of the data in each trial [61]. However, the main obstacle in the way of

constructing KVPG above, is how to determine the threshold the constants σd and σρ. During the

previous framework, the neighborhood and the structure of the graph are highly sensitive to the

values of σd and σρ. This challenge inspired us to investigate an alternative approach to define the

graph and reduce the dimension of the EEG data. Inspired by Reference [62], we decided to define

our graphG as a twin ofG = (V ;A) in which the matrix of nodes, i.e., V , is similarly defined as

the set of EEG electrodes. However, the second term A is the adjacency matrix. In this work, A is

constructed via the Euclidian distances of electrodes from each other as described in detail further

on.

3.3.2 Defining the Adjacency Matrix

As is described in Reference [62], in the case of measurements from a non-uniformly distributed

sensor field (in our context, EEG channels), data recorded from each sensor is a separate time series.
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In their example, a representation graph was constructed using geographical distances between

sensors and considering L nearest sensors as the connectivity neighborhood. However, motivated

by existence of different regions of the human brain with different functionality as shown in Fig. 3.2,

and the fact that these functions might have various intensities of activity due to the status of the

person and her/his concentration, I formed the idea of grouping the electrodes and proposing an

individual corresponding adjacency matrix for each cluster independent from the others. In this

fashion, the problem of determining/extracting the constants (σd, and σρ) through trial and error is

tackled, as the biological function of brain regions would be the constraint of the neighborhood for

forming the required graphs.

Fig. 3.3 illustrates the sparsity of the electrodes (projected onto 2-dimension) of the EEG head-

set used to collect the dataset and the groups (clusters) assigned to this structure. A number of

electrodes considered in each cluster is defined as:

• Cluster{1} = [1 2 3 4 5 6 7 8 9];

• Cluster{2}=[1112171819252627283536374546];

• Cluster{3} = [10 14 15 16 23 24 33 34];

• Cluster{4} = [13 20 21 22 29 30 38 39];

• Cluster{5} = [31 32 42 50 59 67 68];

• Cluster{6} = [40 41 49 56 58 76 77];

• Cluster{7} = [43 44 51 52 60 61 69 70];

• Cluster{8} = [47 48 56 57 64 65 74 75];

• Cluster{9} = [53 54 55 62 63 71 72 73 81 82 90 91 92 99 100];

• Cluster{10} = [78 79 80 86 87 88 89 98];

• Cluster{11} = [83 84 85 93 94 95 96 101], and;

• Cluster{12} = [97 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118];
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Figure 3.3: Sparsity pattern of the EEG electrodes (2-dimensional projection).

whereas each cluster is detached and defined separately, each of them can be considered as an

isolated graph,G(ci) = {V(ci),A(ci)}, for (1 ≤ i ≤ 12). The adjacency matrix for the i-th cluster is

formed as a square matrix of Euclidean distances the nodes of the i-th cluster see each other from. It

is worth mentioning that at the beginning of this work, a general adjacency matrix was considered to

model the connectivity of each electrode to all others within the structure of the headset. However,

the accuracies were not satisfying, as such the results are not reported in the thesis.

3.3.3 Total Variation Graph and Selection of best Clusters: Dimensionality Reduc-

tion

In Reference [63] an interesting concept is introduced referred to as the Total Variation Graph.

This concept denotes the signal variations on graphs and is formulated as follows.

TVG(s) =
1

‖s‖22

∥∥∥∥s−
1

|λmax|
As

∥∥∥∥
2

2

. (21)

Intuitively speaking, Eq. (21) evaluates the variation of the graph from a time sample to another.

Term s is the vector of values produced from all the nodes of the graph at a certain time sample;

TermA is the aforementioned adjacency matrix, and; |λmax| is the largest-magnitude eigenvalue of
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matrix A, which satisfies the condition |λmax| ≥ |λm|, for (0 ≤ m ≤ Nch − 1). We employed

this concept to extract the features and feed a LDA classifier with the features generated via Total

Variation Graph. In other words, the set of data collected from each cluster of electrodes was

separately fed to Total Variation Graph model (Eq. (21)), and the vector of features for each trial

(epoch) would be from the size of (number of time samples × 1).

The same sub-steps of feature extraction and classification are carried out for all the clusters, and

the accuracies of the classification are then compared to each other. The two clusters with maximum

accuracy are selected and their electrodes are used for the final feature extraction (through CSP) and

classification with three different kernels of classifiers.

It is important to note that this step of this framework has two main superiorities over similar

works. First, the dimensionality reduction is subject-adaptive and respects the brain plasticity of

subjects, by finding the two clusters matching the most active regions of the brain, in regards to

the task the subject was asked to do. Therefore, the proposed approach is not limited to motor im-

agery and can be employed within the processing kernel of BCIs using other techniques as well.

The second advantage is that the proposed approach can be taken to another level of implementa-

tion in practical experiments. In the case that the EEG cap would have the location of electrodes,

yet not all/enough electrodes would be available to record the data, using steps outlined in Sub-

sections 3.3.2 and 3.3.3, the researchers can find out which regions of the brain are active during

the time that the subject is performing the tasks. Then, they can place the electrodes in other re-

gions close to the active area and increase the accuracy of their data collection. This advantage adds

flexibility to practical experiments regardless of the technique being used.

3.3.4 Feature Extraction and Classification

As mentioned previously, the feature extraction method is a conventional CSP. The reason for

using this technique of feature extraction is the fact that this method is one of the most known and

well-regarded techniques of extracting features from 2-class datasets in EEG signal processing. The

target of this framework is to keep the non-graph part of the approach simple and as common as pos-

sible, so that the effect of the previous two steps could be observed and validated more clearly. As

for the classification, two well-known classifiers, i.e., LDA and QDA are used with 5-fold validation
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technique.

3.3.5 Simulations

For the purpose of evaluating the proposed graph-based dimensionality reduction (GDR) frame-

work, the dataset IVa from BCI Competition III was employed. This dataset includes the informa-

tion regarding the location of electrodes with respect to the center of the scalp. An order five

Butterworth bandpass filter is used in the pre-processing step to filter each raw of the dataset and

then a moving average function is utilized to smoothen the values. Next, the time series were down-

sampled by the factor of 10, meaning that only one time sample is selected out of each batch of 10

samples.

As for the feature extraction section, we considered two different scenarios of using two or

four eigenvectors to construct the whitening matrix, and the impact of the increase in the size of

whitening matrix can be easily noticed by comparing the table of results. Tables 5.1(a)-(c) illus-

trate the accuracy of classifications of features extracted by a whitening matrix constructed by two

eigenvectors, i.e., the ones corresponding to the max and min eigenvalues, with two different clas-

sifiers. Table 3.4(a) illustrates the classification accuracies obtained with 100 training samples (50

per class). Table 3.4(b) shows the accuracies for the classifiers trained with only 60 samples (30

per class), which is suitable for BCIs with a limited number of available training trials. Table 3.4(c)

shows the classification accuracies with only 200 samples (100 per class), which is a conventional

number of training trials for this dataset. Based on these results, it is observed that the proposed

approach is significantly and effective for motor imagery classification problem. Besides, improved

accuracies through both classifiers clearly reflect the positive impact of our proposed GDR frame-

work. Tables 3.5(a)-(c) exhibit the accuracies for the scenarios of extracting features with a whiten-

ing matrix of 4 eigenvectors, where other items are kept similar to the scenario in Table 3.4. These

results again elaborate on the effectiveness of the proposed GDR framework and illustrate its great

potential for improving the overall motor imagery classification accuracy when coupled with more

complex feature extraction methods.
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3.3.6 Conclusion

As a novel graph-based dimensionality reduction, (GDR) framework for processing EEG sig-

nals is proposed based on functional clustering of EEG electrodes and a collapsing step via a total

variation on graphs. The proposed methodology initially forms connectivity neighborhoods and

constructs a global block-diagonal graph representation of the EEG channels. By capitalizing on

the fact that functionality of different connectivity neighborhoods varies, a collapsing step is in-

troduced based on total variation measures on the graph, to reduce the overall graph model into

two functional clusters. The experimental results based on Dataset IVa from BCI Competition III

show that the proposed method can provide higher classification accuracy as compared to the other

existing methods.

3.4 Summary

Throughout this chapter, the methods and techniques suggested in graph theory and graph signal

processing were applied to the processing core of an MI EEG-based BCI system. Two frameworks

were proposed, GD-BCI and GDR-BCI and the effectiveness of them is well-elaborated via the

results obtained from several implementation studies. This completes my research work on devel-

oping the theoretical approaches to improve the performance of MI EEG-based BCI systems.
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Table 3.4: Accuracy comparison of the proposed GDR framework coupled with two different classifiers and with two
CSP features.

(a)

(b)

(c)
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Table 3.5: Similar to Table 5.1 except that four CSP features are utilized; (a) with 100 training trials; (b) with 60
training trials, and; (c) with 200 training trials.

(a)

(b)

(c)
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Chapter 4

Practical Solutions to Improve the

Performance of EEG-based BCI systems

As stated in Chapter 2, the techniques and methods proposed in theory to serve the end goal of

advancing the BCI systems, as well-structured and proven to be highly effective as can be, are not the

sole approach mitigate the real-world problems that BCI systems struggle with during implementa-

tion and utilization. Therefore, should a BCI researcher desire to truly move the edges of knowledge

in this field, her/his primary task is to get involved in practical experiments and implementations of

BCIs, however basic and pilot, while developing the theoretical methods and more complicated ap-

proaches of these systems. This way, challenges such as the comfort of the subject/patient/end-user

of the BCI, the ethical issues, the feasibility and practicability of a designed system, and so many

other similar aspects of implementing a BCI system will have a real sense and substantial mean-

ing to the aforesaid researcher. Motivated by this outlook, this chapter is allocated to the practical

experiments I carried out for my thesis and the solutions provided and tested. The first solution is

Progressive Fusion of Multi-rate MI Classification for BCIs to address the issues arose in the case

of a limited number of training trials at hand. The second solution is Improving the Accuracy of MI

EEG-based BCIs Through Trimming the Epochs to readjust the recorded epochs in a manner that

most informative parts of the signals are extracted and the segments of the epochs which do not

include the response of the subjects to the stimuli would be discarded.
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4.1 Progressive Fusion of Multi-rate MI Classification for BCIs

The section presents a practical implementation of an EEG-based BCI system developed based

on the Emotiv EPOC headset [64]. The focus of this approach is on development/implementation

of a synchronous BCI system, i.e., EEG signals are analyzed during pre-defined periods of time,

initiated by an interface. The objective is to research promising ideas in the design, development,

and implementation of signal processing technologies that contribute to the advancement of robust,

real-time, and adaptive EEG-based BCI system. In particular, the developed EEG-based framework

consists of two filters running in parallel namely: (i) The Progressive Filter: An efficient filter that

performs both feature extraction and classification (CSP is employed) steps based on the set of all

arriving epochs to re-train progressively over time. (ii) The Active Filter: A simplified CSP-based

feature extraction approach running online based on pre-trained classifiers, i.e., a lighter version

of the Progressive Filter that runs faster than its counterpart. After each trial and during the rest

period, the Active Filter produces the classification results and communicates its decision to the

next processing module in the BCI pipeline (e.g., a connected Arduino microcontroller). In the

meantime, the Progressive Filter incorporates new EEG epochs to adopt and re-train. Once the

Progressive Filter is trained, it checks its output with the Active Filter and if the two are not in

consensus, it updates the models of the Active Filter, i.e., the coupling of the two filters to improve

active classification performance. The proposed framework is evaluated both based on dataset IVa

from the BCI competition III, and through real data collected via the Emotiv Epoc headset.

4.1.1 Progressive Multi-rate MI Classification Outline

In an EEG-based BCI, as explained previously, several channels (sensors) are used to pick the

potential differences detected at the scalp produced from combined activity of several neural im-

pulses. Once the signal is recorded, the next steps involve pre-processing the recorded data, ex-

tracting discriminating features, and training a classifier to detect different MI classes, similar to the

approaches above. The following framework is motivated by the fact that throughout a session of

EEG recording, as a cognitive process, subjects become habituated towards the stimuli triggering
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(a) (b)

Figure 4.1: (a) Emotiv Epoc headset. (b) Electrode placement and activation.

their response. Therefore, in the case that there is a limited number of training trials available to ini-

tiate the classification model, the BCI system fails to adapt itself to the ongoing changes happening

in the patterns of data. Having that said, the proposed framework consists of two parallel pathways

for classification, among which, one of them functions as an observer. The observer takes action

once the recorded epochs can improve the performance of the previous main classifier.

The proposed progressive and multi-rate classification framework is developed based on the

CSP feature extraction method and consists of two filters, referred to as the Active Filter and the

Progressive Filter, which are partially coupled at the consensus epochs based on the individual

classification results. The Active Filter is a simple MI classification feature extraction method (e.g.,

with two eigenvectors taken into account for the construction of whitening matrix) which forms

the CSP features and uses a pre-trained classification model to assign them to the two MI classes.

The Active Filter produces results at the end of each epoch while the Progressive Filter uses several

consecutive epochs for re-training and adaptation. In other words, after each trial and during the

rest period, the Active Filter produces the classification results and communicates its decision to

the next processing module in the BCI pipeline (e.g., a connected Arduino microcontroller). In

the meantime, the Progressive Filter, in an offline fashion, performs the processing, adaptation,

and re-training tasks and it couples its models with the Active Filter in case the two filter is not in
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Figure 4.2: Arduino microcontroller used to turn BCI classifications into external actions like mov-
ing motors or controlling LEDs.

consensus. This completes the outline of the proposed multi-rate MI classification framework, next,

the development of the experimental setup and report results obtained from the implementation of

the proposed framework will be discussed.

4.1.2 Experimental Implementation of the Multi-rate MI Classification

In this subsection, the proposed progressive and multi-rate MI classification framework and its

practical implementation using the Emotiv Epoc headset is further elaborated. Fig. 4.1 illustrates

the headset and electrode placements. EMOTIV company describes their headset as a high resolu-

tion, multichannel, portable system designed for practical research applications [64, 66]. It has 14

channels (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4) and two reference

points (P3 and P4). Sampling is done sequentially at 2048 Hz internally, but the signal sent to the

computer is already processed and reduced to 128 Hz with a resolution of 14 bits (1 LSB = 0.51V),

a bandwidth of 0.2 - 45Hz, and filtered with digital notch filters at 50Hz and 60Hz. The built-in

filters are digital 5th order sinc filters. The input dynamic range is 8400 µV. The connection to the

computer is wireless over the 2.4GHz band, and uses a proprietary protocol. The headset itself is

wireless and powered with a LiPoly battery with 12 hours working time per full charge. Signal

quality is determined internally with the proprietary system and impedance measurements. Several

recent research studies [67,68] used the Emotiv headset reporting promising results which were the

motivation to use it to implement and develop the proposed framework as described further on.

Several online and offline experimental scenarios were performed to develop/implement the
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(a) (b)

Figure 4.3: (a) The visual stimulus shown to the subject as ‘Left Hand’. (b) The visual stimulus
shown to the subject as ‘Right Hand’.

proposed multi-rate classification framework. In the first scenario reported below, I briefly outline

different experimental setups developed/implemented and observations made that led to the setup

used in Scenarios 2 and three where the proposed framework was implemented/tested.

Scenario 1: In the experiments, originally, MI was considered during trials that last 3-5 seconds

with 1-3 seconds break between trials and then the following two classes were used: (i) Forward

arrow→ stimuli provided to imagine lifting one’s right hand, and; (ii) Backward arrow← stimuli

provided to imagine lifting one’s right foot continuously during each trial. At first, a total of 200

trials was performed by each subject and data was collected with the headset tilted back to approxi-

mately cover C3 and C4 motor cortex area as suggested by [69]. From the feedback obtained from

the subjects, it is concluded that the experiment was too long and headset placement was also un-

comfortable. Therefore, we reduced the total trials and performed two sessions of 30 trials with an

intermission to make the experiment easier on the subjects. The headset was also worn normally and

the experiments were done in the middle of an empty conference room, far from other electronics

(other than the laptop). Besides, feedback (shown in Fig. 4.2) was tried out by the subject, using an

Arduino microcontroller which is used to turn BCI classification results into the external lighting of

different-colored LEDs. This feedback is removed later on to keep the setup simpler. Finally, the

classes were changed to “left and right hand” movements. The primary attempt, originally, was to

avoid this to prevent dyslexic confusion of the stimuli, yet, the undertaken effort was to simplify the

cognitive process such that the cues are more simply linked with the action. As a result, the stimuli

were chosen as black and white line drawings of a left or right hand offset on the left or right side

of a central cross, Fig. 4.3.
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Table 4.1: Performance of different models based on real experimental data sets.
Model 1 Model 2 Model 3 Model 4 Model 5

CSP(2d) LDA 52.00% 62.50% 66.67% 50.00% 20.00%
CSP(2d) QDA 54.00% 60.00% 70.00% 55.00% 30.00%
CSP(4d) LDA 48.00% 47.50% 50.00% 60.00% 80.00%

Scenario 2: Before applying the proposed framework to real datasets collected from Emotiv head-

set, in this scenario, the proposed algorithm was used to classify BCI Competition III IVa datasets.

The experiment is performed based on the following steps: (i) Raw data is filtered to remove the

DC gain and to pick the information within 7-30Hz. Thereafter, the filtered data is chopped into

epochs and then smoothed using the weighted moving average method by a window size of 10 time

samples. After this step, the dataset is downsampled to keep one sample out of each batch of 10;

(ii) The CSP method is used to extract four features, M first trials were selected to train the classi-

fier; (iii) A Quadratic Discriminant (QD) classifier by 10-fold cross validation is trained; (iv) The

trained classifier is used by the Active Filter to classify incoming epochs, as the Progressive Filter

was collecting the new epochs to update and re-train itself; (v) After L epochs, the Progressive

Filter, re-trained by M + L trials and fused with Active Filter to be used as the new Active Filter

for classifying the next L1-epochs. Steps (ii) to (v) are repeated for each L-epoch batch under the

condition of improving the classification accuracy. As an observation, the dataset of subject “aa” in

BCI Competition II-Iva, was evaluated by the aforementioned algorithm, by setting M = 90 and

L = 20. The QD classifier is trained by the accuracy of 93.3% and classifies the next 20 epochs, as

the Active Filter, by the accuracy of 55%. Thereafter, Progressive Classifier is updated using 110

epochs, trained classier’s accuracy is 98.2%, and is fused with the Active classifier, which classifies

the next 30 epochs by the accuracy of 60%. The same procedure is done to train the Progressive

Filter by the accuracy of 93.6% using 130 epochs. The updated Active Filter then classifies next

40 new epochs by the accuracy of 65%. Scatter plots of these two Progressive Filters are shown in

Fig. 4.4.

Scenario 3: In this scenario, the same proposed framework is implemented based on the experimen-

tal setup described in Scenario 1. The first ten epochs are incorporated to train a model, hereafter

referred to as Model 1, using CSP feature extraction, and LDA model for classification. Only two
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Figure 4.4: Scatter plots obtained from two Progressive Filters trained based on 90 and 110 epochs,
respectively.

dimensions of the CSP are used. The resulting trained model is employed by the Active Filter for on-

line analysis of the following epochs, i.e., categorizing them as they come in. While the Active Filter

performs online classification based on Model 1, the Progressive Filter uses the next ten epochs, i.e.,

it trains another model (referred to as Model 2) based on twenty epochs and after the 20th epoch

starts classifying in parallel to the Active Filter which uses Model 1. This process was repeated
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Figure 4.5: Classification results obtained from implementation of the proposed progressive and
multi-rate framework based on data collected via Emotiv headset.

until Model 5 is trained. Fig. 4.5 and Table 4.1 illustrate the results. It is observed that using more

training data could result in providing improved performance. In practice, the online model (the

Active Filter) should be updated to the best performing model available at the Progressive Filter.

The same procedure was repeated by using a QDA classifier, and then again for both LDA and

QDA using four dimensions from the CSP. The results show a peak return from training in LDA and

QD for 2d CSP, before more training data actually decreases the model’s performance. Although

4d CSP with LDA starts out with lower performance as compared to its counterparts, it produces

improving results as more epochs are taken into account. These results are significantly promising

with further improvement/investigation which is one of the objectives of our future research in this

direction.

4.1.3 Conclusion

In this section, a novel progressive and multi-rate EEG-based MI classification framework is

proposed, which consists of two separate filters. The Emotiv Epoc headset is used to develop

and implement the proposed framework. The two filters (referred to as the Active Filter and the

Progressive Filter) are partially coupled at the consensus epochs based on the individual classifica-

tion results, i.e., the Active Filter (a simple MI feature extraction algorithm which uses pre-trained

classification models) produces results at the end of each epoch while the Progressive Filter uses

several epochs to re-train. The experimental implementations of the proposed framework indicate

its potential for improving the performance of real-time MI classification.
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4.2 Improving the Accuracy of MI EEG-based BCIs Through Trim-

ming the Epochs

As previously stated, one of the most popular and commonly used techniques to satisfy the re-

quirement for an effective and efficient BCI is Motor Imagery, which is defined as mere imagination

of a limb movement, with no actual movement or peripheral (muscle) activation. However, as much

as this field outlines a promising framework, the researchers dealing with MI commonly face two

types of challenges. The first challenge is to deal with different comprehension of subjects from

“imagination of the movement”. Some subjects imagine repeating the movement during each

epoch, while some others might execute the mental imagination of the activity only once, and not

necessarily within consistently equal time intervals after the stimulus is shown. In order to tackle

this obstacle of various reactions, implementation of methods in which the classifier is trained sub-

ject by subject has been adopted by the researchers of the field. These approaches are adaptive to

the nature of the datasets collected, for instance, should the subject react to the stimulus right after

he/she sees it, the classifier of the dataset collected from this subject is trained to read the epochs’

information right after the marker. The second challenge is the fact that through a cognitive pro-

cess, the brain of the subject learns to decrease the motor concentration while doing the same task.

Hence, the amplitude of the signals within each epoch tends to descend over time. As a clarifica-

tion to the case propounded, an actual example and the observation corresponding to that follows.

Through experiments done for the research work described in the previous section, the subjects

were asked to fill in surveys after they participated in each session of the experiment. The outcome

of these surveys was critical: it was difficulties for them to keep their concentration all through the

long experiments and they were not able to consistently do the tasks they were instructed for. The

experiment was extremely tiring on the subjects, and, for instance, 100 trials would be too long to

keep the subjects focus. The substantial difference of their performance was proved once the long

experiments were split into sets of runs with much less number of trials: through feedbacks and

computational analysis on the data collected from them, much better performance and more infor-

mative datasets were observed. Altogether, as the latency of the overall system (from the headset,

wireless communication and software) is unknown, and more importantly, delay in human response
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is inevitable, this question was raised: where it is best to start time sample within the time samples

of each epoch? To answer this question, the following approach was designed and tested.

4.2.1 Trimming Framework Outline and Simulation

To answer the raised question regarding the most informative time interval within each epoch,

straightforward processing was considered. As the main goal was to investigate whether or not

a trimmed epoch would contribute to better classification accuracy, the following modules were

considered.

• Preprocessing: Raw dataset of BCI Competition III-IVa were filtered via an order five But-

terworth filter, to remove the DC gain and to pick the information within 7-30Hz. Thereafter,

the epochs were arranged and then smoothed using the weighted moving average method by

a window size of 10 time samples. Then, the dataset is downsampled to keep one sample out

of each batch of 10. Finally, within each epoch, there are 350 time samples.

• Feature Extraction: The CSP method is used to extract features. Two eigenvectors are taken

for the purpose of construction of the whitening matrix. Also, in respect to the rule of thumb

mentioned in Chapter 2, both scenarios of splitting the dataset into training and test trials are

implemented: once with 60% of the trials for training, which is 168 trials out of 280, and the

remaining 112 trials were tested by the trained classifier. Another run, 196 trials (70% of the

trials) were put aside for training the classifier and that leaves 84 trials in the test dataset.

• Classification: Both LDA and QDA models with 5-fold cross validation were utilized to

classify the test sets.

These three steps, without any dimensionality reduction technique applied or complexity in the

algorithm were deliberately adopted for the sole purpose of enabling a better exhibition of the effects

of the trimming step, which comes before feature extraction. The trimming step is elaborated in

Algorithm 3.

The accuracies achieved from implementation of this approach are presented in Tables 4.2. As

the tables and the Fig. 4.6 illustrate, trimming step impressively boosts the performance of the

conventional CSP-based algorithm.
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Algorithm 3 TRIMMING THE EPOCHS

Input: {Original EEG signalsX}
Output: {EEG signals X̂ which epochs are trimmed based on the best time of start t̂}
1: Sampling the trainset: Half of theXtrain is considered as a sample of the training set X̄train,

to investigate the best time of start.

2: Best Time of Start Loop:
Step = number of time samples corresponding 0.1s
For: t̂ = 1:(Number of time samples between time = 0 to 1s)/Step
• Epochs ofXtrain are adjusted as X̄train =Xtrain(:, t̂:end, :);
• CSP is applied to X̄train and then LDA is trained and the training accuracy is stored.
End For.

3: Finding the best t̂: The stored accuracies are evaluated, the t̂ corresponding to the best t̂
determines t̂best.

4: Preparing the final X̄:
Final X̄ = X̄(:, t̂best:end, :);

(a) (b)

Figure 4.6: (a) The accuracies achieved via adding the trimming step to the conventional CSP
algorithm. (b) The accuracies achieved via the conventional CSP algorithm.

4.2.2 Conclusion

The proposed algorithm aims to help BCI developers who focus on MI EEG-based systems to

better evaluate and estimate the intentions of the subject. The accuracy of classification in MI EEG-

based BCIs can be significantly enhanced through trimming the epochs. This method is specifically

useful for those BCIs used for Locked-in patients due to the way it enriches the processing algorithm

and takes the burden of performance concentration off the patients’ shoulders. Implementation of
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this algorithm is highly recommended for any EEG-based study in order to prevent the possible ex-

haustion of the subjects of the study. The proposed trimming mechanism significantly outperforms

its counterpart regarding achievable performance.

4.3 Summary

Throughout this chapter, the practical experiments I carried out for my thesis and the solu-

tions provided and tested were elucidated in details. The first solution was “Progressive Fusion

of Multi-rate MI Classification for BCIs” which aimed to address the issues arose in the case of a

limited number of training trials available at the initiation phase of a BCI. The second solution was

“Improving the Accuracy of MI EEG-based BCIs Through Trimming the Epochs” during which an

additional step was suggested in order to trim the recorded epochs in a manner that most informative

parts of the signals are extracted and the segments of the epochs which do not include the response

of the subjects to the stimuli would be discarded. Both frameworks show notable and impressive

impact on the performance of MI EEG-based BCI systems. This completes the discussion on BCI

systems and frameworks to enhance the end results of such systems.
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Table 4.2: Accuracy comparison of the proposed trimming framework, (a) The accuracies for classifier trained with
168 training trial, and; (b)The accuracies for classifier trained with 196 training trial .

(a)

(b)
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Chapter 5

Applications of Hybrid BCIs and

WAKE-BPAT Framework for Blood

Pressure Estimation

5.1 Introduction to Hybrid BCIs

When we talk about ‘what the user wants’, the discussion is usually about a direct control of

an application, in other words, the question is ‘how can a user control the environment and make

changes to it intentionally, in a real-time fashion?’. Understandably, the primary requirement for

realizing such a purpose is for the user to be able to interact with the environment. Traditional

interfaces making this desire come true were devices such as keyboards, joysticks, and remote

controllers, however, nowadays intentional interactions with the environment is feasible through

more human-like interaction modalities, including gestures, facial expressions, gaze behavior, body

language, and physiological information, via which user is enabled to control an environment or

an application. As stated before, BCI systems utilize neurophysiological signal to establish direct

communication between human brain and computing devices without the involvement of neuro-

muscular pathways. Performance of a non-invasive BCI is highly dependent on the separability

of cognitive task related features extracted from cerebral electrophysiological signals (e.g., EEG)
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acquired during psycho-cognitive tasks undertaken by the user. The EEG has highly non-stationary

and non-linear dynamic characteristics and, therefore, current BCI systems suffer from limited MI

task detection accuracy. Nevertheless, the successful real-time (online) MI EEG-based BCI systems

suffer from the limited number of classes (motory tasks), and this issue is not arose only because of

the limitations of the processing methods, but also, because in BCIs based on imagined movements

approximately 20% of users do not exhibit BCI performance adequate enough for effective control,

a phenomenon called ‘BCI illiteracy’ [70,71], this problem has been reported with other major BCI

approaches as well.

To bridge the gap described above, novel approaches have been proposed to address these issues

in current BCI studies, by combining a BCI system with other system(s) that utilize neurological

signals, physiological signals, and/or external signals. This is the birthplace of systems called Hy-

brid BCIs or hBCIs. A typical hybrid BCI is, (i) composed of one BCI and another system, and;

(ii) supposedly, able to achieve specific goals better than a conventional system. A hybrid BCI can

either use two different brain signals (e.g. electrical and hemodynamic signals), one brain signal

(e.g. EEG) associated with two mental strategies (motor imagery and spatial visual attention, or one

brain signal and another input. Such an additional input can be a physiological signal like the elec-

trocardiogram (ECG) or a signal from an external device such as an eye gaze control system [72].

According to [73], there are four criteria for a hBCI to be fulfilled for it to achieve specific goals

better than a conventional BCI.

(1) The system must rely on activity recorded directly from the brain;

(2) At least one recordable brain signal, which can be intentionally modulated, must provide

input to the BCI (electrical potentials, magnetic fields or hemodynamic changes);

(3) The signal processing must occur online and yield a communication or control signal, and;

(4) The user must obtain feedback about the success or failure of his/her efforts to communicate

or control.

Hybrid BCI systems can either have more than one input whereby the inputs are typically pro-

cessed simultaneously or operate two systems sequentially, where the first system can function as
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a “brain switch” or as a “selector”. A brain switch is a BCI system designed to detect only one

brain state (brain pattern) in the ongoing brain activity, as the system is then followed by another

modality. The purpose of a brain switch is to ensure no output is produced when the user does not

intend to communicate.

In the rehabilitation literature review done by Decety et al. [74], it is suggested that just MI of

exercises (i.e. involving motor tasks) causes significant changes in the cardiopulmonary autonomic

responses consisting of alterations in heart rate, blood pressure, respiration rate, and blood oxygen

content. This means that central processes, such as, for example, motor preparation, mental sim-

ulation, stimulus anticipation and translation, can result in a cardiac response. Therefore, such a

cardiac response detected in the ongoing ECG signal, it can be used as either a switch on/off for a

BCI, or to follow a brain switch. In respect to this fact, there are several studies proposing effective

results of hBCIs using ECG signals. In [75], a hybrid BCI is introduced by combining ECG with

EEG, which uses newly developed bispectrum based features and concludes that the fusion of ECG

with traditional EEG-based BCI does enhance the performance of resulting hBCI. As an another

example, in [76], a P300 speller BCI’s performance is evaluated using the features obtained from

EEG and ECG signals. Although some research studies have shown promising results in this field,

the exhaustive review of Choi et al. in [77], shows that out of 74 journal articles on fruitful hBCIs,

only 2 of them are employing ECG as the second modality, therefore, the field of hBCI, and more

specifically, ECG-based hBCIs is still so new that no topic area within this domain can be consid-

ered mature. Moreover, to this date, the majority of the reported studies in this field are focused on

heart rate, as cuff-less blood pressure estimation through ECG signal processing is yet to be more

investigated and improved. Motivated by this, I sought for a solution for improvement of cuff-less

blood pressure estimation, which can be employed in a hybrid BCI system in future. The framework

suggested for this objective is described next.
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5.2 WAKE-BPAT: Wavelet-based Adaptive Kalman Filtering for Blood

Pressure Estimation via Fusion of Pulse Arrival Times

This work is motivated by recent urgency to design continuous and cuff-less blood pressure

(BP) monitoring solutions, not only for the purpose if hBCIs, but more importantly to prevent, de-

tect, and treat the hypertension. In this regard, a novel wavelet-based feature extraction algorithm

coupled with an adaptive and multiple-model Kalman filtering framework is proposed, referred to

as the WAKE-BPAT. This framework provides accurate and dynamic BP estimates by extraction

and fusion of different pulse arrival time (PAT) features. In particular, a wavelet transform and

histogram analysis-based robust and high-accurate R-peak detection algorithm is proposed without

incorporation of any pre-defined thresholds. This in combination with high-quality photoplethys-

mogram (PPG) characteristic points obtained from signal recordings of a recently developed PPG

device (Gen-1), are used for BP estimation, which is modeled as a hybrid state-space model with

structural uncertainties to fuse different PAT features in an adaptive fashion. Experimental evalua-

tions of WAKE-BPAT based on a real data set collected via Gen-1 device confirms the superiority

of the proposed framework in comparison to its counterparts.

5.2.1 Introduction

Blood pressure (BP) is a crucial hemodynamic parameter that varies between two pressure levels

in each heartbeat, called the Systolic BP (SBP) and the Diastolic BP (DBP). Hypertension, which

is also known as High Blood Pressure (HBP), is defined as a medical condition in which arteries

are experiencing a persistently elevated blood pressure, and is the cause for at least 45% deaths due

to heart disease, and 51% of deaths due to stroke [78]. The HBP is usually referred to as the silent

killer, as it does not show up significant symptoms. However, long-term high blood pressure is a

principal risk factor for coronary artery disease, stroke, heart failure, peripheral vascular disease,

vision loss, and chronic kidney disease [79]. An individual is called Hypertensive, if their SBP or

DBP reaches more than 140 or 90 mmHg respectively, at rest [80]. The BP measurements, and

in particular, continuous BP measurements are great means of retrieving invaluable information

about subjects’ health conditions in order to prevent, detect, evaluate, and early start of treatment of
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hypertension [81]. Conventionally, cuff-based instruments are used to determine the BP, which are

by nature discontinuous means of measurement, time consuming to use, and also cause discomfort

and inconvenience in case of many repetitions.

The aforementioned drawbacks of cuff-based BP monitoring have resulted in a recent surge

of interest [82–90] to develop novel and innovative signal processing solutions for continuous BP

monitoring. A potential surrogate of BP which is able to perform BP measurements non-invasively

and continuously is the Pulse Arrival Time (PAT), which is defined as the time for the pulse to

travel from the heart to a peripheral site. The PAT is considered as a notably practical solution for

ambulatory BP monitoring due to being readily acquired by wearable devices. Ahmad et al. [91]

showed that a significant correlation exists between the BP and the PAT, however, this correlation

depends on several parameters, which vary among different individuals. The end goal throughout

this work is to investigate BP estimation through ECG and PPG signals [92], using the PAT method.

Prior to a brief review of previous related works in this field, it is vital to explain the triplet

deflections in a typical ECG signal, known as QRS complex. Interpreting the ECG signals includes

assessment of the morphology (appearance) of the waves. The basic pattern of the ECG is logical,

electrical activity towards an ECG lead causes an upward deflection, electrical activity away from

a lead causes a downward deflection, and depolarization and repolarization deflections occur in

opposite directions. The QRS complex represents the depolarization (activation) of the ventricles.

To be able to detect the Q, R, and S waves (Fig. 5.1), and in combination, the QRS complex of

each heartbeat, one must know that the P wave is a small deflection wave that represents atrial

depolarization, and appears as the first curve in the signal recorded during a heartbeat, and is then

followed by the QRS complex. Normal Q waves represent depolarization of the interventricular

septum and appear as a downwards deflection in the signal, followed immediately by a peak, known

as R. The R wave reflects depolarization of the main mass of the ventricles, hence, it is the largest

wave. Finally, the S wave is any downward deflection occurred right after the R wave. Before

the next heartbeat signal follows, the rapid ventricular repolarisation is reflected by a wave named T

wave. The graphical appearance and the time intervals related to the QRS complex are well-regarded

features, tremendously used for medical diagnosis and also in biosignal processing.

To date, there are numerous proposed methods in the literature for detection of QRS-complex
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Figure 5.1: The main ECG waves within a heartbeat.

and R-peak. Recently, a derivative and adaptive threshold-based algorithm is proposed by Khamis

et al. in [93] for the detection of QRS complex. A quadratic filter-based ECG enhancement and

QRS detection technique is proposed by Phukpattaranont in [94]. However, the detection perfor-

mance of such methods is reliant on heuristically determined threshold values, that are either static

or dynamic in time or frequency domains. Threshold-based detection approaches, however, are not

generally suitable and/or applicable, particularly in presence of in-band noises. On the other hand,

in this work, the first-generation (Gen-1) device which is very recently developed by Marefat and

Mohseniet al. [92] is utilized for collecting PPG signals. The Gen-1 device performs minimally

invasive, muscle-based recording of the PPG signal in the reflective mode. Finally, different lin-

ear [86] and non-linear models [81, 84] have been developed in the literature to estimate the BP

from a computed PAT feature. While most of the model-based BP estimations from PAT are static

algorithms in nature, recently dynamic BP estimation via Kalman filtering (KF) [85] is proposed,

however, fixed/known parameters are used based on a single first-order scalar Markov model and a

single extracted PAT feature.

The research work presented in this section is a novel wavelet-based feature extraction algo-

rithm coupled with an adaptive and multiple-model Kalman filtering framework (referred to as the

WAKE-BPAT). As the resulting pattern of the PPG wave obtained from Gen-1 device is of high

quality, high signal-to-noise ratio (SNR), and is smooth, a derivative and threshold-based technique

is developed for extraction of main features from the PPG signals in the WAKE-BPAT framework.

Due to incorporation of state-of-the-art PPG recording system (Gen-1 device [92]), performance of
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continuous and automated BP-measurement relies heavily upon the accuracy of the feature extrac-

tion algorithm from ECG signal. A Wavelet Transform (WT) and histogram analysis-based robust

and highly-accurate R-peak detection algorithm is proposed here. The novelty of the algorithm lies

in its accuracy and simplicity. The algorithm does not use any threshold value for the detection

of R-peaks. The third contribution of the paper is development of a novel adaptive, and multiple

model [95] KF framework for BP estimation, which considers inherit structural uncertainties of the

state and observation models, and fuses different PAT features in an adaptive fashion.

The rest of the section is organized as follows: Subsection 5.2.2 formulates the problem. The

proposed WAKE-BPAT framework is developed in Subsection 5.2.4. Subsection 5.2.5 presents the

experimental results. Finally, Subsection 5.2.6 concludes the paper.

5.2.2 Problem Formulation

As stated previously, the PAT is, typically, derived from ECG and PPG signals. The PPG is

a non-invasive measurement technique that measures relative blood volume changes in the blood

vessels. On the other hand, the ECG is the graphical representation of the heart’s electrical activity,

and the QRS-complex (Q, R and S waves are usually treated as a single composite wave known

as the QRS-complex) is the most prominent feature of the ECG signal, which as stated previously,

provides useful information about the depolarization of ventricular myocardium and indicates the

start of ventricular contraction of the heart.

Commonly, the PAT is computed from the time interval between the R-peak of the ECG signal

and a characteristic point of the PPG signal. Different features (characteristics points) can be ex-

tracted from the PPG signals among which the following three are typically used: (i) The on-set of

the PPG; (ii) The peak of the PPG, and; (iii)The peak of the derivative of each PPG cycle i.e, the

maximum-slope-point (MSP) of each PPG cycle. Once characteristic points are identified through

feature extraction on both the ECG and PPG signals, the next step is to estimate the BP based on

the extracted features. The BP estimation task depends on the model used to relate the BP to the
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selected time difference such as the following

Model 1: BP = α1 ln(PAT) + β1 (22)

Model 2: BP = α2PAT + β2 (23)

Model 3: BP =
α3

PAT2 + β3, (24)

where the model parameters are, typically, computed through a calibration step, which is performed

based on couple of ground truth points and using least square (LS) approach.

5.2.3 The Kalman Filter

The Kalman filter is essentially a set of mathematical equations that implement a predictor-

corrector type estimator that is optimal in the sense that it minimizes the estimated error covariance,

when some presumed conditions are met. This method uses a system’s dynamics model, known

control inputs to that system, and multiple sequential measurements (such as from sensors) to form

an estimate of the system’s varying quantities (its state) that is better than the estimate obtained by

using only one measurement alone. The KF generates an estimate of the state of the system as an

average of the system’s predicted state and of the new measurement. The estimation is done using a

weighted average, as the weights are the means of realizing a certain purpose: the values with better

(i.e., smaller) estimated uncertainty are rather more ‘trustable’. As the covariance is a measure of

the estimated uncertainty of the prediction of the system’s state, it is employed for the purpose of

computing the weights. The result of the weighted average is a new state estimate that lies between

the predicted and measured state, and has a better estimated uncertainty than either alone. This

described process is repeated at every time step, with the new estimate and its covariance informing

the prediction used in the following iteration. In other words, the Kalman filter works recursively

and requires only the last ‘best guess’ to calculate a new state, rather than the entire history of a

system’s state.

5.2.3.1. Kalman Filter Described

A brief and comprehensive definition of Kalman Filter which can help better understanding of
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the way this filter functions. The KF is known to be an efficient algorithm for estimating the state

of a linear system from a series of noisy measurements. This definition shows that KF comprises

of two main blocks, modeling of linear systems, and linear recursive estimation. A discrete-time

linear time-invariant dynamical system is a set of matrix equations of the form

xi+1 = Axi +Bui, (25)

yi+1 = Cxi +Dui. (26)

where xi as the state of the system at time i (which is a natural number), yi is the output of the

system, and ui is the input of the system, as they are all real numbers. The matrices A, B, C,

and D are all constants and as they do not change over time i, the system is time-invariant. The

question here is how to lead the state x to become ‘good’, when only y is observed, and the degree

of freedom at hand by which we can impact the state is u. Obviously, the term ‘good’ depends on

the context of the system; generally, in the field of control engineering, the objective is to drive x

to 0. For the sake of simplification, the state-feedback controller is considered, which is easy to

design, analyze, and implement, and for this controller D = 0 and C is identity, which means that

x is directly measured, and by choosing output

ui := Kxi, (27)

we have

xi+1 = (A+BK)xi. (28)

However, more often it happens that the direct state is not observable, and only an estimation of the

state is available. Thus, the controller’s equation changes to

ui := Kx̂i, (29)

where x̂ = ξ(y) is the estimator of the actual output. In real-world applications, however, the

system is usually pushed around by random variables that stand for the noise that the linear system

80



is exposed to. Therefore, the system’s model is revised as follows.

xi+1 = Axi +Bui + wi, (30)

yi+1 = Cxi + vi, (31)

where wi and vi are the random variables presenting the noise, often with a normal distribution.

The aforementioned adjective efficient for KF comes from the second block of its structure:

linear recursive estimation. The linear recursive estimator estimates a constant vector from noisy

measurements. In other words, the sequence of measurements as

yi+1 = Cix+ vi (32)

are observed, the target is to estimate the x. The measurement matrix Ci ∈ Rm×n and Ri :=

Cov(vi) ∈ Rm×m are known, and x̂i is the estimate of x after i measurements. Given a yi, the

estimate is updated from x̂i−1 to x̂i. This is were the efficiency of this method is signified: the

update occurs via Eq. (33) with no need to storing y1, y2, ..., yi−1, or x̂1, x̂2, ..., x̂i−2. The update

equation (Eq. (33)) is a blend of the previous estimate, and the innovation, which is essentially a

matrix of constants multiplied by a term that shows how wrong the previous estimate was.

x̂i = x̂i−1 +Ki(yi −Cix̂i−1), (33)

where the matrix Ki ∈ Rn×m, also known as the estimator gain, is picked in a way that mean-

squared estimation error, or E||x − x̂i|| is minimized (E(.) denotes expectation operator). To find

theKi, three steps must be taken,

• Step 1: Let the estimation error εi : x− x̂i. Then, through simplification and rearrangement,

εi = (I +KiCi)εi−1 −Kivi. (34)

• Step 2: The covariance of both sides of the Eq. (34), considering that Ri := Cov(vi) and
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Pi := Cov(εi), resulting

Pi = (I +KiCi)Pi−1(I +KiCi)
T +KiRiKi

T , (35)

where Pi is essentially speaks for the uncertainty of the quality of the estimate.

• Step 3: To find the optimal estimator gain matrixKi,

E||x− x̂i||2 = Trace(Pi), (36)

therefore, if the derivative of the Trace(Pi) is set to 0, the following equation is achieved.

Ki = Pi−1Ci
T (CiPi−1Ci

T +Ri)
−1 (37)

Hence, when a new observation yi arrives, the linear recursive estimation algorithm computes the

optimalKi and updates the estimate.

With all that said, the KF essentially applies the linear recursive estimator to a discrete time

linear system. To summarize the combination, suppose x̂0 is the best guess for initial condition x0,

and, similarly P0 is the best guess for the initial uncertainty. Thus, every time step (iterate) of the

system, the KF propagates its guess forward in time according to the dynamics, through

x̂i+1 = Ax̂i +Bui, (38)

assuming that there is no noise. That is because the noise is zero-mean, therefore, this assumption

seems to be the most reasonable assumption the filter can make about how to propagate its estimate

forward in time. The uncertainty of the estimation is also propagated forward in time,

Pi+1 = APiA
T +Qi, (39)

whereQi is the covariance of wi which is known. Everytime a measurement comes in, the estimate
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gain matrix, the estimate and its uncertainty are updated as follows.

Ki = Pi−1C
T (CPi−1C

T +Ri)
−1 (40)

x̂i = x̂i−1 +Ki(yi −Cx̂i−1) (41)

Pi = (I +KiC)Pi−1(I +KiC)T +KiRiKi
T (42)

All three equations above, are simpler than their counterparts in linear recursive estimation algo-

rithm, as the time-invariance of linear systems implies thatCi is replaced byC. This completes my

overview on Kalman Filter. Next I will describe the application of KF in BP estimation.

5.2.3.2. Kalman Filter’s Application in WAKE-BPAT

I developed a KF-based algorithm for dynamical estimation of the BP values from PAT features.

In this context, recently Reference [85] proposed a KF formulation where the BP constitutes the state

variable and a simple random walk process, where the current value of BP variable is composed of

the past value, is used to model BP dynamics. The observation model is constructed based on a

single PAT feature resulting in the following state-space model to track the BP continuously

State Model: BP(k) = BP(k − 1) + w(k) (43)

Observation Model: ln PAT(k) =
1

α1
BP(k)− β1

α1
+ v(k), (44)

where k denotes the time index, and w(k) ∼ N (0, Q) and v(k) ∼ N (0, R) represent the forcing

terms and the observation noise, respectively. This completes a brief overview of the problem at

hand. Next, we present the proposed WAKE-BPAT framework.

5.2.4 Proposed WAKE-BPAT

The proposed WAKE-BPAT framework consists of three main components namely: (i) Pre-

processing; (ii) Feature extraction, and; (iii) BP estimation mechanism. Below, we describe the

above mentioned components respectively and in details.

5.2.4.1. Pre-processing
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Figure 5.2: (a) Noisy ECG signal. (b) Denoised ECG signal. (c) Noisy PPG signal. (d) Denoised PPG signal.

At the time of acquisition, ECG signal often gets heavily contaminated by various high and low-

frequency noises including the 50/60 Hz power line interference, electrosurgical noise, and baseline

drift, which degrades the performance and the accuracy of automated ECG processing algorithms.

Therefore, at first, the ECG signal has to be extracted from the background noise. The WT is a

well-regarded technique which is able to effectively decompose a signal at various time-frequency

resolutions and consequently, WT has been widely utilized for analyzing non-stationary signals

such as the ECG.

The ECG signal is characterized by a periodic or quasi-periodic occurrence of various waves

and segments having different frequency bands. Hence, WT is considered to be an excellent means

for the analysis of ECG signals [96]. Assorted ECG-waves, segments, and also the noises come to

be prominent at different frequency bands once subjected to the multi-resolution wavelet analysis.

The discrete wavelet transform (DWT)-based ECG de-noising technique used in [97] is adopted in

this framework. The Discrete Wavelet Transform decomposes the signal into mutually orthogonal

set of wavelet, i.e., a wave-like oscillation with an amplitude that begins at zero, increases, and then

decreases back to zero. The DWT provides sufficient information both for analysis and synthesis

of the original signal, with a significant reduction in the computation time. The wavelet can be

constructed from a scaling function which describes its scaling properties. The scaling function, or
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Figure 5.3: (a) Denoised ECG. (b) QRS-coef data. (c) Histogram analysis of the QRS-coef. (d) Amplitude-band where
the population of coefficients is maximum. (e) Modified QRS-coef data. (f) Detected R-peaks.

mother wavelet, is created from

φ(x) =

∞∑

k=−∞
akφ(sx− k), (45)

where ak are the filter coefficients and s is a scaling factor (usually chosen as 2).

The clinical bandwidth of ECG signal lies between 0.05-100 Hz [98], and the signal is recorded

at various sampling rates starting from 200Hz. To bring uniformity to the processing approach of

ECG signals recorded at different sampling rates, the signal is re-sampled at 1KHz, and then the

signal is decomposed using DWT by selecting the Biorthogonal 6.8 wavelet (bior6.8) as the mother

wavelet function.

High and low-frequency noises are eliminated by discarding the corresponding detail and ap-

proximation wavelet-coefficients from the noisy signal. On the other hand, all the clinical signatures

of PPG signal reside below 25 Hz [99], and therefore, the PPG signal is recorded at different sam-

pling rates starting from 50Hz. Hence, the input PPG signal is also re-sampled at 1 KHz due to

the same reason as in the case of ECG. The DWT-based signal denoising technique, which has

been used for ECG is also used for PPG (Fig. 5.4), selecting the ’db8’ wavelet function from the

Daubechie’s wavelet family [84]. An illustration of noisy and denoised ECG and PPG signals are

shown in Fig 5.2.
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Figure 5.4: The DWT-decomposition-tree of the PPG signal.

5.2.4.2. Feature Extraction

The feature extraction component of the proposed WAKE-BPAT framework consists of two main

tasks as explained below. 5.2.4.2.-A) The R-peak Detection Since the detail-coefficients D4 and D5

of the wavelet transformed data contain most of the information-energy of the QRS-complex [97],

these two coefficient-bands are selected for the purpose of R-peak detection. An array, which is

denoted as QRS-coef is formed by adding the coefficients of the D4 and D5 (QRS-coef = D4 + D5.)

The local peaks of the data present in the QRS-coef array clearly indicate the QRS-complexes of

the denoised signal. To eliminate the contribution of other waves and segments on the QRS-coef

data, and to boost the detection accuracy of the R-peak points, histogram analysis of the wavelet

coefficients present in the QRS-coef array is performed. Since most of the samples of an ECG-beat

(one complete ECG cycle is considered as a beat) belong to the low-frequency non-QRS regions (T

and P-peaks, ST-segment etc.), the peak of the histogram, and its surrounding samples values con-

stitute the non-QRS regions. The amplitude-band where the population of coefficients is maximum

is identified from the histogram analysis, and the corresponding amplitudes of those coefficients are

made zero in the QRS-coef array. Finally, the local peaks are identified from the modified QRS-

coef array, and the corresponding indices are marked as R-peak in the filtered signal. Figure 5.3

demonstrates the fact. The R-peak detection algorithm has been tested on a large number of ECG

data files of different sampling rates, and the accuracy is found over 99.9%.

5.2.4.2.-B) Fiducial-point Detection from PPG Signal

First-derivative of the filtered PPG (FD-PPG) signal is calculated, and two different features are
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Figure 5.5: (a) Filtered PPG. (b) FD-PPG signal where marked samples are the ones within the threshold value. (c)
Detected MSP and systolic-peaks.

Table 5.1: Estimated BP versus the actual BP based on the proposed WAKE-BPAT.

Statistics WAKE-BPAT Proposed Features via Model 1 Reference [89] Reference [87]
Mean Error 2.67 3.47 4.32 4.46

Standard Deviation 2.51 2.79 5.46 6.05
RMSE 3.62 4.41 5.52 5.74

extracted from the FD-PPG signal: (1) maximum-slope-point (MSP) of every PPG cycle, and (2)

systolic-peaks. The maximum amplitude of the FD-PPG signal is found, and the indexes of those

samples having an amplitude within 25% of the maximum are marked, and then the local-maximum

amplitude within a sliding-window of width 0.25s [100] is identified and considered as the MSP of

that PPG cycle. Now, traversing right in the time-domain PPG signal from the most recently detected

MSP, the first slope-reversal event is identified as the systolic-peak. Figure 5.5 demonstrates the

operations.

Now, the PPG-onset point is detected using a different method. First, the systolic-peak intervals

in the filtered signal are divided into 2:1 ratio, i.e., the mid-point of the peak-to-peak interval is

calculated, which is denoted as “M”. Then, all the samples in between every M-point and the imme-

diate next MSP are considered. Thereafter, among those considered samples, the maximum value

of angle θ is found, and the corresponding index on the filtered PPG is marked as the PPG-onset

point. Figure 5.6(a) shows the operations, while Figure 5.6(b) illustrates the Gen-1 Device.

5.2.4.3. BP Estimation Models

87



(a) (b)

Figure 5.6: (a) The PPG-onset detection technique. (b) The Gen-1 Device for PPG recordings developed recently by
Marefat and Mohseniet al. [92].

We developed an adaptive KF-based algorithm for dynamical estimation of the BP values from fea-

tures extracted in Section 3.2. Unlike the conventional approach of using a simple random walk

to model BP evolutions over time, we use an Autoregressive (AR) process of order p (in the ex-

periments we used p = 4) for relating the current BP estimates to its previous (N > 1) values,

i.e.,

BP(k) =

p∑

i=1

ai(k)BP(k − i) + w(k), (46)

where ai, for (1 ≤ i ≤ p), denotes the AR coefficients to be updated at each iteration. The evolution

of the AR coefficients is modeled as

a(k) , [a1(k), . . . , ap(k)]T = a(k − 1) + ν(k), (47)

where superscript T denotes transpose operator, and ν(k) is considered to follow a zero-mean and

white Gaussian process with known covariance matrix. To recursively update the AR coefficients,

a KF is performed based on Reference [101] where an instantaneous (static) estimate of the current

BP based on Model 3 in Eq. (24) is used in the update step of the KF implemented for updating the

AR coefficients.
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Instead of using a single observation model (such as the one introduced in Eq. (44)), a bank

(combination) of (Nf > 1) different observation models is proposed to be employed and construct

a hybrid state-space model for recursive estimation of the BP (in the experiments we used Nf = 2

based on the two characteristic points of the PAT features). In other words, I propose to consider

a combination of observation models (PAT features) and fuse the estimation result based on each

feature using adaptively computed weights. Intuitively speaking, the reason behind this scenario is

that one feature might not be the best choice at all times and potentially using different measure-

ment models would improve the performance. The observation model used in the WAKE-BPAT is,

therefore, given by

y(l)(k) = C
(l)
1 BP(k) + C

(l)
2 + v(l)(k), (48)

where superscript l, for (1 ≤ l ≤ Nf ), refers to one of the candidate PAT features/models within

the set of Nf considered multiple models, and y(l)(k) denotes its associated PAT measurement. For

example, when Model 1 in Eq. (22) is included in the set of candidate models, the mode-matched

terms in Eq. (48) are defined based on Eq. (44) as follows: y(l)(k) , ln PAT(k), C(l)
1 , 1

α1
,

and C(l)
2 , − β1

α1
. A KF is matched to each observation model l to form an updated BP estimate

defined as B̂P
(l)

(k) , E{BP(k)|Y (l)(k)} where Y (l)(k) = {y(l)(1), . . . , y(l)(k)} is the set of

all available observations upto and including the current iteration, and E{·} denotes expectation

operator. The mode-matched KFs are then fused through a collapsing step [95] which forms the

optimal single Gaussian distribution in the mean-square error (MSE). Details of adaptive multiple

model KF estimation is not included here due to lack of space, please refer to [95] and references

therein for further details.

5.2.5 Simulation and Results

In this section, experimental results are presented based on a real data set collected from a

healthy female volunteer. The BP variation is introduced by change in posture and exercise of the

volunteer. The measured BP varied between 101 to 159 mmHg. The ECG signals are collected

via a 3-lead ECG commercial device, while the PPG recordings are collected based on the Gen-1
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Figure 5.7: Estimated versus the actual BP. (a) Based on [89], i.e., Model 3. (b) Based on the proposed WAKE-BPAT
and Model 1.

device from fingertip. As stated previously, Gen-1 device is very recently developed by Marefat

and Mohseni et al., which records the PPG signals in the reflective mode using a portable sensor

board interfaced with a battery-powered main board for control and data processing. Please refer

to Reference [92] for further details on the Gen-1 device. Finally, 20 reference BP recordings are

measured by a cuff-based Omron 10 device. The results obtained based on all 20 measurements

with Point 5 with BP equal to 101 mmHg, and Point 6 with BP equal to 141 mmHg are used for cal-

ibration via the LS approach. The PAT values are averaged over previous 10 epochs at each ground

truth point. Four different BP estimation algorithms are implemented and compared for accuracy

as follows: (i) The proposed WAKE-BPAT framework which provides dynamical estimates of the

BP and uses the proposed features together with the proposed adaptive and multiple model KF; (ii)

Instantaneous (static) BP estimation based on Model 1 and the proposed features; (iii) Instantaneous

BP estimation based on [89], and; (iv) Instantaneous BP estimation based on [87].

Table 5.1, compares the accuracy of the above four estimation algorithms in terms of the mean

error in absolute value, the standard deviation, and the root mean squared error (RMSE). It is worth

mentioning that mean estimation error below 5 mmHg (in absolute value) with standard derivation

of below 8 mmHg is the requirement set by the Association for the Advancement of Medical Instru-

mentation. It is observed that the proposed WAKE-BPAT framework provides significantly superior

results in comparison to its counterpart based on previously developed features. In particular, the
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mean error in absolute value is reduced approximately in half. At the same time, the effect of the

proposed feature extraction algorithms is observed in the improved accuracy of Item (ii). This im-

provement can be attributed to the proposed histogram analysis of the wavelet coefficients, which

not only helps removing the contribution of other waves, but also the presence of in-band noises,

which in-turns serves to accurately and reliably detect R-peaks. The prime advantage of the pro-

posed R-peak detection algorithm over others is that it does not require any threshold value for the

estimation of the peaks. This algorithm is also potential to be effectively employed in a variety of

applications including heart rate calculation, heart rate variability estimation, classification of ECG

beats, or, as the motivation of this work, the hBCIs. Fig. 5.7 compares the estimation error results

in absolute value versus the actual BP values computed based on Items (i) and (iii). It is observed

the proposed WAKE-BPAT framework outperforms its counterpart and the estimated BP values are

fairly close to their actual ground truth, which attests to the effectiveness of the proposed cuff-less

and continuous BP estimation framework.

5.2.6 Conclusion

In this section, I proposed a novel framework for non-invasive and continuous estimation of the

blood pressure (BP) from Pulse Arrival Time (PAT). The PAT is computed from the time interval be-

tween the R-peak of the ECG signal and a characteristic point of the PPG signal collected based on a

recently developed PPG recording device (Gen-1). In particular, a wavelet-based feature extraction

algorithm coupled with an adaptive and multiple-model Kalman filtering framework (referred to as

the WAKE-BPAT) is proposed, which provides accurate BP estimates by extraction/fusion of dif-

ferent PAT characteristics. The WAKE-BPAT framework is evaluated based on a real data set, and it

was shown that the proposed framework significantly outperforms its counterparts. Several poten-

tial future venues may be envisioned foe this work, for instance, investigation for using nonlinear

filters instead of the KF.

91



5.3 Summary

Throughout this chapter, first I described hybrid BCI systems, which are BCI systems combined

with other system(s) that utilize neurological signals, physiological signals, and/or external signals.

This category of BCIs are composed of two different brain signals, one brain signal associated with

two mental strategies, or one brain signal and another input such as ECG, and are supposedly, able

to achieve specific goals better than a conventional system. Inspired by the fact that MI of exercises

causes significant changes in the cardiopulmonary autonomic responses consisting of alterations in

heart rate, blood pressure, respiration rate, and blood oxygen content, I sought for a framework

to estimate BP through measurements of ECG and PPG signals. The WAKE-BPAT framework

is a novel wavelet-based feature extraction algorithm coupled with an adaptive and multiple-model

Kalman filtering. This framework provides accurate and dynamic BP estimates by extraction and fu-

sion of different pulse arrival time (PAT) features. Experimental evaluations of WAKE-BPAT based

on a real data set collected via Gen-1 device confirms the superiority of the proposed framework in

comparison to its counterparts.
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Chapter 6

Summary and Future Research

Directions

The chapter concludes the thesis with a list of important contributions made in the dissertation

and some proposed directions for future work.

6.1 Summary of Contributions

A list of the contributions of the thesis is as follows.

(1) Adaptive Dimensionality Reduction Method using Graph-based Spectral Decomposi-

tion for Motor Imagery-based Brain-Computer Interfaces: In this framework, referred

to as the GD-BCI as a graph-based approach, I proposed steps as follows: (i) more system-

atic and robust preprocessing approaches were tried and the best-suited technique was chosen

to smoothen the data; (ii) an uncomplicated technique, referred to as PRD, to make a more

accurate estimation of the minimum size of the trial matrices; (iii) a graph-based spatiotem-

poral filter to reduce the dimensionality of the trial matrices, which takes into account both

geometrical structure of the channels/electrodes and the correlation between the EEG signals;

(iv) a tangent space mapping technique, to extract the features of the data matrices from the

Riemannian manifold and thereafter, map the vectors onto Euclidean space; and, (v) classi-

fication of the feature vectors via a linear SVM classifier. The results of benchmarking this

93



framework on datasets IVa of BCI competition III prove the effectiveness of the proposed

method.

(2) Graph-based Dimensionality Reduction of EEG Signals via Functional Clustering and

Total Variation Measure for BCI Systems: In this framework, referred to as the GDR-BCI

framework, similar to the GD-BCI, (i) a more systematic approach was chosen to smoothen

the data; (ii) based on the fact that functionality of different connectivity neighborhoods varies

based on the intensity of the performed activity and concentration level of the subject, an ini-

tial functional clustering of EEG electrodes is built by designing a separate adjacency matrix

for each identified functional cluster; (iii) a collapsing methodology is used which is based on

total variation measures on graphs, the overall model will eventually be reduced (collapsed)

into two functional clusters; (iv) in order to better elaborate the effectiveness of the proposed

method, CSP algorithm was chosen to extract the features; and, (v) linear and quadratic dis-

criminant analysis models were employed to classify the data. The experimental results based

on the same Dataset IVa from BCI Competition III show that the proposed method can provide

higher classification accuracy as compared to its counterparts.

(3) Progressive Fusion of Multi-rate Motor Imagery Classification for Brain-Computer In-

terfaces: This framework consists of two filters running in parallel namely: (i) The Progres-

sive Filter: An efficient filter that performs both feature extraction and classification steps

based on the set of all arriving epochs to re-train progressively over time. (ii) The Active Fil-

ter: A simplified CSP-based feature extraction approach running online based on pre-trained

classifiers, i.e., a lighter version of the Progressive Filter that runs faster than its counterpart.

The classification model of Active Filter is updated every time the Progressive Filter’s eval-

uation shows a possibility to increase the classification accuracy. The proposed framework

is evaluated both based on dataset IVa from the BCI competition III, and through real data

collected via the Emotiv Epoc headset.

(4) Improving the Accuracy of MI EEG-based BCIs Through Trimming the Epochs: This

method proposes a readjustment in the recorded epochs via trimming the epoch signals in

a manner that most informative parts of the signals are extracted and the segments of the
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epochs which do not include the response of the subjects to the stimuli would be discarded.

This approach was tested by adding the trim step to a conventional CSP-based framework,

and the results successfully prove the positive effect of this technique.

(5) Wavelet-Based Adaptive Kalman Filtering For Blood Pressure Estimation Via Fusion

Of Pulse Arrival Times: The WAKE-BPAT framework (i) filters ECG and PPG signals to

eliminate the noise; (ii) extract the ECG and PPG features by a wavelet-based algorithm; and

(iii) employs an adaptive and multiple-model Kalman filter to estimate the blood pressure.

This framework provides accurate and dynamic BP estimates by extraction and fusion of dif-

ferent pulse arrival time (PAT) features. Experimental evaluations of WAKE-BPAT based on

a real dataset collected via Gen-1 device confirms the superiority of the proposed framework

in comparison to its counterparts.

As a final note, it is substantially important to explicitly point out the assumptions made throughout

this thesis, for there can be amendments to relax them in future works.

(1) The vital biosignals processed and analyzed throughout the thesis research work, i.e., EEG,

ECG, and PPG signals, are all assumed to be normally distributed by nature. In other words,

the underlying reason for considering “covariance” as an effective statistical measure for re-

trieving the dependencies within the data is the Gaussianity of the data’s distribution from

probability and statistical point of view (second-order statistics). This assumption can be

further relaxed/amended in the future works of my colleagues at I-SIP Lab, or myself, by

considering higher orders of statistical distribution, and hence, more complicated explanation

of the dependencies within the data.

(2) Throughout the development of theoretical frameworks for BCIs (GD-BCI and GDR-BCI),

and similarly for designing the practical solutions (multi-rate filters and trimming technique),

I utilized a 5–the order Butterworth filter. A few other filters were also tested with higher

and lower orders, however, the lower orders brought about large transition in the frequency

domain for cutting the bands before and after the desired frequency band. Moreover, higher

orders caused undesirable impacts on the frequency contents around the cut-off frequencies.

The overshoots and undershoots occurring because of the higher orders of the filter could have
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been neglected if the processing of brain patterns was not greatly sensitive to effects of the

filter, whereas, my studies showed otherwise. This problem calls for seeking for a solution to

ensure the optimality of the band-pass filters order used for the preprocessing step.

(3) For any EEG-based BCI set up, in regards to the synchronization of the recordings and the

markers of the stimuli, an implicit assumption exists, i.e., the logged marker precisely shows

the actual time of the stimuli. This assumption is generally made because the experimental

setup, including the computer(s), the cables, and any other device used for the purpose of brain

activity collection, involves propagation delay by nature. This error is inevitable, although, it

can be mitigated. It is noteworthy that if the software/application used for creating the data

variables would provide the marking option, the propagation error it supposedly reduced.

(4) The dimensionality reduction methods proposed in my research work are an effort to en-

sure that innovative ideas like those suggested in GD-BCI and GDR-BCI are effective for

the majority of currently-in-high-interest BCIs. In the future, optimization methods can be

integrated with the proposed graph-based dimensionality reduction techniques, to ensure the

optimal number of key variables required.

6.2 Future Work

This section discusses the possible future extensions to the proposed contributions throughout

this thesis.

• Graph-based EEG-based BCI Processing Frameworks: The GD-BCI and GDR-BCI frame-

works will be followed by:

(1) Implementing the same framework on other datasets, such as datasets collected at I-SIP

Lab;

(2) The clustering step of GDR-BCI framework needs to be implemented automatically;

(3) More complicated classification models shall be tried out, and;

(4) The frameworks can be developed for multi-class BCIs.
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• The Practical Solutions for EEG-based BCIs: Both of the approaches proposed in chapter

3 will be developed with

(1) Implementing the same framework on other datasets, such as datasets collected at I-SIP

Lab;

(2) More flexible time interval selection algorithm will be developed, and the two tech-

niques will be merged;

(3) More complicated classification models shall be tried out, and;

(4) The frameworks can be developed for multi-class BCIs.

• The WAKE-BPAT Framework: The framework has to be carried out for more subjects’

data, and the possibility of employing non-linear Kalman Filter will be investigated.
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