6 research outputs found

    On sparsity averaging

    Get PDF
    Recent developments in Carrillo et al. (2012) and Carrillo et al. (2013) introduced a novel regularization method for compressive imaging in the context of compressed sensing with coherent redundant dictionaries. The approach relies on the observation that natural images exhibit strong average sparsity over multiple coherent frames. The associated reconstruction algorithm, based on an analysis prior and a reweighted 1\ell_1 scheme, is dubbed Sparsity Averaging Reweighted Analysis (SARA). We review these advances and extend associated simulations establishing the superiority of SARA to regularization methods based on sparsity in a single frame, for a generic spread spectrum acquisition and for a Fourier acquisition of particular interest in radio astronomy.Comment: 4 pages, 3 figures, Proceedings of 10th International Conference on Sampling Theory and Applications (SampTA), Code available at https://github.com/basp-group/sopt, Full journal letter available at http://arxiv.org/abs/arXiv:1208.233

    Reverberant Audio Source Separation via Sparse and Low-Rank Modeling

    Get PDF
    The performance of audio source separation from underdetermined convolutive mixture assuming known mixing filters can be significantly improved by using an analysis sparse prior optimized by a reweighting l1 scheme and a wideband datafidelity term, as demonstrated by a recent article. In this letter, we show that the performance can be improved even more significantly by exploiting a low-rank prior on the source spectrograms.We present a new algorithm to estimate the sources based on i) an analysis sparse prior, ii) a reweighting scheme so as to increase the sparsity, iii) a wideband data-fidelity term in a constrained form, and iv) a low-rank constraint on the source spectrograms. Evaluation on reverberant music mixtures shows that the resulting algorithm improves state-of-the-art methods by more than 2 dB of signal-to-distortion ratio

    Multichannel Speech Separation and Enhancement Using the Convolutive Transfer Function

    Get PDF
    This paper addresses the problem of speech separation and enhancement from multichannel convolutive and noisy mixtures, \emph{assuming known mixing filters}. We propose to perform the speech separation and enhancement task in the short-time Fourier transform domain, using the convolutive transfer function (CTF) approximation. Compared to time-domain filters, CTF has much less taps, consequently it has less near-common zeros among channels and less computational complexity. The work proposes three speech-source recovery methods, namely: i) the multichannel inverse filtering method, i.e. the multiple input/output inverse theorem (MINT), is exploited in the CTF domain, and for the multi-source case, ii) a beamforming-like multichannel inverse filtering method applying single source MINT and using power minimization, which is suitable whenever the source CTFs are not all known, and iii) a constrained Lasso method, where the sources are recovered by minimizing the 1\ell_1-norm to impose their spectral sparsity, with the constraint that the 2\ell_2-norm fitting cost, between the microphone signals and the mixing model involving the unknown source signals, is less than a tolerance. The noise can be reduced by setting a tolerance onto the noise power. Experiments under various acoustic conditions are carried out to evaluate the three proposed methods. The comparison between them as well as with the baseline methods is presented.Comment: Submitted to IEEE/ACM Transactions on Audio, Speech and Language Processin

    Expectation-Maximization for Speech Source Separation using Convolutive Transfer Function

    Get PDF
    International audienceThis paper addresses the problem of under-determinded speech source separation from multichannel microphone singals, i.e. the convolutive mixtures of multiple sources. The time-domain signals are first transformed to the short-time Fourier transform (STFT) domain. To represent the room filters in the STFT domain, instead of the widely-used narrowband assumption, we propose to use a more accurate model, i.e. the convolutive transfer function (CTF). At each frequency band, the CTF coefficients of the mixing filters and the STFT coefficients of the sources are jointly estimated by maximizing the likelihood of the microphone signals, which is resolved by an Expectation-Maximization (EM) algorithm. Experiments show that the proposed method provides very satisfactory performance under highly reverberant environment

    Audio source separation into the wild

    Get PDF
    International audienceThis review chapter is dedicated to multichannel audio source separation in real-life environment. We explore some of the major achievements in the field and discuss some of the remaining challenges. We will explore several important practical scenarios, e.g. moving sources and/or microphones, varying number of sources and sensors, high reverberation levels, spatially diffuse sources, and synchronization problems. Several applications such as smart assistants, cellular phones, hearing aids and robots, will be discussed. Our perspectives on the future of the field will be given as concluding remarks of this chapter

    Sparse reverberant audio source separation via reweighted analysis

    Get PDF
    We propose a novel algorithm for source signals estimation from an underdetermined convolutive mixture assuming known mixing filters. Most of the state-of-the-art methods are dealing with anechoic or short reverberant mixture, assuming a synthesis sparse prior in the time-frequency domain and a narrowband approximation of the convolutive mixing process. In this paper, we address the source estimation of convolutive mixtures with a new algorithm based on i) an analysis sparse prior, ii) a reweighting scheme so as to increase the sparsity, iii) a wideband data-fidelity term in a constrained from. We show, through theoretical discussions and simulations, that this algorithm is particularly well suited for source separation of realistic reverberation mixtures. Particularly, the proposed algorithm outperforms state-of-the-art methods on reverberant mixtures of audio sources by more than 2 dB of signal-to-distortion ratio
    corecore