577 research outputs found

    Climate-Triggered Drought as Causes for Different Degradation Types of Natural Forests: A Multitemporal Remote Sensing Analysis in NE Iran

    Get PDF
    Climate-triggered forest disturbances are increasing either by drought or by other climate extremes. Droughts can change the structure and function of forests in long-term or cause large-scale disturbances such as tree mortality, forest fires and insect outbreaks in short-term. Traditional approaches such as dendroclimatological surveys could retrieve the long-term responses of forest trees to drought conditions; however, they are restricted to individual trees or local forest stands. Therefore, multitemporal satellite-based approaches are progressing for holistic assessment of climate-induced forest responses from regional to global scales. However, little information exists on the efficiency of satellite data for analyzing the effects of droughts in different forest biomes and further studies on the analysis of approaches and large-scale disturbances of droughts are required. This research was accomplished for assessing satellite-derived physiological responses of the Caspian Hyrcanian broadleaves forests to climate-triggered droughts from regional to large scales in northeast Iran. The 16-day physiological anomalies of rangelands and forests were analysed using MODIS-derived indices concerning water content deficit and greenness loss, and their variations were spatially assessed with monthly and inter-seasonal precipitation anomalies from 2000 to 2016. Specifically, dimensions of forest droughts were evaluated in relations with the dimensions of meteorological and hydrological droughts. Large-scale effects of droughts were explored in terms of tree mortality, insect outbreaks, and forest fires using field observations, multitemporal Landsat and TerraClimate data. Various approaches were evaluated to explore forest responses to climate hazards such as traditional regression models, spatial autocorrelations, spatial regression models, and panel data models. Key findings revealed that rangelands’ anomalies did show positive responses to monthly and inter-seasonal precipitation anomalies. However, forests’ droughts were highly associated with increases in temperatures and evapotranspiration and were slightly associated with the decreases in precipitation and surface water level. The hazard intensity of droughts has affected the water content of forests higher than their greenness properties. The stages of moderate to extreme dieback of trees were significantly associated with the hazard intensity of the deficit of forests’ water content. However, the stage of severe defoliation was only associated with the hazard intensity of forests’ greenness loss. Climate hazards significantly triggered insect outbreaks and forest fires. Although maximum temperatures, precipitation deficit, availability of soil moisture and forest fires of the previous year could significantly trigger insect outbreaks, the maximum temperatures were the only significant triggers of forest fires from 2010‒2017. In addition to climate factors, environmental and anthropogenic factors could control fire severity during a dry season. The overall evaluation indicated the evidence of spatial associations between satellite-derived forest disturbances and climate hazards. Future studies are required to apply the approaches that could handle big-data, use the satellite data that have finer wavelengths for large-scale mapping of forest disturbances, and discriminate climate-induced forest disturbances from those that induced by other biotic and abiotic agents.Klimagbedingte Waldstörungen nehmen entweder durch DĂŒrre oder durch andere Klimaextreme zu. DĂŒrren können langfristig die Struktur und Funktion der WĂ€lder verĂ€ndern oder kurzfristig große Störungen wie Baumsterben, WaldbrĂ€nde und InsektenausbrĂŒche verursachen. Traditionelle AnsĂ€tze wie dendroklimatologische Untersuchungen könnten die langfristigen Reaktionen von WaldbĂ€umen auf DĂŒrrebedingungen aufzeigen, sie sind aber auf einzelne BĂ€ume oder lokale WaldbestĂ€nde beschrĂ€nkt. Daher werden multitemporale satellitengestĂŒtzte AnsĂ€tze zur ganzheitlichen Bewertung von klimabedingten Waldreaktionen auf regionaler bis globaler Ebene weiterentwickelt. Es gibt jedoch nur wenige Informationen ĂŒber die Effizienz von Satellitendaten zur Analyse der Auswirkungen von DĂŒrren in verschiedenen Waldbiotopen. Daher sind weitere Studien zur Analyse von AnsĂ€tzen und großrĂ€umigen Störungen von DĂŒrren erforderlich. Diese Forschung wurde durchgefĂŒhrt, um die aus Satellitendaten gewonnenen physiologischen Reaktionen der im Nordosten Irans gelegenen kaspischen hyrkanischen LaubwĂ€lder auf klimabedingte DĂŒrren auf lokaler und regionaler Ebene zu bewerten. Auf der Grundlage der aus MODIS-Daten abgeleiteten Indizes wurden die 16-tĂ€gigen physiologischen Anomalien von Weideland und WĂ€ldern in Bezug auf Wassergehaltsdefizit und GrĂŒnverlust analysiert und ihre Variationen rĂ€umlich mit monatlichen und intersaisonalen Niederschlagsanomalien von 2000 bis 2016 bewertet. Insbesondere wurden die Dimensionen der WalddĂŒrre in Verbindung mit den Dimensionen der meteorologischen und hydrologischen DĂŒrre bewertet. GroßrĂ€umige Auswirkungen von DĂŒrren wurden in Bezug auf Baumsterblichkeit, InsektenausbrĂŒche und WaldbrĂ€nde mit Hilfe von Feldbeobachtungen, multitemporalen Landsat- und TerraClimate Daten untersucht. Verschiedene AnsĂ€tze wurden ausgewertet, um Waldreaktionen auf Klimagefahren wie traditionelle Regressionsmodelle, rĂ€umliche Autokorrelationen, rĂ€umliche Regressionsmodelle und Paneldatenmodelle zu untersuchen. Die wichtigsten Ergebnisse zeigten, dass die Anomalien von Weideland positive Reaktionen auf monatliche und intersaisonale Niederschlagsanomalien aufweisen. Die DĂŒrren in den WĂ€ldern waren jedoch in hohem Maße mit Temperaturerhöhungen und Evapotranspiration verbunden und standen in geringem Zusammenhang mit dem RĂŒckgang von NiederschlĂ€gen und des OberflĂ€chenwasserspiegels. Die GefĂ€hrdungsintensitĂ€t von DĂŒrren hat den Wassergehalt von WĂ€ldern stĂ€rker beeinflusst als die Eigenschaften ihres BlattgrĂŒns. Die Stufen mittlerer bis extremer Baumsterblichkeit waren signifikant mit der GefĂ€hrdungsintensitĂ€t des Defizits des Wassergehalts der WĂ€lder verbunden. Das Ausmaß der starken Entlaubung hing jedoch nur mit der GefĂ€hrdungsintensitĂ€t des GrĂŒnverlustes der WĂ€lder zusammen. Die Klimagefahren haben zu deutlichen InsektenausbrĂŒchen und WaldbrĂ€nden gefĂŒhrt. Obwohl Maximaltemperaturen, Niederschlagsdefizite, fehlende Bodenfeuchte und WaldbrĂ€nde des Vorjahres deutlich InsektenausbrĂŒche auslösen konnten, waren die Maximaltemperaturen die einzigen signifikanten Auslöser von WaldbrĂ€nden von 2010 bis 2017. Neben den Klimafaktoren können auch umweltbedingte und anthropogene Faktoren den Schweregrad eines Brandes wĂ€hrend einer Trockenzeit beeinflussen. Die Gesamtbewertung zeigt Hinweise auf rĂ€umliche ZusammenhĂ€nge zwischen aus Satellitendaten abgeleiteten Waldstörungen und Klimagefahren. Weitere Untersuchungen sind erforderlich, um AnsĂ€tze anzuwenden, die mit großen Datenmengen umgehen können, die Satellitendaten in einer hohen spektralen Auflösung fĂŒr die großmaßstĂ€bige Kartierung von Waldstörungen verwenden und die klimabedingte Waldstörungen von denen zu unterscheiden, die durch andere biotische und abiotische Faktoren verursacht werden

    A review of machine learning applications in wildfire science and management

    Full text link
    Artificial intelligence has been applied in wildfire science and management since the 1990s, with early applications including neural networks and expert systems. Since then the field has rapidly progressed congruently with the wide adoption of machine learning (ML) in the environmental sciences. Here, we present a scoping review of ML in wildfire science and management. Our objective is to improve awareness of ML among wildfire scientists and managers, as well as illustrate the challenging range of problems in wildfire science available to data scientists. We first present an overview of popular ML approaches used in wildfire science to date, and then review their use in wildfire science within six problem domains: 1) fuels characterization, fire detection, and mapping; 2) fire weather and climate change; 3) fire occurrence, susceptibility, and risk; 4) fire behavior prediction; 5) fire effects; and 6) fire management. We also discuss the advantages and limitations of various ML approaches and identify opportunities for future advances in wildfire science and management within a data science context. We identified 298 relevant publications, where the most frequently used ML methods included random forests, MaxEnt, artificial neural networks, decision trees, support vector machines, and genetic algorithms. There exists opportunities to apply more current ML methods (e.g., deep learning and agent based learning) in wildfire science. However, despite the ability of ML models to learn on their own, expertise in wildfire science is necessary to ensure realistic modelling of fire processes across multiple scales, while the complexity of some ML methods requires sophisticated knowledge for their application. Finally, we stress that the wildfire research and management community plays an active role in providing relevant, high quality data for use by practitioners of ML methods.Comment: 83 pages, 4 figures, 3 table

    Spatial clustering of vegetation fire intensity using modis satellite data

    Get PDF
    This work analyses the spatial clustering of fire intensity in Zimbabwe, using remotely sensed Moderate Resolution Imaging Spectroradiometer (MODIS) active fire occurrence data. In order to investigate the spatial pattern of fire intensity, MODIS-derived fire radiative power (FRP) was utilized. A local indicator of spatial autocorrelation method, the Getis-Ord (Gi*) spatial statistic, was applied to show the spatial distribution of high and low fire intensity clusters. Analysis of the relationship between topographic variables, vegetation type, agroecological zones and fire intensity was done. According to the study’s findings, the majority (44%) of active fires detected in the study area in 2019 were of low-intensity (cold spots), and the majority (49.3%) of them occurred in shrubland. High-intensity fires (22%) primarily occurred in the study area’s eastern and western regions. The study findings demonstrate the utility of spatial statistics methods in conjunction with satellite fire data in detecting clusters of high and low-intensity fires (hot spots and cold spots)

    Advances in Remote Sensing-based Disaster Monitoring and Assessment

    Get PDF
    Remote sensing data and techniques have been widely used for disaster monitoring and assessment. In particular, recent advances in sensor technologies and artificial intelligence-based modeling are very promising for disaster monitoring and readying responses aimed at reducing the damage caused by disasters. This book contains eleven scientific papers that have studied novel approaches applied to a range of natural disasters such as forest fire, urban land subsidence, flood, and tropical cyclones

    Vurderer skogbrannen i Chitwan nasjonal park, Nepal

    Get PDF
    Although fire has long been an Essent foremost of the forest ecosystem and has a significant impact on the flora and fauna, it is also widely believed to be one of the main causes of biodiversity loss and environmental deterioration. Furthermore, little study has been conducted on the timing and location of wildfires in Nepal. Because of this, Chitwan National Park is highly susceptible to wildfires (DFRS, 2015). For wildfire monitoring, detection, and management, geographic information systems (GIS) and remote sensing (RS) are frequently used. Quick and affordable solutions are produced through RS and GIS. United States Geological Survey Earth Explorer website was used to retrieve the Landsat image and digital elevation module. The ICIMOD website was used to acquire information on the study area's land use, land cover, road network, and population. A difference-normalized burn ratio (dNBR) was calculated using geographic information software to assess the severity of the burns and A multi-criteria weighted-overlay analysis was performed to determine the wildfire risk zone. Throughout the research period, 3617 fire events were reported in CNP, with 3135 of them taking place in the core region and 482 in the buffer zone. The variance in the mean value of fire frequency was examined using one-way ANOVA, and it was found that the number of wildfire occurrences during the summer months was substantially high (p-value less than 0.05 at the 5% level of significance). Since 2021 saw the most fire events in CNP from 2001 and 2021 (384 fire incidents), the severity of the year's burns was calculated. A total of 76558.68 hectares of forest were burned in CNP in 2021, per the burn severity study. The research indicates that there is a high risk of wildfire for 6391.6 hectares in CNP, a moderate risk for 154054.4 hectares, and a low risk for 7754.02 hectares. Most events took place in the core area, which was the consequence of deliberate fire used to manage grasslands and slow down succession. However, prevention is advised since it might impair the species that depend on a specific grassland ecosystem
    • 

    corecore