21 research outputs found

    Symmetric Models, Singular Cardinal Patterns, and Indiscernibles

    Get PDF
    This thesis is on the topic of set theory and in particular large cardinal axioms, singular cardinal patterns, and model theoretic principles in models of set theory without the axiom of choice (ZF). The first task is to establish a standardised setup for the technique of symmetric forcing, our main tool. This is handled in Chapter 1. Except just translating the method in terms of the forcing method we use, we expand the technique with new definitions for properties of its building blocks, that help us easily create symmetric models with a very nice property, i.e., models that satisfy the approximation lemma. Sets of ordinals in symmetric models with this property are included in some model of set theory with the axiom of choice (ZFC), a fact that enables us to partly use previous knowledge about models of ZFC in our proofs. After the methods are established, some examples are provided, of constructions whose ideas will be used later in the thesis. The first main question of this thesis comes at Chapter 2 and it concerns patterns of singular cardinals in ZF, also in connection with large cardinal axioms. When we do assume the axiom of choice, every successor cardinal is regular and only certain limit cardinals are singular, such as ℔ω. Here we show how to construct several patterns of singular and regular cardinals in ZF. Since the partial orders that are used for the constructions of Chapter 1 cannot be used to construct successive singular cardinals, we start by presenting some partial orders that will help us achieve such combinations. The techniques used here are inspired from Moti Gitik’s 1980 paper “All uncountable cardinals can be singular”, a straightforward modification of which is in the last section of this chapter. That last section also tackles the question posed by Arthur Apter “Which cardinals can become simultaneously the first measurable and first regular uncountable cardinal?”. Most of this last part is submitted for publication in a joint paper with Arthur Apter , Peter Koepke, and myself, entitled “The first measurable and first regular cardinal can simultaneously be ℔ρ+1, for any ρ”. Throughout the chapter we show that several large cardinal axioms hold in the symmetric models we produce. The second main question of this thesis is in Chapter 3 and it concerns the consistency strength of model theoretic principles for cardinals in models of ZF, in connection with large cardinal axioms in models of ZFC. The model theoretic principles we study are variations of Chang conjectures, which, when looked at in models of set theory with choice, have very large consistency strength or are even inconsistent. We found that by removing the axiom of choice their consistency strength is weakened, so they become easier to study. Inspired by the proof of the equiconsistency of the existence of the ω1-Erdös cardinal with the original Chang conjecture, we prove equiconsistencies for some variants of Chang conjectures in models of ZF with various forms of Erdös cardinals in models of ZFC. Such equiconsistency results are achieved on the one direction with symmetric forcing techniques found in Chapter 1, and on the converse direction with careful applications of theorems from core model theory. For this reason, this chapter also contains a section where the most useful ‘black boxes’ concerning the Dodd-Jensen core model are collected. More detailed summaries of the contents of this thesis can be found in the beginnings of Chapters 1, 2, and 3, and in the conclusions, Chapter 4

    A Potpourri of Partition Properties

    Get PDF
    The cardinal characteristic inequality r <= hm3 is proved. Several partition relations for ordinals and one for countable scattered types are given. Moreover partition relations for lexicographically ordered sequences of zeros and ones are given in a no-choice context

    Stationary set preserving L-forcings and the extender algebra

    Full text link
    Wir konstruieren das Jensensche L-Forcing und nutzen dieses um die Pi_2 Konsequenzen der Theorie ZFC+BMM+"das nichtstationĂ€re Ideal auf omega_1 ist abschĂŒssig" zu studieren. Viele natĂŒrliche Konsequenzen der Theorie ZFC+MM folgen schon aus dieser schwĂ€cheren Theorie. Wir geben eine neue Charakterisierung des Axioms Dagger ("Alle Forcings welche stationĂ€re Teilmengen von omega_1 bewahren sind semiproper") in dem wir eine Klasse von L-Forcings isolieren deren Semiproperness Ă€quivalent zu Dagger ist. Wir verallgemeinern ein Resultat von Todorcevic: wir zeigen, dass Rado's Conjecture Dagger impliziert. Des weiteren studieren wir GenerizitĂ€tsiterationen im Kontext einer messbaren Woodinzahl. Mit diesem Werkzeug erhalten wir eine Verallgemeinerung des Woodinschen Sigma^2_1 Absolutheitstheorems. We review the construction of Jensen's L-forcing which we apply to study the Pi_2 consequences of the theory ZFC + BMM + "the nonstationary ideal on omega_1 is precipitous". Many natural consequences ZFC + MM follow from this weaker theory. We give a new characterization of the axiom dagger ("All stationary set preserving forcings are semiproper") by isolating a class of stationary set preserving L-forcings whose semiproperness is equivalent to dagger. This characterization is used to generalize work of Todorcevic: we show that Rado's Conjecture implies dagger. Furthermore we study genericity iterations beginning with a measurable Woodin cardinal. We obtain a generalization of Woodin's Sigma^2_1 absoluteness theorem

    Views from a peak:Generalisations and descriptive set theory

    Get PDF
    This dissertation has two major threads, one is mathematical, namely descriptive set theory, the other is philosophical, namely generalisation in mathematics. Descriptive set theory is the study of the behaviour of definable subsets of a given structure such as the real numbers. In the core mathematical chapters, we provide mathematical results connecting descriptive set theory and generalised descriptive set theory. Using these, we give a philosophical account of the motivations for, and the nature of, generalisation in mathematics.In Chapter 3, we stratify set theories based on this descriptive complexity. The axiom of countable choice for reals is one of the most basic fragments of the axiom of choice needed in many parts of mathematics. Descriptive choice principles are a further stratification of this fragment by the descriptive complexity of the sets. We provide a separation technique for descriptive choice principles based on Jensen forcing. Our results generalise a theorem by Kanovei.Chapter 4 gives the essentials of a generalised real analysis, that is a real analysis on generalisations of the real numbers to higher infinities. This builds on work by Galeotti and his coauthors. We generalise classical theorems of real analysis to certain sets of functions, strengthening continuity, and disprove other classical theorems. We also show that a certain cardinal property, the tree property, is equivalent to the Extreme Value Theorem for a set of functions which generalize the continuous functions.The question of Chapter 5 is whether a robust notion of infinite sums can be developed on generalisations of the real numbers to higher infinities. We state some incompatibility results, which suggest not. We analyse several candidate notions of infinite sum, both from the literature and more novel, and show which of the expected properties of a notion of sum they fail.In Chapter 6, we study the descriptive set theory arising from a generalization of topology, Îș-topology, which is used in the previous two chapters. We show that the theory is quite different from that of the standard (full) topology. Differences include a collapsing Borel hierarchy, a lack of universal or complete sets, Lebesgue’s ‘great mistake’ holds (projections do not increase complexity), a strict hierarchy of notions of analyticity, and a failure of Suslin’s theorem.Lastly, in Chapter 7, we give a philosophical account of the nature of generalisation in mathematics, and describe the methodological reasons that mathematicians generalise. In so doing, we distinguish generalisation from other processes of change in mathematics, such as abstraction and domain expansion. We suggest a semantic account of generalisation, where two pieces of mathematics constitute a generalisation if they have a certain relation of content, along with an increased level of generality

    Issues in the valuation of health outcomes.

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN013023 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Psychologizing Economic Man: Foundational Problems of Economics and Cognitive Science

    Get PDF
    This is a philosophical study of economics and cognitive psychology as sciences of human behaviour. Boundaries and interactions of the two sciences are examined with a close look at the experimental studies on judgement and decision making, and on strategic interaction in games. I argue, against conceptual scepticism, that not only is a science of human behaviour possible, but it is exemplified by both economics and psychology, which have been striving to measure decision-relevant psychological quantities and explain the behavioural anomalies that have emerged as a result of theoretical and empirical progress in measurement and experimentation. The dialectics of ‘crises and responses’ involved in this process reveals various ways in which representations, models and experiments are employed in the laboratory. I emphasize the precision of measurement and the severity of test as important methodological values in scientific progress, and argue that these values are the basis of theoretical progress. I explore alternative ways in which economic models of rational choice can be informed by psychology, and argue that a successful model should incorporate empirical findings from social and cognitive psychology, instead of maintaining familiar economic modelling strategies while relying on folk psychological intuitions. I propose that, in addition to modelling human behaviour as utility maximization, explicitly modelling human reasoning qua cognitive process may be the key to success. I point out two metaphysical stances—mechanistic and functional—implicit in the debates over the prospect of neuroeconomics, and consider their methodological implications to the study of human cognition and behaviour. I argue that it is unlikely that neuroscience will radically eliminate constructs of economic theory such as beliefs and preferences, based on the observation that recent brain-imaging studies of individual decision making largely presuppose constructs of cogntive psychology.Matsushita International Foundation (Japan), Centre for International Mobility (Finland), Archimedes(Estonia

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum
    corecore