636 research outputs found

    Challenges and Opportunities in Machine-Augmented Plant Stress Phenotyping

    Get PDF
    Plant stress phenotyping is essential to select stress-resistant varieties and develop better stress-management strategies. Standardization of visual assessments and deployment of imaging techniques have improved the accuracy and reliability of stress assessment in comparison with unaided visual measurement. The growing capabilities of machine learning (ML) methods in conjunction with image-based phenotyping can extract new insights from curated, annotated, and high-dimensional datasets across varied crops and stresses. We propose an overarching strategy for utilizing ML techniques that methodically enables the application of plant stress phenotyping at multiple scales across different types of stresses, program goals, and environments

    High-throughput field phenotyping in cereals and implications in plant ecophysiology

    Get PDF
    [eng] Global climate change effects on agroecosystems together with increasing world population is already threatening food security and endangering ecosystem stability. Meet global food demand with crops production under climate change scenario is the core challenge in plant research nowadays. Thus, there is an urgent need to better understand the underpinning mechanisms of plant acclimation to stress conditions contributing to obtain resilient crops. Also, it is essential to develop new methods in plant research that permit to better characterize non-destructively plant traits of interest. In this sense, the advance in plant phenotyping research by high throughput systems is key to overcome these challenges, while its verification in the field may clear doubts on its feasibility. To this aim, this thesis focused on wheat and secondarily on maize as study species as they make up the major staple crops worldwide. A large panoply of phenotyping methods was employed in these works, ranging from RGB and hyperspectral sensing to metabolomic characterization, besides of other more conventional traits. All research was performed with trials grown in the field and diverse stressor conditions representative of major constrains for plant growth and production were studied: water stress, nitrogen deficiency and disease stress. Our results demonstrated the great potential of leave-to-canopy color traits captured by RGB sensors for in-field phenotyping, as they were accurate and robust indicators of grain yield in wheat and maize under disease and nitrogen deficiency conditions and of leaf nitrogen concentration in maize. On the other hand, the characterization of the metabolome of wheat tissues contributed to elucidate the metabolic mechanisms triggered by water stress and their relationship with high yielding performance, providing some potential biomarkers for higher yields and stress adaptation. Spectroscopic studies in wheat highlighted that leaf dorsoventrality may affect more than water stress on the reflected spectrum and consequently the performance of the multispectral/hyperspectral approaches to assess yield or any other relevant phenotypic trait. Anatomy, pigments and water changes were responsible of reflectance differences and the existence of leaf-side-specific responses were discussed. Finally, the use of spectroscopy for the estimation of the metabolite profiles of wheat organs showed promising for many metabolites which could pave the way for a new generation phenotyping. We concluded that future phenotyping may benefit from these findings in both the low-cost and straightforward methods and the more complex and frontier technologies.[cat] Els efectes del canvi climàtic sobre els agro-ecosistemes i l’increment de la població mundial posa en risc la seguretat alimentària i l’estabilitat dels ecosistemes. Actualment, satisfer les demandes de producció d’aliments sota l’escenari del canvi climàtic és el repte central a la Biologia Vegetal. Per això, és indispensable entendre els mecanismes subjacents de l’aclimatació a l’estrès que permeten obtenir cultius resilients. També és precís desenvolupar nou mètodes de recerca que permetin caracteritzar de manera no destructiva els trets d’interès. L’avenç del fenotipat vegetal amb sistemes d’alt rendiment és clau per abordar aquests reptes. La present tesi s’enfoca en el blat i secundàriament en el panís com a espècies d’estudi ja que constitueixen els cultius bàsics arreu del món. Un ampli ventall de mètodes de fenotipat s’han utilitzat, des sensors RGB a híper-espectrals fins a la caracterització metabolòmica. La recerca s’ha dut a terme en assajos de camp i s’han avaluat diversos tipus d’estrès representatius de les majors limitacions pel creixement i producció vegetal: estrès hídric i biòtic i deficiència de nitrogen. Els resultats demostraren el gran potencial dels trets del color RGB (des de la planta a la capçada) pel fenotipat de camp, ja que foren indicadors precisos del rendiment a blat i panís sota condicions de malaltia i deficiència de nitrogen i de la concentració de nitrogen foliar a panís. La caracterització metabolòmica de teixits de blat contribuí a esbrinar els processos metabòlics endegats per l’estrès hídric i la seva relació amb comportament genotípic, proporcionant bio-marcadors potencials per rendiments més alts i l’adaptació a l’estrès. Estudis espectroscòpics en blat van demostrar que la dorsoventralitat pot afectar més que l’estrès hídric sobre l’espectre de reflectància i consegüentment sobre el comportament de les aproximacions multi/híper-espectrals per avaluar el rendiment i d’altres trets fenotípics com anatòmics i contingut de pigments. Finalment, l’ús de l’espectroscòpia per l’estimació del contingut metabòlic als teixits de blat resulta prometedor per molts metabòlits, la qual cosa obre les portes per a un fenotipat de nova generació. El fenotipat pot beneficiar-se d’aquestes troballes, tant en els mètodes de baix cost com de les tecnologies més sofisticades i d’avantguarda

    Modelling spatial variability of coffee (Coffea Arabica L.) crop condition with multispectral remote sensing data.

    Get PDF
    Doctor of Philosophy in Environmental Science. University of KwaZulu-Natal, Pietermaritzburg, 2017.Abstract available in PDF file

    Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain: A review

    Get PDF
    Remote detection and monitoring of the vegetation responses to stress became relevant for sustainable agriculture. Ongoing developments in optical remote sensing technologies have provided tools to increase our understanding of stress-related physiological processes. Therefore, this study aimed to provide an overview of the main spectral technologies and retrieval approaches for detecting crop stress in agriculture. Firstly, we present integrated views on: i) biotic and abiotic stress factors, the phases of stress, and respective plant responses, and ii) the affected traits, appropriate spectral domains and corresponding methods for measuring traits remotely. Secondly, representative results of a systematic literature analysis are highlighted, identifying the current status and possible future trends in stress detection and monitoring. Distinct plant responses occurring under short-term, medium-term or severe chronic stress exposure can be captured with remote sensing due to specific light interaction processes, such as absorption and scattering manifested in the reflected radiance, i.e. visible (VIS), near infrared (NIR), shortwave infrared, and emitted radiance, i.e. solar-induced fluorescence and thermal infrared (TIR). From the analysis of 96 research papers, the following trends can be observed: increasing usage of satellite and unmanned aerial vehicle data in parallel with a shift in methods from simpler parametric approaches towards more advanced physically-based and hybrid models. Most study designs were largely driven by sensor availability and practical economic reasons, leading to the common usage of VIS-NIR-TIR sensor combinations. The majority of reviewed studies compared stress proxies calculated from single-source sensor domains rather than using data in a synergistic way. We identified new ways forward as guidance for improved synergistic usage of spectral domains for stress detection: (1) combined acquisition of data from multiple sensors for analysing multiple stress responses simultaneously (holistic view); (2) simultaneous retrieval of plant traits combining multi-domain radiative transfer models and machine learning methods; (3) assimilation of estimated plant traits from distinct spectral domains into integrated crop growth models. As a future outlook, we recommend combining multiple remote sensing data streams into crop model assimilation schemes to build up Digital Twins of agroecosystems, which may provide the most efficient way to detect the diversity of environmental and biotic stresses and thus enable respective management decisions

    Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain: A review

    Get PDF
    Remote detection and monitoring of the vegetation responses to stress became relevant for sustainable agriculture. Ongoing developments in optical remote sensing technologies have provided tools to increase our understanding of stress-related physiological processes. Therefore, this study aimed to provide an overview of the main spectral technologies and retrieval approaches for detecting crop stress in agriculture. Firstly, we present integrated views on: i) biotic and abiotic stress factors, the phases of stress, and respective plant responses, and ii) the affected traits, appropriate spectral domains and corresponding methods for measuring traits remotely. Secondly, representative results of a systematic literature analysis are highlighted, identifying the current status and possible future trends in stress detection and monitoring. Distinct plant responses occurring under short-term, medium-term or severe chronic stress exposure can be captured with remote sensing due to specific light interaction processes, such as absorption and scattering manifested in the reflected radiance, i.e. visible (VIS), near infrared (NIR), shortwave infrared, and emitted radiance, i.e. solar-induced fluorescence and thermal infrared (TIR). From the analysis of 96 research papers, the following trends can be observed: increasing usage of satellite and unmanned aerial vehicle data in parallel with a shift in methods from simpler parametric approaches towards more advanced physically-based and hybrid models. Most study designs were largely driven by sensor availability and practical economic reasons, leading to the common usage of VIS-NIR-TIR sensor combinations. The majority of reviewed studies compared stress proxies calculated from single-source sensor domains rather than using data in a synergistic way. We identified new ways forward as guidance for improved synergistic usage of spectral domains for stress detection: (1) combined acquisition of data from multiple sensors for analysing multiple stress responses simultaneously (holistic view); (2) simultaneous retrieval of plant traits combining multi-domain radiative transfer models and machine learning methods; (3) assimilation of estimated plant traits from distinct spectral domains into integrated crop growth models. As a future outlook, we recommend combining multiple remote sensing data streams into crop model assimilation schemes to build up Digital Twins of agroecosystems, which may provide the most efficient way to detect the diversity of environmental and biotic stresses and thus enable respective management decisions

    Classification and severity prediction of maize leaf diseases using Deep Learning CNN approaches

    Get PDF
    No key words availableMaize (zea mays) is the staple food of Southern Africa and most of the African regions. This staple food has been threatened by a lot of diseases in terms of its yield and existence. Within this domain, it is important for researchers to develop technologies that will ensure its average yield by classifying or predicting such diseases at an early stage. The prediction, and to some degree classifying, of such diseases, with much reference to Southern Africa staple food (Maize), will result in a reduction of hunger and increased affordability among families. Reference is made to the three diseases which are Common Rust (CR), Grey Leaf Spot (GLS) and Northern Corn Leaf Blight (NCLB) (this study will mainly focus on these). With increasing drought conditions prevailing across Southern Africa and by extension across Africa, it is very vital that necessary mitigation measures are put in place to prevent additional loss of crop yield through diseases. This study introduces the development of Deep Learning (DL) Convolutional Neural Networks (CNNs) (note that in this thesis deep learning or convolution neural network or the combination of both will be used interchangeably to mean one thing) in order to classify the disease types and predict the severity of such diseases. The study focuses primarily on the CNNs, which are one of the tools that can be used for classifying images of various maize leaf diseases and in the severity prediction of Common Rust (CR) and Northern Corn Leaf Blight (NCLB). In essence the objectives of this study are: i. To create and test a CNN model that can classify various types of maize leaf diseases. ii. To set up and test a CNN model that can predict the severities of a maize leaf disease known as the maize CR. The model is to be a hybrid model because fuzzy logic rules are intended to be used with a CNN model. iii. To build and test a CNN model that can predict the severities of a maize leaf disease known as the NCLB by analysing lesion colour and sporulation patterns. This study follows a quantitative study of designing and developing CNN algorithms that will classify and predict the severities of maize leaf diseases. For instance, in Chapter 3 of this study, the CNN model for classifying various types of maize leaf diseases was set up on a Java Neuroph GUI (general user interface) framework. The CNN in this chapter achieved an average validation accuracy of 92.85% and accuracies of 87% to 99. 9% on separate class tests. In Chapter 4, the CNN model for the prediction of CR severities was based on fuzzy rules and thresholding methods. It achieved a validation accuracy of 95.63% and an accuracy 89% when tested on separate images of CR to make severity predictions among 4 classes of CR with various stages of the disease’ severities. Finally, in Chapter 5, the CNN that was set up to predict the severities of NCLB achieved 100% of validation accuracy in classification of the two NCLB severity stages. The model also passed the robustness test that was set up to test its ability of classifying the two NCLB stages as both stages were trained on images that had a cigar-shaped like lesions. The three objectives of this study are met in three separate chapters based on published journal papers. Finally, the research objectives were evaluated against the results obtained in these three separate chapters to summarize key research contributions made in this work.College of Engineering, Science and TechnologyPh. D. (Science, Engineering and Technology
    • …
    corecore