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Abstract  

Climate-triggered forest disturbances are increasing either by drought or by other climate 

extremes. Droughts can change the structure and function of forests in long-term or cause 

large-scale disturbances such as tree mortality, forest fires and insect outbreaks in short-term. 

Traditional approaches such as dendroclimatological surveys could retrieve the long-term 

responses of forest trees to drought conditions; however, they are restricted to individual trees 

or local forest stands. Therefore, multitemporal satellite-based approaches are progressing for 

holistic assessment of climate-induced forest responses from regional to global scales. 

However, little information exists on the efficiency of satellite data for analyzing the effects of 

droughts in different forest biomes and further studies on the analysis of approaches and 

large-scale disturbances of droughts are required. This research was accomplished for 

assessing satellite-derived physiological responses of the Caspian Hyrcanian broadleaves 

forests to climate-triggered droughts from regional to large scales in northeast Iran.  

The 16-day physiological anomalies of rangelands and forests were analysed using 

MODIS-derived indices concerning water content deficit and greenness loss, and their 

variations were spatially assessed with monthly and inter-seasonal precipitation anomalies 

from 2000 to 2016. Specifically, dimensions of forest droughts were evaluated in relations with 

the dimensions of meteorological and hydrological droughts. Large-scale effects of droughts 

were explored in terms of tree mortality, insect outbreaks, and forest fires using field 

observations, multitemporal Landsat and TerraClimate data. Various approaches were 

evaluated to explore forest responses to climate hazards such as traditional regression models, 

spatial autocorrelations, spatial regression models, and panel data models. 

Key findings revealed that rangelands’ anomalies did show positive responses to 

monthly and inter-seasonal precipitation anomalies. However, forests’ droughts were highly 

associated with increases in temperatures and evapotranspiration and were slightly 

associated with the decreases in precipitation and surface water level. The hazard intensity of 

droughts has affected the water content of forests higher than their greenness properties. The 

stages of moderate to extreme dieback of trees were significantly associated with the hazard 



intensity of the deficit of forests’ water content. However, the stage of severe defoliation was 

only associated with the hazard intensity of forests’ greenness loss. Climate hazards 

significantly triggered insect outbreaks and forest fires. Although maximum temperatures, 

precipitation deficit, availability of soil moisture and forest fires of the previous year could 

significantly trigger insect outbreaks, the maximum temperatures were the only significant 

triggers of forest fires from 2010‒2017. In addition to climate factors, environmental and 

anthropogenic factors could control fire severity during a dry season. 

The overall evaluation indicated the evidence of spatial associations between satellite-

derived forest disturbances and climate hazards. Future studies are required to apply the 

approaches that could handle big-data, use the satellite data that have finer wavelengths for 

large-scale mapping of forest disturbances, and discriminate climate-induced forest 

disturbances from those that induced by other biotic and abiotic agents. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Kurzfassung 

Klimagbedingte Waldstörungen nehmen entweder durch Dürre oder durch andere 

Klimaextreme zu. Dürren können langfristig die Struktur und Funktion der Wälder verändern 

oder kurzfristig große Störungen wie Baumsterben, Waldbrände und Insektenausbrüche 

verursachen. Traditionelle Ansätze wie dendroklimatologische Untersuchungen könnten die 

langfristigen Reaktionen von Waldbäumen auf Dürrebedingungen aufzeigen, sie sind aber auf 

einzelne Bäume oder lokale Waldbestände beschränkt. Daher werden multitemporale 

satellitengestützte Ansätze zur ganzheitlichen Bewertung von klimabedingten Waldreaktionen 

auf regionaler bis globaler Ebene weiterentwickelt. Es gibt jedoch nur wenige Informationen 

über die Effizienz von Satellitendaten zur Analyse der Auswirkungen von Dürren in 

verschiedenen Waldbiotopen. Daher sind weitere Studien zur Analyse von Ansätzen und 

großräumigen Störungen von Dürren erforderlich. Diese Forschung wurde durchgeführt, um 

die aus Satellitendaten gewonnenen physiologischen Reaktionen der im Nordosten Irans 

gelegenen kaspischen hyrkanischen Laubwälder auf klimabedingte Dürren auf lokaler und 

regionaler Ebene zu bewerten. 

Auf der Grundlage der aus MODIS-Daten abgeleiteten Indizes wurden die 16-tägigen 

physiologischen Anomalien von Weideland und Wäldern in Bezug auf Wassergehaltsdefizit 

und Grünverlust analysiert und ihre Variationen räumlich mit monatlichen und intersaisonalen 

Niederschlagsanomalien von 2000 bis 2016 bewertet. Insbesondere wurden die Dimensionen 

der Walddürre in Verbindung mit den Dimensionen der meteorologischen und hydrologischen 

Dürre bewertet. Großräumige Auswirkungen von Dürren wurden in Bezug auf 

Baumsterblichkeit, Insektenausbrüche und Waldbrände mit Hilfe von Feldbeobachtungen, 

multitemporalen Landsat- und TerraClimate Daten untersucht. Verschiedene Ansätze wurden 

ausgewertet, um Waldreaktionen auf Klimagefahren wie traditionelle Regressionsmodelle, 

räumliche Autokorrelationen, räumliche Regressionsmodelle und Paneldatenmodelle zu 

untersuchen. 

Die wichtigsten Ergebnisse zeigten, dass die Anomalien von Weideland positive 

Reaktionen auf monatliche und intersaisonale Niederschlagsanomalien aufweisen. Die 
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Dürren in den Wäldern waren jedoch in hohem Maße mit Temperaturerhöhungen und 

Evapotranspiration verbunden und standen in geringem Zusammenhang mit dem Rückgang 

von Niederschlägen und des Oberflächenwasserspiegels. Die Gefährdungsintensität von 

Dürren hat den Wassergehalt von Wäldern stärker beeinflusst als die Eigenschaften ihres 

Blattgrüns. Die Stufen mittlerer bis extremer Baumsterblichkeit waren signifikant mit der 

Gefährdungsintensität des Defizits des Wassergehalts der Wälder verbunden. Das Ausmaß 

der starken Entlaubung hing jedoch nur mit der Gefährdungsintensität des Grünverlustes der 

Wälder zusammen. Die Klimagefahren haben zu deutlichen Insektenausbrüchen und 

Waldbränden geführt. Obwohl Maximaltemperaturen, Niederschlagsdefizite, fehlende 

Bodenfeuchte und Waldbrände des Vorjahres deutlich Insektenausbrüche auslösen konnten, 

waren die Maximaltemperaturen die einzigen signifikanten Auslöser von Waldbränden von 

2010 bis 2017. Neben den Klimafaktoren können auch umweltbedingte und anthropogene 

Faktoren den Schweregrad eines Brandes während einer Trockenzeit beeinflussen. 

Die Gesamtbewertung zeigt Hinweise auf räumliche Zusammenhänge zwischen aus 

Satellitendaten abgeleiteten Waldstörungen und Klimagefahren. Weitere Untersuchungen 

sind erforderlich, um Ansätze anzuwenden, die mit großen Datenmengen umgehen können, 

die Satellitendaten in einer hohen spektralen Auflösung für die großmaßstäbige Kartierung 

von Waldstörungen verwenden und die klimabedingte Waldstörungen von denen zu 

unterscheiden, die durch andere biotische und abiotische Faktoren verursacht werden. 
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1 
Introduction 

1.1 Motivation 

Despite inherent resilience of forest ecosystems to variations in climate ranging from short-term 

to millennia, climate shifts such as droughts, heatwaves, and water stresses can affect forest 

function, structure and services [1], resulted in large-scale mortality, forest fires, and insect 

outbreaks and pathogens [2–5]. Traditional methods dependent on the dendroclimatological 

surveys could retrieve tree responses to these conditions at fine time scales [6–10]; however, they 

are restricted to individual trees or local forest stands [11] and have the limitation for identifying 

the holistic status of a forest biome that affected by climate hazards.  

Today, multitemporal satellite-based data and approaches have facilitated long-term and 

near-real-time assessing climate-induced vegetation anomalies at regional to global scales [12]. 

However, our understanding to date has been limited to explore satellite-based forest 

anomalies that mostly accomplished in tropical and boreal biomes using specific data and 

approaches, and sometimes with some uncertainties, which need to be elaborated in respect 

of other forest biomes, satellite data, and alternative approaches.  The potential of new satellite 

products needs to be tested for retrieving forest droughts and detecting forest disturbances 

induced by climate hazards. Moreover, the approaches that could consider spatial and time 

dimensions of variables require to be explored for visualizing and quantifying forest droughts 

and disturbances induced by climate-triggered droughts. 
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1.2 Time series analysis of earth observation satellites 

1.2.1 Sensors 

Although numerous earth observation satellites, ranging from optical to radar, have been 

launched for monitoring and assessing the earth, very few sensors have been collected 

appropriate data for time series applications.  

The time series of some optical satellite sensors are available for about four decades such as 

Landsat image collections obtained by MSS, TM, ETM+, and OLI sensors, and NOAA image 

collections obtained by different AVHRR sensors. The time series of MODIS sensors, onboard 

the Aqua and Terra satellites,  in different time scales and spatial resolutions, are available after 

2000 as well. The access to the archives of these data has been freely provided by the online 

databases of NASA and USGS (https://lpdaac.usgs.gov). The SPOT daily vegetation data at 1 km 

full spatial resolution are available since 1998, three months after archiving, to public users 

(http://proba-v.vgt.vito.be/). A series of data acquired by commercial high-resolution sensors 

since 1999, but are not freely available to public users. The capability of few sensors, with 

recording the bands in the thermal infrared ranges, has been demonstrated in the analysis of 

spatiotemporal patterns of LST, for example, from the MODIS, AVHRR, and Landsat sensors 

[13–15]. Also, the time series of some radar data are available; such as TRMM for monitoring 

precipitation since 1998 [16] and MetOp for collecting atmospheric information since 2006 [17]. 

The Sentinel satellites ranging from Sentinel-1 (radar images), Sentinel-2 (high-resolution 

multispectral images), Sentinel-3, and Sentinel-5P are being available under the Copernicus 

Program since 2014, 2015, 2016, and 2018, respectively. Although the duration of the collections 

of Sentinels is limited until the present, their broad ranges of applications particularly in 

vegetation and climate monitoring, high spatial and temporal resolutions, a wide range of bands 

for assessing vegetation disturbances from Sentinel-2, and free access through various databases 

such as Copernicus Open Access Hub (https://scihub.copernicus.eu/) and Google Earth Engine 

datasets (https://developers.google.com/earth-engine/datasets/) would provide a new era of the 

remote sensing time series analysis in the future decades.  

 

http://proba-v.vgt.vito.be/
https://scihub.copernicus.eu/dhus/#/home
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1.2.2 Variables 

The analysis of time series of satellite data is mainly based on their derivative variables such as 

geophysical and index variables. The satellite-derived variables such as TOA, LST, and LAI—by a 

physical unit—are some examples of the geophysical variables. However, dimensionless satellite-

derived indices such as NDVI, EVI, NDWI, and SWI are representative of the index variables [17]. 

For example, some products of MODIS such as MOD13Q1 provide 16-day vegetation indices 

including EVI and NDVI at 250 m or MOD11A2 provide monthly LST at 1 km since 2000. 

1.2.3 Components  

Different components are defined for analyzing remote sensing time series such as the long 

term variations (trend component), seasonal variations, and short term variations. Changes in 

the phenology cycle of forests due to variation in the precipitation or temperature can emerge 

in the seasonal component. Immediate responses of forests to the pathogenes, insect outbreaks, 

and natural hazards is an example of residuals (short term variations), which will emerge as a 

long term trend (e.g., declining or increasing biomass) throughout the years [18]. 

1.3 Classification of droughts  

Drought is considered as one of the main global natural hazards with substantial effects on the 

natural ecosystems, societies, food, and global economies [19]. Drought is characterized by a 

gap in precipitation relative to long-term normal conditions, which may remain for several 

weeks to months in the regions either with high rainfall or with low rainfall [20]. Though there 

is no unanimous definition of drought, drought types are classified concerning their hazard 

aspects into meteorological drought, agricultural drought, and hydrological drought [21].  

Meteorological drought is characterized by an amount of water lower than the long-term 

average that induces by low rainfall and high evapotranspiration in a specific area. 

Agricultural drought is referred to as a condition that the availability of soil moisture 

affecting the productiveness and death of plants, resulting in reducing soil moisture reservoir 

and then crop yields [22]. 
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Hydrological drought is characterized by a reduction in water availability forms including 

surface water or reservoirs, which estimates through its consequences such as the depletion of 

aquatic habitat, the failure of irrigation and hydroelectric projects, and recreational 

programmes [23].  

Despite this, further drought classifications have developed depending on drought’s 

consequences to the social security and economy such as socioeconomic drought or 

disturbances-induced natural ecosystem damage such as ecological drought [21]. 

However, forest drought is characterized by its physiological responses to drought 

incidences [24], which may appear as a reduction in forest’s water content or greenness 

properties with massive consequences such as tree mortality, forest fires, insect infestations, 

and pathogens. 

1.4 Drought dimensions 

Drought is a complex phenomenon with various dimensions, which employe for assessing 

and monitoring of droughts. Some major dimensions are severity, frequency, duration, onset 

and end time, and spatial extent of drought. The severity is defined as a degree of moisture 

deficit and divided into mild, moderate, severe, and extreme categories. The severity is 

measured using drought indices. The frequency represents the recurrence interval of moisture 

deficit. The duration is the time interval between the onset and end of a drought episode. The 

onset and end times represent the start and end times of a drought episode, respectively; they 

are determined with respect to the specific threshold values of drought indices. The spatial 

distribution of drought across the landscape is defined as the spatial extent of drought; it is 

determined using multitemporal remote sensing data and drought indices [25]. 

1.5 Remote sensing of drought 

Drought indices are mainly applied for quantifying droughts depending on the ground-based 

or remote sensing data. Conventional meteorological and hydrological drought indicators 

such as SPI and SWI are obtained from analyzing the historical ground-based databases. 
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Advanced remote sensing systems have provided data and products that could appropriately 

quantify, monitor, and assess droughts from both spatially and temporally aspects at local, 

regional, and global scales [25,26]. Time series of AVHRR, MODIS, and Landsat are long series 

of databases that could quantify not only droughts’ dimensions but also could assess 

vegetation responses to climate hazards from local to global scales [27]. 

Various indicators have been developed concerning the visible, NIR, SWIR, and TIR 

spectra of satellites for quantifying and assessing droughts’ dimensions and their effects on 

the forest functionality, composition, and services. Some indices have targeted the greenness 

variations of vegetation during drought episodes such as NDVI and EVI [28], while several 

indices have developed for assessing the water content variations of vegetation in such a 

condition like NDWI [29]. 

Although some studies verified the capabilities of satellite-derived indices for detecting 

responses of forests to drought conditions [30], other studies have challenged their capabilities 

in this concept [31]. Moreover, forest biomes may show different responses to drought 

episodes. For example, forests in the arid and humid biomes have shown responses to 

droughts at shorter time-scales than the forests in the semiarid and sub-humid biomes [32–34]. 

There is little information about the responses of temperate forests, such as Hyrcanian forests, 

to drought conditions regarding time scales, the potential of vegetation indices for retrieving 

physiological responses of these forests, and the priority of greenness and water content 

indicators for these purposes. 

1.6 Forest degradation and climate-triggered drought 

Various abiotic and biotic agents are controlling forest degradation. The abiotic agents such as 

high temperatures, droughts, fluctuations of soil moisture, and forest fires may significantly 

trigger biotic agents such as invasive species, insect defoliators and pathogens [4,35–37]. Some 

studies demonstrated that long-lasting droughts increase forest vulnerability that could affect 

the carbon storage and hydraulic systems of trees [38–42] by the symptoms like reducing 

growth and greenness, or increasing tree mortality, insect outbreaks, and pathogens [43–48]. 
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Although several studies have documented the effects of high temperatures on insect 

outbreaks [49–51], there are still some uncertainties about the effects of droughts on triggering 

forest insects [52]. Moreover, some studies reported the positive impact of forest fires on insect 

outbreaks [53,54], while insect infestation may have positive [5,55,56], negative [57], or neutral 

[58,59] effects on the severity of forest fires. 

Different wavelengths of satellite remote sensing provide the possibility for detecting 

different forest disturbances induced by biotic or abiotic agents. The infestations caused by 

insects and pathogens could be discriminated from healthy forests with the contribution of 

bands in the visible, red edge, NIR and SWIR-1 ranges [60–64]. Forest affected by water 

stresses could be identified through the bands in the regions of visible, red edge and NIR 

plateau [61,62]. The anomalies of forest greenness and water content may be retrieved using 

indices derived from the bands in the regions of visible, red edge, SWIR-1 and -2 [34,65–67]. 

Trends in the tree mortality could be depicted through the series of vegetation bands or measuring 

the shifts in SWIR reflectances in a died-off forest relative to its healthy condition [68]. 

Although advanced satellite-based approaches have provided discriminating insect-

affected forests from undisturbed forests, measuring the intensity of individual tree mortality 

from available time series is directly problematic. Therefore, the approaches are mostly limited 

to analyse the relationships between the satellite-derived physiological anomalies of forest and 

field-based tree mortality mensuration using LASSO regression [69], random forest [70], or 

timescales and time-lag effects [71,72] approaches. Despite their satisfactory results in terms 

of performance, accuracy, and predictions, they summarize the model residuals of data from 

different locations without taking account of their spatial variations. Spatial regression 

approaches could consider the effect of the spatial location of data by calculating weights in 

relations with neighbours such as SL and SE [73] or within a kernel such as GWR [74]. Little 

known about the efficiency of spatial autoregressive models for quantifying the effects of 

climate-triggered drivers on the satellite-derived forest droughts and disturbances.  

Furthermore, random forest and TreeNet algorithms, depending on machine learning, 

could satisfactorily detect some forest insect disturbances using satellite-derived features 

[49,75,76]. Machine learning approaches such as random forest and TreeNet can handle big 

data without the need for any preprocessing; they work with both parametric and non-
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parametric variables, and avoid over-fitting in learning data [77,78]. Besides, image 

segmentation concerning spectral information of images significantly increases the accuracy 

of extracting features from satellite images. In addition to numerous image-based object 

features, there is a possibility to derive features from GIS databases and apply them for image 

classification– known as GEOBIA [79]. The integration of GEOBIA and machine learning 

algorithms may improve discriminating forest disturbances from the forest background and 

each other. 

1.7 Hyrcanian forests 

The Hyrcanian temperate broadleaf deciduous and mixed forests are the only relic forests 

of the Paleozoic Era and known as the alive fossils of Euro-Siberian phytogeographical forests 

that were destroyed during the glacial periods [80]. Indeed, the milder climate conditions of 

the Caspian Sea led them to survive during the glaciation era. 

 The Hyrcanian ecoregion stretches as a narrow belt—880 km length and 20 to 75 km 

width—along with the southern shores of the Caspian Sea and the northern mountain ranges of 

Alborz (Figure 1.1a and b). These forests are one of the richest ecosystems in the world by more 

than 280 endemic and subendemic vascular plant species, about 180 birds and 58 mammals 

species. These forests comprise a mixture of broadleaf tree species such as chestnut-leaved oak 

(Quercus castaneifolia), oriental beech (Fagus orientalis), hornbeam (Carpinus betulus), velvet maple 

(Acer velutinum), Persian ironwood (Parrotia persica), and elm (Ulmus glabra) [81,82]. 

This study was accomplished in the eastern part of Hyrcanian forests, northeastern Iran. 

Three basins were selected in the Golestan Province including Atrak (7,931 sq.km), Gorganrood 

(10,826 sq.km) and Qare-sou (3,153 sq.km). The Gorganrood and Qare-sou basins mostly cover 

by natural forests, while the Atrak basin consists of semi-steppe winter rangelands (Figure 1.1c).  

These forests largely have been degrading not only by intensive anthropogenic processes 

[83] but also by severe natural hazards– such as large forest fires, insect outbreaks (Figure 1.2) 

and pathogens [84–87]– that may be induced by extreme climate conditions.  
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Figure 1.1 The locations of Hyrcanian ecoregion in the Eurasian temperate broadleaf and mixed forests 

(a), Golestan Province in the Hyrcanian ecoregion (b), and the distribution of forests and rangelands in 

three studied basins including Atrak, Qare-sou and Gorganrood (c). 

(a) 

(b) 

(c) 
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• evaluate spatial and temporal responses of forests and rangelands to precipitation 

deficits based on the long-term variations of  MODIS-derived vegetation greenness 

and water-content properties in the Hyrcanian ecoregion 

• investigate spatial associations between the dimensions of forest droughts and the 

dimensions of meteorological and hydrological droughts using multitemporal 

MODIS products and Fuzzy techniques in the Hyrcanian deciduous forests 

• explore the intensity of tree-mortality induced by MODIS-derived hazard intensity of 

forest droughts 

• develop a new approach for discriminating between insect-defoliated and non-insect-

defoliated forests from Landsat 8 OLI and ancillary data by applying GEOBIA and 

TreeNet algorithm  

• identify mutual relationships between the intensity of insect infestation and severity 

of forest fire in the presence of TerraClimate-derived climate hazards throughout the 

time period of the forest infestation using panel data models in the Hyrcanian forests 

1.9 Overview of the dissertation  

This cumulative dissertation is divided into six chapters. After this introductory chapter, the 

main parts of the dissertation are structured in the four chapters that were written as stand-

alone articles and published in international peer-reviewed journals. These articles were 

written mainly by the first author (the author of this dissertation) and revised by co-authors. 

As each of the articles has published by a specific publisher, they were reformatted base 

on a single standard structure in this dissertation. The contents of the four articles have 

remained unchanged throughout the dissertation and are embedded in Chapter 2 to Chapter 

5 as follows:  

Abdi, O.; Kamkar, B.; Shirvani, Z., Teixeira da Silva, J.A.; Buchroithner, M.F. Spatial-

statistical analysis of factors determining forest fires: A case study from Golestan, Northeast 

Iran. Geomatics, Natural Hazards and Risk 2018, 9, 276–280, doi: 10.1080/19475705.2016.1206629 

Abdi, O.; Shirvani, Z., Buchroithner, M.F. Spatiotemporal drought evaluation of 

Hyrcanian deciduous forests and semi‐steppe rangelands using moderate resolution imaging 
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spectroradiometer time series in Northeast Iran. Land Degrad. Develop. 2018, 29, 2525–2541 , doi: 

10.1002/ldr.3025 

Abdi, O.; Shirvani, Z., Buchroithner, M.F. Forest drought-induced diversity of Hyrcanian 

individual-tree mortality affected by meteorological and hydrological droughts by analyzing 

moderate resolution imaging spectroradiometer products and spatial autoregressive models 

over northeast Iran. Agricultural and Forest Meteorology 2019, 275, 265–276, doi: 

10.1016/j.agrformet.2019.05.029 

Abdi, O. Climate-Triggered Insect Defoliators and Forest Fires Using Multitemporal 

Landsat and TerraClimate Data in NE Iran: An Application of GEOBIA TreeNet and Panel 

Data Analysis. Sensors 2019, 19, 3965, doi: 10.3390/s19183965 

Therefore, the presented dissertation is based on the included articles and framed by an 

introductory and a conclusion chapter as follows: 

Chapter 1 addresses the importance and problems, research questions, objectives, 

background about remote sensing of forest droughts, tree mortality, and forest infestation, and 

structure of the dissertation. 

Chapter 2 attempts to discuss determining factors of forest fires focusing on climatic, 

environmental, and anthropogenic agents during a drought condition. 

Chapter 3 explains monthly and seasonal responses of deciduous forests and semi-steppe 

rangelands to drought conditions. It discusses how vegetation anomalies were derived from 

MODIS time series and also presents the spatial models for estimating long-term precipitation 

anomalies. Ultimately, it demonstrates the spatial indicators for testing local relations between 

vegetation (forest and rangelands) stresses and precipitation deficits. 

Chapter 4 assesses the long-term responses of forest types to meteorological and 

hydrological droughts and investigates spatial associations of the diversity of tree-mortality 

and the hazard intensity of forest droughts. Drought hazard intensity was calculated from 

different drought dimensions for forest, meteorological and hydrological variables. The 

dimensions of forest drought were derived from MOD13Q1 time series.  The dimensions of 

meteorological and hydrological droughts were derived from a combination of ground-based 

measurements and the MODIS products including MOD11A2 and MOD16A2. The intensity 



12 
 
 

 

of tree-mortality was computed based on the field observations of various tree species which 

were affected by different levels of dieback.  

Chapter 5 presents a novel method for discerning insect-affected and non-insect-affected 

forests using GEOBIA and TreeNet machine learning algorithms with Landsat 8 OLI and 

ancillary data. Moreover, it investigates the relations between the intensity of insect 

infestation, climate hazards and the severity of forest fires. It explains how the hazard intensity 

of forest defoliation and climate variables were derived from the time series of Landsat and 

TerraClimate data, respectively. Meanwhile, it expresses how the severity of forest fires was 

calculated and explains the used methods for applying connections among these variables 

using panel data analysis. 

Finally, Chapter 6 summarises achievements, expresses concluding remarks, presents the 

scientific relevance and also discusses an outlook on potential future studies to further 

improve the discussed approaches and forest disturbances using remote sensing data.  

Besides, this dissertation includes two Appendices supplementing Chapter 3 and 4. 
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2.1 Abstract 

Intermittent fires in Northeast Iran in the autumn of 2010 resulted in the burning of some 

valuable forest habitats. The objective of this study was to apply geographic information 

systems (GIS) to determine to what degree three key factors (environmental, climatic, and 

anthropogenic) influence the severity rating of fires in these forests. The forest fire sites were 

surveyed and imported into GIS. The severity of burnt areas was considered in relation to the 

three factors. Statistical functions were used to calculate the effect of the factors at each fire 

site. Logistic and stepwise regressions were used to determine the fire severity rating related 

to each factor. The results indicate that as the number of cumulative days after the onset of fire 

increased, the burnt areas also increased at a rate of 303.5 ha/day (R2 = 0.95). Consequently, 

forest density, daily mean wind speed, daily mean temperature and distance to roads were 

highly correlated with the daily severity rating of forest fires, and only daily temperature and 

forest density affected the size of the burnt areas. Prediction maps show that about 24% of the 

forests have high fire durability, amounting to 7% of the fire-sensitive area. The findings from 

this case indicate that GIS can be effectively employed in fire management to assess the 

damage, and possibly to prevent future fires, thus assisting in the preservation of valuable 

forest resources. 

2.2 Introduction 

The prediction of forest fires constitutes a significant component of forest fire management. It 

plays a major role in resource allocation, mitigation and recovery efforts. Forest and grassland 

fires cause air pollution, extinction of rare floral and faunal species, devastating loss and 

irreparable damage to the environment and atmosphere, global warming, and threaten the 

lives of people who live near forests[88]. Forest fires in Northeast Iran have become more 

common in recent years (Table 2.1). This phenomenon is of concern since the likelihood of 

similar fires in the future is high. For example, in 2010, intermittent forest fires burnt more 

than 16,000 ha in these areas in just less than one month [89]. In the majority of forest fire 

reports, the causes of these fires are ‘unknown’, so there is a need for basic studies that assess 
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the probability of forest fires and examine the main factors that affect its durability and 

severity. 

Table 2.1 Statistics of forest fires that were occurred in Northeast Iran from 2001 to 2010. 

Source: Abdi et al. [89] and Eskandari [90]. 

Forest fires, based on their origin, can be divided into natural fires, or fires induced by 

humans. Finding the relationship between fire and weather factors, vegetation and human 

criteria is necessary, and different aspects can be probed [91]. Substantial attempts have been 

performed for characterizing, anticipating, modelling, planning, and managing wildfires in 

various Mediterranean countries [92,93]. To determine the effects of anthropogenic, climate 

and environmental factors separately, different statistical methods, models and algorithms 

have been tested. Statistical methods have also been applied to visualize spatial and temporal 

variations in fire susceptibility as a function of predictors like vegetation, climate, relief, and 

anthropogenic activity by historical fire data [94–99]. Beverly et al. [100] developed a model 

for fire susceptibility in west-central Alberta, Canada, in which multivariate statistical analysis 

was used to identify the key factors, and their results were carried out to establish a Fire 

Susceptibility Index (FSI) that was significantly influenced by fuel composition, fuel 

organization and topographic of the earth’s surface. Moreover, Beverly et al. [100] and Oliveira 

et al. [101] compared the application of multiple linear regression and random forest methods 

to identify the main structural factors that could describe the probability of occurrence of a fire 

at a European scale: the random forest model had a higher predictive capability than multiple 

linear regression. Furthermore, Oliveira et al. [101] applied some variables which were 

Year Number of fires Burnt area (ha) 

2001 45 254.20 

2002 59 395.50 

2003 

2004 

2005 

2006 

2007 

2008 

2009 

2010 

74 

68 

132 

130 

124 

140 

67 

200 

1920.10 

266 

633.60 

548.30 

766.7 

325.64 

201.25 

16180 
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common to both models, and rainfall and soil wetness appeared to affect the occurrence of fire 

to a vast range, although unemployment rate, overgrazing and local road density were also 

constituted to be significantly affected by the multiple linear regression and random forest 

methods. For instance, a logistic model was used by Chou et al. [102] to identify areas with a 

high likelihood of fire occurrence based on environmental, anthropogenic and spatial 

variables in the San Bernardino National Forest, California, and also by Garcia et al. [103] to 

forecast the sum of fire-days in the White Court Forest of Alberta, USA. In the region of 

Golestan forests of Northeast Iran, Abdi et al. [89] used a multiple regression model to identify 

the correlations between forest management factors and the frequency of forest fire occurrence, 

with a strong positive correlation (up to 70%) between fire duration and the low density of 

forest roads, fencing and channel excavation in forest management plans. In addition, the 

majority of burnt areas were affected by three factors: lack of skilled personnel reduced forest 

management practices and fencing or channel excavation operations (about 90%). 

Furthermore, Mohammadi et al. [104] integrated logistic regression and geographic 

information systems (GIS) to study the risk of forest fires and to identify the factors that most 

influenced the occurrence of forest fires in the forests of western Iran. In this study, the 

correlation between forest fires and climatic variables, human factors and physiography were 

analysed. Results indicated that the likelihood of fire occurrence was negatively correlated to 

slope percentage, altitude and distance from croplands, but was positively correlated to the 

amount of annual rainfall. 

To rate the occurrence of wildfires, most industrialized countries use prediction systems 

that involve a large number of monitoring tools, including weather forecast algorithms. 

However, most of the developing countries cannot afford the use of these technologies because 

of the weakness of their technical resources. New approaches are, thus, needed to predict the 

occurrence of forest fires while considering a reduced number of monitoring features. These 

can be classified into wildfire occurrence prediction systems and indices, and artificial 

intelligence [105]. Therefore, in countries such as Iran, identification of effective factors to 

control forest fires and the use of prediction probability maps can serve as a preventive or 

protective approach to improve fire management. 
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GIS and remote sensing, as two components of system-approach procedures, have been 

applied to evaluate fire susceptibility at distinctive spots based on spatial data for biophysical 

factors, the fire variations, and other attributes, or in composition with fire-behaviour models 

[91,106–109]. These two techniques have also been used to determine risk zones and 

probability maps of fire occurrence [91,110–112]. For example, a method based on spatial GIS 

analysis and logistic regression was used by Zhang et al. [113] to predict the probabilities of 

anthropogenically caused grassland fires in Inner Mongolia.  

Since there is a lack of novel methods to monitor the early detection of forest fires in Iran, 

identifying induced factors and mapping fire susceptibility is very important. Therefore, the 

goal of this study was to use the spatial and statistical capabilities of GIS to determine the effect 

of environmental, climatic and anthropogenic factors on the temporal extension and area of 

forest fires. Besides, mapping forest fire susceptibility depended on the significant effect of 

factors on fire severity in the forests of Northeast Iran. 

2.3 Materials and Methods  

2.3.1 Study area 

This study was performed in the northeast forests of Iran located in the Southeast of the 

Caspian Sea. The geographic coordinates of the study area are within 54˚ 43ʹ 55ʹʹ to 56˚ 01ʹ 09ʹʹ E 

and 36˚ 44ʹ 02ʹʹ to 37˚ 29ʹ 14ʹʹ N. It is approximately 116 km long, 30 km wide, and an area 

spanning of 2465 km2. The elevation ranges from 190 to 2500 m above sea level. The relief 

increases gradually with increasing elevation from South to North. According to reports by 

the Department of Natural Resources and Watershed Management (DNRWM) of Golestan 

Province, more than 14550 ha of these areas burnt during less than one month in October and 

November of 2010. In this period, the mean temperature amounted approximately to 22 ˚C (6 

˚C higher than the long-term average), and the average precipitation was 40 mm lower than 

long-term data. The average lowest relative humidity was 35% (20% less than long-term data). 

In those two months, there were only three rainy days versus 10 days for long-term data. The 

vegetation in the Golestan forest region has a diversity of plant communities, including beech 
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(Fagus orientalis Lipsky), alder (Alnus subcordata C.A.Mey.), Caucasian oak (Quercus castaneifolia 

C.A.Mey.), Eastern hornbeam (Carpinus betulus L.), yew tree (Taxus baccata L.), common juniper 

(Juniperus communis L.), cypress tree (Cupressus sempervirens L.), and ironwood (Parrotia persica 

(DC.) C.A.Mey.) [114]. The study area consists of nine counties, including approximately 356 

towns and villages. Paved roads, dirt roads and forest roads are common in this region (Figure 

2.1). Most of the forest roads were built to facilitate wood production and forest accessibility, 

and have a low density (4.53 m/ha), distributed unevenly throughout the area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 The distribution of towns and villages, paved roads, dirt roads and forest roads in Northeast Iran. 

2.3.2 Digital fire data 

The fire data were provided by the DNRWM of Golestan and established after our field survey. 

The fire database is based on a data archive, including all reported forest fires from 16 November 

2010 to 13 December 2010 (29 consecutive days), where a total of 135 fires occurred. The size of 

the burned polygons was between 0.1 and 2927 ha. In most cases, the causes of fires were 

unknown. Each fire report contained different variables, including the fire’s location, duration 

(minutes), day of ignition, final area burnt, weather and estimated cause. The boundaries of the 

forest fire polygons were surveyed using an Oregon 550 Garmin GPS device. 



Chapter 2 

 
 

 

 

2.3.3 Digital map data 

All digital data related to the factors affecting the forest study area were obtained from two- and 

three-dimensional digital topographic maps (scale of 1:25,000) of the National Cartographic 

Center of Iran (NCC), SPOT5 satellite imagery, and daily meteorological data from available 

synoptic-climatological stations in Golestan Province. All digital data and spatial analyses were 

performed using ArcGIS software. Geodatabase data were created for boundary lines, roads, 

residential areas and forests. All geo-data were available at a 1:25,000 scale, as a Universal 

Transverse Mercator projection and as WGS84 Datum. 

2.3.4 Methods 

2.3.4.1 Spatial analysis 

Environmental factors including slope, aspect and plan curvature layers were derived using 

surface analysis functions from the Digital Elevation Model (DEM) with 10 m cell size. Forest 

density was obtained using the Normalized Difference Vegetation Index (NDVI) from SPOT5 

images for September and November 2009 with 10 m spatial resolution, four spectral bands 

with orthorectification, corrected for terrain displacement, and also for atmospheric effects. 

The values of this index range from -1 to 1 [115]. The common range for green vegetation is 

0.2‒0.8. 

Climatic factors were mapped using different GIS functions. The historical meteorological 

data were obtained from available non-automatic weather stations. These data were 

extrapolated to calculate meteorological layers with a cell size of 10 m2. For this purpose, a 

multiple regression method was applied. Each variable, including mean temperature, average 

relative humidity, wind speed and precipitation, was related to corresponding coordinates 

and elevation data. To obtain the least-squared difference between observed data minus 

simulated data, different combinations were tested. Then, a 10 m2 DTM array was generated 

to extract X and Y coordinates as well as Z values in the centre of each cell. Finally, all 

meteorological variables were calculated by an algebraic function and interpolated by 

functions of the Spatial Analyst of ArcGIS10.1. 
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Then, different anthropogenic-induced factors were assessed, including the distance from 

paved, dirt and forest roads; residential area maps were created by connectivity and spread 

functions, while the population density layer was created by the Kernel density function. From 

this set of data, different variables were selected as input data for the fire prediction model 

(Table 2.2). 

Table 2.2 Environmental, climatic, and anthropogenic parameters used as factors affecting the 

occurrence and durability of forest fires. 

Predictor description Factors 
 Environmental parameters 

Elevation (m) Digital elevation model 
Slope (degree) Slope 

The direction of maximum slope Plan curvature 

Aspect (degree) Aspect 

Normalized Different Vegetation Index Forest density 

  

 Climatic parameters 
Daily mean temperature (ºC) Temperature 
Daily relative humidity (%) Relative humidity 
Daily mean wind speed (m/s) Wind speed 
Daily precipitation (mm) Precipitation 
  

 Anthropogenic parameters 
Population density (people/km2) Population density 
Distance to the residential (m) Residential distance 
Distance to the paved road (m) Paved road distance 
Distance to the dirty road (m) Dirty road distance 
Distance to the forest road (m) Forest road distance 

 

The most commonly used metrics to describe the effectiveness of a forest road network 

included road density (RD), which is simply the length of roads divided by the forest area, and 

road network coverage (RCVR), which is obtained by dividing the average distance of road 

spacing by the forest area [116]. 

2.3.4.2 Statistical analysis 

Forest fire severity was considered as the period from the start until the end of the fire 

against the total burnt area. Cumulative burnt areas were plotted against time (days). From 

this curve, the time to burn 50% of the total area was determined by fitting a logistic model to 

the cumulative burnt areas (G) versus time (t, hours), as indicated in Equation 2.1: 
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                                                                                                             (2.1) 

where Fx is the maximum burnt area, b is the time to reach 50% of all cumulative burnt areas 

and a is a value determined by an iterative optimization method to minimize the observed 

minus the predicted value. The times for 5%, 10%, 90% and 95% were also determined by 

interpolation and are designated as D5, D10, D90 and D95, respectively. 

To calculate the mean values of three factors (environmental, climatic and anthropogenic) 

for each fire region, the zonal statistics function was used. Consequently, the stepwise multiple 

regression method [117] was carried out to find the relationship between dependent and 

predictors in SPSS software program; the variables of three factors (environmental, climatic 

and anthropogenic) were entered based on their correlation with the dependent variables 

(forest fire severity) in the model. Variables with a higher correlation were entered earlier, and 

variables with a lower correlation were eliminated. Eventually, numerical models of forest fire 

susceptibility were developed, and the maps of forest fire susceptibility, in a raster format, 

were generated based on these models and also the significant factors affecting fire severity in 

the study area. These maps were then classified into five categories with the equal interval 

method in ArcGIS. 

2.4 Results and discussion 

Forest fires present a real threat to precious forest resources in the northeast of Iran, almost 14,550 

ha of this area burned during November and December of 2010. The size of fire patches was 

calculated as being between 1.13 and 2927 ha (Figure 2.1). The duration of the fires was variable, 

from 2 h to 12.7 days with approximately 29 days in total. In other words, about 4% of the forests 

burned in less than one month. Results of the logistic model indicate that with increasing 

cumulative days after the onset of a fire event, the burnt areas also extended at a rate of 303.5 

ha/day (Figure 2.2; R2 = 0.95). The results also indicate that approximately 50% of the total area 

burned over 19 days and that the remaining 50% only within the 10 remaining days (Figure 2.3). 
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The rate at which the fire spread increased at the end of this period, revealing that operations to 

suppress and prevent fire were not successful. 

 

 

 

 

 

 

 

Figure 2.2 The logistic model between burned area and duration of fire in Northeast Iran. 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Cumulative days of fire occurrence against burnt area (cumulative days calculated based on 

cumulative hours of forest fire occurrence in all burnt areas divided by 24 to convert it to the daily). 

Stepwise regression results of the three key factors (environmental, climatic and 

anthropogenic) affecting the occurrence of fire are shown in Table 2.3. The start and extend of 

a fire event are mainly affected by the water content of the surface fuels, by the moisture 

content of the trees, and by wind speed. Various limitations provide the litter moisture content 

to be evaluated: air temperature, moisture, and precipitation [118]. Extreme climate 
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parameters were ripe for the occurrence of fire in the northeast of Iran during these forest fires, 

as the mean temperature was approximately 6 ˚C higher than the long-term average (1980‒

2010), average precipitation was 40 mm lower than the long-term mean, and average relative 

humidity was 20% less than long-term data. The wind speed was between 11.50 and 65.50 

km/h with an average of 36.80 km/h in the fire patches (Table 2.4). Statistical analysis of climate 

factors indicates that daily mean temperature and wind speed significantly affected the 

duration of forest fires in the study area (R2 = 0.47; F = 10.4; P ≤ 0.05), but there was no significant 

correlation between the size of fires and these parameters.  

Table 2.3 Stepwise regression results depending on the factors affecting forest fire 

occurrence in Northeast Iran. 

Factors Sig. F Determination coefficient 

Fire durability    

Forest density 0.0028 11.34 32.48 

Daily mean of wind speed 0.0567 4.05 47.27 

Daily mean temperature 0.0001 21.93 55.46 

Distance to roads 0.0002 8.96 63.06 

 

Burnt area 

Daily mean temperature 0.006 9.1 27.48 

Forest density 0.000 130.01 88.84 

 

Figure 2.4 shows that the larger fire patches occurred in the regions with average wind speed. 

Furthermore, our analysis indicated that daily mean temperature was affected both by fire duration 

and fire spread (P ≤ 0.01), more so by fire duration than fire spread in all fire patches (Table 2.3). 

Table 2.4 Statistics of climatic parameters during times of forest fires compared with long-term 

data (1980--2010) in Northeast Iran. 

 

 

Climatic parameters 
Average statistics for Oct. & Nov. 

Long-term  2010 

Daily mean temperature (ºC) 15 21 

Daily relative humidity (%) 55 35 

Daily mean of wind speed (m/s) 5.5 10.2 

Daily precipitation (mm) 58 18 

Frequently of precipitation (day) 10 3 
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Figure 2.4 The spatial relationship between daily mean wind speed and burnt areas in Northeast Iran. 

Figure 2.5 indicates that fires that occurred at high temperatures displayed more extreme 

severity than those that occurred at low temperatures. Some previous scholars have demonstrated 

that under extreme climate-change pressure, weather applies a significant control on fire severity 

and fire behaviour [93,119–122]. In this study, other climatic parameters (daily relative humidity 

and precipitation) showed fewer changes during wildfires and no significant effect on fire severity. 

In contrast, the results of earlier research indicate that the probability of fire occurrence is positively 

related to the amount of annual precipitation [101,104]. 

Moreover, among all anthropogenically induced factors, only distance to roads had a high 

positive correlation with fire durability. When this factor was added to the regression model, the 

coefficient of determination (R2) for the model increased to 63.06% (F = 10.4; P ≤ 0.01). Furthermore, 

Figure 2.6 indicates that the forest road network did not comply with the standards of forest roads 

in the study area. The road density (RD) was 4.53 m/ha, and road network coverage (RCVR) was 

observed in 53.97% of the study area. Thus, optimum road density can decrease the occurrence 
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Figure 2.5 The spatial relationship between daily mean temperature and burnt areas in Northeast Iran. 

and duration of fire because access to fire-prone zones is easier. This is consistent with other 

research findings in Iran [89]. The vicinity to the road is a known key factor in forest fire studies 

[101]. A survey of the burned forests showed that the majority of fire spots were located in regions 

with low road density. Therefore, it is important to consider optimal road density (around 20 

m/ha) and a reasonable road network coverage (as much as 65%) within forest districts [116]. 

Access roads allow the movement of fire engines and reduce the travel time for fire crews to reach 

forest fires. In these forests, with low road density, tracks can be supplemented as primary forest 

roads. Tracks are very important for forest fire protection as they connect to the road network and 

also serve as a firebreak. They allow for wider and safer movements to fight a fire inside a forest 

or at its periphery [118]. Other anthropogenically induced factors had no significant effect on the 

duration of wildfires (P ≥ 0.05). Spatial analysis (Figure 2.1) shows that most wildfires occurred in 

areas with low population density and distant from public roads. The average distance of fire 

patches was 6 km from residential areas and 2.85 km from public roads. Other human activities 

might spark fires, including recreational activity, forest harvesting, mining and farming activities. 

This, in turn, suggests the need for carefully focused research into the patterns, seasonality, and 
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locations of different types of anthropogenic activities in fire-sensitive areas, demographics of the 

populations involved in these activities, and risk perceptions. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Burnt areas that show overlaps with forest road network coverage and outside of it. 

Regarding environmental variables, the regression model shows that forest density 

significantly affected fire severity (Table 2.3). Forest density not only affected the spread of fires 

more (R2 = 0.89; F = 130.01; P ≤ 0.01) but also significantly affected the duration of fire patches (P 

≤ 0.01). Figure 2.7 shows that the maximum NDVI value was about 0.71 in the study area. As the 

value of NDVI increased, forest density increased. Specifically, forest with high density is 

characterized by a continuous structure of tree crowns, where the fire is likely to spread as an 

active crown fire, thus leading to a greater accumulation of fuels and thus increase the severity 

of extreme fire [123,124]. This notion is supported by Figure 2.7, which shows that the percentage 

of the forest was significantly higher in fire patches than in other areas. Furthermore, in forest 

structures with high canopy closure, the risk of crown fires is higher because there is an increase 

in vertical and horizontal continuity [97,124]. Our study showed that there is no significant 

correlation between topographic parameters (slope, aspect and plan curvature) and fire severity 

in the study area (P ≥ 0.05). Nevertheless, the majority of fires occurred in the southwestern and 

southeastern aspects. Nearly 52% of areas to which fires spread and 45% of fire duration were 
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in the southwestern part, and these numbers were 33% and 31%, respectively, for the 

southeastern aspects, which tended to burn with greater intensity and thus with a resulting 

severity that was higher than in other parts because southern parts received more solar radiation 

and had less moisture [125]. Moreover, the average slope was about 40% in the fire patches, i.e. 

not a steep forest slope. Therefore, the slope had no significant effect on fire severity. Some 

research has shown that as slope increases, the distance and angle between flames and fuels 

decrease and result in more extreme fire severity [124,126–128]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 Burnt areas and fire spreading patterns in the study area. Forest density was based on NDVI. 

To apply these results to future forest fire management, susceptibility maps of forest fire 

severity were generated based on the significant factors in the regression results. This model 

incorporates environmental, climate and human factors, including vegetation, temperature, 

wind speed, and roads. Figure 2.8, which describes the likelihood of a forest fire based on the 

important parameters in fire durability, and classifies the five hazard categories by the equal 

interval method with intervals of 0.2 increments, shows that 24% of forests are in the hazard 
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class > 0.6 (high and very high), 38% in the medium class (0.4‒0.6), 31% with low severity (0.2‒

0.4), and 8% below 0.2 (very low severity). 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 Susceptibility map based on the duration of forest fires in Northeast Iran. 

 Table 2.3 shows that the distance to the forest road was the strongest variable to affect the 

duration of the forest fire with a determination coefficient of 63.06%. Our findings show that 

total road density in all the forests was about 4.53 m/ha, while it was much lower in the fire 

patches with about 1.03 m/ha (Figure 2.6). Road density is far from the required standards (20 

m/ha) in the study area. Related to the duration of fires, about two-thirds of the study area are 

in the hazard class of medium and above, so the development of a forest road network with 

reasonable density and strong coverage is deniable. Moreover, results of the probability map 

of fire spread showed that the vast majority (83%) of forests are located in the medium severity 

(76%), high severity (6%) and very high severity class (~1%) (Figure 2.9). Larger fire patches 

with longer burn times tended to happen in distant areas with poor road density that were 

primarily located at higher altitudes, and fewer road lines expand fuel continuity and result 

in a less fragmented landscape. As a result, there were larger and longer fires, particularly in 

the areas of lower road density and weak road network coverage. Furthermore, larger fires 
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tended to be in more distant forests with low accessibility for firefighter crews in the ground-

based operations), less fragmented by roads, and where there is high continuous fuel 

connectivity [129,130]. Higher road densities provide easier access for fire crews, equipment 

and behave like firebreaks in fire suppression [131,132]. In contrast, in some studies, the 

distance to the forest road was a significant contributing factor in human-induced fires, and 

higher road densities reflect a higher level of human activity [96,130,132,133].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 Susceptibility map based on the spread of forest fire in Northeast Iran. 

Our study provides novel information about the correlation between environmental, climatic 

and anthropogenic variables and fire durability and fire spread in Northeast Iran over a short time 

frame. Although fire severity is influenced by climate and forest density, forest roads are the single 

largest influencing parameter for extending the period of a fire, especially in forests with higher 

elevation, relatively lower road density and a weak road network coverage. 
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2.5 Conclusions 

Forest fires present a real threat to the forest resources of Northeast Iran. Our results indicate 

that with increasing cumulative days after the onset of a fire, the burned areas also extended at 

a rate of 303.5 ha/day during November and December of 2010, resulting in burning about 4% 

of total forested area in less than one month. We compared the factors that influenced the 

duration and spread of those wildfires. Forest density had a significant influence on the duration 

and spread of wildfires among the environmental parameters, whereas topographic parameters 

(slope, aspect and plan curvature) did not. Spatial analysis showed that large fires occurred in 

those regions with high forest density, such as southwestern and southeastern parts of our study 

site. We also found an intriguing relationship between fire severity (durability and spread of 

fire) and daily mean temperature, while wind speed had a significant influence only on the 

duration of the fire. There were no significant correlations between fire severity and other 

climate factors (daily precipitation and humidity) during the forest fire. In Iran, most forests 

have a weak forest road network, and thus access to the entire forest is impossible. There was a 

high proportion of forest fires in areas with low forest density and also a weak road network 

coverage. Spatial analysis showed that most wildfires occurred in areas with a low-density 

population and at a long distance from public roads, although it is likely that other 

anthropogenic activities may have affected the expansion of fires. We suggest that studies on the 

influence of anthropogenic activities such as recreation, timber harvesting, mining and farming 

on fire severity would be useful. Susceptibility fire maps showed that the vast majority of forests 

are located in the medium-class severity of the fire, or higher, where there is a serious risk of fire 

due to the weak road coverage of the study area. The need for forest roads is obvious not only 

in commercial forests but also in protected forests, as they provide access and line breaks for 

suppressing fires. 
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3.1 Abstract 

Advanced MODIS data have provided diverse products for assessing and monitoring natural 

vegetation affected by droughts. Between 2000 and 2016, we estimated monthly precipitation 

anomalies in the deciduous forests and semi-steppe rangelands of northeastern Iran using 

Kriging models, and analysed 16-day vegetation anomalies using vegetation greenness and 

water content indices—including the Enhanced Vegetation Index (EVI), the Normalized 

Difference Vegetation Index (NDVI), and the Normalized Difference Water Index (NDWI). 

Vegetation anomalies showed high positive responses to inter-seasonal precipitation 

anomalies over the 17 years and low positive responses to monthly precipitation deficits 

during critical droughts. Forest and rangeland anomalies recorded higher Moran’s coefficients 

based on the NDVI (I = 0.253±0.102) and NDWI (I = 0.284±0.087) with inter-seasonal 

precipitation anomalies, respectively. Throughout critical droughts, the NDWI anomalies 

showed higher coefficients with monthly precipitation deficits for both forests (I = 

0.0716±0.059) and rangelands (I = 0.125±0.0615). Nevertheless, there were only significant 

differences between the Moran’s coefficients of the three vegetation indices for rangelands (F 

= 2.873; P < 0.05). BiLISA maps indicated that sparse forests show higher spatial associations 

with drought conditions (High-high cluster), whereas dense forests experienced lower stresses 

by severe droughts (High-low outlier) during drought periods. Meanwhile, some severe 

vegetation stresses occurred at locations with low droughts (Low-high outlier), which indicate 

the impact of other significant climate-induced disturbances on vegetation anomalies. 

3.2 Introduction 

Droughts are a worldwide and recurring natural hazard with an extensive range of adverse 

impacts on natural ecosystems, social communities and the global economy [19], which rank 

first among all the natural disasters in the world (http://www.emdat.be/). Generally, droughts 

are defined as long-term dry conditions in affected areas by periods of several weeks to months 

with rainfall that is significantly below normal levels [20]. However, droughts are classified, 

http://www.emdat.be/
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based on their effects, into climatological, agricultural, hydrological and socioeconomic, but 

forest drought is also significant since its impacts on the ecosystem services [134]. 

Iran has experienced severe droughts in different periods during the last three decades 

[135]. Although droughts have been extensively studied from meteorological and hydrological 

perspectives in different climatic zones of Iran [136–139], their consequences on the vegetation 

have been explored in only a few research studies dealing with crops [140,141], irrespective of 

natural vegetation such as forests and grasslands. Numerous forest disturbances such as 

deforestation [83] and forest fires during drought periods were reported in different studies 

[84,142] in the northern part of Iran. By utilizing the Palmer Drought Severity Index (PDSI), 

Zoljoodi & Didevarasl [143] demonstrated that Iran experienced severe droughts during 1999-

2002. This research was particularly the case in the northwestern and the northeastern parts of 

Iran. Likewise, Kazemzadeh & Malekian [139] have reported on severe meteorological and 

hydrological droughts in the northwestern part of Iran in 2007-2008 and 2010-2011, 

respectively. They showed that the majority of this region was suffering from severe 

hydrological drought in comparison to meteorological drought. 

Today, satellite imagery offers widespread capabilities for monitoring the effects of 

drought on climatic variables, canopy physiology and disturbance feedback such as wildfires, 

tree mortality and yearly growth reductions [144–146]. The time-series of Advanced Very High 

Resolution Radiometer (AVHRR) data have been extensively used for environmental 

monitoring and documenting historical variations in climate and vegetation conditions using 

its derived NDVI and thermal infrared spectrum in the forested regions and grasslands for 

about three decades [147–149]. For example, Jong et al. [27] reported a strong spatial 

relationship between the variability of climatic parameters with the anomalies of forests and 

closed shrublands using the NDVI time series throughout the world from 1982 to 2008, in 

locations which browning anomalies predominated the greening anomalies. 

To date, the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard NASA’s 

Terra satellite has provided monitoring of the terrestrial vegetation in fine spatial, radiometric 

and temporal resolutions [150], which has led to the emergence of new perspectives on 

drought assessment and monitoring in the world [151] as compared to the AVHRR data. 
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Moreover, scholars have integrated meteorological variables and derived vegetation indices 

from the MODIS sensor to assess spatiotemporal patterns of droughts in forest canopies [152–

155] and rangelands [156]. For this purpose, vegetation indices (VIs), including vegetation 

greenness indices and vegetation water indices are designed to retrieve vegetation 

compositions, and their biophysical and structural features as well as their spatiotemporal 

changes by utilizing rationing between visible, near-infrared and shortwave-infrared channels 

of satellite data [157]. For example, MOD13Q1 includes vegetation greenness such as the EVI, 

NDVI and spectral channels (visible, NIR and SWIR) for deriving further indices, as well as 

pixel reliability information for checking the quality of NDVI and EVI [158]. 

Some researchers have challenged the capabilities of MODIS data to detect droughts in 

densely forested areas. For example, Atkinson et al. [31] analysed 11 years of derived vegetation 

indices (EVI and NDVI) from MODIS at a spatial resolution of 5.6 km for detecting the response 

of Amazonian vegetation to drought, and they reported that there was no significant variability 

between the VI standardized anomalies of drought years and non-drought years. Likewise, 

Samanta et al. [159] found no relationship between drought severity and EVI greenness values 

for Amazonian vegetation in the 2005 drought. The majority of these studies applied satellite 

images with low spatial resolution and short time series which gives credence to the argument 

that available remote sensing data and approaches are unable to detect anomalies in vegetation 

greenness during drought conditions. In contrast, some studies concluded that new leafage ‒at 

the top of the canopy‒ cause an increase in the near-infrared reflectance and increased greenness 

values of satellite-based indices during the dry season in the humid forests [160,161]. For 

example, Xu et al. [30] showed a significant and lasting decline in the EVI and NDVI values of 

Amazonian vegetation during the 2010 drought. Furthermore, Zhao et al. [162] compared the 

responses of natural vegetation to different stages of the 2009-2010 drought in China using 

MODIS NDVI and PDSI. Their results showed that the growth of grasslands and woody 

savannas were disturbed in all stages of drought, while forests only responded to the extreme 

droughts. Some researchers represented a higher sensitivity of densely-forested areas to MODIS 

water indices than to MODIS greenness indices. Anderson et al. [152] showed a positive spatial 

association between the EVI and tree mortality, but a negative association between the NDWI 

and tree mortality in Amazonian forest canopies during the 2005 drought. Gu et al. [156] 
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reported a strong spatial association between the NDVI and NDWI anomalies with the 2001-

2006 drought conditions in the central grasslands of the United States. Moreover, their analysis 

showed that NDWI was more sensitive than NDVI to drought conditions. Caccamo et al. [163] 

reported that although vegetation greenness indices and vegetation water indices were sensitive 

to time-steps and time-lags of the Standardized Precipitation Index (SPI) droughts, the SWIR-

based indices such as the Normalized Difference Infrared Index-band 6 (NDIIb6) and the 

Normalized Difference Infrared Index-band 7 (NDIIb7) demonstrated stronger performance 

than the visible-NIR indices such as NDVI and EVI in the high biomass ecosystems. 

This study is designed to determine the periods of drought events which occurred in 

northeastern Iran during the last three decades (1987-2016) using the SPI. Also, we will explore 

the probabilistic anomalous values in the vegetation greenness values through EVI and NDVI, 

as well as in the vegetation water values through NDWI indices of MODIS VI products’ time 

series (2000-2016). Finally, we will evaluate the possible spatial associations between the 

anomalous-MODIS-vegetation values and the SPI drought severity over the specified drought 

periods. Specifically, our goal is to find out an appropriate response to the following questions:  

• In which periods did the northeastern part of Iran experience severe droughts? 

• Did deciduous broadleaved forests and grasslands anomalies demonstrate 

positive responses to the inter-seasonal and monthly precipitation anomalies over 

the last 17 years? 

• Which MODIS-derived vegetation indices (EVI, NDVI, and NDWI) has the 

strongest spatial correlation with the severity levels of the inter-seasonal and 

monthly SPI droughts? 

3.3 Materials and Methods 

3.3.1 Study area description 

We focused our research on the province of Golestan with an area of 21,910 sq.km, including 

Atrak (7,931 sq.km), Gorganrood (10,826 sq.km) and Qare-sou (3,153 sq.km) basins in the 

northeast of Iran (Figure 3.1). These basins are heterogeneous based on the land-cover types, 
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topographic complexity, and climatic regimes. The Qare-sou and Gorganrood basins are 

covered by dense natural deciduous forests, reserved forests, summer rangelands with high-

quality forage, protected areas, fertile farmlands, and crowded residential areas, while, Atrak 

basin consists of semi-steppe winter rangelands, dry-farmlands, and sparse residential areas. 

The forests are the end part of Hyrcanian forests with rich deciduous broad-leaved tree species 

such as chestnut-leaved oak (Quercus castaneafolia), hornbeam (Carpinus betulus), velvet maple 

(Acer velutinum), Persian parrotia (Parrotia persica), elm (Ulmus glabra), etc. [164]. The elevation 

ranges between -30 meters in the northern parts and 3,360 meters in the south parts. According to 

the De-Marton climate classification system, the climate regime includes humid and semi-humid 

in Gorganrood and Qare-sou, and semi-arid in Atrak. The temperature varies between -5.5 and 

33°C [165]. The minimum and maximum precipitation recorded 230 and 866 mm in Atrak and 

Gorgan-rood, respectively. This region has experienced severe droughts over recent decades [143], 

which led to irreparable damage to natural vegetation and crop productions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Location of the Hyrcanian forests and Atrak, Gorganrood and Qare-sou watersheds (a) and 

distribution of land cover types as well as degraded vegetation (b) in the northeast of Iran.  
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3.3.2 Vegetation Indices (VIs) 

We obtained 16-day MODIS VI products (MOD13Q1) at 250-meter spatial resolution from the 

online database of NASA Land Processes Distributed Active Archive Center (LP DAAC) from 

February 2000 to December 2016. The standard MOD13Q1 product consists of the reflectance 

spectra (red: 0.6-0.7 µm, band 1; NIR: 0.7-1.1 µm, band 2; blue: 0.459-0.479 µm, band 3; SWIR: 

2.105-2.155 µm, band 7), and some useful ancillary data such as vegetation index quality and 

pixel reliability to remove cloud-contaminated pixels. Moreover, MOD13Q1 offers two 

applied vegetation greenness indices, i.e., NDVI and EVI for assessing vegetation anomalies, 

which are obtained from the visible and NIR bands as follows: 

                                                                                                                          (3.1) 

,                                                                            (3.2) 

where ƿ is the atmospheric corrected spectral bands, G is the gain factor (G=2.5), L is the 

canopy background adjustment (L=1), C1 and C2 are the coefficients computed for decreasing 

the effects of scattering and absorption onto the vegetation (C1=6 and C2=7.5) [166]. These 

coefficients and corrections increase the EVI sensitivity to retrieve differences and abrupt 

changes in the high biomass forests [158]. Besides, we derived the NDWI from the NIR and 

SWIR spectral bands over the 17 years as Equation 3.3 [29]. The NDWI is used to estimate the 

vegetation water content due to the less sensitivity of the SWIR to saturation in comparison 

with the used bands in the EVI and NDVI [152]. 

                                                                                                                           (3.3) 

3.3.3 Estimation of precipitation by Kriging 

Monthly precipitation data over the spatial extent of the study area were obtained from 

various rain gauges, with a minimum of 24 stations in 1987 and a maximum of 94 stations in 

2016. Kriging methods were used to estimate monthly precipitation from recorded historical 

data. Kriging is a geostatistical approach to providing an optimal, unbiased, and generalized 
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the least-square interpolator that minimizes expected error variance by fitting a 

semivariogram model [167]. Semivariogram is a pre-implementation step of geostatistical 

modelling to explore spatial autocorrelation among measured data, which is defined as half 

of the average squared difference between the values at z (xi + h) and z (xi) as indicated in 

Equation 3.4 [168]: 

,                                                                                                  (3.4) 

where n (h) is the number of paired rain gauges within a specific distance and direction. The 

smaller values of γ(h) represent a stronger spatial autocorrelation between paired values of z(xi)v 

and z(xi + h), and vice versa. To find the best-fitted model, we tested different variogram types 

(e.g. Spherical, Gaussian, Pentaspherical, Tetrasherical, Rational quadratic and Stable) using 

weighted least squares, and key properties of the semivariogram, i.e. sill, nugget, and range. 

Then, three kriging models include Ordinary Kriging (OK), Lognormal Ordinary Kriging (LOK), 

and Empirical Bayesian Kriging (EBK) were applied. OK was used to estimate precipitation from 

data with the normal distribution and a specific semivariogram as follows [167]: 

,                                                                           (3.5) 

where Zok is the linear regression estimator, Z(χ) is the measured precipitation at the location 

χ, all χi values are equal to n rain gauge stations, ωi(χ) is the weight, and m(χ) is the mean of 

monthly precipitation. 

LOK was used to take account of the strong positive skewed distribution of the few 

precipitation data with a very large or small value as well. We applied the logarithmic transforms 

onto the skewed precipitation data, and after estimation by ordinary kriging, we reverted the 

transformed data to the original precipitation values as indicated in Equation 3.6 [169]. 

,                                                                                                    (3.6) 

where Ŷ(xi) is the transformed estimation by lognormal kriging, σ2(xi) is the estimation 

variance of lognormal kriging, and Z(xi) is the back-transformed of estimation of the original 

precipitation data. 
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EBK was used to interpolate precipitation data with uncertainty in semivariogram 

parameters or small datasets. EBK automatically minimizes the error estimations by many 

semivariogram models (power, linear and thin-plate spline) rather than a single 

semivariogram model [170]. 

Finally, we compared the goodness of fit of all the used kriging methods by the cross-

validation method. This method continuously excludes a measured sample, then interpolates 

the values from the excluded observation and compares the estimated value with the 

measured value [171] using the mean error (ME), root mean squared error (RMSE) and root 

mean square standardized error (RMSSE) as given below: 

                                                                                                                     (3.7) 

                                                                                                       (3.8) 

 ,                                                                                     (3.9) 

where Z(xi) and z*(xi) are measured and estimated precipitation values at location xi, respectively, 

σ*(xi) is the standard deviation, and n is the number of rain gauges. The ideal monthly model was 

chosen based on the smallest RMSE, ME near to zero, and RMSSE near to one (Supporting 

information is found in Table 3.S1). When RMSSE is greater or less than one indicating an 

unstable model, particularly during the adjustment of parameters of Kriging models, and when 

it is close to one indicating the reliability of estimated standard errors [172].  

3.3.4 Excluding pixels subject to anthropogenic activities 

To differentiate vegetation anomalies induced by drought events from anthropogenic activities, 

we excluded anthropogenic-degraded-vegetation pixels from the non-anthropogenic-affected 

pixels between 2000 and 2016. Thus, Landsat images (Landsat 7 (ETM+) in 2000, and Landsat 8 

(OLI) in 2016) were interpreted to identify degraded vegetation and expanded anthropogenic-

based land-cover types. After radiometric and atmospheric corrections, spatial and spectral 
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enhancements were applied to the Landsat images to improve their resolutions in feature 

extraction. Then, supervised classifiers were carried out to classify land-cover types from 

selected multi-spectral images with high separability of spectral signatures at the beginning and 

the end of the period. Ultimately, we used the best distinctive change-detection method, i.e. post-

classification [173] to exclude degraded vegetation (rangelands and forests) pixels induced by 

sprawling anthropogenic activities (dry-farming, irrigated farming, orchards, construction 

areas, and water bodies) from the non-anthropogenic-affected pixels throughout the study area 

over the last 17 years (Figure 3.1b). 

3.3.5 Spatiotemporal analysis of vegetation and precipitation anomalies 

We analysed 16-day spatiotemporal anomalies of vegetation indices (NDVI, EVI, and NDWI) 

over a 17-year (2000–2016) and monthly spatiotemporal anomalies of precipitation over a 30-

year (1987–2016) to characterize the inter-seasonal and monthly pattern changes of vegetation 

during drought periods.  

The standardized anomalies of inter-seasonal and monthly precipitation (SPI) were calculated 

based on the precipitation value of pixel i in the month m of year j (ꭕi), the long-term mean (μim), 

and the standard deviation of precipitation (σim) for the same month at this pixel (Equation 3.10). 

The SPI values show a period varying from normal to extremely dry (0 to -3) or extremely wet 

(0 to +3) conditions. Negative SPI values indicate drought conditions; we classified them into 

extremely dry (SPI ≤ -2.00), severely dry (-2.00 < SPI ≤ -1.50), moderately dry (-1.50 < SPI ≤ -1.00), 

mildly dry (-1.00 < SPI < 0.00), and normal categories (0.00 ≤ SPI) [174]. 

                                                                                                                          (3.10) 

In addition, the standardized anomaly for a 16-day vegetation index (SDVI) was derived 

from the values of each vegetation index (NDVI, EVI, and NDWI) at pixel i in the 16-day p of 

the year j, the average spatial value of the vegetation index (VIip) calculated over the 17-year 

study period for the time period p, and the standard deviation of the17-year VIip values 

(Equation 3.11) [149].  

                                                                                                                     (3.11) 
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The SDVI values range from 0 to ±4, with negative values indicating below-normal 

vegetation conditions. Therefore, SDVI represents the 16-day vegetation conditions for 

vegetation indices at pixel i, during the growing season p of the year j, which compared to the 

long-term mean conditions for the same period along with the historical time-series data. 

Moreover, we classified SDVI values into the five vegetation-condition-classes based on the 

standard deviation of the three vegetation indices, including extreme stress (SDVI ≤ -2.00), 

severe stress (-2.00 < SDVI ≤ -1.00), moderate stress (-1.00 < SDVI ≤ -0.50), mild stress (-0.50 < 

SDVI < 0.00), and normal conditions (0.00 ≤ SDVI) [175].  

3.3.6 Spatial relationships between VIs and SPI 

Moran’s I evaluates a degree of spatial association between the attributes of a set of features 

located in neighbouring areas, which includes global autocorrelation, local autocorrelation, 

significance maps and cluster maps [176]. To identify the spatial correlation between inter-

seasonal precipitation anomalies (inter-seasonal SPI) with vegetation anomalies throughout 

the 17 years—as well as the spatial relationship between monthly precipitation deficit 

(monthly SPI) and 16-day vegetation anomaly (SDVI) calculated from the standardized NDVI, 

EVI, and NDWI— bivariate local indicators of spatial association (BiLISA) was applied at the 

pixel i as follows [176,177]: 

 ,                                                                                            (3.12) 

where n is the number of pixels, and Yi and Yj are identified values at the pixel i and j. The values 

of wij indicate the spatial weights matrix for measurement of the spatial association between the 

centroids of pixels, which were calculated based on the queen contiguity approach with the first 

order of neighbour in a 3 x 3 matrix [178,179]. W is the sum of weights of the matrices. 

If SDVI and SPI exhibit strong spatial association in the positive direction, then Moran’s I 

would be close to +1; no spatial association results in a Moran's I near zero; and strong 

association in the negative direction results in a Moran's I near -1 [176]. We tested the presence 

of global spatial autocorrelation based on 499 permutations with a pseudo-significance level 
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of 0.05. Using GeoDaTM [179], clusters were identified using the Moran scatterplot. Then, 

BiLISA cluster maps were coded as ‘High-high’ (the large values of SDVI surrounded by the 

large values of SPI), ‘Low-low’ (small values of SDVI surrounded by small values of SPI), 

‘High-low’ (large values of SDVI surrounded by small values of SPI), ‘Low-high’ (small values 

of SDVI surrounded by high values of SPI), and ‘not significant’ [176]. 

3.4 Results 

3.4.1 Spatiotemporal patterns of precipitation anomalies 

The results of estimated monthly precipitation from rain gauges indicate that the qualified models 

with higher accuracy varied in different months. Nevertheless, the OK models were performed 

more frequently than EBK from 1987 to 2016 (Supporting information is found in Table 3.S1.). 

Precipitation anomalies show different spatial and temporal variations throughout northeastern 

Iran between 1987 and 2016. These anomalies are shown with the overlapping periods of 

vegetation anomalies (2000-2016) in Figure 3.2a and b. This region experienced critical drought 

conditions in 2001, 2008, 2011 and 2014. The most severe of the droughts occurred in 2008, as 

about 15.4 and 6.4%, 66.8 and 20.8%, and 16.5 and 71.0% of forests and rangelands were affected 

by moderate, severe and extreme drought conditions, respectively (Figure 3.2c). Moreover, 

approximately 88.0% of forests experienced drought conditions in 2014 ranging from moderate 

(21.0%) to severe (51.7%) and extreme (15.2%) (Figure 3.2f). About 81.0% of the rangelands 

affected by moderate (3.0%), severe (73.3%) and extreme (4.0%) droughts in 2014 (Figure 3.2f). 

The drought event was remarkable in rangelands in 2001 as well, with 17.4% in the moderate 

category, 60.5%  in the severe category and 16.0% in the extreme category. About 51.0% of 

forests affected by moderate (18.6%) and severe (32.2%) droughts in 2014 (Figure 3.2f).  
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 Figure 3.2 The proportion of the forests (a) and rangelands (b) affected by different drought schemes compared 

to the long-term precipitation anomalies during the growing season of  2000-2016 (b), and four periods of severe 

droughts in 2001(c), 2008(d), 2011(e), and 2014 (f), respectively over the spatial extent of Northeast Iran. 

Although all of the forest lands and about 95.0% of the rangelands experienced drought 

conditions in 2011, about 43.7 and 22.0% of the forests and 31.0 and 21.0% of the rangelands 

were in the moderate and severe categories, respectively (Figure 3.2e). In contrast, the severe 

wet conditions were observed in 2003-2005 and 2012 in both forests and rangelands. The most 

severe wet condition occurred in 2012 in the forests and the rangelands with 23.8 and 16.7% in 

the moderate category, 31.6 and 17.9% in the severe category and 8.4 and 3.9% in the extreme 

category, respectively (Figure 3.2a and b). 
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3.4.2 Spatiotemporal patterns of vegetation indices 

The interpretation of Landsat images disclosed that anthropogenic drives degraded 

approximately 17,000 ha of forest lands and 51,500 ha of rangelands in 2000-2016 (Figure 3.1b). We 

excluded these areas from the vegetation anomalies affected by droughts throughout the study area. 

The MODIS vegetation indices varied spatially and temporally across the northeastern part 

of Iran during 2000-2016. Forests and rangelands experienced severe anomalies in 2001, 2008, 

2011 and 2014 as shown by the EVI, NDVI, and NDWI (Figure 3.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.3 Time‐series distribution of proportion areas of the vegetation greenness anomalies calculated 

by the enhanced vegetation index (EVI; a, b) and the normalized difference vegetation index (NDVI; c, 

d), and the vegetation water anomalies calculated by the normalized difference water index (NDWI; e, 

f) from 2000 to 2016. 
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The highest inter-seasonal forest-greenness anomalies, moderate to extreme stress 

conditions, was detected in about 90.0 and 86.0% of forests based on the EVI and NDVI in 2011 

(Figure 3.3a and c). We observed the highest inter-seasonal forest water-content deficits (NDWI) 

at about 84.0% of forests in both 2001 and 2011 (Figure 3.3e). Moreover, the vast majority of 

rangelands, affected by the moderate to the extreme of inter-seasonal greenness stresses, was 

obtained in 2001 (EVI: 96.5; NDVI: 95.5%), 2008 (EVI: 90.0; NDVI: 95.0%) and 2014 (EVI: 88.0; 

NDVI: 85.3%) (Figure 3.3b and d). The most critical inter-seasonal water-content deficits of 

rangelands occurred in 2014 (NDWI: 88.6%), and 2001 and 2008 (NDWI: 84.0%) (Figure 3.3f). 

Additionally, 16-day VIs anomalies showed different variations during DOYs of the four 

drought periods. Figure 3.4a describes that 16-day EVI variability in forests was increasing 

during the May-June timeframe, while the rangeland anomaly was increasing from March to 

August in 2001. For example, about 87.0% of the forests and 94.5% of the rangelands 

experienced moderate to extreme stress conditions on DOY 145; these anomalies were higher 

in the dense forests (Qare-sou and central parts of Gorgan-rood) and summer rangelands with 

higher-quality forage (the southern of Gorganrood and central parts of Atrak) (Figure 3.5). 

Moreover, for the majority of the forests affected by moderate to extreme stress conditions 

during the growing season of 2011, Figure 3.4a shows that about 85.0% of them were in either 

the moderate category (17.1%), the severe category (46.6%) or the extreme category (21.5%) on 

DOY 129. Rangelands showed different schemes of stress during the other three periods, 

which were mostly dominated by the severe conditions of 2008 and the moderate conditions 

of 2014 (Figure 3.4a). Although the 16-day NDVI anomalies showed trends near the inter-

seasonal EVI anomalies in rangelands during drought periods, their variations were slightly 

different in forest areas (Figure 3.4b). About 86.0 and 64.0% of the forests experienced upper-

moderate stress conditions in 2011 and 2014, respectively. The most severe inter-seasonal 

forest anomalies occurred during July and August of 2011 as about 77.6% of the forests were 

affected by the moderate (18.2%), severe (44.2%) and extreme (15.2%) stress conditions on DOY 

225, whereas the severe inter-seasonal NDVI anomalies of 2014 obtained during July through 

October timeframes in the spatial extent of the study area (Figure 3.4b). 
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Figure 3.4 Distribution of vegetation greenness anomalies during the growing seasons calculated by the 

enhanced vegetation index (EVI) for drought periods in the forests and rangelands (a). Distribution of vegetation 

greenness anomalies during the growing seasons calculated by the normalized difference vegetation index 

(NDVI) for drought periods in the forests and rangelands (b). Distribution of the vegetation water anomalies 

during the growing season calculated by the normalized difference water index (NDWI) anomalies for drought 

periods in the forests and rangelands (c). 
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                     Figure 3.4 Continued 

The 16-day NDWI anomalies show that the most severe stress affected the entirety of the 

forests and rangelands in 2001 (Figure 3.5). Figure 3.4c indicates that severe conditions started 

in May and reached the highest peak in June in the forests, with more than 86.0% of them 

falling into the moderate (13.0%), severe (36.8%) and extreme (36.9%) stress categories on DOY 

177. Likewise, the rangelands experienced severe and extreme anomalies in April through 

May, with the highest number recorded on DOY 129. Moreover, more than 60.0% of the forests 

experienced stress conditions ranging from moderate to extreme in six DOY (81, 97, 161,193, 

225 and 273)  during the growing seasons of 2011. Rangelands, however, were predominantly 

affected by the severe stress conditions of 2014. 

3.4.3 Spatial relationships between drought and the anomalies of MODIS VIs 

3.4.3.1 Inter-seasonal relationships 

The inter-seasonal forest anomalies showed an overall positive spatial relationship with 

the SPI anomalies from 2000 to 2016 (P < 0.05), however, some periods showed negative  
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Figure 3.5 The spatial extent of the severe dates of vegetation anomalies measured by the enhanced 

vegetation index (EVI), the normalized difference vegetation index (NDVI), and the normalized difference 

water index (NDWI). 

coefficients with the VIs anomalies (Figure 3.6a). Statistically, distribution of Moran’s I values 

indicates that forest anomalies based on the NDVI (I = 0.253±0.102) recorded higher average 

coefficients than the NDWI (I = 0.205±0.099) and EVI (I = 0.178±0.113) anomalies in the study 

area. Nevertheless, there were no significant differences between the means of Moran’s I of the 

three VIs based on the F test (F = 0.426; P > 0.05). Inter-seasonal forest anomalies recorded 

positive significant Moran’s I coefficients with the critical drought periods (Figure 3.6a). For 

example, higher correlation coefficients were obtained for the EVI in 2001(I = 0.382), NDVI in 

2008 (I = 0.2608), NDWI in 2011 (I = 0.366) and 2014 (I = 0.640). Moreover, the inter-seasonal 

rangeland anomalies showed a positive spatial relationship with the SPI values based on all 

three VIs over the 17 years (P < 0.05). The Moran’s I coefficients show that the water content 

properties of rangelands based on the NDWI (I = 0.284±0.087), were more sensitive than the 

greenness properties based on the NDVI (I = 0.178±0.071) and EVI (I = 0.148±0.093) to the SPI 
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values during the 17 years (Figure 3.6b). Nevertheless, the results of F test indicate that there 

exists no statistically significant differences between the average values of Moran’s I of three 

VIs (F = 0.708; P > 0.05) for the rangelands as well. The correlation coefficients for the NDWI 

anomalies were higher than the NDVI and EVI anomalies in the critical conditions of 2001, 

2008, 2011 and 2014; the NDVI shows stronger relationships with the precipitation deficit than 

the EVI in 2008, 2011 and 2014 (Figure 3.6b) as well.  

3.4.3.2 Monthly relationships 

We explored the spatial relationships between monthly precipitation anomalies and 16-day VIs-

anomalies of forests and rangelands during the growing months of the four drought periods 

(Figure 3.6c and d). Overall, distribution of spatial coefficients shows that the 16-day NDW 

anomalies demonstrated higher values than the NDVI and EVI with 0.0716±0.059 for forests, and 

0.125±0.0615 for rangelands. While the differences between the average Moran’s coefficients of 

the 16-day EVI, NDVI, and NDWI anomalies were not statistically significant for forests (F = 

1.510; P > 0.05), but they were significant for rangelands (F = 2.873; P < 0.05). A summary of the 

spatial associations between monthly precipitation anomalies and 16-day MODIS VIs anomalies 

is presented for forests in Table 3.1a and rangelands in Table 3.1b. The Moran’s I values indicate 

that the rainfall anomalies showed the highest positive spatial associations with the MODIS 

NDWI during the DOYs of 2001 and 2011, and the MODIS NDVI of 2008 and 2014 in the forest 

areas (P < 0.01). Moreover, the majority of positive associations between precipitation anomalies 

and the anomalies of rangelands were observed in the MODIS NDWI during the DOYs of 2001, 

2008, 2010 and 2011, and the EVI and NDVI anomalies of 2014 (P < 0.01). 

 The local spatial associations between monthly rainfall anomalies and VIs anomalies mapped 

as local Moran’s I, BiLISA significance maps and BiLISA cluster maps (Permutations of 499 and P 

< 0.05) for each DOY of associated drought periods with vegetation anomalies are shown in the 

supplementary data (Figure 3.S1-S4). Specifically, the BiLISA maps for DOYs with the highest 

Moran’s I (Figure 3.7) demonstrate that about 17.8% (DOY 177, NDWI), 17.9% (DOY 177, EVI), 

17.2% (DOY 289, NDWI) and 26.9% (DOY 225, NDVI) of the forests were in the High-high clusters 

in 2001, 2008, 2011 and 2014, respectively. Likewise, about 32.4% (DOY 129, NDWI), 13.6%(DOY 

97, NDWI), 17.9% (DOY 97, EVI) and 27.3% (DOY 177, EVI) of the rangelands were in the High-



50 
 
 

 

high clusters of the VIs, chronologically. Furthermore, the spatial associations between locations 

with lower drought and lower vegetation-stress conditions were significant in given DOYs in 

Figure 3.7. About 18.9%, 15.7%, 31.7 and 17.2% of the forests, and about 7.2, 15.7, 14.0, and 11.8% 

of the rangelands located in the Low-low clusters during drought periods, respectively. On the 

other hand, locations with outliers (Low-high/High-low) have occupied less proportion of the area 

in comparison to the clusters (High-high/Low-low) in the studied DOYs. For example, about 10.34 

and 6.12% of forests, and about 10.34 and 6.13% of rangelands located in the Low-high outliers 

based on the VIs in 2001 and 2008, respectively. While about 17.3 and 6.1% of the forests, and about 

3.9 and 4.2% of the rangelands were in the High-low outliers in these times. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Distribution of spatial correlation (Moran's I) between the standardized precipitation index 

and the vegetation indices EVI, NDVI, and NDWI in the forests (a) and rangelands (b) during the 

growing season from 2000 to 2016, and DOYs (c and d) for drought conditions. 
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Table 3.1 Obtained averages of Moran’s I values between monthly rainfall anomalies (SPI) and 16-

day VI anomalies (EVI, NDVI and NDWI) for the forest areas (a) and rangelands (b). 

(a) 

DOY  EVI anomaly  NDVI anomaly  NDWI anomaly 
 2001 2008 2011 2014 2001 2008 2011 2014 2001 2008 2011 2014 

65 -0.1236 0.0211 0.1153 -0.0436 -0.0762 0.0098 0.1290 0.1957 -0.1738 -0.1509 0.0636 0.0393 

81 -0.0714 -0.0343 -0.0262 -0.068 -0.1924 0.0037 0.0153ns -0.0481 -0.2890 -0.3816 0.0499 0.1006 

97 0.1784 -0.4279 0.1415 -0.0541 0.1765 -0.2563 0.1225 -0.0621 0.0832 -0.4362 -0.1509 -0.1400 

113 0.052 -0.1912 0.2004 0.0541 0.1397 -0.2678 0.1338 0.3169 0.1074 -0.4356 -0.1494 -0.0065ns 

129 -0.0712 0.0118 0.1586 -0.2616 -0.0462 0.0027ns -0.0096 -0.0055 0.1220 -0.2214 0.0702 -0.3128 

145 -0.1485 -0.1542 0.0541 -0.2982 0.0099 0.0177 -0.0474 -0.1436 0.0731 -0.1774 0.0252 -0.3291 

161 -0.1248 0.2761 0.0265 0.0400 -0.3202 0.3193 0.2063 0.1531 0.1190 0.3513 0.3135 -0.0501 

177 0.0181 0.5229 -0.2615 0.1787 -0.4213 0.3121 -0.0119 0.1189 0.2094 0.3463 0.3256 -0.0589 

193 -0.3440 -0.2267 0.2279 -0.2868 -0.3657 -0.0221 0.0609 0.1679 0.2576 -0.1569 0.1048 0.1480 

209 -0.3150 -0.2060 0.1946 -0.2146 -0.3225 -0.0266 0.0623 0.2191  0.2658 -0.1845 0.1137 0.1476 

225 0.1592 -0.3739 0.0542 -0.291 0.3628 -0.2359 0.2392 0.078 0.3050 -0.2824 0.0178 0.292 

241 0.1663 -0.1448 -0.0553 -0.166 0.3533 -0.2230 0.2961 0.282 0.3091 -0.2928 0.0185 0.313 

257 0.1844 0.1282 0.0335 0.0572 0.2327 0.2407 0.0373 0.0467 0.0864 0.0856 0.1177 0.0789 

273 0.3541 0.2259 -0.0129 0.0329 0.3904 0.2192 0.0786 0.0599 0.1266 0.0929 0.1142 0.0690 

289 -0.0123 0.5157 -0.0738 -0.1650 0.0516 0.5157 0.0052ns -0.1888 -0.4424 0.3418 0.3795 -0.3257 

305 -0.0519 0.4352 0.0634 -0.1421 00394 0.3999 0.0035 -0.1565 -0.4548 0.3641 0.2223 -0.2753 

(b) 

DOY  EVI anomaly  NDVI anomaly  NDWI anomaly 

 2001 2008 2011 2014 2001 2008 2011 2014 2001 2008 2011 2014 

65 0.2495 0.1743 -0.3299 0.2213 0.2041 0.2006 -0.2684 0.2402 -0.2261 0.1113 0.0450 -0.0642 

81 0.2560 -0.2343 -0.4622 0.1916 0.0450 -0.1930 -0.4334 0.1880 -0.2770 -0.1697 0.0641 -0.0333 

97 0.2809 0.3802 0.5592 0.0124 0.3035 0.5023 0.5476 0.0167 0.4957 -0.0467 0.1011 0.1452 

113 -0.0786 0.2082 0.4017 0.1741 -0.0822 0.3328 0.1355 0.4257 0.4957 -0.0462 -0.1368 0.2134 

129 -0.1674 -0.0567 -0.1566 -0.2354 -0.1604 -0.0259 -0.0620 -0.2108 0.4173 -0.1730 0.2281 -0.5181 

145 -0.2698 -0.0346 0.0411 -0.0826 -0.2372 0.1402 0.0237 -0.0376 0.2609 -0.1201 0.3471 -0.5462 

161 -0.1332 -0.2332 -0.0129 0.3758 -0.1526 -0.3137 -0.1213 0.2693 0.3649 0.4380 0.1270 0.1229 

177 -0.1694 -0.1494 0.0972 0.4613 0.0421 0.0681 0.1609 0.4081 0.1860 0.3754 0.2543 0.1856 

193 -0.1951 -0.1032 0.0069ns -0.3096 -0.2758 -0.1255 0.1305 -0.1535 0.2918 0.1029 0.0517 -0.1775 

209 -0.2132 -0.2847 0.0202 -0.3055 -0.1206 -0.4261 0.1003 -0.0815 0.3537 0.1174 0.0855 -0.201 

225 -0.0481 0.0062 0.0606 0.0235 0.3778 0.0461 0.2744 -0.2632 0.5529 0.1800 0.1838 -0.3597 

241 0.0879 -0.1293 0.0022ns -0.0397 0.4069 0.0564 0.2728 -0.2857 0.4946 0.1506 0.1615 0.3251 

257 0.1572 -0.0043ns 0.2177 -0.2190 0.2386 -0.0429 0.1468 0.0807 0.3114 0.4965 0.087 -0.2944 

273 0.1408 -0.0077ns 0.4223 -0.2596 0.1467 -0.0226 0.2955 -0.2144 0.2430 0.5490 0.0552 -0.3611 

289 -0.0026ns -0.0043 0.3411 -0.0046ns 0.0009 0.0414 0.4061 -0.0025ns -0.3398 0.3640 0.2273 -0.0639 

305 -0.1444 -0.0275 -0.0756 -0.0029 0.0031 0.1476 0.1609 -0.0041 -0.4057 0.3532 0.1559 -0.1406 

Note. Positive values indicating significant direct spatial associations and negative values indicating vice 

versa spatial associations between monthly rainfall anomalies and 16-day VIs anomalies (p-value < 

0.05, ns: p-value > 0.05). EVI: enhanced vegetation index; NDVI: normalized difference vegetation 

index; NDWI: normalized difference water index; SPI: standardized precipitation index. 

3.5 Discussion 

Rainfall anomalies show that the northeastern part of Iran has experienced severe meteorological 

droughts with shorter time lags during recent years, as the six lags between 2001 and 2008 

decreased to two intervals between 2011 and 2014 (Figure 3.2). Nevertheless, our study confirms 
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the severe droughts reported by Zoljoodi & Didevarasl [143] in 1999 to 2002 and Kazemzadeh & 

Malekian [139] in 2007 to 2008 and again in 2010 to 2011 in northeastern Iran. This study adds that 

this area experienced severe drought in 2014 as well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Spatial variations of local Morans'I values, BiLISA significance levels and BiLISA cluster/outlier 

(significance level: 0.05 and randomization permutation: 499) of some DOYs with the high spatial relation 

between the anomalies of rainfall and the vegetation indices during drought periods. EVI: enhanced 

vegetation index; NDVI: normalized difference vegetation index; NDWI: normalized difference water index. 

Moreover, Kriging methods enabled us to estimate the monthly rainfall with an acceptable validity 

over the spatial extent of the study area; hence, instead of calculating rainfall anomalies just in the 

location of rain gauges, we did so for all cells against prior studies [136–139]. This method decreased 

the errors related to the sporadic rain gauges, missing data and possible incorrect measurements of 

time-series rainfalls, and it provided an effective combination to assess the spatial relationships 

between vegetation anomalies derived from MODIS VI products and rainfall anomalies.  

Although the inter-seasonal forest anomalies showed significant spatial correlation with the 

precipitation deficit during four drought periods, the Moran’s I coefficients in 2008, with severe 
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to extreme drought, and 2011, with severe to extreme stress, were less than the coefficients of 

2001 and 2014 (Figure 3.6a). Despite receiving above-normal precipitation in 2002, 2009 and 2012, 

forests showed low positive or negative responses to these wet conditions during the growing 

season (Figure 3.6a). It shows that the precipitation deficit is not the final climate variable for 

determining the forest anomalies of northeastern Iran. To investigate the possible impacts of 

other climatic parameters on the significant forest stresses in 2011 and 2014, we explored the 

land surface temperature (LST) anomalies (Figure 3.8) derived from Terra MODIS Land Surface 

Temperature and Emissivity L3 1 km product (MOD11A2) data for the studied period. We 

observed strong positive relationships between the forest-greenness anomalies with the LST 

anomalies in 2011 (NDVI: I =0.159; NDWI: I =0.046), and both greenness and water content 

anomalies in 2014 (NDVI: I =0.207; NDWI: I =0.365). Therefore, it is crucial to consider the 

impacts of other climatic and hydrological anomalies on the forest droughts as well. 

 

 

 

 

 

 

 

 

 

Figure 3.8 The land surface temperature (LST) anomalies in the forest lands during 2011 (a) and 2014 (b) droughts. 

The actual physiological state of forests does not entirely rely on the precipitation-based 

patterns, therefore; the MODIS vegetation indices determine the physiological forest variables 

and indicate their vulnerabilities to drought [154]. Some negative anomalies in 2002, 2009, 2012 

and 2015, following drought periods, confirm that when a forest is affected by a critical drought, 

its status may remain disturbed for a longer time span [155]. The intensity of drought effects 

pertains to the drought duration and intervals in forests, which the 2008 drought has occurred 

six years after the 2001 drought while 2011 drought was following the 2010 drought as well as 
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2014 drought had two time lags with it (Figure 3.2a). The high correlation coefficients of the 

NDWI anomalies show the influence of long duration and short lag of droughts on disturbing 

the water content of forests in 2011 and 2014. Therefore, it is essential to be considered the 

impacts of precipitation deficit on the forest droughts from both climatic and biological aspects 

[154]. In contrast, inter-seasonal rangeland anomalies were more sensitive to the precipitation 

anomalies in comparison to the inter-seasonal forest anomalies. However, the responses of 

rangelands to drought condition was higher in deficiency of water content than the decline of 

greenness throughout the four drought periods (Figure 3.6b). 

The analyses of the critical DOYs revealed that forests were affected by diminishing of water 

content during June to September timeframes of droughts, as the 16-day NDWI anomalies showed 

positive responses to the monthly precipitation anomalies from DOY 161 to DOY 273. The positive 

relationship between medium-term drought and forest condition was observed in the 

Mediterranean [154] and the eastern Baltic Sea [155] regions as well.  The normal conditions of the 

winter season led to maintain the soil moisture and increased the water content of forests during the 

spring season of droughts, as the 16-day NDWI anomalies showed negative spatial relationships 

with the precipitation deficit till DOY 145 (Figure 3.6c). The 16-day rangeland-water-content 

anomalies showed positive responses to the monthly precipitation deficit from the begging of April 

till the end of October during drought periods (Figure 3.7b), however, their greenness properties 

show positive coefficients in the beginning (DOY 65 to DOY113) and the last six DOYs (Figure 3.6d). 

The significant impact of drought conditions on the arable land vegetation in the beginning and the 

end of the growing season was reported in the eastern Baltic Sea region [155]as well. 

The NDWI anomalies showed significant positive associations with drought intensity in the 

forest areas during 75% (DOY 97–DOY 237) and more than 85% of DOYs in 2001 and 2011, 

respectively (Table 3.1a). In the meantime, these associations were recorded in 75% (DOY 113–

DOY 241) and greater than 90% of DOYs of rangelands in 2001 and 2011, as well. The Moran’s I 

coefficients confirm that the NDWI anomalies were strongly associated with monthly rainfall 

anomalies in rangelands during 70% of the DOYs in 2008 (Table 3.1b). These findings indicate 

that variations in the vegetation water content against the vegetation greenness were highly 

correlated to the variations in precipitation patterns in the Hyrcanian deciduous broadleaf forests 

and semi-steppe rangelands of northeastern Iran. Previously, the higher sensitivity of the NDWI 
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to drought conditions in comparison with the NDVI was highlighted in the grasslands of the 

United States by Gu et al. [156] and in the dense biomass ecosystems by Caccamo et al. [163]. 

Although the NDVI anomalies showed significant positive correlations in at least 50% of 

the DOYs during growing seasons of drought periods, they only performed higher than the 

NDWI in the 2008 drought in forests and again in the 2014 drought in both forests and 

rangelands. Furthermore, the EVI anomalies demonstrated significant direct associations with 

the rainfall anomalies in the 2011 drought in the forests (60% of the DOYs) and rangelands (70% 

of the DOYs). These results confirm that severe drought conditions disturbed the greenness 

properties of the Hyrcanian forests and semi-steppe rangelands of northeastern Iran. Likewise, 

vegetation anomalies induced by rainfall deficits were presented by utilizing the EVI and the 

NDVI in the Amazonian vegetation during the 2010 drought [30], and by the EVI in Amazonian 

forest canopies during the 2005 drought [152] as well. Besides, Jong et al. [27] have demonstrated 

the greenness responses of natural forests and grasslands to climatic parameters via the NDVI 

time series in different stages of droughts. 

The aggregated maps of BiLISA illustrate that the considerable portions of forests have 

experienced high stress surrounded by severe droughts, especially in 2001, 2008 and 2011. Figure 

3.9 shows that about 92,600 ha (19.1%) and 111,000 ha (22.9%) of the forests based on the NDWI, 

and also about 100,000 ha (20.7%) and 22,000 ha (4.5%) based on the NDVI are located in the 

High-high cluster in more than 50% of the length of growing seasons of 2001, 2011, 2008 and 

2014. The vast majority of these forests are located in the montane parts of the Qare-sou and 

Gorganrood watersheds, which are covered by tree species with low-growing stock volumes in 

all of the drought periods. Meanwhile, dense forests with higher stock volume values have 

experienced less drought and therefore less stress (Low-low cluster) in the medium-range 

altitudes (800-1,000 MASL) of the Qare-sou and Gorganrood (Figure 3.9). Moreover, BiLISA 

maps depict that rangelands have experienced high-stress conditions during severe droughts, 

especially in the northern parts of Atrak which have low-quality forage (winter rangelands). 

Figure 3.9 shows that about 136,000 ha (17.6%), 122,300 ha (15.8%) and 173,400 ha (22.5%) of the 

rangelands were in the High-high clusters based on the NDWI over 50% of the growing seasons 

in 2001, 2008 and 2011, respectively. On the other hands, the locations with significant outliers 
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scattered throughout the study area in the growing seasons of droughts. It can be concluded that 

some vegetation types were less affected by severe droughts (High-low). These locations consist 

of summer rangelands with high-quality forage in the south parts of Atrak, and also high dense 

forests with well survive species, which are under the forest management plans in the lowlands 

and mid-altitudes of the Qare-sou and Gorganrood (Figure 3.S1‒S4). Furthermore, some 

locations with severe vegetation stress are surrounded by low drought events (Low-high), which 

represents to do further studies on the possible effects of other natural variables such as extreme 

temperature, vegetation evapotranspiration, soil moisture deficit and hydrological droughts on 

both rangelands and slightly lower forests. Likewise, severe forest disturbances induced by 

human activities [83] and forest fires [84] have reported in the northeast of Iran.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 Aggregated maps of BiLISA for clusters (High‐high and Low‐low) during growing seasons 

(March to October) of forests and rangelands based on the qualified vegetation indices for drought 

periods. EVI: enhanced vegetation index; NDVI: normalized difference vegetation index; NDWI: 

normalized difference water index. 
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The current study suggests that long time-series of 16-day MOD13Q1 data retrieved the 

spatial variability of deciduous broadleaf forests and semi-steppe rangelands to droughts 

relevant to their water-content and greenness properties in Northeast Iran. Conversely, using 

some satellite products with coarse spatial resolution and short time-series resulted in their 

restrictions for retrieving of vegetation anomalies to drought conditions such as Amazonian 

forests in some previous studies [31,159]. 

3.6 Conclusion 

We explored the inter-seasonal and monthly anomalies of precipitation and vegetation using 

16-day MODIS data at 250-m in the Hyrcanian deciduous forests and semi-steppe rangelands 

of northeastern Iran over the 17 years. Also, two vegetation greenness (EVI and NDVI) and 

one vegetation water content (NDWI) indices were used to finding real responses of the forests 

and rangelands to the drought conditions. We applied the bivariate indicator spatial association 

to examine possible relationships among precipitation and 16-day vegetation anomalies at both 

regional (Moran’s I) and local (BiLISA) scales. The inter-seasonal SPI values showed that 

northeastern Iran experienced moderate to extreme drought conditions in 2001, 2008, 2011 and 

2014, and normal conditions in 2002-2005, 2009 and 2012 during the growing season. Overall, all 

of the three VIs showed positive responses to the inter-seasonal precipitation anomalies for both 

forests and rangelands throughout the 17 years. Although vegetation anomalies recorded higher 

correlation coefficients with inter-seasonal precipitation anomalies, based on the NDVI (forests) 

and NDWI (rangelands), there were no significant differences between the mean correlation 

coefficients of the three vegetation indices. Monthly droughts disturbed the greenness and water 

content properties of forests during the middle of the growing season of drought conditions, 

while they had significant impacts on the water content of rangelands in comparison to their 

greenness throughout DOYs. The vegetation stress showed higher relationships with inter-

seasonal precipitation deficit than monthly precipitation deficit conditions. BiLISA cluster maps 

reveal that about one-fifth of vegetation with the high-stress condition was experienced high-

drought condition during a half or higher length of the growing season. BiLISA outliers indicate 
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that there are some locations with stress-affected vegetation surrounded by low droughts (Low-

high) and vice versa (High-low), which suggest further research regarding other natural 

disturbances and the sensitivity of tree species. The variation of forest responses to drought 

conditions expresses that precipitation deficit is not a certain climatic variable determining the 

real physiological condition of the Hyrcanian deciduous forests. Therefore, it is essential to 

explore forest droughts from biological and climatic aspects as well as consider the long-term 

impacts of other climatic variables and hydrological droughts on their disturbances. 
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4.1 Abstract 

This study sought to assess the spatial variations of physiological responses of Hyrcanian forests 

to the hazard intensity of meteorological and hydrological droughts for properly assessing 

drought-induced tree mortality in northeastern Iran. A variety of time series moderate 

resolution imaging spectroradiometer (MODIS) products and ground-based measurements 

were applied to derive the multiple dimensions of droughts and forest stresses. Drought hazard 

intensity was computed with the combination of the severity, frequency and duration of drought 

dimensions for each variable. The intensity of tree mortality was calculated by Simpson’s 

diversity index with surveying 30,000 individuals of commercial species suspected to dieback 

within 100 intact parcels. Spatial autoregressive models were carried out to determine significant 

meteorological and hydrological drivers that controlling biological responses of forests to 

drought events and associations of the diversity of tree mortality with these forest responses. 

Results showed that the hazard intensity of forest water-content-deficit and greenness loss 

showed higher relationships with the high land surface temperatures and actual 

evapotranspiration than the precipitation and surface water deficits, however, they did not show 

significant relationships with the groundwater deficit. Moreover, diversity of tree mortality was 

associated with forest water-content-deficit from moderate to death stages and with forest 

greenness loss in the only very high defoliation stage. The critical values of forest droughts and 

diversity of mortality were recorded for the climax tree species. Understanding satellite-derived 

physiological responses of forests to droughts might help to assess the intensity of tree mortality 

widely to adopt appropriate strategies for mitigating the impacts of droughts on the tree species. 

4.2 Introduction 

Forest dieback is a vital condition in which tree individuals or stands increasingly die from the 

crown to the root system, resulting in declining tree growth, loss of tree vitality, browning of 

leaves, and defoliating and dying of forest patches in large areas with negative consequences on 

the ecosystem [180]. Although diverse biotic and abiotic agents have been introduced as the causes 

of forest dieback [180,181], forest vulnerability to climatic shifts, such as severe droughts, high 
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temperatures and water stress, widely accepted as the primary causes of widespread dieback 

across the world [182–190]. However, climate-based droughts entirely cannot explain the 

responses of forest biomes to drought events, the actual drought-related physiological changes of 

forests are necessary to be quantified as well [24]. Thus, there is a need to determine reliable 

indicators indicating forest responses to meteorological and hydrological droughts, and drought-

induced tree mortality particularly relying on the proper time-series remotely sensed observations. 

A variety of vegetation indices have been derived from the reflectance spectra of MODIS 

images, including greenness-related vegetation indices such as the normalized difference 

vegetation index (NDVI) [28] and the enhanced vegetation index (EVI) [191], and also water 

content-related vegetation indices such as the normalized difference water index (NDWI) [29] and 

the land surface water index (LSWI) [192]. The NDWI is derived based on the absorption spectrum 

of water and the reflectance spectrum of spongy mesophyll (Near-infrared (NIR) and Short Wave 

Infrared (SWIR)), which are connected to the moisture of the vegetation canopy, therefore, are 

appropriate for monitoring water content-related forest drought. Whereas the NDVI is derived 

from the chlorophyll absorption and spongy mesophyll spectra (red and NIR), which are 

sensitive to the greenness and carbon sequestration of vegetation [44,66,193–195]. Moreover, 

satellite-derived products based on the thermal infrared spectra (TIR), such as the land surface 

temperature (LST) and the actual evapotranspiration (ETa) [196], have been used to diagnose 

evapotranspiration and soil moisture for retrieving drought stress [197–201] through 

relationships between the anomalies of satellite-derived vegetation indices and temperatures 

and evapotranspiration indices [24,202,203]. 

Although significant responses of forests to precipitation deficits have been addressed in 

different forest biomes [33,47,204–206], incorporating satellite-derived temperatures and 

evapotranspiration indices for the quantification of drought have been decreased the uncertainty 

of forest responses to meteorological droughts [24,34,39,202,203,207]. Increases temperatures and 

heat waves affect forest functioning by intensifying evaporation in the root system and canopy of 

trees and amplify dehydration and biotic activities which resulting in forest die-off and mortality 

[208,209] regardless of precipitation deficits [209]. The impacts of changing temperatures and 

evapotranspiration on dehydration and forest vulnerability to die-off are required to be evaluated 
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in characterizing forest droughts. Furthermore, increases forest water-use and changes in the 

species composition and forest structure since prolonged and severe droughts affect hydrological 

processes from the stand to regional levels [210]. Hydrological responses to forest drought either 

in streamflow level or groundwater level can be considered as an indication of drought-induced 

changing in the water balance of forests as well [210–212]. 

In addition, forest biomes have shown different responses to drought conditions. The 

resistance and resilience of tropical and boreal forests to drought conditions are well-documented 

in several studies [38,204,213,214]. Unlike the arid and humid biomes, species responses to water 

deficit may occur at long time-scales in the semiarid and sub-humid biomes [32–34]. However, 

tree die-off might be resulting from drought-induced carbon starvation in a specific species or 

hydraulic deterioration in another species within a forest biome [215], that is, a combination of tree 

mortality mechanisms need to be considered for analyzing species-dieback in a specific forest 

biome [40]. 

Multiple features of forest drought, namely frequency, duration, severity, onset and end 

time, and areal extent are resulting from these dimensions of water-, precipitation- and 

temperature-driven drought conditions [216,217], which lead to extreme tree mortality and 

alter the composition, structure, and biogeography of forests considerably[44,218–221] with 

higher impact on the dominant and large tree species [222]. A considerable amount of previous 

studies have addressed the frequency and severity of drought among all features for 

quantification and monitoring of drought. However, a total drought process contains detailed 

information of all its dimensions, such as the risk map of drought hazard intensity. 

Satellite images have provided an efficient system for quantification, assessment and 

monitoring of drought dimensions and their impacts on trees’ vigour and recovery, layers, 

functions, and ecosystem services from regional to global scales [12]. A long duration of 

drought increases forest vulnerability and causes carbon starvation and hydraulic 

deterioration of tree species [38–42], which appear as slow growth, declining greenness and 

biomass, forest die-off and tree mortality [43–48] as well as forest diseases and insect 

infestations [52]. Quantification and monitoring of drought-induced hydraulic deterioration 

and carbon starvation of tree species have been characterized through relationships between 

satellite-derived vegetation indices and in situ measurements of tree growth or aboveground 
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biomass [34,65–67]. Even though MODIS-derived vegetation indices have received the most 

attention for characterizing of forest responses to drought dimensions since their fine temporal 

resolution and usable values, to date, it is challenging to quantify drought-induced tree 

mortality through these satellite data due to their coarse spatial resolution. Conventional 

regression analyses [34,66] between MODIS-derived forest-drought indices and field-based 

indicators of forest growth and vitality are the most common approaches in quantifying 

drought-related tree mortality. Further statistical methods such as LASSO regression [69], 

Random Forest [70], timescales and time-lag effects [71,72] have been suggested for this 

purpose as well. However, these models focus only on statistical relationships and do not 

consider spatial relationships between variables, therefore, we need to explore alternative 

approaches which can model spatial-statistical associations between satellite-derived drought 

indices and severity of tree mortality such as the spatial error and spatial lag models [73]. 

The aforementioned works have focused mostly on quantification and monitoring droughts 

and tree mortality in the tropical and boreal forests. We little know about the vulnerability of 

temperate forests to drought events and drought-induced tree mortality, particularly in the 

Hyrcanian forests where a wide diversity of tree species exists and experienced several severe 

droughts during recent decades [206]. In this study, we seek to quantify the severity, duration, 

frequency and spatial extent of forest droughts (i.e., water-content deficit and greenness loss), 

meteorological droughts (decreases of precipitation and evapotranspiration, and increases of 

temperatures), and hydrological droughts (decreases of streamflow and groundwater levels) as 

the drought hazard intensity (DHI) indicator for each drought type in northeast Iran during 

2000–2016. Then we examine spatial associations among the hazard intensity of forest droughts 

and the hazard intensity of meteorological and hydrological droughts. Finally, we explore the 

intensity of individual-tree mortality at different levels and examine its spatial relationship with 

the hazard intensity of forest droughts in northeast Iran. Specifically, this study was established 

to find appropriate responses to the following questions: 

• Are the NDWI and NDVI strong enough to retrieve the biological responses of 

Hyrcanian forests to the meteorological and hydrological droughts? 
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• Which of the meteorological and hydrological variables have significantly affected 

the water-content and greenness properties of the Hyrcanian forests? 

• Is there a significant spatial relationship between the diversity of tree mortality 

and the vulnerability of Hyrcanian forests to droughts? 

• In which forest-drought conditions and dieback level the intensity of tree mortality 

is significant? 

Our drought analyses are based on the time-series of three novel products of MODIS 

including MOD13Q1, MOD11A2, and MOD16A2 as well as ground-based measurements of 

precipitation and water levels. Tree mortality analysis is based on the field observations from 

diverse species of pristine forests falling into dieback levels. We use spatial autoregressive 

approaches to explore relationships between droughts and tree mortality events. 

4.3 Overview of the Study Area 

We concentrated our studies on the end parts of the Hyrcanian forests in northeastern Iran, 

southeast of the Caspian Sea in the Golestan Province (Figure 4.1a). Elevation ranges between 

30 to 3360m from north to south of the region with an average of 1080 m. This area consists of 

humid (89.60%) and subhumid (10.40%) biomes (Figure 4.1d). Forested areas are mostly 

managed in the form of forest management plans (FMPs) for logging or scarcely as forest 

conservation plans in the protected areas such as Golestan National Park in the eastern parts 

of the study area. We selected a total of 1162 parcels for exploring the vulnerability of tree 

species to the drought conditions, which 100 parcels were randomly selected for the sampling 

of tree mortality events (Figure 4.1d and c). Dominant tree species are Fagus orientalis-Carpinus 

betulus and Juniperus polycarpos in the western zone, Quercus castaneifolia-Carpinus betulus and 

Carpinus betulus in the middle zone, and Quercus castaneifolia-Carpinus betulus and Carpinus 

betulus-Pterocarya fraxinifolia in the eastern zone of the study area (Figure 4.1b). 

4.4 Data and Methodology 

4.4.1 Meteorological and hydrological anomalies 
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Figure 4.1 Spatial location of the study area in the Hyrcanian forests (a), tree species types (b), an example of 

scattering of tree species dieback-samples in one parcel out of 100 selected parcels (c), and distribution the total 

studied parcels (1162) for exploring the stress of the forest types and the selected parcels (100) for the sampling 

of tree mortality, and the forest biomes types in northeastern Iran (d). 

To explore how the variations of climate and hydrological drivers control forest growth and 

forest water-content, we assessed long-term anomalies of monthly precipitation, day/night 

LST and ETa, and also the anomalies of surface water and groundwater levels. Time-series 

precipitation (1987–2016), groundwater (1985–2016) and surface water (2000–2014) data were 

obtained from 24 to 94 rain gauge stations, 34 to 52 streamflow gauging stations and 150 to 260 

piezometric wells. Ordinary Kriging and Empirical Bayesian Kriging [223] were carried out to 

interpolate monthly precipitation, groundwater and surface water values from the measured 

points to the surface of the study region. We calculated the monthly precipitation anomalies 

using the Standardized Precipitation Index (SPI) [224]; the monthly surface-water anomalies 

using the Streamflow Drought Index (SDI) [225] and; the monthly groundwater anomalies 
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using the Surface Water Index (SWI) [226] for a specific month (j) of a specific year (k) at a 

specific cell (i). To obtain the SPI, SDI and SWI, we calculated Z-scores (Equation 4.1). 

𝑍𝑚𝑗𝑘𝑖 =
𝑋𝑗𝑘𝑖−𝜇𝑗𝑖

𝜎𝑗𝑖
,                                                                                                                                             (4.1) 

where 𝑋𝑗𝑘𝑖 represents the value of a variable (i.e., precipitation, surface water and groundwater 

levels) in the jth month, 𝜇𝑗𝑖 is the long‐term mean and 𝜎𝑗𝑖 is the standard deviation of the variable 

for the jth month at ith cell. To assess LST anomalies, a total of 776 8‐day images of Terra 

MODIS Land Surface Temperature and Emissivity L3 1 km product (MOD11A2) from 2000 to 

2016 were obtained from the online Data Pool of the NASA Land Processes Distributed Active 

Archive Center (LP DAAC), USGS/EROS, (https://lpdaac.usgs.gov/data_access/data_pool). 

MOD11A2 contains the daytime and nighttime surface temperature data and their quality 

condition (QC) [227]. The monthly median of 8‐day images were calculated to improve their 

stability and were reduced to 202 images. The daytime and the nighttime LST anomalies (SDLST 

and SNLST) were calculated using Z‐scores (Equation 4.1), which 𝑋𝑗𝑘𝑖 equals the LST value of the 

jth month of the kth year, 𝜇𝑗𝑖  and 𝜎𝑗𝑖 represent the average and standard deviation of the 17‐year 

LST for the jth month at ith cell. In addition, to assess ETa anomalies, we obtained 168 monthly 

actual evapotranspiration (ETa) images derived from the MODIS data using the Simplified Surface 

Energy Balance (SSEBop) model [200] from 2003 to 2016 from https://earlywarning.usgs.gov/fews 

from 2003 to 2016. The ETa anomalies (SETa) were obtained using Z‐scores (Equation 4.1) as well, 

which 𝑋𝑗𝑘𝑖  represents the ETa value of the jth month of the kth year, 𝜇𝑗𝑖  and 𝜎𝑗𝑖  represent the 

average and standard deviation of the 14‐year Eta values at ith cell. 

The annual anomalies of meteorological and hydrological drivers were calculated from the 

median of anomalies of the months within each hydrological year (from October of the previous 

year to September of the current year) or growing season (March‒October) at each cell. The 

anomaly values of meteorological and hydrological drought-indices were classified based on 

the first standard deviation from extreme wet to extreme drought conditions (Table 4.S1). 

4.4.2 Forest anomalies 

To explore biological responses of forests to meteorological and hydrological droughts, we 

derived two vegetation indices including NDWI and NDVI from MODIS products for retrieving 

https://lpdaac.usgs.gov/data_access/data_pool
https://earlywarning.usgs.gov/fews%20from%202003%20to%202016
https://earlywarning.usgs.gov/fews%20from%202003%20to%202016
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forest water content and forest greenness anomalies. Hence, we obtained 16-day time-series of 389 

images of Terra MODIS VI c5 product (MOD13Q1) with a 250m resolution through LP DAAC 

from 2000 to 2016. The NDWI and NDVI were derived from Red (0.6-0.7 μm, band 1), NIR (0.7–

1.1 μm, band 2) and SWIR (2.105–2.155 μm, band 7) as Equation 4.2 [29] and 4.3 [28]. 

𝑁𝐷𝑊𝐼 =
𝜌𝑁𝐼𝑅−𝜌𝑆𝑊𝐼𝑅

𝜌𝑁𝐼𝑅+𝜌𝑆𝑊𝐼𝑅
                                                                                                                       (4.2) 

𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅−𝜌𝑟𝑒𝑑

𝜌𝑁𝐼𝑅+𝜌𝑟𝑒𝑑
                                                                                                                        (4.3) 

Then, we derived 16-day NDWI and NDVI anomalies (SNDWI and SNDVI) based on the 

z-score formula (Equation 4.1), which 𝑋𝑗𝑘𝑖 represents the NDWI/NDVI value of the jth 16‐day of 

the kth year, 𝜇𝑗𝑖  and 𝜎𝑗𝑖  represent the average and standard deviation of the 17‐year 

NDWI/NDVI values at ith cell. 

The seasonal anomalies of the NDWI and NDVI were calculated from the median of 

anomalies of the 16 days within each growing season at each cell. The anomalies of the NDWI 

and NDVI were classified to the five vegetation condition schemes (Table 4.S1) based on the 

first standard deviation method [228] as well. 

4.4.3 Features of droughts 

Different dimensions of droughts were derived from the anomalies’ indices, which include 

severity, frequency, duration, onset and end time, and spatial extent of droughts [25,26]. Severity 

was defined as the scores of the indices below the normal condition, which escalates from low 

values to the high values. Frequency and duration were accounted as the number of recurrences 

and consecutive recurrences of drought within a year. The onset and end time of drought were 

determined from the threshold values of the indices within a year.  

We used these features to create drought hazard intensity (DHI), as an indication that 

aggregated different dimensions of drought in a specific place within a year. 

4.4.4 Drought hazard intensity 

Drought hazard intensity was computed based on the severity (S) and the probability of 

drought occurrence derived from the frequency (F) and duration (D) of meteorological, 

hydrological and forest droughts within each year and cell. The values of the dimensions of 
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drought events were standardized through the fuzzy membership functions [229]; Fuzzy 

Linear for the severity and Fuzzy Large for the frequency and duration values. Fuzzy Gamma 

operation was used to combine the fuzzified values of the drought dimensions (𝜇𝑖) to derive 

the yearly drought hazard intensity for each driver within a specific cell (𝐷𝐻𝐼𝑘) (Equation 4.4). 

𝐷𝐻𝐼𝑘 = (1 − ∏ (1 − 𝜇𝑖)𝑛
𝑖=1 )𝛾 × (∏ 𝜇𝑖

𝑛
𝑖=1 )1−𝛾                                                                                        (4.4) 

 The final hazard intensity of a cell associated with a specific drought was calculated from the 

median yearly DHI values of that driver within the study period. Output values of DHI ranging 

between 0 and 1, the values near to 1 are indicating higher drought hazard intensity and vice versa. 

4.4.5 Surveying of individual-tree mortality 

We selected randomly 100 parcels from 19 FMPs, which were less affected by human activities and 

remained intact. We surveyed all tree species showing a physical symptom of diebacks such as 

canopy thinning, defoliation, crown dieback, foliage and bark discolouration, epicormic growth, and 

die-off [43,180] within a parcel. A total of 29,937 individuals were explored from 15 commercial tree 

species, which 14,222 of trees showed at least one symptom of dieback. We recorded the attributes 

of the trees including the diameter at breast height (≈1.30 m) of all individuals above 12 cm, tree 

species, dieback symptoms, and spatial location (X, Y). All dieback-suspected individuals were 

classified based on the intensity of dieback into four categories: Stage A; dieback ≤ 25% (canopy 

thinning, low defoliation), Stage B; 25 < dieback ≤ 50% (medium to high crown defoliation), Stage C; 

50 < dieback ≤ 75% (epicormic growth, insect and fungal infestations), and Stage D; dieback >75% 

(high dieback and dead trees). Roughly 44% and 20% of the samples were classified in Stages D and 

A, and the remaining samples were distributed equally within Stages B and C. 

4.4.6 Diversity index of individual-tree mortality 

To quantify the intensity of tree mortality, we calculated the diversity of individual-tree 

species affected by dieback within a parcel using Simpson’s Diversity Index (D) [230], shown 

in Equation 4.5: 

𝐷 = 1 − ∑ (
𝑏𝑎𝑖

𝑏𝑎
)2𝑠

𝑖=1                                                                                                                                 (4.5) 

where bai is the basal area of individuals of the species i affected by dieback within a given parcel, 

ba is the total basal areas of trees, and s is the number of tree species within the given parcel. The 
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values of D range from 0 (no diversity) to 1 (infinite diversity) and represent the probability that 

two individuals randomly selected from a location belong to different species [231]. 

Moran’s I [232] was used to examine whether spatial relationships happen in shaping the 

patterns of diversity of tree mortality over the studied zones within each dieback stage. 

4.4.7 Spatial autoregressive between drought hazards and diversity of individual-tree mortality 

Spatial autoregressive approaches include the spatial lag (SL) and spatial error (SE) models were 

used to determine significant meteorological and hydrological drivers that control the biological 

responses of forests to drought events. We employed the DHI indicators for spatial‐statistical 

analyses among the variables. Conventional regression models such as the ordinary least square 

(OLS), estimate a linear dependence between dependent and explanatory variables and assume 

errors show a normal distribution. The existence of spatial autocorrelation of a model is 

indicating a significant correlation among error terms of observations and reinforces the 

coefficients of the model [233]. The SL model includes a spatially lagged dependent variable 

(𝜔𝛾), the coefficients of the explanatory variables (𝛽), and the error term (𝜀) as Equation 4.6. In 

the SE model (Equation 4.7), the error term (𝜀) decomposes to the spatial lag of the errors with 

an autoregressive coefficient (λ) and a “well‐behaved” error (𝜖) with a normal distribution [73]. 

Furthermore, these models were used to examine how the diversity of tree mortality associated 

with the biological responses of forests to droughts. Specifically, we analysed the spatial 

intensity of tree mortality associated with the DHI-related water content deficit and greenness 

loss of forests in each step of dieback.  

𝑦 = 𝜌𝜔𝛾 + 𝑋𝛽 + 𝜀                                                                                                                                  (4.6) 

𝑦 = 𝑋𝛽 + 𝜀    (𝜀 = ʎ𝜔 + 𝜖)                                                                                                              (4.7) 

Existing spatial autocorrelation in the spatial autoregressive approaches was tested using 

the parameters of Moran’s I and Lagrange Multiplier [233,234] at an alpha level of 0.05. The 

goodness‐of‐fit of the regression models was measured using R‐squared, Log‐likelihood (LI), 

Akaike Info Criterion (AIC), and Schwarz Criterion (SC) [73]. The superior model was selected 

depending upon the highest values of R‐squared and LI, and the lowest values of AIC and SC. 
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4.5 Results 

4.5.1 Drought dimensions 

4.5.1.1 Meteorological drought 

The median of precipitation anomalies indicated that about 25.6% of the forests experienced 

severe droughts, which about 64% of the area recorded more than six months drought condition 

and about 65% of the area have experienced three consecutive months of droughts during a 

hydrological year (Figure 4.S1‒S3). Moreover, the LST anomalies show critical values for both 

day-time LST (59.3%) and night-time LST (45.9%) with a frequency of more than four months in 

66.5 and 62.9% of the forests and three consecutive months of drought events in 59.3 and 45.9% 

of the forest during a seasonal growth (Figure 4.S1‒S3). Likewise, about 65.6% of the forests 

experienced severe ETa anomalies, which about 66.8% of the area recorded more than four 

months of the negative condition and about 60.8% of the forests experienced three consecutive 

months of the negative condition during a seasonal growth (Figure 4.S1‒S3). 

4.5.1.2 Hydrological drought 

Although the median of severe surface water droughts was recorded in the few areas (18.21%), 

about 44.26% of the forests experienced a frequency of more than six months with the longer 

consecutive months of drought condition including five (35.9%) and six (32.6%) months 

during a hydrological year (Figure 4.S1‒S3). The severe condition of groundwater drought 

obtained in 17.31% of the forests with a lower frequency of more than six months (10.7%) and 

shorter duration in a hydrological year (Figure 4.S1‒S3). 

4.5.1.3 Forest drought 

The medians of the anomalies of vegetation indices indicated that about 57.4 and 51.5% of the forests 

affected by the severe deficit of water content and the loss of greenness during a growing season 

(Figure 4.S1). The frequency of more than eight DOYs of the negative NDWI and NDVI was 

recorded in 61.5 and 35.3% of the forests (Figure 4.S2), and the duration of the four DOYs of the 

negative condition was observed in 38.1 and 31.3% of the area (Figure 4.S3), respectively. 
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4.5.2 Spatial variations of drought hazard intensity (DHI) 

The average hazard intensity of meteorological droughts was higher than hydrological droughts in 

the study area. Among the meteorological drivers, the higher average values of the DHI recorded 

for the ETa (0.48), day-time LST (0.36), night-time LST (0.31), and precipitation (0.27), respectively. 

The mean values of surface water (0.23) was higher than the groundwater (0.18). Critical values of 

hazard intensity of the meteorological droughts are distributed in the western and the eastern zones 

(Figure 4.2a‒d), while the higher values of the hydrological droughts are recorded in the eastern 

zone of the study area (Figure 4.2e and f). The obtained hazard intensity values for forest droughts 

are greater than meteorological and hydrological droughts. The average values of the DHI for the 

deficit of forest water-content (0.48) was greater than the values of the loss of forest greenness (0.41), 

with higher intensity in the western and middle zones (Figure 4.2g and h). 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Drought hazard intensity is a combination of the severity, frequency and duration of drought 

events for each year. The median values of the periods are used as the final hazard intensity of the 

meteorological droughts: the precipitation (a), day-time land surface temperature (b), night-time land 

surface temperature (c) and actual evapotranspiration (d); hydrological droughts: the surface water (e) 

and groundwater (f) levels; forest droughts: the deficit of forest water-content (g) and loss of forest 

greenness (h) in northeastern Iran. Although the average values of the hazard intensity of meteorological 

droughts are greater than the hydrological droughts, the hazard intensity values of forest droughts are 

considerable throughout the study area. 

 



72 
 
 

 

4.5.3 Diversity of individual-tree mortality 

The spatial variability of the diversity of tree species mortality showed significant spatial 

autocorrelation of Simpson’s diversity values in all four species dieback stages. The higher values 

of diversity of species mortality were obtained in the stage C by 0.587±0.035 (95% CI, Moran’s I = 

0.293 and P < 0.05), stage B by 0.567±0.041 (95% CI, Moran’s I = 0.487 and P < 0.01), stage D by 

0.493±0.035 (95% CI, Moran’s I = 0.390 and P < 0.01), and stage A by 0.419±0.039 (95% CI, Moran’s I 

= 0.283 and P < 0.05), respectively. The spatial variations of local statistics of Simpson’s index 

described that the diversity of species mortality in the central and eastern parcels (Figure 4.3b and 

c) is higher than the western parcels (Figure 4.3a). 

The total basal area of the tree species affected by dieback was obtained about 0.5089 

m2.ha‒1 in four stages. Although Stage B and Stage C recorded a higher diversity of tree 

mortality, the higher basal area was observed in Stage D by 0.1463 m2.ha‒1 and Stage A by 

0.1426 m2.ha‒1. On the other hand, the domination of the basal area of a few species such as 

Carpinus betulus (Stage A and D), Parrotia persica (Stage D) and Quercus castanefolia (Stage A) 

caused a lower diversity of species‐dieback in Stage D and A by comparison with Stage C and 

B. To compare to the western zones (Figure 4.3a), the parcels of the central and the eastern 

zones recorded a higher diversity of tree mortality (Figure 4.3b and c). 

4.5.4 Spatial dependence between the hazard intensity of forest droughts with meteorological 

and hydrological droughts 

The indicators of regression diagnostics show evidence of having spatial dependence in the SL 

and SE models (Table 4.S2). Highly significant scores of Moran’s I with 0.53 and 0.38, as well as 

significant Robust LM (P < 0.01), are indicating strong spatial autocorrelation of residuals’ of the 

forest drought hazard intensity based on the NDWI and NDVI. The indicators of goodness‐of‐

fit show higher performance of the SE model than the SL and OLS models (Table 4.1). The R‐

squared values are 0.35 and 0.26, and the LL values are 5521 and 7040 in the SE model for the 

NDWIDHI and NDVIDHI, respectively.  

The SE parameters show that there is a significant spatial dependence between the hazard 

intensity of forest droughts and meteorological droughts. The hazard intensity of the deficit of 
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Figure 4.3 Spatial distribution of diversity of the tree species diebacks measured using Simpson’s 

diversity index for the four dieback stages in the studied parcels of three zones in northeastern Iran. 

forest water‐content showed significant coefficients with the DHI values of the night‐time LST 

(0.259), ETa (0.2143) and day‐time LST (0.1803) (P < 0.01), as well as the precipitation (0.0359) (P 

< 0.05), respectively. Likewise, the spatial coefficients of drought hazard intensity between the 



74 
 
 

 

loss of forest greenness and the night‐time LST (0.1991), ETa (0.1550) and day‐time LST (0.1426) 

are significant (Table 4.1). Although the hazard intensity of forest droughts showed significant 

spatial dependence with the hazard intensity of the surface water drought (P < 0.05), they did 

not show significant relationships with the groundwater drought (P > 0.05) (Table 4.1).   

Table 4.1 The model coefficients and the parameters of model fit resulting from the spatial 

relationships between the hazard intensity of forest droughts, based on water-content (NDWI) 

and greenness (NDVI) properties, with the hazard intensity of the meteorological (precipitation, 

day-time LST, night-time LST and actual evapotranspiration) and hydrological (surface water 

and groundwater levels) droughts in northeastern Iran. 

Type of drought  NDWIDHI  NDVIDHI 

Model  OLS SL SE  OLS SL SE 

Intercept 0.5050** 0.1316** 0.4916** 0.3750** 0.1759** 0.3762** 

Precipitation -0.0235ns -0.0015ns 0.0359* 0.0368** 0.0270** 0.0385** 

Day-time LST 0.1710** 0.1507** 0.18031** 0.1545** 0.1328** 0.1426** 

Night-time LST 0.2448** 0.2300** 0.2590** 0.1933** 0.1839** 0.1991** 

Actual evapotranspiration 0.2690** 0.2068** 0.2143** 0.1674** 0.1466** 0.1550** 

Groundwater level -0.019ns 0.0021ns -0.006ns -0.0348** -0.016ns -0.015ns 

Surface water level -0.0057ns -0.008ns 0.0230* 0.0164* 0.0155* 0.0204* 

Ƿwy - 0.5427* - - 0.3871** - 

Lambda (ʎwv) - - 0.6035** - - 0.4389** 

Model fit R-squared 0.1572 0.3273 0.3507 0.1704 0.2474 0.2596 

Sigma-square 0.0120 0.0095 0.0092 0.0065 0.0059 0.0058 

Log likelihood 4900.95 5452.9 5521.26 6778.14 7010.62 7039.6 
Akaike info 
criterion -9787.9 -10889.8 -11028.5 -13542.3 -14005.2 -14065.2 

Note: * p-value < 0.05, ** p-value < 0.01, and ns: not significant. LST: land surface temperature; NDWI: normalized 

difference water index; NDVI: normalized difference vegetation index; DHI: drought hazard intensity; OLS: 

ordinary least squares; SL: spatial lag; SE: spatial error. 

4.5.5 Spatial dependence between the diversity of individual-tree mortality and forest droughts 

The parameters of spatial models represent that the diversity of the four stages of tree species 

mortality show different responses to the forest droughts based on the deficit of water content 

and loss of greenness (Table 4.2). There was no significant spatial dependence between the 

diversity of individual‐tree mortality and the hazard intensity of forest droughts in the first stage 

of dieback (p > 0.05). We observed significant positive relationships between the diversity of tree 

mortality and the hazard intensity of the deficit of forest water content in Stage B, Stage C and 

Stage D. Though we observed strong positive associations between the diversity of tree species 
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mortality and the hazard intensity of the loss of forest greenness in Stage C, there were no 

significant relationships in Stage B and Stage D (p > 0.05).  

Table 4.2  The model coefficients and the parameters of model fit resulting from the spatial 

relationships between the diversity of tree species mortality and the hazard intensity of forest 

droughts retrieved from the NDWI and the NDVI within four stages of diebacks in northeastern 

Iran. 

Tree species dieback Stage A Stage B Stage C Stage D 

Model  OLS SL SE OLS SL SE OLS SL SE OLS SL SE 

Intercept 0.6365** 0.581** 0.589** 0.688** 0.658** 0.687** 0.319 0.295 0.345** 0.558** 0.455** 0.426** 

NDWIDHI 0.0286ns -0.03ns -0.020ns 0.4107* 0.335* 0.2980* 0.106ns 0.081ns 0.086* 0.135ns 0.104* 0.245* 

NDVIDHI -0.431s -0.347ns -0.290ns -0.744* -0.674* -0.600* 0.349ns 0.347ns 0.326* -0.291ns -0.227ns -0.220ns 

Ƿwy - 0.145* - - 0.102ns - - 0.092ns - - 0.224** - 

Lambda (ʎwv) -  0.177* - - 0.221* - - 0.264* - - 0.384** 

M
od

el
 f

it
 

 

R-squared 

Sigma-square 

Log likelihood 

Akaike info 

criterion 

0.0251 0.069 0.063 0.058 0.086 0.119 0.037 0.065 0.134 0.010 0.155 0.2225 

0.0404 0.037 0.0377 0.0384 0.0361 0.0348 0.032 0.030 0.028 0.032 0.026 0.0246 

19.965 21.77 21.237 22.589 23.843 24.820 31.59 32.86 35.21 31.21 37.94 39.570 

-33.930 -35.54 -36.47 -39.18 -39.69 -43.64 -57.18 -57.72 -64.43 -56.43 -67.87 -73.14 

Note: * p-value < 0.05, ** p-value < 0.01, and ns: not significant. NDWI: normalized difference water 

index; NDVI: normalized difference vegetation index; DHI: drought hazard intensity; OLS: ordinary 

least squares; SL: spatial lag; SE: spatial error. 

The spatial regression models show significant indications of spatial dependence 

diagnostics in the three stages of species dieback. The SE model shows higher performance 

than the SL and OLS models (Table 4.2). The coefficients of NDWIDHI, based on the SE model, 

are about 0.298, 0.087 and 0.246 in the three critical stages (B, C and D), respectively. The 

coefficient of NDVIDHI is approximately 0.326 in Stage C based on the SE model as well. 

4.6 Discussion 

To obtain an appropriate indicator to assess the intensity of drought hazard, we derived multiple 

features of meteorological, hydrological and forest drivers from the MODIS products as well as 

in situ measurements. The drought hazard intensity indicator is a combination of the severity, 

frequency and duration of the drought events, which determines the degree of vulnerability of 

each pixel to the long-term meteorological, hydrological and forest droughts (Figure 4.2). The 

relationships between the hazard intensity of forest droughts and the hazard intensity of 
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meteorological and hydrological droughts were investigated using the spatial autoregressive 

approaches. 

This research reveals that Hyrcanian broadleaf forests suffer from the high intensity of declining 

water content (NDWIDHI) and browning of greenness (NDVIDHI) (Figure 4.2g and h). Spatial error 

model depicts that the high intensity of Hyrcanian forest droughts is resulting from the high DHI 

values of the day/night-time land surface temperature and actual evapotranspiration (Table 4.1). 

Likewise, the significant responses of forested areas to drought conditions were reported by 

analyzing relationships between the NDVI and some indicators of meteorological droughts such as 

the SPEI [34] and MSPE [24] at global and regional scales. Our findings add that drought hazard 

intensity of Hyrcanian forests is more correlated to the meteorological drivers, with higher impacts 

on the deficit of forest water content in comparison with the loss of forest greenness (Table 4.1).  

Although the hazard intensity of precipitation-deficit was significant throughout the region, 

its values were less than the hazard intensity of the ETa and the LST (Figure 4.2a‒d). Some 

previous studies have represented that increases in the LST and ETa values are the primary causes 

of exceptional forest droughts even in the condition of prolonged normal precipitation [197,201]. 

Moreover, high positive coefficients of the land surface temperature and evapotranspiration in 

relation to the forest drought metrics are representing the importance of both physiological and 

meteorological aspects for quantification of the responses of Hyrcanian forests to drought events 

[24]. High temperatures of the canopy, declining forest greenness and water content due to 

drought have been highlighted by several scholars in Amazonian forests as well [47,202,203]. Luce 

et al. [41] reported the impacts of prolonged warming- and precipitation deficit-related on the 

increase of the risk of hydraulic deterioration of trees and reduction in the carbon balance and tree 

growth. Higher temperatures and drier conditions affect the soil moisture, which resulted in 

increasing tree respiration and heat-related individual-tree mortality. 

The long-term meteorological droughts have affected the level of surface water and 

groundwater in the Hyrcanian forests as well. Hyrcanian forest showed positive responses to the 

hazard intensity of the deficit of surface water in northeastern Iran (Table 4.1). This severe 

condition has appeared as the declining groundwater level and soil moisture throughout the study 

area. For example, water-table has decreased about 9.25 cm per annum since the establishment of 

the network in 1973, where the higher cumulative declines were recorded for severe drought 
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conditions by 4.22, 4.79, 4.73 and 4.27 m during 2001, 2008, 2011 and 2014, respectively (Figure 4.4).  

Although Hyrcanian forest did not show a significant relationship with the drought hazard 

intensity of groundwater level, the rapid speed of declining water-table elevation of groundwater 

networks is considered as a big threaten for disturbing of Hyrcanian forests in the future. 

Furthermore, recent droughts have instigated farmers to change the agricultural system from dry-

farming into irrigated farming, which uses the maximum of renewable reservoirs of the 

groundwater and surface water resources in this region. The responses of trees to the depletion of 

groundwater, surface water, and soil moisture are closing the stomata, reducing 

evapotranspiration and photosynthesis operations, which lead to morphological deficiencies 

including low growth-speed of tree components, forest dieback, and tree mortality [210–212]. 

The results of spatial error model describe that the diversity of tree species mortality showed 

a remarkable positive relationship with the hazard intensity of the deficit of forest water-content 

during the moderate (B), severe (C) and extreme (D) stages as well as with the loss of forest 

greenness during the severe stage (C) of forest dieback (Table 4.2). The critical deficit in forest 

water content affected by the precipitation deficit, heat stress, evapotranspiration stress, and 

surface water deficit (Table 4.1) has caused this significant diversity of tree mortality throughout 

the Hyrcanian region. Previous studies demonstrated that water stress was the leading cause of 

tree mortality rates in other forest biomes as well [187,189,220]. When the canopy is affected by 

thinning in the lower severity of dieback, the trees still have green foliage and affect by low stress 

of water-content, therefore, neither NDWIDHI nor NDVIDHI have shown significant relationships 

with the diversity of species diebacks in Stage A. In the moderate stage, the hydraulic function of 

trees is affected by droughts, although tree mortality diversity did not show significant spatial 

association with the NDVIDHI, it showed a significant relationship with the NDWIDHI. In the high 

stage, severe droughts have caused changes in the forest water-content as well as changes in forest 

canopy like severe foliage browning and defoliation [47,188,219], which is indicated by significant 

relationships with forest stresses retrieved from the NDWI and the NDVI. Dead trees showed a 

positive relationship only with the deficit of forest water content, which substantiates previous 

studies that have pointed to massive drought-induced tree mortality due to the declining of 

hydraulic operations and carbon sequestrations [43,45–48]. 
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Figure 4.4 Fluctuation in water-table elevation relative to establishing the date of assessment network in 

northeastern Iran from 1973 to 2016. 

Our findings verify that the MODIS-derived NDWI shows higher performance than the 

MODIS-derived NDVI for quantification drought-induced individual-tree mortality in the 

Hyrcanian forests. Although Verbesselt et al. [69] found a higher performance of the NDVI than 

the NDII (as an index of water-content) for prediction of the diversity of tree mortality in southern 

New South Wales, Australia, Anderson et al. [213] reported the significant performances of both 

water content (NDWI) and greenness (EVI) indices in the estimation of tree mortality rates during 

the drought period of Amazonian tropical forests as well. 

Our analyses concerning the sensitivity degrees of Hyrcanian forest types to drought 

hazard intensity, based on the NDVIDHI and NDWIDHI, indicating higher values for the climax 

species such as Fagus orientalis, Quercus castanefolia and Carpinus betulus throughout the1162 

studied parcels. The highest NDWIDHI and NDVIDHI values observed for Fagus orientalis- Alnus 

glutinosa- Carpinus betulus (0.80 ± 0.175) and Fagus orientalis (0.609 ± 0.097) in the western 

parcels (zone I), Parrotia persica-Quercus castanefolia (0.801 ± 0.104) and Carpinus betulus-Acer 

spp (0.595 ± 0.052) in the central parcels (zone II), and Parrotia persica-Quercus castanefolia (0.910 

± 0.050 and 0.688 ± 0.050) in the eastern parcels (zone III) of the study area (Figure 4.5). 
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Figure 4.5 The sensitivity of some forest types to the intensity of forest drought hazards retrieved from the 

NDVI (a, c and e) and NDWI (b, d, and f) in the western (zone I), middle (zone II) and eastern (zone III) of 

northeastern Iran. 
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This high sensitivity of diverse Hyrcanian forest types alerts forest managers that there is a 

subsequent threat of increasing rates of tree mortality induced by prolonged droughts [47], even 

under a relative precipitation deficit and moderate heat waves [207–209,235]. Furthermore, 

analyzing the diversity of tree species mortality showed that commercial species with a high 

basal area such as Carpinus betulus, Parrotia persica and Quercus castanefolia recorded higher rates 

of the diversity of mortality in northeastern Iran, especially in the beginning and ending stages 

of the diebacks. Likewise, the impacts of forest droughts on the large and old tree populations 

were represented in the previous studies in different forest biomes [184,188,222,236]. 

This research addressed the impact of meteorological and hydrological droughts on the 

Hyrcanian forest droughts and dieback, therefore, we would encourage researchers to 

investigate the implications of other biotic and abiotic agents such as relief, anthropogenic 

activities, insect infestation and eruptions, and sprawling diseases and wildfires on the forest 

die-off and tree mortality [12,180] in this region as well.  

4.7 Conclusion 

With the contribution of time series moderate resolution imaging spectroradiometer products, 

ground-based data and spatial autoregressive models, we developed new analysis approach 

to investigate the physiological responses of the Hyrcanian forests to the hazard intensity of 

the meteorological and hydrological droughts in northeastern Iran. We can conclude from the 

analyses that meteorological droughts more than hydrological droughts affected the water 

content and greenness properties of the Hyrcanian forests. The impacts of the hazard intensity 

of high land surface temperatures and actual evapotranspiration were more severe than the 

hazard intensity of the deficits of precipitation and surface water on the deficit of water content 

and loss of greenness of Hyrcanian forests. Moreover, the high diversity of tree mortality was 

significantly correlated with the high values of the hazard intensity of forest droughts. 

Moderate to die-off stages of tree mortality are predictable through the indicator of forest-

water-content deficit (NDWI), however, the only high defoliation stage of tree mortality is 

predictable through the indicator of forest-greenness loss (NDVI) throughout the Hyrcanian 

forests. Climax tree species such as Fagus orientalis and Quercus castaneifolia recorded the higher 
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rates of hazard intensity of forest droughts and diversity of mortality in this biome. Further 

studies will have to continue to explore the impacts of other biotic and abiotic agents on the 

forest die-off and tree mortality of the Hyrcanian region.  
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5.1 Abstract 

Despite increasing the number of studies for mapping remote sensing insect-induced forest 

infestations, applying novel approaches for mapping and identifying its triggers are still 

developing. This study was accomplished to test the performance of Geographic Object-Based 

Image Analysis (GEOBIA) TreeNet for discerning insect-infested forests induced by 

defoliators from healthy forests using Landsat 8 OLI and ancillary data in the broadleaved 

mixed Hyrcanian forests. Moreover, it has studied mutual associations between the intensity 

of forest defoliation and the severity of forest fires under TerraClimate-derived climate 

hazards by analyzing panel data models within the TreeNet-derived insect-infested forest 

objects. The TreeNet optimal performance was obtained after building 333 trees with a 

sensitivity of 93.7% for detecting insect-infested objects with the contribution of the top 22 

influential variables from 95 input object features. Accordingly, top image-derived features 

were the mean of the second principal component (PC2), the mean of the red channel derived 

from the grey-level co-occurrence matrix (GLCM), and the mean values of the normalized 

difference water index (NDWI) and the global environment monitoring index (GEMI). 

However, tree species type has been considered as the second rank for discriminating forest-

infested objects from non-forest-infested objects. The panel data models using random effects 

indicated that the intensity of maximum temperatures of the current and previous years, the 

drought and soil-moisture deficiency of the current year, and the severity of forest fires of the 

previous year could significantly trigger the insect outbreaks. However, maximum 

temperatures were the only significant triggers of forest fires. This research proposes testing 

the combination of object features of Landsat 8 OLI with other data for monitoring near-real-

time defoliation and pathogens in forests.  

5.2 Introduction 

Despite prosperous traditional approaches such as dendrological assessment and field 

observations for identifying driving forces of insect outbreaks from individual tree to stand scales 

[6], remotely sensed approaches are extensively progressing either for delineation insect-infested 

objects or the mensuration of infestations induced by abiotic and biotic agents throughout forest 
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biomes [76,237–239]. However, some novel algorithms for data mining and machine learning such 

as TreeNet [77] for delineation insect-infested objects from non-insect-infested objects of images, 

some high-resolution climate data such as TerraClimate [240] for assessing drought and climate 

hazards dimensions, and some associations such as interactions between insect outbreaks, forest 

fires, and climate hazards have received less attention in earlier studies.  

Although monitoring the bark beetle infestation and coniferous defoliation are dependent on 

high-resolution and multi-spectral images [241,242], detecting broadleaved defoliation has been 

predestined by the spectral–temporal information of images, even by single near-infrared-derived 

vegetation indices of images with high-temporal resolutions [243]. Moreover, Landsat images 

have indicated high accuracy for detecting forest-infested patches using either classification 

algorithms in a specific date [2] or by applying multitemporal spectral-derived indices [63,64,244]. 

Moderate stages of tree infestation are significantly discernible through multitemporal spectral 

indices, while the severe infestation is highly discernible through classification approaches [245].  

Several numbers of studies exerted data mining and machine learning algorithms such as 

random forest [75,76,246] and decision tree [247] or maximum likelihood classification [248,249] 

to discern insect-defoliated from non-insect-defoliated forests. However, numerous remote 

sensing-derived indices are growing for quantifying the insect-induced defoliation intensity in 

terms of the long-term archive of Landsat products [63,64,247]. For example, Townsend et al. [64] 

claimed that Landsat-derived near-infrared (NIR) and short-wave infrared (SWIR) indices such 

as the normalized different infrared index (NDII) and the moisture stress index (MSI) were 

superior to the Landsat-derived red and NIR indices such as the normalized difference 

vegetation index (NDVI) for estimating the defoliation induced by Lymantria dispar in the oak 

forests at five different times. Similarly, Rullán-Silva et al. [63] examined the efficiencies of 10 

Landsat-derived vegetation indices for estimating the defoliation induced by Rhynchaenus fagi 

in the beech forests. They concluded that the MSI showed the highest correlation with the 

intensity of defoliation concerning the mixed-effects model. However, the attitude of analyzing 

meaningful image-objects for the classification of infested and non-infested forests [250] by the 

cooperation of image-derived features and GIS-based methods and databases is developing, that 

is, Geographic Object-Based Image Analysis (GEOBIA) [79]. Besides, earlier results of studies 

have demonstrated that the combination of object features derived from medium-resolution 

images such as Landsat and SPOT with ancillary data such as topography has increased the 
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precision of discerning forest infestations induced by bark beetle [241]. Machine learning 

algorithms such as random forest improved the classification efficiency with image-derived 

object features for mapping forest infestations [251]. However, evaluating the efficiency of 

combination GEOBIA and other machine learning methods such as TreeNet for mapping 

infested forests induced by defoliators has not been addressed up to now. 

Forests are mainly degraded by interactions between abiotic agents such as high 

temperatures, drought, moisture variability, anthropogenic interventions, and forest fires and 

biotic agents such as invasive species, tree mortality, insect infestations, and pathogens [4,35–37]. 

The abiotic agents can trigger the effects of biotic agents, and their synchronization significantly 

results in tree species’ hydraulic deterioration and carbon starvation [2,35–37]. Climate change 

studies demonstrated that defoliators’ population rate during a growing season is correlated to 

the temperature condition of its hydrological year [252]. Temperature increases can enable insects 

to survive during the cold season [49–51] and provide rich sources of nutrition from the mature 

leaves by changing the trees phenology cycle; along with that, they can also increase the risk of 

insect outbreaks during the growing season [253]. However, there is existing uncertainty about 

the effects of droughts on the insect outbreaks in the forest biomes [52]. Increasing the droughts’ 

dimensions may result in providing conditions for insect outbreaks [2], tree mortality [5], or 

increasing the forest fires severity [3]. However, the serious effects of insect defoliators emerge 

during the moderate drought condition or wetter seasons following droughts occurring 

[2,35,52,254]. Changes in moisture capacity regarding either high moisture availability [6,255] or 

low moisture availability [256] are identified as the main driver forcing of some insect outbreaks. 

The synchronization of droughts following the conditions of above-average moisture availability 

may result in providing an appropriate condition for insect outbreaks [35] as well. 

Mutual interactions between insect infestations and forest fires were documented in some 

studies [56]. Insect infestations may affect the fuel loads of the tree species and increase the 

severity of forest fires at landscape-level scales [5,55,56]. However, some studies reported 

declining the severity of forest fires by increasing the mortality induced by insect attacks [57] 

or neutral effects of insects and pathogens on the fire characteristics [58,59], particularly in the 

coniferous forests. Additionally, there is evidence of the probability of increasing the risk of 

insect outbreaks in those trees that were damaged or weakened following a low severity of 

forest fires [53] or in fire-induced larger patches of canopy cover [54].  
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The Caspian Hyrcanian broadleaves and mixed forests have been degrading, as a virgin 

ecoregion of the temperate forests’ biome, by a variety of biotic and abiotic agents such as 

deforestation [83], forest fires [84], drought [206], and climate hazards with consequences of 

massive tree mortality [257] in the northeast (NE) Iran during recent decades. Droughts' 

dimensions could significantly affect the water content and greenness properties of Hyrcanian 

forests based on the MODIS-derived normalized difference water index (NDWI) and NDVI  

[206,257]. The stages of moderate to extreme tree mortality events showed a significant 

association with the high intensity of forest water content deficit derived from the MODIS–

NDWI; however, the severe defoliation only showed a significant relationship with the 

intensity of forest greenness loss derived from NDVI in NE Iran [257]. In addition to climate 

hazards, drought, and forest fires, there has been rising concerning reports about the outbreaks 

of some insect defoliators such as Lymantria dispar, Erannis defoliaria, and Operophtera brumata 

[85,258] as well as pathogens [86,87,259] throughout Hyrcanian forests during recent years. 

Therefore, this study used TreeNet to delineate insect-infested forests from non-insect-infested 

forests using numerous Landsat 8 OLI-derived object features, topographic-derived features, 

and tree species types in Hyrcanian forest, NE Iran. Moreover, it will explore the mutual 

relationships between the intensity of insect infestation and the severity of forest fires in the 

presence of TerraClimate-derived climate hazard variables for the period of insect outbreaks 

and forest fires within the TreeNet-derived insect-infested forest objects. 

5.3 Materials and Methods  

5.3.1 Study area 

The eastern forests of the Hyrcanian ecoregion were selected for this research. This area is 

extended from Gorgan to Galikesh in the Golestan province, NE Iran (Figure 5.1). These forests 

comprise a mixture of broadleaved tree species such as Quercus castaneifolia, Fagus orientalis, 

Carpinus betulus, Acer spp.,Tilia platyphyllos, and Parrotia persica [82]. The western parts were 

infested by the defoliators of Erannis defoliaria and Operophtera brumata, while the eastern parts 

were affected by Lymantria dispar (Figure 5.1). Moreover, the frequency of forest fire events has 

been increasing in this region during recent years (Figure 5.1). 
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5.3.2 Data and field mensuration 

This study identified the insect-infested regions from available reports, local media, and field 

observations. The attributes of defoliated spots including the type of defoliators, the position, 

the dominant type of host tree species, and the evidence of current and previous egg-laying 

were documented. The accurate spatial extent areas of the defoliation were delineated using 

time-series composite bands of Landsat 8 OLI [260] and the images of Google Earth (Figure 

5.2) coincided with the advanced larval stage of insect defoliators (Figure 5.1). A peak of attack 

was recognized in 2014; the infested objects for this time were delineated from the healthy 

forest using GEOBIA and TreeNet. The forest fires data were achieved from field surveying, 

local media, and the available historical database that were provided by the Department of 

Natural Resources and Watershed Management of Golestan province from 2010 to 2017. The 

burnt area, duration, and frequency of forest fires were used during a fire season to reach the 

forest fire severity of a specific location. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Study area in the Hyrcanian forest ecoregion in the southeast Caspian Sea. Spatial scatter 

of the insect defoliators and forest fires samples of 2012–2017 in the northeast (NE) Iran. The eastern 

part of the study area was affected by Lymantria dispar, while the western area was affected by Erannis 

defoliaria and Operophtera brumata. 
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We used monthly TerraClimate data for calculating [240] long-term dimensions of anomalies 

of drought, temperature, and soil moisture from 1987 to 2017. We derived the annual intensity 

hazard of climate variables from their dimensions as causes of triggering insect attack and forest 

fires for modelling by the panel data approaches (see Section 5.3.3.3). The ancillary data such as 

the Topographic Position Index (TPI), Terrain Ruggedness Index (TRI), and Topographic 

Wetness Index (TWI) were derived from the ALOS PALSAR data elevation [261] for the study 

area. Forest types were vectorized concerning the scanned maps of the forest management plans 

[262]. These data were used for mapping insect-infested forests along with Landsat 8 OLI data. 

 

 

 

 

 

 

 

 

 

Figure 5.2 Site C (Figure 5.1): The images of Google Earth (GE) [263] and Landsat 5 TM (SWR, NIR, R) 

show that the forest was in a healthy condition before the attack of Lymantria dispar in 2010 (a, b); the 

symptoms of the infestation emerged on the Landsat 8 OLI (SWR1, NIR, R) as “olivenite green” in 2013 

(c); the insect significantly infested the region based on the GE (d) and Landsat 8 OLI (e) images in 2014, 

while it declined in 2015 (f) and ended in 2016 (g). 

5.3.3 Methodology 

5.3.3.1 TreeNet-based insect-infestation mapping 

GEOBIA was used to delineate the insect-defoliated areas from the healthy forests through 

image segmentation and TreeNet classification. We derived image objects from a set 

combination of the main spectral and panchromatic channels of Landsat 8 OLI for the peak 

times of defoliation (May–June) through the multiresolution segmentation algorithm. To 

minimize the mean heterogeneity of image objects, we assigned optimal scale parameters by 

trial and error, with higher weights for the red, NIR, and SWIR bands; the compactness value 

of 1; and the shape value of 0 in the eCognition Developer 9 [264]. 
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• Object features 

Various object features (95 features) were derived from the main channels of Landsat 8 OLI, 

topography data, and forest types, as shown in Table 5.1. The object features were classified into 

four main groups including spectral features, surface texture features, geometric features, and 

the features derived from ancillary data in the GIS. A single database was created including all 

the derived features of segment objects and was utilized for classification using TreeNet. 

Table 5.1 Object features derived from Landsat 8 OLI channels and ancillary data (topographic 

and forest data) for discriminating defoliated forests from healthy forests in NE Iran. 

Object features Input data Features1 (No.) 

Spectral features 

(32) 

Blue, Green, 

Red, NIR, 

SWIR1, SWIR2 

Mean (6), StdDev (6) of the spectral bands 

Mean & StdDev of spectral indices (14) (IPVI [265], GEMI 

[266], ARVI [267], GVI [268], NDVI [28], EVI2 [269], NDWI 

[29] 

Principal components (6) [270], Greenness (2), Wetness (2) 

[271], Brightness (1), Max. diff. (1) 

Surface texture-

features (56) 

Single bands 

and all bands in 

all directions 

GLCMall dir. (Homogeneity (7), Contrast (7), Dissimilarity 

(7), Entropy (7), Mean (7), Angle 2nd moment (7), StDev 

(7), Correlation (7))[272,273] 

Geometric 

features (3) 
Objects Area (1), Compactness (1), Asymmetry(1) [273] 

Ancillary data (4) 
ALOS PALSAR 

Forest data 

Topographic wetness index [274], Topographic position 

index [275], Terrain ruggedness index[276], Forest types 
1 StdDev: Standard deviation; IPVI: Infrared percentage vegetation index; GEMI: Global environment 

monitoring index; ARVI: Atmospherically resistant vegetation index; GVI: Green vegetation index; 

NDVI: Normalized difference vegetation index; EVI2: Enhanced vegetation index 2; NDWI: Normalized 

difference water index; GLCM: gray-level co-occurrence matrix. 

• TreeNet classification 

The stratified random sampling method was used for selecting samples of insect-infested 

objects (defoliation >50%) and non-insect-infested objects for assessing the object features that 

control insect outbreaks and discriminate them from the non-insect-affected forests. The 

TreeNet algorithm was applied for determining influential variables depending on the test 

sets and generalizing the obtained scores to all feature objects to distinguish between the 

insect-infested and non-insect-infested objects. Classification in TreeNet is a particular form of 

regression that produces a possibility of response for a variable and accurately ranks the 

predictor variables based on their importance from “most likely” to “least likely” to the target 

variable. TreeNet creates boosting regression models through sequentially fitting a very small 

tree in several stages. Accordingly, each stage learns from the available training data by a 

specific learning rate [77].  
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We applied TreeNet in Salford Predictive Modeler 8.3 [277] to build our model concerning 

its classification precision, working with both parametric and non-parametric variables, 

handling big data and missing datasets, connecting to GIS, plotting the univariate and 

bivariate relationships between the response and predictor variables through partial 

dependency plots (PDPs), yielding reliable results despite existing non-stationary in data, and 

ranking the predictor variables in terms of their importance in the model [77,78,278]. One-third 

of the samples were randomly assigned for the testing set, and the remaining were considered 

as the learning samples. We set the number of trees and maximum nodes per tree to 500 and 

6, respectively. The shrinkage method was chosen as “auto” to eliminate the complexity of 

overfitting and to set the learning rate of the model, which was calculated to be 0.01. Moreover, 

we evaluated the number of optimal trees using the criterion of the area under the receiver 

operating characteristic (ROC) curve and the misclassification rate for the test samples. The 

confusion matrix was used to assess the performance of the classification model with respect 

to the test samples using four measures: (1) Sensitivity: the proportion of the insect-infested 

objects that are correctly classified, (2) Specificity: the proportion of the non-insect-infested 

objects that are correctly classified, (3) Precision: the proportion of the actual classified insect-

infested objects divided by the total number of the insect-infested class testing objects, and (4) 

an F1 statistic derived from the sensitivity and precision metrics as shown in Equation 5.1, in 

which its values close to one indicate a high sensitivity of the model: 

𝐹1 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =
2(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                                                                                           (5.1) 

5.3.3.2 Intensity of insect infestation, the severity of forest fire, and climate hazards 

The intensity of defoliation was retrieved by analyzing the long-term deficit of NDWI-derived 

forest-water content within the TreeNet-derived insect-infested polygons. We calculated the 

dimensions of defoliation including the severity, frequency, and duration of the yearly 

defoliations from the anomalies of the Landsat NDWI from 1987 to 2017. The yearly hazard 

intensity of defoliation was mapped concerning the introduced approach by Abdi et al. [257], 

which is a combination of standardized values of defoliation dimensions through the fuzzy 

gamma operator [279]. 

We obtained the spatial variations and characteristics of daily forest fires from diverse 

resources from 2010 to 2017. Several studies verified the strength of Landsat-derived burn 



92 
 

severity indices such as the differenced Normalized Burn Ratio (dNBR) [280] and the 

Relativized dNBR (RdNBR) [281] for large fires; however, some fires’ characteristics such as 

size area, duration, and the type of fire may restrict these indices applications for post-fire 

monitoring in northeast Iran. Therefore, the severity of forest fires was calculated from the 

combination of the ground-based characteristics of fires including the frequency, size, and 

duration of fires within segment objects. The fire characteristics’ values were standardized 

between zero (low) and one (high) by exerting the membership function of fuzzy linear [229]. 

The severity of forest fires was obtained by overlaying the standardized layers of fire 

characteristics using the fuzzy gamma operator [279] during a fire season. 

TerraClimate data were applied to model the hazard intensity of climate variables 

throughout the hydrological years (October to September) from 1987 to 2017. The features (i.e., 

severity, frequency, and duration) of yearly anomalies of the climate variables were combined 

to obtain the hazard intensity indices of drought, maximum temperatures, and soil moisture 

deficit using the fuzzy gamma operator [279] as well. 

5.3.3.3 Relationships of insect infestation, forest fires and climate hazards 

We examined mutual relationships between insect infestation and forest fires in the presence 

of the hazard intensity of climate variables within the insect-affected objects using the panel 

data models. To include both the spatial and time effects of the data, we performed the panel 

data models [282] for the estimation of the intensity of defoliation affected by forest fire 

severity and climate hazards (Equation 5.2), as well as the severity of forest fires induced by 

insect defoliation and the climate hazards (Equation 5.3): 

𝐼𝑛𝑠𝑒𝑐𝑡 𝑖𝑛𝑓𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑓𝑛(𝐹𝑡−1, 𝐷𝑡  , 𝐷𝑡−1, 𝑇𝑡 , 𝑇𝑡−1, 𝑆𝑡 , 𝑆𝑡−1)                                                           (5.2) 

𝐹𝑖𝑟𝑒 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 = 𝑓𝑛(𝐼𝑡, 𝐼𝑡−1, 𝐷𝑡  , 𝐷𝑡−1, 𝑇𝑡 , 𝑇𝑡−1, 𝑆𝑡, 𝑆𝑡−1)                                                                 (5.3) 

where It, Ft,  Dt, Tt, and St are the averages of insect infestation intensity, fire severity, drought 

intensity, high temperature, and soil moisture deficits in the current year (t); and It-1, Ft-1, Dt-1, Tt-1, 

and St-1 are the averages of these variables for the previous year (t−1), respectively. 

Panel data models 

Analyzing the panel data was established based on the combination of multiple 

observations for the same cross-sections and time series, which is written in a standard model 

as shown in Equation 5.4 [283]: 



Chapter 5 

 

 

𝑦𝑖,𝑡 = 𝛽ʹ𝑋𝑖𝑡 + 𝑍𝑖𝛼 + 𝜀𝑖𝑡                                                                                                                      (5.4) 

For 𝑖 = 1, 2,3, … , 𝑁 and 𝑡 = 1, 2,3, … , 𝑇; where N stands for the number of individuals (cross-

sections), and T is the number of times. The vector 𝑋𝑖𝑡 refers to the k regressors (Equations 5.2 and 

5.3). The vector 𝛽ʹ refers to unobserved coefficients, which need to be estimated. The term 𝑍𝑖𝛼 

expresses the cross-section specific effects. The error terms of the model were indicated by 𝜀𝑖𝑡 . 

Three panel data models are defined regarding the nature of included variables in the vector 𝑍𝑖, 

including the common effects, fixed effects, and also random effects models (Equations 5.5–5.7).  

The common effects model does not consider time and cross-sectional effects. The vector 𝑍𝑖 

contains only one constant coefficient: 𝛼. The coefficients of this model are estimated by applying 

the ordinary least squares (OLS) approach: 

𝑦𝑖,𝑡 = 𝛽ʹ𝑋𝑖𝑡 + 𝛼 + 𝜀𝑖𝑡                                                                                                                         (5.5) 

The fixed effects model assumes specific cross-sectional effects from different intercepts 

to obtain unobserved heterogeneity. The parameter of fixed effect 𝛼𝑖  is constantly estimated 

over time with the estimators' normality assumption. This model assumes that cross-sectional 

effects are correlated with the included regressors 𝑋𝑖𝑡: 

𝑦𝑖,𝑡 = 𝛽ʹ𝑋𝑖𝑡 + 𝛼𝑖 + 𝜀𝑖𝑡                                                                                                                        (5.6) 

The random effects model assumes that unobserved cross-sectional heterogeneity is not 

correlated to the included regressors 𝑋𝑖𝑡. The coefficients of this model are estimated using the 

generalized least squares (GLS) estimator: 

𝑦𝑖,𝑡 = 𝛽ʹ𝑋𝑖𝑡 + 𝛼 + 𝜇𝑖𝑡                                                                                                                         (5.7) 

𝜇𝑖𝑡 = 𝛼𝑖 + 𝜀𝑖𝑡           

The random effects model is preferable to the fixed effect model if samples were taken 

from a larger population and the estimations’ generalization to the population was aimed. The 

higher accuracy of estimates and greater flexibility of this model were reported in comparison 

with the fixed effects model [284,285] as well. 

Testing for fixed effects and random effects 

Tests were accomplished to make a distinction between panel data models. The Chow test was 

used for testing fixed effects against common effects [283], which determines whether a single 

regression model (common effects) is superior to the two separate regression models (fixed effects). 

The Hausman’s specification test [286] was used for selecting whether the fixed effects model or the 
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random effects model is appropriate [287]. The Hausman test makes a distinction between a model 

that assumes its cross-sectional effects are not correlated with its regressors (random effects), and a 

model that assumes that these relationships are established (fixed effects) [283].  

5.4 Results 

5.4.1 Insect defoliation mapping 

The highest performance of TreeNet was obtained after the formation of 333 trees with the optimal 

ROC value of 93.4% for discriminating insect-infested and non-insect-infested forest objects. The 

model results using 83 out of 95 predictor variables yielded average correctness of 87% for testing 

samples to predict the insect-infested and non-insect-infested forests (Table 5.2).  

Table 5.2 Classification correctness of test samples for the TreeNet analysis to discriminate the 

insect-infested from the non-insect-infested forests in NE Iran  

Measure Average Overall accuracy Specificity Sensitivity Precision F1 statistic 

Percent 87.15 86.76 80.56 93.75 81.08 86.96 

Relative variable importance values describe that the top predictors are the mean of PC2, tree 

species, and the mean of the red channel derived from the grey-level co-occurrence matrix 

(GLCM), NDWI, and global environment monitoring index (GEMI) (Figure 5.3). The positive log-

odds values of the insect-infested class were significantly increased when the mean of the PC2 

values had passed the point of 0.70. Tree species with the domination of Carpinus betulus-Quercus 

castaneifolia and Carpinus betulus-Acer spp.-Tilia platyphyllos exhibited the highest partial 

relationships with the insects' presence. The average log-odds values of the insect-infested class 

were increased from –0.287 to 0.314, where the mean of the red band derived from GLCM ranged 

from 122 to 130. The average log-odds dropped at values of 0.264 and 0.635 of the NDWI and 

GEMI, respectively, where the probability of infestation also reduced (Figure 5.4). The TreeNet 

model was rebuilt with respect to the top influential object features that have gained a minimum 

score of 15% importance relative to the most important variable. The insect-infested and non-

insect-infested map was created with the contribution of the top 22 predictor variables over the 

study area (Figure 5.5). The hazard intensity of defoliation derived from the time-series anomaly 

of Landsat–NDWI was mapped as an insect infestation indication within the delineated insect-

infested forest objects from 2010 to 2017 (Figure 5.6). The maps demonstrated that the infestation 

intensity was considerable in 2011, 2014, and 2015 (Figure 5.6b,e,f). 
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Figure 5.3 The importance of top predictor variables of Landsat 8 OLI and ancillary features for 

discerning insect-infested from the non-insect-infested objects using TreeNet. The most important 

predictor variable (i.e., the mean of the second principal component, or PC2) has gained a value of 100%, 

and other features were rescaled based on their importance relative to the PC2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Univariate partial dependency graphs for the top five-predictor variables for classification of insect-

infested forests in NE Iran. Positive values of the outputs indicate a direct association of a class of the categorical 

variables or values of the continuous variables with the focus class. Eight tree species show positive 

relationships with the infested class (a), the mean of PC2 and the mean of red band derived from GLCM show 

a positive association at values of greater than 0.711 (b) and 126.30 (c), and the mean values of the NDWI and 

GEMI show a positive relationship with the presence of infestation until the values of 0.267 (d) and 0.697 (e). 
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Figure 5.5 The insect-affected and non-insect-affected forest-objects derived from the influential object 

features of Landsat 8 OLI and ancillary data using Geographic Object-Based Image Analysis (GEOBIA) 

and TreeNet in the Hyrcanian region, NE Iran. 

5.4.2. Insect infestation, forest fires and climate hazards modelling 

The results of the Hausman test indicate that the random effects model was superior to the 

fixed effects model for the variables expressing that control either the intensity of insect 

infestation (X2 = 11.87, df = 7, p= 0.105) or severity of forest fires (X2 = 6.72, df = 8, p = 0.567). 

Furthermore, the results of the Chow test showed that the fixed effects model was superior to 

the common effects in both models (X2 = 37.39, df = 18, p = 0.004; X2 = 43.31, df = 18, p = 0.000).  

The summary of the random effects model reveals that the drought condition (SPI), 

maximum temperature (Tmax), and the deficit of soil moisture of the current year—along with 

the maximum temperature, high soil moisture availability, and the severity of forest fires of 

the previous year—were the significant variables, which are controlling the insect infestation 

intensity during 2010–2017 in the study area (Table 5.3). However, the intensity of drought of 

the previous year was not significant, but its coefficient is positive. Although the majority of 

climate hazards demonstrated positive coefficient with the severity of forest fires, Tmax of the 

current year (β = 0.330, P < 0.05) and Tmax of the previous year (β = 0.196, P < 0.01) were the 

only significant variables. The insect infestation (II) of the previous year showed a positive 

relationship with the severity of forest fire as well; however, it is not statistically significant (β 

= 0.106, P > 0.05) in NE Iran (Table 5.4). 
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Figure 5.6 The yearly hazard intensity of defoliation for the time period of 2010 to 2017 (a–h) within the 

insect-infested forest objects. The monthly anomalies of NDWI were obtained from the time series of 

Landsat 5, 7, and 8 from 1987 to 2017. The dimensions of forest water content deficit including severity, 

frequency, and duration were derived from Landsat–NDWI anomalies for the period of defoliation 

(2010–2017). The values of these dimensions were standardized by the membership functions of fuzzy 

linear and fuzzy large between zero and one. The hazard intensity of defoliation was obtained by 

overlaying the standardized layers of dimensions of the NDWI anomalies using the fuzzy gamma 

operator within the insect-infested segment objects during a growing season in Hyrcanian forests, NE 

Iran. 
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Table 5.3 Results of panel data models for relationships between the intensity of insect infestation with 

the intensity of climate hazards of the current year and previous year as well as forest fires of the 

previous year in NE Iran. 

Model Constant SPIt SPIt-1 Tmaxt Tmaxt-1 SoilMt SoilMt-1 Firet-1 R2 

Common 

effects 
0.204** 0.184* 0.070ns 0.463* 0.165* 0.144* −0.134* 0.171* 0.680 

Fixed 

effects 
0.290** −0.039ns −0.080ns 0.762** 0.367* 0.152* −0.072ns 0.154* 0.798 

Random 

effects 
0.210** 0.153* 0.048ns 0.718** 0.321* 0.146* −0.126* 0.194* 0.706 

** p-value < 0.01, * p-value < 0.05, and ns: not significant. SPI: standardized precipitation index; Tmax: maximum 

temperature; SoilM: soil moisture deficit; Fire: forest fire; t: current time; and t-1: previous time. 

Table 5.4 Results of panel data models for relationships between the severity of forest fires with the 

intensity of climate hazards and insect infestation of the current year and the previous year in NE Iran. 

Model Constant SPIt SPIt-1 Tmaxt Tmaxt-1 SoilMt 
SoilMt-

1 
IIt IIt-1 R2 

Common 

effects 
−0.0169ns −0.085ns 0.030 0.385* 0.177* 0.032ns −0.163ns −0.059ns 0.105ns 0.210 

Fixed 

effects 
−0.032ns −0.113ns 0.094ns 0.254ns 0.213** 0.049ns −0.126ns −0.031ns 0.106ns 0.550 

Random 

effects 
−0.017ns −0.101ns 0.117ns 0.330* 0.196** 0.041ns −0.148ns −0.020ns 0.106ns 0.236 

** p-value < 0.01, * p-value < 0.05, and ns: not significant. SPI: standardized precipitation index; Tmax: maximum 

temperature; SoilM: soil moisture deficit; II: insect infestation intensity; t: current time; and t-1: previous time. 

5.5 Discussion 

This study exerted novel remote sensing-based data collections (e.g., Landsat and 

TerraClimate) and approaches (e.g., TreeNet and panel data models) to discern insect-infested 

forests and quantify the multitemporal intensity of forest defoliation, climate hazards, 

drought, and the severity of forest fires along with modelling their temporal and spatial 

interactions in NE Iran. 

We obtained reliable discrimination between insect-infested forests and non-insect-

infested forests (Table 5.2) using the important collections of Landsat 8 OLI-derived and 

ancillary object features using the TreeNet algorithm. The summary of variable importance 

represented that the object features extracted from the Landsat channels show higher 

performance in comparison with the main spectral channels of Landsat (Figure 5.3). For 

example, the highest value recorded for the mean of PC2, and after that the mean of red 

channel derived from GLCM and the mean values of vegetation indices, including the NDWI 
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and GEMI, respectively. Analyzing one partial dependency revealed that the probability of 

the presence of defoliation increases along with the increase of average values of the PC2 and 

the mean of the red channel derived from GLCM, while it decreases by the increase of values 

of the NDWI and GEMI (Figure 5.3). The PC2 was positively loaded on the visible bands of 

Landsat 8 OLI with a higher coefficient for the red and green bands, which high-defoliated 

forest objects have obtained high values on PC2 (Figure 5.4b). The increase in the reflectance 

of some ranges of visible wavelengths due to the vegetation stress was reported in earlier 

studies [288,289], which are near to the green and red bands of Landsat 8 OLI. In contrast, PC2 

was loaded negatively on the NIR and SWIR bands, as the objects with high biomass showed 

lower values on the PC2. While our analysis indicated that the PC2–Landsat 8 OLI is the top 

variable predictor, the third principal component (PC3) was positively loaded on the red band 

and showed considerable importance value in discriminating between insect-infested forest 

objects and healthy forest objects (Figure 5.3) as well. Also, the ability of PC3 was reported for 

identifying year-to-year forest defoliation by Lymantria dispar L. using the time series of SPOT 

[290]. Moreover, the importance of Landsat-derived indices was presented for detecting insect-

affected forests for different types of insects in other biomes [63,64,247]. This study results 

confirm that vegetation indices with respect to the NIR–SWIR (i.e., NDWI) are superior to 

those vegetation indices that are depending on the visible NIR channels for the delineation of 

insect-infested forest objects [63,64] in the Hyrcanian ecoregion as well. 

Insect defoliators can affect the structure of vegetation [291]; therefore, image-derived 

textural attributes are appropriate for detecting insect-defoliating forest objects. However, the 

mean of the red channel derived from GLCM was among the top five predictors; Figure 5.3 

indicates that about one-third of effective predictor variables are categorized in the first-order 

or second-order textural attributes for detecting the defoliation induced by insects in NE Iran. 

The superiority of image textures derived from GLCM and grey-level occurrence matrices 

(GLOM) [291,292] for detecting vegetation degradation induced by insect defoliation has been 

particularly demonstrated for the high spatial resolution images. 

The results of variable importance describe that the type of tree species has a significant 

effect on the insect outbreaks as well. However, the partial dependence plot shows that mixed 

forest stands such as Carpinus betulus and Quercus castaneifolia with the other tree species types 

were highly correlated with the positive values of probability infestation in the Hyrcanian 
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forests (Figure 5.4a). However, some studies reported insect defoliation in the monospecific 

stands in the other forest biomes [63,242,293].  

The results of interactions between the intensity of insect defoliation with the intensity of 

climate hazards demonstrated that Tmax, drought, and soil moisture significantly increased 

the intensity of insect infestation. Both current and previous temperatures presented 

significant coefficients (Table 5.3). The high temperatures of the previous year can enable 

insects to survive during the winter [49–51] and change the cycle of forest phonology with the 

insect outbreaks consequences during the growing season [253]. 

Although some studies reported uncertainty about the effect of drought on the insect 

eruption [52], this study’s analyses confirmed that drought condition is a key trigger of 

increasing insect outbreaks in Hyrcanian broadleaved forests (Table 5.3). This area has 

experienced severe droughts from 2010 to 2011 [206]; however, the wetter seasons during 2012 

and 2013 provided the condition for eruption insects during moderate drought seasons. Also, 

these fluctuations in the wet and dry seasons have been reported as a trigger of insect 

outbreaks [35]. The panel data models using random effects verified that the soil moisture 

availability [6,255] in the previous year significantly increased the intensity of insect 

infestation (Table 5.3). However, the effect of the deficit of soil moisture in the current year 

was not strongly significant; its positive coefficient indicates that it was more likely that it 

intensified the insect eruption [256]. Therefore, the conditions of the previous year regarding 

its high temperatures and availability of moisture have supplied the sources of nutrients for 

insects and caused massive outbreaks in the current year with existing high temperatures and 

drought conditions. Earlier studies emphasized that high temperature is the main cause of 

increasing the intensity of tree mortality in the Hyrcanian forests [257]. 

Moreover, the random effects model indicated that the severity of forest fires of the 

previous year was a significant driver in increasing the intensity of insect infestation (Table 

5.3). The trends of forest fires were dramatically increased following 2010 in the study area 

(Figure 5.1). Since the majority of the type of fires are classified as surface fires and single-tree 

burning in the study area, the likelihood of damaging trees [53] and opening fire-induced 

spaces [54] have increased the risk of insect infestation in these spots. The presence of insect 

defoliators was higher in the locations with a high density of fires (Figure 5.1). In contrast, the 

intensity of insect defoliation either in the current year or in the previous year was not a 
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significant trigger for increasing the severity of forest fires in the Hyrcanian ecoregion (Table 

5.4). The neutral effects of insect infestation on fire severity were demonstrated in the studies 

accomplished by Meigs et al. [58] and Kane et al. [59] as well. However, some researchers 

concluded that insect-induced tree mortality has decreased fuels and associated fire 

proneness, resulting in declining fire severity [57]. We can justify these results for two reasons 

in Hyrcanian forests: (1) insect infestations have not yet led to such massive tree mortality that 

could load extensive fuels for fires [5,55,56] in this area, and (2) human activities are identified 

as the main causes of fires in this area, and mostly occurred in the condition of high 

temperatures [84]. This study confirmed that the maximum temperature of the current year 

and previous year are the only significant variables controlling forest fires in the Hyrcanian 

ecoregion (Table 5.4). 

Landsat 8 OLI-derived features have shown reasonable efficiency for mapping insect-

defoliated Hyrcanian mixed broadleaved forests for the investigated periods. Alternatively, 

this study proposes testing the capabilities of new data such as Sentinel-2 with higher spectral, 

spatial, and swath width that can produce dense time series, which are more appropriate for 

monitoring near-real-time insect infestation. There have been increasing reports about the 

outbreaks of other biotic agents such as bark beetles and pathogens in the Hyrcanian forests 

[86,87,259]; therefore, further investigations are required for identifying the spatial extent of 

these agents and exploring their triggers. Furthermore, separating mortality induced by insect 

defoliators from bark beetles or pathogens should be scrutinized. 

5.6 Conclusions 

This study has designed an object-based TreeNet framework to discern insect-defoliated 

forests using Landsat 8 OLI-derived and ancillary object features. Furthermore, we performed 

panel data models for quantifying the effects of TerraClimate-derived climate hazards on 

insect outbreaks and forest fires along with mutual associations of insect infestation and forest 

fires in the Hyrcanian broadleaved mixed forests, NE Iran. According to the analyses, we drew 

the following conclusions: 
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1. GEOBIA TreeNet indicated excellent performance with the contribution of Landsat 8 

OLI-derived and ancillary object features for discriminating insect-defoliated forests 

from healthy forests.  

2. Although the object features of Landsat 8 OLI recorded higher importance for 

discriminating insect-defoliated objects, tree species has obtained the second rank of 

importance following the mean of PC2. In addition, other top image object features 

were the mean of the red channels derived from GLCM, the mean of NDWI, and the 

mean of GEMI, respectively. 

3. The random effects model demonstrated higher performance in comparison with the 

fixed effects and common effects models to model the mutual interaction of the 

intensity of insect defoliation and the severity of forest fire and their associations with 

the TerraClimate-derived climate hazards. 

4. Maximum temperatures significantly triggered both insect outbreaks and forest fires. 

Although the drought conditions of the current year and the availability of soil 

moisture of the previous year were significant regarding the intensity of insect 

infestation, they have indicated neutral effects on the severity of forest fires. 

5. The severity of forest fires of the previous year has triggered the intensity of insect 

infestation; however, the insect infestation was not effective for the forest fires. 

6. Future studies will be required to explore the application of novel satellite images such 

as Sentinel-2 or the combination of Landsat 8 and Sentinel-2 for monitoring near-real-

time insect-induced defoliation, identifying infestations resulting from bark beetles 

and pathogens, and discriminating between them. 
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6 
Conclusions and Outlook 

6.1 Concluding remarks 

• The presented study has applied several models for quantifying the relations among 

variables including common regression models (Chapter 2), spatial autocorrelations 

(Chapter 3), spatial regression models (Chapter 4), and panel data models (Chapter 5). 

The overall evaluation revealed that there is evidence of spatial dependence in the 

models, that is, some models such as spatial error, spatial lag, and random effects 

models were superior to the ordinary least square model. 

• This research progressively improved the analysis of physiological responses of forests 

to droughts from the only studying their severity (Chapter 3) to analyses concerning 

severity, frequency, and duration of anomalies (Chapter 4 and 5). 

• The analysis of 17-year of MODIS-derived vegetation anomalies revealed that 

droughts affected both greenness and water content properties of forests and 

rangelands in NE Iran. The forests strongly responded to precipitation deficits during 

the middle of the growing seasons, while the rangelands responded to this condition 

throughout the growing seasons. The anomalies of the rangelands’ water content 

demonstrated higher spatial correlations with the anomalies of precipitation in 

comparison to their greenness. Some clusters with highly degraded forests did not 

show significant associations with those that highly affected by droughts, and vice 

versa (Chapter 3). We conclude that precipitation deficit could not solely determine the 
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physiological response of forests to drought conditions but other climatic and 

hydrologic variables may also be relevant (Chapter 4). 

• More specifically, the hazard intensity of forest droughts showed higher spatial 

relationships with increases in temperatures and evapotranspiration rather than with 

decreases in precipitation and surface water level (Chapter 4). 

• The diversity of tree mortality was significantly dependent on the intensity of MODIS-

derived forest droughts. The stages of moderate to extreme tree mortality demonstrated 

significant spatial relations with the high intensity of the forests’ water content, but only 

the stage of severe defoliation was associated with the intensity of forest greenness loss. 

The Hyrcanian climax tree species were affected by the higher intensity of forest 

droughts and recorded a higher diversity of tree mortality as well (Chapter 4). 

• Further research was required to investigate the biotic and abiotic agents that could 

trigger by droughts and climate hazards such as insect defoliators and forest fires 

(Chapter 5). 

• Analyses of multitemporal Landsat, TerraClimate and forest fires data demonstrated 

that maximum temperatures, precipitation deficit, availability of soil moisture and forest 

fires of the previous year could significantly trigger insect outbreaks during 2010–2017. 

However, maximum temperatures were the only significant triggers of forest fires 

during this time (Chapter 5). The analysis of intermittent fires in 2010−from the earlier 

study− indicated that a combination of environmental, climatic and anthropogenic 

factors can control fire severity related to critical facts like forest density, daily mean 

temperatures, daily mean wind speed, and the low density of forest roads (Chapter 2). 

6.2 Outlook 

• The present research assessed forest droughts using the anomalies of NDVI, EVI, and 

NDWI derived from MODIS data. We suggest that the efficiency of combined indices 

such as NDDI and NMDI will be evaluated for this purpose. 

• So far we excluded human-caused degraded forests and rangelands from the green 

areas within the applied time-series images for near-real modelling of forest responses 
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to meteorological and hydrological droughts; however, other drivers may degrade 

forests and affect the values of satellite-derived indices such as flooding, landslides, 

forest fires, insect infestations, pathogens, logging, mining, and tourism. These should 

also be addressed in future studies. 

• Climate data substantially contributed to evaluating forest droughts with satellite-

derived vegetation indices. Further ancillary data such as physical, environmental and 

vegetation species information may enhance the performance of VIs for quantifying 

drought severity in forests and rangelands. 

• We checked the relations of anomalies of forests, climate hazards and tree mortality 

within grid-cell tessellations, which showed that there is a risk of heterogeneity and 

noise values of variables within a grid-cell that may affect the results. Using object-

based analysis may facilitate the study of associations among variables by aggregating 

similar neighbour cells in a single object and summarizing the attributes of all variables 

within that object.   

• TreeNet GEOBIA yielded satisfactory results for discerning insect-defoliated forests 

from healthy forests; its capability for analyzing other forest disturbances such as bark 

beetles, forest fires, and pathogens needs to be explored. Moreover, future studies 

concerning detection of the insect-affected forests can focus on the object features of 

other satellite data that have wider wavelengths in the range of the red-edge such as 

Sentinel-2 and Hyperion data. 

• Although the spatial regression models such as spatial lag (SL) and spatial error (SE) 

demonstrated a better performance than common regression model (OLS) for 

analyzing relations between anomalies of forests and climate hazards as well as the 

diversity of tree mortality, regarding their limitations for analyzing big data in the 

current situation, one strategy would be to apply machine-learning algorithms for this 

purpose that can handle big and missing data easily. 

• This research dealt with the eastern part of Hyrcanian forests. We propose to test the 

presented or suggested approaches to even better assess the responses of the remaining 

Hyrcanian forests in the western and central regions of northern Iran to climate hazards. 

 



106 
 

 



 
 

References 
1. Vose, James M., David L. Peterson, and Toral Patel-Weynand. Effects of climatic variability and 

change on forest ecosystems: a comprehensive science synthesis for the US. en. Tech. Rep. PNW-GTR-

870. Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research 

Station, 2012. 

2. Senf, C.; Wulder, M.A.; Campbell, E.M.; Hostert, P. Using Landsat to Assess the Relationship 

Between Spatiotemporal Patterns of Western Spruce Budworm Outbreaks and Regional-Scale 

Weather Variability. Canadian Journal of Remote Sensing 2016, 42, 706–718, 

doi:10.1080/07038992.2016.1220828. 

3. Littell, J.S.; Peterson, D.L.; Riley, K.L.; Liu, Y.; Luce, C.H. Fire and Drought. Effects of drought on 

forests and rangelands in the United States: a comprehensive science synthesis; U.S. Department of 

Agriculture, Forest Service: Washington, DC, 2016; pp 135–154. 

4. Kautz, M.; Meddens, A.J.H.; Hall, R.J.; Arneth, A. Biotic disturbances in Northern Hemisphere 

forests - a synthesis of recent data, uncertainties and implications for forest monitoring and 

modelling. Global Ecol. Biogeogr. 2017, 26, 533–552, doi:10.1111/geb.12558. 

5. Fettig, C.J.; Mortenson, L.A.; Bulaon, B.M.; Foulk, P.B. Tree mortality following drought in the 

central and southern Sierra Nevada, California, U.S. Forest Ecology and Management 2019, 432, 

164–178, doi:10.1016/j.foreco.2018.09.006. 

6. Swetnam, T.W.; Lynch, A.M. Multicentury, Regional-Scale Patterns of Western Spruce Budworm 

Outbreaks. Ecological Monographs 1993, 63, 399–424, doi:10.2307/2937153. 

7. Eilmann, B.; Weber, P.; Rigling, A.; Eckstein, D. Growth reactions of Pinus sylvestris L. and 

Quercus pubescens Willd. to drought years at a xeric site in Valais, Switzerland. 

Dendrochronologia 2006, 23, 121–132, doi:10.1016/j.dendro.2005.10.002. 

8. Pichler, P.; Oberhuber, W. Radial growth response of coniferous forest trees in an inner Alpine 

environment to heat-wave in 2003. Forest Ecology and Management 2007, 242, 688–699, 

doi:10.1016/j.foreco.2007.02.007. 

9. Weber, P.; Bugmann, H.; Rigling, A. Radial growth responses to drought of Pinus sylvestris and 

Quercus pubescens in an inner-Alpine dry valley. Journal of Vegetation Science 2007, 18, 777–792, 

doi:10.1111/j.1654-1103.2007.tb02594.x. 

10. Castagneri, D.; Nola, P.; Motta, R.; Carrer, M. Summer climate variability over the last 250years 

differently affected tree species radial growth in a mesic Fagus–Abies–Picea old-growth forest. 

Forest Ecology and Management 2014, 320, 21–29, doi:10.1016/j.foreco.2014.02.023. 

11. Lévesque, M.; Rigling, A.; Bugmann, H.; Weber, P.; Brang, P. Growth response of five co-

occurring conifers to drought across a wide climatic gradient in Central Europe. Agricultural and 

Forest Meteorology 2014, 197, 1–12, doi:10.1016/j.agrformet.2014.06.001. 

12. Zhang, Y.; Peng, C.; Li, W.; Fang, X.; Zhang, T.; Zhu, Q.; Chen, H.; Zhao, P. Monitoring and 

estimating drought-induced impacts on forest structure, growth, function, and ecosystem 

services using remote-sensing data: recent progress and future challenges. Environ. Rev. 2013, 21, 

103–115, doi:10.1139/er-2013-0006. 



108 
 

13. Frey, C.M.; Kuenzer, C.; Dech, S. Quantitative comparison of the operational NOAA-AVHRR 

LST product of DLR and the MODIS LST product V005. International Journal of Remote Sensing 

2012, 33, 7165–7183, doi:10.1080/01431161.2012.699693. 

14. Song, Z.; Kuenzer, C.; Zhu, H.; Zhang, Z.; Jia, Y.; Sun, Y.; Zhang, J. Analysis of coal fire dynamics 

in the Wuda syncline impacted by fire-fighting activities based on in-situ observations and 

Landsat-8 remote sensing data. International Journal of Coal Geology 2015, 141-142, 91–102, 

doi:10.1016/j.coal.2015.03.008. 

15. Menenti, M.; Malamiri, H.R.G.; Shang, H.; Alfieri, S.M.; Maffei, C.; Jia, L. Observing the Response 

of Terrestrial Vegetation to Climate Variability Across a Range of Time Scales by Time Series 

Analysis of Land Surface Temperature. In Multitemporal remote sensing: Methods and applications /  

Yifang Ban, editor; Ban, Y., Ed.; Springer: Cham, Switzerland, 2016; pp 277–315, ISBN 978-3-319-

47035-1. 

16. Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Nelkin, E.J. The TRMM Multi-Satellite Precipitation 

Analysis (TMPA). In Satellite Rainfall Applications for Surface Hydrology; Gebremichael, M., 

Hossain, F., Eds.; Springer Netherlands: Dordrecht, 2010; pp 3–22, ISBN 978-90-481-2914-0. 

17. Kuenzer, C.; Dech, S.; Wagner, W. Remote Sensing Time Series Revealing Land Surface 

Dynamics: Status Quo and the Pathway Ahead. In Remote sensing time series: Revealing land surface 

dynamics /  Claudia Kuenzer, Stefan Dech, Wolfgang Wagner, editors; Kuenzer, C., Dech, S.W., 

Wagner, W., Eds.; Springer: Cham, 2015; pp 1–24, ISBN 978-3-319-15966-9. 

18. Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in 

satellite image time series. Remote Sensing of Environment 2010, 114, 106–115, 

doi:10.1016/j.rse.2009.08.014. 

19. Nagarajan, R. Drought assessment; Springer: Dordrecht, 2009, ISBN 9789048125005. 

20. Wilhite, D.A.; Buchanan‐Smith, M. Drought as hazard: Understanding the natural and social 

context. In Drought and Water Crises: Science, Technology, and Management Issues; Wilhite, D.A., Ed.; 

CRC Press, 2005; pp 3–29, ISBN 9780429120091. 

21. Squires, V.R. Chapter 2: Desertification and Drought. In Handbook of Drought and Water Scarcity; 

Eslamian, S., Eslamian, F., Eds.; CRC Press: London, 2017; pp 13–26, ISBN 9781498731027. 

22. Dalezios, N.R.; Gobin, A.; Tarquis Alfonso, A.M.; Eslamian, S. Chapter 5: Agricultural Drought 

Indices: Combining Crop, Climate, and Soil Factors. In Handbook of Drought and Water Scarcity; 

Eslamian, S., Eslamian, F., Eds.; CRC Press: London, 2017; pp 73–89, ISBN 9781498731027. 

23. Luce, C.H.; Pederson, N.; Campbell, J.; Millar, C.; Kormos, P.; Vose, J.M.; Woods, R. Chapter2: 

Characterizing Drought for Forested Landscapes and Streams. Effects of drought on forests and 

rangelands in the United States: a comprehensive science synthesis; U.S. Department of Agriculture, 

Forest Service: Washington, DC, 2016; pp 16–48. 

24. Domingo, C.; Pons, X.; Cristóbal, J.; Ninyerola, M.; Wardlow, B. Integration of climate time series 

and MODIS data as an analysis tool for forest drought detection. In Drought: Research and science-

policy interfacing Paredes-Arquiola, David Haro-Monteagudo, Henny van Lanen, 1st; Andreu, J., 

Solera, A., Paredes-Arquiola, J., Haro-Monteagudo, D., van Lanen, H.A.J., Eds.; CRC Press: Boca 

Raton, 2015, ISBN 9781138027794. 



References 

 

 

25. Dalezios, N.R. Drought and Remote Sensing. In Remote Sensing of Hydrometeorological Hazards, 1st 

ed.; Petropoulos, G.P., Islam, T., Eds.; CRC Press: Milton, 2017; pp 3–31, ISBN 9781498777582. 

26. Gao, S.; Liu, R.; Zhou, T.; Fang, W.; Yi, C.; Lu, R.; Zhao, X.; Luo, H. Dynamic responses of tree-

ring growth to multiple dimensions of drought. Glob. Chang. Biol. 2018, 24, 5380–5390, 

doi:10.1111/gcb.14367. 

27. Jong, R. de; Schaepman, M.E.; Furrer, R.; Bruin, S. de; Verburg, P.H. Spatial relationship between 

climatologies and changes in global vegetation activity. Glob. Chang. Biol. 2013, 19, 1953–1964, 

doi:10.1111/gcb.12193. 

28. Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. 

Remote Sensing of Environment 1979, 8, 127–150, doi:10.1016/0034-4257(79)90013-0. 

29. Gao, B.-c. NDWI—A normalized difference water index for remote sensing of vegetation liquid 

water from space. Remote Sensing of Environment 1996, 58, 257–266, doi:10.1016/S0034-

4257(96)00067-3. 

30. Xu, L.; Samanta, A.; Costa, M.H.; Ganguly, S.; Nemani, R.R.; Myneni, R.B. Widespread decline in 

greenness of Amazonian vegetation due to the 2010 drought. Geophys. Res. Lett. 2011, 38, n/a-n/a, 

doi:10.1029/2011GL046824. 

31. Atkinson, P.M.; Dash, J.; Jeganathan, C. Amazon vegetation greenness as measured by satellite 

sensors over the last decade. Geophys. Res. Lett. 2011, 38, n/a-n/a, doi:10.1029/2011GL049118. 

32. McDowell, N.; Pockman, W.T.; Allen, C.D.; Breshears, D.D.; Cobb, N.; Kolb, T.; Plaut, J.; Sperry, 

J.; West, A.; Williams, D.G.; et al. Mechanisms of plant survival and mortality during drought: 

why do some plants survive while others succumb to drought? New Phytol. 2008, 178, 719–739, 

doi:10.1111/j.1469-8137.2008.02436.x. 

33. Pasho, E.; Camarero, J.J.; Luis, M. de; Vicente-Serrano, S.M. Impacts of drought at different time 

scales on forest growth across a wide climatic gradient in north-eastern Spain. Agricultural and 

Forest Meteorology 2011, 151, 1800–1811, doi:10.1016/j.agrformet.2011.07.018. 

34. Vicente-Serrano, S.M.; Gouveia, C.; Camarero, J.J.; Beguería, S.; Trigo, R.; López-Moreno, J.I.; 

Azorín-Molina, C.; Pasho, E.; Lorenzo-Lacruz, J.; Revuelto, J.; et al. Response of vegetation to 

drought time-scales across global land biomes. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 52–57, 

doi:10.1073/pnas.1207068110. 

35. Flower, A.; Gavin, D.G.; Heyerdahl, E.K.; Parsons, R.A.; Cohn, G.M. Drought-triggered western 

spruce budworm outbreaks in the interior Pacific Northwest: A multi-century 

dendrochronological record. Forest Ecology and Management 2014, 324, 16–27, 

doi:10.1016/j.foreco.2014.03.042. 

36. Millar, C.I.; Stephenson, N.L. Temperate forest health in an era of emerging megadisturbance. 

Science 2015, 349, 823–826, doi:10.1126/science.aaa9933. 

37. Ward, S.F.; Aukema, B.H. Anomalous outbreaks of an invasive defoliator and native bark beetle 

facilitated by warm temperatures, changes in precipitation and interspecific interactions. 

Ecography 2019, 31, 348, doi:10.1111/ecog.04239. 

38. Bonan, G.B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. 

Science 2008, 320, 1444–1449, doi:10.1126/science.1155121. 



110 
 

39. Adams, H.D.; Guardiola-Claramonte, M.; Barron-Gafford, G.A.; Villegas, J.C.; Breshears, D.D.; 

Zou, C.B.; Troch, P.A.; Huxman, T.E. Temperature sensitivity of drought-induced tree mortality 

portends increased regional die-off under global-change-type drought. Proc. Natl. Acad. Sci. U. S. 

A. 2009, 106, 7063–7066, doi:10.1073/pnas.0901438106. 

40. McDowell, N.G. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation 

mortality. Plant Physiol. 2011, 155, 1051–1059, doi:10.1104/pp.110.170704. 

41. Luce, C.H.; Vose, J.M.; Pederson, N.; Campbell, J.; Millar, C.; Kormos, P.; Woods, R. Contributing 

factors for drought in United States forest ecosystems under projected future climates and their 

uncertainty. Forest Ecology and Management 2016, 380, 299–308, doi:10.1016/j.foreco.2016.05.020. 

42. Galiano, L.; Timofeeva, G.; Saurer, M.; Siegwolf, R.; Martínez-Vilalta, J.; Hommel, R.; Gessler, A. 

The fate of recently fixed carbon after drought release: towards unravelling C storage regulation 

in Tilia platyphyllos and Pinus sylvestris. Plant Cell Environ. 2017, 40, 1711–1724, 

doi:10.1111/pce.12972. 

43. Ciesla, W.M.; Donaubauer, E. Decline and dieback of trees and forests: A global overview; Food & 

Agriculture Org., 1994, ISBN 9251035024. 

44. Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; 

Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and 

heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and 

Management 2010, 259, 660–684, doi:10.1016/j.foreco.2009.09.001. 

45. Anderegg, W.R.L.; Kane, J.M.; Anderegg, L.D.L. Consequences of widespread tree mortality 

triggered by drought and temperature stress. Nature Clim Change 2013, 3, 30–36, 

doi:10.1038/nclimate1635. 

46. Choat, B.; Jansen, S.; Brodribb, T.J.; Cochard, H.; Delzon, S.; Bhaskar, R.; Bucci, S.J.; Feild, T.S.; 

Gleason, S.M.; Hacke, U.G.; et al. Global convergence in the vulnerability of forests to drought. 

Nature 2012, 491, 752–755, doi:10.1038/nature11688. 

47. Saatchi, S.; Asefi-Najafabady, S.; Malhi, Y.; Aragão, L.E.O.C.; Anderson, L.O.; Myneni, R.B.; 

Nemani, R. Persistent effects of a severe drought on Amazonian forest canopy. Proc. Natl. Acad. 

Sci. U. S. A. 2013, 110, 565–570, doi:10.1073/pnas.1204651110. 

48. Bradford, J.B.; Bell, D.M. A window of opportunity for climate-change adaptation: easing tree 

mortality by reducing forest basal area. Front Ecol Environ 2017, 15, 11–17, doi:10.1002/fee.1445. 

49. Paradis, A.; Elkinton, J.; Hayhoe, K.; Buonaccorsi, J. Role of winter temperature and climate 

change on the survival and future range expansion of the hemlock woolly adelgid (Adelges 

tsugae) in eastern North America. Mitig Adapt Strateg Glob Change 2008, 13, 541–554, 

doi:10.1007/s11027-007-9127-0. 

50. Trần, J.K.; Ylioja, T.; Billings, R.F.; Régnière, J.; Ayres, M.P. Impact of minimum winter 

temperatures on the population dynamics of Dendroctonus frontalis. Ecological Applications 2007, 

17, 882–899, doi:10.1890/06-0512. 

51. Pureswaran, D.S.; Roques, A.; Battisti, A. Forest Insects and Climate Change. Curr Forestry Rep 

2018, 4, 35–50, doi:10.1007/s40725-018-0075-6. 



References 

 

 

52. Kolb, T.E.; Fettig, C.J.; Ayres, M.P.; Bentz, B.J.; Hicke, J.A.; Mathiasen, R.; Stewart, J.E.; Weed, A.S. 

Observed and anticipated impacts of drought on forest insects and diseases in the United States. 

Forest Ecology and Management 2016, 380, 321–334, doi:10.1016/j.foreco.2016.04.051. 

53. Kulakowski, D.; Jarvis, D. Low-severity fires increase susceptibility of lodgepole pine to 

mountain pine beetle outbreaks in Colorado. Forest Ecology and Management 2013, 289, 544–550, 

doi:10.1016/j.foreco.2012.10.020. 

54. McCarley, T.R.; Kolden, C.A.; Vaillant, N.M.; Hudak, A.T.; Smith, A.M.S.; Kreitler, J. Landscape-

scale quantification of fire-induced change in canopy cover following mountain pine beetle 

outbreak and timber harvest. Forest Ecology and Management 2017, 391, 164–175, 

doi:10.1016/j.foreco.2017.02.015. 

55. Hicke, J.A.; Johnson, M.C.; Hayes, J.L.; Preisler, H.K. Effects of bark beetle-caused tree mortality 

on wildfire. Forest Ecology and Management 2012, 271, 81–90, doi:10.1016/j.foreco.2012.02.005. 

56. Chen, G.; He, Y.; Santis, A. de; Li, G.; Cobb, R.; Meentemeyer, R.K. Assessing the impact of 

emerging forest disease on wildfire using Landsat and KOMPSAT-2 data. Remote Sensing of 

Environment 2017, 195, 218–229, doi:10.1016/j.rse.2017.04.005. 

57. Agne, M.C.; Woolley, T.; Fitzgerald, S. Fire severity and cumulative disturbance effects in the 

post-mountain pine beetle lodgepole pine forests of the Pole Creek Fire. Forest Ecology and 

Management 2016, 366, 73–86, doi:10.1016/j.foreco.2016.02.004. 

58. Meigs, G.W.; Campbell, J.L.; Zald, H.S.J.; Bailey, J. d.; Shaw, D.C.; Kennedy, R.E. Does wildfire 

likelihood increase following insect outbreaks in conifer forests? Ecosphere 2015, 6, art118, 

doi:10.1890/ES15-00037.1. 

59. Kane, J.M.; Varner, J.M.; Metz, M.R.; van Mantgem, P.J. Characterizing interactions between fire 

and other disturbances and their impacts on tree mortality in western U.S. Forests. Forest Ecology 

and Management 2017, 405, 188–199, doi:10.1016/j.foreco.2017.09.037. 

60. Ahern, F.J. The effects of bark beetle stress on the foliar spectral reflectance of lodgepole pine. 

International Journal of Remote Sensing 1988, 9, 1451–1468, doi:10.1080/01431168808954952. 

61. Carter, G.A. Responses of leaf spectral reflectance to plant stress. American Journal of Botany 1993, 

80, 239–243, doi:10.1002/j.1537-2197.1993.tb13796.x. 

62. Carter, G.A.; Knapp, A.K. Leaf optical properties in higher plants: linking spectral characteristics 

to stress and chlorophyll concentration. Am. J. Bot. 2001, 88, 677–684, doi:10.2307/2657068. 

63. Rullán-Silva, C.; Olthoff, A.E.; Pando, V.; Pajares, J.A.; Delgado, J.A. Remote monitoring of 

defoliation by the beech leaf-mining weevil Rhynchaenus fagi in northern Spain. Forest Ecology 

and Management 2015, 347, 200–208, doi:10.1016/j.foreco.2015.03.005. 

64. Townsend, P.A.; Singh, A.; Foster, J.R.; Rehberg, N.J.; Kingdon, C.C.; Eshleman, K.N.; Seagle, 

S.W. A general Landsat model to predict canopy defoliation in broadleaf deciduous forests. 

Remote Sensing of Environment 2012, 119, 255–265, doi:10.1016/j.rse.2011.12.023. 

65. Hashimoto, H.; Nemani, R.R.; White, M.A.; Jolly, W.M.; Piper, S.C.; Keeling, C.D.; Myneni, R.B.; 

Running, S.W. El Niño-Southern Oscillation-induced variability in terrestrial carbon cycling. J. 

Geophys. Res. 2004, 109, 116, doi:10.1029/2004JD004959. 



112 
 

66. Breshears, D.D.; Cobb, N.S.; Rich, P.M.; Price, K.P.; Allen, C.D.; Balice, R.G.; Romme, W.H.; 

Kastens, J.H.; Floyd, M.L.; Belnap, J.; et al. Regional vegetation die-off in response to global-

change-type drought. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 15144–15148, 

doi:10.1073/pnas.0505734102. 

67. Camarero, J.J.; Gazol, A.; Sangüesa-Barreda, G.; Oliva, J.; Vicente-Serrano, S.M. To die or not to 

die: early warnings of tree dieback in response to a severe drought. J Ecol 2015, 103, 44–57, 

doi:10.1111/1365-2745.12295. 

68. Stimson, H.C.; Breshears, D.D.; Ustin, S.L.; Kefauver, S.C. Spectral sensing of foliar water 

conditions in two co-occurring conifer species: Pinus edulis and Juniperus monosperma. Remote 

Sensing of Environment 2005, 96, 108–118, doi:10.1016/j.rse.2004.12.007. 

69. Verbesselt, J.; Robinson, A.; Stone, C.; Culvenor, D. Forecasting tree mortality using change 

metrics derived from MODIS satellite data. Forest Ecology and Management 2009, 258, 1166–1173, 

doi:10.1016/j.foreco.2009.06.011. 

70. Byer, S.; Jin, Y. Detecting Drought-Induced Tree Mortality in Sierra Nevada Forests with Time 

Series of Satellite Data. Remote Sensing 2017, 9, 929, doi:10.3390/rs9090929. 

71. Wu, D.; Zhao, X.; Liang, S.; Zhou, T.; Huang, K.; Tang, B.; Zhao, W. Time-lag effects of global 

vegetation responses to climate change. Glob. Chang. Biol. 2015, 21, 3520–3531, 

doi:10.1111/gcb.12945. 

72. Andujar, E.; Krakauer, N.Y.; Yi, C.; Kogan, F. Ecosystem Drought Response Timescales from 

Thermal Emission versus Shortwave Remote Sensing. Advances in Meteorology 2017, 2017, 1–10, 

doi:10.1155/2017/8434020. 

73. Anselin, L. Modern spatial econometrics in practice. A guide to GeoDa, GeoDaSpace and PySAL; GeoDa 

Press, 2014, ISBN 0986342106. 

74. Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically weighted regression. The analysis of 

spatially varying relationships, 1st edn.; John Wiley & Sons Ltd.: West Sussex, England, 2002, ISBN 

978-0-471-49616-8. 

75. Adelabu, S.; Mutanga, O.; Adam, E. Evaluating the impact of red-edge band from Rapideye 

image for classifying insect defoliation levels. ISPRS Journal of Photogrammetry and Remote Sensing 

2014, 95, 34–41, doi:10.1016/j.isprsjprs.2014.05.013. 

76. Dash, J.P.; Watt, M.S.; Pearse, G. d.; Heaphy, M.; Dungey, H.S. Assessing very high resolution 

UAV imagery for monitoring forest health during a simulated disease outbreak. ISPRS Journal of 

Photogrammetry and Remote Sensing 2017, 131, 1–14, doi:10.1016/j.isprsjprs.2017.07.007. 

77. Friedman, J.H. Stochastic gradient boosting. Computational Statistics & Data Analysis 2002, 38, 367–

378, doi:10.1016/S0167-9473(01)00065-2. 

78. Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning: data 

mining, inference and prediction. The Mathematical Intelligencer 2005, 27, 83–85, 

doi:10.1007/BF02985802. 

79. Hay, G.J.; Castilla, G. Geographic Object-Based Image Analysis (GEOBIA): A new name for a 

new discipline. In Object-based image analysis: Spatial concepts for knowledge-driven remote sensing 

applications /  edited by Thomas Blaschke, Stefan Lang, Geoffrey Hay; Blaschke, T., Lang, S., Hay, G.J., 

Eds.; Springer: Berlin, Germany, London, UK, 2008; pp 75–89, ISBN 978-3-540-77057-2. 



References 

 

 

80. UNESCO. World Heritage: Hyrcanian Forests. https://whc.unesco.org/en/list/1584/ (accessed on 

10/26/2019). 

81. Akhani, H.; Djamali, M.; Ghorbanalizadeh, A.; Ramezani, E. Plant biodiversity of Hyrcanian 

relict forests, N Iran: an overview of the flora, vegetation, palaeoecology and conservation 2010, 

42, 231–258. 

82. Sagheb Talebi, K.; Sajedi, T.; Pourhashemi, M. Forests of Iran. A Treasure from the Past, a Hope for 

the Future; Springer Netherlands; Imprint; Springer: Dordrecht, 2014, ISBN 978-94-007-7371-4. 

83. Shirvani, Z.; Abdi, O.; Buchroithner, M.F.; Pradhan, B. Analysing Spatial and Statistical 

Dependencies of Deforestation Affected by Residential Growth: Gorganrood Basin, Northeast 

Iran. Land Degrad. Develop. 2017, 28, 2176–2190, doi:10.1002/ldr.2744. 

84. Abdi, O.; Kamkar, B.; Shirvani, Z.; Teixeira da Silva, J.A.; Buchroithner, M.F. Spatial-statistical 

analysis of factors determining forest fires: a case study from Golestan, Northeast Iran. Geomatics, 

Natural Hazards and Risk 2018, 9, 267–280, doi:10.1080/19475705.2016.1206629. 

85. Kia-Daliri, H.; Kazemi-Najafi, S.; Ahangaran, Y. The effect of leaf feeder moth (Erannis defoliaria 

& Operophtera brumata) on radial growth of 3 tree species in north of Iran (case study: 

Mashalak, Nowshahr). Iranian Journal of Forest and Poplar Research 2007, 15, 301–309. 

86. Ahmadi, A.; Kavosi, M.R.; Soltanloo, H. Zelkova carpinifolia reservoir from Hyrcanian Forests, 

Northern Iran, a new sacrifice of Ophiostoma novo-ulmi. Biodiversitas 2014, 15, 48–52, 

doi:10.13057/biodiv/d150107. 

87. Mirabolfathy, M.; Groenewald, J.Z.; Crous, P.W. The Occurrence of Charcoal Disease Caused by 

Biscogniauxia mediterranea on Chestnut-Leaved Oak (Quercus castaneifolia) in the Golestan 

Forests of Iran. Plant Dis. 2011, 95, 876, doi:10.1094/PDIS-03-11-0153. 

88. Alkhatib, A.A.A. A Review on Forest Fire Detection Techniques. International Journal of 

Distributed Sensor Networks 2014, 10, 597368, doi:10.1155/2014/597368. 

89. Abdi, O.; Shetaee, S.H.; Shirvani, Z.; Naghavi, M.R. Forest management impacts on forest fires in 

Golestan province by GIS application. Iranian Journal of Forest and Range Protection Research 2012, 

9, 100–108. 

90. Eskandari, S. Investigation on the relationship between climate change and fire in the forests of 

Golestan Province. Iranian Journal of Forest and Range Protection Research 2015, 13, 1–10. 

91. Pew, K.L.; Larsen, C.P.S. GIS analysis of spatial and temporal patterns of human-caused wildfires 

in the temperate rain forest of Vancouver Island, Canada. Forest Ecology and Management 2001, 

140, 1–18, doi:10.1016/S0378-1127(00)00271-1. 

92. Bonazountas, M.; Kallidromitou, D.; Kassomenos, P.; Passas, N. A decision support system for 

managing forest fire casualties. J. Environ. Manage. 2007, 84, 412–418, 

doi:10.1016/j.jenvman.2006.06.016. 

93. Duane, A.; Piqué, M.; Castellnou, M.; Brotons, L. Predictive modelling of fire occurrences from 

different fire spread patterns in Mediterranean landscapes. Int. J. Wildland Fire 2015, 24, 407, 

doi:10.1071/WF14040. 



114 
 

94. Cardille, J.A.; Ventura, S.J.; Turner, M.G. Environmental and social factors influencing wildfires 

in the Upper Midwest, United States. Ecological Applications 2001, 11, 111–127, doi:10.1890/1051-

0761(2001)011[0111:EASFIW]2.0.CO;2. 

95. Dickson, B.G.; Prather, J.W.; Xu, Y.; Hampton, H.M.; Aumack, E.N.; Sisk, T. d. Mapping the 

probability of large fire occurrence in northern Arizona, USA. Landscape Ecol 2006, 21, 747–761, 

doi:10.1007/s10980-005-5475-x. 

96. Syphard, A. d.; Radeloff, V.C.; Keuler, N.S.; Taylor, R.S.; Hawbaker, T.J.; Stewart, S.I.; Clayton, 

M.K. Predicting spatial patterns of fire on a southern California landscape. Int. J. Wildland Fire 

2008, 17, 602, doi:10.1071/WF07087. 

97. Alvarez, A.; Gracia, M.; Castellnou, M.; Retana, J. Variables That Influence Changes in Fire 

Severity and Their Relationship with Changes Between Surface and Crown Fires in a Wind-

Driven Wildfire. Forest Science 2013, 59, 139–150, doi:10.5849/forsci.10-140. 

98. Jung, J.; Kim, C.; Jayakumar, S.; Kim, S.; Han, S.; Kim, D.H.; Heo, J. Forest fire risk mapping of 

Kolli Hills, India, considering subjectivity and inconsistency issues. Nat Hazards 2013, 65, 2129–

2146, doi:10.1007/s11069-012-0465-1. 

99. Zarekar, A.; Vahidi, H.; Kazemi, B.; Ghorbani, Z.S.; Jafari, H. Forest fire hazard mapping using 

fuzzy Ahp and GIS study area: Gilan Province of Iran. International Journal on “Technical and 

Physical Problems of Engineering” (IJTPE) 2012, 4, 47–55. 

100. Beverly, J.L.; Herd, E.P.K.; Conner, J.R. Modeling fire susceptibility in west central Alberta, 

Canada. Forest Ecology and Management 2009, 258, 1465–1478, doi:10.1016/j.foreco.2009.06.052. 

101. Oliveira, S.; Oehler, F.; San-Miguel-Ayanz, J.; Camia, A.; Pereira, J.M.C. Modeling spatial patterns 

of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest. Forest 

Ecology and Management 2012, 275, 117–129, doi:10.1016/j.foreco.2012.03.003. 

102. Chou, Y.H.; Minnich, R.A.; Chase, R.A. Mapping probability of fire occurrence in San Jacinto 

Mountains, California, USA. Environmental Management 1993, 17, 129–140, 

doi:10.1007/BF02393801. 

103. Garcia, C.V.; Woodard, P.M.; Titus, S.J.; Adamowicz, W.L.; Lee, B.S. A Logit Model for Predicting 

the Daily Occurrence of Human Caused Forest-Fires. Int. J. Wildland Fire 1995, 5, 101, 

doi:10.1071/WF9950101. 

104. Mohammadi, F.; Bavaghar, M.P.; Shabanian, N. Forest Fire Risk Zone Modeling Using Logistic 

Regression and GIS: An Iranian Case Study. Small-scale Forestry 2013, 13, 117–125, 

doi:10.1007/s11842-013-9244-4. 

105. Sakr, G.E.; Elhajj, I.H.; Mitri, G. Efficient forest fire occurrence prediction for developing 

countries using two weather parameters. Engineering Applications of Artificial Intelligence 2011, 24, 

888–894, doi:10.1016/j.engappai.2011.02.017. 

106. Núñez-Regueira, L.; Rodrı́guez Añón, J.A.; Proupı́n Castiñeiras, J. Design of risk index maps as a 

tool to prevent forest fires. Bioresource Technology 2000, 71, 51–62, doi:10.1016/S0960-

8524(99)00052-8. 

107. La Riva, J. de; Pérez-Cabello, F.; Lana-Renault, N.; Koutsias, N. Mapping wildfire occurrence at 

regional scale. Remote Sensing of Environment 2004, 92, 288–294, doi:10.1016/j.rse.2004.06.013. 



References 

 

 

108. Haight, R.G.; Cleland, D.T.; Hammer, R.B.; Radeloff, V.C.; Rupp, T.S. Assessing fire risk in the 

wildland-urban interface 2004, 102, 41–48. 

109. Arkle, R.S.; Pilliod, D.S.; Welty, J.L. Pattern and process of prescribed fires influence effectiveness 

at reducing wildfire severity in dry coniferous forests. Forest Ecology and Management 2012, 276, 

174–184, doi:10.1016/j.foreco.2012.04.002. 

110. Jaiswal, R.K.; Mukherjee, S.; Raju, K. d.; Saxena, R. Forest fire risk zone mapping from satellite 

imagery and GIS. International Journal of Applied Earth Observation and Geoinformation 2002, 4, 1–10, 

doi:10.1016/S0303-2434(02)00006-5. 

111. Dong, X.; Li-min, D.; Guo-fan, S.; Lei, T.; Hui, W. Forest fire risk zone mapping from satellite 

images and GIS for Baihe Forestry Bureau, Jilin, China. Journal of Forestry Research 2005, 16, 169–

174, doi:10.1007/BF02856809. 

112. Portillo-Quintero, C.; Sanchez-Azofeifa, A.; Marcos do Espirito-Santo, M. Monitoring 

deforestation with MODIS Active Fires in Neotropical dry forests: An analysis of local-scale 

assessments in Mexico, Brazil and Bolivia. Journal of Arid Environments 2013, 97, 150–159, 

doi:10.1016/j.jaridenv.2013.06.002. 

113. Zhang, Z.X.; Zhang, H.Y.; Zhou, D.W. Using GIS spatial analysis and logistic regression to 

predict the probabilities of human-caused grassland fires. Journal of Arid Environments 2010, 74, 

386–393, doi:10.1016/j.jaridenv.2009.09.024. 

114. Mozaffarian, V. Dictionary of Iranian plant names Latin–English–Persian, 5th ed.; Farhang Moaser: 

Tehran, 2007, ISBN 978-964-5545-40-4. 

115. Jensen, J.R. Introductory digital image processing. A remote sensing perspective /  John R. Jensen, 3rd 

ed.; Prentice Hall: Upper Saddle River, N.J., 2005, ISBN 9780131453616. 

116. Raafatnia, N.A. Forest and mountain roads (design and project), 1st ed.; University of Mazandaran: 

Babolsar, 1989. 

117. Rezai, A. Concepts of probability and statistics, 7th ed.; Mashhad: Mashhad, 2009, ISBN 

9789646157125. 

118. FAO. International handbook on forest fire protection. Technical guide for the countries of the 

Mediterranean basin, 2001. www.fao.org/forestry/27221-06293a5348df37bc8b14e24472df64810.pdf 

(accessed on 17 January 2016). 

119. Schoennagel, T.; Veblen, T.T.; Romme, W.H. The Interaction of Fire, Fuels, and Climate across 

Rocky Mountain Forests. Ecological Applications 2004, 54, 661, doi:10.1641/0006-

3568(2004)054[0661:TIOFFA]2.0.CO;2. 

120. FAO. Fire management global assessment 2006. http://www.fao.org/3/a0969e/a0969e00.htm 

(accessed on 17 January 2016). 

121. Aldersley, A.; Murray, S.J.; Cornell, S.E. Global and regional analysis of climate and human 

drivers of wildfire. Sci. Total Environ. 2011, 409, 3472–3481, doi:10.1016/j.scitotenv.2011.05.032. 

122. Ireland, K.B.; Stan, A.B.; Fulé, P.Z. Bottom-up control of a northern Arizona ponderosa pine 

forest fire regime in a fragmented landscape. Landscape Ecol 2012, 27, 983–997, doi:10.1007/s10980-

012-9753-0. 



116 
 

123. Alvarez, A.; Gracia, M.; Vayreda, J.; Retana, J. Patterns of fuel types and crown fire potential in 

Pinus halepensis forests in the Western Mediterranean Basin. Forest Ecology and Management 2012, 

270, 282–290, doi:10.1016/j.foreco.2011.01.039. 

124. Lecina-Diaz, J.; Alvarez, A.; Retana, J. Extreme fire severity patterns in topographic, convective 

and wind-driven historical wildfires of Mediterranean pine forests. PLoS ONE 2014, 9, e85127, 

doi:10.1371/journal.pone.0085127. 

125. Alexander, J. d.; Seavy, N.E.; Ralph, C.J.; Hogoboom, B. Vegetation and topographical correlates 

of fire severity from two fires in the Klamath-Siskiyou region of Oregon and California. Int. J. 

Wildland Fire 2006, 15, 237, doi:10.1071/WF05053. 

126. Lentile, L.B.; Smith, F.W.; Shepperd, W.D. Influence of topography and forest structure on 

patterns of mixed severity fire in ponderosa pine forests of the South Dakota Black Hills, USA. 

Int. J. Wildland Fire 2006, 15, 557, doi:10.1071/WF05096. 

127. Lee, B.; Kim, S.Y.; Chung, J.; Park, P.S. Estimation of fire severity by use of Landsat TM images 

and its relevance to vegetation and topography in the 2000 Samcheok forest fire. Journal of Forest 

Research 2008, 13, 197–204, doi:10.1007/s10310-008-0072-x. 

128. Holden, Z.A.; Morgan, P.; Evans, J.S. A predictive model of burn severity based on 20-year 

satellite-inferred burn severity data in a large southwestern US wilderness area. Forest Ecology 

and Management 2009, 258, 2399–2406, doi:10.1016/j.foreco.2009.08.017. 

129. Price, O.F.; Bradstock, R.A. The effect of fuel age on the spread of fire in sclerophyll forest in the 

Sydney region of Australia. Int. J. Wildland Fire 2010, 19, 35, doi:10.1071/WF08167. 

130. Narayanaraj, G.; Wimberly, M.C. Influences of forest roads on the spatial patterns of human- and 

lightning-caused wildfire ignitions. Applied Geography 2012, 32, 878–888, 

doi:10.1016/j.apgeog.2011.09.004. 

131. Hann, W.; Jones, J.; Karl, M.; et al. Landscape dynamics of the basin. In An assessment of ecosystem 

components in the interior Columbia basin and portions of the Klamath and Great Basins: volume 2; 

Quigley, T.M., Arbelbide, S.J., Eds.; pp 337–1055. 

132. Narayanaraj, G.; Wimberly, M.C. Influences of forest roads on the spatial pattern of wildfire 

boundaries. Int. J. Wildland Fire 2011, 20, 792, doi:10.1071/WF10032. 

133. Yang, J.; He, H.S.; Shifley, S.R. Spatial controls of occurrence and spread of wildfires in the 

Missouri Ozark Highlands. Ecological Applications 2008, 18, 1212–1225, doi:10.1890/07-0825.1. 

134. Jacob, A.L.; Wilson, S.J.; Lewis, S.L. Ecosystem services: Forests are more than sticks of carbon. 

Nature 2014, 507, 306, doi:10.1038/507306c. 

135. Madani, K.; AghaKouchak, A.; Mirchi, A. Iran’s Socio-economic Drought: Challenges of a Water-

Bankrupt Nation. Iranian Studies 2016, 49, 997–1016, doi:10.1080/00210862.2016.1259286. 

136. Bari Abarghouei, H.; Asadi Zarch, M.A.; Dastorani, M.T.; Kousari, M.R.; Safari Zarch, M. The 

survey of climatic drought trend in Iran. Stoch Environ Res Risk Assess 2011, 25, 851–863, 

doi:10.1007/s00477-011-0491-7. 

137. Shahabfar, A.; Eitzinger, J. Spatio-Temporal Analysis of Droughts in Semi-Arid Regions by Using 

Meteorological Drought Indices. Atmosphere 2013, 4, 94–112, doi:10.3390/atmos4020094. 



References 

 

 

138. Dashtpagerdi, M.M.; Kousari, M.R.; Vagharfard, H.; Ghonchepour, D.; Hosseini, M.E.; Ahani, H. 

An investigation of drought magnitude trend during 1975–2005 in arid and semi-arid regions of 

Iran. Environ Earth Sci 2015, 73, 1231–1244, doi:10.1007/s12665-014-3477-1. 

139. Kazemzadeh, M.; Malekian, A. Spatial characteristics and temporal trends of meteorological and 

hydrological droughts in northwestern Iran. Nat Hazards 2016, 80, 191–210, doi:10.1007/s11069-

015-1964-7. 

140. Ghaffari, A. A review of drought impacts on rainfed field crops and horticulture crops (vegetables and 

orchards) and of their socioeconomic consequences on the farming communities; and analysis of the policies 

aimed at rehabilitation of the sector National consultancy under TCP/IRA/3003, 2006. 

141. Golian, S.; Mazdiyasni, O.; AghaKouchak, A. Trends in meteorological and agricultural droughts 

in Iran. Theor Appl Climatol 2015, 119, 679–688, doi:10.1007/s00704-014-1139-6. 

142. Adab, H.; Kanniah, K.D.; Solaimani, K.; Sallehuddin, R. Modelling static fire hazard in a semi-

arid region using frequency analysis. Int. J. Wildland Fire 2015, 24, 763, doi:10.1071/WF13113. 

143. Zoljoodi, M.; Didevarasl, A. Evaluation of Spatial-Temporal Variability of Drought Events in Iran 

Using Palmer Drought Severity Index and Its Principal Factors (through 1951-2005). ACS 2013, 

03, 193–207, doi:10.4236/acs.2013.32021. 

144. Asner, G.P.; Alencar, A. Drought impacts on the Amazon forest: the remote sensing perspective. 

New Phytol. 2010, 187, 569–578, doi:10.1111/j.1469-8137.2010.03310.x. 

145. McDowell, N.G.; Coops, N.C.; Beck, P.S.A.; Chambers, J.Q.; Gangodagamage, C.; Hicke, J.A.; 

Huang, C.-y.; Kennedy, R.; Krofcheck, D.J.; Litvak, M.; et al. Global satellite monitoring of 

climate-induced vegetation disturbances. Trends Plant Sci. 2015, 20, 114–123, 

doi:10.1016/j.tplants.2014.10.008. 

146. Ogaya, R.; Barbeta, A.; Başnou, C.; Peñuelas, J. Satellite data as indicators of tree biomass growth 

and forest dieback in a Mediterranean holm oak forest. Annals of Forest Science 2015, 72, 135–144, 

doi:10.1007/s13595-014-0408-y. 

147. Ji, L.; Peters, A.J. Assessing vegetation response to drought in the northern Great Plains using 

vegetation and drought indices. Remote Sensing of Environment 2003, 87, 85–98, doi:10.1016/S0034-

4257(03)00174-3. 

148. Jong, R. de; Bruin, S. de; Wit, A. de; Schaepman, M.E.; Dent, D.L. Analysis of monotonic greening 

and browning trends from global NDVI time-series. Remote Sensing of Environment 2011, 115, 692–

702, doi:10.1016/j.rse.2010.10.011. 

149. Tadesse, T.; Demisse, G.B.; Zaitchik, B.; Dinku, T. Satellite-based hybrid drought monitoring tool 

for prediction of vegetation condition in Eastern Africa: A case study for Ethiopia. Water Resour. 

Res. 2014, 50, 2176–2190, doi:10.1002/2013WR014281. 

150. Justice, C.O.; Giglio, L.; Korontzi, S.; Owens, J.; Morisette, J.T.; Roy, D.; Descloitres, J.; Alleaume, 

S.; Petitcolin, F.; Kaufman, Y. The MODIS fire products. Remote Sensing of Environment 2002, 83, 

244–262, doi:10.1016/S0034-4257(02)00076-7. 

151. Wardlow, B.; Anderson, M.; Tadesse, C.; Hain, W.; Rodell, M.; Thenkabail, P.S. Remote sensing of 

drought: Emergence of a satellite‐based monitoring toolkit for the United States. In Remote 



118 
 

sensing of water resources, disasters, and urban studies, 1st; Thenkabail, P.S., Ed.; CRC Press: Boca 

Raton, 2015; pp 367–400, ISBN 9781482217919. 

152. Anderson, L.O.; Malhi, Y.; Aragão, L.E.O.C.; Ladle, R.; Arai, E.; Barbier, N.; Phillips, O. Remote 

sensing detection of droughts in Amazonian forest canopies. New Phytol. 2010, 187, 733–750. 

153. Brando, P.M.; Goetz, S.J.; Baccini, A.; Nepstad, D.C.; Beck, P.S.A.; Christman, M.C. Seasonal and 

interannual variability of climate and vegetation indices across the Amazon. Proc. Natl. Acad. Sci. 

U. S. A. 2010, 107, 14685–14690, doi:10.1073/pnas.0908741107. 

154. Domingo, C.; Pons, X.; Cristóbal, J.; Ninyerola, M.; Wardlow, B. Integration of climate time series 

and MODIS data as an analysis tool for forest drought detection. In Drought: Research and science-

policy interfacing Paredes-Arquiola, David Haro-Monteagudo, Henny van Lanen, 1st; Andreu, J., 

Solera, A., Paredes-Arquiola, J., Haro-Monteagudo, D., van Lanen, H.A.J., Eds.; CRC Press: Boca 

Raton, 2015, ISBN 9781138027794. 

155. Rimkus, E.; Stonevicius, E.; Kilpys, J.; Maciulyte, V.; Valiukas, D. Drought identification in the 

eastern Baltic region using NDVI. Earth Syst. Dynam. 2017, 8, 627–637, doi:10.5194/esd-8-627-2017. 

156. Gu, Y.; Brown, J.F.; Verdin, J.P.; Wardlow, B. A five-year analysis of MODIS NDVI and NDWI for 

grassland drought assessment over the central Great Plains of the United States. Geophys. Res. 

Lett. 2007, 34, 1225, doi:10.1029/2006GL029127. 

157. van Niel, T.G.; McVicar, T.R.; Fang, H.; Liang, S. Calculating environmental moisture for per-

field discrimination of rice crops. International Journal of Remote Sensing 2003, 24, 885–890, 

doi:10.1080/0143116021000009921. 

158. Solano, R.; Didan, K.; Jacobson, A.; Huete, A. MODIS Vegetation Indices (MOD13) C5 User’s 

Guide. https://www.ctahr.hawaii.edu/grem/mod13ug/ (accessed on 2 December 2017). 

159. Samanta, A.; Ganguly, S.; Hashimoto, H.; Devadiga, S.; Vermote, E.; Knyazikhin, Y.; Nemani, 

R.R.; Myneni, R.B. Amazon forests did not green-up during the 2005 drought. Geophys. Res. Lett. 

2010, 37, n/a-n/a, doi:10.1029/2009GL042154. 

160. Asner, G.P.; Nepstad, D.; Cardinot, G.; Ray, D. Drought stress and carbon uptake in an Amazon 

forest measured with spaceborne imaging spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 

6039–6044, doi:10.1073/pnas.0400168101. 

161. Doughty, C.E.; Goulden, M.L. Seasonal patterns of tropical forest leaf area index and CO 2 

exchange. J. Geophys. Res. 2008, 113, n/a-n/a, doi:10.1029/2007JG000590. 

162. Zhao, X.; Wei, H.; Liang, S.; Zhou, T.; He, B.; Tang, B.; Wu, D. Responses of Natural Vegetation to 

Different Stages of Extreme Drought during 2009–2010 in Southwestern China. Remote Sensing 

2015, 7, 14039–14054, doi:10.3390/rs71014039. 

163. Caccamo, G.; Chisholm, L.A.; Bradstock, R.A.; Puotinen, M.L. Assessing the sensitivity of MODIS 

to monitor drought in high biomass ecosystems. Remote Sensing of Environment 2011, 115, 2626–

2639, doi:10.1016/j.rse.2011.05.018. 

164. Sagheb-Talebi, K.; Sajedi, T.; Pourhashemi, M. Forests of Iran. A treasure from the past, a hope for the 

future /  Khosro Sagheb Talebi, Toktam Sajedi, Mehdi Pourhashemi; Springer: Dordrecht, 2014, ISBN 

9789400773714. 



References 

 

 

165. Rahmati, O.; Haghizadeh, A.; Stefanidis, S. Assessing the Accuracy of GIS-Based Analytical 

Hierarchy Process for Watershed Prioritization; Gorganrood River Basin, Iran. Water Resour 

Manage 2016, 30, 1131–1150, doi:10.1007/s11269-015-1215-4. 

166. Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the 

radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of 

Environment 2002, 83, 195–213, doi:10.1016/S0034-4257(02)00096-2. 

167. Oyana, T.J.; Margai, F.M. Spatial analysis. Statistics, visualization, and computational methods /  Tonny 

J. Oyana, Florence Margai, 1st; CRC Press: Boca Raton, 2015, ISBN 9781498707633. 

168. Lark, R.M. Estimating variograms of soil properties by the method-of-moments and maximum 

likelihood. European Journal of Soil Science 2000, 51, 717–728, doi:10.1046/j.1365-2389.2000.00345.x. 

169. Deutsch, C.V.; Journel, A.G. GSLIB. Geostatistical Software Library and user's guide /  Clayton V. 

Deutsch, André G. Journel, 2nd ed.; Oxford University Press: New York, Oxford, 1998, ISBN 

0195100158. 

170. Krivoruchko, K. Empirical Bayesian Kriging: Implemented in ArcGIS Geostatistical Analyst. 

https://www.esri.com/news/arcuser/1012/empirical-byesian-kriging.html (accessed on 8 

December 2017). 

171. Xie, Y.; Chen, T.-b.; Lei, M.; Yang, J.; Guo, Q.-j.; Song, B.; Zhou, X.-y. Spatial distribution of soil 

heavy metal pollution estimated by different interpolation methods: accuracy and uncertainty 

analysis. Chemosphere 2011, 82, 468–476, doi:10.1016/j.chemosphere.2010.09.053. 

172. Webster, R.; Oliver, M.A. Geostatistics for environmental scientists, 2nd ed.; Wiley: Chichester, 2007, 

ISBN 0470028580. 

173. Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed 

images: From pixel-based to object-based approaches. ISPRS Journal of Photogrammetry and Remote 

Sensing 2013, 80, 91–106, doi:10.1016/j.isprsjprs.2013.03.006. 

174. McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time 

scales. In Proceedings of the 8th Conference on Applied Climatology; American Meteorological 

Society: Boston, MA, 1993; pp 179–183. 

175. Tadesse, T.; Wardlow, B.D.; Hayes, M.J.; Svoboda, M.D.; Brown, J.F. The Vegetation Outlook 

(VegOut): A New Method for Predicting Vegetation Seasonal Greenness. GIScience & Remote 

Sensing 2010, 47, 25–52, doi:10.2747/1548-1603.47.1.25. 

176. Lloyd, C.D. Local models for spatial analysis, 2nd ed.; CRC Press: Boca Raton, Fla., 2011, ISBN 

1439829195. 

177. Lee, S.-I. Developing a bivariate spatial association measure: An integration of Pearson's r and 

Moran's I. Journal of Geographical Systems 2001, 3, 369–385, doi:10.1007/s101090100064. 

178. Getis, A. Cliff, A.D. and Ord, J.K. 1973: Spatial autocorrelation. London: Pion. Progress in Human 

Geography 1995, 19, 245–249, doi:10.1177/030913259501900205. 

179. Anselin, L.; Rey, S.J. Modern spatial econometrics in practice. A guide to GeoDa, GeoDaSpace and 

PySAL; GeoDa Press: Chicago, IL, 2014, ISBN 9780986342103. 



120 
 

180. Fernando, G.W. R. Causes of forest dieback in montane forests in Sri Lanka. Economic Review 

2008, 34, 38–40. 

181. Requardt, A.; Poker, J.; Köhl, M.; Schuck, A.; Janse, G.; Mavsar, R.; Päivinen, R. Feasibility study 

on means of combating forest dieback in the European Union. BFH & EFI Technical Report 2007. 

182. White, T.C.R. Weather, Eucalyptus dieback in New England, and a general hypothesis of the 

cause of dieback. Pacific Science 1986, 40, 58–78. 

183. Auclair, A.N. d. Extreme climatic fluctuations as a cause of forest dieback in the pacific rim. 

Water, Air, and Soil Pollution 1993, 66, 207–229, doi:10.1007/BF00479846. 

184. Rice, K.J.; Matzner, S.L.; Byer, W.; Brown, J.R. Patterns of tree dieback in Queensland, Australia: 

the importance of drought stress and the role of resistance to cavitation. Oecologia 2004, 139, 190–

198, doi:10.1007/s00442-004-1503-9. 

185. Galiano, L.; Martínez-Vilalta, J.; Lloret, F. Drought-Induced Multifactor Decline of Scots Pine in 

the Pyrenees and Potential Vegetation Change by the Expansion of Co-occurring Oak Species. 

Ecosystems 2010, 13, 978–991, doi:10.1007/s10021-010-9368-8. 

186. Matusick, G.; Ruthrof, K.X.; Brouwers, N.C.; Dell, B.; St. Hardy, G.J. Sudden forest canopy 

collapse corresponding with extreme drought and heat in a mediterranean-type eucalypt forest 

in southwestern Australia. Eur J Forest Res 2013, 132, 497–510, doi:10.1007/s10342-013-0690-5. 

187. Steinkamp, J.; Hickler, T. Is drought-induced forest dieback globally increasing? J Ecol 2015, 103, 

31–43, doi:10.1111/1365-2745.12335. 

188. Guada, G.; Camarero, J.J.; Sánchez-Salguero, R.; Cerrillo, R.M.N. Limited Growth Recovery after 

Drought-Induced Forest Dieback in Very Defoliated Trees of Two Pine Species. Front. Plant Sci. 

2016, 7, 418, doi:10.3389/fpls.2016.00418. 

189. Hember, R.A.; Kurz, W.A.; Coops, N.C. Relationships between individual-tree mortality and 

water-balance variables indicate positive trends in water stress-induced tree mortality across 

North America. Glob. Chang. Biol. 2017, 23, 1691–1710, doi:10.1111/gcb.13428. 

190. Mazdiyasni, O.; AghaKouchak, A.; Davis, S.J.; Madadgar, S.; Mehran, A.; Ragno, E.; Sadegh, M.; 

Sengupta, A.; Ghosh, S.; Dhanya, C.T.; et al. Increasing probability of mortality during Indian 

heat waves. Sci. Adv. 2017, 3, e1700066, doi:10.1126/sciadv.1700066. 

191. Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the 

radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of 

Environment 2002, 83, 195–213, doi:10.1016/S0034-4257(02)00096-2. 

192. Chandrasekar, K.; Sesha Sai, M.V.R.; Roy, P.S.; Dwevedi, R.S. Land Surface Water Index (LSWI) 

response to rainfall and NDVI using the MODIS Vegetation Index product. International Journal of 

Remote Sensing 2010, 31, 3987–4005, doi:10.1080/01431160802575653. 

193. Gu, Y.; Hunt, E.; Wardlow, B.; Basara, J.B.; Brown, J.F.; Verdin, J.P. Evaluation of MODIS NDVI 

and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data. 

Geophys. Res. Lett. 2008, 35, 395, doi:10.1029/2008GL035772. 

194. Garbulsky, M.F.; Peñuelas, J.; Ogaya, R.; Filella, I. Leaf and stand-level carbon uptake of a 

Mediterranean forest estimated using the satellite-derived reflectance indices EVI and PRI. 

International Journal of Remote Sensing 2013, 34, 1282–1296, doi:10.1080/01431161.2012.718457. 



References 

 

 

195. Bajgain, R.; Xiao, X.; Wagle, P.; Basara, J.; Zhou, Y. Sensitivity analysis of vegetation indices to 

drought over two tallgrass prairie sites. ISPRS Journal of Photogrammetry and Remote Sensing 2015, 

108, 151–160, doi:10.1016/j.isprsjprs.2015.07.004. 

196. Senay, G.B.; Budde, M.E.; Verdin, J.P. Enhancing the Simplified Surface Energy Balance (SSEB) 

approach for estimating landscape ET: Validation with the METRIC model. Agricultural Water 

Management 2011, 98, 606–618, doi:10.1016/j.agwat.2010.10.014. 

197. Moran, M.S. Thermal infrared measurement as an indicator of plant ecosystem health. Thermal 

Remote Sensing in Land Surface Processing; CRC Press, 2004; pp 303–328. 

198. Anderson, M.C.; Hain, C.R.; Wardlow, B.D.; Pimstein, A.; Mecikalski, J.R.; Kustas, W.P. Thermal-

based evaporative stress index for monitoring surface moisture depletion. In Remote Sensing of 

Drought: Innovative Monitoring Approaches; Wardlow, B.D., Anderson, M.C., Verdin, J.P., Eds.; 

CRC Press, 2012, ISBN 9781439835609. 

199. Anderson, M.C.; Zolin, C.A.; Hain, C.R.; Semmens, K.; Tugrul Yilmaz, M.; Gao, F. Comparison of 

satellite-derived LAI and precipitation anomalies over Brazil with a thermal infrared-based 

Evaporative Stress Index for 2003–2013. Journal of Hydrology 2015, 526, 287–302, 

doi:10.1016/j.jhydrol.2015.01.005. 

200. Senay, G.B.; Bohms, S.; Singh, R.K.; Gowda, P.H.; Velpuri, N.M.; Alemu, H.; Verdin, J.P. 

Operational Evapotranspiration Mapping Using Remote Sensing and Weather Datasets: A New 

Parameterization for the SSEB Approach. J Am Water Resour Assoc 2013, 49, 577–591, 

doi:10.1111/jawr.12057. 

201. Otkin, J.A.; Anderson, M.C.; Hain, C.; Mladenova, I.E.; Basara, J.B.; Svoboda, M. Examining 

Rapid Onset Drought Development Using the Thermal Infrared–Based Evaporative Stress Index. 

J. Hydrometeor 2013, 14, 1057–1074, doi:10.1175/JHM-D-12-0144.1. 

202. Toomey, M.; Roberts, D.A.; Still, C.; Goulden, M.L.; McFadden, J.P. Remotely sensed heat 

anomalies linked with Amazonian forest biomass declines. Geophys. Res. Lett. 2011, 38, n/a-n/a, 

doi:10.1029/2011GL049041. 

203. Jimenez-Munoz, J.C.; Sobrino, J.A.; Mattar, C.; Malhi, Y. Multi-temporal analysis of MODIS Land 

Products over the Amazon region. In IEEE International Geoscience and Remote Sensing Symposium 

(IGARSS), 2012. IGARSS 2012 - 2012 IEEE International Geoscience and Remote Sensing 

Symposium, Munich, Germany, 7/22/2012 - 7/27/2012; IEEE: Piscataway, NJ, 7/22/2012 - 

7/27/2012; pp 6439–6442, ISBN 978-1-4673-1159-5. 

204. Xu, L.; Samanta, A.; Costa, M.H.; Ganguly, S.; Nemani, R.R.; Myneni, R.B. Widespread decline in 

greenness of Amazonian vegetation due to the 2010 drought. Geophys. Res. Lett. 2011, 38, n/a-n/a, 

doi:10.1029/2011GL046824. 

205. Rimkus, E.; Stonevicius, E.; Kilpys, J.; Maciulyte, V.; Valiukas, D. Drought identification in the 

eastern Baltic region using NDVI. Earth Syst. Dynam. 2017, 8, 627–637, doi:10.5194/esd-8-627-2017. 

206. Abdi, O.; Shirvani, Z.; Buchroithner, M.F. Spatiotemporal drought evaluation of Hyrcanian 

deciduous forests and semi-steppe rangelands using moderate resolution imaging 

spectroradiometer time series in Northeast Iran. Land Degrad. Develop. 2018, 29, 2525–2541, 

doi:10.1002/ldr.3025. 



122 
 

207. Mitchell, P.J.; O'Grady, A.P.; Hayes, K.R.; Pinkard, E.A. Exposure of trees to drought-induced 

die-off is defined by a common climatic threshold across different vegetation types. Ecol. Evol. 

2014, 4, 1088–1101, doi:10.1002/ece3.1008. 

208. Boyer, J.S. Biochemical and biophysical aspects of water deficits and the predisposition to 

disease. Annu. Rev. Phytopathol. 1995, 33, 251–274, doi:10.1146/annurev.py.33.090195.001343. 

209. Brodribb, T.J.; Bowman, D.J.M.S.; Nichols, S.; Delzon, S.; Burlett, R. Xylem function and growth 

rate interact to determine recovery rates after exposure to extreme water deficit. New Phytol. 2010, 

188, 533–542, doi:10.1111/j.1469-8137.2010.03393.x. 

210. Vose, J.M.; Miniat, C.F.; Luce, C.H.; Asbjornsen, H.; Caldwell, P.V.; Campbell, J.L.; Grant, G.E.; 

Isaak, D.J.; Loheide, S.P.; Sun, G. Ecohydrological implications of drought for forests in the 

United States. Forest Ecology and Management 2016, 380, 335–345, doi:10.1016/j.foreco.2016.03.025. 

211. Scott, M.L.; Shafroth, P.B.; Auble, G.T. Responses of Riparian Cottonwoods to Alluvial Water 

Table Declines. Environmental Management 1999, 23, 347–358, doi:10.1007/s002679900191. 

212. David, T.S.; Pinto, C.A.; Nadezhdina, N.; David, J.S. Water and forests in the Mediterranean hot 

climate zone: a review based on a hydraulic interpretation of tree functioning. Forest Syst 2016, 

25, eR02, doi:10.5424/fs/2016252-08899. 

213. Anderson, L.O.; Malhi, Y.; Aragão, L.E.O.C.; Ladle, R.; Arai, E.; Barbier, N.; Phillips, O. Remote 

sensing detection of droughts in Amazonian forest canopies. New Phytol. 2010, 187, 733–750, 

doi:10.1111/j.1469-8137.2010.03355.x. 

214. Samanta, A.; Ganguly, S.; Hashimoto, H.; Devadiga, S.; Vermote, E.; Knyazikhin, Y.; Nemani, 

R.R.; Myneni, R.B. Amazon forests did not green-up during the 2005 drought. Geophys. Res. Lett. 

2010, 37, n/a-n/a, doi:10.1029/2009GL042154. 

215. Klein, T.; Yakir, D.; Buchmann, N.; Grünzweig, J.M. Towards an advanced assessment of the 

hydrological vulnerability of forests to climate change-induced drought. New Phytol. 2014, 201, 

712–716, doi:10.1111/nph.12548. 

216. Spinoni, J.; Naumann, G.; Carrao, H.; Barbosa, P.; Vogt, J. World drought frequency, duration, 

and severity for 1951-2010. Int. J. Climatol 2014, 34, 2792–2804, doi:10.1002/joc.3875. 

217. Brito, S.S.B.; Cunha, A.P.M.A.; Cunningham, C.C.; Alvalá, R.C.; Marengo, J.A.; Carvalho, M.A. 

Frequency, duration and severity of drought in the Semiarid Northeast Brazil region. Int. J. 

Climatol 2018, 38, 517–529, doi:10.1002/joc.5225. 

218. Diffenbaugh, N.S.; Pal, J.S.; Trapp, R.J.; Giorgi, F. Fine-scale processes regulate the response of 

extreme events to global climate change. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 15774–15778, 

doi:10.1073/pnas.0506042102. 

219. Park Williams, A.; Allen, C.D.; Macalady, A.K.; Griffin, D.; Woodhouse, C.A.; Meko, D.M.; 

Swetnam, T.W.; Rauscher, S.A.; Seager, R.; Grissino-Mayer, H.D.; et al. Temperature as a potent 

driver of regional forest drought stress and tree mortality. Nature Clim Change 2013, 3, 292–297, 

doi:10.1038/nclimate1693. 

220. Malone, S. Monitoring Changes in Water Use Efficiency to Understand Drought Induced Tree 

Mortality. Forests 2017, 8, 365, doi:10.3390/f8100365. 



References 

 

 

221. Rosbakh, S.; Leingärtner, A.; Hoiss, B.; Krauss, J.; Steffan-Dewenter, I.; Poschlod, P. Contrasting 

Effects of Extreme Drought and Snowmelt Patterns on Mountain Plants along an Elevation 

Gradient. Front. Plant Sci. 2017, 8, 1478, doi:10.3389/fpls.2017.01478. 

222. Mueller, R.C.; Scudder, C.M.; Porter, M.E.; Talbot Trotter, I.; Catherine, A.G.; Whitham, T.G. 

Differential tree mortality in response to severe drought: evidence for long-term vegetation 

shifts. J Ecol 2005, 93, 1085–1093, doi:10.1111/j.1365-2745.2005.01042.x. 

223. Oyana, T.J.; Margai, F. Spatial Analysis. Visualization, and Computational Methods; CRC Press: Boca 

Raton, 2015, ISBN 9780429069369. 

224. McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time 

scales. In Proceedings of the 8th Conference on Applied Climatology; American Meteorological 

Society: Boston, MA, 1993; pp 179–183. 

225. Nalbantis, I. Evaluation of a hydrological drought index. European Water 2008, 23, 67–77. 

226. Bhuiyan, C. Various drought indices for monitoring drought condition in Aravalli terrain of 

India. In Proceedings of the XXth ISPRS Congress, Istanbul, Turkey, July 12-23, 2004; Orhan Altan, 

Ed.; ISPRS: Istanbul, Turkey, 2004; pp 12–23. 

227. Wan, Z.; Hook, S.; Hulley, G. MOD11A2 MODIS/Terra Land Surface Temperature/Emissivity 8-Day 

L3 Global 1km SIN Grid V006, 2015. 

228. Tadesse, T.; Wardlow, B.D.; Hayes, M.J.; Svoboda, M.D.; Brown, J.F. The Vegetation Outlook 

(VegOut): A New Method for Predicting Vegetation Seasonal Greenness. GIScience & Remote 

Sensing 2010, 47, 25–52, doi:10.2747/1548-1603.47.1.25. 

229. ESRI. How Fuzzy Membership Works. http://desktop.arcgis.com/en/arcmap/10.5/tools/spatial-

analyst-toolbox/how-fuzzy-membership-works.htm (accessed on 4 April 2019). 

230. Simpson, E.H. Measurement of Diversity. Nature 1949, 163, 688, doi:10.1038/163688a0. 

231. Boenigk, J.; Wodniok, S.; Glücksman, E. Biodiversity and Earth History; Springer Berlin Heidelberg: 

Berlin, Heidelberg, 2015, ISBN 978-3-662-46393-2. 

232. Anselin, L. Local Indicators of Spatial Association-LISA. Geographical Analysis 1995, 27, 93–115, 

doi:10.1111/j.1538-4632.1995.tb00338.x. 

233. Anselin, L. SpaceStat tutorial:a workbook for using SpaceStat in the analysis of spatial data; Urbana-

Champaign: University of Illinois, 1992. 

234. Burridge, P. On the Cliff-Ord test for spatial correlation. Journal of the Royal Statistical Society. 

Series B (Methodological) 1980, 107–108. 

235. Corlett, R.T. Impacts of warming on tropical lowland rainforests. Trends Ecol. Evol. (Amst ) 2011, 

26, 606–613, doi:10.1016/j.tree.2011.06.015. 

236. Clyatt, K.A.; Crotteau, J.S.; Schaedel, M.S.; Wiggins, H.L.; Kelley, H.; Churchill, D.J.; Larson, A.J. 

Historical spatial patterns and contemporary tree mortality in dry mixed-conifer forests. Forest 

Ecology and Management 2016, 361, 23–37, doi:10.1016/j.foreco.2015.10.049. 

237. Rullan-Silva, C.D.; Olthoff, A.E.; La Delgado de Mata, J.A.; Pajares-Alonso, J.A. Remote 

Monitoring of Forest Insect Defoliation -A Review-. Forest Syst 2013, 22, 377, 

doi:10.5424/fs/2013223-04417. 



124 
 

238. Hall, R.J.; Castilla, G.; White, J.C.; Cooke, B.J.; Skakun, R.S. Remote sensing of forest pest damage: 

a review and lessons learned from a Canadian perspective. Can Entomol 2016, 148, S296-S356, 

doi:10.4039/tce.2016.11. 

239. Senf, C.; Seidl, R.; Hostert, P. Remote sensing of forest insect disturbances: Current state and 

future directions. Int. J. Appl. Earth Obs. Geoinf. 2017, 60, 49–60, doi:10.1016/j.jag.2017.04.004. 

240. Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution 

global dataset of monthly climate and climatic water balance from 1958-2015. Sci. Data 2018, 5, 

170191, doi:10.1038/sdata.2017.191. 

241. Latifi, H.; Fassnacht, F.E.; Schumann, B.; Dech, S. Object-based extraction of bark beetle (Ips 

typographus L.) infestations using multi-date LANDSAT and SPOT satellite imagery. Progress in 

Physical Geography: Earth and Environment 2014, 38, 755–785, doi:10.1177/0309133314550670. 

242. Meddens, A.J.H.; Hicke, J.A. Spatial and temporal patterns of Landsat-based detection of tree 

mortality caused by a mountain pine beetle outbreak in Colorado, USA. Forest Ecology and 

Management 2014, 322, 78–88, doi:10.1016/j.foreco.2014.02.037. 

243. De Beurs, K.M.; Townsend, P.A. Estimating the effect of gypsy moth defoliation using MODIS. 

Remote Sensing of Environment 2008, 112, 3983–3990, doi:10.1016/j.rse.2008.07.008. 

244. Babst, F.; Esper, J.; Parlow, E. Landsat TM/ETM+ and tree-ring based assessment of 

spatiotemporal patterns of the autumnal moth (Epirrita autumnata) in northernmost 

Fennoscandia. Remote Sensing of Environment 2010, 114, 637–646, doi:10.1016/j.rse.2009.11.005. 

245. Meddens, A.J.H.; Hicke, J.A.; Vierling, L.A.; Hudak, A.T. Evaluating methods to detect bark 

beetle-caused tree mortality using single-date and multi-date Landsat imagery. Remote Sensing of 

Environment 2013, 132, 49–58, doi:10.1016/j.rse.2013.01.002. 

246. Vastaranta, M.; Kantola, T.; Lyytikäinen-Saarenmaa, P.; Holopainen, M.; Kankare, V.; Wulder, 

M.; Hyyppä, J.; Hyyppä, H. Area-Based Mapping of Defoliation of Scots Pine Stands Using 

Airborne Scanning LiDAR. Remote Sensing 2013, 5, 1220–1234, doi:10.3390/rs5031220. 

247. Goodwin, N.R.; Coops, N.C.; Wulder, M.A.; Gillanders, S.; Schroeder, T.A.; Nelson, T. Estimation 

of insect infestation dynamics using a temporal sequence of Landsat data. Remote Sensing of 

Environment 2008, 112, 3680–3689, doi:10.1016/j.rse.2008.05.005. 

248. Paritsis, J.; Veblen, T.T.; Smith, J.M.; Holz, A. Spatial prediction of caterpillar (Ormiscodes) 

defoliation in Patagonian Nothofagus forests. Landscape Ecol 2011, 26, 791–803, 

doi:10.1007/s10980-011-9608-0. 

249. Thayn, J.B. Using a remotely sensed optimized Disturbance Index to detect insect defoliation in 

the Apostle Islands, Wisconsin, USA. Remote Sensing of Environment 2013, 136, 210–217, 

doi:10.1016/j.rse.2013.05.008. 

250. Heurich, M.; Ochs, T.; Andresen, T.; Schneider, T. Object-orientated image analysis for the semi-

automatic detection of dead trees following a spruce bark beetle (Ips typographus) outbreak. Eur 

J Forest Res 2010, 129, 313–324, doi:10.1007/s10342-009-0331-1. 

251. Latifi, H.; Schumann, B.; Kautz, M.; Dech, S. Spatial characterization of bark beetle infestations by 

a multidate synergy of SPOT and Landsat imagery. Environ. Monit. Assess. 2014, 186, 441–456, 

doi:10.1007/s10661-013-3389-7. 



References 

 

 

252. Ryan, M.G.; Vose, J.M. Effects of climatic variability and change; Effects of climatic variability and 

change on forest ecosystems: a comprehensive science synthesis for the U.S. forest sector PNW-

GTR-870, 2012. https://www.fs.usda.gov/treesearch/pubs/42651 (accessed on 2 August 2019). 

253. Jepsen, J.U.; Kapari, L.; Hagen, S.B.; Schott, T.; Vindstad, O.P.L.; Nilssen, A.C. and Ims, R.A. 

Rapid northwards expansion of a forest insect pest attributed to spring phenology matching with 

sub-Arctic birch. Glob. Chang. Biol. 2011, 17, 2071–2083, doi:10.1111/j.1365-2486.2010.02370.x. 

254. Rouault, G.; Candau, J.-N.; Lieutier, F.; Nageleisen, L.-M.; Martin, J.-C.; Warzée, N. Effects of 

drought and heat on forest insect populations in relation to the 2003 drought in Western Europe. 

Ann. For. Sci. 2006, 63, 613–624, doi:10.1051/forest:2006044. 

255. Ryerson, D.E.; Swetnam, T.W.; Lynch, A.M. A tree-ring reconstruction of western spruce 

budworm outbreaks in the San Juan Mountains, Colorado, U.S.A. Can. J. For. Res. 2003, 33, 1010–

1028, doi:10.1139/x03-026. 

256. Thomson, A.J.; Shepherd, R.F.; Harris, J.W.E.; Silversides, R.H. Relating weather to outbreaks of 

western spruce budworm, Choristoneura occidentalis (Lepidoptera: Tortricidae), in British 

Columbia. Can Entomol 1984, 116, 375–381, doi:10.4039/Ent116375-3. 

257. Abdi, O.; Shirvani, Z.; Buchroithner, M.F. Forest drought-induced diversity of Hyrcanian 

individual-tree mortality affected by meteorological and hydrological droughts by analyzing 

moderate resolution imaging spectroradiometer products and spatial autoregressive models over 

northeast Iran. Agricultural and Forest Meteorology 2019, 275, 265–276, 

doi:10.1016/j.agrformet.2019.05.029. 

258. Setayeshgar, F. The attack of Lymantria dispar to 420 hecatres of Hyrcanian forests: Outbreak of 

defoliators in the forests. http://khorasannews.com/?nid=18724&type=0 (accessed on 1-July 2014). 

259. F.A.O. Food Chain Crisis Early Warning Bulletin. Alerts on threats to the food chain affecting food 

security in countries and regions No. 18, 2016. www.fao.org/food-chain-crisis (accessed on 20 July 

2019). 

260. U.S. Geological Survey, Earth Resources Observation Science Center. Collection-1 Landsat OLI 

Level-2 Surface Reflectance (SR) Science Product, 2019 (accessed on 1 June 2019). 

261. ASF DAAC. PALSAR_Radiometric_Terrain_Corrected_high_res; Includes Material © JAXA/METI 

2007, 2019 (accessed on 1 June 2019). 

262. Department of Natural Resources and Watershed Management of Golestan. The Booklets of Forest 

Management Plans: Jafarabad, Golriz, Tavir, Kohmian, Zarringol, Sorkhdari, Rezaeian, Qalemorian, 

Daland, Vatan, Nodeh-Bon-Qale, Minudasht, Takht, Loveh, Sijan-Kiaram, Korankaftar, Terjenli; Gorgan, 

1981-2011 (accessed on 12 April 2015). 

263. Google earth pro V 7.3.2.5491. Sousara, Golestan Province. 37° 00’ 47.58”N, 55° 16’ 30.88”E, Eye alt 

10.17 km.; Google LLC: Mountain View, USA, 2019. 

264. eCognition Developer, T. 9.0 User Guide. Trimble Germany GmbH: Munich, Germany 2014. 

265. Crippen, R. Calculating the vegetation index faster. Remote Sensing of Environment 1990, 34, 71–73, 

doi:10.1016/0034-4257(90)90085-Z. 

266. Pinty, B.; Verstraete, M.M. GEMI: a non-linear index to monitor global vegetation from satellites. 

Vegetatio 1992, 101, 15–20, doi:10.1007/BF00031911. 



126 
 

267. Kaufman, Y.J.; d. Tanre. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. 

IEEE Trans. Geosci. Remote Sensing 1992, 30, 261–270, doi:10.1109/36.134076. 

268. Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global 

vegetation from EOS-MODIS. Remote Sensing of Environment 1996, 58, 289–298, doi:10.1016/S0034-

4257(96)00072-7. 

269. Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation 

index without a blue band. Remote Sensing of Environment 2008, 112, 3833–3845, 

doi:10.1016/j.rse.2008.06.006. 

270. Singh, A.; Harrison, A. Standardized principal components. International Journal of Remote Sensing 

1985, 6, 883–896, doi:10.1080/01431168508948511. 

271. Kauth, R.J.; Thomas, G.S. The tasselled cap-a graphic description ofthe spectral-temporal 

development ofagricultural crops as seen by landsat. Purdue University: West Lafayette, USA, 

1976. 

272. Haralick, R.M.; Shanmugam, K.; Dinstein, I.'H. Textural Features for Image Classification. IEEE 

Trans. Syst., Man, Cybern. 1973, SMC-3, 610–621, doi:10.1109/TSMC.1973.4309314. 

273. Navulur, K. Multispectral Image Analysis Using the Object-Oriented Paradigm; CRC Press, 2006, 

ISBN 9780429146305. 

274. Moore, I. d.; Grayson, R.B.; Ladson, A.R. Digital terrain modelling: A review of hydrological, 

geomorphological, and biological applications. Hydrol. Process. 1991, 5, 3–30, 

doi:10.1002/hyp.3360050103. 

275. Wilson, John, P.; Gallant, John, C. Terrain analysis. Principles and applications; John Wiley & Sons: 

New York, 2000, ISBN 978-0-471-32188-0. 

276. Riley, S. J., DeGloria, S. D., & Elliot, R. Index that quantifies topographic heterogeneity. 1999, 5, 

23–27. 

277. Salford Systems Ltd. Salford Predictive Modeler 8.3; Salford Systems Ltd.: San Diego, USA, 2018. 

278. Kandel, K.; Huettmann, F.; Suwal, M.K.; Ram Regmi, G.; Nijman, V.; Nekaris, K.A.I.; Lama, S.T.; 

Thapa, A.; Sharma, H.P.; Subedi, T.R. Rapid multi-nation distribution assessment of a 

charismatic conservation species using open access ensemble model GIS predictions: Red panda 

(Ailurus fulgens) in the Hindu-Kush Himalaya region. Biological Conservation 2015, 181, 150–161, 

doi:10.1016/j.biocon.2014.10.007. 

279. ESRI. How Fuzzy Overlay works. http://desktop.arcgis.com/en/arcmap/10.5/tools/spatial-analyst-

toolbox/how-fuzzy-overlay-works.htm (accessed on 1 May 2019). 

280. Key, C.H.; Benson, N.C. Landscape assessment: Remote sensing of severity, the Normalized Burn Ratio; 

FIREMON: Fire effects monitoring and inventory system RMRS-GTR-164-CD: LA 1-51, 2006. 

http://pubs.er.usgs.gov/publication/2002085 (accessed on 8 February 2019). 

281. Miller, J. d.; Thode, A.E. Quantifying burn severity in a heterogeneous landscape with a relative 

version of the delta Normalized Burn Ratio (dNBR). Remote Sensing of Environment 2007, 109, 66–

80, doi:10.1016/j.rse.2006.12.006. 



References 

 

 

282. Elhorst, J.P. Spatial Panel Data Models. In Spatial Econometrics: From Cross-Sectional Data to Spatial 

Panels; Elhorst, J.P., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2014; pp 37–93, ISBN 

978-3-642-40340-8. 

283. Greene, W.H. Econometric analysis, 5th ed.; Prentice Hall: Upper Saddle River, NJ, 2002, ISBN 0-

13-066189-9. 

284. Elhorst, J.P. Spatial Panel Data Models. In Handbook of Applied Spatial Analysis; Fischer, M.M., 

Getis, A., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2010; pp 377–407, ISBN 978-3-642-

03646-0. 

285. Bell, A.; Jones, K. Explaining Fixed Effects: Random Effects Modeling of Time-Series Cross-

Sectional and Panel Data. PSRM 2015, 3, 133–153, doi:10.1017/psrm.2014.7. 

286. Hausman, J.A. Specification Tests in Econometrics. Econometrica 1978, 46, 1251, 

doi:10.2307/1913827. 

287. Baltagi, B.H. Econometric analysis of panel data, 4th ed.; John Wiley & Sons: Chichester, UK, 2008, 

ISBN 0-470-01456-3. 

288. Carter, G.A. Responses of Leaf Spectral Reflectance to Plant Stress. American Journal of Botany 

1993, 80, 239, doi:10.2307/2445346. 

289. Carter, G.A.; Cibula, W.G.; Miller, R.L. Narrow-band Reflectance Imagery Compared with 

ThermalImagery for Early Detection of Plant Stress. Journal of Plant Physiology 1996, 148, 515–522, 

doi:10.1016/S0176-1617(96)80070-8. 

290. Muchoney, D.M.; Haack, B.N. Change Detection for Monitoring Forest Defoliation. 

Photogrammetric engineering and remote sensing 1994, 60, 1243–1252. 

291. Moskal, L.M.; Franklin, S.E. Relationship between airborne multispectral image texture and 

aspen defoliation. International Journal of Remote Sensing 2004, 25, 2701–2711, 

doi:10.1080/01431160310001642304. 

292. Lottering, R.; Mutanga, O.; Peerbhay, K.; Ismail, R. Detecting and mapping Gonipterus 

scutellatus induced vegetation defoliation using WorldView-2 pan-sharpened image texture 

combinations and an artificial neural network. J. Appl. Rem. Sens. 2019, 13, 1, 

doi:10.1117/1.JRS.13.014513. 

293. Olsson, P.-O.; Jönsson, A.M.; Eklundh, L. A new invasive insect in Sweden – Physokermes 

inopinatus: Tracing forest damage with satellite based remote sensing. Forest Ecology and 

Management 2012, 285, 29–37, doi:10.1016/j.foreco.2012.08.003. 

 

 

 

 

 

 



128 
 

 

 

 

 

 

 



 
 

 

Appendix A 
Supplementary Tables and Figures of Chapter 3 



130 
 

Table 3.S1 Cross-validation of monthly precipitation estimation based on the different semi-variogram models from rain gauges from 1987 to 2016. 

 

 

YEAR Jan. Feb. Mar. Apr. May Jun. 

 Model* ME  

(mm) 

RMSSE Model* ME 

(mm) 

RMSSE Model* ME 

(mm) 

RMSSE Model* ME 

(mm 

RMSSE Model* ME 

(mm) 

RMSSE Model* ME 

(mm) 

RMSSE 

1987 S - G 0.96 1.19 S - G 2.05 1.01 S - G 3.86 0.80 S 6.36 0.73 S 1.35 0.87 S 0.45 0.84 

1988 S - G 0.52 1.04 S - G 0.90 0.99 S - G 2.65 0.78 S - G 2.32 1.00 S - G 1.88 1.03 S 0.10 0.91 

1989 S - G 0.49 1.17 S - G 0.39 0.98 S - G -2.05 1.03 S - G 1.62 0.92 S - G 0.09 1.12 EBK 0.01 0.93 

1990 S - G 0.05 0.93 S - G -1.54 1.08 S - G 0.38 1.02 S - G 1.42 0.84 S - G -0.63 1.03 EBK 1.12 0.94 

1991 S 1.95 1.00 S - G 0.96 0.91 S - G 1.08 0.90 S - G 0.85 1.07 S - G 0.64 0.97 SRG 0.17 0.97 

1992 G - S -0.14 0.93 S - G 0.89 0.98 S - G 0.012 0.98 S 2.32 0.95 S 4.18 0.96 PS 0.79 0.96 

1993 G -1.41 1.05 G -1.09 1.02 S – G 0.23 0.97 PS 0.29 1.11 S 2.56 0.91 G 1.94 1.04 

1994 PS 1.13 1.03 G 1.13 1.03 G 1.16 0.91 S 1.92 0.83 G 0.47 1.12 EBK 0.16 0.99 

1995 G 0.73 1.15 S 1.68 0.81 G -0.01 1.04 S -0.29 0.98 S -0.01 0.87 EBK 0.14 0.95 

1996 G 0.29 0.95 S 0.09 1.02 S 0.52 0.99 S 0.48 1.15 EBK 0.72 0.96 PS 0.35 1.00 

1997 EBK -0.1.3 0.93 RG -0.56 1.22 G 2.78 0.99 S 1.76 0.97 PS 1.69 0.95 G 0.51 0.87 

1998 TS 0.19 1.09 S 0.98 0.96 S -0.13 1.06 G 0.88 1.03 G 1.54 0.99 EBK 0.51 0.96 

1999 EBK 0.5 0.96 G 1.22 1.00 S 2.58 1.00 S 0.61 0.99 G 1.28 1.04 EBK -0.06 1.00 

2000 G 0.37 1.05 G 0.83 1.04 S 2.18 1.17 EBK 0.11 0.95 EBK 0.61 0.97 S 0.41 1.09 

2001 S 0.11 1.07 G 1.12 1.06 S 0.93 0.93 S 1.94 1.01 G 0.87 1.00 EBK 0.77 0.95 

2002 EBK 0.60 0.96 G 1.15 1.00 EBK 0.84 0.97 S 1.63 0.93 G 0.90 1.03 EBK 0.70 1.00 

2003 PS 0.58 1.10 G 0.86 1.00 ST 1.41 1.02 G 0.53 0.96 S 1.59 0.98 S 1.19 1.04 

2004 RG 0.51 1.22 S 1.43 0.94 S 0.98 1.05 TS 2.06 0.94 G 0.11 1.04 TS 0.77 0.88 

2005 S 1.02 1.05 G 0.75 1.05 PS 1.37 0.92 S 3.19 1.05 S 1.34 0.99 S 1.33 0.99 

2006 S 1.27 1.01 S 0.80 1.00 G 0.52 0.92 S 1.56 1.05 S 0.89 1.01 EBK -0.09 0.96 

2007 S 0.80 0.99 EBK 0.47 0.93 PS 1.10 0.95 S 0.27 1.01 S 0.57 0.99 EBK 0.73 0.90 

2008 G 0.09 1.01 EBK 0.48 1.05 G 0.45 0.93 G -0.03 1.04 G 0.03 0.98 PS 0.47 0.94 

2009 G 0.21 0.98 RG 1.37 0.91 EBK 0.42 0.97 S 0.74 0.99 EBK 0.40 0.97 EBK 0.082 0.93 

2010 TS 0.29 0.89 S 0.90 1.06 S 1.09 1.08 G 0.10 1.01 S 0.86 1.00 EBK 6.23 1.01 

2011 G 0.90 1.08 G 0.21 0.95 G 0.41 0.93 EBK 0.17 0.94 G 0.51 0.97 EBK 0.08 0.92 

2012 G 0.28 0.92 G 1.02 1.01 S 0.79 0.93 S 1.44 0.83 G -0.05 1.01 PS 0.72 0.90 

2013 G 0.77 0.99 G 0.97 0.83 G 2.55 0.82 G 0.15 1.04 S 0.84 0.96 EBK 0.03 0.91 

2014 EBK 0.03 0.92 S 0.15 0.99 G 1.94 1.00 EBK 1.37 0.99 EBK -0.004 1.00 EBK 0.04 0.94 

2015 EBK 0.15 0.98 S 1.12 0.90 EBK 0.78 1.01 EBK -0.25 0.98 EBK 1.11 0.99 EBK -0.03 0.97 

2016 EBK 0.07 0.97 EBK 0.34 0.98 EBK 1.14 0.98 EBK 0.78 1.00 G 0.51 0.97 PS 0.70 0.93 

Mean  0.439 1.02  0.75 0.99  1.06 0.97  1.21 0.98  0.89 0.99  0.67 0.96 
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*Semi-variogram models. S: Spherical; G: Gaussian; PS: Pentaspherical; TS:  Tetrasherical; RQ: Rational Quadratic; EBK: Empirical Bayesian Kriging; ST: Stable 

YEAR Jul. Aug. Sep. Oct. Nov. Dec. 

 Model* ME 

(mm) 

RMSSE Model* ME 

(mm) 

RMSSE Model* ME 

(mm) 

RMSSE Model* ME 

(mm) 

RMSSE Model* ME 

(mm) 

RMSSE Model* ME 

(mm) 

RMSSE 

1987 EBK -0.56 1.02 EBK 1.25 0.92 EBK 3.47 0.96 S - G 1.22 0.85 S - G 0.91 1.04 S - G 0.029 0.96 

1988 EBK 0.25 0.94 S - G 0.62 0.97 EBK 0.20 0.95 EBK 1.75 0.98 S - G 1.78 0.98 S - G 0.94 1.03 

1989 EBK -0.82 0.96 S -1.36 1.03 S - G 0.78 0.98 S - G -0.23 0.96 S - G 0.034 0.97 EBK 2.78 1.00 

1990 EBK 0.17 1.00 EBK 0.96 0.60 S - G 0.29 0.91 S - G 0.08 1.01 S - G 1.04 1.07 S - G -0.81 0.98 

1991 EBK 0.68 0.93 EBK 0.026 0.94 EBK 0.32 0.94 S - G 1.01 0.96 S - G -0.5 0.87 S - G -0.07 0.87 

1992 EBK 0.36 0.96 S 0.96 0.82 EBK 1.15 0.94 EBK -0.002 0.90 EBK -0.08 0.96 G 1.24 1.01 

1993 S 0.23 1.01 EBK 0.87 0.96 S 0.005 0.92 EBK -0.02 0.99 G 1.55 0.99 S 0.19 0.99 

1994 S 0.33 0.96 EBK 0.39 1.00 S 0.97 0.96 G 1.16 1.07 G 0.17 1.02 PS 0.80 1.12 

1995 S 0.37 0.91 EBK 0.32 0.96 PS 0.19 0.80 S 1.61 0.96 RG 1.09 0.81 G 1.01 0.94 

1996 EBK 0.09 0.91 EBK 0.1 1.02 EBK -0.39 1.004 G 1.81 1.04 G 1.67 1.08 RG -1.37 1.04 

1997 EBK 1.81 0.98 EBK 0.33 0.99 PS 1.11 1.00 S 0.33 0.96 G 1.26 1.01 G -0.14 1.00 

1998 EBK 0.77 0.97 EBK -0.07 0.95 G 1.10 0.94 G 1.49 0.93 EBK 0.45 0.99 EBK 0.50 0.96 

1999 G 0.39 0.94 G -0.32 1.04 S 0.56 0.90 S 3.01 1.10 S 0.77 1.00 S 1.10 1.01 

2000 EBK 0.11 0.96 S 1.29 0.85 S 2.07 0.94 RG 1.73 0.89 S 0.61 0.94 S 0.99 1.01 

2001 EBK -0.22 0.98 EBK 1.54 0.96 EBK 0.82 0.96 EBK 0.01 0.96 G 0.82 1.01 S 0.86 1.30 

2002 EBK 0.36 0.95 ST 1.05 1.09 G 0.53 0.98 EBK 0.51 0.94 PS 0.42 1.09 G 1.02 0.92 

2003 EBK 0.44 0.92 S 0.68 0.97 EBK 0.31 0.94 PS 0.84 0.93 G 1.27 0.97 G 0.87 0.92 

2004 G 1.10 0.82 EBK 0.04 0.94 PS 0.66 0.99 G 0.36 0.95 PS 1.31 0.87 G 1.47 0.97 

2005 EBK 0.08 0.97 EBK 0.94 0.96 EBK 0.32 0.89 PS 1.07 0.92 PS 1.47 0.98 PS 0.51 0.93 

2006 EBK 0.09 0.91 EBK 0.026 0.911 SP 0.65 1.09 EBK -0.02 0.97 S 3.06 0.93 TS 1.78 0.96 

2007 EBK 0.39 0.93 EBK -0.54 0.93 EBK 0.17 0.92 PS 0.95 1.02 EBK 0.32 0.91 S 1.07 1.02 

2008 G 0.16 0.96 EBK -0.01 1.04 EBK -0.01 0.92 EBK 1.45 0.87 G 0.27 0.97 RG 0.77 1.00 
2009 EBK 0.013 0.98 S 0.84 0.94 PS 0.60 0.97 TS 0.65 0.89 G 0.82 1.10 TS 1.65 0.98 

2010 EBK 0.10 0.93 EBK -0.006 0.90 EBK 0.67 1.00 EBK 0.51 0.92 EBK 0.29 0.94 EBK 0.21 0.96 

2011 G 0.47 0.91 S 0.22 1.05 G 0.89 0.92 G 2.01 0.95 S 0.90 0.92 G 0.97 0.98 

2012 G 5.82 0.93 EBK 0.13 0.91 G 0.70 0.92 S 1.56 1.00 G 0.85 1.00 G 0.48 1.07 

2013 EBK 0.15 0.90 EBK 0.10 0.94 EBK 0.15 0.92 S 1.99 1.02 EBK 0.06 0.95 G 4.94 1.01 

2014 EBK 0.003 1.01 EBK 0.08 0.97 EBK 0.39 0.97 EBK 0.19 0.96 RG 1.17 0.96 G 0.46 1.03 

2015 EBK 0.13 1.00 EBK 0.04 0.98 EBK -0.14 0.96 EBK 0.99 1.00 EBK 0.1 0.99 EBK 2.73 1.00 

2016 G 0.04 1.02 S 0.17 1.03 SP 0.16 1.02 EBK 0.98 1.03 S 0.40 0.96 G 0.37 0.98 

Mean  0.44 0.95  0.35 0.95  0.62 0.95  0.96 0.96  0.81 0.98  0.91 0.99 

Table 3.S1 Continued 
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Figure 3.S1 Spatial variations of BiLISA cluster/ outlier of DOY 65 to DOY 113 during drought periods (Significance level= 0.05, Randomization permutations= 499). 



Appendix A 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.S2 Spatial variations of BiLISA cluster/ outlier of DOY 129 to DOY 177 during drought periods (Significance level= 0.05, Randomization permutations= 499) 
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Figure 3.S3 Spatial variations of BiLISA cluster/ outlier of DOY 193 to DOY 241 during drought periods (Significance level= 0.05, Randomization permutations= 499) 
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Figure 3.S4 Spatial variations of BiLISA cluster/ outlier of DOY 257 to DOY 305 during drought periods (Significance level= 0.05, Randomization permutations= 499) 
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Appendix B 
Supplementary Tables and Figures of Chapter 4 

 

Table 4.S1 Classification schemes of meteorological and hydrological droughts, and forest stress 

based on the first standard deviation. 

Drought/ Stress class SPI/ SDI SWI SDLST/ SNLST SETa /SNDWI/ SNDVI  

Extreme Y≤ -2.00 Y≥ 2.00 Y≥ 2.00 Y ≤ -2.00 

Severe -2.00 < Y ≤ -1.50 1.50 ≤ Y < 2.00 1.00 ≤ Y < 2.00 -2.00 < Y≤ -1.00 

Moderate -1.50 < Y ≤ -1.00 1.00 ≤ Y < 1.5 0.50 ≤ Y < 1.00 -1.00 < Y ≤ -0.50 

Mild -1.00 < Y < 0.00 0.00 ≤ Y < 1.00 0.00 ≤ Y < 0.50 -0.50 < Y < 0.00 

No 0.00 ≤ Y 0.00 > Y 0.00 > Y 0.00 ≤ Y 

Note. SPI: standardized precipitation index; SDI: streamflow drought index; SWI: standardized water level index; 

SDLST: standardized-daily land surface temperature; SNLST: standardized-nighty land surface temperature; 

SETa: standardized actual evapotranspiration; SNDWI: standardized normalized difference water index; SNDVI: 

standardized normalized difference vegetation index. 

Table 4.S2 The values of test parameters for diagnosing of spatial dependence of regression models. 

Test Model I Model II Model III Model IV Model V Model VI 

Lagrange Multiplier (lag) 1704.52** 655.21** 5.6279* 5.2181* 2.7132ns 13.1464** 

Robust LM (lag) 7.0435** 2.0355ns 2.790ns 0.8708ns 0.0073ns 1.3842ns 

Lagrange Multiplier (error) 1915.06** 756.49** 2.8611ns 5.7035* 7.6548** 16.6453** 

Robust LM (error)   217.58** 103.32** 0.0232ns 1.3562ns 4.9489* 4.8832* 

Note: ** p value < 0.01,* p value < 0.05, and ns: not significant. Model I and II: spatial dependence between the 

hazard intensity of forest drought based on the NDWI and NDVI with meteorological and hydrological droughts; 

Model III to Model VI: spatial dependence between the diversity of tree mortality from low to high diebacks with 

the hazard intensity of forest drought. 
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Figure 4.S1 Spatial variations of the drought severity show that the higher values of negative 

anomalies are observed in the ETa (d), night-time LST (c), day-time LST (b) and the precipitation 

(a) among meteorological variables. The water surface anomaly (e) recorded higher negative values 

in comparison to the groundwater anomaly (f). Forest drought based on the normalized difference 

water index (NDWI) (g) was severe than forest drought based on the normalized difference 

vegetation index (NDVI) (h) in northeastern Iran.  

 

 

 

 

 

 

 

 

 

 

Figure 4.S2 Spatial variations of the drought frequency of the meteorological droughts: the 

precipitation (P) (a), day-time LST (DLST) (b), night-time LST (NLST) (c), and the ETa (d); the 

hydrological droughts: the surface water (SW) (e) and groundwater (GW) (f) levels; and the forest 

droughts: the deficit of water-content (NDWI) (g) and loss of the greenness (NDVI) (h) during a 

hydrological year (from October of the previous year to September of the current year/ growing 

season (March‒October) in northeastern Iran. 
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Figure 4.S3 Spatial variations of the drought duration of the meteorological droughts: the precipitation 

(P) (a), day-time LST (DLST) (b), night-time LST (NLST) (c), and the ETa (d); the hydrological droughts: 

the surface water (SW) (e) and groundwater (GW) (f) levels; and the forest droughts: the deficit of water-

content (NDWI) (g) and loss of the greenness (NDVI) (h) during a hydrological year (from October of the 

previous year to September of the current year/ growing season (March‒October) in northeastern Iran. 

 

 

 




