130,796 research outputs found

    Correlated X-ray Spectral and Timing Behavior of the Black Hole Candidate XTE J1550-564: A New Interpretation of Black Hole States

    Get PDF
    We present an analysis of RXTE data of the X-ray transient XTE J1550-564. The source went through several states, which were divided into spectrally soft and hard states. These states showed up as distinct branches in the color-color diagram, forming a structure with a comb-like topology; the soft state branch forming the spine and the hard state branches forming the teeth. Variability was strongly correlated with the position on the branches. The broad band noise became stronger, and changed from power law like to band limited, as the spectrum became harder. Three types of QPOs were found: 1-18 Hz and 102-284 Hz QPOs on the hard branches, and 16-18 Hz QPOs on and near the soft branch. The frequencies of the high and low frequency QPOs on the hard branches were correlated with each other, and anti-correlated with spectral hardness. The changes in QPO frequency suggest that the inner disc radius only increases by a factor of 3-4 as the source changes from a soft to a hard state. Our results on XTE J1550-564 strongly favor a 2-dimensional description of black hole behavior, where the regions near the spine of the comb in the color-color diagram can be identified with the high state, and the teeth with transitions from the high state, via the intermediate state (which includes the very high state) to the low state, and back. The two physical parameters underlying this behavior vary to a large extent independently and could for example be the mass accretion rate through the disk and the size of a Comptonizing region.Comment: 49 pages (inlcuding 26 figures and 4 tables), accepted for publication in ApJ Supplement

    RXTE observations of the dipping low-mass X-ray binary 4U 1624-49

    Get PDF
    We analyse ~ 360 ks of archival data from the Rossi X-Ray Timing Explorer (RXTE) of the 21 hr orbital period dipping low-mass X-ray binary 4U 1624-49. We find that outside the dips the tracks in the colour-colour and hardness-intensity diagrams (CDs and HIDs) are reminiscent of those of atoll sources in the middle and upper parts of the banana branch. The tracks show secular shifts up to ~ 10%. We study the power spectrum of 4U 1624-49 as a function of the position in the CD. This is the first time power spectra of this source are presented. No quasi-periodic oscillations (QPOs) are found. The power spectra are dominated by very low frequency noise (VLFN), characteristic for atoll sources in the banana state, and band limited noise (BLN) which is not reliably detected but may, uncharacteristically, strengthen and increase in frequency with spectral hardness. The VLFN fits to a power law, which becomes steeper when the source moves to the harder part of the CD. We conclude that 4U 1624-49 is an atoll source which in our observations is in the upper banana branch. Combining this with the high (0.5-0.7 L_Edd) luminosity, the long-term flux stability of the source as seen with the RXTE All-Sky Monitor (ASM), and with the fact that it is an X-ray dip source, we conclude that 4U 1624-49 is most likely a GX atoll source such as GX 3+1 and GX 9+9, but seen edge on.Comment: 8 pages, 5 figures, 2 tables, accepted for publication in A&A. This version: a few typos correcte

    Multi-Conjugate Adaptive Optics images of the Trapezium Cluster

    Full text link
    Multi-Conjugate Adaptive Optics (MCAO) combines the advantages of standard adaptive optics, which provides high contrast and high spatial resolution, and of wide field ~1' imaging. Up to recently, MCAO for astronomy was limited to laboratory experiments. In this paper, we present the first scientific results obtained with the first MCAO instrument put on the sky. We present a new study of the Trapezium cluster using deep MCAO images with a field of view of 1'x1' obtained at the VLT. We have used deep J, H and Ks images recently obtained with the prototype MCAO facility MAD at the VLT in order to search for new members and new multiple systems in the Trapezium cluster. On bright targets (Ks~9mag), these images allow us to reach DeltaKs~6mag as close as 0.4" We report the detection of 128 sources, including 10 new faint objects in the magnitude range between 16.1<Ks<17.9mag. In addition to all previously known multiple systems with separations greater than 0.1", we confirm the multiplicity of TCC-055. We also report the detection in J, H and Ks of a very red extended embedded protostellar object, HC419, previously detected in the thermal infrared only. The analysis of the first MCAO images obtained on the sky demonstrates not only the technical feasibility of MCAO but also its great potential and versatility in terms of scientific outputs.Comment: High resolution version available on http://arrakeen.free.fr/pub/madorion.pdf Accepted 25 Sep. 2007 for publication in A&A, 14 pages, 11 figure

    The Star Formation Rate of Turbulent Magnetized Clouds: Comparing Theory, Simulations, and Observations

    Full text link
    We derive and compare six theoretical models for the star formation rate (SFR) - the Krumholz & McKee (KM), Padoan & Nordlund (PN), and Hennebelle & Chabrier (HC) models, and three multi-freefall versions of these, suggested by HC - all based on integrals over the log-normal distribution of turbulent gas. We extend all theories to include magnetic fields, and show that the SFR depends on four basic parameters: (1) virial parameter alpha_vir; (2) sonic Mach number M; (3) turbulent forcing parameter b, which is a measure for the fraction of energy driven in compressive modes; and (4) plasma beta=2(M_A/M)^2 with the Alfven Mach number M_A. We compare all six theories with MHD simulations, covering cloud masses of 300 to 4x10^6 solar masses and Mach numbers M = 3 to 50 and M_A = 1 to infinity, with solenoidal (b=1/3), mixed (b=0.4) and compressive turbulent (b=1) forcings. We find that the SFR increases by a factor of four between M=5 and 50 for compressive forcing and alpha_vir~1. Comparing forcing parameters, we see that the SFR is more than 10x higher with compressive than solenoidal forcing for Mach 10 simulations. The SFR and fragmentation are both reduced by a factor of two in strongly magnetized, trans-Alfvenic turbulence compared to hydrodynamic turbulence. All simulations are fit simultaneously by the multi-freefall KM and multi-freefall PN theories within a factor of two over two orders of magnitude in SFR. The simulated SFRs cover the range and correlation of SFR column density with gas column density observed in Galactic clouds, and agree well for star formation efficiencies SFE = 1% to 10% and local efficiencies epsilon = 0.3 to 0.7 due to feedback. We conclude that the SFR is primarily controlled by interstellar turbulence, with a secondary effect coming from magnetic fields.Comment: 34 pages, 12 figures, ApJ in press, movies at http://www.ita.uni-heidelberg.de/~chfeder/pubs/sfr/sfr.shtm

    Placing limits on the stochastic gravitational-wave background using European Pulsar Timing Array data

    Full text link
    Direct detection of low-frequency gravitational waves (10−9−10−810^{-9} - 10^{-8} Hz) is the main goal of pulsar timing array (PTA) projects. One of the main targets for the PTAs is to measure the stochastic background of gravitational waves (GWB) whose characteristic strain is expected to approximately follow a power-law of the form hc(f)=A(f/yr−1)αh_c(f)=A (f/\hbox{yr}^{-1})^{\alpha}, where ff is the gravitational-wave frequency. In this paper we use the current data from the European PTA to determine an upper limit on the GWB amplitude AA as a function of the unknown spectral slope α\alpha with a Bayesian algorithm, by modelling the GWB as a random Gaussian process. For the case α=−2/3\alpha=-2/3, which is expected if the GWB is produced by supermassive black-hole binaries, we obtain a 95% confidence upper limit on AA of 6×10−156\times 10^{-15}, which is 1.8 times lower than the 95% confidence GWB limit obtained by the Parkes PTA in 2006. Our approach to the data analysis incorporates the multi-telescope nature of the European PTA and thus can serve as a useful template for future intercontinental PTA collaborations.Comment: 14 pages, 8 figures, 3 tables, mnras accepte

    Searching for new hypercompact HII regions

    Full text link
    Hypercompact (HC) HII regions are, by nature, very young HII regions, associated with the earliest stages of massive star formation. They may represent the transition phase as an early B-type star grows into an O-type star. Unfortunately, so few HCHII regions are presently known that their general attributes and defining characteristics are based on small number statistics. A larger sample is needed for detailed studies and good statistics. Class II methanol masers are one of the best indicators of the early stages of massive star formation. Using the Arecibo Methanol Maser Galactic Plane Survey - the most sensitive blind survey for 6.7 GHz methanol masers to date - we selected 24 HCHII region candidates. We made EVLA continuum observations at 3.6 and 1.3 cm to search for HCHII regions associated with these masers. We identified six potential HCHII regions in our sample based on the presence of optically thick free-free emission. Overall, we find that 30% of the methanol masers have an associated centimeter radio continuum source (separation less than 0.1 pc), which is in general agreement with previous studies.Comment: Accepted for publication in ApJL, in the Special Issue of the EVL
    • 

    corecore