4 research outputs found

    Audio source separation using hierarchical phase-invariant models

    Get PDF
    2009 ISCA Tutorial and Research Workshop on Non-linear Speech Processing (NOLISP)International audienceAudio source separation consists of analyzing a given audio recording so as to estimate the signal produced by each sound source for listening or information retrieval purposes. In the last five years, algorithms based on hierarchical phase-invariant models such as single or multichannel hidden Markov models (HMMs) or nonnegative matrix factorization (NMF) have become popular. In this paper, we provide an overview of these models and discuss their advantages compared to established algorithms such as nongaussianity-based frequency-domain independent component analysis (FDICA) and sparse component analysis (SCA) for the separation of complex mixtures involving many sources or reverberation.We argue how hierarchical phase-invariant modeling could form the basis of future modular source separation systems

    Binaural Source Separation with Convolutional Neural Networks

    Get PDF
    This work is a study on source separation techniques for binaural music mixtures. The chosen framework uses a Convolutional Neural Network (CNN) to estimate time-frequency soft masks. This masks are used to extract the different sources from the original two-channel mixture signal. Its baseline single-channel architecture performed state-of-the-art results on monaural music mixtures under low-latency conditions. It has been extended to perform separation in two-channel signals, being the first two-channel CNN joint estimation architecture. This means that filters are learned for each source by taking in account both channels information. Furthermore, a specific binaural condition is included during training stage. It uses Interaural Level Difference (ILD) information to improve spatial images of extracted sources. Concurrently, we present a novel tool to create binaural scenes for testing purposes. Multiple binaural scenes are rendered from a music dataset of four instruments (voice, drums, bass and others). The CNN framework have been tested for these binaural scenes and compared with monaural and stereo results. The system showed a great amount of adaptability and good separation results in all the scenarios. These results are used to evaluate spatial information impact on separation performance
    corecore