75,105 research outputs found

    Phenotypic and genetic sources of variability of cavitation resistance in Pinus canariensis

    Get PDF
    Phenotypic and genetic sources of variability of cavitation resistance in Pinus canariensi

    Effect of cryopreservation and post-cryopreservation somatic embryogenesis on the epigenetic fidelity of Cocoa (Theobroma cacao L.)

    Get PDF
    While cocoa plants regenerated from cryopreserved somatic embryos can demonstrate high levels of phenotypic variability, little is known about the sources of the observed variability. Previous studies have shown that the encapsulation-dehydration cryopreservation methodology imposes no significant extra mutational load since embryos carrying high levels of genetic variability are selected against during protracted culture. Also, the use of secondary rather than primary somatic embryos has been shown to further reduce the incidence of genetic somaclonal variation. Here, the effect of in vitro conservation, cryopreservation and post-cryopreservation generation of somatic embryos on the appearance of epigenetic somaclonal variation were comparatively assessed. To achieve this we compared the epigenetic profiles, generated using Methylation Sensitive Amplified Polymorphisms, of leaves collected from the ortet tree and from cocoa somatic embryos derived from three in vitro conditions: somatic embryos, somatic embryos cryopreserved in liquid nitrogen and somatic embryos generated from cryoproserved somatic embryos. Somatic embryos accumulated epigenetic changes but these were less extensive than in those regenerated after storage in LN. Furthermore, the passage of cryopreserved embryos through another embryogenic stage led to further increase in variation. Interestingly, this detected variability appears to be in some measure reversible. The outcome of this study indicates that the cryopreservation induced phenotypic variability could be, at least partially, due to DNA methylation changes. Key message: Phenotypic variability observed in cryostored cocoa somatic-embryos is epigenetic in nature. This variability is partially reversible, not stochastic in nature but a directed response to the in-vitro culture and cryopreservation

    The Central role of KNG1 gene as a genetic determinant of coagulation pathway-related traits: Exploring metaphenotypes

    Get PDF
    Traditional genetic studies of single traits may be unable to detect the pleiotropic effects involved in complex diseases. To detect the correlation that exists between several phenotypes involved in the same biological process, we introduce an original methodology to analyze sets of correlated phenotypes involved in the coagulation cascade in genome-wide association studies. The methodology consists of a two-stage process. First, we define new phenotypic meta-variables (linear combinations of the original phenotypes), named metaphenotypes, by applying Independent Component Analysis for the multivariate analysis of correlated phenotypes (i.e. the levels of coagulation pathway–related proteins). The resulting metaphenotypes integrate the information regarding the underlying biological process (i.e. thrombus/clot formation). Secondly, we take advantage of a family based Genome Wide Association Study to identify genetic elements influencing these metaphenotypes and consequently thrombosis risk. Our study utilized data from the GAIT Project (Genetic Analysis of Idiopathic Thrombophilia). We obtained 15 metaphenotypes, which showed significant heritabilities, ranging from 0.2 to 0.7. These results indicate the importance of genetic factors in the variability of these traits. We found 4 metaphenotypes that showed significant associations with SNPs. The most relevant were those mapped in a region near the HRG, FETUB and KNG1 genes. Our results are provocative since they show that the KNG1 locus plays a central role as a genetic determinant of the entire coagulation pathway and thrombus/clot formation. Integrating data from multiple correlated measurements through metaphenotypes is a promising approach to elucidate the hidden genetic mechanisms underlying complex diseases.Postprint (published version

    On the heritability of blue-green eggshell coloration

    Get PDF
    Avian blue-green eggshell coloration has been proposed as a female signal of genetic or phenotypic quality to males. However, little is known about the relative importance of additive genetic and environmental effects as sources of eggshell colour variation in natural populations. Using 5 years of data and animal models, we explored these effects in a free-living population of pied flycatchers. Permanent environmental and year effects were negligible, although year environmental variance (VYear) was significant for all but one of the traits. However, we found high–moderate narrow-sense heritabilities for some colour parameters. Within-clutch colour variability showed the highest coefficient of additive genetic variation (i.e. evolvability). Previous evidence suggests that eggshell colour is sexually selected in this species, males enhancing parental effort in clutches with higher colour variability and peak values. Eggshell colour could be driven by good-genes selection in pied flycatchers although further genetic studies should confirm this possibilityPeer reviewe

    Causal relationships between milk quality and coagulation properties in Italian Holstein-Friesian dairy cattle

    Get PDF
    Background: Recently, selection for milk technological traits was initiated in the Italian dairy cattle industry based on direct measures of milk coagulation properties (MCP) such as rennet coagulation time (RCT) and curd firmness 30 min after rennet addition (a30) and on some traditional milk quality traits that are used as predictors, such as somatic cell score (SCS) and casein percentage (CAS). The aim of this study was to shed light on the causal relationships between traditional milk quality traits and MCP. Different structural equation models that included causal effects of SCS and CAS on RCT and a30 and of RCT on a30 were implemented in a Bayesian framework. Results: Our results indicate a non-zero magnitude of the causal relationships between the traits studied. Causal effects of SCS and CAS on RCT and a30 were observed, which suggests that the relationship between milk coagulation ability and traditional milk quality traits depends more on phenotypic causal pathways than directly on common genetic influence. While RCT does not seem to be largely controlled by SCS and CAS, some of the variation in a30 depends on the phenotypes of these traits. However, a30 depends heavily on coagulation time. Our results also indicate that, when direct effects of SCS, CAS and RCT are considered simultaneously, most of the overall genetic variability of a30 is mediated by other traits. Conclusions: This study suggests that selection for RCT and a30 should not be performed on correlated traits such as SCS or CAS but on direct measures because the ability of milk to coagulate is improved through the causal effect that the former play on the latter, rather than from a common source of genetic variation. Breaking the causal link (e.g. standardizing SCS or CAS before the milk is processed into cheese) would reduce the impact of the improvement due to selective breeding. Since a30 depends heavily on RCT, the relative emphasis that is put on this trait should be reconsidered and weighted for the fact that the pure measure of a30 almost double-counts RCT

    The evolutionary ecology of interactive synchronism: The illusion of the optimal phenotype

    Get PDF
    In this article, we discuss some ecological-evolutionary strategies that allow synchronization of organisms, resources, and conditions. Survival and reproduction require synchronization of life cycles of organisms with favourable environmental and ecological features and conditions. This interactive synchronization can occur directly, through pairwise or diffuse co-evolution, or indirectly, for example, as a result of actions of ecosystem engineers and facilitator species. Observations of specific interactions, especially those which have coevolved, may give the false impression that evolution results in optimal genotypes or phenotypes. However, some phenotypes may arise under evolutionary constraints, such as simultaneous evolution of multiple traits, lack of a chain of fit transitional forms leading to an optimal phenotype, or by limits inherent in the process of selection, set by the number of selective deaths and by interference between linked variants. Although there are no optimal phenotypes, optimization models applied to particular species may be useful for a better understanding of the nature of adaptations. The evolution of adaptive strategies results in variable life histories. These strategies can minimize adverse impacts on the fitness of extreme or severe environmental conditions on survival and reproduction, and may include reproductive strategies such as semelparity and iteroparity, or morphological, physiological, or behavioural traits such as diapause, seasonal polyphenism, migration, or bet-hedging. However, natural selection cannot indefinitely maintain intra-population variation, and lack of variation can ultimately extinguish populations

    Genetic Diversity of Selected Upland Rice Genotypes (Oryza sativa L.) for Grain Yield and Related Traits

    Get PDF
    Seventy-seven upland rice genotypes including popular cultivars in Nigeria and introduced varieties selected from across rice-growing regions of the world were evaluated under optimal upland ecology. These genotypes were characterised for 10 traits and the quantitative data subjected to Pearson correlation matrix, Principal Component Analysis and cluster analysis to determine the level of diversity and degree of association existing between grain yield and its related component traits. Yield and most related component traits exhibited higher PCV compared to growth parameters. Yield had the highest PCV (41.72%) while all other parameters had low to moderate GCV. Genetic Advance (GA) ranged from 9.88% for plant height at maturity to 41.08% for yield. High heritability estimates were recorded for 1000 grain weight (88.71%), days to 50% flowering (86.67%) and days to 85% maturity (71.98%). Furthermore, grain yield showed significant positive correlation with days to 50% flowering and number of panicles m-2. Three cluster groups were obtained based on the UPGMA and the first three principal components explained about 64.55% of the total variation among the 10 characters. The PCA results suggests that characters such as grain yield, days to flowering, leaf area and plant height at maturity were the principal discriminatory traits for this rice germplasm indicating that selection in favour of these traits might be effective in this population and environment

    Pseudomonas viridiflava, a Multi Host Plant Pathogen with Significant Genetic Variation at the Molecular Level

    Get PDF
    The pectinolytic species Pseudomonas viridiflava has a wide host range among plants, causing foliar and stem necrotic lesions and basal stem and root rots. However, little is known about the molecular evolution of this species. In this study we investigated the intraspecies genetic variation of P. viridiflava amongst local (Cretan), as well as international isolates of the pathogen. The genetic and phenotypic variability were investigated by molecular fingerprinting (rep-PCR) and partial sequencing of three housekeeping genes (gyrB, rpoD and rpoB), and by biochemical and pathogenicity profiling. The biochemical tests and pathogenicity profiling did not reveal any variability among the isolates studied. However, the molecular fingerprinting patterns and housekeeping gene sequences clearly differentiated them. In a broader phylogenetic comparison of housekeeping gene sequences deposited in GenBank, significant genetic variability at the molecular level was found between isolates of P. viridiflava originated from different host species as well as among isolates from the same host. Our results provide a basis for more comprehensive understanding of the biology, sources and shifts in genetic diversity and evolution of P. viridiflava populations and should support the development of molecular identification tools and epidemiological studies in diseases caused by this species
    • …
    corecore