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Abstract

This paper proposes a new method to enhance the performance of non-negative tensor factorization (NTF), one of
the most prevalent source separation techniques nowadays. The enhancement is mainly achieved by introducing
weights on bin-wise NTF cost functions, which differentiates NTF target components from other components so that
the target should be approximated more precisely than others. Assuming sources are distributed sparsely in a 2-D
sound field, the target components approximating a target source are exclusively selected by a user, or from
accompanying images by means of providing a spatial cue to an NTF framework. The spatial cue is given in a similar
format to the well-known binaural feature, inter-channel level difference (IID). This helps incorporate the spatial cue
into the system, since the similar features of this format can be easily calculated from every spectrogram bin. The
weighting functions are designed taking into account the distance between the spatial cue and the calculated
features. Namely, the largest values are assigned to the spectrogram bins where the features present the highest
similarity to the spatial cue, and the value decreases in proportion to the distance between them. The method is
evaluated in terms of separation quality, comparing the proposed algorithm to the conventional NTF technique,
PARAFAC-NTF, as well as other source separation techniques. The evaluation results measured by the metric
signal-to-distortion ratio (SDR), signal-to-interference ratio (SIR), and signal-to-artifact ratio (SAR) demonstrate the
effectiveness of the new method, improved primarily by the weighting function and the initialization based on IID,
while demonstrating a decrease in computational costs, a significant problem with NTF.

1 Introduction
In the last few decades, non-negative matrix factorization
(NMF) has become one of the most prevalent techniques
to tackle the underdetermined source separation problem
where the number of sources is greater than or equal to
the number of observations. NMF is based on the idea
that a mixture is a composite of a number of object basis
elements, each of which represents an underlying charac-
teristic of the sources. Estimation is carried out by simple
matrix factorization, with all the elements being non-
negative. Cost function for NMF estimation has long been
investigated by several researchers [1-3]. In particular, the
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Itakura-Saito divergence is known to be an appropriate
cost function for approximation of audio spectra due to
its scale-invariant nature. To complete NMF-based source
separation, clustering of the decomposed basis elements
follows the factorization to properly classify them to cor-
responding sources. A large number of related techniques
have been developed so far [4-6].
Taking advantage of prior information for the purpose

of enhancing the performance of NMF has been widely
investigated. Smaragdis et al. have attempted to make use
of a user-guided humming for the extraction of melodies
in a mixture [7]. Diknen et al. investigated the Bayesian
NMF model assigning different prior distributions for
tonal and percussive signals [8]. Ewert et al. presented
an extended approach that uses additional score informa-
tion to guide the NMF process [9]. Although a number
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of researches related to the prior knowledge of time-
frequency features have been introduced, it is not yet
common to incorporate a spatial feature (hereafter, spatial
cue) in NMF due to its algorithm framework. Since NMF
which separates a single-channel signal does not produce
any spatial information during the separation process,
it has been difficult to associate a spatial cue until the
emergence of multichannel NMF.
Non-negative tensor factorization (NTF), known as one

of the multichannel NMF techniques, extends the NMF
idea to tensors. An n-way tensor is a generalization of the
mathematical concepts of scalar, vector, and matrix (e.g., a
two-way tensor is a matrix). Specifically, a three-way ten-
sor, which can be regarded as a collection of multichannel
spectrograms, is being investigated for use in NTF [10-12].
Extension to the third dimension provides another matrix
that describes the energy distribution of each basis com-
ponent on every channel, which can also be regarded
as spatial information. This technique enables the NMF
approach to be adapted to easily accept a spatial cue [13].
This paper proposes a promising method to enhance

NTF performance, taking advantage of a spatial cue given
by users or from accompanying images. The enhancement
is mainly achieved by introducing weights on bin-wise
NTF cost functions, which differentiates a target compo-
nent from other components. Since a spatial cue indicates
which bins of the tensor spectrogram are important, it
is possible to improve the quality of an approximation
to the specific bins of the tensor by giving more weights to
bins where the target is likely to exist and less weights to
the others. Virtanen et al. proposed perceptually weighted
NMF that provides perceptually motivated weights for
each critical band in each frame in accordance with the
loudness perception of the human auditory system [14].
Nevertheless, to our knowledge, no research regarding
NMF that incorporates the weighting function for spa-
tially focusing on target component estimation has been
proposed. The evaluation results show that this method
is advantageous in terms of separation quality over con-
ventional PARAFAC-NTF and other source separation
techniques such as the Degenerate Unmixing Estimation
Technique (DUET) [15-17].
It should be noted that apart fromNTF, there exist other

approaches to address the source separation problem in
multichannel audio. Especially, the algorithms based on
local Gaussian models [18] using the spatial covariance
matrix (SCM) for encoding spatial positions of source
signals [19] have been shown to outperform the simpler
NTF approach that will be used in the following. A rank-
1 convolutive model assuming target sources existed in a
non-reverberant environment has been proposed in [20].
Full-rank unconstrained model with NMF was further
introduced by Arberet et al. to account for reverber-
ant conditions [21,22]. A modular framework for these

algorithms has been presented in [23,24]. These models
present a significant improvement in terms of separation
quality as compared to the NTF model. A problem with
thesemodels that use the expectation-maximization (EM)
algorithm for optimization is the significant increase in
computational complexity when compared to the NTF
model. Sawada et al. have addressed this problemby intro-
ducingmultiplicative update rules in place of the EM algo-
rithm, but still their optimization requires significantly
more computation time compared to single-channel NMF
[25]. While we believe that the proposed weighting
scheme can improve performance with other existing
multichannel factorization algorithms, we selected the
NTF algorithm for investigation into the effectiveness of
our weighting scheme to limit the computational costs.
This paper is organized as follows: Section 2 briefly

explains NTF-based source separation. Section 3 des-
cribes a possible incorporation of spatial cue into NTF.
Section 4 discusses the proposedmethod. Section 5 shows
evaluation results on quality and computational costs.
Finally, Section 6 presents some concluding remarks.

2 NTF-based source separation
2.1 Non-negative tensor factorization
A multichannel audio signal that has been transformed
into a set of spectrograms (one for each of the J channels)
can be regarded as a three-way tensor V and approximated
by V̂. V̂ is created as a superposition of P feature ten-
sors, each produced by means of an outer product of three
vectors qp, wp, and hp, respectively representing the chan-
nel, frequency, and time factors of the feature tensor. To
adapt the NTF representation V̂ to the target tensor spec-
trogram V, the following optimization problem is solved:

min
Q,W,H

∑
j,k,l

gjkldβ(vjkl|v̂jkl) + α(H) s.t. Q,W,H ≥ 0 ,

(1)

with

v̂jkl =
∑
p

qjpwkphlp .

Here the matrices Q, W, and H are assembled from the
vectors qp, wp, and hp, having elements qjp, wkp, and hlp.
The elements of the tensor V̂ are denoted as vjkl where j
indicates the channel index, k the bin index of the spec-
trogram, and l the time index of the spectrogram. α(H)

represents additional constraints on matrix H, which are
taken into account during minimization of the cost func-
tion. The β-divergence, dβ , is suitable for NTF, allowing
the separation quality to be changed, subject to the param-
eter β [26]. When β is equal to 2, 1, or 0, the NTFs are
called EUC-NTF, KL-NTF, or IS-NTF, respectively. gjkl
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denotes one of the bins of the weighting tensor, G, in bin-
wise β-divergence. It allows controlling the impact of the
error observed in the different elements of V. For standard
PARAFAC-NTF, gjkl = 1 for all the bins.
The update rules for training the three matrices are

derived from the derivatives of the cost function:

Q ← Q �
(

〈G � V � V̂�(β−2) ,W ◦ H〉{2,3},{1,2}
〈G � V̂�(β−1),W ◦ H〉{2,3},{1,2}

)�γ (β)

,

(2)

W ← W �
(

〈G � V � V̂�(β−2), Q ◦ H〉{1,3},{1,2}
〈G � V̂�(β−1), Q ◦ H〉{1,3},{1,2}

)�γ (β)

,

(3)

H ← H �
(

〈G�V�V̂�(β−2), Q◦W〉{1,2},{1,2}+∇−
Hα(H)

〈G � V̂�(β−1), Q ◦ W〉{1,2},{1,2} + ∇+
Hα(H)

)
�γ (β),

(4)

where ∇Hα(H) = ∇+
Hα(H) − ∇−

Hα(H), both � and /

denote element-wise calculations, A◦B denotes J ×K ×P
tensor with elements ajpbkp when A and B are J × P and
K × P [27], and 〈A, B〉{C},{D} denotes a contracted product
[15]. Setting parameter γ to the proper value guaran-
tees that the cost function decreases monotonically when
gjkl = 1 for all the bins and the constraints are zero [3].

2.2 Wiener filtering
As soon as the approximation of spectrogram V̂ com-
posed of multiple basis elements Q, W, and H has been
completed by NTF, Wiener filtering is followed to extract
the target signal such that

yjkl =
∑

p∈Ptar qjpwkphlp
v̂jkl

xjkl , (5)

where Ptar denotes the collection of bases considered as
the target group. xjkl and yjkl denote the short-time Fourier
transform (STFT) of input audio signal and the separated

target signal, respectively. It should be noted that themore
sophisticated method called Multichannel Wiener Filter
employing spatial covariance matrices is known to give
a better performance in more complex mixing scenario
[28,29].

3 Incorporation of spatial cues
We devised two ways of incorporating a spatial cue.
Figure 1 shows a 2-D representation of a channel matrix,
Q, for 2ch-stereo signals. The small arrows represent the
basis elements of the channel matrix. Their positions
depend on the values for each channel: for example, the
basis element qp = [0.5, 0.5]T means that the source is
coming from the center, and the basis element qp =
[0.9, 0.1]T means that the source is closer to the left chan-
nel. It can be representedmore intuitively by the following
equation,

←−
Q p = 2 tan−1

(q1,p
q0,p

)δ

, (6)

where δ = 1.0 when magnitude spectrums are used as
an input of NTF and δ = 0.5 for power spectrums.

←−
Q

denotes the angles of the arrows in radians clockwise from
the horizontal axis in Figure 1. The big arrow indicates a
spatial cue that is specified independently from outside. It
is totally independent of the positions of the small arrows
at this moment, and it is given in the same format as the
elements of

←−
Q , specifically called

←−
Q sc. However, it should

be noted that these arrows serve only for visualization
purposes and are different from the azimuth angles in the
real world.
Idea 1 (Figure 1, left) applies standard PARAFAC-

NTF to audio signals. Factorization produces the channel
matrix, Q, the elements of which will be linked to the spa-
tial cue at the end of the process. This may, however, pose
a problem when the spatial cue is far from the basis ele-
ment candidates (Figure 1, left). Interpolation between the
two groups (three arrows on the left and three arrows on
the right) in another space might not be helpful in cre-
ating sound in the direction of the spatial cue. However,
idea 1 yields good performance when the spatial cue and

Spatial Cue

thgiRtfeL

[idea1] PARAFAC-NTF

Spatial Cue

thgiRtfeL

[idea2] fixed-Q NTF

Spatial Cue

Proposed method

thgiRtfeL

pq

Leftmost
Source

Rightmost
Source

Figure 1 2-D representation of a channel matrix Q. Three different solutions incorporating NTF.
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the basis element candidates are sufficiently close to each
other. We call idea 1 PARAFAC-NTF (p-NTF).
In idea 2 (Figure 1, center), the basis elements of the

channel matrix, Q, are evenly spaced before the start of
the NTF process. The directions remain fixed throughout
the process while matrix W and matrix H are trained by
means of NTF update rules. The basis elements located
at both sides of the spatial cue are selected as target ele-
ments. We call idea 2 fixed-Q NTF (f-NTF), and each
direction is numbered with a direction index, d, ranging
from 0 to D − 1.
Figure 2 shows block diagrams of two different solu-

tions. The big difference that can be observed in this figure
is that in p-NTF, the spatial cue cannot be passed to the
NTF process, whereas in f-NTF it is, which allows NTF
to take advantage of spatial information. Two things make
idea 2 worth focusing on: the computational efficiency,
since the channel matrix, Q, does not have to be updated
thanks to spatial information provided from a spatial cue;
and the potential improvement in quality due to the prior
knowledge provided by the spatial cue.
The next section presents more details and a variant of

the f-NTF method that is called spatial cue (sc-NTF).

4 Proposedmethod
4.1 Choice of divergence
As mentioned in Section 2.1, three settings of the β-
divergence are commonly used for NMF and NTF:
Euclidean distance (β = 2), KL divergence (β = 1), and
Itakura-Saito (IS) divergence (β = 0). Their differences
were investigated by C. Févotte [2]. One important char-
acteristic of the IS divergence that is not shared with the
two other types of divergence is that the absolute scale
of given audio does not affect the total cost of the diver-
gence. That is, the unnoticeably small spectrogram bins
can be approximated as well as the dominant bins. We

assume that IS-NTF is thus more appropriate when a rel-
atively small signal might come from a direction close
to that of the spatial cue. However, this assumption is
probably true only when there is little ambient noise [30].
Thus, we selected IS-NTF for our initial experiments and
used noise-free input signals, such as commercial music.
Another motivation for employing IS divergence comes
from a statistical perspective. It has been shown that the
ML estimation of a sum of complex Gaussian components
representing for each spectral bin is equivalent to min-
imizing IS divergence between the ideal and estimated
power spectrograms [31]. While there are clear advan-
tages of the IS divergence, IS-NTF suffers from the fact
that it is more often caught in local minima.
The simplest solution to this problem might be to per-

form a number of training runs and then select the best
results from among them. Another approach tomitigating
this effect is temperingNTF by changing the type of diver-
gence during the iterations [32]. For example, the training
could start with EUC-NTF (NTF based on Euclidean dis-
tance), which is relatively robust with regard to local
minima, and finish up with IS-NTF, which produces bet-
ter results. This would require that developers carefully
control β , and more iterations than usual would probably
be needed.

4.2 Initialization of channel matrix
The initialization of channel matrix, Q, is based on the
understanding of the matrix Q explained in Section 3.

←−B kl = 2 tan−1
(
v1,kl
v0,kl

)δ

, (7)

where v0,kl and v1,kl are the spectrogram bins for the
left and right channels, respectively. This feature con-
cerns the arrows in Figure 1 and their relationships to

Figure 2 Block diagrams of two different solutions. Block diagrams for two different solutions using NTF.
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Figure 3 Histogram of
←−
B . Histogram of

←−
B of the three-source mixture. Three peaks are observed.

each spectrogram bin. It is possible to determine the loca-
tions of sources with respect to the bins by searching
for the peaks in the histogram of ←−B (Figure 3), which
represents the dominant presence of the sources. The
basis elements are preferentially allocated by initializing
channel matrix, Q, based on the histogram of ←−B : More
elements are allocated to directions where sources are
likely to exist, although some are allocated to cover all
directions. Figure 3 shows the histogram of ←−B calculated
from a mixture of three audio instruments placed in dif-
ferent positions. The length of arrows corresponds to a
frequency of each bin. As we can see the arrows in three
directions in the histogram, it is highly likely that sources
exist at 50° to 60°, 90° to 100°, and 110° to 120°. How-
ever, the allocation of basis elements to the left of the
leftmost peak and to the right of the rightmost peak is
not required since the superposition of the sources never
appears outside of these peaks. It is therefore preferable
to allocate basis elements inside the range spanned by
the left and rightmost peaks that exist in the measured
histogram of ←−B , as can be seen in the right image of
Figure 1.

4.3 Initialization of frequency matrix and timematrix
Initialization of frequency matrix, W, and time matrix, H,
is simply carried out by taking advantage of information
of the histogram such that

wkp = 1
NGrp(d)J

∑
j

∑
l∈Grp(d)

vjkl k, l, p ∈ Grp(d), (8)

hlp = 1
NGrp(d)J

∑
j

∑
k∈Grp(d)

vjkl k, l, p ∈ Grp(d), (9)

where NGrp(d) denotes the frequency per bin of the his-
togram, and Grp(d) denotes the collection of bases allo-
cated to the direction with the index d. Normalization of
the matrices follows for the purpose of concentrating the
energy of input tensor V into H.

Qp = Qp/|Qp|1, Wp = Wp/|Wp|1, Hp = |Qp|1|Wp|1Hp,
(10)

ed =
∑
d

∑
p∈Grp(d)

|Hp|1, (11)

where | · |1 denotes the L1-norm, and ed denotes the
directional energy associated with the direction index d.

4.4 Weighting function
Since the spatial cue indicates which direction should be
given preference, and since the histogram of ←−B indicates
which source is dominant for a given direction, it is pos-
sible to approximate the spectrogram bin associated with
the spatial cue more precisely than other bins. This is easy
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to accomplish by using the proper weighting tensor, G, in
the cost function:

gjkl = exp

(
−ψ

D

∣∣∣∣∣
←−
Q sc − ←−

Q p

�
←−
Q

∣∣∣∣∣
)

k, l, p ∈ Grp(d),

(12)

where ψ determines the shape of the exponential func-
tion. Figure 4 changes the weighting parameter ψ and

←−
Q p

that creates different shapes while forcing
←−
Q sc to point

toward 100°. The weighting values of different ψ when←−
Q p = 72 are accentuated with markers. When ψ equals
0, all the weights for bin-wise cost functions become 1,
which boils down the update rules of sc-NTF described in
Section 2.1 to those used for PARAFAC-NTF.

4.5 Constraints
The energy for each direction should be estimated by
adding all the basis elements in matrix H over time, equal
to the procedure done by Equation 11. The estimated
energy is fixed so that it can be used as a reference to
constrain the energy distribution of the estimated tensor.
This should reduce the likelihood of being trapped in local
minima. Here, we again use the IS divergence to measure
distance. The constraint on energy in a given direction is

α(v̂jkl) = μ

D−1∑
d=0

dIS

⎛⎝ ∑
jkl∈Grp(d)

vjkl

∣∣∣∣∣∣
∑

jkl∈Grp(d)

v̂jkl

⎞⎠ .

(13)

By taking into account the normalization procedure in
Equation 10, the equation can be boiled down to

α(H) = μ

D−1∑
d=0

dIS

⎛⎝ed

∣∣∣∣∣∣
∑

p∈Grp(d)

|Hp|1
⎞⎠ , (14)

s.t. Qp=Qp/|Qp|1, Wp=Wp/|Wp|1, Hp=|Qp|1|Wp|1Hp.

For IS-NTF, the following should hold for the derivative
of the constraint:

∇α(hp) = μ

ed
− μ

∑
p∈Grp(d) |Hp|1

(ed)2
. (15)

5 Evaluation
5.1 Separation quality
BSS Eval of MATLAB was used to evaluate the above
method. It gives three standard metrics for source
separation: signal-to-distortion ratio (SDR), signal-to-
interference ratio (SIR), and signal-to-artifact ratio (SAR)
[33]. SDR is a global measure of the quality of source
separation that encompasses the two other metrics, SIR
indicates how well the target source is separated from
interference, and SAR indicates how well the target source
retains sound quality after separation. sc-NTF was com-
pared with p-NTF and f-NTF. 2ch-stereo signals were
obtained from the ‘Signal Separation Evaluation Cam-
paign’ Web site (SiSEC 2008 [34]). More specifically, we
used development data from the underdetermined speech
and music mixture task. These 2ch-stereo sources contain
a number of instruments placed independently in a 2-D
field. The ground truth registered in a similar format as

←−
Q

was also obtained from SiSEC 2008. It gives the location
of each instrument.

Figure 4 Spatial representation of the weighting function, G. The weighting function controlled its shape by the weighting parameter ψ . Three

different shapes are shown when
←−
Q sc = 100.
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For f-NTF, after separation is conducted, the basis ele-
ments pointing in a direction close to the ground truth are
selected to be separated out. In contrast, p-NTF requires
grouping after training. This difference can be seen in
Figure 2. Our experiments on two grouping algorithms,
k-means and k-nearest neighbor, to the ground truth
showed that the latter yielded better results. The num-
ber of centroids is determined according to the number of
basis components.
On the other hand, for sc-NTF, the bases are selected

beforehand due to the link established between the allo-
cated basis elements and the spatial cue. Resynthesis is
followed by Wiener filtering to create the output signals
used for evaluation (1,024-point FFT, half overlap, the
number of the basis elements P = 90, and the number of
directions D = 18). Tests were run 10 times to obtain an
average, indicated by a bar, and 95% confidence, indicated
by a line on top of the bar. This test was almost exactly
the same as the one described by Févotte et al. in their
2011 paper [27]. The only difference was in the number
of bases: They used P = 9 and we used P = 90. γ in
the cost function was set to 1. We obtained better results
when ψ = 3.6 for the weighting tensor G and μ = 300
for the constraint. More details with results using different
settings of ψ can be found in Figure 5.
Figure 6 shows test results for harmonic sound

(nodrums), and Figure 7 shows results for percussive
sound (wdrums). Most of the results show that sc-NTF
outperforms both f-NTF and p-NTF. It is important to
note that these results were obtained by sacrificing the
accuracy of approximation of sources far from the spa-
tial cue. This can be deduced from the final value of the
cost function. Table 1 shows the IS divergence per bin
for four methods including sc-NTF without the weighting
function G. sc-NTF using the weighting function pro-
duces worse results than p-NTF and sc-NTF without the

-25.0

-20.0

-15.0

-10.0

-5.0

0.0

5.0

10.0

15.0

20.0

25.0

B
ass SD

R

B
ass SIR

B
ass SA

R

L
ead G

. SD
R

L
ead G

. SIR

L
ead G

. SA
R

2nd G
. SD

R

2nd G
. S

IR

2nd G
. SA

R

f-NTF sc-NTF p-NTF MENUET

Figure 5 Test results of different shapes of the weighting
function. Overall results of different settings of ψ is shown, from 0.9
to 7.2.
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Figure 6 Test results for harmonic sound. Dataset nodrums.
Mixture of three different instruments: bass, lead guitar, and second
lead guitar.

weighting function in terms of approximation, due to the
lesser weights of the broad range and the more weights of
the relatively narrow target direction. The 95% confidence
for both p-NTF and sc-NTF indicates that local minima
were avoided. There is a large variance only in the results
for f-NTF, which means that the proposed method helps
to avoid being trapped in local minima.

5.2 Computational cost
As mentioned earlier, the omission of the calculation of
the channel matrix Q should be a great advantage for sc-
NTF. A simple experiment was conducted by measuring
the runtime on an Intel Core i7 (2.80 GHz) processor for
three NTF methods implemented in MATLAB code. It
should be noted that the code was not particularly opti-
mized by incorporating external libraries written in, for
instance, C language. Instead, the built-in functions auto-
matically provided by MATLAB, such as division and
log functions, were used. The conditions of the experi-
ment were the same as those for the quality evaluation

H H H
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Q
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others Q W H
Figure 7 Test results for percussive sound. Dataset wdrums.
Mixture of three different instruments: hi-hat, drums, and bass.
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Table 1 Comparison of convergence

f-NTF sc-NTF (w/o G) sc-NTF p-NTF

IS divergence 0.19300 0.16759 0.18300 0.16857

per bin

Itakura-Saito divergence per bin after 200 iterations.

described in Section 5.1 (the number of channels J = 2,
the number of frequency bins K = 513, and the num-
ber of frames L = 314). Figure 8 shows that p-NTF takes
almost four times as much computational power as the
other NTFmethods. Although sc-NTF requires initializa-
tion involving division, inverse tangents, and calculation
of the histogram, the runtime is only slightly longer than
that of f-NTF. Since the size of each matrix is different
due to the required resolution, the computational power
needed to update eachmatrix is not the same. Eachmatrix
needs at least two contracted products and single division:
2×K ×L+ J ×P for the channel matrix, 2× J ×L+K ×P
for the frequency matrix, and 2×J×K+L×P for the time
matrix. Thus, the results should depend on the numbers
of occurrences of J, K, L, and P. In most cases, J << K
or L, which means that updating will probably take longer
for the channel matrix, Q, than for the other twomatrices.
Another important point is that the burden of the built-
in functions depends on the features of the LSI used to
implement the NTF: Division generally needs a couple of
instructions, but multiplication and addition usually need
only one.

5.3 Comparison with DUET
An evaluation that compares sc-NTF with DUET has
been carried out. Since a number of evolved versions of
DUET have been proposed, we employed one of the most
straightforward extensions of DUET called Multiple Sen-
sor DUET (MENUET) [17]. Although the framework of
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Figure 8 Comparison of computational cost. Runtime test for the
three different NTFs. The runtime of sc-NTF includes the calculation of
initialization, weighting function, and constraints.

MENUET requires the number of sources for the cluster-
ing at the end of the process, it is usually unknown in real
world, particularly in applications such as Sound Zoom.
Instead of providing the number of sources, which can be
regarded as providing another piece of prior knowledge,
we incorporated a spatial cue in the DUET system so that
the closest centroid to the spatial cue can be extracted as
a target centroid. The number of centroids is set to 18
to fully cover all the azimuths. Figures 6 and 7 show the
comparison results between two different source separa-
tion techniques. In particular, the results of the two guitars
give us a deep insight such that MENUET performs better
than sc-NTF when separating such signals that have sim-
ilar frequency characteristics, on the condition that the
two sources are not coming from the same directions. The
worse results of sc-NTF may be attributed to the nature
of NTF that greedily exploits not only spatial information,
but also time-frequency information for the approxima-
tion of the cost function. On the other hand, sc-NTF
performs better in the case of separating the two percus-
sions in spite of the close positions of the two instruments.
This is due to the capability of NMF to capture repetitive
structures of signals. Computational costs of MENUET
can be seen in Figure 8. The number of iterations for
clustering in MENUET is 30.

6 Conclusion
We developed a new method of enhancing NTF perfor-
mance by introducing weights on the NTF cost function,
which is achieved by incorporating a spatial cue into the
system. Two ways of incorporating a spatial cue into an
NTF framework were devised. The one that employs a
fixed channelmatrix, Q, was further developed to improve
the separation quality. The association of the spatial cue
with the histogram of ←−B clarifies which spectrogram bins
should be given preference to obtain a better approxi-
mation. An evaluation of separation quality, which was
carried out as in previous studies, demonstrated the effec-
tiveness of the weighting tensor, G, and the energy con-
straints. In addition, the omission of the calculation of
Q was a great advantage in the runtime test. In short,
our algorithm combines the computational cost of f-NTF
with the separation quality of p-NTF. sc-NTF also showed
competitive results against the variant of the DUET algo-
rithm. Adaptation to a moving target and extension to the
other state-of-the-art multichannel NMF will be subjects
of future work.
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