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Abstract 
 
Traditional genetic studies of single traits may be unable to detect the pleiotropic effects involved in 
complex diseases. To detect the correlation that exists between several phenotypes involved in the 
same biological process, we introduce an original methodology to analyze sets of correlated phenotypes 
involved in the coagulation cascade in genome-wide association studies. 	
The methodology consists of a two-stage process. First, we define new phenotypic meta-variables 
(linear combinations of the original phenotypes), named metaphenotypes, by applying Independent 
Component Analysis for the multivariate analysis of correlated phenotypes (i.e. the levels of 
coagulation pathway–related proteins). The resulting metaphenotypes integrate the information 
regarding the underlying biological process (i.e. thrombus/clot formation). Secondly, we take 
advantage of a family based Genome Wide Association Study to identify genetic elements influencing 
these metaphenotypes and consequently thrombosis risk. Our study utilized data from the GAIT Project 
(Genetic Analysis of Idiopathic Thrombophilia). 
We obtained 15 metaphenotypes, which showed significant heritabilities, ranging from 0.2 to 0.7. 
These results indicate the importance of genetic factors in the variability of these traits. We found 4 
metaphenotypes that showed significant associations with SNPs. The most relevant were those mapped 
in a region near the HRG, FETUB and KNG1 genes. Our results are provocative since they show that 
the KNG1 locus plays a central role as a genetic determinant of the entire coagulation pathway and 
thrombus/clot formation. Integrating data from multiple correlated measurements through 
metaphenotypes is a promising approach to elucidate the hidden genetic mechanisms underlying 
complex diseases.	
 
 



Introduction 

Considerable efforts have been invested to evaluate hundreds of genetic variants associated with human 
traits. Despite these efforts, the loci that have been identified only explain a small proportion of the 
total phenotypic variance. Thus, there is the question of where the remaining heritability resides. For a 
complex disease, such as thrombosis, traditional single-trait genetic studies may be unable to detect the 
pleiotropic effect that a given genetic variant could have on the intermediate phenotypes involved with 
the disease. In particular, the normal physiological process underlying thrombosis is complex and many 
of its components are involved in the coagulation and fibrinolysis pathways. These components form a 
collection of intermediate phenotypes that are generally measured in the study of thrombosis. These 
intermediate phenotypes may reflect more directly the effects from causal genes than disease status. 
They are also less genetically complex and more strongly associated with susceptibility loci.  
 
So far, the genetic analyses of thrombosis have been carried out using one or more intermediate traits 
separately1-7. However, if a locus affects two or more traits, i.e. is pleiotropic, a single-trait study may 
lose the power to detect this pleiotropic effect. However, finding disease risk indexes would contribute 
to a greater understanding of the pathogenesis of disease, and ultimately will develop better diagnostic, 
prevention and treatment strategies. In addition, the simultaneous analyses of multiple traits may 
uncover regulating elements such as master regulators or variants belonging to transcription factor 
binding sites. Genetic analyses have been performed using aPTT (Activated Partial Thromboplastin 
Time) as a phenotype to improve the understanding of the biological mechanisms underlying 
thrombotic disease8,9.  Although aPTT measures the combined activity of several clotting factors in the 
intrinsic and common coagulation pathways10 (including factors FII, FV, FVIII, FIX, FX, FXI and 
FXII), the present genetic studies on aPTT consider it as a univariate model without considering 
pleiotropic effects11. Another example of exploiting the genetic information of different traits comes 
from the GAIT (Genetic Analysis of Idiopathic Thrombophilia) Project, where we demonstrated that 
coagulation factors FVIII and vWF are genetically correlated with thrombotic disease12. Also, we 
found some genes with pleiotropic effects that  influence the plasma levels of several proteins and 
consequently the risk of thrombosis13. However, the pleiotropic effects of loci in the coagulation 
cascade have not been explored fully.  
 
Both genetic association and linkage research have focused on statistical and computational techniques 
to investigate  the genetic effects between one genotype and one phenotype including polygenic and 
multiphenotypic approaches. Several strategies have been applied for the analysis of multiple and 
correlated traits. These can be divided into three categories: p-value correction methods, regression 
models and data reduction methods. P-value correction methods consist on combining several 
univariate tests, one for each trait, accounting for the observed correlational structure of the traits14,15.  
Regression models make use of mixed effects models for modelling the covariance structure of the 
phenotypes, as well as population structure16.  These two approaches have a limited practical use since 
with a large number of correlated traits, they require the simultaneous estimation of too many 
parameters17. As an alternative, data reduction methods based on the transformation of the original 
traits to a reduced number of canonical traits have been proposed18-20 with the intent of applying the 
traditional single trait analyses to these new variables.  Generally, the canonical variables are obtained 
through a given mathematical model that transforms the original phenotypic data in a new space of 
reduced dimensionality where the new coordinate axes (also called components) define new phenotypic 
quantities obtained synthetically. In particular, Principal Components Analysis (PCA) has been applied 
for this purpose17, 21, 22. 
 
	



 
In this study, we explore an original methodology to determine the inner correlation within a set of 
related traits involved in the coagulation cascade, to help understanding the genetic bases of the 
coagulation cascade consequently of thrombosis risk. We apply Independent Component Analysis, a 
data reduction method, original in this field, to derive new phenotypic variables, called 
metaphenotypes, which integrate information regarding the underlying biological variability on the 
thrombus/clot formation. Then, we take advantage of our GWAS to identify genetic elements 
influencing these metaphenotypes and their relationship with thrombosis risk. 
 



Materials and Methods 
The GAIT Project 
The GAIT (Genetic Analysis of Idiopathic Thrombophilia) Project has been described in Souto et al 
200013. Briefly, the GAIT Project included 398 individuals from 21 extended Spanish families (mean 
pedigree size = 19)12. Twelve of these families were selected on the basis of a proband with idiopathic 
thrombophilia, whereas the remaining nine families were unaffected and selected randomly. The ages 
of the subjects ranged from <1 to 88 years (mean = 37.7 years) and the male to female sex ratio was 
0.85. The Institutional Review Board of the Hospital de la Santa Creu i Sant Pau approved all protocols 
used in the GAIT Project. All participants gave their informed consent, in compliance with The Code 
of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving 
humans. 
 
Genotypes and Data Cleaning 
A genome-wide set of 307,984 SNPs was typed for all of the participants using the Infinium® 317k 
Beadchip on the Illumina platform (San Diego, CA, USA). Individuals with a low call rate (<0.5%), a 
too high IBS (>0.95%) and a too high heterozygosity (FDR <1%) were removed from the sample. In 
addition, markers with a low call rate (<0.95%) and a low MAF (<0.0064%) were discarded also. A 
total of 34 individuals and 30,793 SNPs were removed from the study. A clean dataset containing n= 
364= 364 individuals and 277,191 SNPs was obtained for further analyses. This procedure was 
implemented in R using the GenABEL package24. 
 
Phenotypes 
Among the 80 phenotypes in the GAIT sample, m = 27 phenotypes involved in the coagulation 
pathway were selected to study their joint biological activity within this metabolic process. These 
phenotypes were selected as they are defined in the literature25. The original phenotypes are described 
in Table S1.  
To properly apply the mathematical methods that we used, phenotypic data were freed of missing 
values. To guarantee this condition, the phenotypic dataset was imputed using a bPCA, a Bayesian 
method for missing value imputation 26. 
 
“Metaphenotypes” as a concept 
A metaphenotype is defined as a new phenotypic variable obtained synthetically from a set of traits 
(phenotypes) using a given mathematical model of dimensionality reduction. Metaphenotypes should 
be able to capture the original structure of the data to describe them as a whole. Therefore, identifying 
genetic variants related to these metaphenotypes may help to ascertain the genetic bases of the observed 
variability of the set of phenotypes, here the coagulation pathway. 
The coagulation factors in the coagulation cascade show related patterns of activity. It is known that the 
genes coding for the different coagulation factors share a joint ancestry13, so there may exist also some 
regulatory elements jointly regulating their activity. We consider analyzing the 27 coagulation 
pathway-related phenotypes measured in the GAIT project under the concept of metaphenotypes.  
 
Metaphenotypes are computed from the correlation among factors. There are several algorithms in the 
literature that are able to decompose the variability under different criteria. We applied an ICA 
(Independent Component Analysis) algorithm based on a criterion of minimum shared information.  
With a comparative purpose, we also applied PCA (Principal Component Analysis) which has been 
applied in similar contexts18, 21. 
   
 



 
 
 
Statistical Analyses.  
 
Both PCA and ICA methods apply a linear transformation to the original phenotypic data and obtain a 
new system of coordinates of reduced dimensionality, following the expression in equation 1.  
 

X= W·M + E                    (1) 
 

 
 where X (n × m) are the original phenotypes, M (n × m) are the metaphenotypes and W (m × m) 
are the weights of the model and E is the error of the model. Note that the metaphenotypes correspond 
to the axes of the new system of coordinates, and are called “components”. The maximum number of 
components obtained is the same as the original phenotypes but generally, only a few of them are 
informative and therefore are taken into account. 
 
The metaphenotypes are determined by the characterization of the weights of this linear transformation, 
either using PCA or using ICA.  
 
Independent Component Analysis 
In ICA, the weights W are optimized to guarantee the statistical independence of the metaphenotypes. 
The independence of the components is guaranteed by finding W that maximizes the non-gaussianity of 
the metaphenotypes (M).  
Among the several ICA algorithms, the fastICA procedure was applied, using a particular 
approximation of the negentropy measure for maximizing the nongaussianity27.  In particular, this 
method was applied with an optimal number of metaphenotypes (components) of k=15, according to a 
criterion based on cross-validation approximations28. 
 
Principal Component Analysis 
In PCA, the weights W are optimized so that the metaphenotypes capture the maximum covariance 
existing between the original phenotypes. In this case, the metaphenotypes explore the correlation that 
exists among the original traits to capture the variability shared by the collection of original 
phenotypes. 
 
Differences Between PCA and ICA 
As the structure of the interrelations among phenotypes is hidden and unknown, both techniques are 
complementary to unravel the cascade of physiological relationships. 
PCA and ICA answer different biological questions.  
 
PCA obtains metaphenotypes that explain the greatest overall variability or correlation between the 
original phenotypes. In other words, metaphenotypes built with PCA are a new set of indexes of jointly 
altered levels of the original phenotypes, capturing the common activity of the original phenotypes. 
 
 
In contrast, ICA was chosen because it obtains metaphenotypes that are statistically independent. Thus, 
ICA is able to separate the different (independent) sources of variability captured by the original 
phenotypes. Let us consider the original traits as statistical mixtures of different sources of variability 



(genetic, environmental, or experimental). If there was a genetic source of variability captured by the 
set of phenotypes (pleiotropy), the metaphenotypes obtained using ICA will capture it.  In other words, 
ICA is especially useful to detect pleiotropic effects. 
 
Using PCA, as many components as original variables are obtained whereas using ICA, the optimal 
number of components may vary and is normally less than the number of original variables ( here 
k=15). 
  
Heritability Estimation 
The heritabilities of the metaphenotypes were estimated using the variance component method 
implemented in SOLAR29. This method partitions the total phenotypic variance into a proportion due to 
polygenic (additive) effects and a proportion due to environmental effects. The heritability (h2r) 
estimates the total variance of a trait due to additive genetic effects. 
 
Genetic Association 
Genome-Wide Association Analyses with the SNPs of the GAIT project were performed using a linear 
mixed effects (Variance Components) model described in Equation 4.  
The model provides a vector of fitted values of the phenotype and an estimate of the variance-
covariance matrix for each family29, 30, 31.  
The polygenic mixed model defined in equation 4 was applied for each metaphenotype Mi with the age 
and gender co-variables for testing the association as they present a significant correlation with almost 
all of the metaphenotypes.  
     

Mi~ µ+Σjβicji +Gi+εi      (4) 
 
 
where i is the individual index, Mi is the metaphenotype, μ is the overall mean, βj is the regression 
coefficient of the j-th covariate, cji is the j-th covariate, Gi is the random additive polygenic effect 
(breeding value) which variance is defined as ΦσG where Φ is the kinship matrix and σG is the additive 
genetic variance due to polygenes. Finally εi are the residuals of the model.  
 
With a comparative purpose, GWAS of the original phenotypes were also computed. 
 



Results 
 
A total of 15 metaphenotypes were obtained with our methodology. All of the metaphenotypes showed 
a significant heritability ranging from 0.15 to 0.7 (Table 1). This indicates that their variability is 
mostly due to genetic variants.  Significant findings obtained in GWAS are shown in Table 2. To 
illustrate the relevance of these findings, they were compared with metaphenotypes obtained with a 
PCA-based approach and with univariate GWAS applied to the original phenotypes. Table 2 presents 
SNPs significantly associated with ICA-based metaphenotypes in comparison with PCA-based 
metaphenotypes and univariate phenotypes. Concordant results were found among the three GWAS 
approaches. In particular, two SNPs (rs9898 and rs27311672) were significantly associated with both 
ICA-based and PCA-based metaphenotypes as well as with the univariate phenotypes corresponding to 
the proteins coded by their respective closest gene (HRG and F12). Concordant ICA-based and PCA-
based metaphenotypes were compared as follows.  
 
To obtain a clear and interpretable view of metaphenotypes, we plotted them in a simple graph (Figure 
1). In each graph, the 27 original phenotypes involved in their construction were represented by nodes 
whose colors represent their weights in the resulting metaphenotype. This is interpretable as the 
contribution of the original phenotype to the corresponding metaphenotype. Numerical values for the 
weights are included in Table S1. 

It is observed that the two metaphenotypes significantly associated with SNP rs2731672 are influenced 
clearly by the trait corresponding to the FXII levels (figure 1.b and 1.d). This SNP is an intergenic 
variant ~5.8kb upstream of the F12 gene.  In both cases the FXII levels have an important loading in 
the metaphenotypes indicating the variability captured by the metaphenotype is due highly to the 
variability in the FXII levels. As expected, this SNP was also significantly associated with the FXII 
levels with the univariate GWAS approach.  

The two metaphenotypes significantly associated with SNP rs9898 are shown in Figure 1.a and 1.c. 
SNP rs9898 is a nonsynonymous SNP in exon 5 of the HRG gene. While the PCA-based 
metaphenotype is oriented clearly to the HRG trait due to the weight of HRG levels in the 
metaphenotype, this specific trait does not present a high weighting value in the ICA-based 
metaphenotype.  

In addition, three other SNPs (rs3733159, rs1621816 and rs1403694) on Chromosome 3 were 
significantly associated with this particular metaphenotype. The former one corresponds to an intronic 
SNP in the FETUB gene, whereas the latter two are intronic SNPs in the KNG1 gene.  It is important to 
note that the KNG1 gene is located at a distance of around 40Kb from the HRG gene. However, the 
SNPs rs1621816 and rs1403694 in the KNG1 gene showed a low amount of Linkage Disequilibrium 
with the SNP rs9898 in the HRG gene (r2=0.22 and r2=0.21). These four SNPs showed a significant 
association with the HRG trait with the univariate GWAS approach.  

In addition, Figure 2 compares directly both metaphenotypes in terms of their scores and loadings. For 
the metaphenotypes associated with SNP rs2731672 (Figure 2.a), a clear correlation between both 
loadings and scorings from both metaphenotypes was observed. This confirms that the common 
variability captured by both metaphenotypes is the same in both cases and is due highly to the 
variability of the FXII. By contrast, as shown in 2.b, no correlation was observed between the loadings 
or the scoring.  

	



Discussion 
 
Because traditional single-trait genetic studies explain only a small proportion of the phenotypic 
variability of complex diseases, it is prudent to explore other sources of heritability, such as pleiotropy. 
In our study, we presented a methodology to capture the correlation that exists between sets of 
intermediate phenotypes involved in the same complex disease. For doing that, we introduced the 
concept of metaphenotype consisting on new phenotypic indices that gather the observed variability of 
a collection of related phenotypes. Metaphenotypes are obtained through mathematical models of data 
dimensionality reduction. In this study, we applied ICA, a method original in this field for the 
metaphenotype construction. Similar approaches based on PCA have been widely used for the 
combined analysis of correlated traits in genetic linkage and association studies18, 19, 22. With a 
comparative purpose, we also built metaphenotypes using PCA. 
ICA was chosen because it is especially useful to detect pleiotropy. By contrast, PCA is characterized 
by being able to capture the common variability existing among the phenotypes. Because they answer 
different biological questions, both methodologies may be complementary.  
 
Metaphenotypes were obtained from a collection of coagulation-related phenotypes from the GAIT 
project12 with the aim of identifying genetic variants underlying the whole biological process of blood 
coagulation. The final goal was to propose genetic markers as candidate regulators of the coagulation 
cascade and consequently of thrombosis risk.   
 
Metaphenotypes can be graphically represented by use of simple graphs (Figure 1) where the original 
phenotypes involved in their construction are represented by nodes whose colors represent their 
weights in the resulting metaphenotype. This is interpretable as the contribution of the original 
phenotypes to the corresponding metaphenotype 
 
Even if metaphenotypes are not intuitively informative, biologically speaking, they may enable the 
identification of possibly important loci for a more integrated coagulation index and thus be able to 
characterize the genetic baseline of coagulation function or thrombosis risk. The high and significant 
heritabilities of ICA-based metaphenotypes confirm that their variability is highly due to genetic 
variants. This justifies performing GWAS to metaphenotypes.  
 
Results from GWAS with both ICA-based and PCA-based metaphenotypes were concordant in some 
cases. For instance, SNPs rs2731672 and rs9898 were significantly associated with metaphenotypes 
coming from different methodologies.  
In both cases, we compared graphically the metaphenotype obtained with ICA and the one obtained 
with PCA (Figure 2). Both metaphenotypes were compared using the loadings (the weight of each trait 
on the metaphenotypes) and the scorings (the projection of each individual on the metaphenotypes). 
 
As shown in Table 1, we observe that the SNP rs2731672 in the F12 locus on Chromosome 5 was 
significantly associated with an ICA-based  metaphenotype (p-value of 1.1e-14) and with a PCA-based 
metaphenotype (p-value: 1..48x10-11). In Figure 1, we observe that both the metaphenotypes obtained 
with PCA (Figure 1.b) and with ICA (Figure 1.d) are influenced clearly by the FXII levels in blood. In 
addition, Figure 2.a shows a clear correlation between both loadings and scorings of both 
metaphenotypes. This suggests that the common variability captured by both metaphenotypes is the 
same in both cases and is due highly to the variability of the FXII. This observation is in agreement 
with the univariate association between this particular locus (encoding the structural F12 gene) and 
FXII levels1. This result confirms that the ICA method also captures non-pleiotropic effects.  
 



Secondly, SNP rs9898 in the HRG locus at chromosome 3 was significantly associated with an ICA-
based (p-value: 9e-18) and two PCA-based (pvalues: 1e-07 and 4.3e-08) metaphenotypes. Comparisons 
were carried out with the metaphenotype showing a lower p-value. In this case, no correlation was 
observed between the loadings or the scoring (Figure 2.b). This suggests that they are different 
variables, and that the biological interpretation of the results may be done separately. The univariate 
GWAS confirmed that SNP rs9898 is associated with Histidine Rich Glycoprotein (HRG) levels, but 
previous results also reported that it was associated with Activated Prothrombin Time (aPTT) trait and 
consequently with thrombosis risk8, 32. This explains why, as observed in Figure 2.a, the 
metaphenotype obtained with PCA is oriented clearly to the HRG trait. However, the HRG levels do 
not have a high weighting value in the metaphenotype obtained using ICA (Figure 2.c). In other words, 
whereas the metaphenotype obtained with PCA captures the variance due to the more weighted trait 
(that is HRG), the result obtained through ICA extend our knowledge about the implication of this 
genetic variant, indicating that this locus has a pleiotropic effect on the set of coagulation-related traits 
involved with this metaphenotype. In addition, the same ICA-based metaphenotype, showed a 
significant association with three other SNPs located in the same genomic region of the HRG gene on 
chromosome 3 (rs3733159 in the FETUB gene and rs1621816 and rs1403694 in the KNG1 gene). 
These 3 SNPs were also associated with HRG levels in univariate analyses.  The proteins coded by 
these three genes are Histidine Rich Glycoprotein (HRG), Fetuin-B (FB) and the High Molecular 
Weight kininogen (HMWK). All of these proteins are structurally related to a fourth protein, the fetuin 
A- Heremams Schmide-glycoprotein33. Together, they form a subgroup (denoted type 3) within the 
cystatin superfamily of cysteine inhibitors. Among the several physiological roles associated to type 3 
cystatins, the most relevant is the regulation of coagulation and platelet functions, controlled mainly by 
HRG and kininogen proteins. Although these three genes are in the same functional cluster, SNPs 
rs1621816 and rs1403694 in the KNG1 gene showed a low degree of linkage disequilibrium with the 
SNP rs9898 in the HRG gene (r2=0.22 and r2=0.21). This indicates that there are two independent 
genetic signals.  In particular, High-molecular-weight kininogen (HMWK) (encoded by KNG1), as well 
as coagulation Factor FXII (encoded by F12) are, together with prekallikrein (PK), important 
constituents of the plasma contact-kinin system. This system was first recognized as a surface-activated 
coagulation system that is activated when blood or plasma interacts with artificial surfaces. A better 
understanding of this system may lead to insight into mechanisms for thrombosis and, therefore, the 
contact-kinin system represents a promising multifunctional target for potential thromboembolic 
therapies, since blocking of distinct members of the kallikrein-kinin system has the potential to become 
an effective and safe strategy to combat cardiovascular diseases such as myocardial infarction. 
 
This particular metaphenotype captures the common variability of the phenotypes corresponding to the 
Coagulation Intrinsic Pathway (CIP). The results obtained with this metaphenotype indicate that the 
KNG1 locus may be a major genetic determinant of the CIP. This result is particularly interesting since 
allelic variants in the KNG1 gene are associated with risk of thrombosis34. Our results suggest that the 
KNG1 gene plays a role in the regulation of CIP, even without the influence of the FXI or the FXII 
levels, since neither FXI nor FXII levels show a specific weight within this metaphenotype (Figure 2.c) 
and the aPTT was not involved in defining the metaphenotype. This observation may have important 
clinical implications. 
 
In conclusion, the methodology proposed in this study complemented existing tools for detecting 
genetic associations in correlated phenotypes. This strategy explores the potential mechanisms and 
pathways underlying complex diseases and helps to interpret how they are associated with genetic 
variants.  Our approach is based on the assumption that pleiotropy may occur in many complex 
diseases and more particularly in thrombosis diseases. The proposed mathematical approach is 
especially addressed to capture several aspects of the correlated activity of a set of original traits, 



especially pleiotropic effects. Applying this original concept helped to identify two candidate SNPs in 
the KNG1 gene susceptible to have an important role in the genetic regulation of the coagulation 
pathway as a whole and consequently of thrombosis disease. 
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Table 1. Heritabilities of ICA-based metaphenotypes (components 1 to 15 from the ICA model) 

Metaphenotype  h2r 
C1 0.48*** 



C2 0.17* 
C3 0.53*** 
C4 0.15* 
C5 0.22* 
C6 0.61*** 
C7 0.24** 
C8 0.55*** 
C9 0.35*** 

C10 0.7*** 
C11 0.45*** 
C12 0.58*** 
C13 0.32*** 
C14 0.24*** 
C15 0.59*** 

Significant thresholds for heritability estimation: * <0.05, **<0.005, *** <0.0005 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. GWAS significant SNPs for the three approaches (univariate phenotypes, ICA-based metaphenotypes and PCA-
based metaphenotypes. For each SNP, the chromosomic region where it is located,  its physically closest gene and its MAF 
are shown as well as the adjusted p-value.   

 



HRG FXII ICA-C3 ICA-C4 ICA-C5 ICA-C10 PCA-C8 PCA-	C9 PCA-C10
rs9898 3 HRG 0.35 1.9	x	10-16 9	x	10-18 1	x	10-07 4.3	x	10-08

rs3733159 3 FETUB 0.34 3.3	x	10-13 6.6	x	10-09

rs1621816 3 KNG1 0.24 1.5	x	10-09 5	x	10-08

rs1403694 3 KNG1 0.32 1.1	x	10-08 6.7	x	10-07

rs17255413 3 BOC 0.007 2.6	x	10-08

rs3113727 4 COL25A1 0.24 3.8	x	10-07

rs27311672 5 F12 0.17 7.6	x	10-36 1.1	x	10-14 1.5	x	10-11

p-value
MAFGene*ChrSNP	ID

 



Figures: 
 
Figure 1. Metaphenotype graphical representation using a simple graph: (a) ICA-based metaphenotype corresponding to the 
3rd component (ICA-C3), (b) ICA-C10, (c) PCA-C9 (d) PCA-C10. 

 
 
 
 
 
 

(b) 



Figure 2. Comparison between the metaphenotypes obtained with both PCA and ICA models, (a) associated with the SNP 
rs2731672 at the F12 locus and (b) associated with the SNP rs9898 at the HRG locus. 

 
 
 

 
 
 
 


