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Abstract: Wildfires are expected to increase in the near future, mainly because of climate changes and
land use management. One of the most vulnerable areas in the world is the forest in central-South
America, including Bolivia. Despite that this country is highly prone to wildfires, literature is rather
limited here. To fill this gap, we implemented a dataset including the burned area that occurred
in the department of Santa Cruz in the period of 2010–2019, and the digital spatial data describing
the predisposing factors (i.e., topography, land cover, ecoregions). The main goal was to develop
a model, based on Random Forest, in which probabilistic outputs allowed to elaborate wildfires
susceptibility maps. The overall accuracy was finally estimated by using 5-fold cross-validation.
In addition, the last three years of observations acted as the testing dataset, allowing to evaluate
the predictive performance of the model. The quantitative assessment of the variables revealed
that “flooded savanna” and “shrub or herbaceous cover, flooded, fresh/saline/brakish water” are
respectively the ecoregions and land cover classes with the highest probability of predicting wildfires.
This study contributes to the development and validation of an innovative mapping tool for fire risk
assessment, implementable at a regional scale in different areas of the globe.

Keywords: wildfires mapping; Bolivia; machine learning; model validation; land use; ecoregions;
slash-and-burn

1. Introduction

Wildfires are perturbing events affecting ecological processes and are part of the dy-
namics of many ecosystems in the world, influencing their composition, structure, and func-
tioning. These hazards can cause significant losses in terms of vegetation, houses, and hu-
man and animal lives [1–3]. Wildfires are becoming more frequent and extended in the last
years, mainly under the influence of climate changes [4–6] and land use management [7–10].
Hence, the need to study them through their modelization, in terms of both fire spread and
fire risk/susceptibility assessment, and to understand how to limit the disastrous effects
they can have on the environment and on the socioeconomic tissue.

A wide range of methods have been developed to model fire hazards, typically taking
advantage of Geographical Information System (GIS) and Remote Sensing (RS) techniques.
These can be classified into physics-based methods, multi-criteria analyses coupled with
statistical approaches, and machine learning methods. Physics-based methods involve
the simulation and the prediction of fire behaviors through mathematical equations of
fluid mechanics, combustion of canopy biomass, and heat transfer mechanisms [11–15].
Multi-criteria analyses, coupled with statistical methods, assumes that the probability of
occurrence of burned areas can be quantitatively assessed by investigating the relationship
between fire occurrences and predisposing factors [16–24]. Finally, machine learning (ML)
methods are based on more or less complex data-driven algorithms able to model the
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hidden and non-linear relationships between a set of topographical and land use/land
cover related predisposing factors with the observed wildfire events [25–40].

ML approaches successfully applied for wildfire risk assessment and susceptibility
mapping mainly include Artificial Neural Networks (ANN) [27,28,35,37,39], Support Vec-
tor Machines (SVM) [26,32,35,37,39], Random Forests (RF) [25,26,29,32,34–37,39,40], and
Multiple or Logistic Regression (LR) [25–30,39]. Most of the studies cited above involve
the use of different approaches to evaluate which one performs better. For example, in [28]
authors compare LR and ANN to model wildfire risk and to detect potential area for fire
occurrence; it resulted that ANN had the higher accuracy, estimated as prediction capability.
In [27] authors find that Kernel LR model outperforms the benchmark, based on SVM, for
tropical forest fire susceptibility mapping in a protected area in Vietnam. In [37] authors
evaluate the performances of three ML approaches (RF, SVM, and ANN) for the elabora-
tion of a wildfire susceptibility map in Iran; in this case RF provided the most accurate
predictions. Similarly, authors in [32] proved that RF had the highest predictive accuracy
compared to SVM in a study in Dayu County (China). In [34] authors compare two stochas-
tic approaches (RF and extreme learning machine) versus a deterministic procedure for
wildfire susceptibility assessment in a region in Portugal, revealing the advantage of using
ML-based methods, especially RF since it additionally provides the internal evaluation of
the variable importance ranking. Several ML methods are compared in [39] to evaluate
their potential for wildfire susceptibility mapping in Amol County (Iran); even in this case,
RF performed the highest accuracy, followed by SVM, while LR had the lowest accuracy.

Susceptibility is a fundamental concept in wildfire risk management. Broadly speak-
ing, it can be defined as the extent to which a causal mechanism might affect and destabilize
a potentially hazardous system [41]. In the spatio-temporal domain, susceptibility maps
indicate areas with the potential to experience a particular hazard in the future based solely
on the intrinsic local properties of a site and on the observed past events, expressed in
terms of relative spatial likelihood. According to Tonini et al. [40], wildfire susceptibility
maps display the wildfire’s occurrence probability, ranked from low to high, under a given
environmental context.

From the above-mentioned literature review, RF has proven to be one of the most
effective algorithm for wildfire susceptibility assessment. This is attested by the higher
performances in terms of accuracy achieved by RF in comparison with other methods. RF
stands out among other ML algorithms because of the following factors: its calibration is
quite easy as it involves only a few parameters and the data do not need to be rescaled or
transformed; it reduces over-fitting in decision trees and helps to improve the accuracy; it
automatically outputs the variable importance ranking; it can handle directly categorical
variables, such as land use classes or vegetation type, which are key factors in wildfire
susceptibility assessment.

The central-South American forest is one of the areas most affected by wildfires in the
world [42,43]. Wildfires risk in the Amazonian forest will probably be higher in the near
future because of the increasing frequency of drought periods coupled with the growing
rate of deforestation [44–46]. The main cause of fire ignition in the area is human-made,
principally due to the commune practice of slash-and-burn [47,48]. This, called in jargon
chaqueo, consists of cutting trees, low vegetation/agricultural residuals, and burning the
biomass to make way for agriculture, livestock, logging, or simply to clear the agricultural
land to prepare fields for the next year’s crop. This practice can easily get out of control
and initiate large fires. For example, in 2019, Bolivia faced an extremely extensive wildfire
event that had a serious ecological impact in the department of Santa Cruz [49,50]. This
complex area is characterized by a mosaic where wet and dry tropical forests alternate with
savannas, and it is extremely prone to wildfires. Despite Bolivia being amongst the top-ten
countries with the highest expected annual burned forest area at risk in the world [42], the
literature on wildfire’s risk and suppression is quite limited, principally because of the
scarcity of available data and resources [51]. To fill this gap, as part of the present study, we
implemented an accurate dataset of burned areas based on Moderate Resolution Imaging
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Spectroradiometer (MODIS) wildfire product and reporting events that occurred in the
entire department of Santa Cruz in the period of 2010–2019. The factors that can predispose
the wildfires, such as the topography of the area, the land cover, and the ecoregions, were
also collected and processed in the form of digital spatial data. This information allowed
estimating the susceptibility of wildfires in the entire department, with a special focus
on the municipality of San Ignacio de Velasco. Analyses were performed by using an
ML-based approach, namely RF, and outputs presented in the form of maps were finally
validated. In addition, the influence of the different predisposing factors and the relative
probability of prediction success over a range of discrete values, corresponding to the
different classes of land cover and ecoregions, were investigated and discussed.

2. Study Area

The study area (Figure 1) corresponds to the department of Santa Cruz in Bolivia. It
includes 15 provinces and 56 municipalities, with capital Santa Cruz de la Sierra, in the
Andrés Ibáñez province. With an area of 370,621 km2, Santa Cruz is the is the largest of
the Bolivian departments, covering 34% of the entire national territory. It includes part of
the Amazonian and the Chaco plains, with an elevation around 800 m.a.s.l. for the large
majority of the territory, which can exceed 1500 m.a.s.l. on the sub-Andean relief.

Figure 1. Study area: department of Santa Cruz in Bolivia with burned areas (2010–2019, from
MODIS). The municipality of San Ignacio de Velasco is also indicated in the top-right map.

Wildfires are historically recognized as part of the disturbance regime of the area.
However, in the recent years, due to their increasing frequency and amplitude, and to their



Geosciences 2021, 11, 224 4 of 23

relationship with human activities and agricultural practices, wildfires management and
containment has become a challenging task [52]. The main cause of wildfires in Bolivia
is the slash-and-burn agricultural practice, followed by activities related to the pasture
management, waste burning, hunting, and others human activities [48,51]. According to
MODIS data (Figure 1), in the period from 2010 to 2019, about 2203 wildfires per year
(Figure 2) resulted in an average burned area of 1,266,275 ha (Figure 3).

In general, the largest number of events occurs between July and October, with
August and September being the two months with the highest concentration of burned
area. Although forest in this area is exposed to a marked seasonality, and hence it is
susceptible to changes in fire regimes, we did not consider this variability in the present
study. Indeed, since typically there is only one fire season that hits during the frame-period
coinciding with the driest months of the year, monthly burned areas have been aggregated
on a yearly basis.

Figure 2. Number of wildfires in the department of Santa Cruz (Bolivia) from 2010 to 2019.

Figure 3. Burned areas in the department of Santa Cruz (Bolivia) from 2010 to 2019.

Municipality of San Ignacio De Velasco

San Ignacio de Velasco is the largest municipality of the province of José Miguel de
Velasco, located at the northeast of the department of Santa Cruz (Figure 1). This area was
selected to carry out analyses at a more local scale because it has been the municipality
most affected by wildfires within the entire study area during the recent period (2010–2019)
(Figure 4) [53]. With a surface of about 48,960 km2, San Ignacio de Velasco has the highest
demographic growth after the city of Santa Cruz de la Sierra. Administratively, its area
is divided into twelve districts, of which two are highly urbanized, nine are inhabited by
indigenous communities, and the last corresponds to Noel Kempff Mercado National Park.
The forestry potential and the tourism are the main resources of this municipality.
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Figure 4. Proportion of burned area amongst the six most affected municipalities of the department
of Santa Cruz in the period of 2010–2019.

3. Materials and Methods

The methodological workflow developed in the present study (Figure 5) includes the
following process:

• Implementation of the database, including: (i) the dependent variable (i.e., the burned
areas derived by MODIS product); (ii) the independent variables (based on the topo-
graphical, ecological, and land cover/vegetation).

• Implementation of an ML approach, using RF and five equal-size folds for the valida-
tion procedure, allowing to maximize the spatial generalization of the predictions.

• Elaboration of the wildfire susceptibility maps, based of the probabilistic outputs
resulting from RF, and assessment of the variable importance ranking.

• Validation of the performances of the model performed by estimating the Area under
the Receiver Operating Characteristic (ROC) curve (AUC), and computed considering
the temporal splitting of the original dataset into training (2010–2016) and testing
(2017–2019).

3.1. Dependent Variable: Burned Areas

Data acquisition and implementation of the input datasets are the most challenging
steps in any modeling study. Wildfire prevention, defense, and suppression plans require,
first and foremost, accurate estimates of the differential susceptibility of the land to wildfires
in relation to the characteristics of the territory and to past observed events. Thus, a key
factor for wildfire susceptibility modeling is the observed burned areas, available as
mapped fire perimeters and spanning several years.

Burned areas were selected and processed based on the collection of the 6 MODIS
burned area mapping product (MCD64), which contains fewer unclassified grid cells
as a result of its improvements. In more details, MCD64 employs daily 500-m MODIS
surface reflectance data coupled with 1-km MODIS active fire observations [54]. The
MODIS burned area product has been downloaded from the University of Maryland
(ftp://ba1.geog.umd.edu/, accessed on 20 March 2020) as a GeoTIFF file. Detected burned
areas are labeled with the Julian day of the given month for each monthly GeoTIFF. These
features have then been aggregated on a yearly basis and the yearly raster datasets clipped
over the study area (Figure 1).

ftp://ba1.geog.umd.edu/
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Figure 5. Workflow of the methodology employed in this study.

3.2. Independent Variables: Predisposing Factors

The following independent variables (Table 1) provide a detailed knowledge of the
topography, ecological conditions, and land cover, including vegetation, allowing to un-
derstand how these factors can predispose to wildfire occurrence: Digital Elevation Model
(DEM) and slope (derivative of DEM), ecoregions (assemblage of species, natural commu-
nities, and environmental conditions [55]), and land cover (physical material at the surface
of the earth, that includes vegetation information). All of these maps were elaborated in
raster format with a grid cell size of 100 × 100 m (Figure 6), which is good enough to
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capture the spatial characteristics of wildfire locations and, at the same time, large enough
to assure a reasonable processing speed.

It is worth noting that meteorological factors, like wind speed and wind direction,
temperature, humidity, and rainfall were not included as predisposing factors for this
study since, according to Tonini et al. [40], these are local conditions that cause a hazard to
occur if and only if the area is susceptible to that hazard (i.e., acting as triggering factors),
while the susceptibility is assessed based only on factors that are stable over time (i.e.,
predisposing factors).

Table 1. Summary of predisposing factors and their characteristics.

Pred. Factors Variable Type Range

DEM Numerical (meters) 75–3330
Slope Numerical (degrees) 0–76.27
Ecoregions Categorical 9 classes
Land cover Categorical 10 classes

3.2.1. Topographic Conditions: Altitude and Slope

Topography is an important factor that influences wildfires because its properties
affect the distribution, composition and flammability of vegetation, local climate (such
as average wind speeds), and human accessibility. Therefore the raster DEM, obtained
from the competent authorities of the Municipal Autonomous Government of Santa Cruz,
played an important role in this study. Slope was extracted based on the DEM; this factor is
important since an increase in slope can increase the fire spread rate. Fire can spread more
quickly up the steep areas and less quickly down the steep areas.

3.2.2. Ecological Conditions: Ecoregions

Ecoregions can be defined as relatively large areas of land or water, containing a
distinct assemblage of natural communities and species which share similar environmental
conditions. The biodiversity of flora, fauna, and ecosystems differs from one ecoregion
to another [56]. This factor is important for the assessment of wildfires in Santa Cruz
since it provides information about the vegetation of the area. The information regarding
vegetation characteristics of each ecoregion helped in determining which classes have to
be prioritized and maintained. The department of Santa Cruz includes nine ecoregions
(Table 2), described below [57–59].

• Yungas (also called humid forest): a cloud forest located between 1000 and 3300 m.a.s.l.,
where permanent moisture is supplied by cloud drizzle and rainfall brought from the
Amazon basin by the easterlies. The beta diversity of this ecosystem is the highest in
Bolivia.

• Bolivian Tucuman forest: located between 300 and 3300 m.a.s.l. In this ecoregion, the
minimum annual temperature range is lower than in Yungas because of the influence
of cold southerly winds, called "surazos". The vegetation cover is dense, including
trees more than 15 m tall.

• Southwestern Amazon forest: located between 150 and 500 m.a.s.l., it is composed
of all the Amazon forest types. The species richness is the same as that of the moist
Yungas forest. Trees are more than 45 m tall. This region has suffered from strong
human pressure.

• Flooded savanna: located between 100 and 200 m.a.s.l., it is in fact a seasonally
flooded savanna due to the numerous rivers from the Andes that flow through the
Amazon lowlands.

• Gran Chaco (also called dry forest): located between 200 and 600 m.a.s.l. It has the
lowest mean annual precipitation (795 mm), a mean annual temperature of 21.7 ◦C,
and a maximum of 48 ◦C. It is among the largest and best preserved dry forests in
the world.
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• Chiquitano Dry forest: located in a transition zone between the moist Amazon rain
forest and the Gran Chaco dry forest, at an altitude between 100 and 1400 m.a.s.l. It is
endemic to Bolivia, highly biodiverse, and it has been extremely affected by wildfires
in recent years.

• Dry Inter-Andean forest: located between 500 and 3300 m.a.s.l., and includes patches
of dry forest alternated with Yungas forest and deep inaccessible valleys. Due to its to-
pographical specificity, this ecosystem is characterized by a variety of endemic species.

• Chaco Serrano: is dominated by the horco-quebracho (Schinopsis hanckeana) along with
the drinking molle (Lithrea molleoides), especially in the south, and by a large number
of cacti and spiny legumes in the north. At higher altitudes, the forest is replaced by
grasslands or gramineous steppes with a predominance of species of the genus Stipa
and Festuca.

• Cerrado: a wide range of climatic conditions exists across the Cerrado ecoregion.
Precipitations are between 1000 and 2000 mm per year, with a pronounced dry season
from April to September, and mean annual temperatures ranging from 16 ◦C to 25 ◦C.
This ecoregion is characterized by an enormous biodiversity of plants and animals
that is progressively threatened by the expansion of agriculture and the burning of
vegetation to make charcoal.

3.2.3. Landscape Features: Land Cover

Land cover represents the landscape features on the Earth’s surface. The different
characteristics (such as load and moisture content) of the distinct land cover types can affect
the ignition and spread of fires. The official land cover map for Santa Cruz was elaborated
based on the 2018 product of the Climate Change Initiative (CCI) of the European Space
Agency (ESA) [60]. This map was reclassified taking into account the portion of the area
covered by each class; classes with a surface lower than 0.1% of the total study area were
aggregated to the closest class. The resulting 10 classes are listed in Table 2.

Figure 6. Predisposing factors: (a) DEM (Altitude, in meters), (b) Slope (in degrees), (c) Ecoregions,
and (d) Land cover classes (see Table 2 for class descriptions).
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Table 2. Ecological, land cover, and vegetation factors.

Pred. Factors #. Class Area (ha) Area (%)

Ecoregions 1. Southwestern Amazon forest 7,095,085 19.42

2. Flooded Savanna 3,855,600 10.55

3. Chiquitano Dry forest 10,282,677 28.14

4. Cerrado 4,768,190 13.05

5. Dry Inter-Andean forest 504,133 1.38

6. Chaco Serrano 934,197 2.56

7. Bolivian Tucuman forest 535,884 1.47

8. Yungas 261,457 0.72

9. Gran Chaco 8,297,441 22.71

Land cover 1. Cropland, rainfed 499,512 1.37

2. Herbaceous cover 2,476,316 6.77

3. Shrub or herbaceous cover, flooded,
fresh/saline/brakish water 5,517,848 15.09

4. Mosaic cropland (>50%) / Natural vegetation (tree,
shrub, herbaceous cover) (<50%) 919,420 2.51

5. Tree cover, broadleaved, evergreen, closed to open
(>15%) 19,873,239 54.33

6. Tree cover, broadleaved, deciduous, closed/open (15-
40%) 3,988,847 10.91

7. Mosaic natural vegetation (tree, shrub, herbaceous
cover) / cropland (<50%) 2,245,102 6.14

8. Grassland 890,728 2.44

9. Bare areas/Urban areas/Sparse vegetation (>15%) 46,897 0.13

10. Water bodies 120,082 0.33

3.3. Machine Learning Approach: Random Forest

RF is an ensemble-learning algorithm based on decision trees [61]. As in general for
ML-based approaches, RF is capable of learning from and making predictions on data by
modeling the hidden relationships between a set of input and output variables. Inputs are
the independent variables, or predisposing factors, while the outputs are the dependent
variables, represented in the present case by the burned areas.

In more details, decision trees are supervised classifiers providing decisions at mul-
tiple levels and constituted by a root node and child nodes. At each node, decisions are
performed based on training predictor values. The number of trees (ntree) to implement the
model and the number of variables (mtry) randomly sampled as candidates at each split,
are the only hyperparameters that need to be specified by the user. The algorithm generates
ntree subsets of the training dataset, counting about two-thirds of the observations chosen
by bootstrapping (i.e., random sampling with replacement). The remaining one-third of
the observations (called “out-of-bag”) are kept out and used to assess the prediction-error,
allowing to optimize the values of the hyperparameters. For each subset, mtry variables are
then randomly selected at each decision tree and, at each node, the best variable is assessed
based on the minimization of the Gini impurity value. This last denotes the probability
of classifying incorrectly an observation if it were classified randomly, according with
the class distribution in the dataset. The prediction of new data is finally computed by
taking, for classification problems, the maximum voting of all the trees. This value can be
converted into a probabilistic output, by normalizing it over the number of iterations (i.e.,
ntrees). In this study, hyperparameters were set to 500 for ntree and 3 for mtry.

In addition, RF allows to assess the relative importance of each variable on the predic-
tion. This is achieved by evaluating the Mean Decrease Accuracy, computed by estimating
how much the tree nodes which use that variable reduce the mean square errors on the
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out-of-bag. Moreover, the partial dependence plot gives a graphical depiction of the
marginal effect of each variable on the class probability over different ranges of continuous
or discrete values.

3.4. Model Validation

A well-established procedure to validate the outputs of a model in ML is to split the
dataset into three-subsets, defined as training, validation, and testing. In more details,
the training subset is needed to generate the model, which will be used to get predictions
on new data. The ultimate purpose of the validation subset is the optimization of the
hyperparameters of the model, performed by applying a trial and error process (i.e., by
comparing the values predicted with the observed). Lastly, the testing subset provides an
unbiased evaluation of the final model, allowing to assess its performance in making good
predictions on new data, supposed to be drawn from the same distribution as the training
data. Indeed, a good model has to give accurate predictions on previously unseen data
and avoid under- and over-fitting.

Actually, the out-of-bag in RF can act for validation purposes. Nevertheless, when
dealing with spatio-temporal environmental phenomena, the random selection of the
data in the out-of-bag leads to a spatial issue of auto-correlation, meaning that most
of the training and validation data will probably be close each other, holding similar
characteristics. To overcome this, we selected the validation subset using a spatial k-fold
cross-validation approach. This consists of splitting the original training dataset into k-
folds, keeping out a fold at a time, training the model on the k-1 folds, and finally validating
the model using the kept-out fold. The process is repeated k-times and the evaluation
scores resulting from each folding is finally averaged. The use of k-folds assures a better
spatial generalization of the final model. Here, we considered 5-folds, organized into
spatial blocks of 100 × 100 km for the entire department of Santa Cruz, and of 50 × 50 km
for the municipality of San Ignacio de Velasco. In the present study, the Area Under the
Receiver Operating Characteristic (ROC) Curve (AUC) represents the evaluation score used
as indicator of the goodness of the model in classifying areas more susceptible to burn. ROC
is a graphical technique based on the plot of the percentage of correct classification (the true
positives rate) against the false positives rate (occurring when an outcome is incorrectly
predicted as belonging to the class “x” when it actually belongs to the class “y”). The AUC
value lies between 0.5, denoting a bad classifier, and 1, denoting an excellent classifier.

To asses the predictive performance of the model, that is its ability to make a good
prediction for future events, an independent testing subset was selected by splitting tempo-
rally the original dataset. The burned areas observed in the period of 2010–2016 were used
in the training procedure, while the last three years of observations (2017–2019) were used
as testing. To this end, we computed the percentage of the area with a probabilistic output
value in a certain range, falling inside the burned areas in the testing dataset. Therefore,
we can assume that the implemented model gives good prediction if it results in a higher
percentage for high predicted values and a lower percentage for low predicted value.

4. Results and Discussions
4.1. Wildfires Susceptibility Mapping in Santa Cruz

Outputs of RF are probabilistic values, expressing the probability of burning for
each pixel under the assumption of a set of predisposing factors, namely altitude, slope,
ecoregions, and land cover. These results provided the necessary information for the
elaboration of a wildfire susceptibility map for the department of Santa Cruz (Figure 7).
Probabilistic predicted values have been ranked into four classes, defined by equal intervals
of 25% percentile ranges. It follows that the first quartile (i.e., the first interval) represents
the 25% of the area with the lowest probability of burning, while the last quartile represents
the 25% of the area with the highest probability of burning, and so on for the intermediate
ranges. These range limits correspond different probabilistic output values (Prob. value),
allowing a flexible interpretation of the results. It can be observed that the south-west
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area results to be low susceptible to wildfires, as for a central band developing from north-
west to south-east, which is lightly susceptible. On the other hand, very high classes of
susceptibility, corresponding to a probabilistic predicted values higher that 0.7, are mostly
located in the central and northern areas.

The main causes contributing to wildfire susceptibility in the department of Santa
Cruz are the following:

• The high rates of deforestation that occur in the different municipalities. Four out of
ten municipalities with the largest deforested areas in Bolivia until 2013 are located in
the Obispo Santistevan province [62]. Similarly, according with more recent data [63],
the municipality of San Ignacio de Velasco in the province of José Miguel de Velasco
headed the list of the 25 Bolivian municipalities with the highest levels of deforestation
between 2016 and 2018.

• The presence of large livestock properties known for burning large areas to enlarge
pastures and agricultural lands. For instance, in the municipality of San Matías,
located in the province Ángel Sandoval and corresponding to the second area most
affected by the extreme fires of 2019, 75% of the burned areas can be imputed to the
farming industry [50].

• High rates of wildfires initiated in neighboring countries, close to the border. For
example, the Germán Busch province, located in the Bolivian Pantanal, has large areas
with very high wildfire incidence due to the spreading of fires that start in Brazil. It
was indeed verified that many of the fires that affected the National Park and the
Integrated Management Area Otuquis originated in Brazil and then spread up to this
area [64].

• Activities linked to the urban areas. For instance, in the Sara province, one of the main
causes of wildfires is uncontrolled waste burning [62].

4.1.1. Model Validation and Performance Evaluation

The ROC curve was estimated on the validation dataset, selected based on the 5-fold
spatial cross-validation procedure. This method is usually employed to determine the
quality of model predictions. The accuracy index corresponds to the AUC, for which values
close to 1 indicate that the resulting susceptibility map has an excellent accuracy. For the
implemented model, it results in an AUC of 0.73, corresponding to a good performance.

Results of the predictive performance of the model are presented in Table 3. RF
outputs were organized into four classes ranking, according to the quartile distribution
(Perc.). In addition, the corresponding probabilistic output value is specified in the table
(Prob. value). For each range, the area coincident with the testing polygons (Testing BA,
corresponding to the years 2017, 2018, and 2019) is computed both as percentage and as
absolute surface value (in hectares). Therefore, the field Testing BA [%] represents the
percentages of the Total area included in the burned area detected in the testing dataset. For
example, looking at the first row, the 25% of the Total Area with the lowest probability of
burning (first quartile) corresponds to the output with a probabilistic value between 0 and
0.04 and it results that 6.77% of this areas is coincident with the burned area of the testing
dataset. On the opposite extreme, 50.69% of the areas in the last quartile (>75%) (i.e., the
25% of the Total Area with the highest probability of burning included into a probabilistic
values range between 0.7 and 1), is coincident with the burned area of the testing dataset
(Figure 8). For each single testing period, values correspond to 63.54% (339,153 ha) in 2017,
56.16% (411,119 ha) in 2018, and 50.67% (1,687,505 ha) in 2019.

The last row informs us that for half of the Total Area with the highest probability
of burning, 75.79% lies within the testing burned area (Figure 8). For each single testing
period, this value corresponds to 84.36% (450,300 ha) in 2017, 81.12% (593,851 ha) in 2018,
and 75.31% (2,508,189 ha) in 2019. It follows that the developed model displays the best
predictive performance in 2017 and the worst in 2019.



Geosciences 2021, 11, 224 12 of 23

Figure 7. Wildfire susceptibility map of Santa Cruz.

Figure 8. Performance evaluation of the RF outputs (Percentile range and corresponding Probability
values) for the department of Santa Cruz, assessed by using the testing dataset (2017–2019 burned area).
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Table 3. Model validation evaluated by computing the predicted burning area (BA) for different
percentile classes (Perc.) falling within the testing burned areas, estimated globally (Testing BA), and
for each single year (2017, 2018, 2019).

Perc. p-Value
Testing BA BA 2017 BA 2018 BA 2019

[%] [ha] [%] [ha] [%] [ha] [%] [ha]

<25% 0–0.04 6.77 281,460 4.7 25,142 5.7 41,546 6.7 223,272

25–50% 0.04–0.3 17.4 725,102 10.9 58,315 13.2 96,672 18 598,737

50–75% 0.3–0.7 25.1 1,043,996 20.8 111,147 25 182,732 24.6 820,684

>75% >0.7 50.7 2,108,121 63.5 339,153 56.2 411,119 50.7 1,687,505

>50% >0.3 75.8 3,152,117 84.4 450,300 81.1 593,851 75.3 2,508,189

Total 100 4,158,679 100 533,757 100 732,089 100 3,330,198

4.1.2. Variable Importance Ranking

The variable importance ranking is shown in Figure 9. Based on the Mean Decrease
Accuracy, the land cover results to be the most important variable, followed by ecoregions.
This implies that the topology (i.e., altitude and slope) plays a secondary role in wildfires
prediction in the area, compared with the physical coverage of the Earth’s surface.

Figure 9. RF variable importance analysis for Santa Cruz based on the Mean Decrease Accuracy.

Three types of ecoregions are particularly prone to wildfires: Southwestern Amazon
forest, Chiquitano dry forest, and flooded savanna. Indeed, they are associated to the three
types of forests that proved to be the most affected by fires: Amazon forest, Chiquitano
forest and Pantanal forest. For instance, previous studies demonstrated that, during the
course of their evolution, the species of trees found in dry forests were exposed to fires
of low to moderate severity [65,66]. Therefore, they have a limited capacity to recover
naturally following the extensive high-severity fire of the last decades. On the other
hand, the Cerrado ecoregion is structurally open, containing abundant fire-tolerant woody
species [67]. Thus, for a good interpretation of the results performed by the present
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analysis, it is important to take into account the different types of ecoregions and the land
cover classes.

The partial dependence plot (pdp) allows to estimate, for each single factor, the relative
probability of prediction success over different ranges of discrete values. This was evaluated for
the two most important factors: land cover (Figure 10) and ecoregions (Figure 11).

Figure 10. Partial dependence plot on the explanatory variable land cover. See Table for class
descriptions.

Figure 11. Partial dependence plot on the explanatory variable ecoregions. See Table 2 for class
descriptions.

For land cover (Figure 10), the probability of predicting the observed burned areas is
higher for the class shrub or herbaceous cover, flooded, fresh/saline/brakish water. Three
kinds of forests belong in this category: Chiquitano forest, Pantanal forest, and Chaqueño
forest. The former possessed a very high probability of burning as we could see in the
susceptibility map. Both the Chiquitano and the Pantanal forests are under increasing
agricultural pressure and intensifying cattle ranching activities, recurring to the heavy use
of slash-and-burn practice which caused the invasion of fire-tolerant grass species [67].
According to the pdp, the less influential land cover type is tree cover, broadleaved,
deciduous, closed/open (15–40%). This land cover type includes the following forests:
Chaqueño, Yungas, and Tucumano-Boliviano forests.

The pdp for ecoregions (Figure 11) shows that the highest value is associated to
flooded savanna. Indeed, this ecoregion is characterized by the presence of grassland and
shrub or herbaceous cover, flooded, fresh/saline/brakish water. On the other hand, the
less influential ecoregions are Gran Chaco and Dry-Inter Andean forest, which do not
have a high incidence of wildfires. These results are also in accordance with the previous
considerations on the relative importance of the various land cover types.
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4.2. Results of the Model in San Ignacio De Velasco Municipality

The model developed for the entire department of Santa Cruz was then applied
to the municipality of San Ignacio de Velasco, allowing a deeper analysis at the local
scale, which implies a more homogeneous distribution of the predisposing environmental
variables. Probabilistic outputs of the RF allowed to elaborate the wildfire susceptibility
map (Figure 12). The 25% of the area with the highest probability of burning resulted
to be more concentrated in the east and southeastern sectors. These areas are mainly
characterized by the flooded savanna and Cerrado ecoregions, and by the land cover class
shrub or herbaceous cover, flooded, fresh/saline/brakish water, which is very prone to
wildfires. Indeed, slash-and-burn is a common practice in these areas, since they are the
most exploited by humans for agriculture, livestock, and logging.

Figure 12. Wildfire susceptibility map of San Ignacio de Velasco municipality.

Predictions on the testing dataset are better in San Ignacio de Velascothe Figure 13 than
in the entire department of Santa Cruz. Comparison between the predictive performance of
RF in the two study areas is provided in Table 4. It results that, at municipality scale, 87.59%
of the burned area within the testing dataset falls in the half of the area predicted with
the highest probability of burning, compared to 75.79% at departmental scale. Looking at
each single testing period, values are very high in 2017 (92.36%) and 2018 (91.15%), while
in 2019 the performance of the model is less good (86.29%). Taking in consideration the
last quartile (>75%), these values dropped of about 30%, with an average value of 56.51%
considering the entire testing dataset, compared to 50.69% at the departmental scale.
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Table 4. Comparison between the predictive performance of the model by quantile ranking range
classification for San Ignacio de Velasco and Santa Cruz.

Study Area Perc. Testing Dataset Year 2017 Year 2018 Year 2019

[%] [ha] [%] [ha] [%] [ha] [%] [ha]

S. Ignatio de Velasco >50% 87.59 667,850 92.36 134,816 92.15 207,346 86.29 448,879

>75% 56.51 430,868 66.52 97,095 69.14 155,577 52.48 272,994

Santa Cruz >50% 75.79 3,152,117 84.36 450,300 81.12 593,851 75.31 2,508,189

>75% 50.69 2,108,121 63.54 339,153 56.16 411,119 50.67 1,687,505

The best performance of the model in the municipality of San Ignacio de Velasco,
compared with the entire department of Santa Cruz, is confirmed by the results of the
AUC estimated from the ROC curve (Figure 14). These indicate an accuracy of 0.8 at
the municipality scale, which is a higher value than the one obtained at departmental
scale (0.73).

Figure 13. Performance evaluation of the RF outputs (Percentile range and corresponding Probability
values) for the municipality of San Ignacio de Velasco, assessed by using the testing dataset (2017-2019
burned area).

Results of the analysis of the variable importance ranking are presented in Figure 15.
As for the entire department of Santa Cruz, ecoregions and land cover are, respectively, the
first and the second most important variable, while slope and DEM are not very reliable
factors. The dominant ecoregions in the area were also the most affected by wildfires:
southwestern Amazon forest, Chiquitano Dry forest, and flooded savanna. Furthermore,
the most diffuse types of forest are the Amazon forest and the Chiquitano forest, for which
a natural recovery after an extensive and severe fire is very difficult.

The pdp of land cover (Figure 16) reveals that the most important class for the predic-
tion of wildfires is shrub or herbaceous cover, flooded, fresh/saline/brakish water. Once
again, this is in accordance with the results obtained for Santa Cruz. Indeed this type of
land use is employed for agriculture, livestock, and logging, which are related to high rates
of deforestation within the municipality. The less influencing land cover type according to
the pdp is tree cover, broadleaved, evergreen, closed/open (>15%), even if this prevails in
the municipality area. The reason behind can be that, since this cover is widely present, the
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model is not able to distinguish between the presence and absence of wildfires here. As
regards the pdp for ecoregions (Figure 17), the graphic shows that flooded savanna is the
most influential type for the predictive success of the model. The less important one is, in
this case, the southwestern Amazon forest, probably because of the high wetness index
characteristic of the original vegetation [68].

Figure 14. ROC curves for Santa Cruz (in red, AUC = 0.73) and for San Ignacio de Velasco (in blue,
AUC = 0.8).

Figure 15. RF variable importance analysis for San Ignacio de Velasco based on the Mean Decrease
Accuracy.
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Figure 16. Partial dependence plots on the explanatory variable land cover. See Table 2 for class de-
scriptions.

Figure 17. Partial dependence plots on the explanatory variable ecoregions. See Table 2 for class de-
scriptions.

5. Conclusions

The central-South American forest is one of the major fire-prone areas worldwide [42,43].
Land use management and climate changes have caused wildfires to become more frequent and
extended in the recent years [69,70]. In Bolivia, the department of Santa Cruz was hit by extreme
fires in 2019 and globally this area accounts for more than two-thirds of the total wildfires in the
country [71,72]. Despite Bolivia being in the list of the top countries for the expected annual
burned forest area, the literature on wildfires is quite limited, also because of the scarcity of
available data, resources, and informatization. The present study contributes to fill this gap,
thanks to the implementation of an accurate dataset of burned area that occurred in the entire
department of Santa Cruz in the period of 2010–2019. In addition, environmental variables that
can favor the wildfire ignition and spread (related to topography, land cover, and ecoregions)
have been collected and processed as digital spatial information. This accurate dataset allowed
implementing a machine learning-based model, using the Random Forest algorithm, providing
as output the probability of burning for each single unit-area. The model was applied both at
the departmental and at the municipality scale, considering the smaller and more homogeneous
area of San Ignacio de Velasco.

The area under the ROC curve (AUC) was computed for validation purposes, based
on a 5-fold cross-validation procedure. In addition, an independent testing subset was
selected by splitting temporally the original dataset, allowing to assess if the model makes
good prediction on future events. As a result, we obtained a probabilistic output which
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allowed elaborating the susceptibility maps for the two study areas. The model validation
gave good results, that improved at the municipality scale (AUC = 0.8) compared to the
departmental scale (AUC = 0.73). Likewise for the prediction on the testing dataset (2017–
2019), for which it results that more than 50% of the burned area coincides with the last
quartile on the susceptibility map for both the study areas. It is worth noting that in the
first two years (2017 and 2018) about 60% of the burned area was correctly predicted for
the department of Sanza Cruz, and that this value increased from 66.52% to 69.14% for
San Ignacio de Velasco. Indeed, the extreme wildfire events of 2019 made the prediction
of the model less accurate. In this regard, it must be stressed that the testing subset is
supposed to be drawn from the same distribution as the training data. It follows that, if its
distribution differs from the observations used to train the model (e.g., extreme events or
outside the norm), the model will results in weaker predictions. We must mention here that,
among the two million wildfires registered worldwide every year in the recent period, only
a few become extreme events [73,74]. Extreme wildfires cause substantial damages and
often result in civilian and firefighter fatalities since they tend to overwhelm suppression
capabilities. Modeling and predicting these extraordinary events is very challenging since
their extreme behavior and impact result from the complex interaction with atmospheric
processes and climatic conditions (such as heat waves, long dry periods, very strong and
variable winds) and local conditions (e.g., low fuel moisture content, landscape connectivity,
inadequate initial attack, poor preparedness, and vulnerable communities). Thus, even
if advanced wildfire susceptibility models are promising tools for wildfire assessment
and prediction, future work should address the development of prediction mapping for
extreme wildfire events.

The detailed investigation of the relative importance of each categorical class belonging
to the variables ecoregions and land cover reveals that "flooded savanna” and “shrub or
herbaceous cover, flooded, fresh/saline/brakish water” are the two classes most related
with wildfires. This important outcome confirms recent findings, that seasonally wet and
dry climate, coupled with hydrologic controls on the vegetation, create in this ecoregion
conditions favorable to the ignition and spreading of large wildfires during the driest
period, when the biomass is abundant [75,76]. The occurrence of large fires, initiated by
slash-and-burn practice getting out of control, is predicted to increase in the near future
and the development of new tools for fire risk assessment and reduction is thus needed.

To conclude, it is worth to underline that wildfires are likely to become more dominant
in Santa Cruz because of the vicious cycle linking the current slash-and-burn deforestation
practices, the rapid frontier expansion, and longer drought periods. In a broader sense,
these harmful conditions could be further exacerbated by the increased moisture stress
acting in different forests of great global relevance such as the Amazon, Chiquitano, and
Pantanal coupled with the spreading use of fire in these areas. Therefore, it is necessary to
dispose of key tools for wildfire prevention-planning programs aiming to reduce human,
ecological, and material losses. In addition, to take full advantage of machine learning
for the mapping and assessment of natural disaster, it is of paramount importance to
develop an accurate and updated digital geospatial dataset and more effort has to be done
in this regard.

This study proved that: (i) Random Forest can successfully be employed for prediction
mapping and to asses wildfire predisposing factors; (ii) it is possible to implement a simple
but powerful model even for a country, such as Bolivia, with poor resources in terms of
data-availability and informatization.
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