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1 Zusammenfassung 
Fluoreszenzfarbstoffe und genetisch kodierte Fluoreszenzindikatoren (GEFI) sind gängige 

Werkzeuge zur Visualisierung von Konzentrationsänderungen bestimmter Ionen und 

Botenmoleküle der intra- sowie interzellulären Kommunikation. Während 

Fluoreszenzfarbstoffe direkt in die Zielzellen eingebracht werden müssen und nur über einen 

begrenzten Zeitraum funktionieren, kann die Expression von GEFIs zell- und zeitspezifisch 

gesteuert werden, was darüber hinaus Langzeitanalysen in lebenden Organismen ermöglicht. 

Farbstoff- und GEFI-basierte Fluoreszenzfluktuationen, die mit Hilfe moderner bildgebender 

Verfahren aufgezeichnet werden, bilden die Grundlage für die Analyse physiologischer 

molekularer Kommunikation. Die Analyse einer großen Zahl komplexer Fluoreszenzsignale ist 

jedoch eine schwierige und zeitaufwändige Aufgabe. Eine automatisierte Analyse ist dagegen 

weniger zeitaufwändig und unabhängig von der Voreingenommenheit des Anwenders. 

Allerdings müssen hierzu mehrere Herausforderungen bewältigt werden. Unter anderem die 

korrekte Schätzung von Fluoreszenzschwankungen bei Basalkonzentrationen von 

Botenmolekülen, die Detektion und Extraktion von Signalen selbst, die korrekte 

Segmentierung benachbarter Signale sowie die Verfolgung sich ausbreitender Signale. 

Darüber hinaus müssen die Algorithmen zur Signalerkennung empfindlich genug sein, um 

lokalisierte Signale mit geringer Amplitude sowie begrenzter räumlicher Ausdehnung genau 

zu erfassen. 

In dieser Arbeit werden drei neue Algorithmen, PBasE, CoRoDe und KalEve, für die 

automatische Extraktion und Analyse von Fluoreszenzsignalen vorgestellt, die entwickelt 

wurden, um die oben genannten Herausforderungen zu bewältigen. Die Algorithmen sind in 

eine grafische Anwendung namens MSparkles integriert, die speziell für die Analyse von 

Fluoreszenzsignalen entwickelt und in MATLAB implementiert wurde. Die Fähigkeiten der 

Algorithmen werden anhand der Analyse astroglialer Ca2+-Signale demonstriert, die in 

narkotisierten sowie wachen Mäusen aufgezeichnet und mit den genetisch kodierten Ca2+-

Indikatoren (GECIs) GCaMP3 und GCaMP5 visualisiert wurden. Erlangte Ergebnisse werden 

anschließend mit denen anderer Softwarepakete verglichen. Darüber hinaus dient die Analyse 

neuronaler Na+-Signale, die in akuten Hirnschnitten mit SBFI-AM aufgezeichnet wurden, dazu, 

den breiten Anwendungsbereich der Algorithmen aufzuzeigen. Zu guter Letzt wird aufgrund 

der zunehmenden Indizien auf die zentrale Rolle von Astrozyten bei neurodegenerativen 

Erkrankungen wie Epilepsie eine Metrik zur Bewertung des synchronen Auftretens 

fluoreszenter Signale eingeführt. In einer Proof-of-Principle-Analyse wird diese Metrik 

verwendet, um astrogliale Ca2+-Signale mit EEG-Messungen zu korrelieren. 
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2 Abstract 
Fluorescent dyes and genetically encoded fluorescence indicators (GEFI) are common tools 

for visualizing concentration changes of specific ions and messenger molecules during intra- 

as well as intercellular communication. While fluorescent dyes have to be directly loaded into 

target cells and function only transiently, the expression of GEFIs can be controlled in a cell 

and time-specific fashion, even allowing long-term analysis in living organisms. Dye and GEFI 

based fluorescence fluctuations, recorded using advanced imaging technologies, are the 

foundation for the analysis of physiological molecular signaling. Analyzing the plethora of 

complex fluorescence signals is a laborious and time-consuming task. An automated analysis 

of fluorescent signals circumvents user bias and time constraints. However, it requires to 

overcome several challenges, including correct estimation of fluorescence fluctuations at basal 

concentrations of messenger molecules, detection and extraction of events themselves, proper 

segmentation of neighboring events as well as tracking of propagating events. Moreover, event 

detection algorithms need to be sensitive enough to accurately capture localized and low 

amplitude events exhibiting a limited spatial extent. 

This thesis presents three novel algorithms, PBasE, CoRoDe and KalEve, for the automated 

analysis of fluorescence events, developed to overcome the aforementioned challenges. The 

algorithms are integrated into a graphical application called MSparkles, specifically designed 

for the analysis of fluorescence signals, developed in MATLAB. The capabilities of the 

algorithms are demonstrated by analyzing astroglial Ca2+ events, recorded in anesthetized and 

awake mice, visualized using genetically encoded Ca2+ indicators (GECIs) GCaMP3 as well 

as GCaMP5. The results were compared to those obtained by other software packages. In 

addition, the analysis of neuronal Na+ events recorded in acute brain slices using SBFI-AM 

serve to indicate the putatively broad application range of the presented algorithms. Finally, 

due to increasing evidence of the pivotal role of astrocytes in neurodegenerative diseases such 

as epilepsy, a metric to assess the synchronous occurrence of fluorescence events is 

introduced. In a proof-of-principle analysis, this metric is used to correlate astroglial Ca2+ 

events with EEG measurements. 
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3 Introduction 
 

 The central nervous system 

The central nervous system (CNS) consists of two predominant classes of cells - neurons and 

glial cells. Glial cells far exceed neurons in cellular diversity and function (Fields et al., 2014). 

Both, glial cells and neurons maintain close contact and interact throughout the entire CNS 

(Figure 1). In contrast to neurons, glial cells do not generate action potentials (Fields et al., 

2014), but communicate via the release of gliotransmitters (Araque et al., 2014), like glutamate, 

adenosine triphosphate (ATP) or γ-aminobutyric acid (GABA). Various types of glial cells are 

not only classified based on their function, but with regard to their location within the CNS. 

Figure 1: Cells in the CNS. Glial cells and neurons (yellow) closely interact throughout the entire CNS. Microglia 
(purple) are the primary immune cells of the CNS surveilling their vicinity. Oligodendrocytes (cyan) ensheathe 
neuronal axons. Astrocytes (blue) are in contact with capillaries and participate in tripartite synapses. NG2 glia (red) 
connect to nodes of Ranvier and maintain close proximity to synapses.  
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 Neurons 
Neurons (Figure 1, yellow) are electrically excitable cells (Rutecki, 1992), communicating via 

the release of neurotransmitters at their synapses. Each synapse thereby consists of a 

presynapse at the end of a neuron’s axon, where neurotransmitters are released and the 

postsynapse, located on a dendrite of the receiving neuron (Campbell et al., 2011). Neuronal 

axons are ensheathed by myelin layers (Figure 1, cyan), produced by oligodendrocytes, 

providing electric insulation for fast signal propagation. Myelinated sections are intercepted by 

nodes of Ranvier, short unmyelinated gaps, increasing the conduction velocity and ultimately 

resulting in the characteristic saltatory conduction of action potentials. In recent years it has 

become evident that glial cells play a major role in neurodegenerative diseases, especially in 

the context of epilepsy (Carmignoto and Haydon, 2012; Heuser et al., 2018). Therefore, a 

compound analysis of glial molecular signalling and neuronal electrical signals has the 

potential to reveal new insights into the underlying processes of neurodegenerative diseases. 

 

 Glial cells 
Microglia (Figure 1, purple) are the resident macrophage cells of the CNS, providing the brains 

primary immune response (Filiano et al., 2015). Each microglia is continuously monitoring its 

surrounding by extending and retracting its processes. Territories of neighboring microglia cells 

are non-overlapping (Kettenmann and Verkhratsky, 2013). Upon detection of e.g. an 

inflammation or necrotic event, microglia migrate towards the affected region and transition 

into a reactive state. Thereby, they undergo a morphological transformation from ramified to 

an amoeboid shape (Stopper et al., 2018). 

NG2-glia cells (Figure 1, red), also referred to as oligodendrocyte precursor cells or 

polydendrocytes, are not only precursor cells to oligodendrocytes, but can further differentiate 

into astrocytes as well as neurons during early development as well as under pathological 

conditions (Richardson et al., 2011; Huang et al., 2014). NG2-glia maintain close contact to 

neurons, by extending their processes to nodes of Ranvier as well as keeping them in close 

proximity to synapses (Butt et al., 1999).  

Oligodendrocytes (Figure 1) are the myelinating cells of the CNS, closely associated with 

neurons and astrocytes in the developing as well as the adult brain (Kettenmann and 

Verkhratsky, 2013) (Figure 1, cyan). Oligodendrocytes ensheathe neuronal axons (Bean, 

2007), providing support and insulation, enabling rapid neuronal communication. Via gap 

junctions they form direct cellular contacts with other oligodendrocytes but also astrocytes 

(Kettenmann and Verkhratsky, 2013). Contacts with other neural cells render oligodendrocytes 

as important participants of cellular networks within the CNS (Kettenmann and Verkhratsky, 

2013).  
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 Astrocytes 
Astrocytes (Figure 1, blue) form a vast family of glia cells, expressing a strongly brain region 

dependent shape and function. Fibrous astrocytes, located in the white matter, often possess 

vascular feet, attached to capillaries (Kettenmann and Verkhratsky, 2013). Protoplasmic 

astrocytes of the gray matter possess many, highly branched processes, of which at least one 

is bearing one or more perivascular end feet (Kettenmann and Verkhratsky, 2013). Radial 

astrocytes reside in the embryonic ventricular zone, but are also common in the spinal cord of 

lower vertebrates (Kettenmann and Verkhratsky, 2013). Bergmann Glia, derived from radial 

glia, occur solely within the cerebellum, maintaining close contact to Purkinje cells. Finally, 

Müller cells are the most prominent retinal glia cells (Kettenmann and Verkhratsky, 2013). 

Astrocytes are an integral part of the blood-brain-barrier by maintaining contact to endothelial 

cells (Matias et al., 2019) and contribute to the formation of glial scars upon traumatic brain 

injuries (Sofroniew, 2009). In addition, astrocytes provide nutrients to neurons and are 

responsible for maintaining ion and water homeostasis (Matias et al., 2019). Each astrocyte 

occupies and controls a distinct region, only slightly overlapping at interfaces with neighboring 

astrocytes (Volterra and Meldolesi, 2005). By attaching to neuronal synapses, so-called 

tripartite synapses are formed (Araque et al., 1999; Haydon, 2003), where astrocytes not only 

sense neurotransmitters, but actively participate in neuronal communication by releasing 

gliotransmitters, such as glutamate, ATP, GABA or D-Serine (Haydon, 2001). Most 

importantly, astrocytes communicate via Ca2+ mediated release of gliotransmitters, also 

modulating neuronal activity (Volterra and Meldolesi, 2005), conferring Ca2+ a key role not only 

in astroglial communication. 

 

3.4.1 Astroglial Ca2+ signaling 
One of the challenges in analyzing astroglial Ca2+ events (potentially migrating, measurable, 

temporary elevations of local Ca2+ concentration), lies in the heterogeneous nature of 

astrocytes themselves, reflected in the heterogeneity of astroglial Ca2+ events (Nimmerjahn et 

al., 2009; Oberheim et al., 2012; Caudal et al., 2020). Ca2+ events can originate from various 

Ca2+ stores within an astrocyte, but also via uptake from extracellular space through Ca2+ 

channels, triggered by diverse mechanisms. For example, inositol trisphosphate (IP3) mediates 

the release of Ca2+ from intracellular stores like the endoplasmic reticulum (ER), resulting in 

large Ca2+ events (Brazhe et al., 2018). These large events however are infrequent, and it was 

shown that the majority astroglial Ca2+ events occur in the highly ramified astroglial processes 

(Bindocci et al., 2017), localized at perivascular (Shigetomi et al., 2013) as well as perisynaptic 

processes (Agarwal et al., 2017), forming functional microdomains (Agarwal et al., 2017). 

Moreover, astroglial Ca2+ events can express highly variable kinetics, resulting in transient 
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durations from less than a second (Di Castro et al., 2011) up to over one minute (Müller et al., 

2021). 

Astroglial Ca2+ events have been classified in various ways. Ca2+ puffs, also termed 

microdomain events, are elementary signals, serving autonomous functions (Smith and 

Parker, 2009). They are not location specific and can occur throughout the entire astrocyte. 

Occurring in functionally independent cellular subunits, they occupy volumes in the sub µm³ 

range and cause changes in fluorescence close to noise level (Bindocci et al., 2017; Müller et 

al., 2021). They were found to play a fundamental role in the formation of somatic Ca2+ events 

as well as global, propagating Ca2+ waves (Smith and Parker, 2009). Microdomain events 

occur in an IP3 independent manner and originate form mitochondria during brief openings of 

the mitochondrial permeability transition pore (Agarwal et al., 2017). Somatic Ca2+ events 

occur within a single cell (Hausmann, 2003) and can be classified as puffs or sparks, 

depending on their generating pathway (Berridge et al., 2003). Intracellular Ca2+ events can 

be transmitted to neighboring cells, independent of their generating pathway (Scemes and 

Giaume, 2006). Their extent is thereby governed by the effective diffusion properties of Ca2+ 

mobilizing signaling molecules inside and in between cells (Scemes and Giaume, 2006). This 

permits the formation and propagation of macroscopic Ca2+ waves extending over astroglial 

networks via gap-junctions and purinergic signaling in a highly synchronized and coordinated 

way (John et al., 1999; Haas et al., 2006). In Bergmann-Glia, Ca2+ waves have been classified 

as sparkles, bursts and flares (Nimmerjahn et al., 2009), restricted to individual fibers, radially 

spreading across fibers, or appearing across large networks of cells during locomotion, 

respectively. In addition, depending on their size, Ca2+ events can be termed focal events, or 

expanded events (Volterra et al., 2014). From a purely detection-oriented point of view, Ca2+ 

events can be termed as stationary, with virtually no change in position and only moderate 

changes in morphology or, non-stationary, with measurable changes in position and 

morphology, also known as Ca2+ waves. 

Analyzing and understanding the “language of Ca2+ events” is a major step in unravelling 

complex regulatory functions of astrocytes, as well as the role of all glial cells in health and 

disease (Araque et al., 1999; Alberdi et al., 2005; Giaume et al., 2007; Caudal et al., 2020). 

Moreover, due to the pivotal role of astrocytes in health and disease, astroglial Ca2+ events are 

of particular interest. Reliable detection, analysis and interpretation of fluorescence events in 

general and astroglial Ca2+ events in particular however, is a non-trivial task and has been a 

research subject for over two decades (Cheng et al., 1999; Picht et al., 2007; Ellefsen et al., 

2014; Srinivasan et al., 2015; Agarwal et al., 2017; Giovannucci et al., 2019; Wang et al., 

2019). 
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3.4.2 Visualizing Ca2+ transients in vivo 
Genetically encoded Ca2+ indicators (GECIs) can not only be 

expressed in a cell type and time-specific manner, but in living 

organisms. GCaMP (Figure 2) expresses a high Ca2+ affinity, 

consisting of a single GFP molecule, connected to the M13 

fragment of myosin light chain kinase, as well as calmodulin 

(CaM) (Nakai et al., 2001). Ca2+ binding to CaM causes a 

conformational change due to the Ca2+-CaM-M13 interaction, 

causing a subsequent conformational change in the GFP 

barrel, resulting in an increased fluorescence intensity (Nakai 

et al., 2001). The rationale of using GCaMP as a Ca2+ 

indicator is to obtain a stronger fluorescence response with 

increasing Ca2+ concentrations. Since GCaMP is not a 

ratiometric fluorescence indicator one cannot deduce a 

specific Ca2+ concentration based on a given fluorescence 

response. Current GCaMP sensors are suspected to cause 

side effects, ranging from changed Ca2+ dynamics up to 

possible cytotoxicity, due to the buffering effect of CAM and 

incidental perturbations of signaling networks (Yang et al., 

2018). These drawbacks can be overcome by novel GECIs, 

such as GCaMP-X (Yang et al., 2018). 

 

 Analysis of astroglial and neuronal signals 
 

3.5.1 Analysis of fluorescence events 
Reliable detection, analysis and interpretation of fluorescence events is a non-trivial task and 

has been a research subject for over two decades (Cheng et al., 1999; Picht et al., 2007; 

Ellefsen et al., 2014; Srinivasan et al., 2015; Agarwal et al., 2017; Giovannucci et al., 2019; 

Wang et al., 2019). Fluorescence events are classically analyzed using regions of interest 

(ROIs). Thereby, ROIs are meticulously placed at locations exhibiting fluorescence changes. 

Individual, per-ROI signals are then obtained via ROI integration. Hereby, the individual mean 

fluorescence per time-point is computed for any given ROI. Within each obtained ROI signal 

discrete transients can be extracted by detecting amplitude peaks. Recently, new approaches 

utilizing the analytical concept of so-called dynamic events (Wang et al., 2019; Bojarskaite et 

al., 2020; Müller et al., 2021) to extract and analyze non-stationary fluorescence events have 

been published. In contrast to classic ROIs, dynamic events are in principle not fixed in location 

Figure 2: Structure of GCaMP. 
Image credit: By Akerboom, Rivera, 
Guilbe, Malavé, Hernandez, Tian, 
Hires, Marvin, Looger, Schreiter ER 
- 
http://www.jbc.org/content/284/10/6
455/F1.large.jpg, CC BY 3.0, 
https://commons.wikimedia.org/w/i
ndex.php?curid=15140508 
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and can adapt to morphological changes of a fluorescence event. However, most fluorescence 

events, especially astroglial Ca2+ events are stationary (Wang et al., 2019) and exhibit only 

small to no changes in signal morphology and location. For this reason, classical ROI analysis 

remains a valid and powerful tool for their quantification. The analysis of propagating and 

morphing events however, is an important extension and can reveal new insights. This is 

especially important in the context of analyzing large scale network dynamics, as can be 

observed in the cerebellum (Hoogland et al., 2009) or in the context of neurodegenerative 

diseases, such as epilepsy (Heuser et al., 2018). Moreover, dynamic events can overcome 

inherent limitations of the classic approach. For example, if multiple events occur at the same 

location but at different time points, they likely vary in spatial extent and magnitude. Classic 

ROI-based analysis uses a single ROI to segment both events. Such improper segmentation 

in turn leads to underestimated transients in case of over-sized ROIs. Contrary, ROIs 

significantly smaller than the spatial extend of the actual event cause overestimation of the 

resulting transient. Another issue arises, if multiple fluorescence events partially overlap in 

space. Using stationary ROIs may result in a single event being detected as multiple transients, 

if a superimposed detection threshold of the neighboring ROI is overcome. 

It is important to note, that neither of the above analysis paradigms automatically qualifies or 

disqualifies for the analysis of fluorescence events in general, and low amplitude events e.g. 

occurring in the gliapil or microdomain events in particular. A necessary requirement for 

genuine signal extraction, especially important for microdomain and other miniscule, low 

amplitude events, is the ability to compensate fluorescence fluctuations at basal molecule 

concentrations, allowing to extract fluorescence events independent of the underlying tissue 

structure and brain region. Moreover, this process should be independent of the level of a 

microscope’s optical magnification as well as temporal resolution, and must work equally well 

in single cell and network recordings.  

However, limiting factors for the analysis of fluorescence events can be the optical resolution 

of a microscope or the pixel sampling factor, contributing to underrepresented events in digital 

images. Low photon yields and insufficient signal amplification can result in low amplitude 

fluorescence changes being discarded as statistical noise. In combination, these factors can 

lead to indiscriminable, diffuse fluctuations, rendering an analysis impossible. 
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3.5.2 Electroencephalography 
Electroencephalography (EEG) measures potentials, 

reflecting electrical activity in the brain (Siuly et al., 

2016) using a pair of electrodes either inside or 

outside the scalp (Im, 2018). The main sources of 

these potentials are cortical neurons (Im, 2018). 

There are two main types of intracellular potentials 

contributing to EEG signals, action potentials and 

postsynaptic potentials (Im, 2018) (Figure 3). Action 

potentials occur due to rapid changes in 

transmembrane resting potential, caused by changes 

in intracellular and extracellular ion concentrations 

(Bearden et al., 1980; Im, 2018). When an action 

potential propagates along a neuron’s axon towards 

a synapse, a postsynaptic potential is generated 

across a pair of neighboring neuronal membranes 

(Im, 2018), via the presynaptic release of 

neurotransmitters. If this postsynaptic potential exceeds a certain threshold, the action 

potential is delivered from one neuron to another (Im, 2018). Postsynaptic potentials are 

believed to have a higher contribution to the generation of measurable signals (Siuly et al., 

2016; Im, 2018). Although action potentials exhibit a higher signal amplitude, postsynaptic 

potentials last longer (~30 ms) and can thus occur synchronously over a large number of 

neurons (Siuly et al., 2016; Im, 2018). EEG signals can be recorded as scalp EEG, where the 

electrodes are attached non-invasively to the scalp surface. Alternatively, intracranial EEG 

records signals inside the skull. In order to avoid brain damage, brain surface electrodes can 

be used to record a so-called electrocorticogramm (ECoG). In the context of this thesis, EEG 

refers to ECoG unless specified otherwise. A brain surface electrode was developed in our 

lab, specifically designed for recording ECoG signals while simultaneously performing 2P-LSM 

in awake mice (Schweigmann et al., 2021).  

EEG recordings not only help to understand normal processes and functions in the brain, but 

also to detect various brain pathologies. In the case of epilepsy, electrical brain activity is 

drastically increased during periods of hyper synchronized neuronal activity (Stevanovic, 

2012).  

 

Figure 3: Action potentials and 
postsynaptic potentials. Saltatory 
conduction of action potentials (green) along a 
myelinated axon from one node of Ranvier to 
another. Postsynaptic potentials (blue) 
generated at the postsynaptic terminal can 
spawn (or inhibit) new action potentials. 
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3.5.3 Spectral analysis 
Compared to advanced imaging methods used in fluorescence microscopy, EEG recordings 

exhibit a low spatial resolution. However, their temporal resolution is significantly higher, and 

signals are typically recorded at a sampling rate of 1200 Hz. This permits spectral analysis of 

EEG recordings, where signals are subdivided into specific wave bands (Table 1) (Drongelen, 

2007). The definitions of wave bands for EEG analysis may vary however, and (Siuly et al., 

2016; Im, 2018) both use slightly different bands. Some authors even specify additional sub-

bands (e.g. the mu-band (µ) as an additional sub-band within the range of 8 – 12 Hz (Im, 

2018)). In this thesis, the ω and γ wave bands were adapted in order to comply with recent 

literature (Deshpande et al., 2020). Wave-bands can be associated with different brain 

functions. Delta waves, for example, can be associated with deep sleep, serious brain 

disorders and waking state (Siuly et al., 2016). Theta waves can be related to emotional stress, 

but also creative inspiration and deep meditation (Siuly et al., 2016). Although it is not known 

if the latter two can occur in mice. It is also known, that higher frequencies are more common 

in abnormal brain states, such as epilepsy (Siuly et al., 2016). 

 

Table 1: Frequency bands of EEG signals. Frequency bands used to classify EEG activity with their respective 
frequency ranges. 

 

Band name Frequency range 

Delta (δ) 0.5 – 4 Hz 

Theta (θ) 4 – 8 Hz 

Alpha (α) 8 – 12 Hz 

Beta (β) 12 – 30 Hz 

Gamma (γ) 30 – 50 Hz 

Omega (ω) 50 – 120 Hz 

Rho (ρ) 120 – 250 Hz 

Sigma (σ) 250 – 600 Hz 



Aim 

 
13 

4 Aim 
Automated detection and analysis of fluorescence events has been an active research topic 

over the past two decades. Estimation of the fluorescence signal at basal concentrations of 

messenger molecules is thereby a crucial step for analysing fluorescence events, laying the 

foundation for the analysis of low amplitude events predominantly occurring in the highly 

ramified processes of neuronal and glial cells. On top of that, event detection algorithms need 

to be sensitive enough to extract such low amplitude signals. Recently, the interplay between 

neurons and glial cells has moved into the focus of research, especially in the context of 

neurodegenerative diseases. Correlated analysis of EEG recordings in relation to molecular 

signalling is therefore highly intriguing, requiring the combined analysis of electrical and 

fluorescence signals. However, this requires the combined analysis of inherently different 

signals. These challenges can be met by developing new, interactive algorithms and 

automating computations, allowing to generate highly detailed analyses.  

The aims of this thesis are 1) to devise a fully automated, unbiased, interactive and user-

friendly system for the analysis of fluorescence fluctuations. 2) integrate the fluorescence 

analysis with EEG analysis, and 3) to thoroughly characterize fluorescence events with this 

application. This will require to develop: 

1. Standardized, data-driven analysis routines, requiring minimal user input. 

2. An adaptive algorithm to estimate the fluorescence signal at basal concentrations of 

messenger molecules (PBasE). 

3. Algorithms, to detect and analyze macroscopic, as well as microscopic events, by 

a. Generating and analyzing stationary ROIs (CoRoDe). 

b. Tracking dynamic events and capturing their morphological changes (KalEve). 

4. Methods for automatic detection, analysis, classification and statistical evaluation of 

transients, obtained from detected ROIs. 

5. Automated documentation of analyses, results, as well as analysis parameters. 

6. Analysis of EEG signals using spike-train analysis e.g. for the analysis of epileptic 

seizures. 

7. Correlation and synchronization of EEG recordings with fluorescence events to analyze 

combined temporal characteristics. 

These aims pose several challenges to algorithm development. In particular, the developed 

algorithms must not only be capable to work with arbitrary subsets of data to generate 

previews, but are also subject to time constraints in order to maintain interactivity. Moreover, 

signals recorded with fundamentally different technologies and differing spatial as well as 

temporal resolutions have to be brought together for a thorough combined analysis.  
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5 Mathematical foundations and methods 
Digital signals, such as EEG recordings or images require discretization of the original 

(continuous) signal or image in order to be processable by a computer. One can thereby 

consider one-dimensional signals, such as EEG recordings, as a simplified case, compared to 

two-dimensional signals, such as images. In most cases it is possible to extend signal 

processing techniques from 1D to 2D and even to higher dimensional cases, such as image 

series or multi-spectral images. The discretization of 𝑛𝑛-dimensional, continuous signals is 

typically based on amplitude measurements of the continuous signal at a regular sampling 

interval 𝑇𝑇𝑠𝑠 (resulting in the sampling frequency 𝐹𝐹𝑠𝑠 =  1
𝑇𝑇𝑠𝑠

), and is the basis for the digital 

measurement of any signal, including EEG recordings as well as digital images. The 

mathematical concept behind this is based on the Dirac impulse function δ. Simply speaking, 

δ is shifted across the continuous signal, generating measurement pulses in regular intervals, 

resulting in a so-called Dirac comb. At each measurement pulse, the current amplitude of the 

continuous signal is measured and appended to the discretized signal. In technical terms, the 

sampling function 

𝑥𝑥𝑠𝑠(𝑛𝑛) = 𝑥𝑥(𝑡𝑡)𝛿𝛿𝑇𝑇𝑠𝑠 5-1 

generates the 𝑛𝑛-th sample of the signal 𝑥𝑥𝑠𝑠 as a result of the continuous signal 𝑥𝑥 at time 𝑡𝑡 

multiplied with the Dirac function 𝛿𝛿 with sampling interval 𝑇𝑇𝑠𝑠. In order to discretise any signal 

without compromising its relevant information, the minimally required sampling rate is twice 

the value of the so-called Nyquist frequency, being the highest frequency to be recorded. It is 

derived from the sampling theorem, which states that the sampling rate must be >  2𝐹𝐹𝑚𝑚𝑎𝑎𝑥𝑥 

(where 𝐹𝐹𝑚𝑚𝑎𝑎𝑥𝑥 is the maximum frequency of interest). This is important to reduce aliasing 

artefacts and distortions in the discretized signal. Amplitude changes occurring at a higher 

frequency than the Nyquist frequency cannot be reconstructed properly or may even be 

completely lost. For more details and exact derivations, the interested reader is referred to 

(Drongelen, 2007; Gonzalez and Woods, 2008). 

 

 Signal processing 
When referring to signal processing, there is in general no restriction to the dimensionality of 

a given signal, and image processing can be treated as a sub-discipline of signal processing. 

However, for a better readability, signal processing shall refer to one-dimensional, time 

dependent signals, such as EEG recordings or fluorescence signals obtained by ROI 

integration. The concepts introduced for signal processing can in many cases be directly 

extended from one dimension to n-dimensions, and be adapted to apply to digital images. 
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5.1.1 Correlation & cross-correlation 
Linear correlation quantifies the similarity, or relation between two given signals 𝑎𝑎 and 𝑏𝑏. In the 

context of this thesis, (linear) correlation is used synonymously for the computation of 

Pearson’s linear correlation coefficient  

𝜌𝜌(𝑎𝑎, 𝑏𝑏) =  
∑ (𝑎𝑎𝑖𝑖 −  𝜇𝜇𝑎𝑎)𝑛𝑛
𝑖𝑖=1 (𝑏𝑏𝑖𝑖 − 𝜇𝜇𝑏𝑏)

�∑ (𝑎𝑎𝑖𝑖 −  𝜇𝜇𝑎𝑎)2𝑛𝑛
𝑖𝑖=1  ∑ (𝑏𝑏𝑖𝑖 − 𝜇𝜇𝑏𝑏)2𝑛𝑛

𝑗𝑗=1 �
1
2�

, 5-2 

here 𝑛𝑛 is the number of samples in each signal, and 𝜇𝜇𝑎𝑎, 𝜇𝜇𝑏𝑏 are the mean values of the signals 

𝑎𝑎 and 𝑏𝑏, respectively. The resulting correlation coefficient ρ is in the range [−1,1], where −1 

indicates a negative correlation, 0 indicates no correlation and 1 indicates full positive 

correlation. The cross-correlation of two signals is computed by shifting one signal against the 

other while keeping the second signal fixed 

Ρ𝑎𝑎,𝑏𝑏(𝑚𝑚) =  Ε{𝑎𝑎𝑛𝑛+𝑚𝑚𝑏𝑏𝑛𝑛∗} =  Ε{𝑎𝑎𝑛𝑛𝑏𝑏𝑛𝑛−𝑚𝑚∗ }, 5-3 

where −∞ < 𝑛𝑛 <  ∞, * denotes the complex conjugate and Ε denotes the expected value 

operator. 

 

5.1.2 Frequency analysis and Fourier transform 
Any periodic function can be expressed as the sum of weighted sines and/or cosines of 

different frequencies, independent of the complexity of the function (Gonzalez and Woods, 

2008). This sum is called the Fourier series. Moreover, even non-periodic functions (with a 

finite area under their curve) can be expressed as the integral of weighted sines and cosines 

(Cheng et al., 1999; Gonzalez and Woods, 2008). This formulation is known as the Fourier 

transform, and is defined as 

ℑ{𝑓𝑓(𝑡𝑡)} =  � 𝑓𝑓(𝑡𝑡)𝑒𝑒−𝑖𝑖2𝜋𝜋𝜋𝜋𝜋𝜋
∞

−∞

 𝑑𝑑𝑡𝑡 5-4 

Where t and µ are continuous variables. Any function expressed as a Fourier series or 

transform can be reconstructed completely by an inverse process without loss of information 

(Gonzalez and Woods, 2008). Using the Fourier transform, it is possible to transfer a function 

or signal to the frequency (Fourier) domain. The Fourier transform of a sampled, band-limited 

function extending from −∞ to ∞ also extends from −∞ to ∞ (Gonzalez and Woods, 2008). 

To work with a finite set of samples, the discrete Fourier transform (DFT) is used. Computing 

the brute-force DFT of a signal however, comes with a significant computational burden and is 

practically infeasible (Gonzalez and Woods, 2008). The Fast Fourier Transform (FFT) (Cooley 

and Tukey, 1965) is an efficient algorithm, significantly reducing the computational overhead 
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of the DFT, permitting the widespread use of Fourier transform in science and engineering. 

For a full derivation of the Fourier Transform, DFT and FFT, refer to (Drongelen, 2007; 

Gonzalez and Woods, 2008). 

 

5.1.3 Power-spectral density 
The distribution of power into the frequency components of a signal is described by a signal’s 

power spectrum. These individual frequency components can be obtained employing the 

Fourier transform ℑ{𝑓𝑓(𝑡𝑡)}. The power spectral density (PSD) (of a finite total energy) can then 

be computed within a finite, but sufficiently large time interval, representing the spectral energy 

distribution per unit time. It can be computed by 

1
2𝑇𝑇

� |𝑓𝑓𝑇𝑇(𝑡𝑡)|2
∞

−∞

 𝑑𝑑𝑡𝑡 =  
1

2𝑇𝑇
� |ℑ(𝑓𝑓𝑇𝑇)(𝜔𝜔)|2
∞

−∞

 𝑑𝑑𝜔𝜔, 5-5 

where 𝑓𝑓𝑇𝑇(𝑡𝑡) is a finite interval of the time dependent signal 𝑓𝑓(𝑡𝑡) and ℑ(𝑓𝑓𝑇𝑇)(𝜔𝜔) is the Fourier 

transform of the finite interval for all frequencies 𝜔𝜔. 

 

5.1.4 The Kalman filter 
The Kalman filter (Kalman, 1960) is an iterative filter to estimate a new state of a linear, 

dynamic system, based on previous measurements. It explicitly models not only measurement 

noise, but also the uncertainty of the current system state. Kalman filters have been used to 

control the lunar landing of the Apollo 11 mission in 1969. Nowadays, Kalman filters find their 

most prominent use in GPS navigation systems (Marchthaler and Dingler, 2017), correcting 

measurement errors and predicting positions during temporals signal loss (e.g. when driving 

through a tunnel). The underlying model is based on a state space of the following form 

𝑆𝑆𝜋𝜋+1 = 𝐴𝐴𝑆𝑆𝜋𝜋 + 𝐸𝐸𝑉𝑉𝜋𝜋 +  𝜉𝜉𝜋𝜋 5-6 

𝑋𝑋𝜋𝜋 = 𝐶𝐶𝑆𝑆𝜋𝜋 +  𝜂𝜂𝜋𝜋 5-7 

starting at time 𝑡𝑡 = 1 with initial state 𝑆𝑆1. A, C, and E are the known system matrices and 𝑉𝑉𝜋𝜋 is 

the observable input process (measurement). 𝜉𝜉𝜋𝜋 and 𝜂𝜂𝜋𝜋 are latent (unobserved) noise terms. 

Kalman filters are considered very robust and used in a wide variety of applications, such as 

navigation, control systems and signal processing. The ability of a Kalman filter to predict a 

new system state solely based on a previous state will be used later in a predictor-corrector 

approach to track dynamic fluorescence events (section 6.1.3). For an in-depth introduction, 

further applications and mathematical derivations, refer to (Bohn and Unbehauen, 2016; 

Marchthaler and Dingler, 2017; Deistler and Scherrer, 2018). 
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 Image processing 
This section introduces some fundamental concepts of image processing, laying the 

foundation for the analysis of image sequences obtained using fluorescence microscopy, 

depicting temporal, localized fluorescence fluctuations. First, images and their internal 

structure are introduced, followed by digital filters. In addition to these essential concepts, an 

informal introduction to scalar field topology and scale spaces is given. All of these concepts 

build upon the definitions presented in section 5.1, thus images can be interpreted as multi-

dimensional signals. However, some image dimensions can be treated as independent, e.g. 

color channels, reducing the analytical complexity. 

 

5.2.1 Digital images 
A digital image 𝐼𝐼 is typically represented using a 2D rectangular grid, of which each individual 

pixel stores a scalar (grayscale) value and can be addressed via a pair of coordinates (𝑥𝑥,𝑦𝑦), 

specifying a row and column index. 

𝒑𝒑 = 𝐼𝐼(𝑥𝑥,𝑦𝑦). 5-8 

Color or multi-channel images do not only store a single value per pixel, but a vector 𝒑𝒑 of size 

𝑛𝑛, where 𝑛𝑛 is the number of recorded colors or band-limited channels. Color images are thus 

typically represented as 3D grids, where the 3rd coordinate specifies a color channel. 

𝒑𝒑 = 𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑐𝑐). 5-9 

Volumetric (3D) images possess image data recorded in three spatial dimensions and can also 

be represented by a 3D grid, where the 3rd coordinate refers to the 3rd spatial dimension. 

𝒑𝒑 = 𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑧𝑧). 5-10 

Moreover, scalar 2D, time-dependent data is also frequently represented as 3-dimensional 

data, with time in the 3rd dimension 

𝒑𝒑 = 𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑡𝑡). 5-11 

These ambiguities however conflict with each other, and require context-sensitive knowledge 

by the analyst. Moreover, additional challenges are imposed when the data at hand 

simultaneously requires three spatial dimensions, multiple color channels and is further time-

dependent. By convention, such data is typically recorded as a 5D matrix with the following 

order of dimensions 

𝒑𝒑 = 𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑐𝑐, 𝑧𝑧, 𝑡𝑡). 5-12 
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However, due to technical reasons, popular microscope operating software, such as 

ScanImage (Pologruto et al., 2003), uses a 6D representation of images 

𝒑𝒑 = 𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑐𝑐, 𝑧𝑧, 𝑠𝑠, 𝑡𝑡), 5-13 

Where 𝑠𝑠 is a slice, or position index, allowing to record multiple image slices per discrete time-

step (e.g. used for image stitching). This representation of images will be used throughout this 

thesis. For simplicity, one usually assumes that all pixels (or voxels in case of thee spatial 

dimensions) are recorded instantaneously and the time to acquire a single frame is neglected. 

 

5.2.2 Spatial filters 

 

Figure 4: Image filters. A) The filter matrix is moved across an image. Each pixel in the resulting image is replaced 
one-by-one by a combination of the current pixel (orange) and its neighbors (blue) based on the filter coefficients 
of the kernel. B) The filter matrix of the averaging filter, covering a 5𝑥𝑥5 neighborhood, exhibiting the same 
coefficients (weights) for each pixel covered by the matrix. 

 

Filters in image processing operate within a pixel’s neighborhood (Figure 4 A). For example, 

an averaging or boxcar filter, computes a smoothed version of an image, by replacing each 

pixel’s value in the result image with the average value of the neighborhood around said pixel. 

Since the filter is moved across all pixels (Figure 4 A), these filters are also called moving 

window or sliding window filters. Generally speaking, linear filters, such as an averaging filter 

(Figure 4 B), can be represented by a matrix 𝐻𝐻, also called filter mask or filter kernel (Figure 

4 B). This matrix contains the filter coefficients and the resulting pixel values are computed as 

the weighted sum (linear combination) of the neighboring pixels with their corresponding 

coefficients.  

Linear (low-pass) filters blur edges and have a dampening effect on critical points, such as 

local minima and maxima. Non-linear filters on the other hand can overcome this drawback. 
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Examples of non-linear filters are minimum, maximum or median filters, where for each pixel 

the minimum, maximum or median value within the filter window will be selected, respectively. 

To understand spatial filtering, it is important to understand two closely related concepts, 

correlation and convolution (Gonzalez and Woods, 2008). The process described previously, 

where the filter mask is moved across the image and the linear combination is computed for 

each pixel with its neighborhood is called correlation. From a technical point of view, 

convolution works in the same way, with the exception that the kernel is rotated by 180° 

(Gonzalez and Woods, 2008). This distinction is especially important when working with filters 

employing derivatives, e.g. used for edge detection. For symmetric filter kernels, such as an 

averaging kernel or a Gauss-kernel, correlation and convolution yield the same results. 

When working with filters, it is important to consider the attenuating effect a particular filter can 

have on a signal. Especially if the filter kernel is larger than a given signal, various effects can 

arise. For example, when using a smoothing filter, signal edges are typically blurred, in addition 

to an attenuated amplitude. In extreme cases the entire signal can be eliminated. 

 

Morphological filters 

Morphological filters are non-linear filters, and were originally designed for binary images, 

where a pixel can only have one of the two values 0 or 1 (black or white). The two fundamental 

operations of morphological filters are erosion and dilation, typically formulated using set 

theory. In the context of morphological operations, the filter window is represented by a so-

called structuring element, 𝐻𝐻, which is not necessarily limited to a rectangular shape. The 

erosion equation 

𝐼𝐼 ⊖ H ≡ �𝑝𝑝 ∶ 𝐼𝐼𝑝𝑝 ⊆ 𝐻𝐻� 5-14 

states that an image 𝐼𝐼 eroded by 𝐻𝐻 is the set of all points, such that 𝐻𝐻, centered at point 𝑝𝑝 is 

contained in 𝐼𝐼. Meaning, that a pixel 𝑝𝑝 remains “white” if and only if all neighbors covered by 

the structuring element 𝐻𝐻, also cover “white” pixels. The dilation of 𝐼𝐼 by 𝐻𝐻 

𝐼𝐼 ⊕ 𝐻𝐻 ≡  �𝑝𝑝 ∶  𝐼𝐼𝑝𝑝  ∩ 𝐻𝐻 ≠  ∅� 5-15 

is the non-empty set of neighboring pixels, covered by 𝐻𝐻, centered at point 𝑝𝑝. Meaning, that if 

any one of the neighboring pixels covered by 𝐻𝐻 is “white”, the value of the pixel p will also be 

“white”. Simply put, morphological erosion removes bright pixels by setting them to 0, if the 

filter mask in not fully inside a bright image region. Morphological dilation on the other hand 

expands regions of bright pixels, by setting a pixel’s value to 1, as soon as the filter mask 

covers a single white pixel.  
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Alternatively, erosion and dilation can be formulated by using a minimum and maximum filter, 

respectively. This generalizes the concept of morphological erosion and dilation and allows 

their application to gray-scale images. Erosion and dilation are quasi-complementary 

operations, meaning that a dilation can undo the effects of a previously applied erosion and 

vise-versa. However, if an erosion completely removes a structure from an image, e.g. 

because it was smaller than the specified structuring element, this structure cannot be 

recovered by a subsequent dilation 

𝐼𝐼 ∘ 𝐻𝐻 =  (𝐼𝐼 ⊖ H)  ⊕𝐻𝐻. 5-16 

This operation can be used to remove small, isolated bright pixels (spot-noise) or to widen 

gaps between neighboring structured within an image. Inversely, if a dilation operation closes 

small holes within an image, a subsequent erosion will have no eliminating effects on these 

pixels 

𝐼𝐼 ∙ 𝐻𝐻 =  (𝐼𝐼 ⊕ H)  ⊖𝐻𝐻. 5-17 

This can be used to expand local maxima into their neighborhood as well as to close small 

gaps between neighboring image structures. Due to these properties, these morphological 

operators are called opening and closing, respectively. 

 

Morphological reconstruction 

Morphological reconstruction is a powerful transformation, involving a marker image, a mask 

image and a structuring element. The marker image (𝐹𝐹) specifies the starting points of the 

operation, the Mask image (𝐺𝐺) constrains the operation and the structuring element (𝐻𝐻) 

specifies the connectivity (Gonzalez and Woods, 2008). The central concepts of morphological 

reconstruction are geodesic dilation and geodesic erosion. Geodesic dilation of size 1 of the 

marker image with respect to the mask is defined as 

𝐷𝐷𝐺𝐺
(1)(𝐹𝐹) =  (𝐹𝐹 ⊕𝐻𝐻)  ∩ 𝐺𝐺 5-18 

where ∩ denotes the set intersection (Gonzalez and Woods, 2008). The geodesic dilation of 

size 𝑛𝑛 is recursively defined as 

𝐷𝐷𝐺𝐺
(𝑛𝑛)(𝐹𝐹) =  𝐷𝐷𝐺𝐺

(1) �𝐷𝐷𝐺𝐺
(𝑛𝑛−1)(𝐹𝐹)�. 5-19 

The intersection operator ensures that the growth of the marker image 𝐹𝐹 is limited by the mask 

image 𝐺𝐺. Geodesic erosion, can be defined analogously. Morphological reconstruction can 

now be realized by repeated geodesic dilation of the marker image 𝐹𝐹 by the mask image 𝐺𝐺, 

until stability is achieved (Gonzalez and Woods, 2008). Using morphological reconstruction, 



Mathematical foundations and methods 

22 

prominent maxima can be enhanced for a more robust detection while smaller, less prominent 

maxima are effectively removed. Thereby the structure of an image and its essential 

topological information are retained. 

5.2.3 Scalar field topology 
A scalar field 𝑓𝑓:𝒟𝒟 → ℝ is a function, where usually 𝒟𝒟 is a subset of ℝ2 or ℝ3, in which each 

point maps to a single, one dimensional value, called a scalar. In the context of this thesis, 

scalar fields are Euclidean and span two spatial dimensions. For example, a grayscale image 

is a scalar filed, where each pixel stores a single number, representing its brightness. Scalar 

field topology describes topological changes, which can only occur at critical points (Chazal et 

al., 2011b) (minima and maxima). In the context of scalar field topology, maxima are also called 

sources and minima are called sinks. Key to the analysis of scalar field topology is to extract 

meaningful minima and maxima, e.g. within an image. To achieve this, a given scalar field 

typically undergoes several iterations of simplification, in order to extract the most persistent 

features (Edelsbrunner et al., 2000; David and Lucioles, 2006; Chazal et al., 2011a; Bubenik, 

2012; Kovacev-Nikolic et al., 2014). In the context of the analysis of fluorescence events, 

particular interest is paid to extracting local maxima in order to identify fluorescence events, 

and minimal separating lines (also called valley lines) between two adjacent maxima for 

segmentation.  

5.2.4 Scale space 
A scale space 𝑓𝑓(𝑝𝑝, 𝜉𝜉) of an image 𝑓𝑓(𝑝𝑝) is a 

construct, consisting of a series of images at 

different resolutions (scales) (Jähne, 2012), where 

𝑝𝑝 𝜖𝜖 ℝ𝑛𝑛 specifies a point in the n-dimensional image 

𝑓𝑓 and 𝜉𝜉 specifies the scale. Scale spaces can be 

computed for signals and images of any dimension, 

e.g. by repeated down sampling, resulting in an

image pyramid (Figure 5). Another common way of

computing scale-spaces is by repeated convolution

of a given image with a Gaussian kernel. Two important properties of scale spaces are that 

with increasing scale no new details are generated (Jähne, 2012) and local extrema are not 

enhanced. Meaning, that the amount of detail in a higher scale is either equal or less, 

compared to a lower scale. Typically, one can expect a (gradual) reduction of detail, resulting 

in prominent image features (such as local extremal points) persisting throughout a larger 

range of scales, compared to smaller ones. 

Figure 5: Image scale-space. Scale spaces can 
be thought of as image pyramids where at 
increasing scales the amount of detail decreases. 
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5.2.5 Extraction of image regions 
An image region is a group of connected pixels. 

The type of connectivity used to determine if 

two pixels are connected thereby plays a 

crucial role for the shape and size of the 

resulting region. In 2D, two common types of 

connectivity are used, 4- connectivity (Figure 

6 A) and 8- connectivity (Figure 6 B). Using 8-

connectivity permits region finding algorithms to 

detect groups of pixels, connected via a 

diagonal line, having a width of only one pixel, to be belonging to the same image region. Using 

4-connectivity on the other hand would result in distinct regions. In the context of this thesis, 

8-connectivity is used exclusively. 

Extraction of connected image regions is usually performed on binary images. In a binary 

image, each pixel can take one of two values, “0” or “1”, representing background and 

foreground pixels, respectively.  

Each image region ideally represents a real-world object or a part thereof within an image and 

allows to compute various, region specific metrics, such as average gray value, area or 

circumference, to name a few. In the context of this thesis, identification and extraction of 

connected image region plays a fundamental role in order to detect, segment and finally 

analyze fluorescence events.  

Figure 6: Types of pixel connectivity. A) 4-
connectivity regards the four perpendicularly adjacent, 
directly neighboring pixels (blue) of the current pixel 
(orange). B) 8-connectivity additionally takes 
diagonally adjacent pixels onto account. 
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 Experimental mice 
For Ca2+ imaging experiments conducted in Homburg, mice were kept and bred in strict 

accordance with the recommendations to European and German guidelines for the welfare of 

experimental animals. Animal experiments were approved by the Saarland state’s “Landesamt 

für Gesundheit und Verbraucherschutz" in Saarbrücken/Germany (veterinary licenses: 

71/2013, 36/2016, 08/2021).  

Na+ imaging experiments conducted in Düsseldorf, Germany, were carried out in accordance 

with the institutional guidelines of the Heinrich Heine University Düsseldorf, and the European 

Community Council Directive (86/609/EEC). All experiments were approved by the Animal 

Welfare Office at the Animal Care and Use Facility of the Heinrich Heine University Düsseldorf 

(institutional act number: O52/05).  

Imaging sessions were performed at 8-10 weeks of age. 

 

5.3.1 Ca2+ indicator mice 

 

Figure 7: Mouse constructs. Schematic construct of tamoxifen inducible astroglial expression of (A) GCaMP3 
(Rosa 26 locus) and (B) GCaMP5G (Polr2a locus), additionally tagged with an IRES tdTomato for cell detection. 

 

The astrocyte-specific knockin line GLAST-CreERT2 (Slc1a3tm1(cre/ERT2)Mgoe, 

MGI:3830051) (Mori et al., 2006) was crossbred to Rosa26 reporter mice with GCaMP3 

expression (Gt(ROSA)26Sortm1(CAG-GCaMP3)Dbe, MGI: 5659933 (Paukert et al., 2014) 

(Figure 7 A) or to Polr2a-based GCaMP5G reporter mice, additionally tagged with an IRES-

tdTomato construct (Gee et al., 2014) (Figure 7 B). 
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 Surgeries 
 

 

Figure 8: Scheme of experimental plan. A) Experimental design of standard cranial window surgery. B) 
Experimental design of cranial window surgery in combination with ECoG brain surface electrode implantation. 

 

During all surgical procedures, animals were kept on heating pads and eyes were covered with 

Bepanthen eye ointment (Bayer, Leverkusen, Germany). Prior to surgery, instruments were 

sterilized using a hot bead sterilizer (FST GmbH, Heidelberg, Germany). Antiseptic povidone 

iodine solution (Betaisodona, Mundipharma GmbH, Frankfurt am Main, Germany) was applied 

at and around the incision site. Anesthesia was induced with a mixture of 5 % isoflurane, 

47.5 % O2 (0.6 l/min) and 47.5 % N2O (0.4 l/min) and maintained with 2 % isoflurane (Harvard 

Apparatus anesthetic vaporizer). Buprenorphine (0.1 mg/kg, s.c.) was administered as 

analgetic, in conjunction with dexamethasone (0.2 mg/kg, i.p.) as anti-inflammatory treatment, 

except for kainate injections. Buprenorphine and dexamethasone were administered in 

addition to tramadol hydrochloride (Grünenthal GmbH, Stolberg, Germany) in the drinking 

water (100 mg/ 200 ml) for three days, including the day of surgery (Figure 8). After surgery, 

the animals were kept on a heating pad until complete recovery.  

 

5.4.1 Tamoxifen treatment 
For standard craniotomy (section 5.4.2) and subsequent imaging of GCaMP3 and GCaMP5 

mice, tamoxifen (TAM, Carbolution, Neunkirchen, Germany) was administered in three 

consecutive intraperitoneal injections (100 mg/kg), one per day (Jahn et al., 2018) (Figure 8 A), 

with 10 μg/mL Tamoxifen in Mygliol®812 (Caesar and Lorentz GmbH, Hilden, Germany). For 

craniotomies in combination with implantation of an brain surface electrode, TAM was 

administered on five consecutive days (Figure 8 B). 
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5.4.2 Cranial window surgery for in vivo two-photon imaging 
A standard craniotomy (Cupido et al., 2014) of 3 mm in diameter was performed over the 

somatosensory cortex (2 mm posterior and 1.5 mm lateral to bregma). The craniotomy was 

sealed with a glass coverslip (Glaswarenfabrik Karl Hecht, #1.5 thickness code) and fixed with 

dental cement (RelyX®, 3M ESPE). A custom metal holder, having a cylindrical hole (5 mm 

diameter) was fixed to the skull using dental cement (Figure 9). Five to seven days post surgery 

the first imaging session was performed (Figure 8). Cranial window surgeries were performed 

by Laura C. Caudal. 

 

5.4.3 Intracortical kainate injection 
Mice were placed in the stereotaxic frame (Robot stereotaxic, Neurostar, Tübingen, Germany) 

and injected with 70 nl of a 20 mM solution of kainate (Tocris, Wiesbaden-Nordenstadt, 

Germany) in 0.9 % NaCl, above the dorsal hippocampus (AP: -1.9 mm, ML: -1.5 mm at a depth 

of 1.3 mm from the skull surface, adapted by Laura C. Caudal from (Bedner et al., 2015)). 

Kainate was injected at a rate of 70 nl/ min with a 10 µl Nanofil syringe (34 GA blunt needle, 

World Precision Instruments, Sarasota, FL, USA). The syringe was kept in place for 2 minutes 

after the injection was completed, to avoid liquid reflux. The wound was closed by simple 

interrupted sutures (non-absorbable, FST GmbH, Heidelberg, Germany). Combined Ca2+ 

imaging and ECoG recording was conducted during the acute phase of induced epilepsy, 

immediately after kainate injection (Figure 8 B). Kainate injections were performed by Laura 

C. Caudal. 

 

5.4.4 ECoG-electrode implant for combined in vivo 2P-LSM 
After exposing the skull, a custom-made holder for head restraining was applied and fixed with 

dental cement (RelyX®, 3M ESPE). Then, a standard craniotomy (4 mm in diameter) (Cupido 

et al., 2014; Kislin et al., 2014) was performed over the somatosensory cortex (3.4 mm 

posterior to bregma and mediolateral 1.5 mm) and the surface electrode was placed on the 

dura mater before applying the glass coverslip (#1.5 thickness code, Glaswarenfabrik Karl 

Hecht, Sondheim vor der Rhön, Germany). The ground electrode (platinum wire) was placed 

centred on the cerebellum through a hole in the skull. Finally, all components were fixed with 

dental cement. Five days after electrode implantation animals were injected with kainate 

(Figure 8). Surgeries were performed by Laura C. Caudal. 
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 Data acquisition 
 

5.5.1 Two-photon excitation laser scanning microscopy (2P-LSM) 
In vivo 2P-LSM (Figure 9) was performed using a 

custom-built four-channel microscope equipped 

with a resonant scanner (RESSCAN-MOM, Sutter 

instrument) and a 20x water-immersion objective 

(W Plan-Apochromat 20x/1.0 DIC D=0.17 M27; 

Zeiss). Scanning and image acquisition were 

controlled by ScanImage (SI 5.6R1) (Pologruto et 

al., 2003) at a frame rate of 30 Hz. Frame-

averaging over 10 frames was applied to increase 

imaging quality, resulting in an effective 

acquisition rate of 3 Hz. Each FOV covered an 

area of 256x256 µm, sampled with 

512x512 pixels (0.5 µm/pixel). Laser power was 

controlled using a Pockels cell (Conopticx 350-

80). Excitation laser power, incident to the tissue, 

was kept between 30 - 40 mW to maintain a sufficient signal-to-noise ratio, and simultaneously 

minimize phototoxic effects. Excitation laser wavelength was set to 890 nm (Chameleon Ultra 

II, Ti:Sapphire Laser, Coherent). Emitted fluorescence light was detected by a photomultiplier 

tube (PMT, R6357, Hamamatsu) (Cupido et al., 2014) and pre-amplified (DHPCA-100, Femto). 

Digitizer (NI-5734) and control hardware (NI-6341) were housed in a NI PXIe (1082) chassis, 

connected to a control-PC via a high bandwidth PXIe-PCIe8398 interface. Animals were 

imaged 21 days post tamoxifen induced recombination. 

 

5.5.2 In vivo 2P-LSM Ca2+ imaging 
In preparation for Ca2+ imaging, animals were habituated before the first imaging session 

according to adapted protocols without water restriction (Guo et al., 2014; Kislin et al., 2014). 

Animals were imaged at 8 to 10 weeks of age, at least 21 days after tamoxifen induced 

recombination. Animals were head-fixed with a custom-designed head-restrainer, 3D-printed 

using stainless steel. During imaging, anesthesia was applied using a custom-made, 

magnetically attachable anesthesia mask. Each field of view (FOV) was imaged twice: first in 

anesthetized, then in awake state. During imaging in anesthetized state, isoflurane 

concentration was kept at 1.5 %, and flow of O2 and N2O was set to 0.6 l/min and 0.4 l/min, 

respectively. Before awake state imaging, isoflurane and other gases were switched off and it 

Figure 9: 2P-LSM schema. Near infrared light is 
used for fluorescence excitation. Emitted light from 
fluorescently labeled cells is deflected, bandpass 
filtered and then detected by PMTs. 
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was verified that the animals were fully awake. The selected FOVs for Ca2+ imaging were 

located in the somatosensory cortex, 80 – 100 μm beneath the dura. Each FOV was imaged 

for 5 minutes per condition to investigate the Ca2+ events. The total duration of one imaging 

session ranged between 30-60 minutes per animal. During and after imaging, animals were 

kept on a heating pad at 37°C until they recovered completely from anesthesia, additionally 

Fresubin (Fresenius Kabi GmbH) was provided ad libitum as a high caloric and high protein 

food supplement. 

 

5.5.3 In vivo 2P-LSM imaging synchronized with ECoG recording 
Images were acquired on a custom made 2P-LSM setup with a mode-locked Ti:sapphire laser 

(Vision II, Coherent) using ScanImage. The excitation wavelength of the laser was tuned to 

890 nm and a 20x water-immersion objective (W Plan-Apochromat 20x/1.0 DIC D=0.17; Zeiss, 

Jena, Germany) was used. Signals were recorded by photomultiplier tubes (PMT) H10770PB-

40 (Hamamatsu). Images were acquired with a frame rate of 3.3 Hz at a laser power of 30 - 

50 mW (exiting the objective). Each FOV consisted of a single focal plane for Ca2+-imaging 

and were chosen 256 µm x 192 µm (512 x 384 px), at a depth of 50-100 µm (from the dura 

mater). The ECoG recording system consisted of a 16-channel biosignal amplifier (g.USBamp, 

gTec) and a custom-made recording software, written in Matlab / Simulink, (Schweigmann et 

al., 2021). ECoG signals were acquired at a sampling rate of 1.2 kHz. Raw signals (with 

exception of the synchronization signals) were filtered with a band pass filter of 0.5 Hz to 

250 Hz and a notch filter of 50 Hz. An additional preamplifier (g.HEADstage, gTec) was used 

to avoid input saturation of the bio-signal amplifier. In combined experiments with in vivo 2P-

LSM, one input channel was used to acquire synchronization signals (scanning mirror 

deflections). Imaging sessions with ECoG recording took place within 30 min and 2 h post 

kainate injection. 

 

5.5.4 Wide-field in situ Na+ imaging 
Balb/c mice aged between postnatal day (P) 14-18, were anaesthetized using CO2 before 

being quickly decapitated and 250 µm hippocampal slices were prepared (Karus et al., 2015b; 

Felix et al., 2019). Slices were transferred into an experimental bath, continuously perfused 

with standard, CO2/HCO3--buffered artificial cerebrospinal fluid (ACSF) and their CA1 region 

bolus-stained with the Na+ sensitive dye SBFI-AM (sodium-binding benzofuran isophthalate-

acetoxymethyl ester; Invitrogen, Karlsruhe, Germany) (Karus et al., 2015b; Felix et al., 2019). 

SBFI was alternatingly excited at 340/380 nm and emissions > 440nm were imaged with 0.5 

Hz from defined ROIs reflecting cell bodies of CA1 pyramidal neurons. Changes in SBFI ratio 

were transferred into changes in intracellular Na+ concentration based on in situ calibrations 
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(Karus et al., 2015b; Felix et al., 2019). Recurrent network activity was induced via perfusion 

with an ACSF lacking Mg2+ and containing 10 µM bicuculline, in order to remove the Mg2+ block 

from NMDA receptors, and to prevent GABAA receptor activation respectively (Karus et al., 

2015b). Na+ data were recorded and analyzed by Lisa Felix and Katherina Everaerts. 

 

 Statistical analysis and figures 
Statistical analysis of computed data was conducted using GraphPad Prism 8. D’Agostino-

Pearson normality test was used to investigate whether the obtained transient and event 

properties were normally, log-normally or otherwise distributed. For non- (log-) normally 

distributed data median values, with their associated ranges, inter quartile ranges and 

percentiles were used for statistical evaluation, instead of mean values and their corresponding 

standard deviations. Analogous, statistical significances were computed using the Mann-

Whitney test for individual, or Kruskal-Wallis test for multiple comparisons, as non-parametric 

tests, suitable for non-normal distributions.  

Figures were arranged using Adobe InDesign 2020, Adobe Illustrator 2020 and GraphPad 

Prism 8. Graphs, trace plots, kymographs, and ROI maps were directly exported from 

MSparkles. Additional ROI maps were extracted from the respective Ca2+ analysis tools. 
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6 Results 
 

 An automated system to analyze fluorescence events 
Automated investigation of fluorescence events, in particular astroglial Ca2+ events recorded 

in vivo, poses several challenges, impeding the extraction of events as well as subsequent 

transient analysis. Spatially and temporally varying levels of fluorescence at basal 

concentrations of messenger molecules (𝐹𝐹0) as well as spatially overlapping events are 

thereby among the most common. In addition, propagating waves as they can occur during 

macroscopic astroglial Ca2+ events cannot be adequately represented by stationary regions of 

interest. Following, three algorithms (PBasE, CoRoDe and KalEve) are presented to solve 

these challenges. In addition, an amplitude-based classification method for extracted 

fluorescence transients is presented. Finally, a metric to assess the synchronicity of 

fluorescence events is introduced, enabling the correlation of fluorescence events with other, 

simultaneously measured signals, such as EEG. 

 

6.1.1 𝑭𝑭𝟎𝟎-estimation with PBasE 
Proper estimation of the fluorescence signal at basal concentrations of messenger molecules 

(𝐹𝐹0) using non-ratiometric dyes is essential for genuine event extraction and analysis (O'Carroll 

et al., 2020). However, during in vivo imaging, especially when performing long-term imaging, 

basal fluorescence levels can vary for several reasons, such as dye bleaching, phototoxicity 

or dilating and constricting blood vessels. Additionally, when using water immersion objectives, 

water leakage, e.g. due to animal motion can cause a steadily progressing loss of the 

fluorescence signal. These variations do not necessarily occur homogeneously throughout the 

FOV. Therefore, a per-pixel estimate of 𝐹𝐹0 is necessary. Among several background estimation 

methods, fitting of a low-order polynomial before and after the occurrence of a transient was 

found to generate accurate results (Balkenius et al., 2015). Recently, an adaptive algorithm to 

automatically estimate 𝐹𝐹0 was introduced (Müller et al., 2021), and verified to be a valid 

alternative to a reference signal, 𝐹𝐹𝑅𝑅 (e.g. cytosolic expression of tdTomato), recorded in a 

second fluorescence channel. Adaptive approaches based on biophysical principles 

(Balkenius et al., 2015; Müller et al., 2021) allow to reveal the time profile of fluorescence 

changes (Müller et al., 2021), and make it possible to reliably detect even low amplitude events 

close to noise level. Unfortunately, it is not clear if the former approach (Balkenius et al., 2015) 

performs automated transient detection. The latter approach (Müller et al., 2021) has the 

shortcoming to be not well suited for preserving very slow and long-lasting fluorescence 

changes not considered as basal background and thus underestimates such transients (Müller 
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et al., 2021). Here, the PBasE (Polynomial Baseline Estimation) algorithm for automated 𝐹𝐹0 

estimation is presented to overcome these shortcomings. It is able to preserve slowly 

progressing and long-lasting fluorescence fluctuations. In addition, it is designed for long-term 

recordings (> 5 – 10 minutes), recorded at high frame rates (> 3-10 Hz).  

PBasE operates solely along a pixel’s temporal axis and is independent of the number of 

spatial dimensions. It interprets each pixel’s temporal profile as individual signal and is equally 

well suited for 2D and 3D time-dependent datasets. To obtain 𝐹𝐹0, the presented algorithm 

performs three consecutive steps, signal cleanup, simplification and finally fitting of a 

polynomial curve. 

 

Signal cleanup and simplification 

For an accurate 𝐹𝐹0 estimation, potential transients need to be excluded from a signal. 

Moreover, special care has to be taken to avoid artificial oscillations of the fitted polynomial 

near the beginning and end of the signal, especially when higher order polynomials are fitted. 

Further, optional 𝐹𝐹0-masking (Balkenius et al., 2015) allows to exclude pixels with no or little 

fluorescence activity, regarded as noise.  

Signal clean-up and simplification of the pre-processed signal are performed prior to fitting a 

polynomial (Figure 21 A). Signal clean-up removes statistically large peaks (transients), and is 

implemented in two variants, a temporal mean filter (Figure 21 A, B, red line), operating on the 

entirety of a pixel’s signal, and a Hampel filter (Hampel, 1974) (Figure 21 A, B, yellow line) as 

sliding window analogue. The temporal mean filter computes the mean value µ and the 

corresponding standard deviation σ over a pixel’s entire fluorescence profile. Then, all values 

> 𝜇𝜇 + 𝑛𝑛𝑛𝑛 are eliminated, where 𝑛𝑛 is a user-definable factor. To obtain refined results, this 

process can be repeated multiple times. Please note, that only values > 𝜇𝜇 + 𝑛𝑛𝑛𝑛 are removed 

and not < 𝜇𝜇 − 𝑛𝑛𝑛𝑛. The rationale behind this is that typically fluorescence events cause an 

increase in measured fluorescence. However, decreases in measured fluorescence can not 

only occur due to reduced basal molecule concentrations, but are often related to (technical) 

issues, e.g. dye depletion or leaking water. It is thus desirable to preserve and incorporate 

decreases in basal fluorescence into the computed 𝐹𝐹0 baseline. 

The Hampel filter, utilizing a sliding window approach, computes the median 𝑚𝑚 with 

corresponding standard deviation σ of the values inside the filter window, and then rejects all 

values > 𝑚𝑚 + 𝑛𝑛𝑛𝑛. The Hampel filter typically follows a given signal very closely (Figure 21 A, B, 

yellow line), which is desirable in some cases and closely resembles the behavior published 

before (Müller et al., 2021). Therefore, the Hampel filter can eliminate long lasting and slow 

transients by incorporating them into the computed 𝐹𝐹0 baseline. This is especially true if the 
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transients are much wider than the filter window. The temporal mean filter on the other hand 

can be parameterized to preserve these slow transients (Figure 21 B). Both methods return 

similar results, if only small and short-lived fluctuations in basal fluorescence are present. 

To avoid high frequency oscillations of the fitted polynomial, especially near the beginning and 

the end of a signal, a simplified guidance signal is computed. Simplification is achieved by 

coarse approximation using piece-wise constant functions. Therefore, a scale space with 𝑘𝑘 

piecewise constant approximations, each containing 2k sections, where 𝑘𝑘 ∈ [1. .𝑛𝑛] is 

computed. Each constant section is computed as the local mean value of the interval 

[(𝑘𝑘 − 1) ∗ 𝑇𝑇
2𝑘𝑘

+ 1, 𝑘𝑘 ∗ 𝑇𝑇
2𝑘𝑘

 ], where T is the number of recorded time points. The final guidance 

signal can then be optimized with respect to local minima, maxima, or minimal error to the 

cleaned-up signal.  

 

𝑭𝑭𝟎𝟎 estimation by polynomial fitting 

After signal cleanup and simplification, a polynomial curve of user-definable degree 𝑛𝑛 is fitted 

to each pixel’s guidance signal in a least squares sense. For each pixel, this requires to solve 

a linear system of equations of the following form 
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where 𝑚𝑚 is the number of recorded time-points per pixel. In matrix notation, this simplifies to 

𝒚𝒚 = 𝑿𝑿𝒂𝒂 6-2 

Where 𝒚𝒚 is the vector of 𝑚𝑚 sample points, given by the guidance signal. 𝑿𝑿 is a m × n 

Vandermonde matrix, with 𝑚𝑚 as the number of samples in 𝒚𝒚 and 𝑛𝑛 as the degree of the 

polynomial to be fitted, and 𝒂𝒂 is the vector of polynomial coefficients to be computed. To obtain 

the vector 𝒂𝒂 of polynomial coefficients, this system can be solved by premultiplying the 

transpose 𝑿𝑿𝑇𝑇 

𝑿𝑿𝑇𝑇𝒚𝒚 = 𝑿𝑿𝑇𝑇𝑿𝑿𝒂𝒂 6-3 

which can be solved by 

(𝑿𝑿𝑇𝑇𝑿𝑿)−1𝑿𝑿𝑇𝑇𝒚𝒚 = 𝒂𝒂 6-4 

Using the polynomial coefficients in 𝒂𝒂, the 𝐹𝐹0 signal is obtained by generating the 

corresponding polynomial curve, matching the length and number of samples of the original 

dataset (Figure 21 A, B). 
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𝑭𝑭𝟎𝟎-masking 

Normalizing and detrending a dataset by computing ∆𝐹𝐹 𝐹𝐹0⁄  may cause artificially amplified 

artifacts in dark, noisy image regions with no fluorescence activity. Independent of the method 

used to estimate the basal background, values  1 > 𝐹𝐹0  ≥ 0 can occur. Which is likely to amplify 

noise and lead to the detection of false-positive events, ultimately resulting in the detection of 

false transients. This issue is solved by 𝐹𝐹0-masking, similar to (Balkenius et al., 2015). The 𝐹𝐹0 

mask (Figure 21 E, F) is computed based on the fluorescence range of the pre-processed 

image stack 𝐹𝐹 (Figure 21 C, D) by applying a minimal, user-definable threshold. An initial 

threshold value is estimated using Otsu’s method, instead of using a fixed percentile as in 

(Balkenius et al., 2015). Pixels (with their respective time-course) covered by the 𝐹𝐹0-mask are 

excluded from the 𝐹𝐹0 estimation and set to their respective pre-processed time-course. This 

ensures that for all pixels, covered by the exclusion mask 

𝐹𝐹 =  𝐹𝐹0 6-5 

thus  

∆𝐹𝐹 = 𝐹𝐹 − 𝐹𝐹0 = 0 6-6 

resulting in 

∆𝐹𝐹
𝐹𝐹0

= 0 6-7 

for any non-zero value of 𝐹𝐹0, effectively preventing the detection of false events and 

subsequent false transients. A side effect of this technique results in a linear speedup of the 

𝐹𝐹0 computation, corresponding to the percentage of excluded pixels. 
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6.1.2 Detection of fluorescence events 
Detection and analysis of fluorescence events is key to analyzing the complex signaling 

patterns of Ca2+ as well as other important messenger molecules and ions. Proper 𝐹𝐹0 

estimation facilitates the extraction of fluorescence events, by effectively removing tissue 

structures and compensating fluctuations in basal fluorescence levels. Nevertheless, accurate 

extraction of events remains challenging not only due to the heterogeneity of fluorescence 

events, especially astroglial Ca2+ events, but also due to persisting artefacts and perturbations. 

Moreover, spatial and temporal proximity in combination with possible overlap pose substantial 

challenges to event detection and segmentation. Here, a simplified model of fluorescence 

events is introduced (Figure 10), based on astroglial Ca2+ events, visualized using GCaMP3. 

In addition, two automated algorithms to detect fluorescence events are presented. CoRoDe 

(Correlation-based ROI Detector) to extract stationary ROIs, and KalEve (Kalman filter based 

Event detection and tracking) to extract and track dynamic events. 

 

6.1.2.1 Model of fluorescence events, based on cytosolic GCaMP3 

 

Figure 10: Simplified model of astroglial Ca2+ signal. (A) Temporal profile of a characteristic astroglial Ca2+ 
event, with rapid increase in fluorescence and subsequent, slower decrease. (B) Fluorescence intensity decays 
with increasing distance from the Ca2+ source. (C) Four discrete time points depicting the spatial evolution of a Ca2+ 
event, with marked active Ca2+ source (red circle). Gradient indicates decreasing Ca2+ concentration with increasing 
distance from source. 
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A general model for fluorescence events originating from molecular signalling is derived, based 

on astroglial Ca2+ events, visualized using cytosolic GCaMP3. Assuming a homogeneous 

distribution of GCaMP3 throughout the cytosol, one can expect an increase of fluorescence 

with increasing Ca2+ concentration, up to the saturating point of the available GCaMP3. 

Buffering effects of fluorescent dyes are neglected in this model. When intracellular Ca2+ levels 

rise, Ca2+ can bind to free GCaMP3 molecules, causing a conformational change, ultimately 

resulting in increased fluorescence. More Ca2+ entering intracellular space and binding to free 

GCaMP3 molecules further increases the fluorescence response (Figure 10 A) up to a 

temporal maximum. To keep this model generally applicable, no explicit assumption about the 

spatial distribution of the concentration of messenger molecules and thus the resulting 

fluorescence levels is made. Fluorescence events are assumed to express a fluorescence 

peak around the source (e.g. Ca2+ release site from internal stores, or Ca2+ channels in the cell 

membrane). In addition, the local neighbourhood around the source, covered by the event is 

assumed to show temporally correlated fluorescence fluctuations. Both, the fluorescence 

intensity as well as the temporal correlation with respect to the source are assumed to 

attenuate with increasing distance from the source (Figure 10 B). Fluorescence events, in 

particular astroglial Ca2+ events typically show a characteristic rapid increase in their temporal 

fluorescence profile (Figure 10 A) as well as a rapid spatial extend (Figure 10 C), both followed 

by a slower decay (Figure 10 A, C) phase. Thus, one can define a fluorescence event as a 

spatiotemporal fluorescence increase exhibiting a spatial fluorescence peak around the source 

and a temporal fluorescence peak at the time point of maximal concentration. 

Based on this definition, one could assume a simple thresholding algorithm should suffice for 

automated event detection. However, this approach is too naïve for most experimental 

scenarios, especially when applied to in vivo recordings obtained in awake animals. This is 

due to several reasons, e.g. heavy motion artefacts spanning multiple frames, causing image 

distortions, insufficient temporal resolution or persistent image noise due to low photon yield 

and other artefacts, such as varying levels of (auto) fluorescence of tissue structures, such as 

blood vessels. In addition, multiple astroglial Ca2+ events can occur simultaneously within close 

spatial and temporal proximity and thus overlap, requiring additional segmentation. Pure 

thresholding approaches are typically too simple and thus fail in these scenarios. As a further 

complicating factor, multi-peak events may occur, where smaller amplitude peaks sprout 

during the rise or decay of a dominant temporal fluorescence peak. For these reasons, a robust 

algorithm is required to genuinely extract and segment Ca2+ events in order to obtain 

corresponding ROIs. Depending on the research question, multi-peak events might or might 

not be of importance. Therefore, the explicit inclusion of a singular temporal peak is omitted 

for the task of event detection. The extraction and dissection of multi-peak events is 

implemented as an independent process and deferred to the subsequent transient analysis. 
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6.1.2.2 Automated detection of stationary events 
MSparkles supports several ways to generate stationary ROIs. These include a single, global 

ROI covering the entire FOV, regular, customizable ROI grids, hand-drawn ROIs as well as 

importing ROIs previously drawn with ImageJ (Rueden et al., 2017). Global ROIs and regular 

ROI grids however, are not appropriate in all scenarios, since they are either too coarse, 

usually provide sub-optimal segmentation and do not account for the location and morphology 

of Ca2+ events. Manually drawn ROIs on the other hand require tedious work, are usually 

biased and depend on the experience of the analyst. For these reasons, MSparkles features 

a novel automated algorithm for the detection of fluorescence events in order to generate 

representative stationary ROIs. 

The goal of automated detection is to identify regions in which fluorescence events occur by 

requiring minimal user input. Ideally, such an algorithm is able to perform this task faster than 

a human expert, detects and demarcates events more accurately and is able to detect events 

hardly detectable by humans. Moreover, events within close proximity need to be reasonably 

segmented. CoRoDe (Correlation-based ROI Detector) is a novel algorithm, explicitly utilizing 

temporal information to overcome the aforementioned challenges. 

 

6.1.2.3 The CoRoDe algorithm 
Event identification and segmentation are performed in two consecutive steps. First, central 

event regions are identified and subsequently used as seed-points for a region growing 

algorithm. Temporal information is thereby explicitly included in order to achieve a meaningful 

segmentation of proximal event regions. The driving idea behind this concept is to only group 

neighboring pixels to a ROI, if they exhibit a minimal amount of similarity in their temporal 

evolution, in addition to an activity-based threshold.  

 

Extraction of seed points 

Based on the fluorescence event model introduced in section 6.1.2.1, seed point extraction 

can be achieved by identifying local fluorescence maxima. In order to detect actual 

fluorescence changes it is desirable to be independent of the underlying cell morphology and 

tissue structure (Figure 11 A). This is achieved by using the background-corrected dataset 

∆𝐹𝐹 𝐹𝐹0⁄ . Assuming sources remain spatially invariant, and considering that most fluorescent 

(Ca2+) events are in fact stationary (Wang et al., 2019) permits the utilization of projection along 

the temporal axis. This not only reduces computational complexity, but also completely omits 

the tracking and assignment problem. Projecting the range of ∆𝐹𝐹 𝐹𝐹0⁄  (Figure 11 B) provides 
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additional robustness against persistent perturbations and possible negative values. For each 

pixel 𝑝𝑝, the maximum change (range) in ∆𝐹𝐹 𝐹𝐹0⁄  is computed by  

subtracting the minimal value of 𝑝𝑝 from the maximum value of 𝑝𝑝. Each pixel in the range map 

𝑅𝑅 thus represents the maximal change it undergoes in ∆𝐹𝐹 𝐹𝐹0⁄  during the recorded time period 

(Figure 11 B). Finally, regional maxima can be extracted from 𝑅𝑅 (Figure 11 C). Using the range 

projection of ∆𝐹𝐹 𝐹𝐹0⁄  brings practical advantages over a maximum intensity projection (Figure 

36 A, B) 

The maximum projection represents the theoretical ideal condition, and applies if, and only if  

in which case 𝑀𝑀 and 𝑅𝑅 are identical. However, this condition is particularly difficult to achieve 

in experimental scenarios. Summed intensity projections (Figure 36 C, D) do not necessarily 

correspond to fluorescence events (Figure 11 A, B) and further tend to suppress events 

exhibiting a low fluorescence amplitude. This is especially true, if they are performed on the 

original dataset 𝐹𝐹. 

A limitation of projection-based event detectors arises, if multiple events (partially) overlap 

during the recorded time period. These events might not be resolved properly and in some 

situations, they might not be detected. Overcoming this limitation requires a fundamentally 

different approach (see section 6.1.3). Pixels excluded by the 𝐹𝐹0-mask are zero in 𝑅𝑅.  

𝑅𝑅 = max �
∆𝐹𝐹
𝐹𝐹0

(𝑝𝑝)� − min�
∆𝐹𝐹
𝐹𝐹0

(𝑝𝑝)� , 6-8 

𝑀𝑀 = max �∆𝐹𝐹
𝐹𝐹0

(𝑝𝑝)�. 6-9 

min�
∆𝐹𝐹
𝐹𝐹0

(𝑝𝑝)� = 0, 6-10 
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Segmentation of stationary regions 

Segmentation of ROIs can be performed by utilizing a watershed transform (Fernand, 1993). 

Using the range projection of ∆𝐹𝐹 𝐹𝐹0⁄ , 𝑅𝑅, as basis for the watershed segmentation will produce 

segmentation boundaries along valley lines, representing connected pixels, exhibiting a 

minimal range in at least one dimension. While this can lead to a reasonable segmentation in 

simple cases, it is subjected to two shortcomings. Watershed segmentation generally 

segments the entire image, requiring a subsequent, usually intensity-based, thresholding 

operation to limit region growth beyond a reasonable extent. Further, and more importantly, 

this method only relies on spatial information of the projected data, neglecting temporal 

information and thus a large part of the information available in any given dataset. Therefore, 

to the best of the author’s knowledge, a novel temporal correlation-based segmentation 

algorithm is introduced.  

Based on the detected seed points in 𝑅𝑅 (Figure 11 C), simultaneous region growing is 

performed. A correlation threshold (𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) thereby establishes a criterion of minimally required 

correlation, (similarity in temporal evolution) with the temporal evolution of the initial seed point. 

This similarity cannot be guaranteed using a watershed transform. A secondary range 

threshold applied to 𝑅𝑅 serves to establish a quality criterion in order to extract events exceeding 

Figure 11: Automated detection of stationary ROIs. A) The original dataset is not well suited for signal extraction 
and contains unwanted cell morphology. B) The fluorescence range map reveals active regions, not directly visible 
in the original dataset, and not necessarily located in bright somatic regions (see orange boxes). C) Regional 
maxima extracted from the fluorescence range form the basis for correlation-based region growing (D). Comparing 
the extracted ROIs, one can see that the correlation-based algorithm is able to obtain finer resolved ROI boundaries 
(D), compared to the watershed transform (F). E) A less stringent correlation threshold can result in ROIs similar to 
regions obtained with a watershed transform. 
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a minimal change in ∆𝐹𝐹 𝐹𝐹0⁄ . Temporal correlation is computed on ∆𝐹𝐹 𝐹𝐹0⁄ , using Pearson’s 

linear correlation coefficient 

𝜌𝜌(𝑠𝑠, 𝑣𝑣) =  
∑ (𝑠𝑠𝑖𝑖 − µ𝑠𝑠)(𝑣𝑣𝑖𝑖 − µ𝑣𝑣)𝑛𝑛
𝑖𝑖=1

�∑ (𝑠𝑠𝑖𝑖 − µ𝑠𝑠)2𝑛𝑛
𝑖𝑖=1 ∑ �𝑣𝑣𝑗𝑗 − µ𝑣𝑣�

2𝑛𝑛
𝑗𝑗=1

2
 

6-11 

where 𝑠𝑠 is the averaged time course of all pixels of a given seed point, 𝑣𝑣 is the time course of 

an adjacent pixel and µ𝑠𝑠 and µ𝑣𝑣 are the mean values of 𝑣𝑣 and 𝑠𝑠, respectively.  

To obtain the final segmentation, the seed points are simultaneously grown into their local 

neighborhoods of 𝑅𝑅 until either the intensity threshold or the correlation threshold is violated. 

Pixels adjacent to more than one region are marked as boundary pixels. Decreasing the 

correlation threshold to zero results in region growing being governed solely by the range 

threshold, and the detected regions become more similar to those obtained by a watershed 

segmentation (Figure 11 D, E, F).  

 

6.1.3 Automated detection and tracking of dynamic events 
Analyzing fluorescence events using stationary ROIs is an important concept to gain insight 

into molecular signaling mechanisms. Yet, it suffers from intrinsic limitations. Especially the 

inability to adapt to event propagation and morphology changes prohibit the analysis of waves. 

In particular, when analyzing astroglial Ca2+ events, Ca2+ waves can spread not only within 

individual cells, but across astroglial networks, e.g. propagating through gap-junctions or along 

capillaries. These limitations can be overcome by dynamic event analysis. However, this poses 

additional challenges, such as tracking and accurate per-frame segmentation of Ca2+ events. 

Tracking needs to be robust in the presence of image distortions, such as motion artefacts and 

temporary brightness changes. In addition, this prohibits the extensive use of projections as it 

was possible for the detection of stationary ROIs, making dynamic event analysis more 

affective to noise and perturbations.  

Once detected events need to be re-identified and tacked across multiple frames. Moreover, 

an already identified event might be temporarily lost. This, for example, can happen due to 

image distortions originating from animal motion. Events might cross-over, merge or split into 

two or more separate events, propagating in different directions. Following, the KalEve 

algorithm (Kalman filter based Event tracking and segmentation) for event tracking is 

introduced to overcome these challenges. 
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6.1.3.1 The KalEve algorithm 

 

Figure 12: The KalEve algorithm. A) Single frame as ∆𝐹𝐹 𝐹𝐹0⁄ , depicting fluorescence activity above background as 
bright spots. B) Thresholding and morphological erosion remove fluctuations not meeting specified quality 
parameters. C) Extracted and dilated maximal regions. D) Coarse segmentation using watershed transform. E) 
Distance field computation of distance to maximal region. F) Inverted distance field, weighted by ∆𝐹𝐹 𝐹𝐹0⁄ . G) Detected 
regions of connected pixels. H) Final segmented dynamic events overlayed over pre-processed image of original 
stack. J) Image sequence showing the evolution of dynamic events. 

 

Based on the definition from section 6.1.2.1, a fluorescence event can be identified on a frame-

to-frame basis (Figure 12 J) by extracting local spatial maxima in ∆𝐹𝐹 𝐹𝐹0⁄  (Figure 12 A-C). These 

maxima need to be reliably trackable, i.e. being unambiguously identified in a subsequent 

frame. Therefore, a Kalman filter is used to predict locations of known local maxima in a 

subsequent frame. This has the advantage of being robust against temporary miss detections 

e.g. due to motion artefacts and results in a unique track record for each individual maximum. 

Once the maxima and their tracks are known, segmentation is performed (Figure 12 D-H). 

Therefore, the maxima are first back-projected into ∆𝐹𝐹 𝐹𝐹0⁄ , effectively reconstructing 

temporarily missing maxima and allowing proper segmentation even during tracking gaps. 

After segmentation is completed, quality constraints ensuring a minimally required size and 

duration are applied.  
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Tracking of Ca2+ transients using a Kalman filter 

To obtain stable and persistent local maxima across frames, a spatiotemporal Gaussian scale 

space ∆𝐹𝐹 𝐹𝐹0⁄  (ξ) is computed. The scale ξ required to obtain satisfactory results largely 

depends on the quality of the dataset and is parameterized individually. Morphological 

reconstruction is used to expand maxima for subsequent extraction. An additional dilation 

operation further expands detected maxima and closes small gaps to increase detection 

robustness. Each maximum is individually tracked using a Kalman filter. Hereby, the Kalman 

filter is used to predict the new location of a known maximum in a subsequent frame. Each 

predicted location, called candidate location, of a maximum is then corrected, based on a 

corresponding detection in the succeeding image frame, using the MATLAB function 

assignDetectionsToTracks. This function solves the assignment problem, by minimizing a 

cost matrix, where the costs of an assignment increases with the distance of a known location 

to a candidate location. Since the candidate locations are predicted using a Kalman filter, they 

already respect knowledge about previous location and velocity of the (moving) maximum. It 

is thus sufficient to minimize the distance from a known to a candidate location. In case of an 

assignment, a track is generated, representing the trajectory of the maximum. In addition to 

returning assigned tracks, assignDetectionsToTracks also returns a list of unassigned 

maxima, as well as unmatched tracks. Unassigned maxima spawn new tracks, i.e. identify the 

beginning of a new event. Unmatched tracks are used to overcome temporary miss detection. 

In case of one or more failed detections, the predicted location serves as new location 

permitting robust tracking. If, however, a track is unassigned for too many frames, it is 

considered lost and terminated, marking the endpoint of an event. 

 

Segmentation by morphological operators and weighted distance fields 

Spatial segmentation of neighboring fluorescence events is carried out first coarsely and then 

refined to obtain the spatial extent of each event (Figure 12 D-G). To avoid a faulty 

segmentation, due to temporarily undetectable maxima (e.g. caused by motion artifacts), 

extracted maxima from the Kalman filter are back projected into the dataset. Next, a coarse 

segmentation is obtained by applying a watershed transform to the spatiotemporal scale-space 

∆𝐹𝐹 𝐹𝐹0⁄ (ξ) (Figure 12 D). This guarantees each maximum to be contained within a distinct, non-

overlapping region. However, these regions are typically too large and do neither respect 

intensity levels in ∆𝐹𝐹 𝐹𝐹0⁄  nor the previously defined threshold. Therefore, a distance transform 

is computed for each segmented region with respect to the regional centers, weighted by 

∆𝐹𝐹 𝐹𝐹0⁄  (Figure 12 E-F). This allows the segmentation of more accurate, regions of connected 

pixels for each detected maximum. After segmentation, region labels are assigned, based on 

the tracking results. In some cases, a maximum, suddenly originating within an existing region 
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can occur, causing a false segmentation and thus generating a new region-label. To increase 

coherence, sudden changes of assigned labels are suppressed by enforcing the constraint 

that new maxima cannot originate within an existing region of a succeeding frame. As a 

consequence of this rule, two consecutive Ca2+ events occupying the same spatial region must 

have a gap of at least one frame to be counted as two individual dynamic events. 

 

6.1.4 Analysis of Ca2+ transients  

 

Peak amplitudes, durations, rise and decay times as well as inter-

transient timings between consecutive transients (Figure 13) are 

automatically extracted, using a customized version of 

MATLAB’s findpeaks function. Transient duration is by default 

computed as the full width at half maximum (FWHM). In addition, 

transient duration can be computed as full width at 25% or 10% 

of the peak value (Figure 13 A). The latter two can lead to a much 

more accurate estimation of the transient duration, but set higher 

requirements to signal quality. Inter-transient timings (Figure 13 

B) and frequencies are automatically computed for ROIs 

exhibiting more than one transient. Optionally sub transients can 

be excluded. Sub transients are local peaks of a multi-peak 

transient (Figure 14), i.e. amplitude peaks occurring during a stronger peak. This option 

Figure 14: Multi-peak 
transient. Depending on the 
definition of transient duration, 
the multi-peak transient consists 
of two (FWHM) or three (25%) 
peaks. 

Figure 13: Properties of Ca2+ transients. A) Properties of individual transients include peak amplitude (yellow 
dot), duration (orange lines) as well as rise (green) and decay times (red). Depending on the height reference, 50% 
(FWHM, orange line), 25%, or 10% (dashed orange lines), the duration, but also rise and decay times can be 
calculated more accurately. This however, requires a high signal quality. B) Consecutive transients allow to compute 
various signal timings, like peak-to-peak, inter signal and start-to-start. It is important to notice that these timings 
are influenced by the choice of the height reference. 
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strongly depends on the percentage of the peak amplitude at which transient duration is 

computed. Transient rise time is computed on the rising flank of the transient as the time span 

between detected transient start and the first time the transient reaches 90% of its peak 

amplitude (Figure 13 A). Similarly, transient decay time is computed on the falling flank of the 

transient as the time span between the first time the transient drops to 90% of the peak 

amplitude and the detected end of the transient (Figure 13 A). 

 

6.1.4.1 Peak amplitude classification 
MSparkles automatically classifies extracted transients based on their peak amplitude. This 

classification can be performed by manually defining classification intervals. Alternatively, 

MSparkles can compute these classification intervals automatically, based on intrinsic 

properties of a given dataset. In either case, transients not exceeding the minimal classification 

threshold will be ignored. In addition, ROIs not exceeding this threshold at any time are 

considered false positives and are automatically removed. 

For automatic classification, thresholds are calculated based on the overall mean (𝜇𝜇𝜋𝜋𝑐𝑐𝜋𝜋) and 

standard deviation (𝑛𝑛𝜋𝜋𝑐𝑐𝜋𝜋) of all integrated ROIs and a minimal classification threshold is 

determined as 𝜇𝜇𝜋𝜋𝑐𝑐𝜋𝜋 + 𝑛𝑛𝜋𝜋𝑐𝑐𝜋𝜋. Three classification intervals are defined as [𝑇𝑇1. .𝑇𝑇2), [𝑇𝑇2. .𝑇𝑇3) and 

 [𝑇𝑇3. . inf), with 𝑇𝑇𝑛𝑛 =  𝜇𝜇𝑡𝑡𝑡𝑡𝑡𝑡 +  𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡. However, intrinsic statistical properties and the resulting 

classification intervals vary among datasets and can impede a direct comparison.  

Assigned classes are used to analyze the signal composition, revealing changes in signaling 

behavior. Signal composition is defined as the relative frequency of transients belonging to a 

specific class (Figure 24 H, J). Using the signal composition can help to uncover changes in 

signaling behavior, independent of, but also in conjunction with the absolute number of 

detected transients or detected ROI sizes. 

 

6.1.4.2 Synchronicity analysis 
Astroglial networks can exhibit highly synchronized Ca2+ events (Nimmerjahn et al., 2009). To 

detect and analyze synchronous events, a synchronicity index (Figure 37 B) ranging from 0 to 

1 is automatically computed as the relative frequency of the maximal area, covered by all 

detected events for a given time point 𝑡𝑡.  

𝑠𝑠(𝑡𝑡) =  
1
𝐴𝐴𝜋𝜋𝑐𝑐𝜋𝜋

 �𝐴𝐴𝑖𝑖(𝑡𝑡)
𝑛𝑛

𝑖𝑖=1
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where 𝐴𝐴𝜋𝜋𝑐𝑐𝜋𝜋 is the total area of all detected events, projected along the temporal axes, 𝑛𝑛 is the 

number of transients a time 𝑡𝑡 and 𝐴𝐴𝑖𝑖 is the area covered by the 𝑖𝑖th active event.  
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In the case of stationary ROIs, ROI area remains invariant over time and a ROI is considered 

active during the period between the start and end time of an identified transient, resulting in 

a binary on/off behavior. Thus, the computation of the synchronicity index can be simplified as 

the relative frequency of simultaneously active ROIs.  

Peaks of the synchronicity index and their respective duration are automatically extracted. All 

ROIs exhibiting a fluorescence peak during the duration of a synchronous event are extracted 

together with their activation sequence. Activation sequences are determined, based on the 

starting times of affected peaks. This not only allows to identify synchronously active regions, 

but also the internal activation pattern and spread of a synchronous event. However, the 

transient duration and the percentage at which it is obtained determines the length of the period 

in which a ROI is considered active, and affects the correct determination of the activation 

sequence. 

 

6.1.4.3 Differential analysis of fluorescence events 
Differential analysis builds upon the unique ability of MSparkles to define multiple analyses per 

dataset, and allows to intersect two sets of ROIs. This allows to investigate different aspects 

of a dataset, while taking advantage of already performed pre-processing and 𝐹𝐹0 computations. 

Differential analysis can be used, e.g. to analyze and compare somatic events with events in 

the gliapil. To achieve this, somatic regions can be hand drawn or imported from an ImageJ 

ROI set and subsequently be intersected with automatically detected ROIs, for example. The 

result of this operation are two mutually exclusive sets of ROIs which can then be analyzed 

independently of each other. 

 

6.1.5 Correlated analysis of imaging data and secondary recordings 
In addition to analyzing fluorescence events, MSparkles supports the analysis of correlated, 

multi-channel signals. Such secondary signals could be obtained by Electroencephalography 

(EEG), Electromyography (EMG) or Pulse oximetry, for example. The only requirement to 

these recordings is, that they contain a synchronization signal in a dedicated channel. 

Synchronization and analysis of secondary signals is demonstrated here as a proof-of-

concept, by the analysis of eight-channel ECoG recordings, obtained by brain surface 

electrodes (Schweigmann et al., 2021). Therefore, an ECoG dataset is attached to a 

corresponding Ca2+ dataset as a subsidiary. Both datasets are synchronized, using the control 

signal of the galvanic mirrors of the 2P-LSM, included in the ECoG dataset as additional 

channel (Schweigmann et al., 2021). This sawtooth signal is emitted by ScanImage during the 

recording of each dataset and is obtained from the slower (y-axis) mirror as frame-trigger 



Results 

 
46 

signal. Amplitude peaks of the frame trigger signal demarcate the beginning of a new image 

frame of the fluorescence image stack. By selecting an appropriate synchronization mark, 

MSparkles then performs a per-frame synchronization correction to avoid potential drift 

between both signals.  

 

6.1.5.1 Quantitative spike-train analysis 
Spikes are short-lived, significant increases in EEG 

voltage. A spike train consists of a series of bursting EEG 

spikes, exceeding a definable voltage threshold (Figure 

15), typically set well above healthy conditions. Individual 

spikes of a spike train occur in rapid succession, such that 

the time points of two consecutive spikes fall within a 

definable interval, 𝑡𝑡𝑛𝑛 −  𝑡𝑡𝑛𝑛−1 <  ∆𝑡𝑡 (Figure 15). Spike train 

analysis (Figure 15) is a simple, yet powerful tool to detect 

hyper-synchronized pathological brain activity and plays an 

important role for the investigation of neuropathological 

diseases, such as epilepsy. Epileptiform EEG activity is 

thereby divided into two predominant states: ictal activity, 

recorded during a seizure and inter-ictal activity in between 

two epileptic seizures (Stevanovic, 2012). Inter-ictal activity 

can show isolated spikes and spike trains, sharp waves or 

spike-wave complexes. Ictal activity on the other hand is 

composed of a continuous discharge of polymorphic 

waveforms of variable frequency and amplitude, spike and 

sharp wave complexes or rhythmic hypersynchrony (Stevanovic, 2012), resulting in a massive 

series of spikes in rapid succession. Depending on the form of epilepsy (or neurodegenerative 

disease in general) different EEG wavebands may play a more important role than others. 

MSparkles thus provides the ability to select various sub bands and derived signals as the 

source for an analysis. These include wavebands from δ to σ (Table 1), as well as the signal 

magnitude, signal power and signal variance. The spike train detector is configured, by 

specifying a voltage threshold in µV, maximum ∆𝑡𝑡 between two consecutive spikes, as well as 

a minimum spike train duration (Figure 15). Spike-train analysis is then performed for all valid 

EEG channels. Spike trains are automatically documented in a spreadsheet file, containing 

individual tables for each channel, including the starting time, duration, number of spikes and 

the mean spiking frequency, of each detected spike train. 

Figure 15: EEG spikes and spike-
trains. Illustration of an idealized 
EEG/ECoG signal, depicting four 
spikes, above a defined threshold level. 
Δt measures the interval between two 
consecutive spikes. A spike train must 
exhibit a minimum duration, and 
consists of multiple spikes, with 
intervals < Δt. 
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6.1.5.2 Qualitative spectral analysis 

In order to assist the analysis process of EEG signals, MSparkles features qualitative spectral 

analysis (Figure 16). By subdividing the original signal into the relevant EEG wavebands (Table 

1) it becomes possible to discover peculiarities of neuropathological diseases, otherwise not 

noticeable. Once known, these distinctive features can then be implemented into an automatic 

detection algorithm, extending MSparkles capabilities.  

The original EEG signal is first transformed from the time domain into the Fourier domain, 

using FFT. Next, a bandpass filter is applied to extract the components of each EEG wave-

band. This foundation is used to create two distinct visualizations.  

1. Waveband contribution. The components of the wavebands are transformed back to 

the time domain, using the inverse FFT, and then overlaid onto of the original signal, 

depicting individual contributions of each wave-band in contrast to the original signal.  

 

2. Visualization of the relative power spectral density (Figure 16). The Fourier-

transformed and band-filtered signal is subdivided into 1 second epochs. For each 

epoch, relative power-spectral density (PSD) is computed in addition to the absolute 

signal power. This is then used to create a heat-map, displaying the relative power 

distribution per wave-band and epoch (Figure 16) and absolute signal power as 

overlaid curve. This not only shows the relative contribution of each wave-band, but 

also outlines the rise in signal power, during the course of a seizure. 

 

Figure 16: Power spectral density visualization. The normalized power-spectral density (PSD) shows the relative 
power distribution, binned to epochs of 1 second, across eight wavebands from δ to σ. Frequency bands from δ to 
σ are depicted with increasing frequencies from top to bottom. Actual signal power is displayed as red line in 
𝜇𝜇𝑉𝑉2 (𝑑𝑑𝑑𝑑). Orange box highlights progressing increase in signal power during epileptic seizure, followed by post ictal 
depression, resulting in a rapid drop of the signal power. Relative PSD shows the change of the predominant brain 
waves before and after the seizure. 
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6.1.5.3 Cross-correlation analysis of fluorescence and EEG recordings 

 

Cross-correlation determines the similarity of two signals by shifting one signal relative to the 

other (reference signal). It can easily be applied automatically and is robust against noise. This 

allows to determine the point of highest correlation between the two signals and subsequently 

to compute the temporal shift between those signals. MSparkles uses normalized cross-

correlation, producing values between -1 and 1, indicating negative or positive correlation  

𝛾𝛾(𝑢𝑢) =  
∑ �𝑓𝑓(𝑡𝑡) −  𝜇𝜇𝑓𝑓�𝜋𝜋 �𝑔𝑔(𝑡𝑡 − 𝑢𝑢) −  𝜇𝜇𝑔𝑔�

�∑ �𝑓𝑓(𝑡𝑡) −  𝜇𝜇𝑓𝑓�
2

𝜋𝜋 ∑ [𝑔𝑔(𝑡𝑡 − 𝑢𝑢) − 𝜇𝜇𝜋𝜋]2𝜋𝜋

, 
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where 𝑓𝑓 is the fixed signal, 𝑔𝑔 is the signal being shifted along 𝑓𝑓and 𝜇𝜇𝑓𝑓 and 𝜇𝜇𝑔𝑔 are the means 

of 𝑓𝑓 and 𝑔𝑔, respectively. A value of 0 indicates no correlation at all, while 1 indicates perfect 

correlation. -1 indicates perfect negative correlation, i.e. an inverse relation. Identifying the 

maximum correlation between two signals allows to obtain the displacement between those 

signals (Figure 17 A). To determine the temporal displacement, it is sufficient to compute the 

difference of the time of maximal correlation with the relative start of the reference signal. 

Additionally, the delay between the start of both recordings needs to be accounted for, by 

Figure 17: Ca2+ / EEG cross-correlation. Cross-correlation between Ca2+ synchronicity (orange line) and EEG 
power (blue line). Both, EEG power and Ca2+ synchronicity exhibit distinct peaks. A) Global cross-correlation 
analysis determined a single peak in Ca2+ synchronicity about 6.4 seconds before the peak in EEG power occurs. 
B) advanced correlation analysis allows to specify multiple analysis intervals (red boxes). For each interval, an 
independent correlation analysis between Ca2+ synchronicity and EEG power is computed. 
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adding this shift to the computed delay of the shifted signal. Finally, a positive cross-correlation 

result indicates a leading reference signal, whereas a negative value indicates a lead of the 

shifted signal. In MSparkles, the EEG signal or one of its derived signals, such as epoch power 

or a specific wave band, always serves as reference signal. By default, the reference signal is 

correlated with the synchronicity index of the corresponding fluorescence signals. Alternatively, 

the mean signal over all detected ROIs can be chosen. 

In the presence of multiple hyper synchronous EEG events, accompanied by corresponding 

fluorescence synchronicity spikes, comparing two signals in their entirety may become 

inaccurate, especially when the complementary temporal displacements vary. For this reason, 

MSparkles features an extended fluorescence/EEG correlation analysis, allowing to specify 

multiple, independent analysis intervals (Figure 17 B). Within each interval, a distinct 

correlation analysis is performed, providing individual results.  

EEG and fluorescence signals exhibit fundamentally different sampling rates (typically 600-

1200 Hz and 0.5-10 Hz, respectively), mandating resampling of the fluorescence signal to 

match the sampling rate of the EEG recording, preserving its high temporal resolution. The 

EEG signal is normalized to become independent of scaling. Conversely, 2P-LSM recordings 

exhibit a high spatial resolution often with a single pixel covering ¼ µm2 or less, whereas the 

brain surface electrodes used in this study cover an area >1 mm2 with eight peripheral 

electrodes. 
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6.1.6 Application design 
The algorithms presented above are fused together in MSparkles - an interactive, graphical 

application, based on MATLAB (Figure 35). A core principle underlying the application design 

is to provide direct visual feedback for data exploration and parameter optimization. In order 

to make the presented algorithms easily accessible, MSparkles implements a four-stage 

processing pipeline, including a freely configurable pre-processing stage. Automated export of 

results, as well as customizable graphs and videos facilitate result presentation. 

 

6.1.6.1 Design of the processing pipeline 

In order to reduce unnecessary computations, MSparkles features a modular processing 

pipeline, consisting of four consecutive, but individually executable stages. Each stage (pre-

processing, 𝐹𝐹0 -estimation, ROI detection and transient analysis) (Figure 18) is configured 

individually via a specialized graphical editor (Figure 35 B, C, D). The processing pipeline is 

dynamically compiled at run-time. Prior to each (partial) execution of the pipeline, it is 

Figure 18: The processing pipeline. The four main stages of the analysis pipeline, pre-processing, 𝐹𝐹0 estimation, 
ROI detection and ROI analysis are individually configurable. Pre-processing is equipped with various, freely 
combinable algorithms to enhance image quality. ROI detection features various detectors which can be extended 
by additional detection algorithms. The analysis stage executes a series of consecutive tasks to extract and analyze 
individual transients. Finally, automatic result export generates graphs, PDF reports and spreadsheets for further 
analysis and documentation purposes. 
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automatically determined if required preceding computations have already been carried out 

and can thus be omitted. If required computations are missing, they are automatically inserted 

at the appropriate position in the pipeline. The processing pipeline can be configured to 

execute all computations up to a specific stage (e.g. 𝐹𝐹0-estimation), execute an individual stage 

or process an entire dataset at once. In addition, batch-processing of multiple datasets as well 

as entire folder structures is natively supported. To avoid unnecessary access to the (network) 

filesystem, the processing pipeline operates on a per-dataset basis, meaning that all 

computations concerning an individual dataset are carried out before continuing to the next. 

 

6.1.6.2 Pre-processing 
Data acquired using 2P-LSM is often degraded by various kinds of noise and other 

perturbations. Especially in vivo data obtained from awake animals is typically perturbed by 

motion artifacts and image drift. MSparkles therefore provides a customizable and freely 

configurable pre-processing pipeline. It provides algorithms for denoising (SURE-LET, (Luisier 

et al., 2007)), image registration and spectral unmixing. In addition, a set of common spatial 

and temporal filters, such as Gaussian, median, boxcar and Savitzky-Golay filters is also 

available. An interactive preview directly visualizes the effects of any selected filter in the 

configured pre-processing pipeline. Although the pipeline is freely customizable, a default set 

of filters is automatically added to the pre-processing pipeline, consisting of spatial denoising, 

followed by a temporal median filter. The temporal median filter by default has a kernel size of 

three temporal samples. This ensures that no amplitude peaks with respect to the Shannon-

Nyquist theorem are removed. Simultaneously this filter can eliminate small motion artifacts 

and perturbations that persist only during a single frame, so-called shot-noise, while at the 

same time preserving sharp signal edges. In general, it is recommended to individually add or 

omit preprocessing stages, based on the quality (i.e. degree of degradation) of a given dataset. 

For this study, the default preprocessing pipeline was used and only adapted for individual 

datasets, if either the fluorescence signal was of low quality or significant image drift was 

present. 

 

6.1.6.3 Interactivity and direct visual feedback 
A fundamental design choice was made to not only develop a context sensitive graphical user 

interface (GUI, Figure 35), but further display interactive visual feedback during the 

configuration of each step of the processing pipeline. This creates rigorous runtime and 

modularity requirements for each algorithm. For example, individual steps of an algorithm are 

required to be executable independently and return an immediate result in order to allow a 

user to judge subjected modifications. This interactivity brings the benefit of immediately 
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recognizing quality improvements or deteriorations, eliminating laborious and time-consuming 

cycles of repeated parameter tuning and subsequent execution of the processing pipeline. 

Moreover, this approach supports the analyst in gaining a visual understanding of each 

individual parameter of a particular algorithm. 

In addition to the interactive configuration of algorithms, MSparkles features a dynamic, context 

sensitive GUI providing a reactive dataset preview which allows to explore the fluorescence 

profile of each individual pixel. Detected ROIs and obtained results are not only presented to 

the user, but can be individually explored. Thereby, the spatiotemporal relationship between a 

ROI, its temporal evolution and extracted transients is maintained and graphically highlighted. 

 

6.1.6.4 Visualization  
Visualizing data is essential, not only to present results, but also to help better understand and 

interpret observed phenomena. The former is part of information visualization, presenting data, 

results and interconnections in a more abstract manner. The latter is the essence of scientific 

data visualization. MSparkles provides a variety of visualization methods (Figure 37) as well 

as built-in tools to easily create and export graphs and videos (Figure 35). Display adjustments 

allow to change the brightness, perform γ-correction and assign individual channel colors.  

 

Data visualization 

Data obtained using 2P-LSM are scalar by nature. This is also true for multi-channel 

recordings, since the channels can be assumed to be independent. The go-to method for 

visualizing scalar fields is color mapping, where the scalar values in the range [𝐼𝐼𝑚𝑚𝑖𝑖𝑛𝑛, 𝐼𝐼𝑚𝑚𝑎𝑎𝑥𝑥] are 

mapped to a table containing 𝑁𝑁 colors, 𝐶𝐶1, … ,𝐶𝐶𝑁𝑁. MSparkles provides a set of standard and 

custom color maps, which are freely combinable with the original dataset and derived scalar 

fields, such as 𝐹𝐹0, ∆𝐹𝐹 𝐹𝐹0⁄  and others (Figure 37 A). In addition, the per-frame fluorescence 

range can be visualized. This allows to see the absolute change in fluorescence per frame with 

respect to the minimal fluorescence per pixel. Moreover, computing temporal differences 
𝛿𝛿
𝛿𝛿𝜋𝜋
�∆𝐹𝐹
𝐹𝐹0
� permits to visualize and color-code increasing as well as decreasing levels of ∆𝐹𝐹 𝐹𝐹0⁄ . 

Increasing ∆𝐹𝐹 𝐹𝐹0⁄  levels result in a positive value, while decreasing levels will produce negative 

values. Constant concentrations result in 𝛿𝛿
𝛿𝛿𝜋𝜋
�∆𝐹𝐹
𝐹𝐹0
� = 0. In combination with a hot-and-cold color-

code (Figure 37 A), where increasingly positive values are associated with brighter red and 

decreasingly negative values are associated with brighter blue values, one can easily spot 

regions of increasing and decreasing fluorescence levels in ∆𝐹𝐹 𝐹𝐹0⁄ , corresponding to extending 

and decaying molecular signalling events, respectively. 
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Information visualization 

Besides presenting statistical information about a dataset (Figure 37 D), MSparkles uses 

several types of graphs to represent spatiotemporal information. Some of them, such as trace-

plots (Figure 19, Figure 37 C) are extended versions of already existing visualizations. Others, 

like transient-duration-heatmaps (Figure 37 B) and Wave plots (Figure 20) are novel 

visualizations, introduced by MSparkles.  

 

Descriptive statistics 

For each analyzed dataset, descriptive statistics about the distribution of transient amplitudes 

and durations are automatically computed and presented as box-plots (Figure 37 D). Detected 

transients are automatically classified based on their peak amplitude. Therefore, each of these 

charts contains an individual boxplot per transient class, plus an additional box-plot providing 

an overview over all transients. These box-plots are complemented by a scatter plot (Figure 

37 D), correlating the peak amplitude on the y-axis with the corresponding transient duration 

on the x-axis. Computing the linear correlation between the amplitude and duration distribution 

allows to find relationships between these two properties. Within MSparkles, the interactive 

correlation-scatter plot highlights individual signals originating from a selected ROI, creating 

an additional spatial relationship. Both, box-plots and correlation-scatter (Figure 37 D, right) 

plots are automatically exported at the end of an analysis.  

 

Kymographs 

A Kymograph (“Wellenschreiber”) originally introduced by Thomas Young (Young, 1807) is a 

device, monitoring a position over time. Today, the term Kymograph is also used to describe 

graphical representations, detailing the temporal course of an observation. MSparkles uses 

color-coded kymographs, also referred to as heatmaps, as a dense representation of the time 

courses of detected ROIs (Figure 37 B). Such kymographs tend to present huge amounts of 

data in a confined space, and thus can easily become overloaded and difficult to interpret. For 

this reason, MSparkles introduces a minimalistic version of a kymograph, termed transient-

duration-heatmap (Figure 37 B). It only shows actually detected and classified transients. The 

respective color of a depicted transient represents its class and thus indicates transient 

amplitude strength. The length of a colored segment indicates the transient duration. This 

permits to visually assess timepoints of high synchronicity. Moreover, this visualization can 

help to spot patterns and phenomena, requiring further investigation. Finally, MSparkles 

enhances kymographs by attaching the corresponding synchronicity index, creating a 

combined qualitative and quantitative visualization (Figure 37 B). 
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Trace plots 

Trace plots (Figure 19) are an extended variant of a commonly used visualization method. By 

highlighting individual ROIs situated at their precise location within the field of view, alongside 

with their temporal evolution creates an effective spatiotemporal visualization. This type of 

graph permits to visually connect the location and extent of an active region with its signaling 

behavior. In MSparkles, this basic visualization is extended in several ways. Classified 

transient peaks are marked with distinct colors to intuitively assess a transient’s peak amplitude 

strength. Moreover, transient rise and decay times as well as the measured transient duration 

are highlighted. This is further extended by the per-frame standard deviation of the recorded 

fluorescence within the associated ROI, giving an intuition about the uniformity of the 

fluorescence change within the depicted regions. 

 

Wave plots 

Building upon the concept of trace plots, wave plots (Figure 20) are a novel way to visualize 

the spatiotemporal evolution of dynamic events. Similar to trace plots, wave plots depict the 

location and spatial extent of an event within the context of the recorded field of view. In order 

to depict the area occupied by the event in the overview image, the event is projected along 

its temporal axes. This creates a maximum extent visualization, highlighting each occupied 

pixel during the event’s lifetime. Spatiotemporal event dynamics are depicted in the attached 

chart, where the X-axis represents the recorded time frame, and the Y-axis shows the spatial 

extent of the event. The color coding, filling the area of the resulting shape indicates the mean 

amplitude in ∆𝐹𝐹 𝐹𝐹0⁄  at each time point. The wave plot design was developed to be equally well 

suited for datasets with two as well as three spatial dimensions. Depending on the number of 

spatial dimensions, the Y-axis can depict occupied area (2D), or volume (3D). For reasons of 

symmetry, the Y-axis is centered at zero. 

Figure 19: Trace plots. Trace plots establish a spatiotemporal relation between a ROI and its temporal evolution. 
The image on the left-hand side of the plot provides an overview of the dataset and highlights the affected ROI. The 
right-hand side of the plot shows the respective fluorescence profile, with detected and classified peak amplitudes 
(colored dots), rise and decay times (green and red line segments) as well as the per-frame standard deviation 
within the ROI (gray semi-transparent area). 
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Figure 20: Wave plots. Wave plots are a novel way to visualize spatiotemporal characteristics of a dynamic event. 
Besides the event duration (X-axis) and amplitude (color gradient), they also display changes in size (Y-axis). A)  
Large dynamic event, with a single peak in fluorescence (orange section). B) Event with much smaller and almost 
constant extent, showing two fluorescence pulses (orange). 
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 Algorithm evaluation and analysis of fluorescence microscopy data 
The PBasE algorithm for 𝐹𝐹0 estimation, the CoRoDe algorithm for detecting stationary 

fluorescence events as well as the KalEve algorithm for extracting dynamic events were 

individually evaluated. To demonstrate the applicability of these algorithms for the analysis of 

fluorescence events, astroglial Ca2+ events, recorded in vivo using GCaMP3 as well as 

GCaMP5 were analyzed. As a proof-of-concept and to demonstrate the wide applicability of 

MSparkles’ fluorescence event analysis, neuronal Na+ events, visualized using SBFI-AM, 

obtained in acute hippocampal slices were analyzed and compared to current literature. For 

this analysis, ROIs were manually created in ImageJ and imported.  

Astroglial Ca2+ signals were recorded in vivo from three transgenic mice expressing GCaMP3 

as well as three mice expressing GCaMP5. Three to four FOVs per animal were recorded in 

the somatosensory cortex, resulting in a total of 23 and 22 image sequences, respectively. For 

each recorded FOV animals were imaged first during anesthesia and subsequently during 

wakefulness. Similar studies, investigating the effects of common anesthetics as well as 

natural sleep on astroglial Ca2+ signaling in the neocortex (Thrane et al., 2012a) and the 

somatosensory cortex (Bojarskaite et al., 2020; Müller et al., 2021) had previously been 

performed. These studies served as reference.  

Ca2+ events were first analyzed in their entirety to compare differences in anesthetized and 

awake mice. In addition, GCaMP3 signals were subjected to an differential analysis. Therefore, 

cell somata were marked manually and intersected with the automatically detected ROIs, 

resulting in two distinct ROI sets, enabling the comparative analysis of somatic events and 

events in the gliapil. 

Next, the CoRoDe algorithm was compared to three other applications for Ca2+ analysis, 

CHIPS (Barrett et al., 2018), CaSCaDe (Agarwal et al., 2017) and AQuA (Wang et al., 2019). 

The former two generate and evaluate stationary ROIs, whereas AQuA extracts and analyses 

dynamic events. For this comparison, one FOV was randomly selected per mouse and 

analyzed in both conditions. In addition, the KalEve algorithm was assessed by direct 

comparison to dynamic events extracted by AQuA (Wang et al., 2019). 

Finally, as a proof-of-principle, MSparkles was used to analyze EEG signals and correlate 

them to simultaneously recorded Ca2+ signals.  
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6.2.1 Evaluation of computational methods 
 

6.2.1.1 𝑭𝑭𝟎𝟎 estimation 

The PBasE 𝐹𝐹0 estimation algorithm presented in this thesis provides two methods for signal 

cleanup, a temporal mean filter and a Hampel filter, in order to adapt to different scenarios and 

requirements (Figure 21). In the presence of moderate fluctuations in basal fluorescence, the 

temporal mean filter and the Hampel filter both produce similar results (Figure 21 A). In the 

presence of slow, but strong increases of fluorescence levels (Figure 21 B) the Hampel filter 

(depending on the kernel size) tends to incorporate these increases into 𝐹𝐹0, whereas the 

temporal mean filter is able to preserve such long lasting and slowly rising transients.  

Figure 21: 𝑭𝑭𝟎𝟎 estimation. From the pre-processed fluorescence profile of a pixel (A, B blue curve) potential 
transients are excluded from background estimation. A polynomial is then fit to the ‘clean’ signal in a least-squares 
sense in order to obtain the estimate of the basal fluorescence level. Signal clean-up performed with a Hampel filter 
(A, yellow curve) returns similar results as the temporal mean filter (A, red curve) if no long-lasting transients are 
present. The temporal mean filter is capable to retain a stable estimate of baseline fluorescence, preserving long-
lasting and slow changes (B, red curve), while the Hampel filter integrates such transients into the background (B, 
yellow curve). Comparing original fluorescence (C) to the fluorescence range (D) reveals spots of fluorescence 
activities, not immediately visible in the original image. 𝐹𝐹0-mask superimposed on the original image (E) and range 
projection (F), effectively masking pixels with no, or only little fluorescence activity (dark blue pixels in D). 
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𝐹𝐹0-masking is performed on the range projection of the pre-processed image stack 

(Figure 21 C, D). This allows to effectively exclude pixels with no or only insignificant 

changes in fluorescence. Pixels covered by the 𝐹𝐹0-mask (Figure 21 E, F) are excluded from 

the 𝐹𝐹0 estimation and set to their respective pre-processed temporal profile. This results in 

∆𝐹𝐹 𝐹𝐹0⁄ = 0 for the affected pixels and thus prevents the detection of false ROIs and 

subsequently false transients. A side effect of this approach allows to gain a linear speedup of 

the 𝐹𝐹0 computation, corresponding to the percentage of excluded pixels. 

6.2.1.2 Accurate correlation-based detection of stationary events 
To assess the quality of ROIs generated by the CoRoDe algorithm as well as the influence of 

the correlation threshold (𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐), ROIs were obtained at 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0.75, 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0.5 as well as 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

= 0.25 (Figure 22 A), and compared against a matching set of 41 ground-truth ROIs at 

corresponding locations (Figure 22 B). In addition, ground-truth ROIs were compared to ROIs 

obtained using a watershed transform, applied to the range projection 𝑅𝑅 (Figure 22 A). In all 

cases a peak detection threshold of 0.6 ∆𝐹𝐹 𝐹𝐹0⁄  on 𝑅𝑅 was used. Ground-truth ROIs were 

carefully outlined using ImageJ, such that the largest visible extent of a fluorescence event 

was captured. The dataset, was pre-processed using PURE-LET denoising (Luisier et al., 

2010), followed by a temporal median filter with a kernel width of 3 samples. Areas of ground-

truth ROIs were compared to the areas of the detected ROIs by computing mean differences 

as well as relative and absolute size differences (Table 2). The quality of integrated ROI traces 

was assessed by computing the mean signal-to-noise-ratio (SNR) 

𝑆𝑆𝑁𝑁𝑅𝑅 = 10 𝑙𝑙𝑡𝑡𝑔𝑔10 �
𝜇𝜇𝑠𝑠𝑖𝑖𝑔𝑔𝑛𝑛𝑎𝑎𝑠𝑠
𝜇𝜇𝑛𝑛𝑐𝑐𝑖𝑖𝑠𝑠𝑛𝑛
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over all detected ROIs. Here, 𝜇𝜇𝑠𝑠𝑖𝑖𝑔𝑔𝑛𝑛𝑎𝑎𝑠𝑠 and 𝜇𝜇𝑛𝑛𝑐𝑐𝑖𝑖𝑠𝑠𝑛𝑛 represent the mean amplitude of the signal 

and noise portion of an integrated ROI trace. Since 0.5 ∆𝐹𝐹 𝐹𝐹0⁄  was chosen as the lowest 

boundary for transient classification, all values of a given ROI fluorescence profile below 0.5 

were considered noise. 

Table 2: Validation of detected ROIs. ROIs detected using CoRoDe are more accurate, than those detected using 
a watershed transform with identical range threshold. Selecting an appropriate value for 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 reduces nominal and 
relative errors of extracted ROIs and results in a SNR almost identical to ground truth. 

Ground truth Watershed tcorr = 0.75 tcorr = 0.5 tcorr = 0.25 

Mean diff 0.00 51.22 -42.72 -21.30 4.26 

Mean abs diff 0.00 51.56 42.72 21.80 13.81 

Relative diff (%) 0.00 76.78 -57.13 29.73 18.93 

Mean area (µm²) 59.31 110.54 27.18 38.01 63.58 

Signal-to-Noise-ratio 

(dB) 

15.60 13.90 18.58 17.20 15.70 
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Absolute differences in ROI area with respect to the ground truth were significantly reduced 

for ROIs detected by CoRoDe, when compared to ROIs obtained by the watershed transform 

(Figure 22 B, D, Table 2). Further, supposing an appropriate correlation threshold, here 0.25 

∆𝐹𝐹 𝐹𝐹0⁄ , ROIs obtained by the CoRoDe algorithm were found to resemble ground truth ROIs 

much more accurately, compared to regions obtained by watershed transform (Figure 22 B, 

zoomed regions). ROIs obtained using a watershed transform were not only found to be 

oversized (Table 2, Figure 22 B, bottom), but resulting transients were suppressed and in some 

cases not detected, due to not meeting the minimally required condition of the peak amplitude 

being ≥ 0.5 ∆𝐹𝐹 𝐹𝐹0⁄  (Figure 22 C, bottom). Contrary, ROIs obtained using a correlation 

threshold of 0.75 turned out to be undersized in this experiment, which resulted in 

overestimated transient peaks (Figure 22 B, C, top). The quality of ROI fluorescence profiles 

obtained using the CoRoDe algorithm was assessed and compared to fluorescence profiles of 

ROIs obtained using watershed segmentation by their SNR (Figure 22 D, Table 2). ROI 

fluorescence profiles, integrated using ROIs obtained by the CoRoDe algorithm showed an 

improved SNR, compared to ROIs obtained using a watershed transform (Table 2, Figure 

22 E). SNR was significantly reduced in fluorescence profiles integrated with ROIs obtained 

using watershed transform (Table 2, Figure 22 E). Most importantly, no difference in SNR with 

respect to the ground truth was computed, using an appropriate correlation threshold of 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

= 0.25 (Table 2, Figure 22 E).  
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Figure 22: Temporal correlation-based ROI detection. A) ROIs obtained using CoRoDe with different correlation 
thresholds (𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) as well as watershed transform. Correlation thresholds were set to 0.75, 0.5 and 0.25. B) Direct 
comparison of automatically extracted ROIs to a manually evaluated ground truth. The obtained ROIs (pink) are 
contrasted to the manually extracted maximal extent of the fluorescence event (dashed blue line). C) Fluorescence 
profiles from the highlighted ROIs show the influence of segmentation parameters on resulting peak amplitudes. 
Transients of ROIs obtained by watershed segmentation exhibit too small peak amplitudes (C, arrows), due to 
improper segmentation. D) ROIs obtained using CoRoDe show significantly less difference from ground truth, 
compared to watershed transform. E) Integrated fluorescence profiles from ROIs with appropriate 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  show no 
difference in SNR, compared to ground truth, whereas profiles from ROIs obtained using a watershed transform 
show a significantly reduced SNR. 
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6.2.1.3 Accurate detection of dynamic Ca2+ events 
 

 

Figure 23: Accurate detection of dynamic events. Ca2+ signal at the vicinity of a capillary. The extent of the 
Ca2+signal is manually traced and outlined (blue dashed line). The signal extent detected by MSparkles is 
highlighted in green (lower row). A) Manually determined start of signal, fluorescence change is below detector 
sensitivity. B-D) Morphological changes of the Ca2+ event are detected and traced over time. 

 

Segmentation and extent of dynamic events extracted using the KalEve algorithm was verified 

through careful visual evaluation (Figure 23). To do so, dynamic events were first manually 

tracked and outlined over multiple frames, using ImageJ. Subsequently, events detected by 

the KalEve algorithm were overlayed with corresponding events outlined in ImageJ for visual 

comparison (Figure 23). The KalEve algorithm was not only able to detect large dynamic evets, 

exhibiting strong fluorescence amplitudes (Figure 32 A), but also localized events (Figure 23). 

In particular, it was verified that the KalEve algorithm is able to reliably detect small events, 

covering only a few µm² in the FOV (Figure 23).  
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6.2.2 Characterization of fluorescence events extracted by CoRoDe 

6.2.2.1 Number and size of ROIs increased in awake animals  
In awake GCaMP3 reporter mice a significant increase in both, the number of detected ROIs 

as well as the median ROI area was detected (Table 3, Figure 24 A, B), compared to 

anesthetized animals. ROIs detected in anesthetized animals were exclusively located in the 

gliapil. The minimal number of detected ROIs was three times higher in awake animals (Table 

3). In conjunction to a 50% increase of median ROI count during wakefulness, the median 

number of transients detected per ROI also doubled (Table 3, Figure 24 C), resulting in the 

absolute number of detected ROIs to almost double during wakefulness (Table 3, Figure 24 J).  

 

6.2.2.2 Per-ROI transient frequencies did not change 
The frequency per ROI was only computed, if a ROI contained more than one transient. 

Further, the frequency per ROI was computed as the average frequency of transients between 

the first and the last transient and not as average of total number of transients divided by the 

recorded timespan. Contrary to previous findings, where a 10-fold reduction in astroglial 

transient frequency was reported in anesthetized mice (Thrane et al., 2012a), investigating 

median signaling frequencies per ROI (Table 3, Figure 24 D) showed no difference (0.0285 Hz 

and 0.0203 Hz) between anesthetized and awake animals, respectively. 

 

6.2.2.3 Ca2+ activity increased in awake animals 
Investigation of transient kinetics (peak amplitude and transient duration, Table 3, Figure 

24 E, F, G, H) revealed no prolongation of median transient duration during wakefulness, 

compared to anesthetized animals (Figure 24 F). During wakefulness signalling activity was 

increased and stronger fluctuations in ∆𝐹𝐹 𝐹𝐹0⁄  were detectable (Figure 24 E, G), however, the 

median amplitude did not change between both states (Table 3, Figure 24 E). For further 

investigation, transients were classified by their peak amplitude (Figure 24 H), and assigned 

to one of the three classification intervals [0.5, 1), [1, 1.5), [1.5, ∞). This revealed virtually no 

difference in median amplitude among transients in the lower two classes between 

anesthetized and awake animals. In awake animals a significant increase in median peak 

amplitude was found for transients > 1.5 ∆𝐹𝐹 𝐹𝐹0⁄ . Based on the amplitude classification, the 

signal composition was computed (Figure 24 J). Besides an increased number of detected 

transients in awake animals, a shift in relative frequencies was revealed, nearly doubling the 

percentage of transients > 1.5 ∆𝐹𝐹 𝐹𝐹0⁄ , while the percentage of lower amplitude transients 

decreased. 

 



Results 

 
63 

 

Figure 24: Statistical analysis and transient characterization in GCaMP3 mice. The median number of detected 
ROIs (A), as well as the ROI area (B) increased in awake animals. The median number of transients per ROI also 
doubled in awake animals expressing GCaMP3 (C). Per-ROI transient frequencies did not change (D). The overall 
median transient peak in awake animals did not change (E). Overall median transient duration also showed no 
change in awake GCaMP3 animals (F). This increase in fluorescence activity is also reflected in the range projection 
of ∆𝐹𝐹 𝐹𝐹0⁄  (G). Individual classes (H, J) show not only a increase in median amplitude above 1.5 ∆𝐹𝐹 𝐹𝐹0⁄  (H) but also 
a relative increase (signal composition) in strong transients during wakefulness (J). Differential analysis of somatic 
transients and transients occurring in the gliapil (K, L, M) shows similar median durations (K). Somatic transients 
exhibit not only a higher median peak amplitude (L), but also occur mostly as high amplitude transients (M), 
compared to transients in the gliapil. 
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6.2.2.4 Differences in somatic and peripheral Ca2+ transients 
During wakefulness, somatic Ca2+ activity could be observed in 75% of the recorded FOVs, 

whereas no somatic Ca2+ activity was observed during anesthesia. In order to analyze somatic 

events independent of events occurring in the gliapil, a differential analysis was configured. 

Therefore, an additional ROI set containing manually marked somatic regions was generated. 

These regions were then subtracted from automatically detected ROIs, resulting in two distinct 

ROI sets, covering somata and the gliapil, respectively. Comparing somatic transients to 

transients occurring in the gliapil (Table 4, Figure 24 K, L, M) revealed similar ranges of both, 

peak amplitude as well as transient duration in both regions. Obtained median durations were 

also comparable between somatic regions and the gliapil (Table 4, Figure 24 K). Somatic 

transients exhibited a significantly higher median peak compared to gliapil (Table 4, Figure 

24 L). Analyzing raw transient counts revealed about 13 times more transients in the gliapil, 

compared to somatic regions (Table 4, Figure 24 M). Moreover, the vast majority of somatic 

transients exhibited a peak amplitude of 1.5 ∆𝐹𝐹 𝐹𝐹0⁄  or greater, whereas half of the transients 

in the gliapil had a peak amplitude < 1.0 ∆𝐹𝐹 𝐹𝐹0⁄  (Figure 24 M).  

Table 3: Statistical analysis of extracted ROI and transient properties. ROI counts, area, transient count, mean 
frequency, peak amplitude and transient duration are shown with their respective minima, 25%iles, 50%iles 
(median), 75%iles and maxima. 

 

Anesthetized Awake 

#ROIs Area 
(µm²) #Tran Freq. 

(Hz) Amp Dur #ROIs Area 
(µm²) #Tran Freq. 

(Hz) Amp Dur 

Min 19 12.91 1 0.008 0.56 2.71 64 12.17 1 0.008 0.57 2.85 

25% 45 16.39 1 0.019 0.67 3.19 114 19.37 1 0.018 0.65 3.60 

50% 80 17.50 1 0.028 0.79 3.88 121 30.79 1.5 0.020 0.78 4.28 

75% 116 18.74 1 0.047 0.87 4.27 129 150.9 2 0.046 0.99 5.96 

Max 168 25.08 2 0.063 0.91 4.84 168 208.6 4 0.063 1.85 22.51 

 

Table 4: Detailed statistical analysis of classified peak amplitudes. Classified peak amplitudes are shown with 
their respective minima, 25%iles, 50%iles (median), 75%iles and maxima. 

 

Anesthetized Awake 

[0.5. 1.0) [1.0. 1.5) > 1.5 [0.5. 1.0) [1.0. 1.5) > 1.5 

Min 0.59 1.17 1.52 0.60 1.16 1.65 

25% 0.64 1.18 1.69 0.66 1.18 1.75 

50% 0.69 1.21 1.78 0.69 1.21 1.99 

75% 0.69 1.22 1.94 0.73 1.23 2.21 

Max 0.75 1.39 2.30 0.79 1.32 2.75 

#Tran 1166 308 156 1949 635 603 
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6.2.2.5 Synchronous events are highly diverse 
Ca2+ activity within a recorded FOV was considered synchronous, if at least half of the detected 

ROIs were simultaneously active (Figure 25 A). During anesthesia, no significant synchronous 

activity was detectable (Table 20). In fact, no more than 20% of the detected ROIs were 

simultaneously active (Table 20). During wakefulness, synchronous activity was detectable 

with synchronicity values exceeding 90% (Table 20). Investigating the activation sequences of 

three consecutive synchronous events showed three things. (I) Synchronous activity started 

from a few ROIs and then spread across the field of view (Figure 25 B, C, D), (II) in the datasets 

investigated, it was neither possible to identify a predominant direction of propagation nor a 

repeating propagation pattern (Figure 25). In contrast, some regions directly neighboring the 

origin of the synchronous event did not show any considerable activity until the very end of the 

synchronous period (Figure 25 C). (III) In the case of multiple synchronous events being 

detected, there was a considerable overlap in the active ROIs, but they were never 100% 

identical. Moreover, the number of ROIs participating in a synchronous event degraded in 

repeated events (Figure 25 B, C, D). Further, the order of activation was different in 

consecutive synchronous events (Figure 25 B, C, D). These are only observations from a very 

limited number of datasets and require further investigation to obtain conclusive results. 

 

6.2.2.6 Ca2+ transients based on GCaMP5 are comparable to GCaMP3 
Analyzing astroglial Ca2+ transients obtained in GCaMP5 reporter mice showed comparable 

tendencies to those obtained in GCaMP3 mice (Figure 26). Although in awake animals, an 

increased median ROI count (Figure 26 A), ROI area (Figure 26 B) as well as transient-count 

per ROI (Figure 26 C) was detectable, only the increased transient count was of statistical 

significance. Comparing median ROI frequency (Figure 26 D), overall median peak amplitude 

(Figure 26 E) as well as median transient duration (Figure 26 F) showed no statistical 

differences between anesthetized and awake animals. Analyzing classified signals showed no 

difference among comparable classes (Figure 26 H). Due to the reduced intensity of the 

GCaMP5 fluorescence response (Figure 26 , an additional classification interval in the range 

of [0.25, 0.5) was introduced. Analyzing signal composition (Figure 26 J) showed a relative 

increase of higher amplitude transients, as well as a decrease of relative frequency mainly on 

the expense of signals in the range of [0.25, 0.5), besides an increased total signal count of 

about 3x in awake animals. Similar to GCaMP3, periods of highly synchronous Ca2+ 

fluctuations only occurred exclusively while animals were awake (Table 21). 
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Figure 25: Synchronous events are diverse. Three separate, but consecutive synchronous events in the same 
recording. Synchronous events are qualitatively assessable via kymographs, showing unclassified fluorescence 
profiles (A, left) as well as classified transients (A, right). In addition, synchronicity plots (A, beneath kymographs) 
allow to quantify the relative frequency of synchronous activity, with respect to the number of detected ROIs. 
Synchronous periods above threshold (red, dashed line) are highlighted (blue areas), and peaks in synchronicity 
are marked (red circles). Analyzing individual synchronous events, can reveal activation patterns. Here, color 
indicates first activation of ROIs, from beginning (green) to end (red) of synchronous event. B) The first synchronous 
event spread through all of the detected ROIs. C) The second and third (D) synchronous event occured in 
successively smaller subsets of the detected ROIs. All three events exhibited different activation sequences, and 
ROIs had substantially different activation time points despite being spatially close to one another. Highlighted time-
spans in the attached fluorescence profiles (B, C, D, right) indicate affected period of synchronicity.  
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Figure 26: Statistical analysis and signal characterization in GCaMP5 reporter mice. Awake animals showed 
no statistical difference in median ROI count (A) and ROI area (B), compared to anesthetized animals. The median 
count of transients per ROI was increased in awake mice (C). However, per-ROI signaling frequencies did not 
change significantly (D). No statistical difference in median peak amplitude (E) as well as transient duration (F) was 
detectable. Comparing classified peak amplitudes, showed no significant in-class differences among anesthetized 
and awake animals (H). Analysing the signal composition, showed an relative increase in high amplitude transients 
> 1.0 ∆𝐹𝐹 𝐹𝐹0⁄ , next to a relative decrease in low amplitude transients < 0.5 ∆𝐹𝐹 𝐹𝐹0⁄ .  

 

6.2.2.7 Analysis of dynamic Ca2+ events 
During anesthesia, the range of detected transient peaks was lower, compared to wakefulness, 

whereas median peak amplitude was statistically indifferent (Figure 27 A, Table 5). Awake 

animals showed a reduced median transient duration (Figure 27 B). The median area occupied 

by a dynamic event did not change significantly during wakefulness (Figure 27 C, Table 5). 

Dynamic events were able to cover greater maximum distances from their origin during 

wakefulness (Figure 27 D, Table 5), however no statistical increase in median distance 
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travelled by dynamic events was detected. Further investigation revealed a 4.3x increase in 

total transient count (Figure 27 F) in awake animals. Analysis of classified transients showed 

not only a relative increase of transients exhibiting an amplitude >1.5 ∆𝐹𝐹 𝐹𝐹0⁄ , but also an 

increased median amplitude in this class (Figure 27 E, Table 6). Signal composition analysis 

revealed an increase in relative frequency of strong (>1.5 ∆𝐹𝐹 𝐹𝐹0⁄ ) and weak [0.5, 1) ∆𝐹𝐹 𝐹𝐹0⁄  

transients, reducing the relative frequency of transients exhibiting a medium-sized peak 

amplitude (Figure 27 F).  

 

Figure 27: Analysis of dynamic events, detected with MSparkles. The maximum peak amplitude of Ca2+ 
transients in increased in awake mice, while the median transient duration is reduced (B). Both, average event area 
(C) as well as the maximum distance travelled by an event (D) showed increased maximal values, but no statistical 
difference in median values during wakefulness. Investigation of classified transients (E) revealed an increase in 
peak amplitude in awake animals. Similar to stationary ROIs, the signal composition (F) revealed an increase in 
relative frequency of both high amplitude (∆𝐹𝐹 𝐹𝐹0⁄  > 1.5) as well as low amplitude (∆𝐹𝐹 𝐹𝐹0⁄ < 1.0) transients. The 
relative frequency of transients exhibiting an amplitude in the range [1.0, 1.5) was thereby reduced. 
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Table 5: Descriptive statistics of dynamic events. Minimal and maximal values, 25% percentiles median values 
and 75% percentiles of detected peak amplitudes (Amp), durations (Dur), mean event area as well as the distance 
travelled by dynamic events. 

 
Anesthetized Awake 

Amp Dur Area (µm²) Dist (µm) Amp Dur Area (µm²) Dist (µm) 

Min 1.05 3.47 16.36 7.19 0.94 2.69 16.54 7.97 

25%ile 1.13 5.32 18.70 10.43 1.14 2.76 19.66 8.50 

Median 1.19 6.37 20.61 13.06 1.18 3.76 30.35 11.91 

75%ile 1.26 7.00 21.41 15.45 1.31 4.61 114.40 16.90 

Max 1.39 9.46 22.50 20.51 1.77 21.13 289.00 203.30 

 

Table 6: Peak classification of dynamic events. Per-class minimal and maximal values, 25% percentiles median 
values and 75% percentiles of detected peak amplitudes. 

 
[0.5 , 1.0) [1.0 , 1.5) [1.5 , ∞) 

Anesthetized Awake Anesthetized Awake Anesthetized Awake 

Min 0.88 0.72 1.14 1.14 1.51 1.61 

25%ile 0.91 0.84 1.16 1.16 1.68 1.68 

Median 0.92 0.85 1.21 1.18 1.71 1.80 

75%ile 0.93 0.91 1.23 1.20 1.81 2.07 

Max 0.96 0.93 1.26 1.38 1.92 2.28 
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6.2.3 Analysis of Na+ events with MSparkles 
 

  

Figure 28: Evaluation if Na+ signals analyzed with MSparkles (A) Image of the CA1 pyramidal cell layer of a 
hippocampal slice (P16) stained with sodium-binding benzofuran isophthalate-AM (SBFI-AM), scale bar is 25 µm. 
Circles represent regions 1-5 as depicted in (B). (B) Na+ signals from regions 1-5 as detected during recurrent 
network activity. Peaks detected by the software shown by colored dots depending on threshold groups (Red >10% 
Green >7.5%, Blue >5%). Peak amplitude and full width at half maximum are indicated by black lines. (C) 
Synchronicity plot of all cells measured in the experiment shown in (A) and (B) (n=33), showing the proportion of 
cells with activity over time. (D) 3D plot generated by MSparkles, showing Na+ traces of all measured cells. (E) 
Threshold group heat map showing the time points at which each cell was involved in peaks with color code 
corresponding to that in (B). (F) Scatter plot generated by MSparkles showing the correlation between the duration 
and amplitude of signals. This figure and therein displayed results have been generated using MSparkles at the 
University of Düsseldorf. Figure by Lisa Felix & Katharina Everaerts, HHU Düsseldorf 
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To demonstrate the applicability of MSparkles beyond the analysis of astroglial Ca2+ signals, 

neuronal Na+ signals were analyzed as a proof of principle. Recurrent network Na+ oscillations 

in CA1 pyramidal neurons, generated by dis-inhibition of the hippocampal network, were 

reliably detected (N=4 slice preparations from 3 different animals) (Figure 28). For this 

analysis, ROIs were manually created in ImageJ and then imported with MSparkles. This was 

necessary, due to non-uniformity of the brightness in ratiometric images, especially near the 

image boundaries. Computing the ratio of dark image regions, located near the image 

boundaries resulted in much higher ratios, compared to image regions containing fluorescence 

events and thus causing the CoRoDe algorithm to detect image boundary regions, rather than 

pyramidal neurons. 𝐹𝐹0-estimation was used to correct drift in the ratiometric data. The onset of 

Na+ oscillations was identified after wash-in of the saline containing 0 Mg2+/bicuculline and 

reported that the network essentially immediately gained a high level of synchronicity (close to 

1) between all analyzed CA1 pyramidal neurons in the field of view (30-40 in a given 

preparation; Figure 28 A-C). Individual transients obtained from neuronal cell bodies were 

classified into three groups, namely ˃5, ˃7.5 and ˃10% (corresponding to a change in 4.93, 

7.39 and 9.85 mM Na+, Figure 28 B). The corresponding kymograph illustrates that transients 

detected in individual neurons fell into all three groups, but that individual network events 

generally tended towards exhibiting either larger (7.5 and 10%) or smaller (5 and 7.5%) peak 

amplitudes in the contributing cells (Figure 28 E). Peak amplitudes and durations of individual 

transients were comparable to results published previously (Figure 28 F), (Karus et al., 

2015a)). There was a positive linear correlation (R=0.36) between the peak amplitude and the 

overall duration of individual Na+ transients. 
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6.2.4 Comparison with other Ca2+ analysis applications 
 

6.2.4.1 Differences in event segmentation and integrated fluorescence profiles 
ROIs extracted by the CoRoDe algorithm were compared directly to corresponding ROIs, 

detected by CHIPS, CaSCaDe and AQuA, analysing the same dataset. Thereby, event 

segmentation, as well as resulting fluorescence profiles were investigated (Figure 29), in 

addition to the number of ROIs, the number of not detected active regions (false negatives) 

and the overall number of extracted transients (Table 17). Comparing event segmentation 

revealed differences in shape, size and smoothness (Figure 29 A, Figure 38, Table 18). For 

example, ROIs extracted by CHIPS had rounder shapes, appeared coarser (Figure 29 A) and 

showed in most cases a larger mean area than ROIs obtained by the other applications (Table 

18). Further, segmentation among neighbouring events appeared not as fine-grained as with 

the other applications. ROIs extracted by CaSCaDe appeared fragmented, and occupied a 

similar mean area across datasets, compared those obtained by AQuA and MSparkles (Figure 

29 A, Table 18). ROIs generated by AQuA appeared rough and fragmented (Figure 38). 

Overall, the false negative rates of all applications was acceptable with minor variations among 

applications (Table 17). However, the number of detected ROIs as well as the thereof extracted 

transients vary strongly between applications (Table 17). Direct comparison of integrated 

fluorescence profiles revealed several differences. (I) Noise levels of the fluorescence profiles 

vary across the applications (Figure 29 B). (II) fluorescence profiles obtained with CHIPS 

showed a drift in baseline fluorescence (Figure 29 B). (III) CaSCaDe tends to extract transients 

with a longer duration (Figure 29 B, Table 16). (IV) CHIPS and CaSCaDe had difficulties 

properly resolving spatially close, but temporally separated events (Figure 29 A, B, circled in 

red and yellow), resulting in fluorescence peaks occurring in the profile of adjacent ROIs 

(Figure 29 B, C). (V) Integrated fluorescence profiles obtained with AQuA and MSparkles are 

similar, despite utilizing different analysis paradigms (Figure 29 B, C).  

To underline the effects of ROI segmentation on resulting fluorescence profiles, fluorescence 

profiles of one ROI were overlaid directly (Figure 29 C). This highlights that all applications 

were able to extract profiles with high resemblance during the first 200 seconds. Especially the 

prominent amplitude peak occurring after about 100 seconds is largely similar across 

applications. Due to differences in the segmentation of detected events, fluorescence profiles 

integrated by CHIPS and CaSCaDe contained an additional prominent peak near the end of 

the recording, at around 270 seconds. 
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Figure 29: Comparison of ROI detectors.  A) ROIs detected with a specific Ca2+ analysis tool. Highlighted areas 
contain fluorescence activity, similarly detected by all tested applications. Comparing ROIs of the magnified areas 
reveals segmentation differences, as well as differences in size among Ca2+ analysis tools. B) Fluorescence 
profiles of magnified ROIs marked with red, yellow and blue ellipsesPprofiles obtained using CHIPS show an 
increase in background fluorescence over time. Especially the profiles obtained with CHIPS and CaSCaDe differ 
to those obtained with AQUA and MSparkles. AQuA and MSparkles performed a more accurate segmentation 
between the ROIs marked with red and yellow ellipses, which is reflected by the corresponding fluorescence 
profiles. C) Direct comparison of fluorescence profiles marked by the red ellipse. Profiles are similar around the 
first event occurring between 90s and 180s. Profiles by CHIPS and CaSCaDe show a third peak and prolonged 
event, respectively. CHIPS and CaSCaDe show a second fluorescence event at around 270s. AQuA and 
MSparkles detected this as a separate event, located at the ROI highlighted in yellow. 
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6.2.4.2 Detected Ca2+ kinetics are diverse among analysis tools 

 

Figure 30: MSparkles detects more subtle transients.  MSparkles was able to extract overall more transients 

from the same datasets as the other applications. Moreover, it was able to extract more subtle transients with peak 

amplitudes < 1 ∆F F0⁄  in anesthetized (A) as well as awake mice (B).  

Three FOVs, recorded in mice expressing cytosolic GCaMP3 were chosen randomly to 

compare the performance of different analysis tools (CHIPS (Barrett et al., 2018), CaSCaDe 

(Agarwal et al., 2017) and AQuA (Wang et al., 2019)). All FOVs in this comparison exhibited 

seemingly little Ca2+ activity during aesthesia. In one dataset a Ca2+ wave within a single 

astrocyte was observable during awake state. Another dataset contained a large Ca2+ wave 

across the entire FOV during wakefulness.  

All applications detected an increased transient count in awake mice (Figure 30). MSparkles 

was not only able to detect more transients in total, but in particular more low amplitude 

transients. Especially in anesthetized mice, MSparkles was able to extract about 6x more low 

amplitude transients than the other applications (Figure 30 A). In awake mice, MSparkles 

detected about 5x more low amplitude transients then the other applications (Figure 30 B). 

Overall, all applications detected a significant increase in median amplitude during 

wakefulness, compared to anesthesia (Figure 31 A, Table 19). Looking at individual datasets, 

measured peak amplitudes across the different applications were significantly different 

between anesthetized and awake states, and in some cases ambiguous (Figure 31 A, Table 

11, Table 12, Table 15). In the first dataset CaSCaDe and CHIPS detected no statistical 

difference between anesthetized and awake mice. AQuA detected a decrease in median peak 

amplitude in awake state, MSparkles detected an increase in median peak amplitude (Figure 

31 A, FOV1). In the second dataset, CHIPS detected an increased median peak amplitude, 

while the other applications detected no statistical difference (Figure 31 A, FOV2). In the third 

dataset, AQuA and MSparkles detected an increased median peak amplitude during 
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wakefulness, while CHIPS and CaSCaDe detected no statistical difference. In all three 

datasets, the magnitudes of the extracted transient peaks showed considerable differences 

(Figure 31 A). 

Analyzing the extracted transient durations showed similar tendencies (Figure 31 B, Table 13, 

Table 14, Table 16). Overall, all applications detected an increased median transient duration 

in awake animals (Table 19). However, looking at individual datasets, none of the tested 

applications reported significant differences between anesthetized and awake animals in the 

first dataset (Figure 31 B, FOV1). AQuA detected a decreased median transient duration, while 

MSparkles detected an increased median transient duration in the second dataset. The other 

applications did not find significant differences (Figure 31 B, FOV2). In the third dataset, 

exhibiting a large Ca2+ wave, only MSparkles detected a significant increase in median 

transient duration (Figure 31 B, FOV3). Interestingly, durations reported by CaSCaDe were 2x 

– 3x longer, compared to the other applications. 
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Figure 31: Signal kinetics obtained with different Ca2+ analysis tools.  A) Obtained peak amplitudes are diverse   
across different applications and may result in ambiguous tendencies for individual datasets between applications. 
B) Transient durations are more consistent, however, CaSCaDe tends to measure longer durations than other 
applications. 
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6.2.4.3 Comparison of dynamic event detectors 

 

Figure 32: Comparing dynamic events of MSparkles and AQuA. Comparing dynamic events detected by 
MSparkles with events obtained using AQuA showed a large resemblance in detected regions (A, B). MSparkles 
tends to detect the onset of an intracellular Ca2+ event earlier than AQuA (A). This allowed to determine the onset 
of the Ca2+ event in one of the astroglial processes and observe its propagation towards the soma. The direct, 
frame-to-frame comparison of AQuA and MSparkles (B) shows largely identically detected events (green). Events 
missed by either one of the applications are marked in red. 

 

AQuA and MSparkles were the only two tested applications being able to detect and analyze 

dynamic events. For a direct comparison, three datasets obtained from GCaMP3 mice were 

analyzed with both applications. Each dataset consisted of two image sequences, recorded 

while the animal was awake and anesthetized, respectively. Event detection and analysis with 

both applications was performed to achieve the best results, with respect to the author’s 

abilities. 

Directly comparing corresponding events, extracted by MSparkles and AQuA showed similar 

results, with respect to the location and spatial extent of the events (Figure 32 A, B, Table 7). 

MSparkles was able to detect the onset of Ca2+ events earlier than AQuA (Figure 32 A). This 

made it possible to not only detect an intracellular Ca2+ wave, propagating through an entire 

astrocyte, but further to identify its origin in one of the astroglial processes (Figure 32  A). Both 
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AQuA and MSparkles largely detected dynamic events at the same locations, with similar 

spatial extend. However, the median area covered by a Ca2+ event differs between both 

applications, particularly during wakefulness. Both applications occasionally detected some 

events, missed by the other, and vise-versa (Figure 32 B). Overall, MSparkles detected more 

active regions than AQuA (Table 7), in particular these regions largely account for fluorescence 

events in the gliapil, exhibiting peak amplitudes < 1.0 ∆𝐹𝐹 𝐹𝐹0⁄ . 

 

Table 7: Properties of dynamic events obtained with MSparkles and AQuA.  Comparison of median values for 
Ca2+ peak amplitude, transient duration, event area and total number of detected events in anesthetized and awake 
animals, as detected by AQuA and MSparkles. 

 Anesthetized Awake 

Amplitude Duration Area #Events Amplitude Duration Area #Events 

MSparkles 1.20 3.48 15.96 158.00 1.14 2.33 23.89 744.00 

AQuA 2.36 2.40 15.00 41.00 3.08 2.10 13.75 435.00 

 

 

6.2.4.4 Signal properties of dynamic events obtained by MSparkles and AQuA differ 
Directly comparing signal kinetics obtained by MSparkles and AQuA showed ambiguous 

tendencies (Figure 33 A). Median peak amplitudes obtained by MSparkles showed a lower 

median amplitude than those obtained by AQuA (Figure 33 A, Table 7). Both applications 

displayed a tendency towards a reduced median transient duration while the animal was 

awake, with respect to anesthetized state (Figure 33 A, Table 7). Comparing the spatial extent 

of dynamic events, results obtained with MSparkles suggested an increase in median area 

during wakefulness (Figure 33 A, Table 7). Analyzing the signal composition (Figure 33 B), 

suggested similar tendencies of increased relative frequencies of large and small amplitude 

transients in awake mice. The relative frequencies themselves were vastly different, however 

(Figure 33 B). In order to compute the signal composition, classification intervals had to be 

adjusted to account for the generally higher peak amplitudes, detected by AQuA (Figure 33 B).  
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6.2.5 Evaluation of EEG analysis 
To assess the correctness and reliability of MSparkles’ spike-train detection and correlated 

EEG/Ca2+ analysis, a proof-of-principle analysis was conducted. Results obtained by spike-

train detection were manually verified, whereas results obtained by correlation analysis were 

additionally compared to previous literature. The analyzed dataset (Figure 34) was recorded 

in a mouse, expressing GCaMP3, with induced epilepsy, based on (Deshpande et al., 2017). 

The dataset contains multiple focal seizures and thus provides ideal conditions to evaluate 

both types of analysis. 

 

6.2.5.1 Spike-train detection 
To evaluate MSparkles’ spike-train detection, automated analysis results of a test dataset 

containing multiple periods of hyperactive EEG activity were manually verified. Automated 

detection parameters were set to a voltage threshold of 300 µV, 2 seconds maximal spike 

Figure 33: Statistical comparison of dynamic events obtained with MSparkles and AQuA. A) Obtained median 
amplitudes differ not only in absolute values, but also in the range of values as well as the projected tendencies. 
Events extracted by MSparkles are detected sooner, compared to AQuA and thus tend to exhibit longer median 
durations. Median areas covered by events are larger in MSparkles. B) Signal compositions of MSparkles and 
AQuA look severely different. However, both, MSparkles and AQuA show similar trends of increased relative 
frequencies of small amplitude and large amplitude transients in awake animals, at the cost of median amplitude 
transients. Classification intervals for MSparkles: [0.5, 1.0), [1.0, 1.5), [1.5, ∞) and AQuA: [0.5, 1.5), [1.5, 2.5), 
[2.5 , ∞) for small, medium and large, respectively. 
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separation and 10 seconds minimum spike train duration. To reduce noise and increase the 

stability of the obtained results, the dataset was pre-processed using a Savitzky-Golay filter. 

To demonstrate spike-train detection, a single channel was analyzed in detail (Figure 34). Four 

spike trains, with an average duration of 52.0818 seconds (± 19.8547 seconds), lasting for a 

total of 208.3275 seconds were detected with an average spiking frequency of 8.8952 Hz (± 

3.2643 Hz) (Figure 34 A). Upon close inspection (Figure 34 B, C) of the analyzed data, one 

can see a few false positively detected spikes. These can be mitigated, by either employing 

additional filtering, or by defining stricter detection rules, than were applied for this proof of 

concept. 

 

6.2.5.2 Analysis of temporal offset by correlating Ca2+ and EEG signals 
Cross-correlation analysis was used to determine temporal differences between periods of 

neuronal activity and astroglial Ca2+ activity (Figure 17). The cross correlation was computed 

between the raw EEG signal, serving as reference signal, and the synchronicity index of the 

Ca2+ events. Based on the maximally computed correlation between these signals, the 

temporal offset was determined by simple subtraction of the corresponding time points. 

MSparkles’ advanced correlation feature (section 6.1.5.3) was used to compute the cross-

correlation of five hyperactive periods. Evaluation of the obtained results suggested that 

strong, synchronized astroglial Ca2+ activity followed neuronal activity, which is in line with 

recent findings (Berdyyeva et al., 2016; Baird-Daniel et al., 2017; Rossi et al., 2018). 

MSparkles detected an average delay of 9.637 seconds (± 0.115 seconds) of the synchronous 

astroglial activity. 
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Figure 34: EEG spike-train analysis.  A) Four spike trains fulfilling the detection criteria were discovered (colored 
bars). B, C) Magnification of the second spike train makes it possible to identify individual spikes, and shows that 
all major amplitude peaks were detected correctly. C) Detailed view of the EEG signal, revealing two false positive 
spikes (arrow). 
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7 Discussion 
This thesis presented three algorithms (PBasE, CoRoDe and KalEve) for detecting and 

analyzing fluorescence fluctuations, evoked by molecular signaling. These algorithms are 

embedded into a configurable processing pipeline and made accessible by an interactive, 

MATLAB-based graphical application, called MSparkles. By providing direct visual feedback, 

MSparkles not only allows to explore fluorescence data, but assists its users in finetuning their 

detection and analysis parameters. Automatic transient classification permits a fine-grained 

analysis of fluorescence transients and helps to identify relative changes in signaling behavior. 

Integrated synchronicity analysis allows to detect and quantify network activity. Moreover, it 

can be used to analyze signaling and activation patterns. By combining fluorescence analysis 

with the analysis of secondary signals such as simultaneously recorded ECoG, a correlation 

analysis can be performed to investigate the interplay of different cell types, such as neuronal 

cells and glial cells during epilepsy. The capabilities of the presented algorithms and MSparkles 

were demonstrated by analyzing astroglial Ca2+ events, visualized using GCaMP3 and 

GCaMP5, neuronal Na+ events, visualized by SBFI-AM and finally, by performing a correlated 

analysis of simultaneously recorded astroglial Ca2+ events and ECoG signals obtained via a 

brain surface electrode. Finally, the results obtained in this thesis were not only compared to 

current literature, but also to results from other analysis applications, applied to the same 

source data. 

 

 Pre-processing 
Data acquired using 2P-LSM is typically degraded by various kinds of noise. Additionally, in 

vivo data often suffer from motion artifacts and image drift. MSparkles’ freely configurable pre-

processing pipeline provides denoising (SURE-LET (Luisier et al., 2007)), image registration, 

linear unmixing as well as a standard set of spatial and temporal filters (Gaussian, median, 

boxcar, etc.). Although the pipeline is freely configurable, by default it is pre-configured with 

spatial denoising, followed by a temporal median filter. These filters are automatically set for 

each new dataset. The default median filter has a window width of three frames. This ensures 

that no transients with respect to the Shannon-Nyquist theorem are deleted, but can eliminate 

small motion artifacts and perturbations that persist only during a single frame, while preserving 

sharp transient edges. For this study, pre-processing was individually adapted per dataset, if 

required. 
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 𝑭𝑭𝟎𝟎-estimation with PBasE 
Accurate estimation of fluorescence levels at basal concentrations of Ca2+ and other important 

messenger molecules (𝐹𝐹0) is crucial in order to extract low amplitude Ca2+ transients such as 

microdomain events, especially in the gliapil (Müller et al., 2021). During in vivo imaging, in 

particular when performing long-term imaging, basal fluorescence levels can vary. These 

variations do not necessarily occur homogeneously throughout the FOV. Therefore, a per-pixel 

estimate of 𝐹𝐹0 is necessary. Balkenius et al. (Balkenius et al., 2015) compared different 

background estimation methods for Ca2+ imaging in insect brains with only one fluorescence 

dye present. They found the most accurate results, by fitting a low-order polynomial to signals 

before and after the occurrence of Ca2+ transients. Recently, an adaptive algorithm to 

automatically estimate 𝐹𝐹0 was introduced and verified by comparing it to a reference signal, 

recorded in a secondary fluorescence channel (Müller et al., 2021). Approaches, based on 

biophysical principles (Balkenius et al., 2015; Müller et al., 2021) allow to reveal the 

fluorescence profile of Ca2+ changes (Müller et al., 2021), and make it possible to detect low 

amplitude events close to noise level. Similar to the algorithm presented in (Balkenius et al., 

2015), the PBasE algorithm performs polynomial fitting to estimate fluorescence levels at basal 

Ca2+ concentrations. In addition, it provides two statistics-based methods to automatically 

exclude fluorescence events from baseline estimation. The Hampel filter allows to closely 

follow slow fluctuations of given signal and is able to exclude relatively short peaks. Thereby, 

slow and long-lasting fluorescence elevations are incorporated into the baseline. This may be 

desirable to compensate for slowly rising basal fluorescence levels e.g. due to thermal 

activation and closely resembles the behavior presented in (Müller et al., 2021). The temporal 

mean filter on the other hand is capable to preserve such slow and long-lasting elevations for 

later analysis, providing extended capabilities, compared to the other two methods. Automatic 

signal stabilization not only prevents high frequency oscillations, but makes this algorithm 

suitable for long-term recordings. 

 

 Automated detection of stationary ROIs 
In combination with PBasE, the CoRoDe algorithm made it possible to detect a plethora of 

ROIs containing very dim events, not easily visible to a human observer and also not 

detectable by most other Ca2+ analysis applications. These ROIs were predominantly located 

in the gliapil, where the majority of Ca2+ transients occur (Bindocci et al., 2017). This can be 

attributed to two reasons. The computed 𝐹𝐹0 baseline allows to effectively remove slow 

fluctuations in background fluorescence and thus to extract subtle transients, otherwise 

obscured by these fluctuations. In addition, the CoRoDe algorithm is capable to extract 

fluorescently active regions more precisely than the commonly used watershed segmentation 
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(Figure 22), permitting subsequent ROI integration to more accurately extract fluorescence 

transients. Using the fluorescence range for ROI extraction has the advantage to only project 

actual changes in ∆𝐹𝐹 𝐹𝐹0⁄ , in contrast to using the original image stack, maximum or summed 

intensity projections which do not necessarily correspond to fluorescence events and tend to 

suppress low amplitude transients (Figure 36).  

Regional growth is strongly governed by the correlation threshold. A crucial step hereby is to 

set an adequate parameter for the correlation threshold in order to obtain reliable results. This 

can be done via an interactive configuration dialog, provided by MSparkles. The range 

threshold can be used as a lower quality criterion to ensure a minimal change in ∆𝐹𝐹 𝐹𝐹0⁄ . This 

allows to generate ROIs closely capturing the actual extent of fluorescence events, by requiring 

participating pixels to show a minimal level of temporal similarity. It is important to note, that a 

too high correlation threshold will tend to result in ROIs that are too small, in turn overestimating 

transient amplitudes. 

If multiple events overlap during the recorded time period, these events might not be resolved 

properly and in some cases might not be detected. This is a general shortcoming of projection-

based ROI detectors.  

 

 Automated detection of dynamic events 
The KalEve algorithm is based on a Kalman filter, and thus provides robust tracking with 

respect to image distortions such as motion artefacts. Due to its adjustable sensitivity, this 

algorithm can detect a large number of active regions, not detectable by other applications. 

Results obtained with this algorithm agree with recent literature (Thrane et al., 2012a; 

Bojarskaite et al., 2020; Müller et al., 2021), but require more careful statistical analysis, mainly 

due to the sensitivity of the of the algorithm and its ability to detect events close to baseline 

fluorescence. In this study, this resulted in relatively low median amplitudes in both 

anesthetized and awake anmials. However, analysing the signal composition revealed the 

relative changes between both conditions, visible in the group of strong signals ( ∆𝐹𝐹 𝐹𝐹0 > 1.5)⁄ . 

 

 Automated analysis of Ca2+ transients 
Analyzing Ca2+ transients in awake and anesthetized mice showed an increased ROI count 

(Figure 24 A, Figure 26 A), ROI area (Figure 24 B, Figure 26 B) as well as transients per ROI 

(Figure 24 C,  C) in awake animals. Further, awake animals exhibited about two times 

(GCaMP3, Figure 24 J) and three times (GCaMP5, Figure 26 J) as many Ca2+ transients, as 

well as an increased relative frequency of potentially higher peak amplitudes (Figure 24 E, J 

Figure 26 E, J). This overall increased Ca2+ activity in awake animals is in line with previous 
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studies (Thrane et al., 2012a; Bojarskaite et al., 2020; Müller et al., 2021). No difference in the 

duration of Ca2+ transients was detected in awake animals, using stationary ROI analysis 

(Figure 24 F, Figure 26 F). However, analysing dynamic events showed a decreased transient 

duration in awake animals (Thrane et al., 2012b; Bojarskaite et al., 2020; Müller et al., 2021). 

In both cases, some animals displayed a prolonged transient duration, which can be attributed 

to the presence of large and long lasting Ca2+ waves, exclusively occurring in awake animals.  

Classifying Ca2+ transients based on their peak amplitude allowed to calculate the signal-

composition, i.e. the relative frequency of transient amplitude peaks within a defined interval. 

This facilitates the detection of changes in the relative incidence of the respective classes, 

compared to simply analyzing peak amplitudes. Visualizing the signal composition shows not 

only the overall reduction of Ca2+ event activity, but further illustrates that this reduction 

happens largely on the cost of high amplitude transients, which is line with previous work 

(Thrane et al., 2012a; Müller et al., 2021). 

 

 Synchronous Ca2+ events occur during wakefulness 
To detect synchronous event activity, a threshold of 50% simultaneously active ROIs was 

defined. This is a rather strict criterium, considering up to 220 detected ROIs per FOV in this 

study. A lower detection threshold of 30% - 40% might be advisable. Synchronous activity, 

was detected exclusively during wakefulness, which is in line with previous literature (Thrane 

et al., 2012a). Most of the synchronous activity can directly be attributed to animal motion, 

clearly visible in the original image stacks as motion artefacts. In addition, detailed investigation 

of multiple, consecutive synchronous events showed that these events are highly diverse 

(Figure 25). Each of the detected events showed a different activation order, and no detectable 

activation pattern. However, with each reoccurring synchronous event, the number of 

participating astrocytes decreased. One has to keep in mind though, that only one such event 

series occurred during this study and more data are required. 

 

 Visualization 
MSparkles’ built-in visualizations help the data analyst to quickly grasp details of intricate 

datasets. Its specialized tools for graph and video-export help to easily generate powerful 

visualizations (Figure 19, Figure 20, Figure 25, Figure 37). New and enhanced visualization 

methods thereby help to present and understand obtained results. Trace-plots connect the 

fluorescence profile of one or multiple ROIs with their location within the FOV. They further 

help to visualize the complex activation sequence of synchronous events (Figure 25, Figure 

37 B, C).Transient-duration heatmaps are a new, cleaned-up variant of kymographs, only 
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showing detected transients with their duration, color-coded by their classified transient 

amplitude. Synchronicity analysis not only allows to identify epochs of highly synchronous 

signaling behavior, utilizing synchronicity plots, but also the activation-sequence of the affected 

ROIs. Visualizing the signal composition as relative frequency of classified transients is a 

simple, yet powerful visualization method, illustrating changes in signalling behaviour, when 

comparing different conditions. 

 

 Comparison with other software 
MSparkles was compared to three Ca2+ analysis applications. All of the tested applications 

detected similar overall trends (Figure 31 A, B, Table 19). Surprisingly, the individual results 

per FOV were diverse (Figure 31 A, B, Table 15, Table 16, Table 17). Investigating ROIs with 

high resemblance across all applications (Figure 29, Figure 38) in combination with their 

corresponding fluorescence profiles provided a possible answer for this diversity. Not only did 

the number and size of detected ROIs differ substantially, but event segmentation was also 

considerably different across applications. These factors have a direct effect on the number of 

extracted transients and more importantly on the amplitudes of fluorescence profiles, directly 

affecting analysis results (Figure 22). Another critical factor for the analysis of fluorescence 

events is background correction. If performed improperly, this can result in persistent trends 

within fluorescence profiles and even in parts of the integrated signal being negative. ROIs 

subjected to further investigation integrated with CHIPS and CaSCaDe contained a secondary 

prominent transient (Figure 29 A, B). Further analysis revealed this peak originating from the 

way fluorescence events were segmented. Only AQuA and MSparkles were able to resolve 

these ROIs properly (Figure 29). Despite AQuA performing dynamic event analysis, 

MSparkles’ CoRoDe algorithm, generating stationary ROIs, was able to extract nearly identical 

fluorescence profiles, with the difference being that profiles extracted by MSparkles’ appear 

smoother (Figure 29 A, B). MSparkles is able to detect substantially more events exhibiting a 

low peak amplitude < 1.0 ∆𝐹𝐹 𝐹𝐹0⁄ , compared to the other applications. This has an considerable 

effect on the statistical evaluation of transient peak amplitudes. For this reason, transients are 

classified by their respective amplitude and further analysed by their composition (relative 

frequencies of classes). Transient durations computed with CaSCaDe were 2x to 3x longer 

than reported by any other application (Figure 31 B). Transient amplitude peaks reported by 

AQuA tend to exhibit a higher amplitude compared to any other analysis (Figure 31 A). 

However, AQuA reports fluorescence values based on local maxima, in contrast to averaged 

values reported by the other applications.  

AQuA and MSparkles were the only applications providing a full graphical user interface, 

granting also non-programming experts access to advanced fluorescence analysis. MSparkles 
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takes this concept even further, providing specialized user interfaces with direct visual 

feedback (Figure 35). Additionally, it interactively connects ROIs and analysis results, allowing 

to easily verify the quality and the plausibility of obtained results in every intermediate step of 

the processing pipeline. As an effort to work towards a common standard within the Ca2+ 

analysis community we provide extensive definitions and explanations of our terminology and 

computed event properties (Figure 13, Table 8, Table 9, Table 10). 

 

 EEG analysis 
Qualitative and quantitative EEG analysis is essential for the analysis of neurodegenerative 

diseases. MSparkles tightly integrates the analysis of EEG signals, recorded using brain 

surface electrodes (Schweigmann et al., 2021) with the analysis of fluorescence signals.  

Spike-train analysis is a simple, yet important analysis of EEG recordings, since spike-trains 

are important indicators of epileptiform activity and correspond to epileptic seizures. They allow 

to detect periods of hyper-synchronized neuronal activity as well as to quantitatively measure 

these periods. Visualizing the relative power spectral density across wave bands allows to 

identify shifts in relative power distribution during a period of hyper-synchronized activity. 

The synchronicity index introduced in section 6.1.4.2 shows a prominent peak during strong, 

synchronized Ca2+ activity. Similarly, one can observe a peak in EEG power in the event of an 

epileptic seizure of TLE, right before it is abruptly down regulated. Cross-correlation is used to 

determine the temporal difference between both signals (Figure 17 B). In contrast to manually 

measuring the temporal displacement between synchronicity peaks of both cell types, cross-

correlation analysis is robustness against noise, human bias and other perturbations, while still 

being able to produce reliable results. 

Finding the cross-correlation between Ca2+ events and corresponding EEG spiking activity 

(Figure 17 B) can be an important step towards understanding neuropathological diseases. In 

the scope of epilepsy, this can help identify the role if astroglial Ca2+ events during epileptic 

seizures.  

 

 MSparkles is a versatile analysis tool 
MSparkles is a MATLAB-based, application designed to analyze fluorescence changes evoked 

by molecular signalling. Its interactive and configurable processing pipeline allowed to create 

optimized analyses for each dataset. Besides analyzing Ca2+ obtained in vivo from GCaMP3 

and GCaMP5 reporter mice, ratiometric Na+ signals recorded in acute hippocampal slices were 

successfully analyzed. Each of these use-cases poses different challenges, such as varying 
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signal-to-noise ratios, vastly different fluorescence levels or motion artefacts. In particular, the 

ratiometric Na+ signals exhibited about 100x lower amplitudes than Ca2+ signals obtained in 

GCaMP3 animals. To achieve this, three novel algorithms were introduced. PBasE for adaptive 

background estimation, CoRoDe for the detection of fluorescently active stationary regions, 

and KalEve to robustly detect and track dynamic fluorescence events. These algorithms made 

it possible to identify a large number of ROIs not detected by other applications which were 

predominantly located in the gliapil. From these regions, MSparkles was able to extract close-

to-noise Ca2+ transients.  

Unique features, like differential ROI analysis, multi-threshold transient classification and the 

analysis of signal composition allowed to compare not only relative changes within transient 

amplitude classes, but also signaling behavior in somatic regions and the gliapil. The 

automated analysis of synchronous Ca2+ activity allowed to identify the diversity of consecutive 

network activity. 

Ca2+ analysis is tightly integrated with EEG analysis and not only allows to identify periods of 

hyper synchronicity, but the correlated analysis of synchronous Ca2+ activity with EEG signals. 

Finally, MSparkles provides a full user-interface and requires no programming skills. By 

automating cumbersome and error-prone tasks like metadata management, parameter 

documentation and result export, it allows scientists to focus on the analysis of their data. 



Outlook & conclusions 

 
89 

8 Outlook & conclusions 
This thesis presented three algorithms specifically developed to analyze fluorescence 

fluctuations originating from molecular signalling. PBasE, CoRoDe and KalEve operate 

independent of the used fluorescence dye. The underlying model of a fluorescence signal 

provides a high level of abstraction, making these algorithms suitable to analyze arbitrary 

molecular signals originating from any cell type. This was demonstrated not only by analyzing 

signals recorded with different fluorophores, but also originating from different cell types in 

multiple brain regions. In addition, a metric to compute the synchronicity of fluorescence events 

was introduced and used to not only correlate fluorescence events with EEG recordings, but 

to measure the delay between electrical neuronal signals and astroglial Ca2+ events during an 

epileptic seizure. These algorithms are encapsulated in an easy-to-use application, called 

MSparkles.  

The unique and interactive connection of MSparkles’ algorithms with its graphical user 

interface allow to create optimized analyzes and do not require any programming skills. Being 

able to configure multiple analyses per dataset makes it possible to differentially analyze 

astroglial somata and the gliapil and thus to compare their signaling behavior. 

The next steps in the development of MSparkles include: 

• Improved analysis of dynamic events, allowing to analyze the direction of propagation 

and the shape of events in cell networks and on a single-cell level. 

• Semi-automated tissue annotation for contextual analysis of signals and their 

propagation. 

• Cell network analysis using graph theory with implicit modeling of the gliapil in 

combination with boundary interfaces of neighboring cells. 

• Advanced, machine learning based analysis of EEG recordings to automatically detect 

and classify phenomena such as post-ictal depression and specific types of seizures. 

• Encapsulate the source code into a modular software library, usable independent of 

the UI. 

• Implement a software module to analyze cultured cells, capable of analysing multiwell 

plates and automatically classify cell fate. 
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10  Appendix 

MSparkles’ user-interface 

 

Figure 35: MSparkles user interface.  A) The main window with its hierarchical data management (left) the 
currently loaded dataset with detected ROIs (center) and analyzed fluorescence profiles (bottom). Moving the 
mouse across the loaded dataset, displays the original and the normalized fluorescence profile (top-right) of the 
pixel currently underneath the mouse pointer. B) Configuration dialogs for pre-processing and C) 𝐹𝐹0estimation with 
interactive preview. Moving the red crosshair previews effects of the current parameter set to the pixel at the cross-
section. D) Configuration of ROI detection displays the fluorescence range image next to a preview of detected 
ROIs, based on the current detector settings. Export dialogs for trace-plots (E) and heatmaps (F) provide a high 
level of customization and preview the resulting figures for visual verification. 
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Comparison of intensity projections 

 

Figure 36: Comparison of intensity projections. Maximum intensity projections (A, B) and summed intensity 
projections (C, D) of the original dataset 𝐹𝐹 and ∆𝐹𝐹 𝐹𝐹0⁄ , respectively. Projections based on 𝐹𝐹 preserve unwanted cell 
structures. Maximum projections cannot guarantee to project actual signals, while summed projections suppress 
signals with small amplitude and low frequencies. Fluorescence range projections of ∆𝐹𝐹 𝐹𝐹0⁄  (E) on the other hand 
are capable to reflect the entirety of fluorescence changes. Although maximum projections and range projections 
have strong visual resemblance, the difference image (F) illustrates areas in which the fluorescence range projection 
was able to capture stronger differences. 
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Table 8: Definition of terminology. Deinition of terminilogy and quantities used in MSparkles and throughout this 
thesis. 

Property Description 
Field of view (FOV) Typically, a quadratic or rectangular area, recorded by a microscope or camera 

system. FOVs are usually observed and recorded for a defined period of time. 
Signal Amplitude measurement of a physical quantity, recorded within a finite time 

interval at a defined sampling rate. Signals can be 1-dimensional or multi-
dimensional (e.g. images). 

Amplitude (Maximum) elevation of a signal above zero. 
Prominence Measures how much a peak stands out with respect to other peaks or a non-

zero reference level immediately before or after the peak. Not necessarily 
identical with amplitude. 

Event Occurrence of a temporal physiological phenomenon (e.g. local increase of 
intracellular [Ca2+], occupying a finite area or volume. 

Wave Special type of event with the ability to propagate through space and change 
its morphology. 

Transient Integrated, 1D representation of an event (ROI trace), identifyable as amplitude 
increase used for signal analysis (e.g. peak amplitude and duration 
measurements). 

𝑭𝑭𝒐𝒐𝒐𝒐𝒐𝒐 Original, raw dataset or signal obtained from microscope. 
𝑭𝑭 Dataset after pre-processing. 
𝑭𝑭𝟎𝟎 Fluorescence levels at basal concentrations of Ca2+ or other messenger 

molecules. 
∆𝑭𝑭 = 𝑭𝑭 −  𝑭𝑭𝟎𝟎 Background-subtracted signal. 
∆𝑭𝑭
𝑭𝑭𝟎𝟎

 Background subtracted, normalized signal. This signal is considered to be of 
biophysical relevance and quasi identical to a normalized signal obtained with 
a secondary reference dye.  

Stationary event Non-migrating fluorescent event, exhibiting little to no change in shape and 
spatial extent. This might be an inherent property of the event itself, or due to 
limitations of the recording technology. 

Dynamic event Fluorescent event, able tochange its shape and location, also termed “wave”. 
Dynamic events can occur within a single cell or across multiple cells. 

ROI General term for a hand-drawn or computer-generated area of particular 
interest e.g. representing the extent and position of a fluorescent event. 

Pixel trace Entire recorded time-span of a pixel. 
ROI trace Signal, resulting from ROI integration. For each ROI, the average value of  

∆𝐹𝐹 𝐹𝐹0⁄  is computed for each frame.  
Height reference By convention typically measured as full width at half-maximum (FWHM). 

However, MSparkles also has the options to measure the duration at 25% or 
10% of maximum. 

Start / end of 
transient 

Intersection of height reference with the rising and falling edge of a transient 
curve. 

Rise time Time delta on the rising edge between start of a transient and 90% of its peak 
amplitude. 

Decay time Time delta on the falling edge between 90% of the peak amplitude and end of 
transient. 

Transient Duration Time span between the start and end of a transient. 
Peak-to-peak time Time interval between two consecutive transient peaks. 
Start-to-start time Time interval between the start of two consecutive transients. 
Inter-transient time Time interval between two consecutive transients. 
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Table 9: Event properties in MSparkles. Definition of properties of Ca2+ transients and dynamic events, variable 
names and exported quantities measured by MSparkles. 

Property Description 
SigTAvg Average ∆𝐹𝐹 𝐹𝐹0⁄  per ROI per timepoint. 
SigTStd Standard deviation of ∆𝐹𝐹 𝐹𝐹0⁄  per ROI per timepoint. 
SigTMax Peak ∆𝐹𝐹 𝐹𝐹0⁄  per ROI. 
SigTSum Summed ∆𝐹𝐹 𝐹𝐹0⁄  for the entire duration of a detected signal (integral under 

curve). 
SigMax Peak ∆𝐹𝐹 𝐹𝐹0⁄  per event. 
SigAvg Average ∆𝐹𝐹 𝐹𝐹0⁄  per event. 
SigSum Summed ∆𝐹𝐹 𝐹𝐹0⁄  per event. 
Prominence Signal Prominence of ∆𝐹𝐹 𝐹𝐹0⁄  per event. 
PxIntersectPoints Intersection points at x% of the peak value with the signal curve. 50% = Full 

width at half-maximum (FWHM). Intersection “left” of the peak identifies 
signal start. Intersection “right” of the peak identifies signal end. 

P90IntersectPoints Intersection points at 90% of peak value “left” and “right” of the peak. 
Areas Area per event (ROI) per timepoint. (constant for stationary ROIs). 
AreaCenter Area center per event (ROI) per timepoint. 
StartTime Time (in seconds) of signal onset per ROI per signal. Depends on the 

percentage of the peak value at which PxIntersectPoints is determined. 
StartFrame The frame number of signal start per ROI per signal. See StartTime. 
PeakTime Time (in seconds) of signal peak in ∆𝐹𝐹 𝐹𝐹0⁄  PeakTime per ROI per signal. 
PeakFrame Frame of signal peak per event (ROI) per signal. 
RiseTime ∆𝑡𝑡 between StartTime and the time point “left” of the peak in 

P90IntersectPoints per ROI per signal. 
DecayTime ∆𝑡𝑡 between the time point “right” of the peak in P90IntersectPoints and 

(StartTime + Duration) per ROI per signal. 
Duration ∆𝑡𝑡 between PxIntersectPoints in seconds. 
DurationF ∆𝑡𝑡 between PxIntersectPoints in # of frames. 
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Table 10: Properties of Ca2+ transients extracted from stationary ROI analysis.  Definition of properties of Ca2+ 
transients, variable names and exported quantities measured by MSparkles. 

Property Description 
StartToStartTime ∆𝑡𝑡 between the starting timepoints of two consecutive signals per 

ROI. 
PeakToPeakTime ∆𝑡𝑡 between the peak timepoints of two consecutive signals per ROI. 
InterSignalTime ∆𝑡𝑡 between the end of one and the start of the next signal per ROI. 
SigMeanFreq Average signaling frequency per ROI as 1

𝜋𝜋𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
 per ROI.  

AvgArea Average area per ROI. 
MaxArea Maximum area per ROI. 
AvgDuration Average signal duration per ROI. 
AvgDurationStd Standard deviation of the signal duration per ROI. 
PeakCount Number of peaks per ROI. 
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Graphs and visualizations generated by MSparkles 

 

Figure 37: Data visualization. MSparkles features a variety of visualization methods for displaying image datasets 
(A). These include translucent overlaying of detected ROIs, visualization of temporal derivatives to illustrate 
fluorescence increase and decrease in a so-called hot-and-cold style, as well as various color maps. Colormaps 
cannot only be applied to the original data, but also to computed data, such as 𝐹𝐹0, ∆𝐹𝐹 or ∆𝐹𝐹 𝐹𝐹0⁄ . Heatmaps and 
signal-duration heatmaps (B) provide a dense and compact overview over an entire dataset. Both kinds of heatmap 
have an attached synchronicity plot at their bottom to explicitly illustrate periods of highly synchronous signaling 
events. Customizable trace-plots (C) visualize not only the signals occurring within one or multiple ROIs, but also 
highlight the spatial relation of a signal within the recorded field of view. Finally, result-plots (D) provide e.g. a 
statistical overview about the classified distributions of detected signal peaks and durations. Scatterplots 
additionally highlight the relation between signal peak and duration. 
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Extended comparison of ROI detectors 

 

  

Figure 38: Detailed comparison of ROI detectors. Each column shows detected ROIs obtained with a 
specific Ca2+ analysis tool. Each row is dedicated to a single FOV. Highlighted regions point out differences 
in detector sensitivity as well as region segmentation, potentially resulting in ambiguous measurements of 
ROI sizes and thus differences in ROI integration and resulting peak amplitudes. CHIPS tends to extract 
large and smooth regions. CaSCaDe extracts regions with a high degree of segmentation. Regions extracted 
by AQuA tend to be rough and contain holes. MSparkles is able to extract regions with varying smoothness, 
based on the temporal correlation of pixels. Due to the interplay of the PBasE and CoRoDe algorithms, 
MSparkles is able to detect active regions with localized and dim fluorescence events. Scale bar 50 µm. 
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Table 11: P-values between all peak amplitudes by analysis tool during anesthesia.  P-values indicate 
statistically significant differences between the results obtained by different analysis applications analysing 
transients of anesthetized mice. Graphical data shown in Figure 31. 

 
CHIPS CaSCaDe AQuA MSparkles 

CHIPS  5.683*10-3 < 1*10-15 3.741*10-5 
CaSCaDe 5.683*10-3  >0.9999 3.840*10-5 
AQuA < 1*10-15 >0.9999  < 1*10-15 
MSparkles 3.741*10-5 3.84*10-5 < 1*10-15  

 

Table 12: P-values between all peak amplitudes by analysis tool in awake state.  P-values indicate statistically 
significant differences between the results obtained by different analysis applications analysing transients of awake 
mice. Graphical data shown in Figure 31. 

 
CHIPS CaSCaDe AQuA MSparkles 

CHIPS  < 1*10-15 < 1*10-15 6.206*10-12 
CaSCaDe < 1*10-15  0.2732 < 1*10-15 
AQuA < 1*10-15 0.2732  < 1*10-15 
MSparkles 6.206*10-12 < 1*10-15 < 1*10-15  

 

Table 13: P-values between all measured signal durations by analysis tool during anesthesia.  P-values 
indicate statistically significant differences between the results obtained by different analysis applications analysing 
transients of anesthetized mice. Graphical data shown in Figure 31. 

 
CHIPS CaSCaDe AQuA MSparkles 

CHIPS  0.0377 1.5643*10-4 8.2352*10-9 
CaSCaDe 0.0377  2.5638*10-5 7.1187*10-5 
AQuA 1.5643*10-4 2.5639*10-5  >0.9999 
MSparkles 8.2352*10-9 7.1187*10-5 >0.9999  

 

Table 14: P-values between all measured signal durations by analysis tool in awake state.  P-values indicate 
statistically significant differences between the results obtained by different analysis applications analysing 
transients of awake mice. Graphical data shown in Figure 31. 

 
CHIPS CaSCaDe AQuA MSparkles 

CHIPS  < 1*10-15 7.8676*10-9 1.0546*10-4 
CaSCaDe < 1*10-15 < 1*10-15 < 1*10-15 < 1*10-15 
AQuA 7.8676*10-9 < 1*10-15  0.1712 
MSparkles 1.0546*10-4 < 1*10-15 0.1712  
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Table 15: Comparison of median peak amplitudes. Median peak amplitude per field of view, extracted by Ca2+ 
analysis applications. 

Peak 

amplitudes 
FOV 1 FOV 2 FOV 3 

Anesthetized Awake Anesthetized Awake Anesthetized Awake 
CHIPS 1.086 1.564 0.551 1.215 0.786 1.646 

CaSCaDe 1.952 1.449 1.699 2.227 2.406 2.916 

AQuA 2.096 0.849 2.827 3.079 2.363 4.157 

MSparkles 0.565 0.595 0.696 0.845 0.911 1.851 

 

 

Table 16: Comparison of median transient durations. Transient duration extracted by Ca2+ analysis applications. 

transient 

durations 
FOV 1 FOV 2 FOV 3 

Anesthetized Awake Anesthetized Awake Anesthetized Awake 
CHIPS 4.12 3.99 4.406 4.25 4.01 4.40 

CaSCaDe 8.41 11.88 15.18 11.22 21.95 34.49 

AQuA 1.98 1.32 2.7 2.10 2.40 5.55 

MSparkles 2.80 2.85 3.599 4.02 4.243 22.51 

 

 

Table 17: Comparison of detected ROIs. Detected ROIs, false negative ROIs and signal counts. False negatives 
were assessed by careful manual evaluation in ImageJ for each application. 

#Rois / #fn 

(#sig) 
FOV 1 FOV 2 FOV 3 

Anesthetized Awake Anesthetized Awake Anesthetized Awake 
CHIPS 13/2 (32) 43/7 (70) 47/3 (139) 54/18 (175) 28/4 (78) 80/23 (265) 

CaSCaDe 13/10 (30) 26/23 (147) 30/14 (50) 127/14 (588) 10/17 (13) 185/11 (534) 

AQuA 11/11 (11) 58/12 (58) 24/17 (24) 91/24 (91) 7/20 (7) 306/14 (306) 

MSparkles 85/6 (121) 105/12 (303) 71/8 (119) 121/14 (266) 29/8 (33) 114/7 (138) 

 

 

Table 18: Mean ROI areas per FOV as detected by applications. Mean areas of detected ROIS wich 
corresponding standard deviation, per FOV and condition. 

ROI area 

(std. dev.) 

FOV 1 FOV 2 FOV 3 

Anesthetized Awake Anesthetized Anesthetized Awake Anesthetized 

CHIPS 80.20 (102.85) 39.05 (38.08) 75.72 (103.68) 105.99 (442.85) 45.35 (38.74) 83.20 (91.35) 

CaSCaDe 24.42 (19.15) 16.40 (14.02) 24.36 (14.37) 24.07 (15.43) 15.73 (10.22) 28.26 (22.86) 

AQuA 17.78 (21.24) 73.97 (49.09) 17.38 (10.53) 24.08 (103.10) 14.54 (4.48) 26.89 (37.09) 

MSparkles 16.67 (12.35) 14.00 (5.38) 26.41 (23.65) 48.36 (145.54) 19.95 (11.07) 218.84 (132.37) 
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Table 19:Comparison of signal kinetics.Overall median peak amplitude and transient duration, as detected by 
the tested Ca2+ analysis applications. 

 Peak amplitude Signal duration 

Anesthetized Awake Anesthetized Awake 
CHIPS 0.768 1.380 4.264 4.255 

CaSCaDe 1.846 2.799 14.69 26.070 

AQuA 2.498 3.694 2.355 3.600 

MSparkles 0.610 0.768 3.133 3.666 

 

 

Table 20: Maximum synchronicity of GCaMP3 animals in percent. FOVs exhibiting a high synchronous activity 
above 50% are marked green. 

 2821-

FOV1 

2821-

FOV2 

2821-

FOV3 

2821-

FOV3_2 

2823-

FOV1 

2823-

FOV2 

2823-

FOV3 

2823-

FOV3_2 

4053-

FOV1 

4053-

FOV2 

4053-

FOV3 

4053-

FOV4 

GCaMP3 

anesthetized 
19.79 9.468 11.59  11.2 8.393 8.333 8.473 13.56 15.47 11 16.29 

GCaMP3 

Awake 
7.748 15.15 80.39 71.2 13.18 9.17 9.691 98.61 37.52 36.73 96.78 35.86 

 

 

Table 21: Maximum synchronicity of GCaMP5 animals in percent. FOVs exhibiting a high synchronous activity 
above 50% are marked green. FOVs exceeding the threshold due to low ROI counts are marked red. 

 0521 

FOV1 

0521 

FOV2 

0521 

FOV4 

0532 

FOV1 

0532 

FOV2 

0532 

FOV3 

0532 

FOV4 

0531 

FOV1 

0531 

FOV2 

0531 

FOV3 

0531 

FOV4 

GCaMP5 

anesthetized 
40.76 16.23 25.38 17.46 54.76 24.81 23.38 15.34 100 16.63 17.98 

GCaMP5 

awake 
98.63 17.78 26.69 72.06 59.93 14.29 15.65 100 46.94 21.39 51.73 
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