16 research outputs found

    Performance Analyses of Graph Heuristics and Selected Trajectory Metaheuristics on Examination Timetable Problem

    Get PDF
    Examination timetabling problem is hard to solve due to its NP-hard nature, with a large number of constraints having to be accommodated. To deal with the problem effectually, frequently heuristics are used for constructing feasible examination timetable while meta-heuristics are applied for improving the solution quality. This paper presents the performances of graph heuristics and major trajectory metaheuristics or S-metaheuristics for addressing both capacitated and un-capacitated examination timetabling problem. For constructing the feasible solution, six graph heuristics are used. They are largest degree (LD), largest weighted degree (LWD), largest enrolment degree (LE), and three hybrid heuristic with saturation degree (SD) such as SD-LD, SD-LE, and SD-LWD. Five trajectory algorithms comprising of tabu search (TS), simulated annealing (SA), late acceptance hill climbing (LAHC), great deluge algorithm (GDA), and variable neighborhood search (VNS) are employed for improving the solution quality. Experiments have been tested on several instances of un-capacitated and capacitated benchmark datasets, which are Toronto and ITC2007 dataset respectively. Experimental results indicate that, in terms of construction of solution of datasets, hybridizing of SD produces the best initial solutions. The study also reveals that, during improvement, GDA, SA, and LAHC can produce better quality solutions compared to TS and VNS for solving both benchmark examination timetabling datasets

    An investigation of multi-objective hyper-heuristics for multi-objective optimisation

    Get PDF
    In this thesis, we investigate and develop a number of online learning selection choice function based hyper-heuristic methodologies that attempt to solve multi-objective unconstrained optimisation problems. For the first time, we introduce an online learning selection choice function based hyperheuristic framework for multi-objective optimisation. Our multi-objective hyper-heuristic controls and combines the strengths of three well-known multi-objective evolutionary algorithms (NSGAII, SPEA2, and MOGA), which are utilised as the low level heuristics. A choice function selection heuristic acts as a high level strategy which adaptively ranks the performance of those low-level heuristics according to feedback received during the search process, deciding which one to call at each decision point. Four performance measurements are integrated into a ranking scheme which acts as a feedback learning mechanism to provide knowledge of the problem domain to the high level strategy. To the best of our knowledge, for the first time, this thesis investigates the influence of the move acceptance component of selection hyper-heuristics for multi-objective optimisation. Three multi-objective choice function based hyper-heuristics, combined with different move acceptance strategies including All-Moves as a deterministic move acceptance and the Great Deluge Algorithm (GDA) and Late Acceptance (LA) as a nondeterministic move acceptance function. GDA and LA require a change in the value of a single objective at each step and so a well-known hypervolume metric, referred to as D metric, is proposed for their applicability to the multi-objective optimisation problems. D metric is used as a way of comparing two non-dominated sets with respect to the objective space. The performance of the proposed multi-objective selection choice function based hyper-heuristics is evaluated on the Walking Fish Group (WFG) test suite which is a common benchmark for multi-objective optimisation. Additionally, the proposed approaches are applied to the vehicle crashworthiness design problem, in order to test its effectiveness on a realworld multi-objective problem. The results of both benchmark test problems demonstrate the capability and potential of the multi-objective hyper-heuristic approaches in solving continuous multi-objective optimisation problems. The multi-objective choice function Great Deluge Hyper-Heuristic (HHMO_CF_GDA) turns out to be the best choice for solving these types of problems

    Evolutionary multi-objective optimization in scheduling problems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    An investigation of multi-objective hyper-heuristics for multi-objective optimisation

    Get PDF
    In this thesis, we investigate and develop a number of online learning selection choice function based hyper-heuristic methodologies that attempt to solve multi-objective unconstrained optimisation problems. For the first time, we introduce an online learning selection choice function based hyperheuristic framework for multi-objective optimisation. Our multi-objective hyper-heuristic controls and combines the strengths of three well-known multi-objective evolutionary algorithms (NSGAII, SPEA2, and MOGA), which are utilised as the low level heuristics. A choice function selection heuristic acts as a high level strategy which adaptively ranks the performance of those low-level heuristics according to feedback received during the search process, deciding which one to call at each decision point. Four performance measurements are integrated into a ranking scheme which acts as a feedback learning mechanism to provide knowledge of the problem domain to the high level strategy. To the best of our knowledge, for the first time, this thesis investigates the influence of the move acceptance component of selection hyper-heuristics for multi-objective optimisation. Three multi-objective choice function based hyper-heuristics, combined with different move acceptance strategies including All-Moves as a deterministic move acceptance and the Great Deluge Algorithm (GDA) and Late Acceptance (LA) as a nondeterministic move acceptance function. GDA and LA require a change in the value of a single objective at each step and so a well-known hypervolume metric, referred to as D metric, is proposed for their applicability to the multi-objective optimisation problems. D metric is used as a way of comparing two non-dominated sets with respect to the objective space. The performance of the proposed multi-objective selection choice function based hyper-heuristics is evaluated on the Walking Fish Group (WFG) test suite which is a common benchmark for multi-objective optimisation. Additionally, the proposed approaches are applied to the vehicle crashworthiness design problem, in order to test its effectiveness on a realworld multi-objective problem. The results of both benchmark test problems demonstrate the capability and potential of the multi-objective hyper-heuristic approaches in solving continuous multi-objective optimisation problems. The multi-objective choice function Great Deluge Hyper-Heuristic (HHMO_CF_GDA) turns out to be the best choice for solving these types of problems

    Module reallocation problem in the context of multi-campus university course timetabling

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A Polyhedral Study of Mixed 0-1 Set

    Get PDF
    We consider a variant of the well-known single node fixed charge network flow set with constant capacities. This set arises from the relaxation of more general mixed integer sets such as lot-sizing problems with multiple suppliers. We provide a complete polyhedral characterization of the convex hull of the given set

    Genetic Programming Hyper-heuristics for Job Shop Scheduling

    Get PDF
    Scheduling problems arise whenever there is a choice of order in which a number of tasks should be performed; they arise commonly, daily and everywhere. A job shop is a common manufacturing environment in which a schedule for processing a set of jobs through a set of machines needs to be constructed. Job shop scheduling (JSS) has been called a fascinating challenge as it is computationally hard and prevalent in the real-world. Developing more effective ways of scheduling jobs could increase profitability through increasing throughput and decreasing costs. Dispatching rules (DRs) are one of the most popular scheduling heuristics. DRs are easy to implement, have low computational cost, and cope well with the dynamic nature of real-world manufacturing environments. However, the manual development of DRs is time consuming and requires expert knowledge of the scheduling environment. Genetic programming (GP) is an evolutionary computation method which is ideal for automatically discovering DRs. This is a hyper-heuristic approach, as GP is searching the search space of heuristic (DR) solutions rather than constructing a schedule directly. The overall goal of this thesis is to develop GP based hyper-heuristics for the efficient evolution (automatic generation) of robust, reusable and effective scheduling heuristics for JSS environments, with greater interpretability. Firstly, this thesis investigates using GP to evolve optimal DRs for the static two-machine JSS problem with makespan objective function. The results show that some evolved DRs were equivalent to an optimal scheduling algorithm. This validates both the GP based hyper-heuristic approach for generating DRs for JSS and the representation used. Secondly, this thesis investigates developing ``less-myopic'' DRs through the use of wider-looking terminals and local search to provide additional fitness information. The results show that incorporating features of the state of the wider shop improves the mean performance of the best evolved DRs, and that the inclusion of local search in evaluation evolves DRs which make better decisions over the local time horizon, and attain lower total weighted tardiness. Thirdly, this thesis proposes using strongly typed GP (STGP) to address the challenging issue of interpretability of DRs evolved by GP. Several grammars are investigated and the results show that the DRs evolved in the semantically constrained search space of STGP do not have (on average) performance that is as good as unconstrained. However, the interpretability of evolved rules is substantially improved. Fourthly, this thesis investigates using multiobjective GP to encourage evolution of DRs which are more readily interpretable by human operators. This approach evolves DRs with similar performance but smaller size. Fragment analysis identifies popular combinations of terminals which are then used as high level terminals; the inclusion of these terminals improved the mean performance of the best evolved DRs. Through this thesis the following major contributions have been made: (1) the first use of GP to evolve optimal DRs for the static two-machine job shop with makespan objective function; (2) an approach to developing less-myopic DRs through the inclusion of wider looking terminals and the use of local search to provide additional fitness information over an extended decision horizon; (3) the first use of STGP for the automatic discovery of DRs with better interpretability and semantic validity for increased trust; and (4) the first multiobjective GP approach that considers multiple objectives investigating the trade-off between scheduling behaviour and interpretability. This is also the first work that uses analysis of evolved GP individuals to perform feature selection and construction for JSS

    Uncertain Multi-Criteria Optimization Problems

    Get PDF
    Most real-world search and optimization problems naturally involve multiple criteria as objectives. Generally, symmetry, asymmetry, and anti-symmetry are basic characteristics of binary relationships used when modeling optimization problems. Moreover, the notion of symmetry has appeared in many articles about uncertainty theories that are employed in multi-criteria problems. Different solutions may produce trade-offs (conflicting scenarios) among different objectives. A better solution with respect to one objective may compromise other objectives. There are various factors that need to be considered to address the problems in multidisciplinary research, which is critical for the overall sustainability of human development and activity. In this regard, in recent decades, decision-making theory has been the subject of intense research activities due to its wide applications in different areas. The decision-making theory approach has become an important means to provide real-time solutions to uncertainty problems. Theories such as probability theory, fuzzy set theory, type-2 fuzzy set theory, rough set, and uncertainty theory, available in the existing literature, deal with such uncertainties. Nevertheless, the uncertain multi-criteria characteristics in such problems have not yet been explored in depth, and there is much left to be achieved in this direction. Hence, different mathematical models of real-life multi-criteria optimization problems can be developed in various uncertain frameworks with special emphasis on optimization problems
    corecore