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Abstract

In this thesis, we investigate and develop a number of online learning
selection choice function based hyper-heuristic methodologies that attempt to
solve multi-objective unconstrained optimisation problems. For the first time,
we introduce an online learning selection choice function based hyper-
heuristic framework for multi-objective optimisation. Our multi-objective
hyper-heuristic controls and combines the strengths of three well-known
multi-objective evolutionary algorithms (NSGAII, SPEA2, and MOGA), which
are utilised as the low level heuristics. A choice function selection heuristic
acts as a high level strategy which adaptively ranks the performance of those
low-level heuristics according to feedback received during the search process,
deciding which one to call at each decision point. Four performance
measurements are integrated into a ranking scheme which acts as a feedback
learning mechanism to provide knowledge of the problem domain to the high
level strategy. To the best of our knowledge, for the first time, this thesis
investigates the influence of the move acceptance component of selection
hyper-heuristics for multi-objective optimisation. Three multi-objective choice
function based hyper-heuristics, combined with different move acceptance
strategies including All-Moves as a deterministic move acceptance and the
Great Deluge Algorithm (GDA) and Late Acceptance (LA) as a non-

deterministic move acceptance function.

GDA and LA require a change in the value of a single objective at each
step and so a well-known hypervolume metric, referred to as D metric, is
proposed for their applicability to the multi-objective optimisation problems. D
metric is used as a way of comparing two non-dominated sets with respect to
the objective space. The performance of the proposed multi-objective
selection choice function based hyper-heuristics is evaluated on the Walking
Fish Group (WFG) test suite which is a common benchmark for multi-objective
optimisation. Additionally, the proposed approaches are applied to the vehicle
crashworthiness design problem, in order to test its effectiveness on a real-
world multi-objective problem. The results of both benchmark test problems
demonstrate the capability and potential of the multi-objective hyper-heuristic
approaches in solving continuous multi-objective optimisation problems. The
multi-objective choice function Great Deluge Hyper-Heuristic
(HHMO_CF_GDA) turns out to be the best choice for solving these types of

problems.
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Chapter 1: Introduction

1 Introduction

1.1 Background and Motivations

Many real-world problems are complex. Due to their (often) NP-hard
nature, researchers and practitioners frequently resort to problem tailored
heuristics to obtain a reasonable solution in a reasonable amount of time.
Hyper-heuristics are emerging methodologies designed to generate high
quality solutions in an attempt to solve difficult computational optimisation
problems by performing a search over the space of heuristics rather than
searching the solution space directly. One of their main aims is to raise the
level of generality of search methodologies, and to automatically adapt the
algorithm by combining the strength of each heuristic and making up for the
weaknesses of others. This process requires the incorporation of a learning
mechanism into the algorithm to adaptively direct the search at each decision
point for a particular state of the problem or the stage of search. Hyper-
heuristics have a strong link to Operations Research in terms of finding
optimal or near-optimal solutions to computational search problems. It is also
firmly linked to a branch of Artificial Intelligence in terms of machine learning
methodologies (Burke et al., 2010). In a hyper-heuristic approach, different
heuristics (or heuristic components) can be selected, generated or combined
to solve a given optimisation problem in an efficient way. Generally, there are
two recognized types of hyper-heuristics: selection and generation hyper-
heuristics. A selection hyper-heuristic framework manages a set of low level
heuristics and chooses the best one at any given time using a performance
measure for each low level heuristic. This type of hyper-heuristic comprises

two main stages: heuristic selection and move acceptance strategy.

Hyper-heuristics have drawn increasing attention from the research
community in recent years, although their roots can be traced back to the
1960s. Numerous hyper-heuristic papers have been published and several
studies are still being undertaken in this area of research. However, the
majority of research in this area has been limited to single-objective
optimisation. Hyper-heuristics for multi-objective optimisation problems is a
relatively new area of research in Operational Research and Evolutionary
Computation (Burke et al., 2010; Ozcan et al., 2008). To date, few studies
have been identified that deal with hyper-heuristics for multi-objective
problems. Burke et al. (2003a) proposed a hyper-heuristic for multi-objective

problems which was based on tabu search (TSRoulette Wheel). Veerapen et
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al. (2009) presented another multi-objective hyper-heuristic approach that
comprised two phases. An online selection hyper-heuristic, Markov chain
based, (MCHH) has been investigated in McClymont and Keedwell (2011).
Gomez and Terashima-Marin (2010) propose a new hyper-heuristic based on
the multi-objective evolutionary algorithm NSGAII (Deb and Goel, 2001). A
hyper-heuristic-based encoding was proposed by Armas et al. (2011) and
Miranda et al. (2010) for solving strip packing and cutting stock problems. An
adaptive multi-method search called AMALGAM is proposed by Vrugt and
Robinson (2007). A multi-strategy ensemble multi-objective evolutionary
algorithm called MS-MOEA for dynamic optimisation is proposed by Wang and
Li (2010). In Furtuna et al. (2012) a multi-objective hyper-heuristic for the
design and optimisation of a stacked neural network is proposed. Rafique
(2012) presented a multi-objective hyper-heuristic optimisation scheme for
engineering system design problems. Vazquez-Rodriguez and Petrovic (2013)
proposed a multi-indicator hyper-heuristic for multi-objective optimisation.Len
et al. (2009) proposed a hypervolume-based hyper-heuristic for a dynamic-
mapped multi-objective island-based model. Bai et al. (2013) proposed a
multiple neighbourhood hyper-heuristic for two-dimensional shelf space
allocation problem. Kumari et al. (2013) presented a multi-objective hyper-
heuristic genetic algorithm (MHypGA) for the solution of Multi-objective

Software Module Clustering Problem.

None of the above studies have used multi-objective evolutionary
algorithms (MOEAs), only in Rafique (2012), Gomez and Terashima-Marin
(2010) and Vrugt and Robinson (2007), and no continuous and standard
multi-objective test problems have been studied, only in McClymont and
Keedwell (2011), Vrugt and Robinson (2007), Len et al. (2009) and Vazquez-
Rodriguez and Petrovic (2013). Moreover, none of the previous hyper-
heuristics make use of the components specifically designed for multi-
objective optimisation that we introduce in this thesis. Our multi-objective
hyper-heuristic framework addresses four main research areas, these being:
multi-objective evolutionary algorithms, hyper-heuristics, meta-heuristics and
multi-objective test problems. This thesis highlights the lack of scientific study
that has been conducted in these areas and investigates the design of a
hyper-heuristic framework for multi-objective optimisation and develops
hyper-heuristic approaches for multi-objective optimisation (HHMOs) to solve
continuous multi-objective problems. We focus on an online learning selection
hyper-heuristics for multi-objective optimisation and their hybridisation with

multi-objective evolutionary algorithms which controls and combines the
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strengths of three well-known multi-objective evolutionary algorithms
(NSGAII (Deb and Goel, 2001), SPEA2 (Zitzler et al., 2001) and MOGA
(Fonseca and Fleming, 1998)). The performance of the multi-objective hyper-
heuristic approaches (HHMOs), when combined with a choice function that
uses different move acceptance strategies such as all-moves, a great deluge
algorithm (Dueck, 1993) and late acceptance (Burke and Bykov, 2008) is also
studied.

1.2 Aims and Scope

References to multi-objective hyper-heuristics are scarce. This research,
combines hyper-heuristic methodologies and multi-objective evolutionary
algorithms in one approach in order to tackle multi-objective problems, in

particular, continuous unconstrained real-valued problems.

The main aim of this research is to investigate hyper-heuristic
approaches for multi-objective optimisation problems based on multi-
objective evolutionary algorithms (MOEASs), in order to produce a set of high
quality solutions (i.e. not necessarily optimal) compared with the existing

approaches in the MOEA literature.

In order to achieve this aim, several objectives are outlined as follows:

Study existing meta-heuristics for single-objective and multi-objective

optimisation.

e Understand existing hyper-heuristic methodologies particularly those
based on heuristic selection.

e Understand existing multi-objective evolutionary algorithms and
identifying their strengths and weakness.

e Investigate existing multi-objective test problems and identifying their
desirable features.

e Investigate a hyper-heuristic method based on heuristic selection with
a deterministic move acceptance strategy.

e Investigate a hyper-heuristic method based on heuristic selection with
a non-deterministic move acceptance strategy.

e Develop hyper-heuristic approaches to effectively and efficiently

address multi-objective optimisation problems, demonstrating their

effectiveness and efficiency on both benchmark test problems and a

real-world problem.
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In this thesis, a hyper-heuristic for multi-objective optimisation (HHMO)
is investigated using three common multi-objective evolutionary algorithms
NSGAII (Deb and Goel, 2001), SPEA2 (Zitzler et al., 2001) and MOGA
(Fonseca and Fleming, 1993) as low level heuristics. The choice function acts
as the selection mechanism. Four performance metrics; the algorithm effort
(Tan et al., 2002), the ratio of non-dominated individuals (Tan et al., 2002),
the uniform distribution of a non-dominated population (Srinivas and Deb,
1994), and the hypervoulme (Zitzler and Thiele, 1999) are used in the
framework to serve as a feedback mechanism. The use of different move
acceptance strategies; All-Moves, GDA (Dueck, 1993) and LA (Burke and
Bykov, 2008), combined with a choice function is also investigated. The
scope of this investigation is limited to continuous unconstrained problems.
Combinatorial or discrete problems are not considered. The Walking Fish
Group test suite (WFG) (Huband et al., 2006) is used as our benchmark
dataset. The multi-objective design of vehicle crashworthiness problem (Liao

et al., 2008) is used as a real-world application.

1.3 Overview of the Thesis

Our multi-objective hyper-heuristic framework addresses four main
research areas; multi-objective evolutionary algorithms, hyper-heuristics,
meta-heuristics and multi-objective test problems. Each area of research is
discussed in this thesis. In chapter 2, a literature review of multi-objective
evolutionary algorithms, hyper-heuristics and meta-heuristics are discussed.
Chapter 2 also provides a description of well-known methodologies that
address multi-objective optimisation and identify their strengths and
weaknesses. A review of the scientific research on the subject is also
presented. In chapter 3, the multi-objective test problems are identified and
discussed. A description of the most common multi-objective test problems

with an analysis of their features is given.

In this thesis, a hyper-heuristic for multi-objective optimisation is
investigated through two methods: 1) Heuristic selection with a deterministic
move acceptance strategy. 2) Heuristic selection with a non-deterministic
move acceptance strategy. This investigation is based on three common
multi-objective evolutionary algorithms; NSGAII (Deb and Goel, 2001), SPEA2
(Zitzler et al., 2001) and MOGA (Fonseca and Fleming, 1993) which act as low
level heuristics, and the choice function is used as the selection method. In

chapter 4, the details of the choice function based hyper-heuristic framework
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for multi-objective optimisation is described. Also a description of the learning
feedback mechanism and the ranking scheme that is used within the hyper-

heuristic framework is given.

Chapter 5 presents an online learning selection choice function all-
moves based hyper-heuristic (HHMO_CF_AM). All-Moves is used as a
deterministic move acceptance strategy. The proposed approach is tested and
compared against the individual low level heuristics and other multi-objective
hyper-heuristics from the scientific literature over the Walking Fish Group
(WFG) test suite (Huband et al., 2006), a common benchmark for multi-

objective optimisation.

An investigation of using non-deterministic move acceptance strategies,
combined with a choice function as a heuristic selection method is provided in
Chapters 6 and 7. We integrate D metric into the non-deterministic move
acceptance criterion in order to convert the multi-objective optimisation to the
single-objective optimisation without having to define values weights for the

various objectives.

In Chapter 6, a selection choice function great deluge based hyper-
heuristics (HHMO_CF_GDA) is proposed, developed and tested on the WFG
test suite. The use of D metric within great deluge is discussed and described.
Also an investigation of tuning the rain speed parameter (UP) of GDA is

carried out.

In Chapter 7, a selection choice function late acceptance based hyper-
heuristic (HHMO_CF_LA) is proposed. The use of D metric within late
acceptance is presented. The comparison of the proposed approach and other
multi-objective selection hyper-heuristics approaches, from Chapters 5 and 6,

over the WFG test suite is investigated.

The three multi-objective hyper-heuristics, that are proposed in
Chapters 5, 6 and 7, are applied to a real-world problem in Chapter 8. A
description and formulation of the real-world multi-objective problem - the
design of vehicle crashworthiness - is provided. A well-known multi-objective
evolutionary algorithm and our three hyper-heuristics are compared and
evaluated over four instances of this problem. Also an investigation of tuning

the number of decision points for these hyper-heuristics is presented.
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Finally, conclusions and recommendations for future work are presented
in Chapter 9.

1.4 Contributions of the Thesis

The contributions of this thesis are as follows:

6|Page

The thesis investigates hyper-heuristics hybridised with multi-
objective evolutionary algorithms (MOEAs) in order to tackle
multi-objective problems. For the first time, a general design of a
multi-objective hyper-heuristic framework based on a choice
function is proposed in this thesis. The framework is flexible and
could incorporate any meta-heuristic for multi-objective
optimisation. Three online learning multi-objective selection
choice function based hyper-heuristic are combined with three
different move acceptance strategies (HHMO_CF_AM,
HHMO_CF_GDA and HHMO_CF_LA). The first approach uses All-
Moves as a deterministic move acceptance strategy and the other
two approaches that are used GDA (Dueck, 1993) and LA (Burke
and Bykov, 2008) respectively as additional non-deterministic
move acceptance strategies. We show that those approaches,
using a non-deterministic move acceptance strategy, outperform
the approach that uses a deterministic move acceptance strategy

on the test instances used in this thesis.

This thesis presents a ranking scheme to measure the
performance of low level heuristics, which also provides an online
learning mechanism. The ranking scheme is simple and flexible

and any number of low level heuristics can be incorporated.

The thesis, for the first time, introduces D metric - a binary
hypervolume (Zitzler, 1999) - integrating this idea into the non-
deterministic move acceptance strategies (GDA and LA) in a
multi-objective hyper-heuristic framework. The D metric is
employed as the comparison tool in both move acceptance
criteria in order to covert the multi-objective problem to a single-

objective problem without having to define weights for each term.

An application of a real-world problem on our multi-objective

choice function based hyper-heuristics is investigated to see their
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performance on a real-world problem and measure the level of
generality they we are able to achieve. It is shown that our
methods produce better quality solutions when compared to other

methods.

1.5 Academic Papers Produced

Maashi, M., Kendall, G., and Ozcan, E. (2012). A choice function based
hyper-heuristic for multi-objective optimisation. The 3™ Student
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Maashi, M., Kendall, G., and Ozcan, E. (2012). A great deluge based learning
hyper-heuristic for multi-objective optimisation. The 547 Operation
Research  Annual  Conference(OR54), September. Available at:
http://www.theorsociety.com/DocumentRepository/Browse.aspx?CatID=3,
(Accessed: 17th April 2013), Abstract.

Maashi, M., Ozcan, E. and Kendall, G. (2014). A multi-objective hyper-
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41(9): 4475-4493.

Maashi, M., Kendall, G., and Ozcan, E. (2014). Choice function based hyper-
heuristics for multi-objective optimization, Applied Soft Computing, in

review,

Maashi, M., Kendall, G., and Ozcan, E. (2014). Comparison of Multi objective
Hyper-heuristics on tri-objective WFG test problems. The 7th Saudi
Students Scientific Conference(SSCUK2013), Edinburgh, UK, February,
Abstract.

7| Page



Chapter 2: Literature Review

2 Literature Review

This chapter reviews three research areas; multi-objective evolutionary

algorithms, meta-heuristics and hyper-heuristics.

2.1 Multi-objective Evolutionary Algorithms (MOEASs)

A multi-objective problem (MOP) comprises several objectives (two or
more), which need to be minimised or maximised depending on the problem.
A general definition of a MOP (Van Veldhuizen and Lamont, 2000) is:

An MOP minimises F(x) = (f;(x),...,fx(x)) subject togi(x) <0;i = 1,...,mx € Q.
An MOP solution minimises the components of a vector F(x),where xis an n-

dimensional decision variable vector (X = x4, ...,X,) from some universe £2.

An MOP consists of n decision variables, m constraints, and k objectives.
The MOP’s evaluation function,F: Q > A maps decision variable vectors
X = xq,..,x,) to vectors (Y= a,,..,ay). The mapping between the decision
variable space and objective function space for multi-objective optimisation is

represented in Figure 2.1.

X

“Decision Variable Space" "Objective Function Space”

Figure 2.1: The mapping of Multi-objective spaces. Reprinted from (Van Veldhuizen
and Lamont, 2000).

The relationship between a pair of objectives can be dependent and
independent (Purshouse and Fleming, 2003a). Dependent objectives refers to
objectives are harmony or conflict. If objectives are in conflict with each
other, i.e. an improvement in one objective leads to deterioration in other,
multi-objective optimisation techniques are required to solve this case (Tan,

2002). However, if two objectives are in harmony, i.e. an improvement in one
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objective leads naturally to improvement in the other, the objectives can be
converted into a single-objective and tackled as a single optimisation problem
(Tan, 2002). Independent objectives refer to the objectives are not affect
each other. In this case, the objectives can be solved completely separately

from each other (Purshouse and Fleming, 2003a).

Historically, a MOP was solved by converting the problem to a single-
objective problem, due to the lack of multi-objective optimisation (MOOQO)
methodologies to find a set of optimal solutions instead of a single optimum
solution (Deb, 2005). However, many MOO techniques have now been

proposed; so that it is possible to find the so-called Pareto-optimal solutions.

From a decision maker’s perspective, multi-objective optimisation
techniques are divided into three classes (Landa-Silva et al., 2004; Van
Veldhuizen and Lamont, 2000; Coello et al., 2007a):

e A priori approach (decision-making and then a search)

In this class, the objective preferences or weights are set by the
decision maker prior to the search process. An example of this is
aggregation-based approaches such as the weighted sum approach.
The disadvantage of this approach is the requirement of the decision
maker’s experience to define the weights of the criteria values, which
is usually a complex task, requiring a lot of experience (Petrovic and
Bykov, 2003).

e A posteriori approach (a search and then decision-making)
The search is conducted to find solutions for the objective functions.
Following this, a decision process selects the most appropriate solutions
(often involving a trade off). Multi-objective evolutionary optimisation
(MOEA) techniques, whether non Pareto-based or Pareto-based, are
examples of this class. MOEA techniques will be discussed later (see
Section 2.1.3).

e Interactive or progressive approach (search and decision-making
simultaneously)
In this class, the preferences of the decision maker(s) are made and

adjusted during the search process.
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The scientific literature proposes three methods to evaluate the quality
of the solutions for any MOP (Coello et al., 2007a). The first method is
objective combination, which is the classical method to aggregate the
objectives into a single scalar value by using a weighted function, after
allocating weights to the objective criteria (Zitzler et al., 2000; Landa-Silva et
al., 2004). The second method is where one objective is optimised, while the
other objectives are defined as constraints. The drawback of this method is
the difficulty in deciding which objective function should be optimised at any
given point (Coello et al., 2007a). Pareto-based evaluation is the third method
used to evaluate the quality of MOP solutions. In this method, all objectives
are optimised simultaneously applying Pareto dominance concepts (see the
next subsection) and using a vector for the values of all objectives and their
solutions fitness. The two first methods are much simpler than the last one
but they are more subjective and not straightforward. Furthermore, the last
method is more methodical, more practical and less subjective compared to
the others (Deb, 2005).

2.1.1 Pareto Dominance

The idea behind the dominance concept is to generate a preference
between MOP solutions since there is no information regarding objective
preference provided by the decision maker. This preference is used to
compare the dominance between any two solutions (Coello et al., 2007a; Tan
et al., 2002). A more formal definition of Pareto dominance (for minimisation

case) is as follows (Coello et al., 2007a):

A vector u = (uq,..,u) is said to dominate another vector v = (v, ...,v;)
(denoted by u = v) according to k objectives if and only if u is partially less

than v, i.e., Vi €{1,...k},u; <v;A i €{l,...k}: u <v; .

In other words, a solution is known as non-dominated if there is no
other solution that is better than it in all objectives. All non-dominated
solutions are also known as the admissible set of the problem, non-inferior or
the Pareto optimal sets (Landa-Silva et al., 2004). The corresponding Pareto
optimal set, with respect to the objective space, is known as the non-
dominated frontier, the trade-off surface or the Pareto optimal front
(Gandibleux and Ehrgott, 2005). In the rest of thesis, the terms Pareto
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optimal set (PS) and Pareto optimal front (POF) will be used. An example of

Pareto optimal front in two objective space is shown in Figure 2.2.

f1

Pareto optimal
front

S

Figure 2.2: An example of Pareto optimal front in two objective space.

To further illustrate this idea, a solution x is known as strictly dominates
if it is better than another solution x” in all objectives. While a solution x is
known as loosely dominates if it is better than another solution x’ in some
objectives but it is equivalent to another solution x” at least in one objective
(Landa-Silva et al., 2004). See Figure 2.3 for an illustration of these two

concepts.
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(a) (b)
Figure 2.3: Examples of strictly and loosely dominates solutions in the minimisation

optimisation problem: in (a) the solution number 2 strictly dominates, in (b) the
solutions numbers 2 and 4 are loosely dominates.

2.1.2 MOEAs Background

The idea of evolutionary algorithm(s) (EAs) is analogues to Darwin’s
principal of the biological evolution mechanism which adopted the concept of
“survival-of-the-fittest” (Darwin, 1859). Many EA researchers would argue
that evolutionary algorithm(s) are more suitable to deal with multi-objective
optimisation problems (Deb and Goldberg, 1989; Back, 1996; Fonseca and
Fleming, 1998; Deb, 2001; Coello et al., 2007a; Anderson et al., 2007;
Zhang and Li, 2007; Miranda et al., 2010) because of their population-based
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nature, which means they can find Pareto optimal sets (trade-off solutions) in
a single run, allowing a decision maker to select a suitable compromise
solution. However, the task of an MOEA is not simply to find a Pareto optimal
set that corresponds to the objectives of a particular problem. It is more
complicated than that (Deb, 2005). MOEAs are multiple-objective in nature.
Therefore, its task is also to minimise the distance of the Pareto optimal front
and then maximise the extension of the Pareto optimal set (Zitzler et al.,
2000).

According to Gandibleux and Ehrgott (2005), an EA comprises several
components, which are the population, the evolutionary operators, (including
crossover and mutation), the ranking method, the guiding method, the
clustering method, the elite solutions archive, the fithess measurement and
the penalty strategy. These components are discussed in more depth later in

this section.

When applying an EA to a MOP, two important issues have to be
considered (Zitzler et al., 2000): (i) Guiding the search towards the Pareto
optimal set via an appropriate fitness assignment and selection strategies,
and (ii) maintaining a diverse Pareto optimal set to obtain a well-distributed
Pareto optimal front. It is worth noting that the EA may not find a diverse
Pareto optimal set in some cases because of the Pareto optimal set's
characteristics such as convexity, non-convexity, non-uniformity etc. (Zitzler
et al., 2000). According to Coello et al. (2007a), a convex set is defined as
that of all pairs of two points x and y in a set of points in n-dimensional space

(see Figure 2.4 for examples of convexity, non-convexity sets).

Furthermore, three elements can determine the quality of the obtained
Pareto optimal set (Landa-Silva et al., 2004; Zitzler et al., 2000):

i. The extent of the Pareto optimal set i.e. how many solutions are in the

Pareto optimal set.
ii.  The distance of the Pareto optimal front i.e. the closeness of the Pareto

optimal front and the obtained front. Note that in some MOPs the

Pareto optimal front is unknown.
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iii. The distribution of the Pareto optimal front i.e. the depth of the

coverage of the Pareto optimal front.

Examples of good and bad approximate Pareto fronts are shown in Figure 2.5.

v

v

(a) (b)

Figure 2.4: Examples of convexity, non-convexity sets. A set is convex if the line
segment connecting any two points in the set lies entirely inside the set. in (a), an
example of convex Pareto optimal front, in (b), an example of non-convex Pareto
optimal front.

(a) (b) ©

Figure 2.5: Examples of good and bad approximate Pareto fronts. In (a) a good
example of approximate Pareto front, it is well-distributed over the Pareto optimal
front. (b) and (c) are poor examples of approximate Pareto fronts. In (b) the
distribution of approximate Pareto front not uniform and in (c) the approximate Pareto
front is not well spread across the Pareto optimal front. Reprinted from (Li & Zhang,
2009).

With regard to the distribution of the Pareto optimal set, there are many
techniques proposed in the literature to improve it (Burke et al., 2003a).

These include:

e Tuning weights.

e Clustering or niching methods.

e Fitness sharing.

e Cellular structures and adaptive grids.
e Restricted mating sets.

e Relaxed forms of the dominance relation.

13| Page



Chapter 2: Literature Review

The tuning weights strategy is used to guide the search towards the
target region of the Pareto optimal front by pushing the current solution
towards that region. Examples of approaches that have employed this
strategy are found in Czyzak and Jaszkiewicz (1998) and Ishibuchi et al.
(2002).

Clustering (niching) methods aim to obtain a well-distributed Pareto
optimal front via a fitness assignment based on the number of solutions on
the given area (a measure of the crowding area). Examples of approaches
that have employed this method are found in Lu and Yen (2002) and Socha
and Kisiel-Dorohinicki (2002).

The fitness sharing technique aims to find a uniform (so-called
equidistant) distribution of the Pareto optimal front (Van Veldhuizen and
Lamont, 2000) by reducing the fitness of solutions in a particular area that
are close together (Burke et al., 2003a). The fitness sharing method can be
either phenotypic-based, with respect to the objective function space, or
genotypic-based, with respect to the decision variable space (Horn et al.,
1994). A brief introduction of phenotype and genotype terms can be found in
the section on genetic algorithms (Section 2.2.9). The genotypic-based
method is often employed by the operational research community because
they are more concerned with the variable space in order to obtain a well-
distributed Pareto optimal set (Benson and Sayin, 1997). However, setting
appropriate values to the sharing parameter Oqhare iS NOt an easy task due to
the necessity of a priori shape and the separation of the niche information for
the problem at hand. Therefore, fitness sharing performance can be affected

by the population size (Van Veldhuizen and Lamont, 2000).

Cellular structures and adaptive grid techniques aim to uniformly
distribute the solutions over the Pareto optimal front. The micro genetic
algorithm 2 (micro-GA2) (Pulido and Coello, 2003) is an example of an
approach that has used this technique. In this approach, an online adaptation

is made using Pareto ranking and an external memory.
The restricted mating method aims to reduce the probability of

generating new, similar solutions by recombining these two solutions based

on the degree of similarity between them (Burke et al., 2003a). However, this
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method is not always effective for some MOPs (Van Veldhuizen and Lamont,
2000).

Relaxed forms of the dominance relation aim to allow a small detriment
in one or many objectives according to a relaxation factor, called e-
dominance, if a large improvement in other objective(s) is acquired. However,
an improvement in the objectives’ values can compensate for this relaxation
(Coello et al., 2007a).

2.1.3 MOEA Methodologies

Schaffer (1985) proposed a non-Pareto based approach, namely the
vector evaluated genetic algorithm (VEGA). It is considered as the first MOEA
that has been formally proposed (Zitzler et al., 2000. In each generation, the
population is divided into sub-populations based on the number of objectives.
Each sub-population attempts to optimise a certain objective. Then these sub-
populations are shuffled together and mutation and crossover operators are
applied in order to generate the new population. The main drawback of VEGA

is its inability to converge to non-convex areas of the Pareto optimal front.

Since 1985, various other MOEA techniques have been presented in the
scientific literature. The most common ones being: MOGA (Fonseca and
Fleming, 1993), NSGA (Srinivas and Deb, 1994), PESA (Knowles and Corne,
2000), SPEA (Zitzler and Thiele; 1999), MOMGA (Van Veldhuizen, 1999) and
NPGA (Horn et al., 1994). However, several MOEA techniques are still
emerging, while many existing MOEA techniques are being modified to create
new versions. A survey of MOEAs can be found in Zhou et al. (2011) and
Giagkiozis et al. (2013).

Tan et al. (2002) classifies MOEAs into three groups, with respect to
their implementation strategies (selection methods and cost assignments).
The three groups are naive approaches, non-aggregation approaches and
Pareto-based approaches. However, some other researchers classify MOEAs
from a different perspective. Fonseca and Fleming (1995) classify MOEAs with
respect to their algorithmic basis and Coello et al. (2007a) classify them with

respect to the decision maker’s viewpoint (see Section 2.1).

Pareto-based approaches are classical MOEAs. This section focuses on
the Pareto-based approaches particularly MOGA, NGSA, SPEA, NPGA and
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MOMOGA, because they are efficient and effective and they also incorporate
much of the known MOEA theory (Van Veldhuizen and Lamont, 2000).

2.1.4 Multi-objective Genetic Algorithm (MOGA)

MOGA was proposed by Fonseca and Fleming (1993). In MOGA, the
Pareto ranking scheme is used i.e. each solution in the current population is
given a rank based on their dominance rank. All solutions in the Pareto
optimal set have a rank of 1. A niche-formation method (fitness sharing) is
employed in phenotypic-based cases to maintain a well-distributed population
over the POF (Coello et al., 2007a). The average value of the fitness for all
solutions that have the same rank is assigned to these solutions. A modified
version of this algorithm has been proposed by Fonseca and Fleming (1998).
This version employed restricted sharing between solutions that have the
same rank and the distance between two solutions is computed and compared
to the key sharing parameter Ggnae. While MOGA is efficient and easy to
implement, its fitness sharing method prevents two vectors that have the
same value in the objective space existing simultaneously unless the fithess
sharing is genotypic-based. The pseudo code of MOGA is shown in algorithm
1.

2.1.5 Non-dominated Sorting Genetic Algorithm (NSGA)

The original version of the Non-dominated Sorting Genetic Algorithm
(NSGA) was proposed by Srinivas and Deb (1994). It employs a dominance
depth based on the Pareto ranking scheme (Van Veldhuizen and Lamont,
2000). Moreover, a dummy fitness value, proportional to the population size,
is used to classify all solutions in the Pareto optimal set. The fithess sharing
method is quite similar to that used in MOGA but it is genotypic-based and
applied to each level to maintain the diversity of the population and to obtain
a uniform distribution of the POF (Zitzler et al., 2000). Once all solutions in
the population are classified, the first Pareto front is assigned to the
maximum fitness value. Therefore, the first Pareto front must have more
copies than the other solutions in the population. A stochastic remainder
selection strategy is employed for this purpose (Coello et al., 2007a). The
complexity of NSGA is exhibited in its fitness sharing mechanism which
assigns the fitness values to solutions in the current population. Knowles and
Corne (2000), and many other researchers, have reported that NSGA has a

poorer performance than MOGA. It is also more sensitive to the sharing
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parameter Oshare than MOGA. However, some researchers point out that NGSA
helps obtain a well-spread POF (Coello et al., 2007a). The pseudo code of
NSGA is shown in algorithm 2.

Algorithm 1: MOGA algorithm

1: procedure MOGA (N', g, fi(x)) = N'member evolved g generations to solve fi.(x)
2 Initialise Population P’

3 Evaluate Objective Values

4: Assign Rank Based on Pareto dominance

5: Compute Niche Count

6: Assign Linearly Scaled Fitness

7 Shared Fitness

8 fori=1to g do

9 Selection via Stochastic Universal Sampling

10: Single Point Crossover

11: Mutation

12: Evaluate Objective Values

13: Assign Rank Based on Pareto dominance
14: Compute Niche Count

15: Assign Linearly Scaled Fitness

16: Assign Shared Fitness

17: end for

18: end procedure

Reprinted from (Coello et al., 2007a)

Algorithm 2: NSGA algorithm

1: procedure NSGA (N',g,ﬁ- (xk)) &> N member evolved g generations to solve f, (x)

2 Initialise Population P/
3 Evaluate Objective Values
4 Assign Rank Based on Pareto dominance in Each Wave
5: Compute Niche Count
6: Assign Shared Fitness
7: fori=1to g do
8 Selection via Stochastic Universal Sampling
9: Single Point Crossover
10: Mutation

11: Evaluate Objective Values

12: Assign Rank Based on Pareto dominance in Each Wave
13: Compute Niche Count

14: Assign Shared Fitness

15: end for

16:end procedure

Reprinted from Coello et al., 2007a)

A modified version of NSGA was proposed by Deb and Goel (2001). The
modified version (NSGAII), is a non-explicit building block MOEA technique
that incorporates the concept of elitism (Deb, 2005; Coello et al., 2007a). The
solutions compete, then each solution is ranked and sorted based on its

Pareto optimal level.

Genetic operators are applied to generate a new group of children who
are then merged with parents in the population (Coello et al., 2007a).

Furthermore, a niching method based on crowding distance is used during the
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selection process in order to maintain a diverse Pareto front (Zhang and Li,
2007). The pseudo code of NSGAII is shown in algorithm 3.

Algorithm 3: NSGAII algorithm

1: procedure NSGAII (N " a.f (xk)) &> N ‘member evolved g generations to solve f;, (x)

2 Initialise Population P”

3 Generate random population- size N’

4 Evaluate Objective Values

5: Assign Rank (level) Based on Pareto dominance - sort
6: Generate Child Population

7: Binary Tournament Selection

8 Recombination and Mutation

9 fori=1to g do

10: for each Parent and Child in Population do

11: Assign Rank (level) Based on Pareto dominance - sort

12: Generate sets of nondominated vectors along PFi,own

13: Loop (inside) by adding solutions to next generation starting from the

first front until N'individuals found determine crowding distance
between points on each front

14: end for

15: Select points (elitist) on the lower front (with lower rank) and are
outside a crowding distance

16: Create next generation

17: Binary Tournament Selection

18: Recombination and Mutation

19: end for

20: end procedure

Reprinted from (Coello et al., 2007a)

Although NSGAII is more efficient than NSGA, it still has some
drawbacks. It cannot simply generate an approximate set in some regions of
the search space, particularly unpopulated regions (Coello and Pulido, 2001).
In addition, NSGAII performs very badly when used for many-objectives
optimisation (Purshouse and Fleming, 2007). As the number of objectives
increase, the proportion of the space becomes lager and the solutions
returned can be quite far from the Pareto optimal front. As result of this, the
algorithm biased towards poor proximity solutions to the Pareto optimal front
(Jaszkiewicz, 2001a; Purshouse and Fleming, 2007). Although, the algorithm
could obtain very good spread across the Pareto optimal front, it faces difficult

to achieve a good proximity.

2.1.6 Strength Pareto Evolutionary (SPEA)

The first version of Strength Pareto Evolutionary Algorithm (SPEA) was
proposed by Zitzler and Thiele (1999). It integrates different desirable
features in MOEAs which are (i) the use of the concept of dominance in the
evaluation and selection process, (ii) the use of an external archive

(secondary population) of the Pareto optimal set that was previously
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obtained, and (iii) the use of clustering and niching methods (Landa-Silva et
al., 2004). In each generation, the Pareto optimal set is added to the
secondary population. The solutions in the secondary population are used to
evaluate the fitness values for the solution in the current population by
summing the solutions’ rank in the secondary population (Landa-Silva et al.,
2004; Van Veldhuizen and Lamont, 2000).

The Pareto ranking scheme, based on the dominance count and rank, is
employed, which means any distance measurement such as niche radius is
not required (Coello et al., 2007a). The secondary population participates in
the selection process, which leads to an increase in the population size.
Therefore, a clustering technique, namely the average linkage method, is
adopted to deal with this issue (Coello et al., 2007a). The pseudo code of
SPEA is shown in algorithm 4.

Algorithm 4: SPEA algorithm

1: procedure SPEA (N', g, fi (x)) & N member evolved g generations to solve f; (x)
2: Initialise Population P/

3: Create empty external set E (IE’I1 < IP'D
4: fori=1togdo
5: E=Eu ND(P") = Copy members evaluatuing to be nondominated of P to E
6: E = ND(E) = keep only member evaluating to nondominated vectors in E
7: Prune E (using clustering) if max capacity of E is exceeded
8: V;ep- Evaluate (Pli) o Evalute fitness for all members of E and P’
9: v, Evaluate (E',-)
10: MP «T (P, U E,) o Use binary tournament selection with
11: o replacement to select individuals from E +P’
12: o (multiset union)until the mating pool is full
13: Apply crossover and mutation on MP
14: end for

15: end procedure

Reprinted from (Coello et al., 2007a)

Despite SPEA generally having a good performance, it has some
potential weak points in terms of fitness assignment, density estimation and
archive truncation, which may affect SPEA’s quality (Gandibleux and Ehrgott,
2005). To overcome these, an updated version called SPEA2 was proposed by
Zitzler et al. (2001). SPEA2 differs from the previous version in three aspects:
(i) it incorporates a fine-grained fitness assignment strategy which considers
the number of individuals for each solution that dominates it and which it is
dominated by, (ii) it uses a nearest neighbour density estimation technique in
order to increase the efficiency of the search, and (iii) it improves the archive

truncation method that guarantees the preservation of boundary points by
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replacing the average linkage method used in the previous version. The
experimental results show that SPEA2 performs well in terms of diversity and
distribution as the number of objectives increases. In addition, it significantly
outperforms its predecessor SPEA. The pseudo code of SPEA2 is shown in

algorithm 5.

Algorithm 5: SPEA2 algorithm

1: procedure SPEA2 (N, g, fi (x))

2: Initialise Population P”

3 Create empty external set E (|E’| < [P’])

4 fori=1to g do

5: Compute fitness of each individual in P’and E’

6: Copy all individual evaluating to nondominated vectors P’and E’ to E’
7: Use the truncation operator to remove elements from E when the

capacity of

the file has been extended
8: If the capacity of E’ has not been exceeded then use dominated
individuals in P’ to fill E’
9: Perform binary tournament selection with replacement to fill the mating
pool
10: Apply crossover and mutation to the mating pool
11: end for

12: end procedure

Reprinted from (Coello et al., 2007a)

2.1.7 Niched Pareto Genetic Algorithm (NPGA)

The Niched Pareto Genetic Algorithm (NPGA) was proposed by Horn et
al. (1994). It uses the tournament selection scheme based on Pareto
dominance ranking. Two randomly selected solutions are compared against
~10% of the population. If one of them is dominated while the other is not,
the Pareto optimal set is selected. If both selected solutions are dominated or
non-dominated, the fitness sharing scheme (equivalence class sharing) is
employed to decide the results of the tournament. The pseudo code of NPGA

is shown in algorithm 6 (Coello et al., 2007a).

NPGA has some difficulties in terms of the convergence towards the
POF. To overcome this, an improved Niched Pareto Genetic Algorithm called
NPGA2 was proposed by Erickson et al. (2001). In NPGA2, Pareto ranking and
tournament selection schemes are used. NPGA2 evaluates the niche counts
based on the next generation, instead of the current generation, using a
continuously updated fitness sharing. The pseudo code of NPGA2 is shown in

algorithm 7.
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Algorithm 6: NPGA algorithm

1: procedure NPGA (N’, g, fi (x)) = N member evolved g generations to solve f;, (x)

18:
19:

Initialise Population P’
Evaluate Objective Values
fori=1to g do

Specialized Binary Tournament Selection
Begin
if Only Candidate 1 dominated then
Select Candidate 2
else if Only Candidate 2 dominated then
Select Candidate 1
else if Both are Dominated or Nondominated then
Perform specialized fitness sharing
Return Candidate with lower niche count
end if
End
Single Point Crossover
Mutation
Evaluate Objective Values

end for

20: end procedure

Reprinted from (Coello et al., 2007a)

Algorithm 7: NPGA2 algorithm
1: procedure NPGA2 (N’, g, f, (x)) & N member evolved g generations to solve f; (x)

2:
3:
4.
5:

degree

6:

7:

8:

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

Initialise Population P’
Evaluate Objective Values
fori=1togdo

Specialized Binary Tournament Selection using rank as domination

Begin
if Only Candidate 1 dominated then
Select Candidate 2
else if Only Candidate 2 dominated then
Select Candidate 1
else if Both are Dominated or Nondominated then
Perform specialized fitness sharing
Return Candidate with lower niche count
end if
End
Single Point Crossover
Mutation
Evaluate Objective Values

end for

20: end procedure

Reprinted from (Coello et al., 2007a)

2.1.8 Multi-objective Messy Genetic Algorithm (MOMGA)

Van Veldhuizen (1999). The algorithm is an extended version of the Messy
Genetic Algorithm that is designed for a MOP. It is an explicit building block

technique that comprises three stages:

The Multi-objective Messy Genetic Algorithm (MOMGA) was proposed by
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building blocks of the population are generated in the partially enumerative
initialisation process, (ii) the primordial stage where a tournament selection
scheme is applied on the population, and finally (iii) the juxtapositional stage
where a recombination of Messy GA operators are applied to build up the

population.

The main advantage of MOMGA is that it is very powerful. However, it
has some difficulties related to the population size. Its population size grows
exponentially when the size of the building block increases. Many modified
versions of MOMGA have been proposed. MOMGA-II described in Zydallis et
al. (2001) is comprises three stages: the initialisation stage, the building
filtering stage and the juxtapositional stage. The first two stages are different
from MOMGA. MOMGA-III is the MOMGA recorded in an object-oriented form.
The pseudo code of MOMGA and MOMGA-II are shown in algorithm 8 and

algorithm 9 respectively.

Algorithm 8: MOMGA algorithm

1: procedure MOMGA (N’, g, fi (%))
2 for i =1 to epoch do

3 o PEI Phase

4 Perform Partially Enumerative Initialisation

5: Evaluate each population member’s fitness with respect to k templates
6: > Primordial Phase

7: for i = 1 to Max Pirmordial Generations do

8 Perform Tournament Thresholding Selection

9 if Appropriate number of generations accomplished then

10: Reduce Population Size

11: end if

12: end for

13: o Juxtapositional Phase

14: for i = 1 to Max Juxtapositional Generations do

15: Cut-and-Slice

16: Evaluate Each Population member’s fitness with respect to k
templates

17: Perform Tournament Thresholding Selection and Fitness Sharing

18: Prnown ®= Peurrent ® v Prnown t-1)

19: end for

20: Update k templates © Using best known value in each objective

21: end for

22: end procedure

Reprinted from (Coello et al., 2007a)
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Algorithm 9: MOMGA-II algorithm

1: procedure MOMGA-II (N’ g, fi (x))
2: forn=1tok do
3 Perform Probabilistically Complete Initialisation
4 Evaluate each population member’s fithess with respect to k templates
5: o Buliding Block Filtering BBF Phase
6: for i =1 to Max Numbers of BBF Generations do
7: if BBF Required Based Off of Input Schedule then
8 Perform BBF
9: else Perform Tournament Thresholding Selection then
10: end if

11: end for

12: © Juxtapositional Phase

13: for i = 1 to Max Juxtapositional Generations do

14: Cut-and-Slice

15: Evaluate Each Population member’s fitness with respect to k
templates

16: Perform Tournament Thresholding Selection and Fitness Sharing

17: Pinown () = Peyrrent (€) U Prpown (t — 1)

18: end for

19: Update k competitive templates

o Using best known value in each objective

20: end for

21: end procedure

Reprinted from (Coello et al., 2007a)

2.1.9 Overview of Many-objectives Optimisation

As the focus of this thesis is on multi-objective optimisation (two or
three objectives), only a brief overview on many-objectives optimisation is

presented in this section.

Recently, more attention is has been paid from EAs research to the
many-objective optimisation (Purshouse and Fleming, 2004, 2007). In many-
objective optimisation, the number of objectives is more than two and three.
It might involve a large number of objectives. Unlike multi-objective
optimisation, many-objectives optimisation faces some difficulties in terms
diversity of solutions and obtaining an accurate approximation of the Pareto
optimal front. These difficulties are known as dominance resistance and
speciation (Purshouse and Fleming, 2004). Many-objectives optimisation also
faces challenge when the objectives are in harmony. The traditional MOEA
that designed for multi-objective optimisation cannot deal with many-
objectives optimisation effectively. As the number of objectives increases, the
proportion of non-dominated solution in the objective space becomes very
large. So the selection pressure based on dominance is less effective which
causes poor searching in seeking a good approximation of the Pareto front.
To overcome this, some suggestions have been proposed (Adra and Fleming,

2011) such as modifying Pareto dominance by using different ranking
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schemes, use of goals and preference information to limit the search space,
and employing different diversity management strategies. For more details

see (Purshouse and Fleming, 2003b).

2.1.10 Overview of Performance Metrics for Multi-
objective Optimisation

The comparison of the quality of solutions for multi-objective
optimisation is more complex than single-objective problems. The number of
non-dominated individuals should be maximised, the distance of the non-
dominated front should be minimised, i.e. the resulting non-dominated
set should be distributed uniformly as much as possible and converge well
toward the POF.

In the scientific literature, many performance metrics have been
proposed to measure different aspects of the quality and quantity of the
resulting non-dominated set. See (Van Veldhuizen, 1999; Coello et al,,
2007a). Some of these metrics require knowledge of the true Pareto front,
whilst others do not. Some metrics, known as unary metrics, are designed to
evaluate the performance of each algorithm independently of other
algorithms. While other metrics, known as binary metrics, are designed to
compare two non-dominated sets to each other. Deb (2001) classifies the
performance metrics into three classes- metrics for convergence, metrics for
diversity and metrics for both convergence and diversity. Knowles and Corne
(2002) classifies the performance metrics based on the outperformance
relations between two non-dominated sets into strong, weak and complete

outperformance of one non-dominated set to another.

The quality of the obtained Pareto optimal set can be determined by
three criteria (Landa-Silva et al., 2004; Zitzler et al., 2000):

() The extent of the Pareto optimal set i.e. how many solutions
are in the Pareto optimal set? Ratio of non-dominated
individuals (RNI) (Tan et al., 2002) and Error ratio (ER) (Van
Veldhuizen, 1999) are examples of metrics that measure this

criterion.
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(i)

(iii)

The distance of the Pareto optimal front, i.e. the closeness of
the Pareto optimal front and the obtained non-dominated front.
Examples of unary metrics that measure this criteria are the
size of space covered metric (SSC or S-metirc) (Zitzler and
Thiele, 1999), generational distance (GD) (Van Veldhuizen and
Lamont, 1998b) and inverted generational distance (IGD)
(Coello and Cruz Cortés, 2005). C metric and D metric (Zitzler,
1999) are examples of binary metrics that measure this

criterion.

The distribution of the Pareto optimal set i.e. the depth of the
coverage of the Pareto optimal front. Uniform distribution of a
non-dominated population (UD) (Srinivas and Deb, 1994) and
Spacing metric (A) (Deb and Jain, 2002) are examples of

metrics that measure this criterion.

Beside the above three criteria, the computational time of the algorithm

can be considered as a criterion to evaluate the performance of an optimiser,

i.e. the time that an algorithm needs to obtain a non-dominated set should be

minimised. Algorithm effort (AE) (Tan et al, 2002) is an example of metrics

that measure this criterion.

Some of the performances that measure the above criteria are

described as follows:

e The size of space covered (SSC)

SSC is a hypervolume presented by Zitzler and Thiele (1999). It is also

known as the S-metric. This metric evaluates the size (volume) of the

objective functions space covered by the solutions around the POF. Let X

be a population and x; € X, the function SSC(X) gives the volume enclosed

by the union of the polytopes in the objective domain, where each polytope

formed by the intersection of the following hyperplanes arising out of,

along with the axes i.e. any point within the polytopes is always dominated

by at least one x; in X. SSC does not require knowledge of the true POF

but it requires a reference point as the origin of the objective space. A

lager value of SSC indicates better quality of non-dominated set which

means a smaller distance to the true POF.
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e Uniform distribution of a non-dominated population (UD)

UD is a unary metric presented by Srinivas and Deb (1994). It evaluates
the distribution of non-dominated individuals over the POF. The distribution
should be as uniform as possible to gain consistent gaps among
neighbouring individuals in the population. Let X be a set of hondominated
individual, UD defined as

1
1+ Spe

UD(X) = (2.1)

where §,,. is the standard deviation of niche count of the overall set of non-
dominated set X. The UD metric does not require prior knowledge of the
true POF. A lager value of UD indicates better quality of non-dominated set

which means the non-dominated front is spread well along the POF.

e Algorithm effort (AE)

AE measures the computational effort of an algorithm to obtain the
Pareto optimal set (Tan et al., 2002). It computes the ratio of the total
number of function evaluations over a fixed period of simulation time. It
ranges from [0,00). A smaller value of AE indicates better performance
which means the optimiser requires less time to obtain non-dominated

solutions.
¢ Ratio of non-dominated individuals (RNI)

RNI is presented by Tan et al. (2002). It evaluates the fraction of non-

dominated individuals nondom_inds in the population X. RNI defined as:

nondom-—inds

RNI(X) = (2.2)

sizeof X

It ranges from [0,1]. If RNI=1, this indicates that all individuals for a given
population are non-dominated and RNI=0 indicates that none of the

individuals in the population are non-dominated. Although RNI gives an
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indication of the solution quality, it does not show how these solutions are

good in terms of the diversity and the convergence towards the POF.

e Generational distance (GD)

GD is a unary metric presented by Van Veldhuizen and Lamont (1998b).
It measures the distance (convergence) of the approximation non-
dominated front A to the true POF B. GD defined as:

=

GD (A,B) = ﬁ (M dist (a;, BP))? (2.3)

A smaller value of GD is more desirable and it indicates that the
approximation non-dominated front is closer to the POF. The GD metric

requires a prior knowledge of the true POF.

e Inverted generational distance (IGD)

IGD is a unary metric presented by Coello and Cruz Cortés (2005). It is
opposite of the metric of GD. It measures the distance from a set of
reference points (ideally the true POF) B to the approximation non-
dominated set A. IGD defined as:

GD (A4,B) = é (2 dist (b;, AP))? (2.4)

A smaller value of IGD is more desirable and it indicates that the

approximation non-dominated front is closer to the POF.
e Coverage difference of two sets (D metric)

D metric (Zitzler, 1999) is an extended version of the hypervolume, also
so-called the size of space covered metric (SSC) (Zitzler and Thiele, 1999).
The SSC metric does not compute the coverage difference of two sets A
and B when compared to each other, i.e it cannot be used to decide if one

set entirely dominates the other. However, D metric computes the
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coverage difference of two non-dominated sets (initial/current non-
dominated set) A and (candidate non-dominated set) B with respect to the
objective space. D(4,B) denotes the size of the space dominated by A and
not dominated by B while D(B,A) denotes the size of the space dominated

by B and not dominated by A:
D(A,B) =SSC(A+ B) —SSC(B) (2.5)
D(B,A) = SSC(A+ B) —SSC(A) (2.6)
D(A,B) < D(B,A) then B dominates A. In other words, the non-dominated

front of B (front 2) is better than the non-dominated front of A (front 1)

with respect to the D metric. An example of this is illustrated in Figure 2.6.

f2 A front 1 (set A
: R (Sesurt)ace only covered by front 1

front 2 (set B)

surface covered by front 1 and front 2

surface only covered by front 2

S

Figure 2.6 :Example of D metric for two sets A and B and their fronts (front 1) and
(front 2) respectively. Reprinted from (Grosan et al., 2003).

The relative size of the region (in the objective space) for a
maximisation problem that is dominated by A and not dominated by B is
suggested by Zitzler (1999):

. _D(4,B)

(4,B) = — (2.7)
k

where V = | [(fmax — fmin) (2.8)
L]
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i, ™" represent the maximum, minimum values respectively for the

objective f;.

2.1.11 Studies on the Comparison of MOEAs

Generally, most MOEAs have common strategies that are employed in
their search process. However, they are different in the way that they apply
these strategies. MOGA and NSGA both apply the selection process after they
have evaluated the rank values. However, MOGA classifies the solutions based
on the ranking scheme using linear or exponential interpolation and applies
the sharing scheme in the objective space, while NSGA uses dummy fitness
values assigned to the solutions and applies the sharing scheme in the

decision variable space (Van Veldhuizen and Lamont, 2000).

Furthermore, MOGA, NSGA, SPEA, NPGA and MOMGA incorporate fitness
sharing schemes in order to obtain a uniform distribution of the POF.
However, the mating restriction strategy is not always employed in any of
them. A secondary population is also not always required in MOEAs, except in
the case of SPEA. Van Veldhuizen and Lamont (2000) and Horn (1997)
believe that any MOEA must use a secondary population for all Pareto optimal
sets that have been found previously. Since MOEA(s) have a stochastic nature
and the solutions are found in a particular generation, they are not
necessarily found again in other generations. The second population helps to
keep the desirable solutions in the population at the end of the search. In
addition, some studies (Zitzler et al., 2000; Tan et al., 2002) report that
elitism is a significant element used to enhance MOEA performance. For
example, an NSGA with elitism performs as well as SPEA (Zitzler et al., 2000).
The common strategies are employed in the search process for the five
MOEAs- MOGA, NSGA, SPEA, NPGA and MOMGA- are presented in Table 2.1.

MOEA
MOGA | NSGA | SPEA | NPGA | MOMGA
Strategies
Fitness Sharing Schemes v v v v v
Mating Restriction Strategy v
Secondary Population v
Elitism V* v

Table 2.1: The common strategies are employed in the search process for the five
MOEAs (MOGA, NSGA, SPEA, NPGA and MOMGA). * The elitism strategy is employed in
the second version of NSGA (NSGAII) only.
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In the scientific literature, some studies have compared MOEAs’
performance and quality against each other. Zitzler et al. (2000) conducted a
systematic comparison on eight algorithms including: five MOEAs (MOGA,
NPGA, VEGA, NSGA and SPEA), two weighted-sum based approaches (SOEA
and HLGA (Hajela and Lin, 1992)) and a random search strategy called RAND.
These algorithms were run on six domain-independent test functions that
provided sufficient complexity. The empirical results confirm that all MOEAs
perform better than the RAND. Nevertheless, HLGA, NPGA and MOGA, in
some cases, do not convergence well towards the POF. It is an interesting
point that NSGA performs better than other none-elitist MOEAs in terms of
distance and distribution along the POF, while SPEA has the best overall
performance. In addition, the study demonstrates that NSGA with elitism
performs similar to SPEA. Furthermore, the size of the population significantly

affects the performance of EAs to cover the POF.

Another comparison study of MOEAs is provided by Tan et al. (2002).
The study compares ten MOEAs which are VEGA, HLGA, NPGA, MOGA, NSGA,
SPEA, MIMOGA (Murata & Ishibuchi, 1995), IMOEA (Khor et al. 2000), EMOEA
(Khor et al. 2001) and a MOEA proposed by Tan et al. (1999). The ten MOEAs
were run on four benchmark tests considering six performance measures-
Ratio of non-dominated individuals (RNI), Uniform distribution of a non-
dominated population (UD), Algorithm effort (AE), the hypervolume- Size of
space covered (SSC), Noise sensitivity (NS) and Average best performance
(ABP)- to examine the strength and weakness of each algorithm. Generally,
the experimental results show that there is no existing algorithm that has the
best performance in the all performance measures. In addition, the results
confirm that elitism and sharing methods positively affect the performance of
SPEA, MOEA, IMOEA and EMOEA in terms of distribution and convergence
towards the POF. MIMOGA has relatively the lowest Algorithm effort (AE) in
all benchmark tests while Tan’s MOEA and IMOEA have the highest (better)
Ratio of non-dominated (RNI) for all benchmark tests. HLGA and NPGA have
relatively low noise sensitivity. MIMOGA, NPGA, MOGA and NSGA have
moderate ABP performance while SPEA, MOEA, IMOEA and EMOEA perform

well.

A comparison study for SPEA2, NSGAII and MOGA on ZDT4 and ZDT6
problems (Zitzler et al., 2000) was presented in Watanabe et al. (2002). With

respect to the RNI metric, NSGAII has better performance than the others on
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ZDT4. However, SPEA2 outperforms MOGA and NSGAII for the same metric
on ZDT6. The authors concluded this study by stating that SPEA2 has an
advantage with regard to its accuracy over NSGAIIL. While NSGAII is superior
to SPEA2 in finding wide spread solutions.

Khare et al. (2003) conducted another comparative study for NSGAII,
SPEA2 and PAES on four test problems (DTLZ1, DTLZ2, DTLZ3 and DTLZ6)
with 2-8 objectives. Three performance metrics were used for convergence
and diversity of the obtained non-dominated set and the running time. SPEA2
performs better than NSGAII in terms of convergence for a small number of
objectives. However, both perform similarly for a higher number of objectives.
SPEA2 and NSGAII have good performance with respect to the diversity, but
they have some difficulties in the closeness of the obtained non-dominated
set to the POF. In comparison, PAES (Liu et al., 2007) performs very well in
converging to the POF but it fails in diversity and it requires a higher
computational time as the number of objectives increases. However, NSGAII

requires a less computational time compared to the others.

In Bradstreet et al. (2007) another comparative study between NSGAII
and SPEA2 on the WFG test problems with 24 real values and a different scale
of objectives. For two objectives, NSGAII is superior to SPEA2 on the WFG
test problems with respect to the SSC metric. In contrast, SPEA2 outperforms
NSGAII on all WFG problems expect WFG3 in three objectives with respect to

the same metric.

We can note from two last studies that the number of objectives can
affect the performance of an algorithm. SPEA2 works well with a high number
of objectives for WFG and a low number of objectives for DTLZ. The opposite
is true for NSGAIIL. We can also observe from these comparative studies that
an algorithm can perform better than another algorithm with respect to a
specific metric on a certain problem, while another algorithm performs better
than another algorithm with respect to another metric for the same problem.
Also an algorithm can perform differentially according to the number of
objectives. All these observations could be an advantage when combining
different algorithms in a hyper-heuristic framework for multi-objective
optimisation to derive the strengths of the algorithms and avoid their
weaknesses. These observations also supported by the No Free Lunch
Theorem (Wolpert and Macready, 1997).
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2.2 Meta-heuristics

The term Meta-heuristic was coined by Glover (1986). It refers to a
general algorithmic search framework that is utilised for solving complex
optimisation problems, instead of using classical approaches such as
mathematical and dynamic programming (Bianchi et al., 2009). Meta-
heuristics have the ability to find feasible solutions for problems of realistic
size in reasonable computation time (Bianchi et al., 2009). Soérensen and

Glover (2013) define Meta-heuristics as:

"A Meta-heuristic is a high-level problem-independent algorithmic
framework that provides a set of guidelines or strategies to develop heuristic

optimization algorithms”.

It is worth noting that a problem-specific implementation of a heuristic
optimisation algorithm is also referred to as a meta-heuristic. In the context
of this thesis, meta-heuristics comprise a high level strategy that aims to
explore the search space via the use of local search procedures in order to
search for (approximate) optimal solutions and to escape from local optima.
Moreover, some meta-heuristic techniques may employ learning mechanisms
such as using memory in order to increase the efficacy of the search process
(Blum and Roli, 2003).

In the scientific literature, common meta-heuristics such as simulated
annealing (Kirkpatrick et al.,1983), tabu search (TS) (Glover,1986), genetic
algorithms (GA) (Holland, 1975; Goldberg, 1989), ant colony optimisation
(Dorigo et al., 1996), scatter search (Glover et al., 2000) and variable
neighbourhood search (VNS) (Hansen and Mladenovic, 1999) have been
successfully applied to solve different combinatorial optimisation problems
(see (Corne et al., 1999; VoB et al., 1999; Glover and Kochenberger, 2003)).
Further discussion of some meta-heuristics is presented in the following

sections.

2.2.1 Algorithm Complexity and Problem Complexity

Algorithm complexity refers to the resources required of an algorithm

that is required to solve a given problem (Garey and Johnson, 1979;
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Rayward-Smith, 1986). The efficiency of an algorithm is measured in terms of
execution time (the number of steps in the algorithm) and memory (the
amount of memory that is needed to run the algorithm). The time complexity
is as a function of the size of the input. In other words, it refers to the
number of basic operations that are performed by an algorithm for its worst-
case behaviour. The big O notation is used to describe the performance or
complexity of an algorithm. The computational complexity of a problem is
assessed by the time complexity of an algorithm that can be found to solve

the problem efficiently (Garey and Johnson, 1979).

Optimisation problems can be divided into two major classes, P and NP.
A P problem can be defined as an algorithm that can solve a problem in
polynomial time. An NP problem can be defined as an algorithm that can solve
a problem in non-deterministic polynomial time. For more details (see (Garey
and Johnson, 1979, Rayward-Smith, 1986)). If there is a deterministic
algorithm for a problem, a non-deterministic algorithm can be simply
constructed for the problem, i.e. P € NP. This leads to, the most important
open question in computational complexity theory, whether P=NP or P=NP? To
date, no efficient (polynomial) algorithms have been found for any NP
problems, which supports the assumption that P+NP, but this is still not
proved. An example of an NP problem is the classic Travelling Salesmen

Problems.

A special class of NP problems are NP-complete problems. These are the
hardest class of problem in NP. The theory of NP-completeness was presented
by Cook (1971). If P=NP then all NP-complete problems can be efficiently
solved. All NP-complete problems could belong to P. However, NP-complete

problems belong to the set NP-P.

Given the open P=NP question, exact algorithms cannot always be used
to solve a given instance of an optimisation problem efficiently due to the
time complexity being bounded by an exponential function (we may be able to
solve small instances but this becomes impractical as the instance size
increases). So, heuristic methods, or approximation algorithms, are generally
more suitable to solve such problems since they can often produce near
optimal solutions, or at least produce solutions of acceptable quality in

reasonable computational time.
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2.2.2 Intensification and Diversification

In the context of meta-heuristics, the concepts of intensification and
diversification have a significant effect on the search behaviour.
Intensification refers to exploiting the accumulated search experience whereas
diversification refers to exploring the search space (Blum and Roli, 2003;
Bianchi et al., 2009). A dynamic balance between these concepts is required
in the search process. On the one hand we want to explore those areas of the
search space, than just those currently providing good quality solutions
(intensification). On other hand we also want to explore previously unvisited
areas of the search space (diversification) (Blum and Roli, 2003). It is worth
mentioning that the terms exploitation and exploration can sometimes be
used instead of intensification and diversification (Blum and Roli, 2003).
However, this may lead, in some cases, to different meanings. For example,
exploitation and exploration may infer short term methods limited to
randomness, whereas intensification and diversification may infer medium and
long term methods based on the usage of memory. In meta-heuristics, the
use of the local search strategy in simulated annealing is an example of
intensification, while the use of tabu lists in tabu search is an example of
diversification (Bianchi et al., 2009).

2.2.3 Meta-heuristics Classification

In the scientific literature, there are different points of view concerning
the classification of meta-heuristics approaches. Glover and Laguna (1997)

and Blum and Roli (2003) classify meta-heuristics into four main classes:

1) Nature-inspired and non-nature inspired methods
2) Dynamic and static objective functions
3) Memory usage and memory-less methods

4) Population-based and the single-point search methods

According to the origins of the search method, meta-heuristics divide
into two groups; nature-inspired and non-nature inspired methods. Examples
of these groups are genetic algorithms and tabu search respectively.
Criticisms of this classification have been made for two reasons (Blum and
Roli, 2003): (i) some hybrid meta-heuristics approaches cannot be

categorised based on this classification. For example, memetic approaches
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that employ a local search mechanism and a genetic algorithm fit into both
classes; and (ii) it is sometimes hard to classify an approach to one of the two
categories. For example, tabu search belongs to the non nature-inspired
category (memory-inspired), but it can be difficult to decide whether the use

of memory belongs to the same class as well.

Another school of thought classifies meta-heuristics into two classes,
dynamic and static objective functions. The first class changes the
representation of the objective function during the search process. An
example of this is Guided Local Search (GLS) (Voudouris and Tsang, 1999).
On the contrary, the second class retains the representation of the objective

function with no change.

Furthermore, memory usage and memory-less methods are important
classifications of meta-heuristics according to the way that the algorithm
makes use of search history. Memory usage can use short or long term
memory. Short term memory keeps track of the moves and visited solutions
whereas long memory accumulates synthetic parameters of the search.
Memory-less methods usually tend to use the information to decide the next
moves in the search process. Nowadays, memory is considered an essential

element in successful meta-heuristic approaches (Blum and Roli, 2003).

The classification of population-based search and single-point
approaches refers to the number of solutions that are maintained during the
search process at each iteration (Glover and Laguna, 1997). In population-
based meta-heuristics, a number of points (known as the population) are
provided in order to evolve a new generation. Genetic algorithms, evolution
strategies, ant colony optimisation, and scatter search are examples of
population-based methods. In single-point search, only one solution is
maintained during the search process. Single-point search based methods are
also known as trajectory methods which share the same characteristics as a
trajectory in the search space during the search process, and incorporate local
search strategies (Blum and Roli, 2003). Tabu search, simulated annealing,
iterated local search (Lourenco et al., 2003) and variable neighbourhood
search are examples of single-point search methods. Since the population-
based concept plays a significant role in hyper-heuristic for multi-objective
optimisation (HHMOQO) that is proposed in this thesis, this classification of

meta-heuristics is more suited to HHMO than the others.
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2.2.4 Local Search

The key idea behind a local search algorithm is attempting to find the
optimum (or an approximate) solution through exploring the neighborhoods of
the current solution and comparing new solutions with the incumbent
solution. If the new solution is better, then the current solution is replaced by
the new one. The simplest form of local search is an iterative improvement
algorithm. The algorithm starts with an initial solution and then explores the
neighbourhood of that solution in order to find a better one. When a better
solution is found, the current solution replaces it. This process is repeated

until the current solution is better than all its neighborhood solutions.

In the context of local search, the strategy to improve a solution
depends on the type of heuristic that is used in the algorithm (Lourenco at al.,
2003). Random walk, simple descent and steepest descent are examples of
local search heuristics. In random walk, a solution is selected randomly from
the search space. This heuristic is usually combined with other methods and
used as a diversification strategy. Simple descent is a typical local search
strategy. It is also known as hill climbing. At each iteration, a random solution
is selected. If the selected solution improves the objective value then it is
accepted and the previous solution is replaced by it. Steepest descent is
different from previous local search heuristics. This heuristic evaluates each
solution in neighbourhood, and accepts the best solution that generates a
better objective value. If there is no better objective value, the algorithm
terminates. This method can be computationally expensive for large-sized

neighbourhoods.

The main drawback of local search algorithms is that they can easily
become trapped in a local optima, i.e. the solution is not necessarily the
global optimal, because the search terminates once no better solutions can be
found. An optimal solution (global) can be in some area of the search space
that has not yet been explored (Focacci at al., 2003). To overcome this
problem, some techniques have been presented that allow the algorithm to

escape from local optima by accepting a worse solution (Aarts et al., 2005).

The local search algorithm terminates according to some conditions such
as the number of iterations, elapsed CPU time or until there is no further

improvement in the current solution for a given number of iterations.
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2.2.5 Simulated Annealing

Simulated annealing (SA) is a search algorithm that was proposed by
Kirkpatrick et al. (1983). It is considered the first meta-heuristic approach to
use an explicit method which accepts worse solutions in order to escape from
local optima (Henderson, 2003). Initially, SA was used to tackle combinatorial
optimisation problems (often within the discrete problem domain). More
recently, it has been extended to include continuous problems (Henderson,
2003). The concept of SA is based on the Metropolis algorithm for statistical
mechanics developed by Metropolis et al. (1953). The Metropolis algorithm is
a model for simulating the physical annealing process with solid materials like
metals and glass (Bianchi et al., 2009). These materials are placed in a heat
bath under a high temperature and then gradually cooled according to an
appropriate cooling schedule until they reach a thermal equilibrium state
(Dowsland, 1995 and Henderson, 2003).

In the context of meta-heuristics, SA incorporates thermodynamic
behaviour into the local search strategy (Henderson, 2003), and the search
process combines two local search heuristics; random walk and iterative
improvement (Dowsland, 1995). It also employs a predefined neighbourhood
structure of the search space (Bianchi et al., 2009). The algorithm starts with
a high temperature and an initial solution. This solution can be either
randomly selected or heuristically constructed (Blum and Roli, 2003). During
the search process, the temperature is slowly decreased based on a cooling
schedule (Dowsland, 1995). At each iteration, a solution of the neighbourhood
is selected and evaluated and then compared with the incumbent solution. If
it is better than the current one, it is accepted and replaces it to become the
current solution. Otherwise, worse solutions are accepted according to a
probabilistic function of temperature and the difference of objective function
values for the new and current solutions (Dowsland, 1995 and Bianchi et al.,

2009). The pseudo code of SA is shown in algorithm 10.

Two important issues can affect the performance of SA. Firstly, the
choice of neighbourhood structure (Aarts and Korst, 1998), and secondly, the
choice of a cooling schedule (Blum and Roli, 2003). There are two types of
cooling schedule, static and dynamic schedules. In a static cooling schedule

there is no change in the parameter values during the execution time. With a
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dynamic cooling schedule the parameters are adaptively changed during
execution time (Aarts et al., 2005). It is generally not easy to choose an
appropriate cooling schedule. In some cases in SA, the temperature is
reduced and reaches a very low value. So, an increase of cost function values
will be impossible and SA can lead to a local minimum. To overcome this
problem, a reheating scheme may be used when a local minimum has been
detected, in order to escape from it (Thanh and Anh, 2009). An example of
SA’s approaches that use the reheating scheme is simulated annealing with
non-monotonic reheating (Osman, 1993). The key idea of this approach is
that whenever the occurrence of a local minimum is detected, the use of
reheating scheme aims to escape from it by doubling the temperature at

which the best solution was obtained.

Algorithm 10: SA algorithm

1: procedure SA

2: Initialise (is¢qrt»Co . Lo)

3: k:=0;

4: repeat

5: for/=1to L, do

6: Generate (j from S;)

7: if fG)<f@) theni:=j

8: else

9: if exp (%kf(})) > random[0,1) then i :=j
10: end for
11: k=k+1;
12: Calculate_Length(L,) ;
13: Calculate_Control(Cy) ;
14: until stop_criterion

15: end procedure

Reprinted from (Aarts et al., 2005)

Although SA is simple and flexible, a cooling schedule needs to be
defined for each problem in order for the algorithm to work effectively
(Hussin, 2005). Moreover, good quality cooling schedules (either static or

dynamic schedules) which can find a global optimal can be particularly slow.

2.2.6 The Great Deluge Algorithm

The great deluge algorithm (GDA) is a meta-heuristic local search
algorithm proposed by Dueck (1993). It is considered a reasonable alternative
to other meta-heuristic algorithms such as simulated annealing (SA)
(Kirkpatrick et al., 1983) and tabu search (TS) (Glover,1986), because of its
simplicity and dependency on fewer parameters (Petrovic et al., 2007). GDA

always accepts improving moves, while a worsening move is accepted only if
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it is better than a threshold (target improvement) at a given step. In a
generic GDA approach, the threshold changes gradually over time, e.g.

increases linearly.

In the case of a maximisation problem, the GDA algorithm starts with
an initial water level, which is equivalent to the quality of the initial solution.
The water level is increased gradually (usually linearly) at each iteration,
during the search, according to a predefined rate referred to as Rain Speed
(UP). A worsening solution is accepted if the quality of the solution is greater
than or equal to the water level. This process is reversed for a minimisation
problem. The algorithm terminates when there is no change in the solution
quality within a predefined time or when the maximum number of iterations is
exceeded. The pseudo code of a GDA (for maximisation problem) is shown in

algorithm 11.

The main advantage of GDA is that it is simple and much easier to
implement when compared to the other meta-heuristics, such as SA or
evolutionary algorithms. Moreover, a better quality of solutions could be
produced with a longer search time (Burke et al., 2004). GDA requires fewer
input parameters; in fact it only has one parameter, rain speed (UP). The
value of UP is usually a small fraction greater than 0, and less than 0.03
(Scott and Geldenhuysys, 2000). Dueck (1993) provided various
recommendations regarding UP. For example, a suggestion is that UP value
should be on average smaller than 1% of the average distance between the

quality of the current solution and the water level. So the water level can be

calculated for the j solution using:

LEVEL = LEVEL — UP (LEVEL — f(j)) (2.9)

The value of UP can also be calculated based on the time allocated for
search and defining upper/lower bounds of an estimated quality of solution
(Petrovic. et al.,2000). However, both of those parameters depend on the
problem dimensions and can affect the quality of final solution for a given
problem (Telfar, 1995).

An extended GDA with reheating was proposed by McMullan and
McCollum (2007). The idea is similar to the reheating scheme utilised in SA.
The reheating (re-levelling in the GDA context) aims to widen the boundary

condition, via improving the rain speed, in order to allow a worsening move to
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be accepted and avoid becoming trapped in a local optimum. If there is no
improvement, water level is reset and re-levelling strategy is applied using a

new rain speed value based on the number of total moves in the process.

Algorithm 11: GDA algorithm

1: procedure GDA

2: Begin
3: Choose an initial configureuration i
4: Choose an initial rain speed UP >0
5: Choose an initial water level LEVEL>0 w© LEVEL = f(i)
6: repeat
7: Choose a neighbor j3 N(i,Q)
8: if f(j) <LEVEL then
9: ir=j
10: LEVEL = LEVEL + UP
11: end if
12: until (termination criteria are satisfied)

13: end procedure

Reprinted from (Dueck,1993)

2.2.7 Tabu Search

Tabu search (TS) is a dynamic neighbourhood search technique (Stltzle,
1999) that was first proposed by Glover (1986). It has been applied to many
combinatorial optimisation problems (Gendreau, 2003; Hussin, 2005); for
example, the Robust Tabu Search to the QAP problem (Taillard, 1991), and
the Reactive Tabu Search to the MAXSAT problem (Battiti and Protasi, 1997)

and to assignment problems (Dell'Amico et al., 1999).

Glover and Laguna (1997) define TS as follows:

"Tabu search is a meta-heuristic that guides a local heuristic
search procedure to explore the solution space beyond local

optimality.”

Tabu search is an advanced form of local search that employs the
steepest descent heuristic and adaptive memory (Bianchi et al., 2009). The
main aim of using memory and the search history is to avoid local optima and
promote the exploration process (Blum and Roli, 2003; Gendreau, 2003).
Furthermore, the key feature of TS is that it incorporates three specific
concepts these being best improvement, tabu lists and aspiration criteria
(Bianchi et al., 2009). Best improvement refers to always accepting a solution
of the neighbourhood, whether it is better or worse than the current solution

(Bianchi et al., 2009). However, that can result in the acceptance of solutions
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that were already previously accepted which may result in cycling. So, a short
term memory that employs the tabu list concept is implemented to avoid this
(Gendreau, 2003). Tabu lists prevent the recently visited solution being
revisited by storing the attributes of these solutions. In the tabu list, some
information about the search is stored to use it in the strategic guidance of
the search (Bianchi et al., 2009). The length of the tabu list (so-called tabu
tenure) is crucial for the performance of the algorithm. A small tabu tenure
limits the search to small regions of the search space whereas a large tabu

tenure results in the search exploring larger regions (Blum and Roli, 2003).

An aspiration criterion is a condition that has to be satisfied in order to
remove a solution from the tabu list (Gendreau, 2003). One example of this is
removing a specific solution from the tabu list, if it obtains a better objective
value than the best value previously found (Gendreau, 2003). In the scientific
literature, the aspiration criteria can be either time-dependent or time-
independent. However, the choice of aspiration criteria is particularly critical
because it can affect the search results (Gendreau, 2003). Other important
control parameters that can affect the search results are tabu tenure and the
structure of the neighbourhood.

The most popular termination conditions used for TS is the number of
iterations, the CPU time or until no improvement in the object value has been

found for a given number of iterations.

2.2.8 Late Acceptance

The late acceptance (LA) is recently proposed iterative search method
proposed by Burke and Bykov (2008). It won an international competition to
automatically solve the Magic Square problem (Burke and Bykov, 2012). Itis
based on the hill-climbing framework. The idea is delaying the comparison
between the cost of current solution and previous solution. The comparison
does not happen immediately, the cost of current solution is compared to the
solution obtained after a number of moves to allow acceptance of worsening

moves.

This method is very simple, easy to implement and yet powerful. It is
also not sensitive to initialisation. It has a single input parameter, which is the

length of array (Lf,) that contains the cost function values of the current

solutions in the previous several iterations. In the context of LA, all values of
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the current cost function for the previous iterations are maintained in a list of
a fixed length (Lfa), which is the only input parameter of LA. The last element
of that list is compared with the cost value of candidate solution, in order to
accept the move or reject it. If the candidate cost is better, or is equal to the
last element, then the candidate solution is accepted and its cost is inserted
into the beginning of the list, while the last element is removed from the end

of the list. This process is repeated until it meets a stopping condition.

In order to avoid the shifting of the whole list at each iteration and
reduce the processing time of LA, it is suggested to employ the virtual shifting

of the list; the list beginning V is calculated by using:
V =imod Ls, (2.10)

where mod represents the remainder of integer division, it"is the current

iteration, Lf, the length a fitness array (fa = fo,fl,fz,...,foa_l )- At each

iteration i*", the candidate cost is compared with the value of C,. Then after
the acceptance procedure, the current cost is assigned to C,, if it is accepted.
The pseudo code of a LA is provided in algorithm 12.

At the beginning of the search, the fa can be filled by the initial cost
value. In order to obtain the LA unique properties, it is intuitive that the
length of the fitness array Lf, should be less than the number of iterations
and equal to or greater than two. However, if L¢, is equal to one or zero, the

LA performs as greedy hill-climbing (Burke and Bykov, 2008).

Algorithm 12: LA algorithm

1: procedure LA

2: begin

3: Produce an initial conFigureuration s

4: Calculate initial cost function C(s)

5: forall k €{0,..,l;q—1} dol 0 C, =C(s)

6: Assign the initial number of iterations i = 0

7: repeat

8: Construct a candidate solution s =

9: Calculate its cost function C(s %)
10: V =imod lg,
11: ifC(s*x)< C,orC(s*) < C(s) then
12: Accept candidate (s = s *)
13: Insert cost value into the list C, = C(s)
14: end if
15: Increment the number of iterations i = i+ 1
16: until ( a chosen stopping condition)

17: end procedure

Reprinted from (Burke and Bykov, 2008)
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2.2.9 Genetic Algorithms

In the scientific literature covering meta-heuristics, various population-
based algorithms (so-called Evolutionary Computation (EC)) are presented,
including genetic algorithms (GA) in (Fraser, 1957; Bremermann, 1958;
Holland, 1975; Goldberg, 1989), evolution strategies (ES) by Rechenberg
(1965), genetic programming by Koza (1992), ant colonies (AC) by Dorigo et
al. (1996) and scatter search (SS) by Glover et al. (2000).

As described in the meta-heuristics classification in Section 2.2.3,
population-based methods deal with a set of solutions (population) whereas
single-point search methods such as simulated annealing and tabu search

(see Sections 2.2.5 and 2.2.7) maintain only a single solution.

The ideas underpinning GAs were first proposed independently by Fraser
(1957) and Bremermann (1958), although much of the important work can
also be attributed to Holland (1975). Genetic algorithms (GA) are a stochastic
search method, sometimes known as an evolutionary algorithm (EA). It is the
most common population-based meta-heuristic (Sastry et al., 2005). It is
based on the idea of "Survival of the fittest" presented by Darwin (1859). This
natural concept of evolution is adopted as a search mechanism in all

evolutionary computation algorithms (Reeves, 2003).

Unlike other meta-heuristics, the representation of solutions in GAs is

quite different. The decision variables (chromosomes) that encode the

solutions of problems are called "genotypes”, whereas the|candidate solutions

4

of problems that represent the solutions themselves are called {phenotypes
or individuals (Goldberg, 1989; Reeves, 2003). In this context, a set of

individuals (solutions) is called a population and each iteration during the
search is called a generation. In addition, the solutions can be encoded as
finite-length strings of binary or real numbers, or many other encodings
(Goldberg and Rudnick, 1991).

A typical GA comprises six main stages as follows (Goldberg, 1989;
Sastry et al., 2005):

1) Initialisation

2) Evaluation
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3) Selection
4) Recombination (crossover)
5) Mutation

6) Replacement

Stages 2 to 6 are repeated in every generation until the algorithm is
terminated by some criteria such as a maximum number of generations or a
given number of fitness evaluations (Reeves, 2003). The pseudo code of a GA

is shown in algorithm 13.

In the initialisation stage (step 2), an initial population of solutions is
generated, typically randomly, in the search space. When the population is
created, the fitness value of each solution in the population is evaluated by a
fitness function (step 3) (Sastry et al., 2005). The solutions with higher

fitness values are selected (step 5), usually [stochastically] in order to

separate the good solutions from the poorer ones (Sastry et al., 2005). The
selection process can be accomplished by many proposed selection strategies
including roulette-wheel selection, tournament selection, stochastic universal
selection and ranking selection (Goldberg and Rudnick, 1991). For example, a
solution with the highest fithess has the highest probability of being selected

in roulette-wheel selection (Bianchi et al., 2009).

Algorithm13: The Genetic algorithm

1: procedure GA
Initialise the population
Evaluate each individuals
repeat
Select individuals for recombination
for gentention =1 to Maxgenteation O
Recombine individuals generating new ones
Mutate the new individuals
Evaluate each individuals
10: Replace old individuals with the new ones
11: end for
12: until (a2 chosen stopping condition)
13: end procedure

OoNOOUP~,WN

Reprinted from (Goldberg, 1989).

The choice of an appropriate selection strategy has a significant effect
on the guidance of the search (Goldberg and Rudnick, 1991). After the
selection stage, genetic operators (crossover and mutation) are applied to the
selected solutions (steps 7 and 8) in order to create a new population

(offspring) for the next generation. Crossover and mutation are executed in
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the recombination and mutation stages respectively. In the recombination
stage (step 7), two or more solutions (parents) from the current generation
are combined to generate hopefully better new solutions (children) for the
next generation. Crossover can typically occur at one point or two points
(known as one-point and two-point crossover) depending on the method of
that is used (Goldberg et al., 1989). Many crossover operators have been
proposed, for example, Partially Matched Crossover (PMX) and Simulated
Binary Crossover (SBX). In the mutation stage (step 8), a change is made to
an individual solution. The mutation in a GA is considered as a subsidiary
operation that is used to increase the diversity of the population (Sastry et
al., 2005). A typical example of mutation is bit-flip. The last stage (step 10) is
replacement. The aim of this stage is to replace the old population with the
new one for the next generation (Goldberg et al., 1989; Sastry et al., 2005).
Examples of replacement methods are steady-state replacement, elitist

replacement and generation-wise replacement.

In the context of GAs, the diversification strategy is accommodated by
mutation, while intensification is accommodated by crossover operators and
the selection process. However, mutation and population size have a critical
impact on the scalability and performance of the algorithm. A small population
size results in limited search exploration while a large population size results
in long computational time (Reeves, 2003). Furthermore, too high a mutation
rate can affect the diversity of the population (Goldberg, 1999; Reeves,
2003).

The main disadvantage of GA is the requirement of the fitness function.
Some complex real-world problems such as structural optimisation problems
cannot be tackled by GA, because it requires hours (sometimes days) of

computational time for fitness evaluation (Reeves, 2003). Possible

alternatives are to use|approximated fitness|or delta evaluation.

2.2.10 Other Meta-heuristic Algorithms

Many other meta-heuristic approaches have been proposed in the
scientific literature, whether they belong to population-based approaches
scatter search, or they belong to single-point search class such as variable
neighbourhood search (VNS), iterated local search (ILS). Some may fit into

both classes such as memetic algorithms (MA).
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Ant colony optimisation (ACO) is a constructive meta-heuristic
introduced by Dorigo et al. (1996). It simulates the behaviour of the real ants
and the way they deposit pheromone to communicate with other ants. ACO
use artificial pheromone trials as an indirect communication mechanism to
distribute information among artificial ants (agents) in order to produce new

solutions (Dorigo and Stutzle, 2003).

Scatter search (SS) is a deterministic population-based alternatives for
evolutionary algorithms that was introduced by Glover (1977). The key idea
of this approach is to attempt to obtain better solutions through the
construction of new solutions by linear combinations. Its strategy is based on
the concept of combining decision rules and constraints in integer
programming (Glover at al., 2003). Scatter search involves five major
procedures: diversification generation, improvement, updating of a reference
set, generation of subsets and the combining of solution procedures. For more
details see (Glover at al., 2003).

Variable neighbourhood search (VNS) is a dynamic meta-heuristic
approach proposed by Hansen and Mladenovic (1999). The algorithm provides
several degrees of freedom to implement a wide range of variants (Blum and
Roli, 2003) through dynamically changing neighbourhood structures. The
basic design of VNS is different to other meta-heuristics. On some occasions
only a few parameters may be needed, or none at all (Hansen, 2005). A
standard VNS comprises three main phases: shaking, local search and move.
The main aim of the shaking phase is to apply perturbation to a solution in
order to make it a starting point for the local search (Hansen, 2005). In the
context of VNS, the neighbourhoods are randomly chosen; then a solution of
neighbourhoods is chosen (often randomly) as a starting point for the local
search. Once the local search is terminated, the new solution that is found is
compared with the initial solution. If it is better, the initial solution is replaced
by the new one. Otherwise, a new iteration is started, including a new shaking
phase with different neighbourhoods (Blum and Roli, 2003; Hansen, 2005).

Iterated local search (ILS) (Lourenco at el., 2003) is a stochastic local
search method, and is a simple and powerful meta-heuristic approach (Martin
et al., 1991; Stiatzle, 1999; Lourenco et al., 2003). It uses local search using

an initial solution. Once the local optimum is found, the perturbation strategy
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is used in order to escape from it, then the local search restarts. A typical ILS
includes three main processes: the choice of the initial solution, acceptance
criteria and perturbation. The perturbation operators are particularly
important (Blum and Roli, 2003); a larger perturbation makes the algorithm
behave as a random restart local search whereas a small perturbation may

result in an inability to escape from the local optima.

Memetic algorithms (MA) are a meta-heuristic that incorporates a local
search strategy within an evolutionary algorithm. It was proposed by Moscato
(1999). The most common memetic algorithms utilise genetic algorithm,
carrying out a local search on each member of population in every generation.
In the context of the memetic algorithm, the methods of individual learning
usually include some knowledge of the problem at hand. These methods can
be deterministic or stochastic. Moreover, many other studies have been
presented in the literature in hybrid evolutionary algorithms and hill climbing
strategies using multi-local searchers known as multimemes. Multimeme
algorithms adaptively select from a set of local search procedures. Example of
multimeme approaches can be found in Krasnogor and Smith, (2002) and

Krasnogor (2002) and Krasnogor and Gustafson (2004).

2.2.11 Multi-objective Meta-heuristic

Meta-heuristics were originally designed to tackle single-objective
optimisation problems. They have been extended to tackle multi-objective
problems in a single run, without converting it to a single-objective problem,
for example, by linearly weighting each objective. Multi-objective evolutionary
algorithms such as MOGA (Fonseca and Fleming, 1993) and NSGA (Srinivas
and Deb, 1994) (see Section 2.1.3) have had significant success in the multi-
objective field due to their suitability to tackle such types of problems.
However, a humber of multi-objective meta-heuristics based on local search,
such as simulated annealing and tabu search have been successfully applied
to various multi-objective problems (Landa-Silva et al., 2004). The most
common application that has been successfully tackled by multi-objective
local search are multicriteria scheduling problems including flowshop
scheduling problems and machine scheduling problems (see (Blazewicz et al.,
1996; Baykasoglu et al., 1999 ; Gandibleux and Freville, 2000; Jaszkiewicz,
2001a)).

47 | Page



Chapter 2: Literature Review

Thompson and Dowsland (1996) proposed a multi-phased simulated
annealing algorithm to solve the examination timetabling problem. In this
approach, the problem is formulated as a graph colouring problem and has
two phases. The first phase aims to satisfy all the hard constraints (which is
the first objective). The second phase aims to minimise the violations of soft
constraints (which is the second objective). Moreover, Ulungu (1993)
presented a multi-objective simulated annealing approach (MOSA). The
author used simulated annealing to tackle a problem with multiple objectives
(maybe two or three objectives). Another multi-objective simulated annealing
based approach was proposed by Nam and Park (2000). The approach obtains

good results when compared to MOEAs.

Gandibleux et al. (1997) presented the first multi-objective tabu search
approach, the so-called MOTS. In this approach, special aspiration criteria,
intensification and diversification strategies are designed for the multi-
objective class, and a scalarising function and a reference point are used to

enumerate a set of possible good solutions.

Jaszkiewicz (2001b) introduced a hybrid multi-objective approach based
on genetic algorithm and local search. This is the so-called MOGLS. In this
approach, local improvement heuristics are combined with crossover
operators. Another hybrid method of a multi-objective approach has been
proposed by Barichard and Hao (2002) known as the MOGTS, it is based on a
combination of a genetic algorithm and tabu search. It is applied to the multi-
constraint knapsack problem and showed competitive results. Li and Landa-
Silva (2011) present an adaptive evolutionary multi-objective approach.
Based on simulated annealing, it is called EMOSA. It incorporates simulated
annealing and adapts weight vectors corresponding to various subproblems.
The proposed approach is applied to the multi-objective knapsack problem
and the multi-objective travelling salesman problem. It outperforms six multi-

objective meta-heuristic algorithms from the literature.

2.3 Hyper-heuristics

Some real-world problems are complex. Due to their (often) NP-hard
nature, researchers and practitioners frequently resort to problem tailored
heuristics to obtain a reasonable solution in a reasonable amount of time.

Hyper-heuristics are methodologies that operate on a search space of
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heuristics rather than directly searching the solution space for solving hard
computational problems, with one of the key aims being to raise the level of
generality. Many real-world computational problems have been solved
successfully using state-of-the-art approaches and meta-heuristics
techniques such as tabu search, genetic algorithms and simulated annealing
(Burke et al., 2013). However, this success is often limited to a particular
class of problem (or even particular problem instances) that has been solved
using a specific implementation (Burke et al., 2013). The same
implementation often cannot solve a new instance of the same problem
unless the related parameters are properly tuned. Such methods are usually
expensive to transfer to, and maintain, for new problems (Burke et al.,
2013; Qu & Burke, 2009). Hyper-heuristics approaches have been proposed
in order to raise the level of generality of search methodologies (Burke et
al., 2010). Moreover, hyper-heuristics produce general search algorithms
that are applicable for solving a wide range of the problems in different
domains (Burke et al., 2010; Burke et al., 2013; Ozcan et al., 2008; Ross,
2005).

In a hyper-heuristic approach, different heuristics (or heuristic
components) can be selected, generated or combined to solve a given
optimisation problem in an efficient way. In their simplest form hyper-
heuristics are a search methodology that encompasses a high level strategy
(which could be a meta-heuristic) that controls the search over a set of
heuristics (heuristic components) rather than controlling a search over a
direct representation of the solutions (Burke et al., 2010, 2013). In other
words, hyper-heuristics performs as a “heuristic scheduler” within a set of low
level heuristics using deterministic or non-deterministic methods; it is also

sometimes termed Move acceptance strategies (Ozcan et al., 2008).

Burke et al. (2013) define Hyper-heuristics as follows:

"A search method or learning mechanism for selecting or generating

heuristics to solve computational search problems”.

This definition will apply to the use of the term “hyper-heuristic* throughout
this thesis. According to the recent definition of meta-heuristic, proposed by
Sérensen and Glover (2013), we can define hyper-heuristics as a set of meta-

heuristics.
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To date, numerous hyper-heuristics papers have been published and
several studies are being undertaken in this area of research. However, the
notion of hyper-heuristics is not new. According to Burke et al. (2010, 2013)
the idea of hyper-heuristics was first proposed in the early 1960s. Fisher and
Thompson (1961, 1963) and Crowston et al. (1963) proposed the idea of a
combination of dispatching rules (priority) to solve production scheduling
problems so these combined rules were demonstrated to be superior to any
rule taken in isolation. They also describe a method of combination by using
“probabilistic learning” that simulated the mechanism of reinforcement
learning in humans. Although computational search methodologies were still
not mature at that time, the learning method proposed is similar to a
stochastic local search algorithm performing in the space of scheduling rules'
sequences (Burke et al. 2013). The main important conclusions from Fisher
and Thompson’s (1963) study are “(1): an unbiased random combination of
scheduling rules is better than any of them taken separately, and (2) learning

is possible".

The first time the term hyper-heuristics appeared was in a technical
report by Denzinger et al. (1997) to illustrate a protocol that combines a
range of Artificial Intelligence (AI) algorithms. Cowling et al (2000) used the
term in a peer-reviewed conference paper to present the idea of the heuristic
selection in scheduling a sales summit. The ideas in this paper was further
developed and applied to scheduling problems in (Cowling et al, 2001,
2002a,b,c).

2.3.1 The Concept of Hyper-heuristics

In a hyper-heuristic approach, different heuristics can be selected,
generated or combined to solve a given optimisation problem in an efficient
way. Since each heuristic has its own strengths and weaknesses, one of the
aims of hyper-heuristics is to automatically inform the algorithm by combining
the strength of each heuristic and making up for the weaknesses of others.
This process requires the incorporation of a learning mechanism into the
algorithm to adaptively direct the search at each decision point for a particular
state of the problem or the stage of search. It is obvious that the concept of
hyper-heuristics has strong ties to Operational Research (OR) in terms of
finding optimal or near-optimal solutions to computational search problems. It

is also firmly linked to artificial intelligence (AI) in terms of machine learning
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methodologies (Burke et al., 2013). In the context of hyper-heuristics,
learning knowledge control mechanisms plays a significant role in applying the
appropriate low level heuristic at each decision point. Moreover, these
mechanisms guide the search adaptively to improve the search methodologies
(Burke et al., 2013).

The general framework of the hyper-heuristic is illustrated in Figure 2.7.
Usually, in a hyper-heuristic framework, there is a clear separation between
the high level hyper-heuristic approach (also referred to as strategy) and the
set of low level heuristics or heuristic components. It is assumed that there is
a domain barrier between them (Burke et al, 2003b). The purpose of domain
barrier is to give the hyper-heuristics a higher level of abstraction. This also
increases the level of generality of hyper-heuristics by being able to apply it
to a new of problem without changing the framework. Only a set of problem-

related heuristics are supplied.

Hyper-heuristic

Domain-independent information acquisition and processing: change in a candidate
solution’s quality, number of low level heuristics, measuring the performance of the
applied heuristic, statistics, etc.

U il

| Domain Barier |

i Il

Low level heuristics

....... [ Representation,
evaluation function,

Problem Domain initial solution(s), etc.

Figure 2.7: A generic hyper-heuristic framework. Reprinted from (Burke et al., 2003b).

The barrier allows only problem domain independent information to flow
from the low level to the high level, such as the fitness/cost/penalty value
(measured by an evaluation function, indicating the quality of a solution)
(Hussin, 2005). Low level heuristics or heuristic components are the problem
domain specific elements of a hyper-heuristic framework; hence they have
access to any relevant information, such as candidate solution(s). The high
level strategy can be a (meta-) heuristic or a learning mechanism (Burke et
al.,2003b). The task of the high level strategy is to guide the search

intelligently and adapt according to the success/failure of the low level
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heuristics or combinations of heuristic components during the search process,
in order to enable the reuse of the same approach for solving different
problems (Qu and Burke, 2009). Thus, the high level strategy does not
change while both the low level heuristics or heuristic components and the

evaluation function require changing when tackling a new problem.

2.3.2 Hyper-heuristics Classification

Two types of hyper-heuristic methodologies can be identified in the
literature (Burke et al., 2013): (i) heuristic selection methodologies: (meta-
)heuristics to choose (meta-)heuristics, and (ii) heuristic generation
methodologies: (meta-)heuristics to generate new (meta-)heuristics from
given components. Selection hyper-heuristics produce sequences of heuristics
which lead to good quality solutions while generation hyper-heuristics produce
new heuristics. For both hyper-heuristic methodologies, there are two
recognized types of heuristics: (i) constructive heuristics which process a
partial solution(s) and build a complete solution(s), (ii) perturbative heuristics
which operate on complete solution(s). The notation of constructive and
perturbative indicates how the search through the solution space is managed
by the low level heuristics (Burke et al., 2013). However, a new direction of
hybrid approaches of hyper-heuristics might include a combination of heuristic
selection and heuristic generation methodologies, or a combination of
construction and perturbation heuristics (Burke et al., 2010). The selection
hyper-heuristics based on perturbative heuristics is the focus of this thesis.
More on generation hyper-heuristics can be found in (Burke et al., 2013;
Burke et al., 2010; Ross, 2005).

An orthogonal classification of hyper-heuristics is provided in Burke et
al. (2010) (see Figure 2.8) depending on: (i) the nature of the heuristic
search space and (ii) the source of feedback during the search process.
Hyper-heuristics can be used to select or generate constructive or
perturbative heuristics which determine the nature of the heuristic search
space. However, a new research direction of hybrid hyper-heuristics might
include a combination of heuristic selection and heuristic generation
methodologies, or a combination of constructive and perturbative heuristics. A
hyper-heuristic can employ no learning, online learning (getting feedback
from the search process while solving an instance), or offline learning (getting
feedback via training over a selected set of instances to be utilized for solving

unseen instances). A hyper-heuristic which combines simple random heuristic

52| Page



Chapter 2: Literature Review

selection with a method of accepting improving and equal quality moves is an
example which uses a no learning approach (Ozcan et al., 2008). If a hyper-
heuristic incorporates a mechanism to adaptively guide the search process
and enable the approach to make informed decisions about selecting or
generating a low level heuristic, then it is a learning hyper-heuristic. Machine
learning techniques are commonly used in hyper-heuristics. For example,
reinforcement learning (based on reward/punishment) is employed as an
online learning method for heuristic selection in hyper-heuristics (Cowling et
al., 2002c). Genetic programming is frequently used as an offline learning
hyper-heuristic which learns via the evolutionary process (Burke et al, 2009).
In this thesis, we present an online learning selection hyper-heuristic based

on perturbation heuristics (see Chapters 4-8).
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Heuristic selection construction
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ne Methodologies to select
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Figure 2.8: A classification of Hyper-heuristic. Reprinted from (Burke et al., 2010)

2.3.2.1 Selection Methodologies

In the context of selection hyper-heuristics, the search space involves a
set of widely known and understood heuristics. These heuristics are
decomposed into their primary components in order to solve a particular
problem (Burke et al., 2010). Heuristic selection methodologies can be based
on either perturbative low level heuristics or the construction low level

heuristics.

Selection hyper-heuristics based on perturbation heuristics perform a
search using two successive stages (Burke et al., 2013; Ozcan et al, 2008):

(meta-)heuristic selection and acceptance. An initial solution (a set of initial
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solutions) is iteratively improved using the low level (meta-)heuristics until
some termination criteria is satisfied. During each iteration, the (meta-
)heuristic selection decides which low level (meta-)heuristic will be executed
next based on some criteria (perhaps randomly). After the selected (meta-
)heuristic is applied to the current solution (a set of solutions), a decision is
made whether to accept the new solution(s) or not using an acceptance
method. The low level (meta-)heuristics in a selection hyper-heuristic
framework are, in general, human designed heuristics which are fixed before

the search starts.

A wide variety of selection hyper-heuristics based on perturbation
heuristics are proposed using different heuristic selection and acceptance
strategies in different domains: packing, vehicle routing, timetabling, channel
assignment, component placement, personnel scheduling, planning and shelf
space allocation (Burke et al., 2010). Most of the existing selection hyper-
heuristics are based on perturbative low level heuristics, and favour single-

point search.

More elaborate acceptance mechanisms have been introduced and there
is a growing body of comparative studies which evaluate the performance of
different heuristic selection and acceptance combinations (Burke et al., 2013).
Cowling et al. (2002c) investigated the performance of different hyper-
heuristics, combining different heuristic selection, with different move
acceptance methods on a real world scheduling problem. Simple Random,
Random Descent, Random Permutation, Random Permutation Descent,
Greedy and Choice Function were introduced as heuristic selection methods.
The authors utilised the following deterministic acceptance methods: All-
Moves accepted and Only Improving moves accepted. The hyper-heuristic,
combining Choice Function with All-Moves acceptance, performed the best. In
Kendall et al. (2002) the choice function based hyper-heuristic was proposed
and applied to nurse scheduling and sales summit scheduling. The study
shows that the choice function hyper-heuristic is successful in making
effective use of low level heuristics, due to its ability of learning the dynamics
between the solution space and the low level heuristics to guide the search
process towards better quality solutions. Burke et al. (2003c) proposed
reinforcement learning with tabu search methodology in order to solve
rostering problems. The approach is tested on two problems, concerning
university timetabling and nurse rostering. The results were comparable to

other state-of-the-art approaches.
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Bai and Kendall (2005) proposed an approach using simulated annealing
as a non-deterministic move acceptance strategy in order to apply it to a shelf
space allocation problem. In this approach, improving solutions are always
accepted, and worsening moves are accepted based on the Metropolis
criterion. The results show that the Simple Random in hyper-heuristics
simulated annealing based produces a better solution than Simple Random-
Only Improving, Simple Random All-Moves, Greedy Only Improving and
Choice Function All-Move. Dowsland et al. (2007) present simulated
annealing with reheating as a non-deterministic move acceptance strategy in
order to determine shipper sizes for storage and transportation in relation to a
packing problem. Reinforcement-Learning with tabu search (RLTS) selection
heuristic strategy is employed. The experimental data are generated based on
actual data from a cosmetics company. The study’s results show that
simulated annealing with reheating and RLTS outperform the simpler local
search strategy of Random Descent, Bai et al (2012) presents an extended
hyper-heuristics framework based on the above studies. The proposed hyper-
heuristic uses a reinforcement learning mechanism with a short term memory
as a heuristic selection and SA with a reheating scheme as a move acceptance
method. The proposed approach evaluated on different problem domains
including nurse rostering, course timetabling and bin packing. Pisinger and
Ropke (2007) developed an approach using simulated annealing based on a
linear cooling rate as an acceptance strategy and applied it to five different
vehicle routing problems. A large neighbourhood search framework is
employed. The approach was tested over a wide range of vehicle routing
benchmark instances. The experimental results confirm that the strategies

used in the approach can produce better solutions over many instances.

In Ozcan et al. (2008) the performance of seven different heuristic
selection methods (Simple Random, Random Descent, Random Permutation,
Random Permutation Descent, Greedy, Choice Function and Tabu Search)
combined with five acceptance methods (All-Moves, Only Improving,
Improving & Equal, Exponential Monte Carlo with Counter and Great Deluge)
were investigated. The resultant hyper-heuristics were tested on fourteen
benchmark functions against genetic and memetic algorithms. The empirical
results confirmed the success of memetic algorithms over genetic algorithms
and the performance of a choice function based hyper-heuristic was

comparable to the performance of a memetic algorithm. Ozcan et al. (2009)
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used late acceptance as the non-deterministic move acceptance strategy with
the best combination heuristic selection methods in order to solve exam
timetabling problems. The results show that Simple Random combined with
late acceptance outperforms Simple Random combined with other heuristic
selection methods like Greedy, Choice Function, Reinforcement-Learning and
Reinforcement-Learning Tabu Search. In Gibbs et al. (2011) the performance
of different hyper-heuristics are compared with different components
emphasising the influence of learning heuristic selection methods for solving a
sports scheduling problem. The experimental result shows that the proposed
approach is slightly better than the other approaches that use choice function
as heuristic selection and great deluge as an acceptance criteria for solving a

sports scheduling problem.

In Ozcan and Kheiri (2011) a greedy heuristic selection strategy was
presented which aims to determine low level heuristics with good performance
based on the trade-off between the change (improvement) in the solution
quality and the number of steps taken. This method performs well with
respect to the competition hyper-heuristics on four problem domains.
Berberoglu and Uyar (2011) compared the performance of combining twenty
four learning and non-learning selection hyper-heuristics and seven
mutational and hill-climbing heuristics. The study shows that Random
Permutation Descent Only Improving performed the best on a short-term

electrical power scheduling problem.

Recently, a wide empirical analysis was conducted in Burke et al. (2012)
to compare many Monte Carlo based hyper-heuristics for examination
timetabling. The experimental results show that choice function simulated
annealing with reheating performs well. Another study was conducted by
Bilgin et al. (2007) using a set of eight heuristic selection strategies (Simple
Random, Random Gradient, Random Permutation, Random Permutation
Gradient, Greedy, Choice function, Reinforcement Learning and Tabu Search)
and five move acceptance strategies (All-Moves, Only Improving, Improving &
Equal, Great Deluge Algorithm and Exponential Probability Function based on
the computation time and a counter of consecutive (EMCQ)) which were
tested on different timetabling benchmark problems. The study showed that
there is no one strategy that dominates every other combination strategies.
Vinké and Izzo (2007) proposed a new distributed solver based on

cooperatively standard versions of some stochastic solvers. The proposed
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approach outperforms the stand alone classical methods. Biazzini et al.
(2009) presented a set of distributed hyper-heuristic based on an island
model. The approach was compared against other hyper-heuristics over a set

of real parameter optimisation problems.

Misir et al. (2011) proposed a move acceptance method referred to as
Adaptive Iteration Limited List-based Threshold Acceptance (AILLA). The
proposed move acceptance is compared to other move acceptance strategies
including LA, SA, GDA and Improving & Equal. All the comparison methods
are combined with Simple Random heuristic selection. The results show that
AILLA and Late acceptance outperform the others. Misir et al. (2012) extend
the work by presenting a heuristic selection based on heuristic dynamic
learning. The approach that combined AILLA and this heuristic selection was
the winner of the CHeSC competition. Drake et al. (2012) presented a hyper-
heuristic employing a variant of the choice function as a heuristic selection
with a simple new initialisation and update scheme. Demeester et al. (2012)
presented Simple Random based hyper-heuristics using different move
acceptance strategies including Improving or Equal, GDA, SA, LA and
Steepest Descent Late Acceptance for examination timetabling. The
experimental results show that the Simple Random SA hyper-heuristic
performs the best over exam benchmark datasets. A recent study on hyper-
heuristics for continuous optimisation in dynamic environments is proposed by
Kiraz et al. (2011). The proposed approach uses a parameterised Gaussian
mutation to create different low level heuristics. The experimental results
show that the choice function Improving & Equal hyper-heuristic outperforms

Simple Random Improving & Equal hyper-heuristic.

There are a number of hyper-heuristic approaches in the literature
based on evolutionary algorithms. An example of a hyper-heuristic approach
based on a genetic algorithm can be in Dorndorf and Pesch (1995). Although
the term of hyper-heuristic was not created by the authors, the concept of a
hyper-heuristic was employed through a probabilistic learning strategy based
on the principles of evolution. The proposed algorithm was applied to solving
job shop scheduling problems. Another example of a hyper-heuristic approach
based on a genetic algorithm can be found in Hart et al. (1998). This
approach was used for handling a set of low level heuristics to solve a chicken
catching and transportation problem. Ross and Marin-Blazquez (2005) also

present a messy genetic algorithm hyper-heuristic based on graph colouring
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heuristics to tackle class and exam timetabling problems. The key idea behind
their approach was to devise an algorithm to find the problem states through
a set of labelled points which it refers to as a heuristic. The approach
produces fast problem-solving algorithms compared with other existing
algorithms. A messy genetic algorithm is employed by Terashima Marin et al.
(2008) for class and exam timetabling problems. The proposed offline
approach shows an ability to produce good quality solutions. Cobos et al
(2011) present different variants of evolutionary approaches under a multi-
point based search framework. The proposed approaches are tested on
different combinations of heuristic selection and move acceptance methods on
the document clustering problems. Grobler et al. (2012) presents a hybrid
approach on a set of meta-heuristics including a genetic algorithm, particle
swarm optimisation variants, CMA-ES and differential evolution that was

combined with local search under a multi-point hyper-heuristic framework.

In selection hyper-heuristics based on construction heuristics, an initial
solution is empty and is then built up gradually via the use of constructive
heuristics. A complete solution is obtained at the end of the run (Burke et al.,
2013). Various construction low level heuristic based approaches are
proposed using a variety of high level strategies in different domains.
According to a recent survey conducted by Burke et al. (2013), the popular
high level strategy used in heuristic selection based on constructive
heuristics are hill-climbing, genetic algorithms, tabu search, iterated local
search, variable neighbourhood search, fuzzy systems, case-based reasoning,
classifier systems, messy genetic algorithms and scatter search. In addition,
the common domains which have applied heuristic selection based on
constructive heuristics are packing, vehicle routing, timetabling and

production scheduling and constraint satisfaction domains.

2.3.2.2 Generation Methodologies

As the focus of this thesis is on selection hyper-heuristic methodologies,
only a brief review of the literature on generation hyper-heuristic

methodologies is presented in this section.

Generation hyper-heuristic methodologies refer to generating new
heuristics from the basic components of existing heuristics, known as a set of

building blocks. Generation hyper-heuristic methodologies can be based on
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either construction low level heuristics or perturbation low level heuristics
(Burke et al., 2010). In the context of heuristic generation, the search space
involves a set of basic components of known and understood heuristics. A new
heuristic is generated to produce the solution for a given problem at the end
of a run (Burke et al., 2013). Although generation hyper-heuristics aim to
generate a new heuristic automatically, using building blocks of heuristics, the
heuristic components still have to be designed by humans (Burke et al.,
2010). Generation hyper-heuristics have some advantages in terms of their
ability to produce a better solution than human-designed heuristics. In
addition, they require less (human) time and human resources to be applied
to various problem instances. However, they do have some disadvantages in

the short term regarding their computational cost (Burke et al., 2013).

The most common generation hyper-heuristics are genetic
programming-based. That is because of this methodology’s suitability to
represent heuristics in an effective way (Jakobovic et al., 2007). Genetic
programming (Koza, 1992) is an evolutionary computation technique that
operates on a population of computer programs. However, other generation
approaches have been developed based on the squeaky wheel optimisation
methodology (Joslin and Clements,1999; Aickelin et al.,2009; Burke and
Newall, 2004).

Various automated generation hyper-heuristic approaches have been
proposed in different problem domains including the travelling salesman
problem, satisfiability testing (SAT), production scheduling, cutting and
packing, boolean satisfiability, binary decision diagrams, constraint
satisfaction and compiler optimisation. An example of the generation
approach for boolean satisfiability is presented by Bader-El-Den and Poli
(2007). The approach uses genetic programming to produce local search
heuristics. In their study, traditional crossover and mutation operators are
used within various heuristic generation methodologies. Burke et al. (2006;
2007a,b) propose the generation of construction heuristics using genetic
programming. The proposed approach was evaluated on the bin packing
problems. The study confirms the applicability of the approach to these types
of problems. Further, the results show that the approach can beat the human-
designed heuristics in terms of its ability to perform better over a new
instance of a particular class of heuristic rather than new instance of a

different class. Keller and Poli (2007) propose a genetic-programming hyper-
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heuristic approach to evolve local search heuristics in order to solve travelling
salesman problems. The evolved heuristics show good performance over two
TSP benchmark instances. Pillyay (2008) conducted an analysis of
performance in genetic programming systems under three representations
(alternative encodings, fixed length and variable length) for the examination
timetabling problem. The study shows that fixed length representation
perform badly. In Ozcan and Parkes (2011) present a hyper-heuristic for
generating constructive heuristics (policies). The whole process is formulated

as a tuning process where there are many parameters in the system.

In term of multi-objective approaches, Tay and Ho (2008) propose a
genetic programming hyper-heuristic approach to evolve dispatching rules to
solve multi-objective job-shop problems in production scheduling. The
dispatching rules generated performed better than single dispatching rules.
Allen et al. (2009) present an empirical study comparing the quality of genetic
programming heuristics and human heuristics that were designed to solve 3D
knapsack packing problems. The results indicate that the generated heuristics
perform competitively against state-of-the-art approaches. Kumar et al.
(2009) propose multi-objective genetic programming for the minimum
spanning tree problem. The diameter and cost of the trees serve as
objectives. In this approach, the evolved heuristics are used to generate the
Pareto optimal front and produced good quality solutions compared with

existing heuristics.

This section has reviewed the papers in the area of research that are
particularly relevant to this thesis. For comprehensive surveys and examples
see (Burke et al, 2013). Some valuable guidelines for implementing a hyper-

heuristic approach can also be found in Ross (2005).

2.3.3 Multi-objective Hyper-heuristics Approaches

Hyper-heuristics have recently seen an increase in attention from
researchers. Although many hyper-heuristics papers have been published,
they are still mainly limited to single-objective optimisation. The hyper-
heuristics for multi-objective optimisation problems is a new area of research
in Evolutionary Computation and Operational Research (Ozcan et al., 2008;
Burke et al., 2013). To date, few studies, have been identified that deal with

hyper-heuristics for multi-objective problems (see Table 2.2).
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The first approach (Burke et al., 2003a) is a multi-objective hyper-
heuristic based on tabu search (TSRoulette Wheel). The key feature of this
paper lies in choosing a suitable heuristic at each iteration to tackle the
problem at hand by using tabu search as a high-level search strategy. The
proposed approach was applied to space allocation and timetabling problems
and produced results with acceptable solution quality. An adaptive multi-
method (multi-point) search called AMALGAM is proposed in Vrugt and
Robinson (2007). It employs multiple search algorithms; NSGAII (Deb and
Goel, 2001), PSO (Kennedy, 2001), AMS (Haario et al., 2001), and DE (Storn
and Price, 1997) simultaneously using the concepts of multi-method search
and adaptive offspring creation. AMALGAM is applied to a number of
continuous multi-objective test problems and it was superior to other
methods. It was also applied to solve a number of water resource problems
and it yielded very good solutions (Raad et al., 2010; Zhang et al., 2010}.
Veerapen et al. (2009) present a multi-objective hyper-heuristic approach
comprising two phases: the first phase aims to produce an efficient Pareto
front (this may be of low quality based on the density), while the second
phase aims to deal with a given problem in a flexible way to drive a subset of
the population to the desired Pareto front. This approach was evaluated on
the multi-objective travelling salesman problems with eleven low level
heuristics. It is compared to other multi-objective approaches from the
literature which reveals that the proposed approach generates good quality
results but future work is still needed to improve the methodology. Len et al.
(2009) propose a hypervolume-based hyper-heuristic for a dynamic-mapped
multi-objective island-based model. The proposed method shows its
superiority when compared to the contribution based hyper-heuristic and
other standard parallel models over the WFG test problems (Huband et al.,
2006). A new hyper-heuristic based on the multi-objective evolutionary
algorithm NSGAII (Deb and Goel, 2001) is proposed in Gomez and Terashima-
Marin (2010). The main idea of this method is in producing the final Pareto-
optimal set, through a learning process that evolves combinations of
condition-action rules based on NSGAII. The proposed method was tested on
many instances of irregular 2D cutting stock benchmark problems and
produced promising results. A multi-strategy ensemble multi-objective
evolutionary algorithm called MS-MOEA for dynamic optimization is proposed
in Wang and Li (2010). It combines different strategies including a memory
strategy and genetic and differential operators to adaptively create offspring

and achieve fast convergence speed. Experimental results show that MS-
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MOEA is able to obtain promising results. In McClymont and Keedwell (2011)
an online selection hyper-heuristic, Markov chain based, (MCHH) s
investigated. The Markov chain guides the selection of heuristics and applies
online reinforcement learning to adapt transition weights between heuristics.
In MCHH, hybrid meta-heuristics and Evolution Strategies were incorporated
and applied to the DTLZ test (Deb et al., 2002) problems and compared to a
(1+1) evolution strategy meta-heuristic,c a random hyper-heuristic and
TSRoulette Wheel (Burke et al., 2003a). The comparison shows the efficacy of
the proposed approach in terms of Pareto convergence and learning ability to
select good heuristic combinations. Further work is needed in terms of
diversity preserving mechanisms. The MCHH was applied to the WFG test
problems (Huband et al., 2006), the experiments shows efficacy of the
method but future work is still needed in terms of acceptance strategies to
improve the search (McClymont and Keedwell, 2011). The MCHH has also
been applied to real-world water distribution networks design problems and
produced competitive results (McClymont et al., 2013). In Miranda et al.
(2010) and Armas et al. (2011), a hyper-heuristic-based codification is
proposed for solving strip packing and cutting stock problems with two
objectives that maximise the total profit and minimise the total number of
cuts. Experimental results show that the proposed hyper-heuristic
outperforms single heuristics. In Furtuna et al. (2012) a multi-objective
hyper-heuristic for the design and optimisation of a stacked neural network is
proposed. The proposed approach is based on NSGAII combined with a local
search algorithm (Quasi-Newton algorithm). Rafique (2012) presented a
multi-objective hyper-heuristic optimisation scheme for engineering system
design problems. A genetic algorithm, simulated annealing and particle swarm
optimisation are used as low-level heuristics. Vazquez-Rodriguez and Petrovic
(2013) proposed a multi-indicator hyper-heuristic for multi-objective
optimisation. This was approach based on multiple rank indicators that taken
from NSGAII (Deb & Goel, 2001), IBEA (Zitzler and Kiinzli, 2004) and SPEA2
(Zitzler et al., 2001). Len et al. (2009) proposed a hypervolume-based hyper-
heuristic for a dynamic-mapped multi-objective island-based model. Bai et al.
(2013) proposed a multiple neighbourhood hyper-heuristic for two-
dimensional shelf space allocation problem. The proposed hyper-heuristic was
based on a simulated annealing algorithm. Kumari et al. (2013) present a
multi-objective hyper-heuristic genetic algorithm (MHypGA) for the solution of
Multi-objective Software Module Clustering Problem. In MHypGA, different
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methods of selection, crossover and mutation operations of genetic algorithms

are incorporated as a low level heuristics.

None of the above studies have used multi-objective evolutionary
algorithms (MOEAs), with the exception of Gomez and Terashima-Marin
(2010), Vrugt and Robinson (2007) and Rafique (2012) and no continuous
and standard multi-objective test problems studied, except in except in
McClymont and Keedwell (2011), Vrugt and Robinson (2007), Len et al.
(2009) and Vazquez-Rodriguez and Petrovic (2013). Moreover, none of the

previous hyper-heuristics make use of the components specifically designed

for multi-objective optimisation that we introduce in this thesis.

Component name

Application domain/
test problems

Reference(s)

Tabu search

Space allocation, timetabling

Travelling salesman problems

Burke et al. (2003)

Veerapen et al. (2009)

Markov chain, evolution strategy

Real-world water distribution
networks design /DTLZ, WFG

McClymont and Keedwell
(2011)

NSGAII

Irregular 2D cutting stock

Strip packing and Cutting stock

Gomez and Terashima-Marin
(2010)

de Armas et al. (2011) and
Miranda et al.(2010)

NSGAII, quasi-Newton algorithm

Stacked neural network

Furtuna et al. (2012)

Number of operations from
NSGAII, SPEA2 and IBEA

A number of continuous multi-
objective test problems

Vazquez-Rodriguez and
Petrovic (2013)

Number of selection, crossover
and mutation operations of
evolutionary algorithms

Software module clustering

Kumari et al. (2013)

Hypervolume

Dynamic-mapped island-based
model/ WFG

Len et al. (2009)

Particle swarm optimisation,
adaptive metropolis algorithm,
differential evolution

Water resource problems/ a
number of continuous
multiobjective test problems

Vrugt and Robinson(2007),
Raad et al. (2010) and Zhang
et al. (2010)

Memory strategy, genetic and
differential operators

Dynamic optimization
problems/a number of
continuous multi-objective test
problems

Wang and Li (2010)

Genetic algorithm, simulated
annealing, particle swarm
optimization

Engineering system design
problems/a number of classical
multi-objective test problems

Rafique (2012)

Simulated annealing

Shelf space allocation

Bai et al. (2013)

Table 2.2: Heuristic components and application domains of hyper-heuristics for multi-

objective optimisation.

2.3.4 Multi-objective Selection Hyper-heuristics versus
Hybrid Methods for Multi-objective Optimisation

According to Ke Tang in Vrugt et al. (2010), the idea of combining

multiple algorithms is not new at all, and can be traced back to 1980s. In the
context of multi-objective and evolutionary computation, many methods are

presented utilising this idea, such as adaptive multi-method algorithms (Vrugt
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and Robinson, 2007) and multi-strategy ensemble algorithms (Wang and Li,
2010).

The adaptive multi-method/strategy ensemble algorithms rely on
running multiple algorithms (such as MOEAs or evolution strategies)
simultaneously and adaptively creating the offspring. Both methods are
closely similar to selection hyper-heuristics for multi-objective optimisation
problems. Other researchers would argue that the adaptive multi-
method/strategy ensemble algorithms are hyper-heuristic methods. According
to Burke et al. (2013), the hyper-heuristics defined in Section 2.3. It is hard
to classify the adaptive multi-method/strategy ensemble algorithms as
selection or generation hyper-heuristics. However, we cannot remove them
from the umbrella of hyper-heuristics, as they are combining different
heuristics/ meta- heuristics. These methods are similar to the multi-objective
selection hyper-heuristic methods in term of the incorporation of different
algorithms. However, they are different from selection hyper-heuristics in
their concept. Selection hyper-heuristic rely on two concepts: a selection
mechanism and an acceptance move strategy. Both concepts are not adopted
in the adaptive multi-method/strategy ensemble algorithms. Moreover,
multiple heuristic/meta-heuristics run concurrently in the adaptive multi-
method/strategy ensemble algorithms. Each heuristic/meta-heuristics produce
a different population of offsprings, and then all produced offsprings are
evaluated to evolve a new population of offspring by an adaptive creation
offspring strategy. In multi-objective selection hyper-heuristics, a sequence of
heurstic/meta-heuristic is executed during the search, i.e. one heurstic/meta-
heuristic is selected and applied at each stage (iteration/decision point) of the
search. The high level strategy in hyper-heuristics evaluates the performance
of a set of heurstic/meta-heuristic in order to improve the population of

solutions.

In this thesis, a new online learning selection hyper-heuristic framework
which supports multi-point search and cooperative low level meta-heuristics
for multi-objective optimisation is proposed. Further details of this hyper-

heuristic framework are discussed in Chapter 4.

2.4 Summary

Our multi-objective hyper-heuristic framework that is investigated in

this thesis addresses multi-objective evolutionary algorithms, hyper-
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heuristics, meta-heuristics research areas. This chapter has reviewed previous

research work for those areas.

In this chapter also we provided a description of well-known
methodologies that address multi-objective optimisation and identify their
strengths and weaknesses. In this chapter, we reviewed the previous research
for multi-objective hyper-heuristics. None of the previous hyper-heuristics
make use of the components particularly designed for multi-objective

optimisation that we introduce in this thesis.

Several multi-objective test problems have been proposed in the
literature; for example, real-world problems, combinatorial optimisation
problems, discrete or integer-based problems, noisy problems, dynamic
problems, and problems with side constraints. In the next chapter, we
presents an overview and discusses the multi-objective optimisation test

problems in specifically the continuous unconstrained problems.
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3 Multi-objective Optimisation Test Problems

A multi-objective problem (MOP) comprises several objectives (two or
more), which need to be minimised or maximised depending on the problem.
Each objective has some measure as to the quality of the solution. It is
essential that MOEA algorithms are tested over a number of problems in order
to have a clear perception of their strengths and weaknesses. To accomplish
this effectively, it is crucial to first develop a strong understanding and
undertake a precise analysis of the test problems at hand. In the MOEAs
literature, several multi-objective test problems have been proposed; for
example, continuous problems, combinatorial optimisation problems, discrete
or integer-based problems, noisy problems, dynamic problems, problems
with side constraints and even real-world problems (see Coello et al., 2007b).
However, some of the multi-objective test problems do not fully examine the
characteristics of EAs. Also they sometimes have defects in their design such
as not being scalable in terms of parameters/objectives, or only being suitable
for simple algorithms (Huband et al., 2006). In order to fully understand the
features of test problems for multi-objective optimisation, some important

definitions and test problems features are described in this chapter.

3.1 Definitions of the Test Problems’ Features

Pareto one-to-one or Pareto many-to-one:

If the mapping between the Pareto optimal set and the Pareto optimal
front (the fitness landscape) is one-to-one. The problem, in this case, is
called Pareto one-to-one. Otherwise, if the fithess landscape is many-to-one

the problem is called Pareto many-to-one (see Figure 3.1).
Flat regions:

A characteristic of many-to-one fitness landscapes is when a connected
open subset of parameter space maps to a singleton. The problem with flat

regions occurs when a tiny perturbation of the parameters in regions do not

change the objective values.
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Figure 3.1: Examples of the mapping between the Pareto optimal set and the Pareto
optimal front (the fithess landscape). In (a) Pareto many-to-one, (b) Pareto one-to-
one.
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Modality:

A problem can be described as a multimodal problem if it has a
multimodal objective which includes multiple local optima in the objective
space. Otherwise, if there is only a single optimum with the objective

function, the problem is described as a unimodal problem (see Figure 3.2).

Deception:

Deception is a special case of multimodality. If the objective function
has at least two optima (a true optimum and a deceptive optimum) then it
can be called a deceptive objective, and the problem which consists of this

objective function can be called a deceptive problem (see Figure 3.2).

Bias:

In the fitness landscape, an evenly distributed sample of parameter
vectors in the search space maps to an evenly distributed set of objective
vectors in the fitness space, but the mapping from the Pareto optimal set to
the Pareto optimal front can be biased if significant variation occurs in
distribution. The variation is known as bias. It is worth mentioning that bias
has a significant effect on the convergence speed toward the Pareto optimal
front (POF).
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(@) (b)

Figure 3.2: Examples of deceptive and multimodal objectives. In (a) a deceptive
multimodal objective. (b) a nondeceptive multimodal objective. Reprinted from
(Huband et al., 2006).

Separability:

It refers to the parameter dependencies. If every objective of a
problem is separable, then it is a separable problem. Otherwise, it is a

nonseparable problem.

Pareto Front Geometries:

The geometry of the Pareto optimal front can be convex, concave,
degenerate, connect, discrete. It can also consist of different geometry fronts
which are known as mixed fronts (see Figure 3.3). A front is a convex front, if
it covers its convex hull. In contrast, if it is covered by its convex hull, it is a
concave front. A linear front is one that is both concave and convex. A
degenerate front is a front that is less than the number of dimensions in the
objective space such as front that only a point in two objectives and a line
segment in a three objective problem. (Huband et al., 2006). A connected
front is often referred to as continuous while a disconnected front is often
referred to as discontinuous. A mixed front is one with consists of strictly

convex, strictly concave, or linear front.
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Disconnected front (mixed
component, degenerate compo-
nent, convex component)
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connected
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Figure 3.3: Example of mixed geometry front consists of a half-convex and half-concave
component, a degenerate zero dimensional point, and a convex component. Reprinted
from (Huband et al., 2006).

3.2 The Features of the Test Problems

In the scientific literature, various features for multi-objective
optimisation test problems are presented. Those features are designed to
make the problems difficult enough to examine algorithmic performance.
Examples of these features are deception (Goldberg, 1987; Whitley, 1991),
multimodality (Horn and Goldberg, 1995), noise (Kargupta, 1995) and
epistasis (Davidor, 1990). Moreover, other features of test problems are
suggested in Deb (1999) such as multimodality, deceptive, isolated optimum
and collateral noise. These features can cause difficulties for evolutionary
optimisers in terms of converging to the Pareto optimal front (POF) and
maintaining the population diversity. Furthermore, some characteristics of the
POF such as convexity or non-convexity, discreteness, and non-uniformity
could cause difficulties in term of the population diversity (Zitzler et al.,
2000). Branke (1999) asserted that the test problems should be simple and
straightforward in order to understand the behaviour of the optimisation

algorithm more easily. In addition, they should be describable and analyzable,
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and their parameters should be tunable. Nevertheless, they should be

complicated enough to provide a true reflection of real world problems.

The main features of test problems for multi-objective optimisation
presented in Deb et al. (2002) include the simplicity of formation, scalability
to any number of decision variables, scalability to any number of objectives,
accurate and specific knowledge of the shape and location of the Pareto
fronts, finding a widely distributed set of Pareto solutions, and the capability
to overcome the difficulty in converging to the true Pareto front. Furthermore,
Huband et al. (2006) introduced the following key features of multi-objective
test problems which present varying degrees of problem difficulty for the

multi-objective optimisers:

e Pareto Optimal Front Geometry such as convex, linear, concave,
mixed, degenerate and disconnected.

e Parameter Dependencies which refer to the problem and whether the
objective is separable or nonseparable.

e Bias refers to whether the test problem may or may not be biased.

e Many-to-One Mappings which refer to the fitness landscape, which are
either one-to-one or many-to-one.

e Modality refers to the problem objective; this may be unimodal or

multimodal (can also be deceptive multimodality).

Huband et al. (2006) introduce some useful recommendations for

designing multi-objective test problems including:

e No extremal parameters to the test problem in order to prevent
exploitation by truncation operators.

¢ No medial parameters for the test problem in order to prevent
exploitation by intermediate recombination.

e Scalability in the nhumber of decision variables.

e Scalability in the number of objectives.

e The parameters of the test problem should have domains of dissimilar
magnitude to encourage an optimiser to scale the strengths of the
mutation operator.

e Knowledge of the POF in order to support the analysis of the results.
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It can be seen that some of the recommendations of Huband et al.
(2006) are identical to the features described by Deb et al. (2002).

3.3 Test Suite for Multi-objective Optimisation

Typically, a test suite should include different test problems which
consist of a wide range of characteristics and features as mentioned in Section
3.2. However, it is impractical to have a test suite that incorporates all
possible combinations of features. The test suites most commonly employed
as benchmark multi-objective problems in the MOEA literature are the ZDT
test suite (Zitzler et al., 2000), the DTLZ test suite (Deb et al., 2002) , the
WFG (Huband et al., 2006) and more recently LZ09 (Li and Zhang, 2009). It
good to note ZDT, DTLZ and WFG test suites have been used by MOHH
approaches which presented in Section 2.3.3. The problem features in ZDT,
DTLZ and WFG test suites are presented in Table 3.1.

Test features ZDT | DTLZ | WFG
Pareto 1-1 v
Pareto M-1 v v v
Flat Regions v
Modality Unimodality Vv Vv \'A
Multimodality v Vv v
Deception \A v
Bias Vv v \'A
Pareto Front known v v A
Separability Separable v \A v
Nonseparable v
Scalability No of Parameters \A v
No of objectives Vv v
Front Geometry | Convex v
Concave Vv \'A
Disconnected v
Degenerate v
Linear Vv \'A
Mixed v

Table 3.1: Listing of Test Problem Features in ZDT, DTLZ and WFG test suites.

3.3.1 ZDT Test Suite

This was introduced in Zitzler et al. (2000) and consists of six test
problems. All the problems are separable and complicated enough to enable

comparison over a variety of multi-objective evolutionary approaches. They
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also include some features which make the problems sufficiently difficult for
optimisers such as multimodality, non-convexity and deception. For all
problems of ZDT, the global optimum has the same variable values for
different decision variables and objectives and the POF is known (Huang et
al., 2007). In addition, the ZDT test suite has been widely used by many
researchers in MOEAs. Therefore, test results are available and can be easily
accessed. However, ZDT has some limitations. In terms of scalability, the
number of decision variables and objectives only has one decision variable
with two objectives. Moreover, none of its test problems has fitness
landscapes with flat regions, a degenerate Pareto front or even non-separable
features. In addition, the only deceptive problem is binary encoded. Also the
global optimum for all ZDT problems lies on the lower bound, or in the centre
of the search bounds (Huang et al., 2007). The ZDT test functions are
presented in Table 3.2.

3.3.2 DTLZ Test Suite

This was introduced in Deb et al. (2002) and consists of seven different
test problems. Similar to ZDT, the global optimum of DTLZ test problems has
the same values for decision variables and objectives, all its problems are
separable (Huang et al., 2007), and the POF is known. However, it differs
from ZDT in terms of its scalability. DTLZ is scalable to any number of
objectives and distance parameters. However, DTLZ has several
shortcomings. For all problems, the global optimum is situated in the centre of
the search range or on the bounds. None of these problems has fitness
landscapes with flat regions, deceptive or non-separable features. Moreover,
the number of decision variables is always strongly tied to the number of
objectives (Huband et al., 2006). In addition, the increase in the number of
objectives may cause difficulties for an optimiser to find the Pareto solutions
(Deb et al., 2002; Kokolo et al., 2001). The DTLZ test functions are
presented in Table 3.3.

3.3.3 WFG Test Suite

The Walking Fish Group’s test suite (WFG) was created in Huband et al.
(2006). It consists of nine test problems. The benchmark problems fully
satisfy the recommendations set out in Section 3.2. The WFG is designed only

for real valued parameters with no side constraints which make the problems

72 | Page



Chapter 3: Multi-objective Optimisation Test Problems

ZDT1 f1(x) = x;

gxy, ., xy)=14+9 -Zx,- /(m—1)
i=2

h(f1.9)==1-.f1/9

subjectto0<x;<1
ZDT2 f1(x1) = xq

gxy, .o, xy)=14+9 -Zx,- /(m—1)

i=2
h(f1,9) == 1-(f1/ 9)*

subjectto0<x;<1
ZDT3 f1(x) = xq

gxy, ., xy) =149 -Zx,- /(m—-1)

i=2
h(f1.9)==1-f1/9- (f1/9) sin(10m x;,)

subjectto0<x;<1
ZDT4 fl (xl) = X1

g(xg, ., xy) =1+10 (m—1) +Z:xlz —10cos(10m f,) /(m—1)
i=z
h(fug)==1-\f1/9

subjectto -5<x, <5,0<x; <1
ZDT5 f1 () = 14+u(x)
m

9G2,2) = ) D((50))
i=2
h(f1.9) == 1/f1

subject to v(u(x;)) =2+u(x;) ifulx;) <5
=1 ifulx;)=1
ZDT6 f1(x1) = 1+ exp(—4x,)sinb(6mx,)

Gz x) =1+9 () x; / (m—1))°
i=2
h(f1.9) == 1-(f1/9)?

subjectto 0<x;<1

Table 3.2: ZDT test functions. Reprinted from (Zitzler et al., 2000)

easy to analyse and implement. The features of the WFG dataset are seen as
the common choice for most MOEA researchers (Huband et al., 2006). Unlike
most of the multi-objective test suites such as ZDT and DTLZ, the WFG test
suite has powerful functionality; and a number of instances that have features
not included in other test suites. The benchmark problems are non-separable

problems, deceptive problems, a truly degenerate problem, and a mixed-
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shape Pareto front problem. In addition, WFG is scalable to any number of
parameters and objectives, and the numbers of both distance- and position-
related parameters can be scaled independently (Huband et al., 2006). The

properties of the WFG problems are presented in Table 3.4.

DTLZ1 MIN f1 (x) =05 X1 X3 wue xM_1(1 + g(XM))

MIN firy (6) = 0.5 %, (1 —x,) (1+ g (Xar)
MIN fy O) = 05 (1—x)(1+ g(Xu))

subjectto0<x; <1
gCe) = 100 (1Xy | + Z (x; — 0.5)2 — cos 20m(x; — 0.5))

XIEXM

DTLZ2 MIN f; (x) = (1 + g(Xy)) cos(xym / 2) ...cos(xy — 1m / 2)

MIN fir @) = (1+ g(X))sinCrym / 2))

subjectto0 < x; <1

g = ) Go= 05

XIEXM
DTLZ3 As DTLZ2 with the g function given in DTLZ1
DTLZ4 As DTLZ2 with different meta-variable mapping:
x; — x{ where x= 100
DTLZ5 As DTLZ2 with different mapping of 6;hy
0; = m(l +2g()x;) fori=23,..,(M-1)tL .,
where g(xy) = inex,v, x; O

DTLZ6 | MIN f, (X,) =x

MIN fy (X) = (1+gXn)) h(fi, for - fu-1.9)
subjectto0 <x; <1

9
where g(Xy) = 1+ — Z X;
| X

XIEX)
h= M-S (14 sin3rf)
DTLZ7 | v, 00y = & s |

[l “i=lu-5

subjectto0 <x; <1
9(X) = fu X+ 4()-120

9Can) = 23 (X) +min = [£,00 + (0] -1 2 0

i#j

Table 3.3: DTLZ test functions. Reprinted from (Deb et al., 2002)

All WFG test problems are continuous problems that are constructed
based on a vector that corresponds to the problem’s fithess space. This vector
is derived through a series of transition vectors such as multimodality and

non-separability. The complexity of the problem can be increased according to
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the number of transition vectors. The WFG test functions are presented in
Table 3.5.

The main advantage of the WFG test suite is that it is an excellent tool
for comparing the performance of EAs over a range of test problems, and it
has been shown to have a more comprehensive set of challenges when
compared to DTLZ using NSGAII in Huband et al. (2006). Therefore, the WFG

test suite has been selected to be the benchmark test suite employed in our

multi-objective hyper-heuristics that we present in this thesis.

Problem Obj. Separability Modality Bias Geometry
WFG1 fim separable uni polynomial, flat convex, mixed
WFG2 fi.m—1 | non-separable uni no bias Convex, disconnected

fim non-separable multi no bias
WFG3 fim non-separable uni no bias liner, degenerate
WFG4 fim separable multi no bias concave
WFG5 fim separable deceptive no bias concave
WFG6 fim non-separable uni no bias concave
WFG7 fim separable uni parameter dependent concave
WFGS8 fim non-separable uni parameter dependent concave
WFG9 fim non-separable | multi, deceptive | parameter dependent concave

Table 3.4: The properties of the WFG problems. Reprinted from (Huband et al., 2006).

3.3.4 Other Test Suites

The LZ09 test suite was created in Li and Zhang (2009) and consists of
nine problems with complicated Pareto fronts in decision space. All its
problems are continuous multimodal constrained problems that designed to
deal with two objectives, except LZ09-F6, which is a tri-objective. The main
advantages of problems with complicated Pareto set shapes (PSs) that they
are offer a challenge for MOEAs. However, LZ09 is considered a relatively new
test suite, few test results are available in the original study and in later work
(e.g. Nebro and Durillo, 2010; Batista et al., 2010; Durillo, 2011; Loshchilov,
2011).
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WFG1 hy=1: M = convexy,

hy = mixedy (With a =1and A =5)
1 —

Liz1k =Y

thpsin = S_linear(y; ,0.35)

Liz1k =Y

tiyi1n = b_flat(y;,0.8,0.75,0.85)

ttin = b_poly(y; ,0.02)

thom—r = rosum{Ya-vrym-1) + 1w Yiym-h {200 =
1h/(M =1, ... 2ik /(M — 1)})

th = r_sum({Yi+1, -, Ymh{2(k +1),....2n})
WFG 2 hy=1:M = convexp
hy =discy (Witha=8=1and A=5)
As t* from WFG1. (Linear shift.)
ti2=1:k =Yi
thksrirrz = rnonsep({Vis2(i—i)-1» Yier2(i-i0 b2)
tihim—1 =r_sum({Yo-vr/m-1 + 1, Yiyau-nh {113
tiy = rosum(Ye+a s - Yiery b {L - 13)

WFG 3 hy=1 : M = linean,(degenerate)
As t13 from WFG2. (Linear shift,non
— separable reduction, and weighted sum reduction.)

WFG 4 hy=1 : M = concave,,

thim = S_multi(y; ,30,10,0.35)
thym-r = r_sum({Y-vr/m-1 + 1o YVieya-pb {1 011
t = r_sum({Yi+1, - Ymh {1 .. 1})
WFG5 hy=1 : M = concavey,
thim = S_decept(y; ,0.35,0.001,0.05)

As t? from WFG4. (weighted sum reduction.)

WFG 6 hy=1: M = concaven,

As t! from WFG1. (Linear shift.)

tham—1 = rmonsep({Yi-vrsm-1) + 1, Vieyg-nh k/(M — 1))

tI‘Z/I = r—nonsep({yk+1 ) ren ;J/n)}' l)
WFG 7 hy=1:M = concave,,
ti2=1:k 0.98
= b_param(y;, r_sum({Y(—1), - » Ynh {1, ...,1}),—49’_98, 0.02,50)
thieim =i
As t* from WFG1. (Linear shift.)
As t? from WFG4. (weighted sum reduction.)
WFGS8 hy=1:M = concaven,
1 —
iz =Yi
t1
i=k+1mn 0.98
= b—param(yi! r_sum({yl )y yi—l}! {1' '1})! 4_9l.98 ] 002'50)
As t' from WFG1. (Linear shift.)
As t? from WFG4. (weighted sum reduction.)
WFG9 hy=1: M = concavey,
ti1=1:n—1 0.98
= b_param(y;, v_sum({Yiz1, - Yub {1, ...,1}),@, 0.02,50)
t = '
n - yn
t2 ik = S_decept(y; ,0.35,0.001,0.05)
t2 i1m = S_multi(y; ,30,95,0.35)

As t? from WFG6. (non — separable reduction.)

Table 3.5: WFG test functions. Reprinted from (Huband et al., 2006)

Van Veldhuizen’s test suite was created in Van Veldhuizen (1999) which

consists of seven multi-objective test problems. The main drawbacks of Van
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Veldhuizen’s problems are that they were designed for only two or three
decision variables and are not scalable in terms of the number of objectives.
In addition, none of these problems has any deceptive, flat regions or many-

to-one fitness landscapes (Huband et al., 2006).

Deb (1999) introduced a toolkit for creating test problems for multi-
objective optimisation. Deb’s toolkit incorporates three functions: a
distribution function to assess the optimiser’s performance in terms of the
diversify along the POF, a distance function to assess the optimiser’s
performance in terms of convergence towards the POF, and a shape function
to specify the shape of the POF. Deb’s toolkit has shortcomings; it was
designed to construct a problem with two objectives only, and no problems
with flat regions, degenerate or even mixed Pareto front geometries are
provided. Moreover, no real valued deceptive functions are considered in the
toolkit.

3.4 Other Test Functions Problems for Multi-objective
Optimisation

In the MOEA literature, various test problems have been presented.
However, some test problems had shortcomings in terms of the simplicity of
construction and the scalability of the number of parameters and objectives
(Deb et al., 2002). For instance, Schaffer (1985) presented two test problems
(SCH1 and SCH1). Both problems were scalable but only to single decision
variable. Poloni et al. (2000) presented a test problem (POL) that has only
two decision variables. Fonseca and Fleming (1995) and Kursawe (1990)
introduced their own test problems, FON and KUR respectively. Both test
problems were scalable to any number of decision variables but were not
scalable in terms of the number of objectives. Viennet (1996) introduced a

test problem (VNT) that was scalable to only three objectives.

3.5 Summary

Several multi-objective test problems have been proposed in the
scientific literature such as real-world problems, combinatorial optimisation
problems, discrete or integer-based problems, noisy problems, dynamic
problems, and problems with side constraints. In this thesis, we focus on
continuous unconstrained real-valued problems. It is essential that algorithms

are tested in order to have a clear perception of their strengths and
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weaknesses. To accomplish this effectively, it is crucial to first develop a
strong understanding and undertake a precise analysis of the test problems at
hand. This chapter has reviewed the multi-objective test problems that are
particularly relevant to this thesis. The most common multi-objective test
problem such as the ZDT test suite (Zitzler et al., 2000), the DTLZ test suite
(Deb et al., 2002) and the WFG (Huband et al., 2006) are identified and
discussed. A description of those problems with an analysis of their features is
given as well. The WFG test suite has been selected to be the benchmark test
suite employed in our multi-objective hyper-heuristics that we present in this
thesis, as it has been shown to have a more comprehensive set of challenges
among other test suites (Huband et al., 2006).

In next chapter, we discuss design issues related to the development of
hyper-heuristics for multi-objective optimisation. And we propose an online
learning selection choice function based hyper-heuristic for multi-objective

optimisation.
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4 A Multi-objective Hyper-heuristic Framework

Burke et al. (2003b) provide a generic hyper-heuristic framework (see
Section 2.3.1). Soubeiga (2003) presents general guidelines for designing an
effective framework for a hyper-heuristic for single-objective optimisation.
Burke et al. (2003a) discussed a framework for hyper-heuristic for multi-
objective combinatorial problems. However, no further investigations, nor any
related information, are given for how to build a hyper-heuristic for multi-
objective optimisation to deal specifically with continuous problems. In this
chapter, we discuss design issues related to the development of hyper-
heuristics for multi-objective optimisation. And we propose an online learning
selection choice function based hyper-heuristic for multi-objective
optimisation. A choice function is utilised as a selection mechanism for the

proposed framework.

4.1 A Selection Choice Function Hyper-heuristic
Framework

The design of the framework for our multi-objective hyper-heuristic is
inspired by two facts. Firstly, there is no existing algorithm that excels across
all types of problems. In the context of multi-objective optimisation, no single
MOEA algorithm has the best performance with respect to all performance
measures in all types of multi-objective problems. Some comparison studies
in MOEAs which emphasises this idea are presented in Section 2.1.11. This
fact is also supported by the No Free Lunch Theorem (Wolpert and
Macready,1997). Secondly, the hybridisation or combining different
(meta)heuristics/algorithms into one framework could yield promising results
compared to (meta)heuristics/algorithms when used alone. In Section 2.3, we
reviewed many studies that support this fact. According to those facts, we
are looking to gain an advantage of combining different algorithms in a hyper-
heuristic framework for multi-objective optimisation to get benefit from the

strengths of the algorithms and avoid their weaknesses.

The idea of hybridising a number of algorithms (heuristics) into a
selection hyper-heuristic framework is straightforward and meaningful.
However, many design issues related to the development of hyper-heuristics
for multi-objective optimisation require more attention when designing such a

framework to be applicable and effective.
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The main components of the hyper-heuristic framework are low level
heuristics, selection method, learning mechanism and move acceptance
method. The choosing of these components is critical. In our opinion, all
components are important and could affect the performance of the hyper-
heuristics. For instance, if we employ very powerful low level heuristics and a
poor move acceptance method, we have less chance of producing high quality
of solutions. This is especially true if we employ a complete algorithm as a low
level heuristic and this algorithm produces a good quality solution. With a
poor move acceptance method, the obtained solution could be rejected. The
reverse is also true. Therefore, each component in the hyper-heuristic
framework plays a significant role in improving the quality of both the search
and the eventual solution. The components of the hyper-heuristic in the

context of multi-objective optimisation are discussed in depth in as follows:

e Low level heuristics:

The choice of appropriate low level heuristics is not an easy task.
Many questions arise here, what heuristics (algorithms) are suitable to
deal with multi-objective optimisation problems. Are priori approaches
or a posteriori approaches more suitable? Are non Pareto-based or a
Pareto-based more applicable? (see Section 2.1). As one of hyper-
heuristic aims is raising the level of generality, a posteriori approach is
more suitable to achieve this aim. Unlike the priori approaches, there is
no need to set objective preferences or weights prior to the search
process in the posteriori approach such as MOEAs which based on Pareto
dominance. Moreover, we agree with many researchers (Deb and
Goldberg, 1989; Back, 1996; Fonseca and Fleming, 1998; Deb, 2001;
Coello et al., 2007a; Anderson et al., 2007; Zhang and Li, 2007;
Miranda et al., 2010) that evolutionary algorithms are more suitable in
dealing with multi-objective optimisation problems because of their
population-based nature, which means they can find Pareto optimal sets
(trade-off solutions) in a single run, which allows a decision maker to
select a suitable compromise solution (with respect to the space of the
solutions). In the context of multi-objective hyper-heuristics, a decision
maker here could be a selection method that decides which is the best
low level heuristic to select at each decision point (with respect to the

space of the heuristics).
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The main aim of hyper-heuristics is to draw on the strengths of
individual low level heuristics and avoid their weaknesses. This
motivates us to make use of classical Pareto-based MOEAs (NSGAII,
SPEA2 and MOGA) to act as low level heuristics within our hyper-
heuristics framework, as their features are more likely (in our view) to
generate high quality solutions. In other words, we reuse the
conventional MOEAs to benefit from their strengths even if they have
some shortcomings. The features of classical MOEAs make them
suitable to enable us to investigate their combined use within a multi-
objective hyper-heuristic framework. Although NSGAII, SPEA2 and
MOGA are no longer considered state-of-the-art MOEAs, more powerful
population-based methods such as decomposition-based approaches
MOEA/Ds (e.g. (Li and Zhang, 2009; Li and Landa-Silva, 2011)) and
indicator-based approaches (e.g. (Auger et al.,2012; Bader and Zitzler,
2011)) may outperform them. However, they are still viewed as a
baseline for MOEA. Moreover, they incorporate much of the known
MOEA theory (Van Veldhuizen and Lamont, 2000). Comparative

studies, which support this decision, are presented in Section 2.1.11.

e Selection method:

As a selection hyper-heuristic relies on an iterative process, the
main questions arise here are what is an effective way can use to
choose an appropriate heuristic at each decision point? And how to
choose this heuristic i.e. which criteria can be considered when
choosing a heuristic? In single-objective cases, this criterion is easy to
determine by measuring the quality of the solution such as the
objective/cost value and time. However, this is more complex when
tackling a multi-objective problem. The quality of the solution is not
easy to assess. There are many different criteria that should be
considered such as the number of non-dominated individuals and the
distance between the non-dominated front and the POF. We will
discuss this later when dealing with learning and the feedback
mechanism (will discuss later). As we aim to keep the framework
simple, we should keep in a higher level of abstraction as much as
possible. Therefore, we do not employ any information about problem-
specific such as the number of objectives nor information about the

nature of the solution space. We focus more on the performance of the
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low level heuristics. This will boost the intensification element. So, a
heuristic with the best performance will be chosen more frequently to
exploit the search area. We are not only looking for the intensification
but we also give attention to diversification. We attempt to achieve a
kind of balance between the intensification and diversification when
choosing a heuristic. Selection methods based on randomisation
support only the diversification by exploring unvisited areas of the
search space. Reinforcement learning (RL) (Sutton and Barto, 1998)
that use, as a selection method, support intensification by rewarding
and punishing each heuristic based on its performance during the
search using a scoring mechanism. An example of this can be found in
Nareyek (2003). The choice function that is used as a selection method
in hyper-heuristics provides a balance between intensification and
diversification. The choice function addresses the trade-off between
the undiscovered areas of the search space and the past performance
of each heuristic. The experimental results demonstrate that the choice
function based hyper-heuristic outperforms other random based hyper-
heuristics over shelf space allocation problems (Bai, 2005). In addition,
the computational results show the choice function all-moves based
hyper-heuristic is superior to other hyper-heuristics that combine
different selection methods with different move acceptance methods
on a project presentation problem (Cowling et al., 2002c). The choice
function meets our requirements for the selection method. Moreover, it
was successful when used as a selection method in the hyper-heuristic
for single-objective optimisation (Soubeiga, 2003). For these reasons,
we have decided to employ the choice function as a selection method
and to act as a high level strategy in our multi-objective hyper-
heuristic framework. More details about the choice function are

provided in Section 4.3.

e Learning and feedback mechanism:

Not all hyper-heuristic approaches incorporate a learning
mechanism (see Section 2.3.2). However, a learning mechanism is
strongly linked to the selection method. An example of this is a
random hyper-heuristic which is classified as an offline learning
approach (Burke et al., 2010), because the random selection does not

provide any kind of learning. In the context of our multi-objective
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hyper-heuristic framework, a learning process is an essential element
in the choice function to do its task as a selection method effectively.
The learning mechanism guides the selection method to which best
heuristic should be chosen at each decision point. We mean by a best
heuristic the heuristic that produces solutions with good quality. As we
mention previously, the measurement of the quality of the solution for
multi-objective problems requires us to assess different aspects of the
non-dominated set in the objective space (see Section 2.1.9). As
inspiration from the first fact, that mentioned earlier, is that no single
MOEA excels across all performance measures (Tan et al., 2002).
Therefore, we employ a learning mechanism based on different
measures using the ranking scheme to provide a feedback about the
quality of the solutions. We do not aim to choose a heuristic that
performs well with respect to all measures. This cannot be achieved
anyway in accordance with the No Free Lunch Theorem (Wolpert and
Macready, 1997). But we aim to select a heuristic that performs well in
most measures. More details about the learning mechanism that is
employed in our multi-objective hyper-heuristic are provided in Section
4.2.

¢ Move acceptance method:

The selection hyper-heuristic framework comprises two main
stages: selection and move acceptance methods (Burke at al., 2010).
In the scientific literature, many methods are presented that act as
move acceptance strategies in hyper-heuristics (see Section 2.3.2.1) a
move acceptance criterion can be deterministic or non-deterministic. A
deterministic move acceptance criterion produces the same result,
given the configuration (e.g. proposed new solution etc). A non-
deterministic move acceptance criteria may generate a different result
even when the same solutions are used for the decision at a same
given time. This could be because the move acceptance criterion
depends on time or it might have a stochastic component while making
the accept/reject decision. Examples of deterministic move acceptance
criteria are All-Moves, Only-Improving and Improving & Equal. In All-
Moves, the candidate solution is always accepted whether a move
worsens or improves the solution quality. The candidate solution in

Only-Improving criteria is accepted only if it improves the solution
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quality, while in Improving & Equal criteria, the candidate solution is
accepted only if it improves or equal to the current solution. For non-
deterministic move acceptance criteria, the candidate solution is
always accepted if it improves the solution quality, while worsening
solutions can be accepted based on an acceptance function including
the great deluge algorithm (GDA) (Dueck, 1993), Ilate acceptance
(Burke and Bykov, 2008), monte carlo (Glover and Laguna, 1995) and
simulated annealing (Kirkpatrick et al., 1983) . In this thesis, we
investigate a multi-objective choice function based hyper-heuristic
using different move acceptance methods including deterministic (All-
Moves) and non-deterministic strategies (GDA and LA). These
investigations are presented and discussed in Chapters 5-7. To the
best of the authors' knowledge, this thesis, for the first time,
investigates the influence of the move acceptance as a component in a
selection hyper-heuristic for multi-objective optimisation. Since no
similar work has been reported in the literature, this investigation is a
useful reference not only for the work presented in this thesis but also
for other researchers interested in selection hyper-heuristics for multi-
objective optimisation. We decided to employ GDA and LA as a move
acceptance component in our multi-objective hyper-heuristic choice
function as they are both simple and depend on a small number of
parameters (Petrovic et al., 2007). Moreover, it was successful with
single-objective optimisation (Kendall and Mohamad, 2004). We also
note that no work has been reported in the scientific literature that
utilises GDA and LA as a move acceptance component within a hyper-

heuristic framework for multi-objective optimisation.

The multi-objective choice function based hyper-heuristic framework is
shown in Figure 4.1. The choice function acts as the high level strategy and
three well-known multi-objective evolutionary algorithms (NSGAII, SPEA2,
and MOGA) act as low level heuristics. The choice function considers the
performances of low level heuristics in order to select a suitable heuristic as
the search progresses. This process adaptively ranks the performance of low
level heuristics with respect to the performance metrics, deciding which one

to call at each decision point.
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High level Strategy

Selection Method (choice function)

Apply selected low level heuristic
Ranking scheme and get feedback Acceptance
& Feedback Method (Decision
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Domain Barrier

Low Level

H1: NSGAII H2: H3:
SPEA2 MOGA

Population

Figure 4.1: The proposed framework of the hyper-heuristic choice function based for
multi-objective optimisation problems. In this framework, the choice function acts as a
high level strategy and three well-known multi-objective evolutionary algorithms
(NSGAII, SPEA2, and MOGA) act as low level heuristics.

Problem Domain
-Problem representation
- Evaluation functions

In this framework. the high level strategy does not have any knowledge
of the problem domain and solutions. This is a separation of domain
information known as the domain barrier. To provide the knowledge of the
problem domain to the high level strategy, a number of performance metrics
are utilised as a feedback mechanism. More details about the feedback
mechanism are presented in the next section. The high level strategy selects
one low level heuristic at each decision point according to the information
obtained from the feedback mechanism. Note that the three low level
heuristics operate in an encapsulated way. Each heuristic has its own
characteristics described in Section 2.1. There is no direct information
exchange between low level heuristics but they are sharing the same
population. The framework is flexible and could incorporate any MOEA(s) for
multi-objective optimisation in future work. The framework designed to make
used for the complete algorithm as low level heuristic. No much information
required from the low level heuristic, only the number of function evaluations

and objectives as input and non-dominated solutions as output.
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4.2 The Online Learning Feedback Mechanism and the
Ranking Scheme

Four performance metrics are selected to be indicators for the feedback
mechanism. These performance metrics are as follows (see Section 2.1.9. for

more details):

e Algorithm effort (AE) (Tan et al., 2002

e Ratio of non-dominated individuals (RNI) (Tan et al., 2002)

e Size of space covered or S-metric Hypervolume (SSC) (Zitzler and
Thiele, 1999).

e Uniform distribution of a non-dominated population (UD) (Srinivas and
Deb, 1994)

The motivation behind choosing these metrics is that they have been
commonly used for performance comparison of MOEAs to measure different
aspects of the final non-dominated solutions in the objective space (Tan et al.,
2002). In addition, they do not require prior knowledge of the POF, which
means that our framework, is suitable for tackling real-world problems in
future studies. The task of the performance metrics is to provide information
about the performance of the low level heuristics. It is to provide an online
learning mechanism in order to guide the high level strategy during the
search and determine which low level heuristic should be selected next. Since
those metrics are not in the same scalar units, it is difficult to determine the
best heuristic with respect to the four performance metrics. Therefore, we use
a ranking scheme to score the performance of heuristics. This ranking scheme
is simple and flexible and enables us to incorporate any number of low level
heuristics and performance indicators. Unlike the ranking scheme used in
Vazquez-Rodriguezand Petrovic (2012), which ranks the algorithms based on
their probabilities against the performance indicators’ using a mixture of
experiments, our ranking scheme relies on sorting the low level heuristics in
descending order based on the highest ranking among the other heuristics.
For N number of low level heuristics and M number of performance metrics, N
heuristics are ranked according to their performances against M metrics. For a

particular metric m;,i € M, a heuristic h;,j € N with the best performance

among other heuristics assigns the highest rank, which is equal to N. Then
another heuristic with the second best performance is ranked as N — 1 and so

on. If two heuristics have the same performance, both heuristics are assigned

86| Page



Chapter 4: A Multi-objective Hyper-heuristic Framework

the same rank. This ranking process is applied for all M metrics. After all
heuristics are ranked against all metrics, the frequency of the highest rank for
each heuristic is counted. A heuristic with the largest frequency count of the
highest rank is more desirable. An example of how the ranking scheme works
using the four performance metrics to rank three low level heuristics is

described in Figure 4.2.

AE| RNI} | SSC; | UDt

hy 0.0003 | 1.00 | 10.70 | 4.91
h, | 0.0001 | 1.00 | 11.90 | 3.75
h, | 0.0004 | 0.60 | 9.81 3.00

1 Rank

Count
AE[RNI[SSC [ UD | mup | fu | 2
hy| 2 2 the h, 3
h, 2 | Highest | hs 0
hy| 1| 2 | 1 |1 Rank

Figure 4.2: An example of how three low level heuristics, denoted as hy, h, and h; are
ranked against four performance metrics of AE, RNI, SSC, and UD. The | and 1 show
that heuristics are ranked in decreasing and increasing order for the given metric,
respectively, 3 indicating the top ranking heuristic. Each row in the top table represents
each low level heuristic’s performance with respect to the four metrics. Each row in the
leftmost table represents each heuristic’s rank among other heuristics for each metric.
The rightmost table represents the frequency of each heuristic ranking the top over all
metrics.

As we are not only looking for the heuristic that has the best

performance, but also aiming to have a larger number of non-dominated
individuals, the frequency count of the highest rank for a heuristic h; is

summed with its RNI rank using:

VieN fi(h) = freqhighest_rank(hi) + RNLgni (hy) (4.1)
where N represents the number of the low level heuristics and f;(h;) reflects
a performance of heuristic h;. In the example presented in Figure 4.2, the

performance value of h, is equal to 6 using Equation 4.1. In the case of two
heuristics h; and h; having the same value of f;(h;) and f;(h;), we consider

the heuristic that has a higher count of the second highest rank (N — 1).
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4.3 The Choice Function Meta-heuristic Selection
Method

The key idea behind the use of a choice function as a selection
mechanism in a hyper-heuristic is guiding the search by choosing a heuristic
at each decision point based on its historical performance and the time passed
since the last call to the heuristic. This selection process supports both
intensification and diversification which provides a kind of learning for the
hyper-heuristic. If a heuristic performs well, the choice function will choose it
to exploit the search area. Even a heuristic that does not perform well still has

a chance to be called in order to explore new areas of the search space.

Cowling et al. (2002c) and Kendall et al. (2002) propose a choice
function based hyper-heuristic for a single-objective problem that employs the
choice function as a heuristic selection method which adaptively ranks the low

level heuristics (h;) using:

CF(hy) = afi(h) + Bfa(hy hy) + 6f3(h) (4.2)

where f; measures the individual performance of each low level heuristic, f,
measures the performance of pairs of low level heuristics invoked
consecutively, and finally, f5 is the elapsed CPU time since the heuristic was

last called. Both f; and f, support intensification whilef, supports

diversification. The parameter values for @, § and § are changed adaptively
based on a similar idea to reinforcement learning. The choice function based
hyper-heuristic was applied to nurse scheduling and sales summit scheduling.
The study shows that the hyper-heuristic combining Choice Function with All-
Moves acceptance performed the best when compared to the other methods.
The study also shows that the choice function hyper-heuristic is successful in
making effective use of low level heuristics, due to its ability to learn the
dynamics between the solution space and the low level heuristics to guide the
search process towards better quality solutions. For more details, see
(Soubeiga, 2003).

The formula in Equation 4.2 was extended for multi-criteria decision
making (MCDM) in Soubeiga (2003) as:
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5
Vi, CF (h) = o fq(h) + BafaChy, hy) +—f3(h) (4.3)

Each individual criterion | has its own choice function. The choice function
CF; (h;) reflects the overall performance of each low level heuristic h; with
respect to each criterionl. Of course, Equation in 4.2 is still valid if several

criteria are aggregated into one objective function.

In this thesis, we propose a modified version of the choice function
heuristic selection method as a component in our multi-objective selection

hyper-heuristic. The modified choice function is formulated as

Vi €N, CFi(h) = afi(h) + foi(h) (4.4)

where f;;(h;) is computed using Equation 4.1 based on the ranking scheme
described earlier in Section 4.2. It measures the individual performance of
each low level heuristic h;. f5;(h;) is the number of CPU seconds elapsed since
the heuristic was last called. f;;(h;) provides an element of intensification
while f,;(h;) provides an element of diversification, by favouring those low
level heuristics that have not been called recently. o is a large positive value
(e.g. 100). It is important to strike a balance between f; and f, values, so
that they are in the same scalar unit. Experiments to tune o are conducted
in Chapter 5. The low level heuristic h; with the largest value of CF;(h;) is the

heuristic that is applied for the next iteration of the search.

Equation 4.4 differs from Equations 4.2 and 4.3 as it is adjusted to deal
with a given multi-objective optimisation problem, but their goal is the same,
measuring the overall performance of a low level heuristic h;. Unlike Equation
4.3 which reflects the performance of low level heuristics with respect to the
criteria (objective values), Equation 4.4 reflects the overall performance of
low level heuristics with respect to the performance metrics that measures the
resulting non-dominated set in the objective space. Our multi-objective
hyper-heuristic works at a high level of abstraction, no information for
problem-specific is required such as the number of objectives nor for the
nature of the solution space, only the number of low level heuristics. This
advantage makes our framework suitable to apply to single-objective
optimisation by replacing the performance metrics and low level heuristics to

those which are designed for single-objective problems.

89| Page



Chapter 4: A Multi-objective Hyper-heuristic Framework

4.4 Summary and Remarks

Hyper-heuristics have drawn increasing attention from the research
community in recent years, although their roots can be traced back to the
1960’s. They perform a search over the space of heuristics rather than
searching over the solution space directly. Research attention has focussed on
two types of hyper-heuristics: selection and generation. A selection hyper-
heuristic manages a set of low level heuristics and aims to choose the best
heuristic at any given time using historic performance to make this decision,

along with the need to diversify the search at certain times.

References to a hyper-heuristic framework for multi-objective
optimisation are scarce. Burke et al., (2003b) provide a generic hyper-
heuristic and Soubeiga (2003) presents general guidelines for designing a
framework for hyper-heuristics. Burke et al. (2003a) discussed a framework
for a hyper-heuristic for multi-objective combinatorial problems. No further
investigations nor any related information are given for how to build a hyper-
heuristic for multi-objective optimisation in particular continuous problems.
This chapter has addressed the design issues related to the development of
hyper-heuristics for multi-objective optimisation. The framework of our multi-
objective hyper-heuristic is inspired by two facts: (i) no existing algorithm
that excels across all types of problems, and (ii) the hybridisation or
combining different (meta)heuristics/algorithms into one framework could
yield promising results compared to (meta)heuristics/ algorithms on their
own. Accordingly, we discussed each component of a hyper-heuristic
framework from the multi-objective prospective including the low level
heuristics, the selection method, the learning and feedback mechanisms and

finally the move acceptance method.

Hyper-heuristic frameworks, generally, impose a domain barrier which
separates the hyper-heuristic from the domain implementation along with low
level heuristics. Moreover, this barrier does not allow any problem specific
information to be passed to the hyper-heuristic itself during the search
process. We designed our framework in the same modular manner, making it
highly flexible and its components reusable and easily replaceable. Our online
selection choice function based hyper-heuristic for multi-objective (HHMO_CF)
controls and combines the strengths of three well-known multi-objective
evolutionary algorithms (NSGAII, SPEA2, and MOGA), which are utilised as
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the low level heuristics. The motivation behind choosing these MOEAs is that
they are efficient and effective and they also incorporate much of the known
MOEA theory (Van Veldhuizen and Lamont, 2000). The choice function
utilised, as a selection method, acts as a high level strategy which adaptively
ranks the performance of three low-level heuristics, deciding which one to call
at each decision point. Four performance metrics (AE, RNI, SSC and UD) act
as an online learning mechanism to provide knowledge of the problem domain

to the selection mechanism.

There is strong empirical evidence showing that different combinations
of heuristic selection and acceptance methods in a selection hyper-heuristic
framework yield different performance in single-objective optimisation (Burke
et al., 2012). In the next three chapters, we will investigate the proposed
multi-objective choice function based hyper-heuristic combined with different
move acceptance strategies including All-Moves as deterministic move
acceptance and Great Deluge (GDA) and Late Acceptance (LA) as non-

deterministic move acceptance.
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5 A Heuristic Selection Using Deterministic Move
Acceptance Strategy

In the previous chapter, we presented the framework for an online
learning selection hyper-heuristic for multi-objective optimisation. The key
feature of the proposed selection hyper-heuristic is the use of a modified
choice function as a selection method based on ranking low level heuristics
according to their performance. This chapter investigates the proposed multi-
objective choice function based hyper-heuristic when combining All-Moves as

a move acceptance strategy.

5.1 Choice Function All-Moves for Selecting Low Level
Meta-heuristics (HHMO_CF_AM)

In single-objective optimisation, Cowling et al., (2002c) investigate the
performance of different hyper-heuristics, combining different heuristic
selection, with different move acceptance methods on a real world scheduling
problem. Simple Random, Random Descent, Random Permutation, Random
Permutation Descent, Greedy and Choice Function were introduced as
heuristic selection methods. The authors utilised the following deterministic
acceptance methods: All-Moves accepted and Only Improving moves
accepted. The hyper-heuristic combining Choice Function with All-Moves
acceptance performed the best. In this chapter, we investigate the
performance of the proposed multi-objective choice function based hyper-
heuristic, utilising All-Moves as a deterministic acceptance strategy, meaning,
that we accept the output of each low level heuristic whether it improves the
quality of the solution or not. We use the multi-objective hyper-heuristic
framework that we proposed in Chapter 4. Three well-known multi-objective
evolutionary algorithms (NSGAII, SPEA2, and MOGA), act as the low level

heuristics.

The multi-objective choice function all-moves based hyper-heuristic
(HHMO_CF_AM) is shown in Algorithm 10. Initially, a greedy algorithm is
executed to determine the best low level heuristic to be selected for the first
iteration (steps 2-6). All three low level heuristics are run (step 3). Then, the
three low level heuristics are ranked by using Equation 4.1 and their choice
function values are computed by using Equation 4.4 (steps 4 & 5). The low
level heuristic with the largest choice function value is selected (step 6) to be

applied as an initial heuristic (step 8). Then, for all low level heuristics, the
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ranking mechanism is updated (step 9). The choice function values are also
computed and updated (step 10). According to the updated choice function
values, the low level heuristic with the largest choice function value is
selected to be applied in the next iteration (step 11). This process is repeated
until the stopping condition is met (steps 7-12). Note that the greedy
algorithm is applied only once at the beginning of the search, in order to
determine which low level heuristic to apply first. Then, only one low level

heuristic is selected at each iteration.

Algorithm 10: Multi-objective Choice Function All-Moves based Hyper-heuristic

1: procedure HHMO_CF_AM (H) whereas H is a set of the low level heuristics
2: Initialisation

3: Run h,V h € H for ng function evaluations

4: Rank h,vh e H based on the ranking scheme

5: Get CF(h),YheH

6: Select h with the largest CF(h) as an initial heuristic

7: repeat

8: Execute the selected h for ng function evaluations

9 Update the rank of h,v h € H based on the ranking scheme
10: Update CF(h),Vh € H

11: Select h with the largest CF(h),Vh € H

12: until (termination criteria are satisfied)

13: end procedure

Our multi-objective selection choice function based hyper-heuristic
(HHMO_CF) involves N multi-objective meta-heuristics as low level heuristics
for solving k-objective optimisation problems. Each low level heuristics
executes a fixed number of function evaluations ng where n is the size of
population and g is the number of generations. Because of the high level
abstraction in HHMO_CF, the number of objectives in kis not considered.
HHMO_CF executes for a fixed number of iterations (decision points) (NDP) as
computational resource is always limited. In each iteration, HHMO_CF
evaluates ng function evaluations. That is, HHMO_CF executes for NDP X ng
function evaluations. Regardless of the computational cost for low level
heuristics are used, the high level strategy; the selection choice function
method in (Steps 9 & 10) ranks N low level heuristics with respect to M
performance metrics. So the computational cost of the choice function at each
iteration is N x M. HHMO_CF takes linear time to execute; ngXx N X M. We
note that N and M are negligible. In the best case, HHMO_CF only requites
O(ng) basic operations per iteration to achieve an approximation Pareto front
which has a comparable quality to that obtained by the low level heuristic
when run individually. The experiments observation shows that there is no

notable difference between the execution time of our method and other low
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level heuristics run on their own. It is good to note that all the methods are

executed the same number of function evaluations.

5.2 Performance Comparison of Multi-objective
Choice Function Based Hyper-heuristic and Low Level
Heuristics

A set of experiments using the WFG test suite is conducted to see the
performance difference between using each individual multi-objective meta-
heuristic (NSGAII, SPEA2, and MOGA) run on its own and the proposed
HHMO_CF_AM selection hyper-heuristic that combines them. Although NSGAII
and SPEA2 have previously been applied to the WFG test suite in Bradstreet
et al. (2007), we repeat the experiments, including MOGA, under our own
experimental settings. For short, we refer to the HHMO_CF_AM as HH_CF.

5.2.1 Performance Evaluation Criteria

The comparison of the quality of solutions for multi-objective
optimisation is more complex than single-objective problems. The number of
non-dominated individuals should be maximised, the distance to the non-
dominated front should be minimised, i.e. the resulting non-dominated set
should be distributed uniformly as much as possible and converge well toward
the POF. Because of that, we use three performance metrics RNI, SSC, and
UD, to assess the quality of approximation sets in different aspects. In
addition, we use the students test (t-test) as the statistical test while
comparing the average performances of a pair of algorithms with respect to a

metric averaged over 30 trials. The null hypothesis is as follows:

{HO the performance of a pair of algorithms have the same means
H, the performance of a pair of algorithms have dif ferent means

We assume two independent samples, unequal variance and one-tailed
distribution with 95% confidence level. We aim to reject the null hypothesis
and accept the alternative hypothesis and demonstrate the performance of
HH_CEF is statistically different from the performance of other algorithms. We
use the following notation. Given two algorithms P and Q, P:Q + (—) indicates
that P performs better/worse than @ on average and this performance

difference is statistically significant. The ~ sign indicates that both algorithms
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deliver a similar performance. The notation n/a means the t-test is not

applicable since the performances of both algorithms are completely equal.

5.2.2 Experimental Settings

All experimental parameters are chosen accordingly to that commonly
used in the literature for continuous problems. Nine test problems for the
WFG suite (WFG1-WFG9) have 24 real parameters including four position
parameters, 20 distance parameters and two objectives. All settings for the
test suite are fixed using the same settings proposed in the previous studies
(Zitzler et al., 2000; Huband et al., 2006).

According to Voutchkov and Keane (2010) and Chow and Regan (2012),
an algorithm could reach better convergence by 6,250 generations. Therefore,
the HH_CF was terminated after 6,250 generations. That is, HH_CF runs for a
total of 25 iterations (stages). In each iteration, one low level heuristic is
applied and this is executed for 250 generations with a population size equal
to 100. The secondary population of SPEA2 is set to 100. The execution time
takes about 10-30 minutes depending on the given problem. In order to make
a fair comparison, each low level heuristic is used in isolation and is
terminated after 6,250 generations. For the WFG problems, 30 independent
trials were run for each algorithm with a different random seed. For all three
low level heuristics, the simulated binary crossover (SBX) operator is used for
recombination and a polynomial distribution for mutation (Deb and Agrawal,
1995). The crossover and mutation probability were set to 0.9 and 1/24
respectively. The distribution indices for crossover and mutation were set to
10 and 20 respectively. In the measure of SSC, the reference points for WFG
problems with k objectives was set r; = (0,i *2),i =1,...,k; (Huband et al.,
2006). The distance sharing o for the UD metric and MOGA was set to 0.01 in
the normalised space. These settings were used for SSC and UD as a
feedback indicator in the ranking scheme of HH_CF and as a performance
measure for the comparison. All algorithms were implemented with the same
common sub-functions using Microsoft Visual C++ 2008 on an Intel Core2
Duo 3GHz\2G\250G computer.

5.2.3 Tuning of o parameter

In our multi-objective hyper-heuristic framework, we employ a modified
choice function, a selection mechanism using Equation 4.4 (see Section 4.3).
The parameter value for a is important to strike a balance between f; and f,
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values, as they are not in the same scalar unit. However, the choice of the
right value is not trivial. We conducted initial experiments to determine the
right value of o that leads to obtain solutions with good quality. In this
experiment, we used three values in different ranges (small, middle and large
(10,100 and 1000) respectively). Four instances of the WFG with two
objectives (WFG1, WFG4, WFG6 and WFGS8) are selected as they require a
varied execution time ranging approximately between 10-25 minutes and

they are run 30 times.

The performance values of HH_CF using the different values of a (10,
100 and 1000) with respect to the performance metrics (RNI, SSC and UD) on
the selected WFG problems are summarised in Table 5.1. For each
performance metric, the average, minimum, maximum and standard
deviation values are computed. A higher value indicates a better performance.

We can observe that HH_CF has the highest (best) average of RNI when
a=1000. However, HH_CF has the highest (best) averages of SSC and UD

metrics when a=100. We note that HH_CF has the worst performance with

respect to three metrics when a=10. These results can be explained by
answering some questions, what is a good balance between f;(h) and f,(h) to
reach in a satisfactory level (i.e. producing good solutions). How does
intensification and diversification affect the quality of the solutions during the
search? In the case of a small a, more attention is given to f,(h) and to
the diversification factor as well. Thus, no consideration for f;(h) and the
intensification factor. The choice function acts as a random selection method;
a low level heuristic (h) is invoked regardless of its performance; the learning
mechanism is not effective. In contrast, a large o gives more focus to f;(h)
and for the intensification factor as well. The low level heuristic (h) with the
best performance is always invoked during the search and no other low level
heuristics are considered. An example of this, let’s say f;(h)=6 and f,(h) =
90.718 seconds, Based on this, the selection of the heuristics relies on f,(h)
when a=10 while it relies on f;(h) when a=1000. In case of a=100, a
balance between f;(h) and f,(h) can be made. In the first few iterations of
the search, the intensification factor gives a low level heuristic, that performs
well, a chance to exploit the search area. Then as f, increases during the
search, the selection method invokes a low level heuristic which is not
currently performing well, in order to explore unvisited search areas. The

value changing between f;(h) and f,(h) leads to a balance between
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intensification and diversification. In Figures 5.1 and 5.2, we provide an
example of this situation for WFG1. In Figure 5.1, the average performance
values of RNI, SSC and UD metrics for the HH_CF during the search with

different settings a=(10,100, 1000) on WFGL1 is visualised. Also the average

heuristic utilisation rate which indicates how frequently a given heuristic is

chosen and applied during the whole search process across all runs on WFG1
for the HH_CF with different a values is computed and illustrated in Figure

5.2.

From both Figures 5.1 and 5.2, we note that the performance of HH_CF
during the search when a=10 with respect to RNI is reduced, and it fluctuated

with respect to the SSC and UD metrics. This is due to the absence of the
intensification factor and the strong effect of the diversification factor on the

algorithm which result in the heuristics being called (almost randomly). The
performance of HH_CF during the search when a=1000 with respect to the

three metrics is relatively the same. Although the performance of HH_CF has
slightly increased during the search and it does obtain better solutions,
diversification factor is not having any effect. This is clear in Figure 5.2, where
NSGAII has the highest utilisation rate as it performs well and MOGA have not

been executed at all. This is because of the effect of the intensification factor.
However, the performance of HH_CF during the search when =100, with
respect to the three metrics, is reflecting the good balance between
intensification and diversification. In Figure 5.2, HH_CF with aa=100 shows a

heuristic with the best performance for many iterations because of the effect
of the intensification factor, but it also gives a chance for other heuristics to
be called because of the diversification factor. This is shown in Figure 5.1, all

heuristics are invoked even if they do not perform well. From the above
observations, a=100 is the best value compared to the others that obtains
better solutions for HH_CF on selected WFG problems. Therefore, o is set
to100 for our HH_CF in the experiments that are presented in the rest of this

chapter.
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WFG | a RNI SSC (HV) ub
AVG MIN MAX STD AVG MIN MAX STD AVG MIN MAX STD

1 10 0.1080 0.0400 | 0.2000 | 0.0593 | 3.1031 0.3251 | 8.11719 | 3.1183 | 0.3873 0.3364 | 0.7656 | 0.1401
100 0.8800 0.2800 | 1.0000 | 0.2539 | 12.1386 |9.0338 | 12.5130 | 0.9101 | 0.4428 | 0.3490 | 0.6945 | 0.1007
1000 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 10.5048 6.4887 | 10.5168 | 0.0113 | 0.4101 0.3890 | 0.4284 | 0.0152

4 10 0.2340 0.2000 | 0.2500 | 0.1949 | 9.1308 8.7872 | 9.3591 0.2104 | 0.4932 0.4798 | 0.5505 | 0.0894
100 0.5443 0.4800 | 0.6400 | 0.0452 | 9.6588 9.5331 | 9.6643 0.0176 | 0.5596 | 0.4752 | 0.6317 | 0.0361
1000 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 9.6510 9.5000 | 9.6632 0.0038 | 0.4118 0.3955 | 0.4379 | 0.1574

6 10 0.2800 0.1600 | 0.2800 | 0.0438 | 8.8502 7.9699 |9.1721 0.4976 | 0.5088 0.6231 | 0.7646 | 0.0544
100 0.4720 0.4000 | 0.5600 | 0.0412 | 9.3687 9.1500 | 9.3810 0.0542 | 0.5962 | 0.5042 | 0.6479 | 0.0363
1000 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 9.3346 9.2759 | 9.4105 0.0695 | 0.4155 0.3992 | 0.4337 | 0.0135

8 10 0.0640 0.0400 | 0.0800 | 0.0219 | 6.8731 5.0792 | 7.5603 7.5603 | 06668 0.5358 | 0.7387 | 0.8315
100 0.2627 0.2000 | 0.4400 | 0.0454 | 8.3033 8.1155 | 8.5676 0.1224 | 0.7886 | 0.6294 | 1.0000 | 0.2627
1000 | 0.9000 | 0.4000 | 1.0000 | 0.3000 | 7.6730 7.5321 | 7.7276 0.0797 | 0.4772 0.4125 | 0.6948 | 0.1218

Table 5.1: The Performance of multi-objective choice function based hyper-heuristic (HH_CF) using different values of o parameter
in the choice function selection method.
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Figure 5.1: The performance of HH_CF with respect to the measure RNI, SSC and UD

during the search which were averaged over 30 trials for different O, settings (10, 100,
1000) on WFG1.
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Figure 5.2: The average heuristic utilisation rate over 30 trials for the low level
heuristics (NSGAII, SPEA2 and MOGA) in HH_CF using different O settings (10, 100,

1000) on the WFG1.
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5.2.4 Comparison Results and Discussion

NSGAII, SPEA2, MOGA and HH_CF are tested on the nine WFG test
problems under the same experimental settings described in Section 5.2.2.
Table 5.2 summarises the average, minimum, maximum and standard
deviation values pairs for each algorithm with respect to RNI, SSC and UD
over 30 trials. For all performance metrics, a higher value indicates a better
performance. HH_CF has a higher RNI value than MOGA while it has a lower
value than NSGAII and SPEA2 for WFG1. HH_CF has the highest value of SSC
and UD metrics among the methods. We can put WFG5 and WFG6 in this
category. For WFG2 and WFG3, HH_CF has a RNI value similar to MOGA and
lower than the others. With respect to SSC, HH_CF has higher values than
SPEA2 and MOGA and similar to NSGAII. However, HH_CF has the highest
value among other methods in the measure of UD. For WFG4 and WGF?7,
HH_CF has the lowest (worst) RNI value and the highest UD value. HH_CF has
a higher value than MOGA and similar to NSGAII and SPEA2 with respect to
the SSC metric. For WFG8 and WFG9, HH_CF has the lowest value with
respect to RNI and SSC metrics, and the highest value with respect to UD

metric.

These performance results with respect to RNI, SSC and UD are also
displayed as box plots in Figures 5.3, 5.4 and 5.5 in order to provide a clear
visualisation of the distribution of the simulation data of the 30 independent
runs. The statistical t-test comparing our proposed HH_CF and the three low
level heuristics (NSGAII, SPEA2 and MOGA), when used in isolation for the
three performance metrics (RNI, SSC and UD) are given in Table 5.3. We can
note that HH_CF and the other algorithms are statistically different in the

majority cases.

In Figure 5.3, NSGAII and SPEA2 perform better than the others and
produce the highest value of RNI for all datasets. This performance variation
is statistically significant as illustrated in Table 5.3. Moreover, NSGAII and
SPEA2 perform the same across all benchmarks with respect to RNI. However,
HH_CF and MOGA produce relatively low values for this metric. HH_CF
performs significantly better than MOGA on two instances of WFG1 and WFG5
and vice-versa for two instances of WFG8 and WFG9. For the rest of the

instances, they deliver the same performance. This indicates that HH_CF
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performs badly according to the metric of RNI and produces a low number of

non-dominated solutions than other algorithms, except for MOGA.

In Figure 5.4, the performance of HH_CF for SSC is relatively better
than SPEA2 and MOGA across all test problems except for WFG9. HH_CF
performs significantly better than SPEA2 and MOGA on eight instances of WFG
(see Table 5.3). HH_CF also performs better than NSGA2 in WFG1, WFG5 and
WFG6. This performance variation is statistically significant as illustrated in
Table 5.3. HH_CF performs significantly better than NSGAII on three
instances of WFG1 and WFG5, WFG6.

In Figure 5.5, it can be seen that HH_CF has the highest uniform
distribution UD value across all test problems. This indicates that HH_CF is
superior to the other algorithms on all WFG instances in terms of the
distribution of non-dominated individuals over the POF. This performance
variation is statistically significant as illustrated in Table 5.3. HH_CF performs
significantly better than the other methods on all nine instances of WFG.
Although HH_CF performs similarly to NSGAII in WFG2, WFG3, WFG4 and
WFG7, HH_CF performs significantly slightly better than NSGAII on three
instances of WFG2, WFG4 and WFG7 (see Tables 5.2 and 5.3). For WFGS8 and
WFG9, HH_CF does not perform well compared to the others, except MOGA.
HH_CF performs significantly worse than NSGAII and SPEA2 where HH_CF
performs significantly better than MOGA as shown in Table 5.3.

We note from all the above results that HH_CF performs worse than the
low level heuristics when used in isolation with respect to the RNI metric, and
it produces a lower number of non-dominated solutions for most of the WFG
problems. However, HH_CF performs very well and produces non- dominated
solutions that distribute uniformly well over the POF with respect to the UD
metric when compared to the other methods. HH_CF also performs better
than the others in most of the WFG problems and produces non-dominated
solutions with high diversity that cover a larger proportion of the objective
space with respect to the SSC metric, except for WFG8 and WFG9 where it
failed to converge towards the POF. As WFG8 and WFGY9 have a significant

bias feature, HH_CF may have difficulties coping with bias.
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WFG | Methods RNI SSC (HV) uD
AVG MIN MAX STD AVG MIN MAX STD AVG MIN MAX STD
HH_CF | 0.8800 | 0.2800 | 1.0000 | 0.2539 | 12.1386 | 9.0338 | 12.5130 | 0.9101 | 0.4428 0.3490 0.6945 0.1007
L NSGAII | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 11.6041 | 11.0016 | 12.3570 | 0.3880 0.4003 0.3727 0.4327 0.0140
SPEA2 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 6.4931 6.4811 | 6.5063 | 0.0066 | 0.4099 0.3760 0.4420 0.0148
MOGA | 0.2650 | 0.1300 | 0.6300 | 0.1140 | 4.2184 3.5399 | 6.3178 | 0.6727 0.2117 0.1535 0.3718 0.0478
HH_CF | 0.2293 | 0.1600 | 0.3600 | 0.0545 | 11.0219 | 10.6407 | 12.3894 | 0.3042 | 0.7278 0.6223 1.0000 0.0661
) NSGAII | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 10.8199 | 10.8057 | 10.8249 | 0.0041 | 0.3747 0.3497 0.3988 0.0112
SPEA2 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 10.7898 | 10.2636 | 11.9569 | 0.7935 0.2874 0.2217 0.3488 0.0305
MOGA | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 9.7959 7.1533 | 10.1943 | 0.6978 0.5414 0.4294 0.6910 0.0597
HH_CF | 0.6027 | 0.5200 | 0.6800 | 0.0445 | 11.8940 | 11.3990 | 11.9867 | 0.0853 | 0.5450 0.4959 0.6136 0.0289
. NSGAII | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 11.9185 | 11.9046 | 11.9306 | 0.0063 | 0.4244 0.3980 0.4448 0.0120
SPEA2 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 11.4062 | 11.3664 | 11.4541 | 0.0189 0.4289 0.4110 0.4436 0.0078
MOGA | 0.6070 | 0.5200 | 0.9600 | 0.0400 | 11.2921 | 10.9930 | 11.4508 | 0.1393 0.4468 0.3819 0.5116 0.0324
HH_CF | 0.5443 | 0.4800 | 0.6400 | 0.0452 | 9.6588 | 9.5331 | 9.6643 | 0.0176 | 0.5596 0.4752 0.6317 0.0361
NSGAII | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 9.6460 9.6518 | 9.6683 | 0.0041 | 0.4132 0.3879 0.4402 0.0151
4 SPEA2 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 9.1853 9.1599 | 9.2091 | 0.0133 0.4058 0.3725 0.4301 0.0133
MOGA | 0.5800 | 0.4900 | 0.7100 | 0.0540 | 8.9968 8.4897 | 9.3057 | 0.2056 | 0.4594 0.3940 0.5610 0.0387
HH_CF | 0.8537 | 0.6000 | 1.0000 | 0.1723 | 9.2899 | 9.1526 | 9.2984 | 0.5744 | 0.4779 0.4279 0.5744 0.0468
s NSGAII | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 9.2857 9.2672 | 9.2904 | 0.0043 | 0.3958 0.3705 0.4271 0.0129
SPEA2 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 9.2860 9.1952 | 9.2968 | 0.0214 | 0.4360 0.4222 0.4538 0.0087
MOGA | 0.6820 | 0.6000 | 0.7400 | 0.0360 | 8.8946 | 8.4904 | 9.1028 | 0.4171 0.4184 0.3583 0.4690 0.0272
HH_CF | 0.4720 | 0.4000 | 0.5600 | 0.0412 | 9.3687 | 9.1500 | 9.3810 | 0.0542 | 0.5962 0.5042 0.6479 0.0363
6 NSGAII | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 9.3503 9.1883 | 9.4401 | 0.0605 0.4082 0.3091 0.4479 0.0247
SPEA2 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 8.7135 8.4494 | 9.0349 | 0.1851 0.3761 0.3461 0.4068 0.0158
MOGA | 0.4990 | 0.4300 | 0.5900 | 0.0420 | 8.8878 8.5542 | 9.0785 | 0.1345 0.4786 0.3929 0.5712 0.0367
HH_CF | 0.6173 | 0.4000 | 0.7200 | 0.0653 | 9.6606 | 9.2261 | 9.6911 | 0.0926 | 0.5289 0.4734 0.6743 0.0416
; NSGAII | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 9.6579 9.5053 | 9.6704 | 0.0294 | 0.4048 0.3766 0.4220 0.0117
SPEA2 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 9.2481 9.2109 | 9.2724 | 0.0161 0.4082 0.3777 0.4333 0.0116
MOGA | 0.6300 | 0.5100 | 0.7600 | 0.0550 | 9.1685 8.6489 | 9.3474 | 0.1799 0.4331 0.3539 0.4980 0.0415
HH_CF | 0.2627 | 0.2000 | 0.4400 | 0.0454 | 8.3033 8.1155 | 8.5676 | 0.1224 | 0.7886 0.6294 1.0000 0.1245
8 NSGAII | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 8.7155 | 8.6912 | 8.7391 | 0.0140 | 0.4178 0.3980 0.4404 0.0123
SPEA2 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 8.3957 8.3509 | 8.4412 | 0.0199 0.4069 0.3907 0.4226 0.0083
MOGA | 0.4790 | 0.4000 | 0.6000 | 0.0460 | 8.0762 7.4237 | 8.9192 | 0.2777 0.4490 0.3679 0.5644 0.0450
HH_CF | 0.6410 | 0.4000 | 0.8000 | 0.0896 | 8.6132 8.2356 | 9.2519 | 0.2236 | 0.5142 0.4141 0.6432 0.0525
9 NSGAII | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 8.7650 | 8.5787 | 9.2673 | 0.2960 0.3955 0.3641 0.4294 0.0163
SPEA2 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 8.7091 8.5700 | 9.0416 | 0.1967 | 0.4303 0.4031 0.4488 0.0106
MOGA | 0.8260 | 0.6700 | 0.9700 | 0.0900 | 8.5723 8.2357 | 8.9845 | 0.2259 0.3693 0.2803 0.4257 0.0350

Table 5.2: The average performance of HH_CF compared to the low level heuristics on the WFG test problems with respect to the ratio of non-dominated
individuals (RNI), the hypervolume (SSC) and the uniform distribution (UD).
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Figure 5.5: Box plots of NSGAII, SPEA2, MOGA and HH_CF for the uniform distribution
(UD) of non-dominated population on the WFG test functions.

Generally, HH_CF produces competitive results across most of the WFG
problems with respect to two of the performance metrics (SSC and UD) out of
the three metrics. Although HH_CF obtains a low number of solutions, it
produces very good solutions in terms of diversity and convergence when
compared to the low level heuristics when used in isolation. HH_CF can
benefit from the strengths of the low level heuristics. Moreover, it has the
ability to intelligently adapt to calling combinations of low level heuristics. To
understand how the HH_CF could obtain these results, we analyse the

behaviour of the low level heuristics in the next sub-section.

5.2.5 Behaviour of Low Level Heuristics

We compute the average heuristic utilisation rate which indicates how
frequently a given low level heuristic is chosen and applied during the search
process, across all runs, in order to see which low level heuristic is used more
frequently. The results are presented in Figure 5.6. The average heuristic
utilisation rate of NSGAII is at least 44% and is the highest among all the low

level heuristics for each problem, except for WFG5 for which SPEA2 is chosen
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Problem Methods Metrics
RNI | SSC | UD
WFG1 HH_CF:NSGAII | - + +
HH_CF:SPEA2 - + +
HH_CF:MOGA + + +
NSGAII:SPEA2 | n/a | + -
NSGAII:MOGA | + + +
SPEA2:MOGA + + +
WFG2 HH_CF:NSGAII | - ~ +
HH_CF:SPEA2 - + +
HH_CF:MOGA ~ + +
NSGAII:SPEA2 | n/fa | ~ +
NSGAII:MOGA | + + -
SPEA2:MOGA + + -
WFG3 HH_CF:NSGAII | - ~ +
HH_CF:SPEA2 - + +
HH_CF:MOGA ~ + +
NSGAII:SPEA2 | n/a | + +
NSGAII:MOGA | + + -
SPEA2:MOGA + + -
WFG4 HH_CF:NSGAII | - ~ +
HH_CF:SPEA2 - + +
HH_CF:MOGA - + +
NSGAII:SPEA2 | n/a | + +
NSGAII:MOGA | + + -
SPEA2:MOGA + + -
WFG5 HH_CF:NSGAII | - + +
HH_CF:SPEA2 - + +
HH_CF:MOGA + + +
NSGAII:SPEA2 | n/a | + -
NSGAII:MOGA | + + -
SPEA2:MOGA + + +
WFG6 HH_CF:NSGAII | - + +
HH_CF:SPEA2 - + +
HH_CF:MOGA ~ + +
NSGAII:SPEA2 | n/a | + +
NSGAII:MOGA | + + -
SPEA2:MOGA + - -
WFG7 HH_CF:NSGAII | - ~ +
HH_CF:SPEA2 - + +
HH_CF:MOGA ~ - +
NSGAII:SPEA2 | n/a | + ~
NSGAII:MOGA | + + -
SPEA2:MOGA + + -
WFG8 HH_CF:NSGAII | - - +
HH_CF:SPEA2 - - +
HH_CF:MOGA - + +
NSGAII:SPEA2 | n/a | + +
NSGAII:MOGA | + + -
SPEA2:MOGA + + -
WFG9 HH_CF:NSGAII | - - +
HH_CF:SPEA2 - - +
HH_CF:MOGA - + +
NSGAII:SPEA2 | n/a | + -
NSGAII:MOGA | + + +
SPEA2:MOGA + + +

Table 5.3: The t-test results of HH_CF and low level heuristics on the WFG test

problems with

respect to the

hypervolume (SSC) and the uniform distribution (UD).
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most frequently with a utilisation rate of 55.72% during the search process. It
explains why HH_CF has either a similar or relatively better convergence to
the POF for most of the test problems when compared with NSGAII. It
indicates that NSGAII performs best among other low level heuristics in most
of the WFG problems. The authors theorise that HH_CF, therefore, prefers
NSGAII and it becomes preferable to be chosen more frequently than the
other low level heuristics. Our result is consistent with the result in
Bradstreet et al. (2007) that shows that the best performance is achieved by
NSGAII on the WFG test functions with two objectives.
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Figure 5.6: The average heuristic utilisation rate for the low level heuristics (NSGAII,
SPEA2 and MOGA) in HH_CF on the WFG test suite.
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The performance of MOGA is not that good on the WFG benchmark, thus
it is invoked relatively less frequently during the search process because of
the diversification factor f, in the selection choice function method (see
Sections 4.1 and 4.3). However, MOGA still influences the performance of
HH_CF, negatively, in particular with respect to the ratio of humber of non-
dominated individuals (RNI). This is due to that fact that MOGA does not have
any archive mechanism or preserving strategy to maintain the non-dominated
solutions during the search. Although the selection choice function method
provides a kind of balance between the intensification (f;) and diversification
(f,) when choosing a heuristic, HH_CF obtains a low ratio of non-dominated
individuals (RNI) which indicates poor diversification. This is because of our
multi-objective hyper-heuristics do not incorporate any archive mechanisms
to maintain the non-dominated solutions during the search. So when MOGA is
called, it produces a low number of non-dominated individuals, leading to
poor diversification. The average utilisation rate of MOGA is the highest for
WFG8 (10.16%) and WFG9 (22.40%) among other WFG problems. This
utilisation rate explains why the performance of HH_CF is the worst
performing approach in terms of RNI. HH_CF also faces some difficulty while

solving WFG8 and WFG9 in terms of convergence as well.

In order to see the effectiveness of each chosen low level heuristic on
the performance of HH_CF, we looked into the performance of the low level
heuristics with respect to the RNI, SSC and UD metrics at twenty five decision
points during the search process. We observe that some problems are
following a specific pattern to invoke the low level heuristics during the
search. Each problem has its own pattern. For example, for WFG3, NSGAII is
invoked and executed for the first seven consecutive decision points. Then
SPEA?2 is invoked for the next four decision points, followed by one iteration of
MOGA. Then NSGAII is chosen for the rest of the search. More of these

patterns are illustrated in Figure 5.7.

In order to analyse these results, we divide the WFG instances into four
categories based on the performance of HH_CF compared to the three low
level heuristics being used in isolation with respect to RNI, SSC and UD as

listed below:

(i) WFG1,WFG5 and WFG6:
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¢ RNI: Better performance than MOGA and worse than NSGAII and
SPEA2

¢ SSC: The best performance among NSGAII, SPEA2 and MOGA

e UD: The best performance among NSGAII, SPEA2 and MOGA

(i) WFG2 and WFG3:

e RNI: Similar performance to MOGA and worse than NSGAII and
SPEA2

e SSC: Better performance than SPEA2 and MOGA and similar to
NSGAII

e UD: The best performance among NSGAII, SPEA2 and MOGA

(iii) WFG4 and WGF7:

e RNI: The worst performance among NSGAII, SPEA2 and MOGA
e SSC: Better performance than SPEA2 and MOGA and similar to
NSGAII

e UD: The best performance among NSGAII, SPEA2 and MOGA

(iv)WFG8 and WFG9:

e RNI: The worst performance among NSGAII, SPEA2 and MOGA
e SSC: The worst performance among NSGAII, SPEA2 and MOGA
e UD: The best performance among NSGAII, SPEA2 and MOGA

For each category described above, except the last one, we have
selected a sample problem to visualise the low level call patterns. WFG5 for
the first category, WFG3 for the second category and WFG4 for the third
category. For the last category, no specific pattern has been observed. The
selected three problems have different problems features in terms of
separability and modality (Huband et al., 2006). The average of RNI, SSC and
UD values versus decision point plots across selected benchmark problems
(WFG3, WFG4 and WFG5) are shown in Figure 5.7. Each step in the plot is
associated with the most frequently selected low level heuristics across 30
trials. Since we employed All-Moves as an acceptance strategy, some moves

are accepted even if it worsens the solution quality.
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From Figure 5.7, it is clear that MOGA, during the search, produces a
worse solution with respect to RNI, and this solution is accepted which affects
the performance of HH_CF. However, some worsening moves are able to
produce better solutions. This can be noted in the performance HH_CF with
respect to the UD metric. SPEA2 produces low quality solutions in terms of the
distribution along the POF, but this helps it to escape from the local optimum
and obtain better solutions at the end. This is also true with respect to the
SSC performance indicator. In addition, we note that HH_CF has an
advantage over MOGA and outperforms the three MOEAs methods with
respect to the distribution of non-dominated individuals over the POF. It also
has an advantage over NSGAII in terms of convergence, in that it performs
better than all other methods in some problems while performing better or
similar to NSGAII on the other problems. However, HH_CF does not have an
advantage over NSGAII and SPEA2 with respect to the non-dominated
individuals in the population. HH_CF performs poorly because of MOGA's

effect.

It can be concluded that our choice function based hyper-heuristic can
benefit from the strengths of the low level heuristics. And it can avoid the
weaknesses of them (partially), as the poor performance of MOGA affects the
performance of HH_CF badly in the metric of RNI by producing a low number

of non-dominated individuals. We can avoid this by employing another

acceptance move strategy instead of All-Moves. A non-deterministic
acceptance strategy could accept worsening moves within a limited degree
and help improve the quality of the solutions. However, HH_CF has the ability

to intelligently adapt to calling combinations of low level heuristics.

5.3 Performance Comparison of Multi-objective
Choice Function Based Hyper-heuristic to the Other
Multi-objective Approaches

We conduct some experiments to examine the performance of our
proposed multi-objective choice function based hyper-heuristic (HH_CF)
compared to two multi-objective approaches; a random hyper-heuristic
(HH_RAND) and the adaptive multi-method search (AMALGAM) (Vrugt and
Robinson, 2007). In a random hyper-heuristic (HH_RAND), we employ a
simple random selection instead of the choice function selection this is used in

HH_CF. No ranking scheme, nor a learning mechanism, is embedded into
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HH_RAND. In HH_RAND, we use the same three low level heuristics that are
used in HH_CF.

5.3.1 Performance Evaluation Criteria

The hypervolume (SSC) (Zitzler and Thiele, 1999), the generational
distance (GD) (Van Veldhuizen and Lamont, 1998b) and the inverted
generational distance (IGD) (Coello and Cruz Cortés, 2005) metrics were used
to compare the performance of multi-objective approaches for this set of
experiments. The GD and IGD measure the distance (convergence) between
the approximation non-dominated front and the POF. A smaller value of GD
and IGD is more desirable and it indicates that the approximation non-
dominated front is closer to the POF. In addition, we use t-test for the
average performance comparison of algorithms and the results are discussed

using the same notation as provided in Section 5.2.1.

5.3.2 Experimental Settings

All experimental parameters are chosen to be the same as those
commonly used in the scientific literature for continuous problems (Zitzler et
al., 2000; Huband et al., 2006). All methods were applied to the nine WFG
test problems with 24 real values and two objectives. In order to keep the
computational costs of the experiments to an affordable level, all the methods
were executed for 25,000 evaluation functions with a population size of 100
and 250 generations in each run. Depending on the given problem, the
execution time of HH_CF and HH_RAND for one run takes about 5-12
minutes. Both HH_CF and HH_RAND are executed for 2,500 evaluation
functions at each iteration. Other parameter settings of AMALGAM are
identical to those used in Vrugt and Robinson (2007). We used the Matlab
implementation of AMALGAM obtained from the authors via personal
communication. We implemented a C++ interface between AMALGAM and the
WEFG test suite's C++ code. All other experimental settings are fixed the same

as discussed in Section 5.2.2.
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Figure 5.7: The average of RNI,SSC and UD values versus decision point steps plots across selected benchmark problems (the WFG3, WFG4 and

WFG5).
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5.3.3 Experimental Results and Discussion

The performance values of HH_CF and the other hyper-heuristic
methods with respect to the performance metrics SSC, GD and IGD on the
WFG problems are summarised in Table 5.4. For each performance metric,
the average, minimum, maximum and standard deviation values are

computed.

These performance results with respect to SSC, GD and IGD are also
displayed as box plots in Figures 5.8, 5.9 and 5.10 in order to provide a
visualisation of the distribution of the simulation data of the 30 independent
runs. The statistical t-test comparing our proposed HH_CF and other multi-
objective hyper-heuristics for the metrics (SSC, GD and IGD) are given in
Table 5.5. The results show that the HH_CF performs better than the other
algorithms in most cases. As expected, HH_CF achieves better coverage and
diversity than HH_RAND according to both metrics. This is due to the learning
mechanism used in HH_CF which adaptively guides the search towards the
POF. Interestingly, HH_RAND performs better than AMALGAM according to the
hypervolume metric except in WFG9. However, HH_RAND performs worse
than AMALGAM according to the GD metric over all of the problems while it
better in all problems with respect to IGD except in WFG9. This performance
variation is statistically significant as illustrated in Table 5.5. HH_RAND
performs significantly better than AMALGAM for the SSC metric on eight
instances of WFG except in WFG9. HH_RAND also performs significantly better
than AMALGAM for the IGD metric on all instances except in WFG9. HH_RAND
also performs significantly better than AMALGAM for the GD metric on three
instances of WFG1, WFG6 and WFG7 while it performs significantly similar to
AMALGAM on one instance of WFG5 where it performs significantly worse than
AMALGAM for the rest.

Compared to AMALGAM, HH_CF performs better with respect to the
convergence and diversity on most of the WFG problems. According to the
SSC metric, HH_CF produced non-dominated solutions that cover a larger
proportion of the objective space than AMALGAM on all WFG problems except
for WFG9. In Table 5.5, HH_CF performs significantly better than AMALGAM
on eight instances of WFG except for WFG9 where AMALGAM performs
significantly better than HH_CF on this instance. The superiority of HH_CF on

the SSC metric is due to the stronger selection mechanism and the effective
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ranking scheme that relies on choosing a heuristic with the best SSC value at
the right time (decision point) to guide the search to move toward more

spaces around the POF. This result is more reliable as shown in Figure 5.8.

According to the metrics of GD and IGD, HH_CF is superior to AMALGAM on
most of WFG problems as reported in Table 5.4 and displayed as box plots in
Figure 5.9 and 5.10. In Table 5.5, HH_CF performs significantly better than
AMALGAM on five instances out of nine including WFG1, WFG2, WFG5, WFG6,
and WFG7 for the metric of GD. And HH_CF performs significantly better than
AMALGAM on all instances except in WFG9 for the metric of IGD. Again, this
result is due to the online-learning selection mechanism and the ranking
scheme in HH_CF. The ranking scheme maintains the past performance of low
level heuristics using a set of performance indicators that measure different
aspects of the solutions. During the search process, the raking scheme
creates a balance between choosing the low level heuristics and their
performance according to a particular metric. This balance enhances the
algorithm performance to yield better solutions that converge toward the POF
as well as distribute uniformly along the POF. However, AMALGAM performs
significantly better than HH_CF on the other four instances for GD and one
instance for IGD (see Tables 5.4 and 5.5). This might be because of the
nature of the problems that present difficulties for HH_CF to converge toward
the POF or might slow down the convergence speed such as the bias in WFGS,
WFG9 and the multimodality of WFG4. It is good to report that AMALGAM has
better performance according to the both metrics; SSC, GD and IGD in WFG9.
This is shown in Table 5.5, where AMALGAM performs significantly better than

others on one instance of WFG9.

For each problem, we computed the 50% attainment surface for each
algorithm, from the 30 fronts after 25,000 evaluation functions. In Figures
5.11 and 5.12, we have plotted the POF and the 50% attainment surface of
the algorithms. HH_CF shows good convergence and uniform distribution for
most datasets. It seems clear that HH_CF has converged well on the POF in
WFG1 and WFG2 compared to other algorithms. Moreover, HH_CF produced
solutions that covered larger proportions of the objective space compared to
the other algorithms. AMALGAM has poor convergence most problems. It has
fewer solutions with poor convergence for WFG2. And it has no solutions over
the middle-lower segments of the POF for WFG3, WFG5, WFG6, WFG7, and
WFGS8 and no solutions over the upper-middle segments of the POF for WFG4.

113 | Page



Chapter 5: A Heuristic Selection Using Deterministic Move Acceptance Strategy

WFG | Methods SSC (HV) GD IGD
AVG MIN MAX STD AVG MIN MAX STD AVG MIN MAX STD

HH_CF 12.0044 | 11.8430 | 12.2044 | 0.8301 | 0.00774 | 0.00340 | 0.04660 | 0.01106 | 0.00102 | 0.00039 | 0.00393 | 0.00098

1 HH_RAND | 7.0258 2.4467 7.5580 | 0.7877 | 0.02420 | 0.02899 | 0.03556 | 0.00143 | 0.00583 | 0.00340 | 0.00658 | 0.00078
AMALGAM | 7.7902 7.2863 8.2485 | 0.1941 | 0.02917 | 0.02620 | 0.03290 | 0.00155 | 0.00312 | 0.00276 | 0.00352 | 0.00016
HH_CF 11.0102 | 10.9907 | 11.2940 | 0.2033 | 0.00046 | 0.00090 | 0.00320 | 0.00049 | 0.00051 | 0.00022 | 0.00064 | 0.00008

2 HH_RAND | 9.7547 7.0023 9.7798 | 0.5078 | 0.01680 | 0.00031 | 0.04145 | 0.01089 | 0.00191 | 0.00123 | 0.00330 | 0.00058
AMALGAM | 1.7582 1.6036 6.1053 | 0.8210 | 0.00099 | 0.00030 | 0.01930 | 0.00346 | 0.00413 | 0.00412 | 0.00414 | 0.00001
HH_CF 11.7550 | 11.5650 | 11.8066 | 0.0743 | 0.00068 | 0.00030 | 0.00280 | 0.00045 | 0.00075 | 0.00068 | 0.00082 | 0.00005

3 HH_RAND | 11.0290 | 10.8800 | 11. 0833 | 0.1490 | 0.00384 | 0.00220 | 0.02252 | 0.00357 | 0.00081 | 0.00045 | 0.00100 | 0.00009
AMALGAM | 6.6890 6.6752 6.6980 | 0.0049 | 0.00036 | 0.00031 | 0.00041 | 0.00002 | 0.00272 | 0.00272 | 0.00272 | 0.00000
HH_CF 9.5610 | 9.5331 9.6700 | 0.0143 | 0.00097 | 0.00075 | 0.00151 | 0.00019 | 0.00036 | 0.00030 | 0.00043 | 0.00003

4 HH_RAND | 9.2052 8.7032 9.2991 0.0145 | 0.00405 | 0.00329 | 0.00499 | 0.00053 | 0.00066 | 0.00060 | 0.00072 | 0.00004
AMALGAM | 3.5687 3.5509 3.5838 | 0.0075 | 0.00081 | 0.00059 | 0.00070 | 0.00005 | 0.00194 | 0.00190 | 0.00200 | 0.00003
HH_CF 9.2701 8.7531 9.2954 | 0.5343 | 0.00273 | 0.00244 | 0.00333 | 0.00032 | 0.00058 | 0.00054 | 0.00069 | 0.00003

5 HH_RAND | 9.2577 9.2152 9.2784 | 0.0556 | 0.00255 | 0.00245 | 0.00269 | 0.00010 | 0.00066 | 0.00055 | 0.00077 | 0.00005
AMALGAM | 6.3554 6.2404 6.3766 | 0.0323 | 0.00281 | 0.00268 | 0.00381 | 0.00028 | 0.00126 | 0.00124 | 0.00137 | 0.00003
HH_CF 9.3579 | 9.0433 | 10.2011 | 0.0530 | 0.00225 | 0.00151 | 0.00391 | 0.00056 | 0.00065 | 0.00050 | 0.00078 | 0.00007

6 HH_RAND | 9.3119 9.1005 9.4231 0.0501 | 0.00334 | 0.00227 | 0.00452 | 0.00052 | 0.00077 | 0.00072 | 0.00080 | 0.00002
AMALGAM | 6.3554 6.2404 6.3766 | 0.0323 | 0.00298 | 0.00142 | 0.00554 | 0.00123 | 0.00193 | 0.00181 | 0.00217 | 0.00011
HH_CF 9.6498 | 9.2261 9.6540 | 0.0901 | 0.00047 | 0.00044 | 0.00136 | 0.00025 | 0.00030 | 0.00023 | 0.00037 | 0.00003

7 HH_RAND | 9.1184 8.1243 9.1685 | 0.3473 | 0.00425 | 0.00309 | 0.00582 | 0.00067 | 0.00037 | 0.00030 | 0.00041 | 0.00004
AMALGAM | 3.9171 3.9115 3.9263 | 0.0035 | 0.00067 | 0.00041 | 0.00051 | 0.00003 | 0.00345 | 0.00342 | 0.00347 | 0.00001
HH_CF 8.2843 | 8.0165 8.6621 0.1451 | 0.00442 | 0.00358 | 0.00498 | 0.00043 | 0.00072 | 0.00058 | 0.00088 | 0.00008

8 HH_RAND | 8.1089 7.0121 8.6760 | 0.3867 | 0.01140 | 0.00677 | 0.01510 | 0.00207 | 0.00086 | 0.00050 | 0.00100 | 0.00012
AMALGAM | 3.0945 3.0419 3.1293 | 0.0213 | 0.00241 | 0.00216 | 0.00281 | 0.00017 | 0.00243 | 0.00242 | 0.00245 | 0.00001
HH_CF 8.5981 8.2011 9.2660 | 0.2143 | 0.00528 | 0.00143 | 0.00639 | 0.00145 | 0.00183 | 0.00041 | 0.00218 | 0.00055

9 HH_RAND | 8.4697 8.1138 8.8453 | 0.3059 | 0.00602 | 0.00044 | 0.00755 | 0.00167 | 0.00337 | 0.00302 | 0.00395 | 0.00024
AMALGAM | 9.0676 | 8.6088 9.1480 | 0.1140 | 0.00113 | 0.00098 | 0.00156 | 0.00011 | 0.00026 | 0.00024 | 0.00032 | 0.00002

Table 5.4: The performance of HH_CF compared to multi-objective hyper-heuristics on the WFG test problems with respect to the Hypervolume (SSC), the

generational distance (GD) and the inverted generational distance (IGD).
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Figure 5.8: Box plots of HH_CF, HH_RAND, and AMALGAM for the measure of hypervolume
(SSC) on the WFG test functions.
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Table 5.5: The t-test results of HH_CF,HH_RAND and AMALGAM on the WFG test problems
with respect to the hypervolume (SSC), the generational distance(GD) and the inverted
generational distance (IGD).
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It can be concluded that all the above results demonstrate the effectiveness
of HH_CF in terms of its ability to intelligently adapt to calling combinations of low
level heuristics and outperforming other hyper-heuristics for multi-objective
optimisation (HH_RAND and AMALGAM) for solving these kind of problems.

5.4 Summary and Remarks

This chapter presented an online selection choice function based hyper-
heuristic for multi-objective optimisation (HHMO_CF) (or HH_CF for short)
employing All-Moves as an acceptance strategy. This is meaning that we accept
the output of each low level heuristic whether it improves the quality of the
solution or not. Four performance metrics (Algorithm effort (AE), Ratio of non-
dominated individuals (RNI), Size of space covered (SSC) and Uniform distribution
of a non-dominated population (UD)) act as an online learning mechanism to

provide knowledge of the problem domain to the high level strategy.

We have conducted a number of experiments to analyse HH_CF and compared
its performance to the low level heuristics (NSGAII, SPEA2 and MOGA), when
used in isolation over the nine WFG test functions which we utilise as our
benchmark instances. We have also conducted a number of experiments to
examine the performance of our proposed HH_CF, comparing with two multi-
objective hyper-heuristics; a random hyper-heuristics (HH_RAND) and the

adaptive multi-method search AMALGAM over the same benchmark instances.

The experimental results shows that the choice function all-moves based
hyper-heuristic can benefit from the strengths of the low level heuristics.
Moreover, it has the capability to intelligently adapt to calling combinations of low
level heuristics. Our hyper-heuristic performs well in terms of the distribution of
non-dominated individuals along the POF and obtains competitive results in terms
of converging towards the POF. However, it performs poorly with respect to the
number of non-dominated solutions in the population. Another acceptance
strategy instead of All-Moves can be employed to avoid this and improve the

quality of solutions. This is investigated in Chapters 6 and 7.
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6 A Heuristic Selection Using Great Deluge as a
Non-Deterministic Move Acceptance Strategy

In the previous chapter, we presented a choice function heuristic
selection combined with All-Moves as an acceptance strategy for multi-
objective optimisation. Our multi-objective choice function based hyper-
heuristic used the WFG test suit as our benchmark instances. It showed good
performance and produces good quality solutions in terms of the diversity and
convergence towards the POF. As All-Moves accepts all solutions of each low
level heuristic, whether it improves the quality of the solution or not, the
choice function all-moves based hyper-heuristic fails to avoid the MOGA
weakness by accepting solutions with poor quality in terms of the number of
non-dominated solutions. To overcome this, we propose to use another move
acceptance strategy instead of All-Moves that accepts worsening moves within
a limited degree and help improve the quality of the solutions. This chapter
investigates the performance of the choice function based hyper-heuristic
when combining great deluge (GDA) (Dueck, 1993) as an acceptance criteria.
We also investigate the sensitivity of our choice function based hyper-heuristic

using different parameter settings for the great deluge algorithm.

6.1 The Great Deluge Algorithm as a Move Acceptance
Criteria

In the scientific literature, there are many studies that investigate GDA
and its variants in tackling various optimisation problems. However, the
majority of them are applied to optimisation problems with a single-objective.
Petrovic et al. (2007) proposed a case based reasoning methodology with
GDA for solving examination timetabling problems. In Bykov (2003) GDA is
applied to thirteen benchmark problems for examination timetabling. The
experimental result shows that GDA vyields the best result for the majority of
the problems when compared to a time predefined simulated annealing
approach. A new hybridised method based on a genetic algorithm and GDA is
proposed in Al-Milli (2010). The approach tackles course timetabling
problems, producing good quality solutions for standard benchmark problems.
In Scott and Geldenhuysys (2000) the performance of a GDA was compared

to tabu search (TS) for graph colouring. The results show that GDA was able
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to obtain better colourings, particularly for large graphs in shorter times. GDA
was applied to the travelling salesman problem (TSP) in Telfar (1995). In
Dhouib (2000), a multi start great deluge approach was proposed to optimise
two continuous engineering design problems. The simulation results show that
this approach performs better than SA and a genetic algorithm. McMullan and
McCollum (2007) proposed an extended version of GDA using a reheating
(relevelling) technique. This GDA variant was applied to a dynamic job
scheduling problem, producing better results in most cases when compared to
SA. Another extended version of GDA was proposed by Baykasoglu et al.
(2011). This method was applied to two problems; industrial process control
and a simulation model of a job shop, yielding promising results. Nourelfath
et al. (2007) presented a hybrid approach combining GDA and ant colony
optimisation. This approach was applied to the discrete facility layout problem
(FLP) and tested on quadratic assignment problem (QAP) benchmarks. The
experimental results indicate that the hybrid algorithm outperforms many
other meta-heuristics. Nahas et al. (2010) proposed another version of the
GDA called the Iterated Great Deluge (IDA) to solve the dynamic facility
layout problem. The method produces competitive results. An extension to the
GDA was proposed by Burke and Bykov (2006). This approach, called Flex-
Deluge, introduces a flexibility coefficient that controls the move acceptance
and is. This GDA variant performed well for solving exam timetabling
problems. Another variant of GDA combined with evolutionary operators was
proposed by Landa-Silva and Obit (2009). GDA utilises a non-linear rate of
change for the threshold. This hybrid evolutionary approach, applied to a
university course timetabling problem, performed better for solving four out of
eleven instances. Pramodh and Ravi (2007) presented four variants of GDA

on three different benchmarks from banks for predicting bankruptcy.

The GDA is not only employed as a meta-heuristic to solve optimisation
problems. It is also used in many hyper-heuristic approaches as an
acceptance move strategy. Ozcan et al. (2010) shows a reinforcement
learning great deluge hyper-heuristics and reinforcement learning Ilate
acceptance are promising when applied to examination timetabling, and
produced good quality solutions when compared to some other approaches in
the literature. Kendall and Mohamad (2004) presented a variant of a GDA
based hyper-heuristics. It was applied to channel assignment benchmarks.

The experimental results show simple random-great deluge produced good
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results when compared to a constructive heuristic and a genetic algorithm. In
addition, a variant of the GDA hyper-heuristic approach including flex deluge
(FD), non-linear (NLGD) and extended great deluge (EGD) is proposed in Sin
and Kham (2012). These approaches were applied to large scale and highly
constrained timetabling problems and tested on exam timetabling benchmark
problems. The experimental results demonstrate that NLGD produced the best
results compared to other approaches in the literature. In Gibbs et al. (2011)
the performance of different hyper-heuristics are compared with different
components emphasising the influence of learning heuristic selection methods
for solving a sports scheduling problem. It have been shown that the
proposed approach is slightly better than the other approaches that use
choice function as heuristic selection and great deluge algorithm as an

acceptance criteria for solving a sports scheduling problem.

An important observation is that all the above GDA studies deal with
single-objective optimisation problems. However, there is only one study that
has proposed the GDA for multi-objective optimisation (Petrovic and Bykov,
2003). This method is based on a trajectory that guides the search dynamics
by changing the criteria weights of the cost function values. This method was
applied to a set of real-world timetabling problems, producing high quality
solutions. We decide to employ GDA as a move acceptance component in our
multi-objective hyper-heuristics choice function as GDA is simple and depends
on fewer parameters (Petrovic et al, 2007). Moreover, it was successful with
single-objective optimisation (Kendall and Mohamad, 2004). And no work has
been reported in the literature that utilises the GDA as a move acceptance
component within a hyper-heuristic framework for multi-objective
optimisation. Details about the great deluge algorithm are formally discussed
in Section 2.2.6. GDA, as move acceptance strategy, requires computation of
the change in the value of a single objective at each step and so the D
performance metric (Zitzler, 1999) is proposed for its applicability to multi-

objective optimisation problems.

6.2 The Great Deluge and D Metric

In the context of move acceptance criterion, the quality measure of the
current solution and the candidate solution is essential in order to make a

decision regarding an acceptance decision. For the single-objective
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optimisation problem, fitness can be used. However, this is not applicable in
multi-objective optimisation. In multi-objective problems, the output is a set
of solutions (a non-dominated set). We propose the use of the D metric
(Zitzler, 1999) as a way of comparing two non-dominated sets with respect to
the objective space. In this thesis, we use D metric, integrating into move
acceptance criterion, particularly GDA, in order to convert multi-objective
optimisation to single-objective optimisation without definition of criteria
weights. This is similar to the concept that is used in indicator-based multi-
objective optimisers (e.g. (Auger et al.,2012; Wang et al., 2013; Bader and
Zitzler, 2011)), where a multi-objective problem is converted to a single-
objective problem by optimising the quality indicator instead of optimising a
set of objective functions simultaneously. In an indicator-based evolutionary
algorithm, such as ESP (Huband et al., 2003), SMS-EMOA (Beume et al.,
2007), the hypervoulme is integrated into environmental selection. In our
multi-objective choice function hyper-heuristic, the D metric is integrated into
the move acceptance strategy. Our goal is to maximise the underlying D

metric as follows.

LEVEL = D(A,B)
if D(B,A) > LEVEL

(6.1)
then A = B

LEVEL = LEVEL + UP

A is a non-dominated front which represents an initial solution and B is
is a non-dominated front which represents a candidate solution from the
neighbourhood. The water level is assigned initially to D(4, B). Note that we
are always looking to get a higher value (maximise) of D(B,A) in order to
accept the candidate solution B, so the condition D(B,A) > D(A,B) or
D(B,A) > LEVEL should be valid (see subsection 2.1.9). In the acceptance
case, B is accepted and the water level is increased linearly according to a
predefined speed rate (UP) which is usually a small fraction greater than 0
less than 0.03 (Scott and Geldenhuysys, 2000).
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6.3 Choice Function Great Deluge for Selecting Low
Level Meta- heuristics (HHMO_CF_GDA)

In this section, we propose a multi-objective choice function based
hyper-heuristic combining it with great deluge as a non-deterministic
acceptance strategy (HHMO_CF_GDA). We use the same multi-objective
hyper-heuristic framework that we proposed in Chapter 4 including the
ranking scheme and learning mechanism. Three well-known (as previously)
multi-objective evolutionary algorithms (NSGAII, SPEA2, and MOGA), act as
the low level heuristics. The pseudo code of the proposed HHMO_CF_GDA for

multi-objective optimisation is shown in algorithm 11.

Algorithm 11: Multi-objective Choice Function Great Deluge based Hyper-
heuristic

1: procedure HHMO_CF_GDA (H) whereas H is a set of the low level heuristics
Initialisation

Run h,YvheH

Rank h,v h € H based on the ranking scheme

Get CF(h),vheH

Select h with the largest CF(h) as an initial heuristic

Execute the selected h and produce a front 4

: repeat

Update the rank of h,vh € H based on the ranking scheme
Update CF(h),Vh € H

Select h with the largest CF(h),vh € H

Execute the selected h and produce a front B

LEVEL = D(A,B)

If D(B,A) > LEVEL

15: A= B

16: LEVEL = LEVEL + UP

17: until (termination criteria are satisfied)

18: end procedure

PN RO VONOUTAWN

Initially, a greedy algorithm is applied to determine the best low level
heuristic h to be selected for the first iteration (steps 2-6). All low level
heuristics H are executed (step 3). Then, the low level heuristics are ranked
based on the ranking scheme using Equation 4.1 (step 4) and their choice
function values are computed using Equation 4.4 (step 5). The low level
heuristic h with the largest choice function value CF(h) is selected to be
applied at the next iteration and it produces the non-dominated front A (a
current solution) (steps 6 & 7). Then, for all low level heuristics H, the ranking
mechanism is updated (step 9). The choice function values are also computed

and updated (step 10). According to the updated choice function values, the
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low level heuristic h with the largest choice function value CF(h) is executed
and it produces the non-dominated front B (a candidate solution) (steps 11 &
12). In steps 13-15, the acceptance procedure GDA is applied. As we are
aiming to maximise D(B,A), the condition in (step 14) should be valid in order
to accept the candidate front B (step 15). In the case of acceptance, the
water level is increased linearly based on a predefined rain speed rate (UP).
This process is repeated until the stopping condition is met which is a fixed
number of iterations (steps 8-17). Note that the greedy algorithm is applied
only once at the beginning of the search, in order to determine which low
level heuristic to apply first. Then, only one low level heuristic is selected at

each iteration.

6.4 Performance Comparison of Choice Function Great
Deluge Hyper-heuristics

As a preliminary framework, we combine great deluge as a move
acceptance with simple random as a heuristic selection method. A low level
heuristic was selected randomly at each iteration in the search process.
According to the results that reported in Chapter 5, we believe that a simple
random selection strategy is not that successful as it does not retain any
knowledge about the performance of low level heuristics on which to base
future decisions. To examine our assumption, we conduct an initial
experiment to compare the performance of great deluge when combined with
simple random and a choice function as a selection method under the multi-
objective hyper-heuristic framework. For the choice function great deluge
based hyper-heuristic, we use the same multi-objective hyper-heuristic
framework that presented in Chapter 4, including the ranking scheme and
learning mechanism, and the same experimental settings that were used in
Section 5.2.2. The rain speed parameter (UP) is initially assigned to 0.03 as
recommended in the literature (Scott and Geldenhuysys, 2000). As we
expected the comparison revealed that choice function great deluge based
hyper-heuristic outperforms the simple random great deluge based hyper-
heuristic on the WFG1 benchmark with respect to the three performance
metrics; RNI, SSC and UD (see Table 6.1). The choice function great deluge

based hyper-heuristic also performs well when compared to the pervious
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hyper-heuristic method, choice function all-moves, that presented
5.

in Chapter

Metric | Methods AVG MIN MAX STD
CF-GDA 0.9480 | 0.1600 | 1.0000 | 0.1894
RNI CF-AM 0.8800 0.2800 | 1.0000 | 0.2539
SR-GDA 0.6423 0.0300 | 1.0000 | 0.4124
CF-GDA 12.2380 | 8.3703 | 12.5154 | 0.7870
SSC CF-AM 12.1386 | 9.0338 | 12.5130 | 0.9101
SR-GDA 8.2421 5.3700 | 8.4240 | 2.5423
CF-GDA 0.4066 0.2083 | 0.8000 | 0.0988
ub CF-AM 0.4428 | 0.3490 | 0.6945 | 0.1007
SR-GDA 0.2937 0.2501 | 0.3900 | 0.2834

Table 6.1: The performance of the choice function great deluge based hyper-heuristic
(CF-GDA), choice function all-moves hyper-heuristic (CF-AM) and the simple random
great deluge based hyper-heuristic (SR-GDA) with respect to the metrics of ratio of
non-dominated individuals (RNI), size of space covered (SSC), and uniform distribution
(UD) of non-dominated population onWFG1.

We note from the Table 6.1 that both hyper-heuristics that have utilised
a choice function as a heuristic selection method outperforms the hyper-
heuristic that used a random selection method. Unlike the random selection
strategy, the choice function considers the performances of low level
heuristics in order to select a suitable heuristic as the search progresses. The
learning mechanism is essential in our multi-objective hyper-heuristic
framework. It plays a large role in guiding the high level strategy (selection

method) and deciding which low level heuristic to call at each decision point.

6.4.1 Tuning of Rain Speed Parameter (UP)

One of the reasons for choosing the great deluge algorithm (GDA) as a
move acceptance component within our multi-objective hyper-heuristic
framework is due to its simplicity and dependency on fewer parameters
(Petrovic et al, 2007). In fact, GDA has one parameter which is the rain speed
(UP). In the literature, it recommended to set the UP to 0.03 or less (Scott
and Geldenhuysys, 2000). However, the choice of the rain speed value is not
trivial, bearing in mind that the suggestion for UP=0.03 was for single-
objective problems. Coming up with the right value requires domain
knowledge, such as, the target upper limit (for our case) and a specific
number of moves that we conduct during the search until we reach that target

level. The rain speed (UP) was fixed at 0.03 during the initial experiments.
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From our observation during the experiments, many questions have arisen
regarding UP. What is the best value for this parameter? Does it depend on
the given problem? How does changing UP influence the quality of solutions?
How about if we narrow/widen the level boundary? Will the solution be
improved? To answer these questions, we conducted a number of
experiments to investigate the effectiveness of the speed rain parameter on
the quality of solutions. We assigned different rain speed parameter values
comparing to our default parameter of 0.03. These settings include 0.3 as a
large value and 0.0003 as a small value. Please note the 0.3 value does not
come with any recommendation from the literature. However, we set UP=0.3
in order to examine the effectiveness of rain speed parameter and how this
could affect the acceptance process and the quality of solutions. The water

level is increased linearly according to a predefined rain speed rate.

6.4.2 Experimental Settings and Performance Evaluation
Criteria

We use the same experimental settings that we presented in Section
5.2.2. Nine test problems for the WFG suite (WFG1-WFG9) have 24 real
parameters including four position parameter, 20 distance parameters and
two objectives. HHMO_CF_GDA was terminated after 6,250 generations. That
is, HHMO_CF_GDA runs for a total of 25 iterations. In each iteration, one low
level heuristic is applied and is executed for 250 generations, with a
population size equal to 100. The secondary population of SPEA2 is set to
100. For the WFG problems, 30 independent trials were run for each
algorithm with a different random seed. For GDA, the rain speed (UP) is
assigned to three values (0.3, 0.03 and 0.0003). HH_CF_GDA was
implemented with the same common sub-functions using Microsoft Visual
C++ 2008 on an Intel Core2 Duo 3GHz\2G\250G computer.

Three performance metrics are used to assess the quality of
approximation sets in different aspects including ratio of non-dominated
individuals (RNI), the hyper-volume (SSC), and Uniform distribution of non-
dominated individuals (UD). For all performance metrics, a higher value
indicates a better performance. In addition, t-test is used as a statistical test

for pairwise mean performance comparison of three version on
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HHMO_CF_GDA using different UP values (0.3, 0.03 and 0.0003). The null

hypothesis is as follows:

{HO the performance of a pair of algorithms have the same means
H, the performance of a pair of algorithms have dif ferent means

The following notation is used while reporting the results. Given a pair of
algorithms, P and Q (denoted as P:Q), The + (-) indicates that the algorithm
P performs better/worse than Q on average with respect to the given metric
and this performance difference is statistically significant within a confidence
interval of 95%. The = (¥) indicates that P performs slightly better (worse)
than Q without any statistically significance. The n/a means the t-test is not

applicable since the performances of both algorithms are completely equal.
6.4.3 Experimental Results and Discussion

The average, minimum, maximum and standard deviation values pairs
for HHMO_CF_GDA using different rain speed (UP) values with respect to RNI,
SSC and UD over 30 trials are provided in Table 6.2. The pairwise mean
performance comparisons (using t-test) of HHMO_CF_GDA using different UP
settings are provided in Table 6.3. We refer to the HHMO_CF_GDA using the
UP values (0.3, 0.03 and 0.0003) as GDA1, GDA2 and GDA3 respectively.

HHMO_CF_GDA with the smallest UP value (GDA3) performs the best.
We note from the Tables 6.2 and 6.3 that the pairwise performance
differences of GDAs are statistically significant for all benchmark functions,
except for the metric RNI where GDA1, GDA2 and GDA3 perform the same.
GDA1 and GDA2 perform significantly similar on average with respect to the
measure of SSC and UD. With respect to the measure of SSC, GDA3 is
statistically significant better than GDA1 and GDA2 for all benchmark
instances. GDA3 performs statistically better than the others in terms of
distribution along the POF (UD) in all test instances except WFG1 and WFG2.

The results are illustrated in Figures 6.1, 6.2 and 6.3. We can see from
Figure 6.1, the water level when the rain speed set to UP=0.03 has been
increased more quickly compared when the rain speed set to UP=0.0003. The
rapid growth of the water level freezes the boundary condition in the early

stages of the search as is the case when UP=0.3 (see Figure 6.4). This leads
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WFG | Metric upP Method AVG MIN MAX STD
0.3 GDA1 0.9390 0.1100 1.0000 | 0.1441
RNI 0.003 GDA2 0.9480 0.1600 1.0000 0.1894
0.0003 | GDA3 0.9357 0.3100 1.0000 0.1821
0.3 GDA1 11.6170 7.9112 12.0140 | 0.6905
1 SSC 0.003 GDA2 12.2380 8.3703 12.5154 | 0.7870
0.0003 | GDA3 12.9388 8.2543 12.9966 | 1.2517
0.3 GDA1 0.3561 0.2022 0.5841 0.0753
ub 0.003 GDA2 0.4066 0.2083 0.8000 0.0988
0.0003 | GDA3 0.3941 0.2047 0.5952 | 0.0698
0.3 GDA1 1.0000 1.0000 1.0000 | 0.0000
RNI 0.003 GDA2 1.0000 1.0000 1.0000 | 0.0000
0.0003 | GDA3 1.0000 1.0000 1.0000 | 0.0000
0.3 GDA1 10.8023 10.5912 11.3981 | 0.0045
2 SSC 0.003 GDA2 10.8310 10.6391 12.4274 | 0.3034
0.0003 | GDA3 11.8148 10.7433 11.8258 | 0.0146
0.3 GDA1 0.3710 0.3497 0.3805 | 0.0057
ub 0.003 GDA2 0.3756 0.3550 0.4187 0.0144
0.0003 | GDA3 0.3729 0.3609 0.3862 0.0064
0.3 GDA1 1.0000 1.0000 1.0000 | 0.0000
RNI 0.003 GDA2 1.0000 1.0000 1.0000 | 0.0000
0.0003 | GDA3 1.0000 1.0000 1.0000 | 0.0000
0.3 GDA1 11.7543 11.8356 11.9196 | 0.0054
3 SSC 0.003 GDA2 11.8930 11.8620 11.9201 | 0.0151
0.0003 | GDA3 11.9197 11.9094 11.9296 | 0.0064
0.3 GDA1 0.4190 0.3788 0.4578 0.0133
ub 0.003 GDA2 0.4224 0.3874 0.4575 0.0129
0.0003 | GDA3 0.4252 0.4059 0.4580 | 0.0120
0.3 GDA1 1.0000 1.0000 1.0000 | 0.0000
RNI 0.003 GDA2 1.0000 1.0000 1.0000 | 0.0000
0.0003 | GDA3 1.0000 1.0000 1.0000 | 0.0000
0.3 GDA1 9.5921 9.5234 9.6100 | 0.0032
4 SSC 0.003 GDA2 9.6181 9.5821 9.6376 0.0146
0.0003 | GDA3 9.6642 9.6210 9.6650 0.0100
0.3 GDA1 0.4101 0.3510 0.4163 0.0122
ub 0.003 GDA2 0.4115 0.3710 0.4415 0.0157
0.0003 | GDA3 0.4145 0.3879 0.4423 | 0.0112
0.3 GDA1 1.0000 1.0000 1.0000 | 0.0000
RNI 0.003 GDA2 1.0000 1.0000 1.0000 | 0.0000
0.0003 | GDA3 1.0000 1.0000 1.0000 | 0.0000
0.3 GDA1 9.2682 9.0977 9.2866 0.0094
5 SSC 0.003 GDA2 9.2771 9.2607 9.2928 | 0.0084
0.0003 | GDA3 9.2964 9.1526 9.2984 0.4023
0.3 GDA1 0.4083 0.3683 0.4399 | 0.0041
ub 0.003 GDA2 0.4110 0.3772 0.4481 0.0235
0.0003 | GDA3 0.4395 0.4238 0.4579 0.0086
0.3 GDA1 1.0000 1.0000 1.0000 | 0.0000
RNI 0.003 GDA2 1.0000 1.0000 1.0000 | 0.0000
0.0003 | GDA3 1.0000 1.0000 1.0000 | 0.0000
0.3 GDA1 9.339%4 9.2008 9.4683 | 0.0543
6 SSC 0.003 GDA2 9.3421 9.2102 9.4715 0.0581
0.0003 | GDA3 9.3745 9.2346 9.4787 0.0628
0.3 GDA1 0.4108 0.3711 0.4255 | 0.0045
ub 0.003 GDA2 0.4115 0.3749 0.4287 0.0129
0.0003 | GDA3 0.4128 0.3992 0.4308 0.0083
0.3 GDA1 1.0000 1.0000 1.0000 | 0.0000
RNI 0.003 GDA2 1.0000 1.0000 1.0000 | 0.0000
0.0003 | GDA3 1.0000 1.0000 1.0000 | 0.0000
0.3 GDA1 9.6391 9.5754 9.6522 0.0154
7 SSC 0.003 GDA2 9.6402 9.5869 9.6571 0.0187
0.0003 | GDA3 9.6650 9.6596 9.6700 | 0.0028
0.3 GDA1 0.4011 0.3630 0.4321 | 0.0144
ub 0.003 GDA2 0.4038 0.3660 0.4345 0.0162
0.0003 | GDA3 0.4085 0.3792 0.4565 0.0151
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WFG | Metric UP Method AVG MIN MAX STD
0.3 GDA1 1.0000 1.0000 1.0000 | 0.0000
RNI 0.003 GDA2 1.0000 1.0000 1.0000 | 0.0000
0.0003 | GDA3 1.0000 1.0000 1.0000 | 0.0000
0.3 GDA1 8.5643 8.4132 8.6588 | 0.0132
8 SSC 0.003 GDA2 8.5783 8.4534 8.6667 | 0.0150
0.0003 | GDA3 8.7279 8.6708 8.7389 | 0.0120
0.3 GDA1 0.4210 0.3920 0.4599 | 0.0050
ub 0.003 GDA2 0.4228 0.4040 0.4610 | 0.0150
0.0003 | GDA3 0.4248 0.3948 0.5933 | 0.0341
0.3 GDA1 0.9801 0.7500 1.0000 | 0.0073
RNI 0.003 GDA2 0.9866 0.7600 1.0000 | 0.0518
0.0003 | GDA3 0.9893 0.8000 1.0000 | 0..4193
0.3 GDA1 8.7299 8.5498 9.4277 | 0.2487
9 SSC 0.003 GDA2 8.7313 8.5554 9.4465 | 0.2693
0.0003 | GDA3 8.7689 8.5789 9.4346 | 0.3054
0.3 GDA1 0.4021 0.3611 0.4559 | 0.0099
ub 0.003 GDA2 0.4088 0.3657 0.4606 | 0.0210
0.0003 | GDA3 0.4111 0.3661 0.6141 | 0.4442

Table 6.2: The average performance of HHMO_CF_GDA using a different UP settings
(0.3, 0.03, 0.0003) donated as GDA1, GDA2 and GDA3 on the WFG test problems with
respect to the ratio of non-dominated individuals (RNI), the hypervolume (SSC) and
the uniform distribution (UD).

Problem Methods Metrics
RNI SSC ub
WFG1 GDA1:GDA2 | + — —
GDA1:GDA3 | + — —
GDA2:GDA3 | — - +
WFG2 GDA1:GDA2 | n/a — _
GDA1:GDA3 | n/a — ¥
GDA2:GDA3 | na — +
WFG3 GDA1:GDA2 | n/a — _
GDA1:GDA3 | n/a — —
GDA2:GDA3 | na — —
WFG4 GDA1:GDA2 | n/a — F
GDA1:GDA3 | n/a — —
GDA2:GDA3 | na — —
WFG5 GDA1:GDA2 | n/a — ¥
GDA1:GDA3 | n/a — —
GDA2:GDA3 | na — -
WFG6 GDA1:GDA2 | n/a F T
GDA1:GDA3 | n/a — -
GDA2:GDA3 | na — T
WFG7 GDA1:GDA2 | n/a F T
GDA1:GDA3 | n/a — T
GDA2:GDA3 | na — T
WFGS8 GDA1:GDA2 | n/a F ¥
GDA1:GDA3 | n/a — ¥
GDA2:GDA3 | na — T
WFG9 GDA1:GDA2 | ¥ F F
GDA1:GDA3 | ¥ — —
GDA2:GDA3 | ¥ — -

Table 6.3: The t-test results of HHMO_CF_GDA using a different UP settings (0.3, 0.03,
0.0003) donated as GDA1, GDA2 and GDA3 on the WFG test problems with respect to
the ratio of non-dominated individuals (RNI), the hypervolume (SSC) and the uniform
distribution (UD).
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to accept the good moves in few number of decision points in the beginning of
the search, while all other moves are rejected for the rest of the search.
However, the slow growth of the water level provides a wider space in the
search to accept more moves as the case when UP=0.0003. This helps to
improve solutions by escaping from the local optimum. From Figure 6.1, we
note that for both settings of UP (0.03 and 0.0003) in WFG1, there is no
effect on the acceptance criteria, i.e. for all decision points, all moves are

accepted since the boundary limit is under the candidate solutions level.
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Figure 6.1: The performance of D metric (Green line) and Level (Blue line) during the
search across 25 decision points for HHMO CF GDA with different sizes of UP (0.03 and
0.0003) on the WFG test suite - Continue.
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Figure 6.1: Continue- the performance of D metric (Green line) and Level (Blue line)
during the search across 25 decision points for HHMO CF GDA with different sizes of UP
(0.03 and 0.0003) on the WFG test suite.
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Figure 6.2: The performance HHMO_CF_GDA with different UP sizes (0.03 and 0.0003)
during the search across 25 decision points with respect to the size of space covered
metric (SSC) during on the WFG test suite.

From Figures 6.2 and 6.3, HHMO_CF_GDA always performs better
during the search with respect SSC and UD metrics when the UP is small for
all WFG problems except WFG1 and WFG2. In general, the smaller rain speed
value allows for the acceptance of more moves with worse solution quality.
This helps escape from the local optimum and produce better solution. This is
clear in Figure 6.4. The HHMO_CF_GDA with the large UP value (0.3) has the
worst performance in WFG4. There is no change in the values of the SSC and
UD metrics which means no moves were accepted during the search. Moves
acceptance has been frozen in the 6™ iterations because the level rose too
quickly. While in the 0.0003 case, the level rose slightly which gives the GDA

more boundary space to accept more moves. So, HHMO_CF_GDA with the
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Figure 6.3: The performance HHMO_CF_GDA with different UP sizes (0.03 and 0.0003)
during the search across 25 decision points with respect to the uniform distribution
metric (UD) on the WFG test suite.
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Figure 6.4: The performance HHMO_CF_GDA with different UP sizes ( 0.3 ,0.03 and
0.0003) during the search across 25 decision points with respect to the size of space
covered metric (SSC) and the uniform distribution metric (UD) on WFG4.
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smallest UP value can produce better solutions. The reasons behind this are
the level boundary increased quickly with the large UP value which leads to

reject many moves up to the level.

The average heuristic utilisation rate, which indicates how frequently a
given low level heuristic is chosen and applied during the search process
across all runs on the WFG problems for the HHMO_CF_GDA with UP values
0.03 and 0.0003, is computed and illustrated in Figure 6.5. Although the
heuristic utilisation rate addresses the selection method (choice function) in
HHMO_CF_GDA, it can also give some insights about how many moves can be
accepted or rejected based on GDA as an acceptance criteria with different UP
settings. It is clear from Figure 6.5 that acceptance moves mainly happens
mostly when UP=0.0003, and the most rejected moves happen when
UP=0.03. This demonstrates that the smaller rain speed value provides a
wider boundary space to accept more moves. In WFG1, all moves have been
accepted for both rain speed values. This supports the results of Figure 6.1,
where the acceptance criteria does not affect the move acceptance because of
the wide boundary space. From the above observations, we conclude that
GDA with a smaller rain speed value produces better solutions for the WFG

test problems.

6.5 Summary and Remarks

We have presented a selection choice function based hyper-heuristic for
multi-objective optimisation utilising a great deluge algorithm as a non-
deterministic move acceptance strategy (HHMO_CF_GDA). The hyper-
heuristic proposed in this chapter differs from the hyper-heuristic that was
proposed in Chapter 5 in terms of a move acceptance criteria. Although both
hyper-heuristics used the same multi-objective hyper-heuristic framework
presented in Chapter 4, choice function great deluge based hyper-heuristic
employed a great deluge as a move acceptance method instead of all-move
acceptance method which was employed in choice function all-moves based
hyper-heuristic (HHMO_CF_AM). The motivation for choosing GDA as an
acceptance criteria is that it is simple and does not depend on many
parameters, this requiring less effort for parameter tuning. More importantly,

encouraging results have been reported in the literature for single-objective
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optimisation, but there are only a few studies on their application to multi-

objective optimisation (e.g., (Petrovic and Bykov, 2003)).

In the context of move acceptance criterion, the quality measure of the
current solution and the candidate solution is essential in order to make a
decision regarding an acceptance decision. For the single-objective
optimisation problem, fithess can be used. However, this is not applicable in
multi-objective optimisation. In multi-objective problems, the output is a set
of solutions (a non-dominated set). In this thesis, for the first time, we
propose the use of D metric (Zitzler, 1999) integrating this into the move
acceptance criterion, particularly GDA as a way of comparing two non-
dominated sets with respect to the objective space, in order to covert the
multi-objective optimisation to the single optimisation without definition of

criteria values' weights.

We conducted an initial experiment to compare the performance of the
proposed great deluge based hyper-heuristics combining the choice function
as a selection method and great deluge based hyper-heuristics combined with
simple random as a selection method under the multi-objective hyper-
heuristic framework. The choice function great deluge outperforms the simple
random great deluge over the WFG1 benchmark with respect to the three
performance metrics; RNI, SSC and UD. The learning mechanism is essential
in our multi-objectives hyper-heuristic framework. It plays a large role in
guiding the high level strategy (selection method) in deciding which low level
heuristic to call at each decision point. In the absence of a learning
mechanism, our multi-objective hyper-heuristic is not that successful.
Findings in Chapter 5 support this. The choice function great deluge based
hyper-heuristic outperforms the pervious hyper-heuristic method, choice
function all-moves based hyper-heuristic. Findings in Chapter 7 will further

confirm this.

We experimented with the proposed choice function great deluge based
hyper-heretics with different settings of the rain speed parameters (UP) to
investigate the effectiveness of this parameter on the move acceptance. We
assigned different rain speed parameter values; large (0.3), medium (0.03)

and small (0.0003) to examine how these setting affect the algorithm and the
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quality of solutions that ultimately returned. The experimental results show
that HHMO_CF_GDA with the smallest UP value (0.0003) performs the best

for the WFG test problems. In general, the smaller rain speed value allows for

the acceptance of more moves that helps escape from the local optimum and

produce better solution.
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Figure 6.5: The average heuristic utilisation rate for low level heuristic during the
search in HHMO_CF_GDA with different sizes of UP (0.03 and 0.0003) on the WFG test
suite.
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7 A Heuristic Selection Using Late Acceptance as a
Non-Deterministic Move Acceptance Strategy

In the previous chapter, we investigated the performance of a selection
choice function based hyper-heuristic that utilised the great deluge algorithm
(GDA) as a non-deterministic move acceptance criterion. The D metric was
integrated into GDA as a way of comparing two non-dominated sets in the
objective space based on the given acceptance criteria. In this chapter, we
further investigate the performance of the choice function based hyper-
heuristic that combines the late acceptance strategy (LA) as a non-
deterministic move acceptance criterion. We will also conduct computational
experiments to compare the performance of the three multi-objective choice
function based hyper-heuristic combined with different move acceptance
strategies including all-moves, great deluge and late acceptance that were
presented in Chapters 5, 6 and this chapter respectively. The comparison will
be conducted over the bi-objective and tri-objective Walking Fish Group
(WFG) test functions. This chapter is structured as follows. Sections 7.1 and
7.2 introduce late acceptance as a component in a choice function based
hyper-heuristic. In Section 7.3, a choice function late acceptance based
hyper-heuristic for multi-objective optimisation (HHMO_CF_LA) is proposed.
This is followed by computational experiments over bi-objective and tri-
objective WFG test function in Sections 7.4 and 7.5 respectively. Section 7.6

concludes the chapter.

7.1 Late Acceptance Strategy as Move Acceptance
Criteria

Since late acceptance (LA) is a new methodology, there are only a
limited number of studies in literature. There are very few investigations of
variant studies, and no multi-objective studies. In Ozcan et al. (2009), the
late acceptance strategy was combined with different heuristic selection
methods (simple random, greedy, reinforcement learning, tabu search and
choice function) and applied to examination timetabling problem. The
experiments show that the random heuristic selection with late acceptance

performs well among other combination methods. In Burke and Bykov (2012)
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an experimental comparison of LA was presented, along with other well-
known search methodologies (simulated annealing (SA), threshold accepting
(TA) and GDA) on the travelling salesman and exam timetabling problems.
The results show that LA is more reliable and powerful than the others. In
Verstichel and Berghe (2009), a number of local search heuristics were
combined with the best improving move strategy and LA was presented for
solving the lock scheduling problem. The experimental results show that LA
has a positive effect on the performance of the heuristics. In Abuhamdah,
(2010) and Abuhamdah and Ayob (2010) a variant of LA using randomized
descent algorithm (LARD) is proposed to solve university course timetabling.
The results demonstrate that the proposed method can beat the original LA in
many cases. In Tierney (2013) LA is applied to solve a central problem in the
liner shipping industry. LA shows promising performance but it could not beat
SA on the same data sets. Yuan et al. (2013) employed LA to solve a two-
sided assembly line balancing problem with multiple constraints. The
computational results show the effectiveness of LA to solve this kind of
problem when compared to an integer programming model and the lower

bounds of the problem instances.

LA is successful for single-objective optimisation and it is simple,
depending on few parameters. Therefore, we employ LA as a component
within our choice function based hyper-heuristic framework for multi-objective
optimisation. To the best of our knowledge, no multi-objective LA based
studies have been investigated, nor has any work that utilises the LA as a
move acceptance component within a hyper-heuristic framework for multi-
objective optimisation been reported in the literature. Details about the late

acceptance strategy are discussed in Section 2.2.8.

7.2 Late Acceptance and D Metric

In a similar way that the D metric was integrated into GDA (see Section
6.2), we also integrate D metric into LA as a move acceptance strategy.. This
is similar to the concept that was used in indicator-based multi-objective
optimisers (e.g. (Auger et al.,2012; Wang et al., 2013; Bader and Zitzler,
2011)), Our goal is to maximise the underlying D metric, integrating as an
acceptance criterion, in order to accept (or reject) a candidate solution (a

candidate non-dominated set).
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LA is modified to employ the D metric. The pseudo code of LA with D

metric is shown in algorithm 12.

Algorithm 12: The Late Acceptance with D Metric

1: procedure LA (A,B,i)

2: Calculate D(4,B)

3: forall k €{0,..,l;q —1} dol 0 C, =D(A,B)
4 V =imod s,

5 Calculate D(B,A)

6: if D(B,A) = C,or D(B,A) = D(4,B) then
7: Accept candidate A = B

8: Insert cost value into the list €, = D(B,A)
9 end if

0:

10: end procedure

For an i iteration, A, B fronts are produced as an initial front and a
candidate front respectively. The fitness array is filled by the value of
D(A,B) (step 3). Since we are aiming to accept the candidate front B, the
condition D(B,A) > D(A,B) should be valid (see Section 2.1.9) (step 6). Note
that we are always looking to get a higher value (maximise) of D(B,A) in
order to accept the candidate solution B. In the acceptance case, front B is
accepted (step 7). The value of D(B, 4) is inserted in the fa (step 8), and the
value of D(4,B) or C, is removed from the fa. Note the insertion and
removing processes are made virtually in an i iteration using Equation 2.10

(step 4).

7.3 Choice Function Late Acceptance for Selecting
Low Level Meta- Heuristics (HHMO_CF_LA)

In this section, we propose multi-objective choice function based hyper-
heuristic combined with late acceptance as a non-deterministic acceptance
strategy (HHMO_CF_LA). We use the same multi-objective hyper-heuristic
framework that was proposed in Chapter 4, including the ranking scheme and
the learning mechanism. Three well-known multi-objective evolutionary
algorithms (NSGAII, SPEA2, and MOGA), act as low level heuristics. The
pseudo code of HHMO_CF_LA for multi-objective optimisation is shown in

algorithm 13.
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Algorithm 13: Multi-objective Choice Function Late Acceptance based Hyper-
heuristic

1: procedure HHMO_CF_LA (H) whereas H is a set of the low level heuristics
2: Initialisation

3: Runh VheH

4: Rankh,V h € H based on the ranking scheme

5: Get CF(h),Yvh€eH

6: Select h with the largest CF(h) as an initial heuristic

7: Execute the selected h and produce a front 4

8: Assign the initial number of iterations i = 0

9: repeat

10: Update the rank of h,vh € H based on the ranking scheme
11: Update CF(h),Yh € H
12: Select h with the largest CF(h),vh € H
13: Execute the selected h and produce a front B
14: Call the late acceptance procedure LA (A, B, i)
& Algorithm 12: The Late Acceptance with D Metric
15: Increment the number of iterationsi = i+ 1
16: until (termination criteria are satisfied)
17: end procedure

Similar to the previous two multi-objective choice function based hyper-
heuristic HHMO_CF_AM and HHMO_CF_GDA, that were proposed in Chapters
5 and 6 respectively, a greedy algorithm is applied at the beginning of the
search to determine the best low level heuristic h to be selected for the first
iteration (steps 2-6). All low level heuristics H are executed simultaneously
(step 3). Then, the low level heuristics are ranked, based on the ranking
scheme using Equation 4.1 (step 4), and their choice function values are
computed using Equation 4.4 (step 5). The low level heuristic h with the
largest choice function value CF(h) is selected and applied at the next
iteration and it produces the non-dominated front A (a current solution)
(steps 6 & 7). Then, for all low level heuristics H, the ranking mechanism is
updated (step 9). The choice function values are also computed and updated
(step 11). According to the updated choice function values, the low level
heuristic h with the largest choice function value CF(h) is called to apply and it
produces the non-dominated front B (a candidate solution) (steps 12 & 13).
In step 14, the acceptance procedure; late acceptance LA (A,B,i) is called and
applied using the parameters that were obtained from the search (see
algorithm 12 ). This process is repeated until the stopping condition is met
which is a fixed number of iterations (steps 9-17). Note the HHMO_CF_LA is
operated in a similar manner to the HHMO_CF_GDA unless the move

acceptance criteria that employed are different.
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7.4 Comparison of Multi-objective Hyper-heuristics-

the Case of Bi-objective

In this section, we conduct experiments over the bi-objective Walking
Fish Group (WFG) benchmark dataset (Hunband et al., 2006) to evaluate the
performance of our three multi-objective choice function based hyper-
heuristics for multi-objective optimisation using different move acceptance
strategies including all-moves as a deterministic move acceptance, and the
great deluge algorithm and late acceptance as non-deterministic move
acceptance functions. Experiments are also conducted to investigate the
influence of using non-deterministic move acceptance strategies; great deluge
algorithm and late acceptance on the performance of online learning selection

choice function based hyper-heuristic for multi-objective optimisation.

7.4.1 Performance Evaluation Criteria

We wused five performance metrics to measure the quality of
approximation sets from different aspects: (i) ratio of non-dominated
individuals (RNI) (Tan et al., 2002), (ii) hypervolume (SSC) (Zitzler and
Thiele, 1999) (iii) uniform distribution of a non-dominated population (UD)
(Srinivas and Deb, 1994), (iv) generational distance (GD) (Van Veldhuizen
and Lamont, 1998b) and (v) inverted generational distance (IGD) (Coello and
Cruz Cortés, 2005). A higher value considering one of those performance
metrics indicates that non-dominated solutions have a good quality, except
for GD and IGD, where a lower value indicates that the approximation

nondominated front is closer to the POF.

We have compared the mean performance of three multi-objective
choice function based hyper-heuristics; HHMO_CF_AM, HHMO_CF_GDA and
HHMO_CF_LA across multiple trials with respect to the metrics across multiple
trials. t-test is used as a statistical test for pairwise mean performance

comparison of selection hyper-heuristics.

7.4.2 Experimental Settings

All experimental parameters are chosen according to those commonly

used in the literature for continuous problems (see (Zitzler et al. (2000) and
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Huband et al. (2006)). We use the same parameter settings that were used in
Sections 5.2.2 and 6.4.2 for a fair comparison. In the measure of SSC and D
metric for GDA and LA, the reference points for WFG problems with
k objectives was set r, = (0,i*2),i=1,...,k (Huband et al., 2006). As for
HHMO_CF_GDA, the rain speed (UP) is set to 0.0003 based on the empirical
experiments that are presented in Chapter 6. The length of the fitness array
lfq in HHMO_CF_LA is set to 5 as recommended in Burke and Bykov (2012).

All methods are implemented using Microsoft Visual C++ 2008 on an Intel
Core2 Duo 3GHz\2G\250G computer.

7.4.3 Experimental Results and Discussion

The average, minimum, maximum and standard deviation considering
the performance metrics, including RNI, SSC, UD, GD and IGD for each WFG
problem generated by each hyper-heuristic across 30 trials are provided in
Tables 7.1 and 7.2. From this point onward, each hyper-heuristic will be

referred to by move acceptance method utilised within each hyper-heuristic.

The pairwise mean performance comparison of different selection choice
function based hyper-heuristics, each using a different move acceptance
method, are provided in Table 7.3 based on t-test. The box plots of RNI, SSC,
UD, GD and IGD values for each bi-objective WFG benchmark function using
AM, GDA and LA are also illustrated in Figures 7.1, 7.2, 7.3, 7.4 and 7.5. The
performance of the choice function based hyper-heuristics are statistically
different in the majority cases. In general, AM, GDA, LA are statistically
different from each other (i.e. we reject the null hypothesis). In the overall,
GDA performs the best.

From Figure 7.1, we note that the selection hyper-heuristic using GDA and LA
perform better than the one using AM on average with respect to the
measure of ratio non-dominated solutions (RNI). The pairwise performance
differences of GDA and LA from AM are statistically significant for all
benchmark functions with respect to RNI, except WFG1. GDA and LA perform

relatively similar (see Table 7.2).
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WFG | Methods RNI SSC (HV) uD

AVG MIN MAX STD AVG MIN MAX STD AVG MIN MAX STD

AM 0.8800 | 0.2800 | 1.0000 | 0.2539 | 12.1386 | 9.0338 | 12.5130 | 0.9101 | 0.4428 | 0.3490 | 0.6945 | 0.1007
1 GDA 0.9357 | 0.3100 | 1.0000 | 0.1821 | 12.9388 | 8.2543 | 12.9966 | 1.2517 | 0.3941 | 0.2047 | 0.5952 | 0.0698
LA 0.9950 | 0.8400 | 1.0000 | 0.0292 | 12.1867 | 6.4458 | 12.3515 | 0.9967 | 0.3117 | 0.1178 | 0.3800 | 0.0521
AM 0.2293 | 0.1600 | 0.3600 | 0.0545 | 11.0219 | 10.6407 | 12.3894 | 0.3042 | 0.7278 | 0.6223 | 1.0000 | 0.0661
2 GDA 1.0000 | 1.0000 | 1.0000 | 0.0000 | 11.8148 | 10.7433 | 11.8258 | 0.0146 | 0.3729 | 0.3609 | 0.3862 | 0.0064
LA 1.0000 | 1.0000 | 1.0000 | 0.0000 | 11.8139 | 10.7242 | 11.9365 | 0.1567 | 0.3716 | 0.3158 | 0.4055 | 0.0156
AM 0.6027 | 0.5200 | 0.6800 | 0.0445 | 11.8940 | 11.3990 | 11.9867 | 0.0853 | 0.5450 | 0.4959 | 0.6136 | 0.0289
3 GDA 1.0000 | 1.0000 | 1.0000 | 0.0000 | 11.9197 | 11.9094 | 11.9296 | 0.0064 | 0.4252 | 0.4059 | 0.4580 | 0.0120
LA 1.0000 | 1.0000 | 1.0000 | 0.0000 | 11.9093 | 11.8232 | 11.8933 | 0.0162 | 0.4222 | 0.3976 | 0.4352 | 0.0094
AM 0.5443 | 0.4800 | 0.6400 | 0.0452 | 9.6588 9.5331 | 9.6643 | 0.0176 | 0.5596 | 0.4752 | 0.6317 | 0.0361
4 GDA 1.0000 | 1.0000 | 1.0000 | 0.0000 | 9.6642 | 9.6210 | 9.6650 | 0.0100 | 0.4145 | 0.3879 | 0.4423 | 0.0112
LA 1.0000 | 1.0000 | 1.0000 | 0.0000 | 9.6512 9.5685 | 9.6330 | 0.0141 | 0.4150 | 0.3860 | 0.4402 | 0.0143
AM 0.8537 | 0.6000 | 1.0000 | 0.1723 9.2899 9.1526 | 9.2984 | 0.5744 | 0.4779 | 0.4279 | 0.5744 | 0.0468
5 GDA 1.0000 | 1.0000 | 1.0000 | 0.0000 | 9.2964 | 9.1526 | 9.2984 | 0.4023 | 0.4395 | 0.4238 | 0.4579 | 0.0086
LA 1.0000 | 1.0000 | 1.0000 | 0.0000 | 9.2772 9.2580 | 9.2859 | 0.0080 | 0.4170 | 0.3733 | 0.4484 | 0.0213
AM 0.4720 | 0.4000 | 0.5600 | 0.0412 | 9.3687 9.1500 | 9.3810 | 0.0542 | 0.5962 | 0.5042 | 0.6479 | 0.0363
6 GDA 1.0000 | 1.0000 | 1.0000 | 0.0000 | 9.3745 | 9.2346 | 9.4787 | 0.0628 | 0.4128 | 0.3992 | 0.4308 | 0.0083
LA 1.0000 | 1.0000 | 1.0000 | 0.0000 | 9.3711 9.2495 | 9.4553 | 0.0474 | 0.4136 | 0.3927 | 0.4377 | 0.0129
AM 0.6173 | 0.4000 | 0.7200 | 0.0653 9.6606 9.2261 | 9.6911 | 0.0926 | 0.5289 | 0.4734 | 0.6743 | 0.0416
7 GDA 1.0000 | 1.0000 | 1.0000 | 0.0000 | 9.6650 | 9.6596 | 9.6700 | 0.0028 | 0.4085 | 0.3792 | 0.4565 | 0.0151
LA 1.0000 | 1.0000 | 1.0000 | 0.0000 | 9.6641 9.6172 | 9.6550 | 0.0100 | 0.4112 | 0.3878 | 0.4342 | 0.0133
AM 0.2627 | 0.2000 | 0.4400 | 0.0454 | 8.3033 8.1155 | 8.5676 | 0.1224 | 0.7886 | 0.6294 | 1.0000 | 0.1245
8 GDA 1.0000 | 1.0000 | 1.0000 | 0.0000 | 8.7279 | 8.6708 | 8.7389 | 0.0120 | 0.4248 | 0.3948 | 0.5933 | 0.0341
LA 1.0000 | 1.0000 | 1.0000 | 0.0000 | 8.4859 8.3572 | 8.6371 | 0.0754 | 0.4128 | 0.3832 | 0.4488 | 0.0136
AM 0.6410 | 0.4000 | 0.8000 | 0.0896 | 8.6132 8.2356 | 9.2519 | 0.2236 | 0.5142 | 0.4141 | 0.6432 | 0.0525
9 GDA 0.9893 | 0.8000 | 1.0000 | 0.4193 | 8.7689 | 8.5789 | 9.4346 | 0.3054 | 0.4111 | 0.3661 | 0.6141 | 0.0210
LA 0.9973 | 0.9200 | 1.0000 | 0.0146 | 8.7132 8.5373 | 9.2002 | 0.2518 | 0.3953 | 0.3508 | 0.4201 | 0.0144

Table 7.1: The performance of selection choice function based hyper-heuristics using different move acceptance strategies including all-moves (AM), great
deluge algorithm (GDA) and late acceptance (LA) on the bi-objective WFG test problems with respect to the metrics; the ratio of non-dominated individuals
(RNI), the hypervolume (SSC), the uniform distribution (UD).
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WFG | Methods GD IGD
AVG MIN MAX STD AVG MIN MAX STD
AM 7.740E-03 | 3.400E-03 | 4.660E-02 | 1.106E-02 | 7.300E-04 | 3.900E-04 | 2.930E-03 | 6.500E-04
1 GDA 8.240E-03 | 3.400E-03 | 4.400E-02 | 1.110E-02 | 1.020E-03 | 3.900E-04 | 4.940E-03 1.170E-03
LA 1.534E-02 | 8.200E-03 | 4.110E-02 | 7.260E-03 | 2.400E-03 | 1.680E-03 | 4.740E-03 7.200E-04
AM 1.460E-03 | 9.000E-04 | 3.200E-03 | 4.900E-04 | 4.400E-04 | 2.200E-04 | 5.400E-04 6.000E-05
2 GDA 4.500E-04 | 4.000E-04 | 8.000E-04 | 8.000E-05 | 3.500E-04 | 3.500E-04 | 3.600E-04 | 0.000E+00
LA 7.000E-04 | 4.000E-04 | 4.500E-03 | 7.300E-04 | 3.700E-04 | 3.500E-04 | 7.800E-04 8.000E-05
AM 6.800E-04 | 3.000E-04 | 2.800E-03 | 4.500E-04 | 6.853E-04 | 6.831E-04 | 7.229E-04 7.169E-06
3 GDA 2.000E-04 | 1.900E-04 | 3.000E-04 | 5.000E-05 | 6.835E-04 | 6.830E-04 | 6.839E-04 | 2.502E-07
LA 4.100E-04 | 3.000E-04 | 6.000E-04 | 7.000E-05 | 6.836E-04 | 6.813E-04 | 6.856E-04 1.184E-06
AM 9.700E-04 | 7.500E-04 | 1.510E-03 | 1.900E-04 | 2.563E-04 | 1.951E-04 | 3.311E-04 3.384E-05
4 GDA 4.700E-04 | 4.300E-04 | 5.800E-04 | 4.000E-05 | 1.297E-04 | 1.169E-04 | 1.613E-04 | 1.027E-05
LA 6.100E-04 | 5.400E-04 | 7.500E-04 | 5.000E-05 | 1.475E-04 | 1.343E-04 | 1.830E-04 1.099E-05
AM 2.730E-03 | 2.160E-03 | 2.440E-03 | 3.200E-04 | 5.439E-04 | 5.281E-04 | 5.987E-04 2.246E-05
5 GDA 2.450E-03 | 2.430E-03 | 2.430E-03 | 1.000E-05 | 5.292E-04 | 5.278E-04 | 5.304E-04 | 6.672E-07
LA 2.510E-03 | 2.460E-03 | 2.460E-03 | 3.000E-05 | 5.394E-04 | 5.293E-04 | 5.612E-04 8.862E-06
AM 2.250E-03 | 1.500E-03 | 3.900E-03 | 5.600E-04 | 5.523E-04 | 4.265E-04 | 7.191E-04 6.749E-05
6 GDA 2.000E-03 | 1.310E-03 | 2.700E-03 | 3.500E-04 | 4.441E-04 | 2.850E-04 | 5.791E-04 7.680E-05
LA 2.050E-03 | 1.420E-03 | 2.550E-03 | 2.700E-04 | 4.470E-04 | 3.089E-04 | 5.503E-04 | 5.602E-05
AM 4.700E-04 | 4.400E-04 | 1.360E-03 | 2.500E-04 | 2.206E-04 | 1.736E-04 | 4.141E-04 5.025E-05
7 GDA 3.300E-04 | 2.600E-04 | 4.100E-04 | 4.000E-05 | 1.191E-04 | 1.090E-04 | 1.392E-04 | 7.968E-06
LA 4.100E-04 | 2.900E-04 | 5.000E-04 | 4.000E-05 | 1.323E-04 | 1.096E-04 | 1.471E-04 1.185E-05
AM 4.420E-03 | 3.580E-03 | 4.980E-03 | 4.300E-04 | 6.195E-04 | 4.806E-04 | 7.753E-04 7.767E-05
8 GDA 3.890E-03 | 3.580E-03 | 5.850E-03 | 3.800E-04 | 3.634E-04 | 3.426E-04 | 4.198E-04 1.397E-05
LA 4.410E-03 | 4.080E-03 | 4.710E-03 | 1.500E-04 | 4.205E-04 | 3.863E-04 | 4.572E-04 | 1.371E-05
AM 5.280E-03 | 1.430E-03 | 6.390E-03 | 1.450E-03 | 9.545E-04 | 3.122E-04 | 1.176E-03 | 2.444E-04
9 GDA 3.640E-03 | 4.100E-04 | 5.500E-03 | 1.950E-03 | 7.879E-04 | 1.369E-04 | 1.025E-03 3.908E-04
LA 3.770E-03 | 5.700E-04 | 4.950E-03 | 1.690E-03 | 8.312E-04 | 1.787E-04 | 1.031E-03 3.538E-04

Table 7.2: The performance of selection choice function based hyper-heuristics using different move acceptance strategies including all-moves (AM), great
deluge algorithm (GDA) and late acceptance (LA) on the bi-objective WFG test problems with respect to the metrics; the generational distance (GD) and the
inverted generational distance (IGD).
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Metrics

Problem Methods

AM:GDA
WFG1 | AM:LA
GDA:LA
AM:GDA
WFG2 | AM:LA -
GDA:LA n/a
AM:GDA -
WFG3 | AM:LA -
GDA:LA n/a
AM:GDA -
WFG4 | AM:LA -
GDA:LA n/a
AM:GDA -
WFG5 | AM:LA -
GDA:LA n/a
AM:GDA -
WFG6 | AM:LA -
GDA:LA n/a
AM:GDA -
WFG7 | AM:LA -
GDA:LA n/a
AM:GDA -
WFG8 | AM:LA -
GDA:LA n/a
AM:GDA - -
WFG9 | AM:LA -
GDA:LA + +
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Table 7.3: The t-test results of multi-objective choice function based hyper-heuristics
methodologies using AM, GDA and LA as a move acceptance criterion on the bi-
objective WFG test problems with respect to the metrics; the ratio of non-dominated
individuals (RNI), the hypervolume (SSC), the uniform distribution (UD) and the
generational distance (GD).

From Figure 7.2 and Table 7.2, GDA has the best overall mean
performance when compared to AM and LA. With respect to the measure of
the hypervolume (SSC), this performance difference is statistically significant
across all WFG problems, except WFG2. For this instance, GDA performs
slightly better than LA. In addition, LA delivers a significantly better
performance than AM for all WFG problems, except WFG5. Similarly, GDA
delivers a significantly better mean performance when compared to AM and
LA with respect to the measure of generational distance (GD) for all
benchmark functions, except WFG1 and WFG9 (See Figure 7.4 and Table 7.2).
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Box plots of multi-objective choice function based hyper-heuristics
methodologies using AM, GDA and LA as a move acceptance criterion on the bi-
objective WFG test problems for the measure of ratio non-dominated solutions (RNI).
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Figure 7.2: Box plots of multi-objective choice function based hyper-heuristics
methodologies using AM, GDA and LA as a move acceptance criterion on the bi-
objective WFG test problems for the measure of hypervoulme (SSC).
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Figure 7.3: Box plots of multi-objective choice function based hyper-heuristics
methodologies using AM, GDA and LA as a move acceptance criterion on the bi-
objective WFG test problems for the measure of uniform distribution (UD).
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Figure 7.4: Box plots of multi-objective choice function based hyper-heuristics
methodologies using AM, GDA and LA as a move acceptance criterion on the bi-
objective WFG test problems for the measure of generational distance (GD).
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Figure 7.5: Box plots of multi-objective choice function based hyper-heuristics
methodologies using AM, GDA and LA as a move acceptance criterion on the bi-
objective WFG test problems for the measure of inverted generational distance (IGD).

For WFG1, AM performs slightly better than GDA and significantly better
than LA, while for WFG9, LA performs significantly better than AM and GDA
performs slightly better than AM. With respect to the measure of inverted
generational distance (IGD), GDA performs significantly better than AM in all
instances except in WFG1. In addition, GDA performs significantly better than
LA in four instances of WFG2, WFG4, WFG8 and WFG9 while it performs

significantly similar to LA in the rest (see Figure 7.5).

Although non-deterministic move acceptance methods improve the
overall mean performance of the hyper-heuristic with respect to RNI, SSC, GD
and IGD, AM performs the best with respect to the measure of the uniform
(UD) (see Figure 7.3). The

performance differences from GDA and LA are statistically significant for all

distribution of non-dominated solutions
problems, except WFG4, for which AM still performs slightly better than LA.
GDA and LA have relatively similar performance across all WFG problems (see
Table 7.2). The success of AM with respect to UD might be due to the use of
Since D metric is a binary

the D metric into acceptance procedure.

hypervolume measure that is designed to compare two sets of nhon-dominated
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solutions with respect of their convergence towards the POF, there is no
consideration regarding how uniformly these solutions are distributed along
the POF. This might also be a reason for why non-deterministic move
acceptance produces high quality solutions in terms of the convergence
towards the POF.

7.4.4 Behaviour of Acceptance Strategies

To further understand how the move acceptance strategies, AM, GDA
and LA, are performing and how their performances could affect the quality of
the solutions, we compute the average accepted/rejected move rates which
indicates how frequently a move (solution) that is produced from the three
low level heuristics is accepted/ rejected under different acceptance methods
AM, GDA and LA. Figure 7.6 illustrates the average number of heuristic
invocations of each low level heuristic selected and applied at 25 consecutive
decision points (stages/iterations) during the search process over all runs.
Each bar in the plot also indicates the average number of accepted and
rejected Pareto fronts. A similar pattern for the choice of low level heuristics
during the search process has been observed in Figure 7.6 on almost all WFG
problems considering the three hyper-heuristics. This is high likely due to the
use of the same heuristic selection mechanism (choice function). However,
the pattern in the plots for accepted or rejected Pareto fronts produced by the
chosen low level heuristic varies for a given problem depending on the move
acceptance strategy that the hyper-heuristic employs. NSGAII is always
selected more than the other low level meta-heuristics regardless of the move
acceptance method, except for WFG5 and WFG9. For WFG5, SPEA2 is the
most frequently chosen algorithm regardless of the move acceptance
component of the hyper-heuristic during the search process. On the other
hand, SPEA2 is frequently chosen when GDA is used as the move acceptance
algorithm on WFG9. The performance of MOGA is the worst among three
hyper-heuristics on the WFG problems; thus it is invoked relatively less

frequently during the search process in all test problems for all methods.

Overall, NSGAII appears to be a good choice for solving the WFG
problems. Our observations are consistent with the result obtained in
Bradstreet et al. (2007) showing that the best performance is achieved by
NSGAII on the bi-objective WFG test suite. This indicates that NSGAII is a

good choice for solving the WFG problems. We theorise that the multi-
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Figure 7.6: The average number of low level meta-heuristic invocations (NSGAII,
SPEA2 and MOGA) and accepted/rejected moves produced by selection hyper-
heuristics using AM, GDA and LA over the bi-objective WFG test problems- continue.
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Figure 7.6: Continue- the average number of low level meta-heuristic invocations
(NSGAII, SPEA2 and MOGA) and accepted/rejected moves produced by selection
hyper-heuristics using AM, GDA and LA over the bi-objective WFG test problems.

objective choice function hyper-heuristic, therefore, prefers NSGAII and it
becomes preferable to be chosen more frequently than the other low level

heuristics.

Figure 7.6 shows that there is only one case in which all moves are
accepted when a non-deterministic strategy is used, that is GDA for WFG1.
The rate of moves rejected for LA is higher than that for GDA on all test
problems regardless of the low level meta-heuristic employed, except for
MOGA, where LA accepts more moves (solutions) than GDA on almost all
problems. These observations offer some explanation as to why the

performance of GDA is better than LA in terms of convergence towards the

152 | Page



Chapter 7: A Heuristic Selection Using Non-Deterministic Move Acceptance
Strategy (Late Acceptance strategy)

POF: (i) The good moves that are accepted in GDA are rejected in LA, and (ii)
as MOGA does not perform well in the WFG test problem and it is invoked
relatively less frequently during the search process, LA accepts all MOGA's
moves (solutions) while GDA rejects them. LA produces better solutions than
AM. So, the non-deterministic acceptance strategies (GDA and LA) beat the
deterministic acceptance strategy (AM). In addition, GDA and LA appear to
positively affect the performance of the multi-objective choice function based
hyper-heuristic when used as the move acceptance strategy over the bi-

objective WFG test problems.

7.5 Comparison of Multi-objective Hyper-heuristics-

the Case of Tri-objective

More experiments are conducted to evaluate the performance of the
three proposed selection online learning choice function based hyper-
heuristics for multi-objective optimisation (HHMO_CF_AM, HHMO_CF_GDA
and HHMO_CF_LA) over tri-objective Walking Fish Group (WFG) benchmark
dataset (Huband et al., 2006). The performance of our selection choice
function based hyper-heuristics is compared to the well-known multi-objective
evolutionary algorithm, SPEA2 (Zitzler et al., 2001) as well. The motivation
behind choosing SPEA2 to compare against our multi-objective hyper-heuristic
is that SPEA2 performs well on the WFG problems in three objectives
(Bradstreet et al., 2007). For brevity, we will refer to three multi-objective
choice function based hyper-heuristics; HHMO_CF_AM, HHMO_CF_GDA and
HHMO_CF_LA as AM, GDA and LA respectively.

7.5.1 Performance Evaluation Criteria

We used three performance metrics- the hypervolume- size of space
converged (SSC) (Zitzler and Thiele, 1999), generational distance (GD) (Van
Veldhuizen and Lamont, 1998b) and inverted generational distance (IGD)
(Coello and Cruz Cortes, 2005)- to assess the quality of approximation sets in
both diversity and convergence aspects. In addition, we use the students test
(t-test) statistic to compare the mean performance of SPEA2 and three choice
function based multi-objective hyper-heuristics using different acceptance
criteria; AM, GDA and LA across multiple trials with respect to the metrics
across multiple trials. We use the same notation that was presented in
Section 7.4.1.
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7.5.2 Experimental Settings

All experimental parameters are chosen according to those commonly
used in the scientific literature for the tri-objective problems (Huang et al.,
2007; Zielinski and Laur, 2007). The nine test problems (WFG1-WFG9) with
three objectives have 24 real parameters including four position parameter
and 20 distance parameters. For each problem, we run 30 independent trials
with a different random seed. For fair comparison, all methods in each run
were executed 300,000 evaluation functions in order to keep the
computational costs of the experiments in an affordable level. In other words,
all hyper-heuristics are run for a total of 30 stages (iterations). In each stage,
a low level heuristic is chosen and applied to execute 100 generations with a
population size equal to 100 (10,000 evaluation functions). SPEA2 executed
for 300,000 evaluation functions (3000 generations in total with primary and
secondary population sizes equal to 100). Other parameter settings are
identical to those used in Section 7.4.2. All methods were implemented with
the same common sub-functions using Microsoft Visual C++ 2008 on an Intel
Core2 Duo 3GHz\2G\250G computer.

7.5.3 Experimental Results and Discussion

The statistical t-test results of comparing three multi-objective choice
function based hyper-heuristics (AM, GDA and LA) and SPEA2 with respect to
the three performance metrics (SSC, GD and IGD) on the nine WFG test
problems are given in Table 7.4. We can note that our multi-objective choice
function based hyper-heuristics are statistically different from SPEA2 in the
majority cases (i.e. we reject the null hypothesis) except in AM whilst

performs similar to SPEA2 in most cases for the SSC metric.

The performance values of SPEA2 and our three multi-objective hyper-
heuristic methodologies (AM, GDA and LA) with respect to the performance
metrics (SSC, GD and IGD) on the tri-objective WFG function are summarised
in Table 7.5. For each performance metric, the average, minimum, maximum
and standard deviation values are shown. We also visualise the distribution of
the simulation data of the 30 independent runs for the comparison methods
with respect to these performance metrics shown in Figures 7.7 -7.9. A higher
value indicates a better performance in SSC while a lower value indicates a

better performance in GD and IGD.
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We note from both Table 7.5 and Figures 7.7-7.9. GDA has the highest
SSC value in five out of nine problems including WFG1, WFG3, WFG5, WFG7,
WFG9 while LA has the highest SSC's value for the rest of the WFG problems.
The pairwise performance differences of GDA from other methods are
statistically significant for all benchmark functions with respect to the
measure of hypervoulme (SSC). It is interesting to note that AM and SPEA2
are performing similarly in the majority of cases for SSC. With respect to the
measure of generational distance (GD), GDA has the lowest GD’s value which
means it has the best performance among other methods for all WFG
problems except in WFG3 where SPEA2 performs the best. In contrast, LA has
the highest GD value, thus the worst performance among the comparison
methods. With respect to the measure of inverted generational distance
(IGD), GDA has the lowest GD value which means it has the best performance
among other methods for all WFG problems except in WFG1 and WFG9.

Generally, GDA is statistically significant better than AM, LA and SPEA2
in the most cases with respect to the SSC, GD and IGD metrics. Although AM
and LA perform better than SPEA2 in the measure of SSC for all WFG
problems, they perform worse than SPEA2 in the measure of GD and IGD in
the majority cases. The superiority of our multi-objective hyper-heuristics
compared to SPEA2 in the SSC metric is because of the influence of the
ranking scheme that is embedded in the selection mechanism (the choice
function). The ranking scheme maintains the past performance of low level
heuristics using a set of performance indicators that measure different aspects

of the solutions, the SSC metric is one of these indicators.

In Figure 7.10, we have plotted the POF and the distribution of the final
fronts obtained in the run with the lowest GD value of each method in each
WFG problem. It is clear that the GDA is converging well (closer to the POF)
compared to the other methods for all the datasets. However, GDA shows
poor distribution of final solutions in WFG8 and WFG9. This could be attributed
to the fact that WFG8 and WFG9 feature significant bias which causes
difficulty to the algorithm to spread well along the front. We can observe that
the multi-objective selection hyper-heuristic that utilised the GDA as a move
acceptance criterion outperforms SPEA2 and the other move acceptance

criteria AM and LA in most WFG problems with three objectives.
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Table 7.4: The t-test results of SPEA2 and three multi-objective choice function based
hyper-heuristics using all-move (AM), great deluge algorithm (GDA) and Ilate
acceptance (LA) as a move acceptance criterion with respect to the metrics; the
hypervolume (SSC), the generational distance (GD) and the inverted generational
distance (IGD) on the tri-objective WFG test problems.
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To understand why GDA works so well as an acceptance strategy and
outperforms the others, in the next subsection, we analyse the behaviour of
the move acceptance strategies and how many moves are accepted/rejected

based on these acceptance strategies.

7.5.4 Behaviour of Acceptance Strategies

In order to understand how the move acceptance strategies, AM, GDA
and LA, are performing and how their performances could affect the quality of
the solutions, we compute the average heuristic utilisation rate which
indicates how frequently a given low level heuristic is chosen and applied
during the search process (through 30 decision points/stages) across all runs.
We also compute the average accepted/rejected move rates which indicates
how frequently a move (solution) that is produced from the three low level
heuristics (NSGAII, SPEA2 and MOGA) is accepted/ rejected under different
acceptance methods (AM, GDA and LA). The results are presented in Figure
7.11.

It is clear from Figure 7.11 that all WFG problems have the same bar
graph patterns for the three hyper-heuristics methods (AM, GDA and LA), as
they use the same selection mechanism (choice function). Unlike the graph
patterns of the choice function in the two objective case (see Section 7.4)
where NSGAII has the highest average heuristic utilisation rate, SPEA2 has
the highest average heuristic utilisation rate among all low level heuristics for
each problem in the three objectives case. This indicates that SPEA2 performs
best among other low level heuristics in all WFG problems. We theorise that
multi-objective choice function based hyper-heuristics, therefore, prefers
SPEA2 and it becomes preferable to be chosen more frequently than the other
low level heuristics. Our result is consistent with the result in Bradstreet et al.
(2007) that show the best performance is achieved by SPEA2 on the tri-
objectives WFG test functions. NSGAII has the second highest average
heuristic utilisation rate among all low level heuristics for each problem in all
methods. As for the two objective case, the performance of MOGA is not
good on the WFG problems with three objectives; thus it is invoked relatively

less frequently during the search process on all test problems, for all methods
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WFG Methods SSC (HV) GD IGD
AVG MIN MAX STD AVG MIN MAX STD AVG MIN MAX STD

AM 107.3712 9.1829 135.3410 32.6332 4.812E-02 3.497E-02 4.910E-02 2.552E-03 1.116E-02 9.979E-03 1.130E-02 2.506E-04

GDA 117.8262 32.7882 213.2110 77.3751 4.628E-02 4.307E-02 4.866E-02 2.029E-03 1.175E-02 1.114E-02 1.297E-02 6.065E-04

1 LA 84.9291 48.9161 175.3890 33.0404 4.936E-02 6.789E-02 4.656E-02 5.061E-03 1.142E-02 1.037E-02 1.188E-02 3.313E-04
SPEA2 114.3752 62.3193 125.9170 23.5923 4.871E-02 4.807E-02 4.919E-02 2.532E-04 1.125E-02 1.119E-02 1.133E-02 3.545E-05

AM 167.1861 89.2915 207.7816 45,1490 1.092E-02 5.084E-03 2.198E-02 3.936E-03 1.760E-03 1.070E-03 4.540E-03 6.627E-04

GDA 168.3010 82.2896 208.8914 37.0173 5.793E-03 2.238E-03 1.366E-02 2.512E-03 1.482E-03 8.193E-04 2.802E-03 4.752E-04

2 LA 187.3642 102.9195 216.7784 35.8396 9.523E-03 4.824E-03 1.879E-02 3.010E-03 1.822E-03 1.109E-03 2.203E-03 2.613E-04
SPEA2 171.0259 111.9220 201.3650 42.1033 1.119E-02 9.035E-03 1.425E-02 1.353E-03 1.677E-03 1.389E-03 2.023E-03 1.765E-04

AM 164.4504 161.1735 165.8882 0.8374 1.714E-02 3.725E-03 2.461E-02 8.661E-03 6.541E-04 2.289E-04 1.103E-03 2.737E-04

3 GDA 166.2142 164.4883 170.2537 1.4075 2.272E-02 2.115E-02 2.384E-02 6.695E-04 6.007E-04 4.123E-04 1.229E-03 1.901E-04
LA 164.9405 156.9436 172.9678 3.8900 1.700E-02 6.362E-03 2.374E-02 6.760E-03 9.436E-04 4.399E-04 1.518E-03 3.575E-04

SPEA2 155.5069 81.6381 159.0350 13.9708 3.764E-03 3.285E-03 4.627E-03 4.079E-04 1.237E-03 1.050E-03 1.379E-03 7.958E-05

AM 174.4465 172.2685 175.9692 0.9286 7.472E-03 6.802E-03 8.191E-03 2.959E-04 9.237E-04 8.192E-04 1.103E-03 6.690E-05

GDA 187.5106 172.2036 195.3434 4.7233 7.193E-03 4.590E-03 7.808E-03 5.411E-04 9.134E-04 8.162E-04 1.114E-03 7.101E-05

4 LA 188.8972 183.5044 195.8470 3.5147 7.947E-03 7.493E-03 8.451E-03 2.531E-04 9.767E-04 8.693E-04 1.241E-03 7.746E-05
SPEA2 174.5163 172.3850 176.8740 1.1343 7.579E-03 7.152E-03 8.029E-03 2.640E-04 9.320E-04 8.590E-04 1.102E-03 5.134E-05

AM 169.3947 91.8980 178.5882 21.2169 2.782E-03 2.496E-03 3.375E-03 3.030E-04 7.103E-04 6.378E-04 8.505E-04 5.944E-05

GDA 179.0575 171.1901 182.2547 3.0923 2.580E-03 2.497E-03 2.749E-03 7.342E-05 6.807E-04 6.455E-04 7.609E-04 2.865E-05

= LA 178.9980 172.1897 184.6083 2.6278 4.884E-03 3.934E-03 6.704E-03 5.983E-04 7.738E-04 7.105E-04 9.724E-04 5.322E-05
SPEA2 168.8870 91.8184 179.1310 26.0557 2.520E-03 2.482E-03 2.578E-03 2.189E-05 9.252E-04 9.014E-04 9.714E-04 1.674E-05

AM 167.5519 162.3480 172.5244 2.4692 1.118E-02 4.877E-03 1.537E-02 2.958E-03 1.149E-03 8.090E-04 1.364E-03 1.365E-04

6 GDA 178.7681 129.1464 199.9808 17.3386 1.289E-02 3.130E-03 1.490E-02 3.293E-03 1.110E-03 7.975E-04 1.795E-03 2.281E-04
LA 184.4600 165.0770 201.0835 8.4301 1.490E-02 5.611E-03 1.683E-02 3.507E-03 1.306E-03 9.108E-04 1.534E-03 1.776E-04

SPEA2 168.3973 161.8640 177.6070 3.3697 1.130E-02 4.473E-03 1.537E-02 2.252E-03 1.141E-03 7.331E-04 1.400E-03 1.382E-04

AM 170.9187 89.4527 175.8396 15.4664 8.132E-03 3.416E-03 1.053E-02 1.038E-03 1.006E-03 8.988E-04 2.583E-03 3.000E-04

GDA 189.2783 149.3687 198.5367 10.1373 6.417E-03 2.159E-03 9.033E-03 2.197E-03 8.992E-04 3.045E-04 1.643E-03 2.573E-04

7 LA 180.1404 171.4541 200.4325 6.2589 8.819E-03 2.870E-03 1.032E-02 1.198E-03 1.061E-03 7.941E-04 1.323E-03 8.495E-05
SPEA2 174.4071 172.1070 176.1530 1.0187 8.368E-03 7.940E-03 8.808E-03 2.307E-04 9.566E-04 9.108E-04 1.006E-03 2.503E-05

AM 142.2636 142.2636 164.4628 4.2221 1.419E-02 9.033E-03 1.641E-02 2.217E-03 1.328E-03 1.129E-03 1.537E-03 1.365E-04

GDA 174.7478 167.1404 184.4929 4.9486 1.260E-02 9.033E-03 1.580E-02 1.569E-03 1.200E-03 1.010E-03 1.442E-03 1.024E-04

8 LA 179.6973 160.4983 186.7640 4.8295 1.345E-02 8.675E-03 1.443E-02 9.896E-04 1.312E-03 1.221E-03 1.446E-03 4.181E-05
SPEA2 162.7549 159.5230 164.8610 1.3546 1.267E-02 1.196E-02 1.352E-02 4.035E-04 1.222E-03 1.164E-03 1.301E-03 3.471E-05

AM 163.2564 84.2574 168.3284 14.9607 6.866E-03 3.043E-03 8.897E-03 1.191E-03 8.819E-04 7.524E-04 1.133E-03 6.585E-05

GDA 177.4758 166.6219 192.2547 4.3396 6.107E-03 4.049E-03 8.996E-03 8.073E-04 8.423E-04 7.670E-04 1.131E-03 8.428E-05

E LA 175.4644 193.0402 157.9340 6.4698 6.927E-03 4.039E-03 8.244E-03 9.852E-04 8.713E-04 7.756E-04 1.167E-03 7.763E-05
SPEA2 168.0471 165.3200 170.8950 1.2861 6.428E-03 4.867E-03 1.286E-02 1.291E-03 8.306E-04 7.345E-04 9.993E-04 5.463E-05

Table 7.5 : The performance of multi-objective selection choice function based hyper-heuristics using different move acceptance strategies including all-moves
(AM), great deluge algorithm (GDA) and late acceptance (LA) on the tri-objective WFG test problems with respect to the metrics; the hypervolume (SSC), the
generational distance (GD) and the inverted generational distance (IGD).
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Figure 7.7: Box plots of multi-objective choice function based hyper-heuristics
methodologies using AM, GDA and LA as a move acceptance criterion on the tri-
objective WFG test problems for the measure of hypervoulme (SSC).
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Figure 7.8: Box plots of multi-objective choice function based hyper-heuristics
methodologies using AM, GDA and LA as a move acceptance criterion on the tri-
objective WFG test problems for for the measure of generational distance (GD).
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Figure 7.9: Box plots of multi-objective choice function based hyper-heuristics
methodologies using AM, GDA and LA as a move acceptance criterion on the tri-
objective WFG test problems for for the measure of inverted generational distance
(IGD).

Figure 7.11 also gives some insights about how many moves are
accepted/rejected based on the acceptance strategy that was used. We can
observe that no moves are rejected for each test problem in AM, since it
employs an All-Moves acceptance strategy. For each test problem in AM,
SPEA2 has the highest heuristic utilisation rate among the other low level
heuristics, which means that SPEA2 is invoked more frequently during the

search process.

However, MOGA has a too low heuristic utilisation rate and NSGAII has a
slightly higher rate than MOGA but not as high as SPEA2. This explains why
AM performs relatively similar to SPEA2, in most cases, for the SSC metric
(see Table 7.4). It is also clear from the graphs that the rate of rejected
moves of LA is much higher than GDA on all test problems for all low level
heuristics. In other words, GDA accepts moves (solutions with good quality)
more than LA. These observations offer an explanation as to why the
performance of GDA is better than LA in terms of convergence towards the

POF. However, LA still produces better solutions than AM in most cases. This
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oo

Figure 7.10: Plots of the non-dominated solutions in the objective space with the
lowest GD in 30 runs of SPEA2 and three multi-objective choice function based hyper-
heuristic using AM, GDA, LA as an acceptance criterion over the tri-objective WFG test

functions.
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Figure 7.11: The average number of low level meta-heuristic invocations (NSGAII,
SPEA2 and MOGA) and accepted/rejected moves produced by selection hyper-
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heuristics using AM, GDA and LA over the tri-objective WFG test problems- continue.
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Figure 7.11: Continue- the average number of low level meta-heuristic invocations
(NSGAII, SPEA2 and MOGA) and accepted/rejected moves produced by selection
hyper-heuristics using AM, GDA and LA over the tri-objective WFG test problems.

indicates that is the condition criterion that used in LA help to produce
solutions with acceptable quality by rejecting the worse moves (solutions) at

the right decision points during the search process.

7.6 Summary and Remarks

This chapter proposed an online learning selection choice function based
hyper-heuristics using late acceptance (LA) as a non-deterministic move

acceptance criterion for multi-objective optimisation. To the best of our
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knowledge, D metric is used for the first time as a comparison measure
between two non-dominated fronts in order to covert the multi-objective
problem to a single-objective problem without definition of criteria values'

weights.

The performance of the proposed multi-objective choice function late
acceptance based hyper-heuristic (HHMO_CF_LA) is compared to two previous
multi-objective hyper-heuristics; choice function all-moves based hyper-
heuristic (HHMO_CF_AM) and choice function great deluge based hyper-
heuristic (HHMO_CF_GDA) that were presented in Chapters 5 and 6
respectively. The comparison is conducted over the bi-objective Walking
Fish Group (WFG) test functions benchmark for multi-objective optimisation.
Additionally, the performances of the three multi-objective hyper-heuristics

are compared to the well-known multi-objective algorithm, SPEA2.

The experimental results demonstrate the effectiveness of non-
deterministic move acceptance strategy based methodologies.
HHMO_CF_GDA and HHMO_CF_LA outperform HHMO_CF_AM over the bi-
objective WFG test problems, indicating that the non-deterministic acceptance
strategies improve the performance of the multi-objective selection choice
function based hyper-heuristic. Moreover, this observation is supported
further by empirical evidence obtained from testing those hyper-heuristics
against SPEA2 over the tri-objective WFG test problems. In overall,
HHMO_CF_GDA performs the best compared to other multi-objective hyper-
heuristics. The superiority of multi-objective choice function great deluge
based hyper-heuristic is due to the acceptance procedure that employed. The
experimental result also shows that the components of the hyper-heuristics
including the selection method, low level heuristics and move acceptance
strategy are important and significantly affect the performance of the hyper-
heuristics. The great deluge combined with choice function performs better
than the great deluge combined with random selection and All-Moves

combined with choice function

The benefit of using hyper-heuristics for multi-objective optimisation is
shown in Table 7.6. The results of multi-objective choice function great
deluge based hyper-heuristic improves solution by more than 5% when
compared to the results obtained by the low level heuristics when run in
isolation. This is the case except for NSGAII. The result obtained by the multi-
objective choice function great deluge based hyper-heuristic is improved
slightly when compared to the result obtained by NSGAII in the bi-objective
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WFG problems except WFG1 and WFG2. It is good to note that the results
obtained by our multi-objective choice function great deluge based hyper-
heuristic improved by more than 45% in five out of nine bi-objective WFG
problems, when compared to the results obtained by AMALGAM. This includes
WFG2, WFG3, WFG4, WFG7 and WFGS8, and more than 25% of the other test
problems except WFG9. The results provide empirical evidence that combining
different combination of meta-heuristics under a selection hyper-heuristic
framework yields improved performance. The use of the combination of the
choice function as a selection method and GDA as an acceptance strategy
positively affects the performance of the multi-objective hyper-heuristics over
the WFG test problems.
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WFG | Methods
SSC HH_CF_GDA
improvement %
HH_CF_GDA | 12.9388
NSGAII 11.6041 10.32
1 SPEA2 6.4931 49.82
MOGA 4.2184 67.40
AMALGAM 7.7902 39.79
HH_CF_GDA | 11.8148
NSGAII 10.8199 8.42
2 SPEA2 10.7898 8.68
MOGA 9.7959 17.09
AMALGAM 1.7582 85.12
HH_CF_GDA | 11.9197
NSGAII 11.9185 0.01
3 SPEA2 11.4062 4.31
MOGA 11.2921 5.27
AMALGAM 6.6890 43.88
HH_CF_GDA | 9.6642
NSGAII 9.6460 0.19
4 SPEA2 9.1853 4.96
MOGA 8.9968 6.91
AMALGAM 3.5687 63.07
HH_CF_GDA | 9.2964
NSGAII 9.2857 0.12
5 SPEA2 9.2860 0.11
MOGA 8.8946 4.32
AMALGAM 6.3554 31.64
HH_CF_GDA | 9.3745
NSGAII 9.3503 0.26
6 SPEA2 8.7135 7.05
MOGA 8.8878 5.19
AMALGAM 6.3554 32.21
HH_CF_GDA | 9.6650
NSGAIIL 9.6579 0.07
7 SPEA2 9.2481 4.31
MOGA 9.1685 5.14
AMALGAM 3.9171 59.47
HH_CF_GDA | 8.7279
NSGAII 8.7155 0.14
8 SPEA2 8.3957 3.81
MOGA 8.0762 7.47
AMALGAM 3.0945 64.54
HH_CF_GDA 8.7689
NSGAII 8.7650 0.04
9 SPEA2 8.7091 0.68
MOGA 8.5723 2.24
AMALGAM 9.0676 -3.41

Table 7.6: The percentage improvement for the performance of HH_CF_GDA against
others methods with respect to the hypervolume (SSC) on the bi-objective WFG test
functions.
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8 The Real-World Problem: The Multi-objective
Vehicle Crashworthiness Design

In the previous chapters we showed that our multi-objective choice
function based hyper-heuristics in general, and our choice function great
deluge based hyper-heuristic (HHMO_CF_GDA) in particular, can be effective
when testing over both bi- and tri-objective benchmarks the Walking Fish
Group (WFG) test problems. In this chapter, we further investigate the
power of our multi-objective choice function based hyper-heuristics. We apply
our hyper-heuristics to a real-world problem that of the multi-objective
vehicle crashworthiness design. We aim to demonstrate that hyper-heuristics
are not only effective on benchmarks, but that they are also applicable to a
real-world problem. We also investigate the sensitivity of our choice function
based hyper-heuristics, using a different size of decision points during the
search. The chapter is structured as follows: In Sections 8.1 and 8.2, we
describe and present the formulation of the application problem, that of the
design of vehicle crashworthiness. This is followed in Section 8.3 by

computational experiments and Section 8.4 presents summary and remarks.

8.1 Problem Description

In the automotive industry, crashworthiness is a very important issue to
be dealt with when designing a vehicle. Crashworthiness design of real-world
vehicles involves optimisation of a number of objectives including the head,
injury criterion, chest acceleration and chest deflection etc (Redhe et al.
2004). However, some of these objectives may be, and usually are, in conflict
with each other, i.e. an improvement in one objective value leads to

deterioration in the values of the other objectives.

Multi-objective vehicle crashworthiness design was previously tackled as
a single (primary) objective optimisation with multiple constraints (e.g. Redhe
et al. 2004). However, it is not an easy task for most experienced design
engineers to identify a primary objective from a huge number of design
objectives. Alternatively, multi-objective vehicle crashworthiness design is
addressed in a multi-objective framework considering different design
requirements as design objectives. Fang et al. (2005) aggregated these

different objectives into a single cost function in terms of weight average
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taken into account a weight for full-scale vehicle model, peak acceleration and
energy-absorption as design objectives. In Deb (2001) an evolutionary
search method has been developed to construct a multi-objective vehicle
crashworthiness design based on the radial basis function. Lanzi et al. (2004)
proposed a multi-objective genetic algorithm (GA) to construct multi-objective
vehicle crashworthiness design by optimising composite absorber shapes

under different crashworthiness requirements.

Liao et al. (2008) construct a vehicle crashworthiness design using the
surrogate modelling techniques with latin hypercube sampling and stepwise
regression (Krishniah, 1982). To address different safety requirements of
crashworthiness design, a simulation of a full-scale vehicle model including
the full frontal crash and a 40% offset-frontal crash is developed. Figure 8.1
shows the simulation results in the scenarios of the full frontal crash and the
40% offset-frontal crash. The weight of vehicle, acceleration characteristics

and toe-board intrusion are addressed as the design objectives.

saes lupun LE-DYNA user lnput
" Tiwe =« s

(b)

Figure 8.1: The deformed results of (a) the full frontal impact and (b) the offset-frontal
impact. Reprinted from (Liao et al., 2008).

The multi-objective vehicle crashworthiness design problem has only
five decision variables and no constraints (Liao et al., 2008). The output of
problem provides a wider choice for engineers to make their final design
decision based on Pareto solution space. In this chapter, we are tackling this
problem that is presented in Liao et al. (2008) and we use it as a real-world
application to our multi-objective hyper-heuristics. The decision variables of
the problem represent the thickness of five reinforced members around the
front as they could have a significant effect on the crash safety. See Figure

8.2 for an illustration. The mass of the vehicle is tackled as the first design
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objective, while an integration of collision acceleration between t;=0.05s and
t,=0.07s in the full frontal crash is considered as the second objective
function. The toe-board intrusion in the 40% offset-frontal crash is tackled as
the third objective as it is the most severe mechanical injury (see Figure 8.3).
The second and third objectives are constructed from the two crash conditions
to reflect the extreme crashworthiness and formulated in the quadratic
polynomial for the regression while the vehicle mass is formulated in a linear
basis function (Marklund and Nilsson, 2001).

Figure 8.2: Design variables of the vehicle model. Reprinted from (Liao et al., 2008).

Figure 8.3: The toe board intrusion of offset-frontal crash. Reprinted from(Liao et al.,
2008).

8.2 Problem Formulation

The multi-objective vehicle crashworthiness design problem involves
optimisation of three objectives including the mass of the vehicle (mass), an

integration of collision acceleration between t;=0.05s and t,=0.07s in the full
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frontal crash (Ain) and the toe-board intrusion in the 40% offset-frontal crash

(Intrusion). The three objectives are formulated as follows:

Mass = 1640.2823 + 2.3573285t; — 2.3220035t, + 4.5688768t; +

7.7213633t, + 4.4559504t, 8.1)
Ain =

6.5856 + 1.15t; - 1.0427t , + 0.9738¢t; + 0.8364t, - 0.3695¢t,t, +
0.0861¢t,ts + 0.3628t,t, — 0.1106¢ 2- 0.3437t2 + 0.1764t2 (8.2)
Intrusion =

~0.0551 + 0.0181t; + 0.1024t, + 0.0421t; - 0.0073¢t,t, + (8.3)

0.024t,t; - 0.0118t,t, - 0.0204t5t, - 0.008t5ts - 0.0241t2 + 0.0109¢2

So, the multi-objective design of vehicle crashworthiness problem in T

decision variable space is formulated as:

min F(x) = [Mass, Ain , Intrusion|
s.t. Imm < x <3mm (8.4)

where x = (ty,t,,t3,t4, ts)T

We created three more problem instances beside the original vehicle
crashworthiness problem as shown in Table 8.1 after a private communication
with Prof. Kalyanmoy Deb who recommended this problem. Each instance
contains a pair of objectives. NSGAII was applied to the original vehicle
crashworthiness problem in Liao et al. (2008) and produced reasonable

results for the three objective version.

Problem Name Objective Functions
Carl Mass and Ain
Car2 Mass and Intrusion
Car3 Ain and Intrusion
Car4 Mass and Ain and Intrusion

Table 8.1: The multi-objective vehicle crashworthiness design problems.
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8.3 Experiments and Comparison

In this section, a set of experiments are conducted over a multi-
objective vehicle crashworthiness design problem as a real-world problem to
evaluate the performance of our multi-objective choice function based hyper-
heuristics; HHMO_CF_AM, HHMO_CF_GDA and HHMO_CF_LA. The motivation
behind applying our three selection multi-objective hyper-heuristics to this
problem is to investigate their performance on a real-world problem and
measure the level of generality that they can achieve. The performance of
three multi-objective hyper-heuristics compared to the well-known multi-
objective evolutionary algorithm, NSGAII (Deb and Goel, 2001).

8.3.1 Performance Evaluation Criteria

The same performance evaluation criteria and algorithms are used as
described in Section 7.4.1. Five performance metrics are used to measure
the quality of the approximation sets from different aspects: (i) ratio of non-
dominated individuals (RNI) (Tan et al., 2002), (ii) hypervolume (SSC)
(Zitzler and Thiele, 1999) (iii) uniform distribution of a non-dominated
population (UD) (Srinivas and Deb, 1994), (iv) generational distance (GD)
(Van Veldhuizen and Lamont, 1998b) and (v) inverted generational distance
(IGD) (Coello and Cruz Cortés, 2005). In addition, t-test is used as a
statistical test for the average performance comparison of selection hyper-
heuristics and the results are discussed using the same notation as provided
in Section 7.4.1.

8.3.2 Experimental Settings

We performed 30 independent runs for each comparison method using
the same parameter settings as provided in Liao et al. (2008) with a
population size equal to 30. In order to make a fair comparison, we repeated
NSGAII experiments conducted in Liao et al. (2008) under our termination
conditions over the additional instances. All multi-objective hyper-heuristics
methodologies run for a total of 75 iterations (stages) based on the empirical
experiments that are presented in next subsection. In each iteration, a low
level heuristic is selected and applied to execute 50 generations. So, all

methods terminated after 3,750 generations. The distance sharing o for the
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UD metric and MOGA was arbitrarily set to 0.09 in the normalised space.
These settings are used for the UD as a feedback indicator in the ranking
scheme of the hyper-heuristic framework and as a performance measure for
the comparison. As the true Pareto front is unknown, we consider the best
approximation found by combining results of all considered methods and used
it instead of the true Pareto front for the metrics of GD and IGD. In the
measure of SSC and D metric for GDA and LA, the reference points in our
experiments for k objectives can be set as r; = z ™% 4 0.5 (z"adiri —
zidealy i =1, ..k (Li and Landa-Silva, 2011). Other experimental settings
are the same as those used in Section 7.4.2. All algorithms were implemented
with the same common sub-functions using Microsoft Visual C++ 2008 on an
Intel Core2 Duo 3GHz\2G\250G computer.

8.3.3 Tuning of Number of Decision Points for Multi-

objectives Hyper-heuristics

In the context of our multi-objective selection hyper-heuristics, the
number of the decision points (NDP) is the number of moves that we conduct
during the search. The NDP is an important parameter in our multi-objective
hyper-heuristic framework. However, the choice of the right value of the
decision points is not trivial. We conducted initial experiments to determine
the right (or at least good) value of NDP that leads to solutions of good
quality. The NDP relies on the other parameters such as the number of
function evaluations and the number of generations. In these experiments,
each decision point is executed a fixed number of generation equals to 50
with a population size equal to 30. In other words, 1500 evaluation functions
are executed at each decision point (iteration or stage). For three multi-
objective hyper-heuristics; HHMO_CF_AM, HHMO_CF_GDA and HHMO_CF_LA,
we used four different values for NDP (25, 50, 75 and 100). The three hyper-
heuristics were run for 30 times using these values with a different random
seed on the original vehicle crash worthiness problem (Car4). From this point
onward, each hyper-heuristic will be referred to by move acceptance method

utilised within each hyper-heuristic.

The performance of the comparison methods AM, GDA and LA for the
different sizes of the decision points (25, 50, 75 and 100) with respect to the
performance metrics (RNI, SSC and UD) on the original vehicle

crashworthiness problem (Car4) are summarised in Table 8.2.
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In Table 8.2, the average, the minimum, the maximum and standard
deviation values for each performance metric are computed. A higher value
indicates a better performance. We can observe that the highest averages of
RNI for AM are obtained with 25 and 75 decision points. The highest average
of SSC and UD values are obtained with 75, 100 decision points respectively.
So, no specific size of decision points for AM can obtain good results with
respect to all metrics except in 75 decision points where AM obtains good
results in terms of the convergence and the number of the non-dominated
solutions. GDA obtains the highest averages of RNI with 25, 50 and 75
decision points. It obtains the highest averages of SSC and UD with 75
decision points. GDA obtains good results with respect to the three
performance metrics with 75 decision points. LA obtains the highest averages
of RNI with 25, 50 and 75 decision points. It obtains the highest average of
SSC with 75 decision points, while it obtains the highest average of UD with
100 decision points. No specific size of decision points for AM can obtain good
results with respect to all metrics except for 75 decision points where LA
obtains good results in terms of the convergence and the number of the non-
dominated solutions. We note that 75 decision points produces better
solutions in most cases for the three multi-objective choice function based

hyper-heuristics.

To analyse these results, we visualise the average performance values
of RNI, SSC and UD metrics for the three multi-objective hyper-heuristics AM,
GDA and LA during the search using different values of the decision points
(NDP) (25, 50, 75 and 100) are shown in Figures 8.4-8.6. In Figure 8.4, the
performance of three methods with respect to RNI using a different values of
decision points are relatively the same, the smaller value of decision points
obtains a higher (better) value of RNI while increasing the value of decision
points leads to a lower (worse) value of RNI. This is clear in the case of 100
decision points. As our multi-objective hyper-heuristics do not incorporate any
archive mechanisms to maintain the non-dominated solutions during the
search, a large number of iterations (decision points) may exhibit the factor of
diversification in the selection method that calls a heuristic which produces

low quality solutions.

In Figure 8.5, AM and GDA and LA perform similar to each other during
the search using different values of the decision points with respect to the
metric of SSC. The three methods obtain a higher (better) value of SSC when
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Methods | NDP RNI SSC ub

AVG | MIN | MAX | STDDEV AVG MIN MAX STDDEV AVG MIN MAX | STDDEV

AM 25 [ 1.00 | 1.00 | 1.00 0.00 6.045E+07 | 3.625E+07 | 8.586E+07 | 1.669E+07 | 0.623 | 0.480 | 0.698 | 0.044
50 | 0.93 | 0.75|1.00 0.06 6.631E+07 | 2.089E+07 | 8.644E+07 | 1.979E+07 | 0.480 | 0.200 | 0.640 | 0.140

75 | 1.00 | 1.00 | 1.00 0.00 7.381E+07 | 5.315E+07 | 9.577E+07 | 1.463E+07 | 0.585 | 0.516 | 0.707 | 0.050

100 | 0.73 | 0.38 | 0.88 0.10 6.767E+07 | 2.965E+07 | 8.660E+07 | 1.998E+07 | 0.642 | 0.491 | 0.732 | 0.047

GDA 25 1 1.00 | 1.00 ] 1.00 0.00 7.875E+07 | 4.853E+07 | 9.587E+07 | 1.274E+07 | 0.605 | 0.541 | 0.691 | 0.032
50 11.00 | 1.00 | 1.00 0.08 8.109E+07 | 6.294E+07 | 9.091E+07 | 1.007E+07 | 0.579 | 0.510 | 0.670 | 0.040

75 [ 1.00 | 1.00 ]| 1.00 0.00 8.289E+07 | 6.294E+07 | 9.577E+07 | 1.954E+07 | 0.613 | 0.555 | 0.692 | 0.034

100 | 0.94 | 0.75 | 1.00 0.09 8.236E+07 | 5.910E+07 | 9.587E+07 | 1.138E+07 | 0.595 | 0.505 | 0.667 | 0.039

LA 25 [ 1.001.00 | 1.00 0.00 7.301E+07 | 5.959E+07 | 8.800E+07 | 1.167E+07 | 0.584 | 0.494 | 0.694 | 0.056
50 /1.00 | 1.00 | 1.00 0.00 7.526E+07 | 5.776E+07 | 9.549E+07 | 1.379E+07 | 0.580 | 0.490 | 0.660 | 0.040

75 [ 1.00 | 1.00 | 1.00 0.00 7.538E+07 | 4.512E+07 | 9.550E+07 | 1.474E+07 | 0.582 | 0.302 | 0.641 | 0.062

100 | 0.98 | 0.95 | 1.00 0.01 6.972E+07 | 4.912E+07 | 8.800E+07 | 1.207E+07 | 0.600 | 0.530 | 0.650 | 0.030

Table 8.2: The performance of multi-objective selection hyper-heuristics with different values of decision points (NDP) on the multi-objective design of vehicle
crashworthiness problem (Car4) with respect to the metrics of ratio of non-dominated individuals (RNI), size of space covered (SSC), and uniform distribution

(UD) of non-dominated population.
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the number of decision points is higher except in the case of 100 decision

points where the search is frozen and no further improvement is obtained.

This is true for the performance of the UD metric of AM and GDA and LA
in Figure 8.6. For all methods, a higher (better) value of UD is obtained when
the number of decision points is higher. AM and LA obtains the best solutions
with 100 decision points. While GDA obtains the best solutions with 75
decision points as the search is frozen and no further better improvement is

obtained with 100 decision points.

From the above observations, we conclude that a larger number (value)
of decision points produces better solutions, particularly 75 decision points,
according to performance metrics (RNI, SSC and UD) in the majority cases for
the three methods AM, GDA and LA over the original multi-objective vehicle
crashworthiness design problem (Car4). Therefore, all multi-objective hyper-
heuristics methodologies run for a total of 75 decision points
(iterations/stages) in our experiments over the additional instances of multi-

objective vehicle crashworthiness design problems.

8.3.4 Performance Comparison of Multi-objective Hyper-
heuristics and NSGAII

The mean performance comparison of AM, GDA, LA and NSGAII based
on the performance metrics (RNI, SSC, UD , GD and IGD) for solving the
vehicle crashworthiness problems is provided in Table 8.3. For each
performance metric, the average, minimum, maximum and standard
deviation values are computed. For all metrics, a higher value indicates a
better performance, except in GD and IGD, where a lower value indicates a
better performance. The statistical t-test results of NSGAII and three multi-
objective choice function based hyper-heuristics (AM, GDA and LA) are given
in Table 8.4. We also visualise the distribution of the simulation data of the 30
independent runs for the comparison methods with respect to these

performance metrics as box plots, shown in Figures 8.7-8.11.

From Tables 8.3-8.5 and Figures 8.7-8.11, we can observe that GDA, LA
and NSGAII produce a slightly higher average ratio of non-dominated
individuals (RNI) compared to AM for all problems. This means that the

comparison methods produce non-dominated solutions that are equal to the
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Figure 8.4: The plots showing how RNI values, averaged over 30 trials change at each
decision point (iteration) for a given move acceptance method (AM, GDA and LA)

combined with choice function heuristic selection considering different number of
decision points while solving the vehicle crashworthiness problem (Car4).
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Figure 8.5: The plots showing how SSC values, averaged over 30 trials change at each
decision point (iteration) for a given move acceptance method (AM, GDA and LA)

combined with choice function heuristic selection considering different number of
decision points while solving the vehicle crashworthiness problem (Car4).
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Figure 8.6: The plots showing how UD values, averaged over 30 trials change at each
decision point (iteration) for a given move acceptance method (AM, GDA and LA)
combined with choice function heuristic selection considering different number of
decision points while solving the vehicle crashworthiness problem (Car4).
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given population size and perform very well with respect to this metric. AM
performs well with respect to RNI on Car4, but not for other problem
instances. With respect to the hypervolume (SSC), GDA has the highest
average value among the other methods for all problem instances. The
performance difference of GDA from the other hyper-heuristics is statistically
significant for Carl, Car3 and Car4. With respect to the measures of GD and
IGD, GDA is superior to the other methods for all problem instances, except
Car3, where NSGAII performs the best. This performance difference is
statistically significant for Carl and Car2. GDA performs the best considering
convergence and diversity, producing solutions that converge towards the
POF. Similarly, considering UD, GDA produces solutions that are distributed
uniformly along the POF for all problem instances, except Car2, where NSGAII
performs the best. The above observations indicate that all methods perform
similarly to each other with respect to the metric of RNI over all problem
instances. GDA obtains the best performance in the metrics of SSC, GD and
IGD and it converges better towards the POF than the other methods. GDA is
also obtains the best performance in the metric of UD and distribute more

uniformly than other methods in the most problem instances.

For each problem instance, the 50% attainment surface for each
method, from the 30 fronts after 3,750 generations are computed and
illustrated in Figures 8.12-8.15. GDA appears to generate a good convergence
for all problem instances. This can be clearly observed for Car2 and Car3 (See
Figures 8.13 and 8.14), where GDA converges to the best POF with a well
spread Pareto front as compared to the other approaches. In contrast, AM
generates the poorest solutions in almost all cases. NSGAII and LA have
similar convergence for all problem instances, except Car2, where NSGAII

covered a larger proportion of objective space compared to LA.

From the above observations, we conclude that GDA outperforms
NSGAII and others methods in the majority of cases. The superiority of GDA
could be because of the acceptance condition criterion that was used. The
hyper-heuristics for even real world multi-objective problems benefits from

the use of a learning heuristic selection method as well as GDA.
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problem | Method RNI SSC ub
AVG | MIN | MAX | STD AVG MIN MAX STD AVG MIN | MAX | STD
Carl NSGAII | 1.00 | 1.00 | 1.00 | 0.00 | 2.296E+04 | 2.296E+04 | 2.299E+04 | 1.400E-01 | 0.450 | 0.421 | 0.492 | 0.021
AM 0.98 | 0.78 | 1.00 | 0.05 | 2.113E+04 | 5.741E+03 | 2.255E+04 | 5.054E+03 | 0.430 | 0.203 | 0.484 | 0.067
GDA 1.00 | 1.00 | 1.00 | 0.00 | 2.298E+04 | 7.703E+03 | 2.302E+04 | 3.880E+03 | 0.453 | 0.410 | 0.487 | 0.020
LA 0.99 | 1.00 | 1.00 | 0.00 | 2.165E+04 | 7.701E+03 | 2.319E+04 | 3.983E+03 | 0.452 | 0.392 | 0.490 | 0.031
Car2 NSGAII | 1.00 | 1.00 | 1.00 | 0.00 | 3.930E+04 | 2.109E+04 | 5.677E+04 | 1.632E+04 | 0.461 | 0.413 | 0.500 | 0.032
AM 0.95 | 0.75| 1.00 | 0.09 | 3.773E+04 | 6.799E+03 | 5.667E+04 | 1.707E+04 | 0.427 | 0.170 | 0.534 | 0.095
GDA 1.00 | 1.00 | 1.00 | 0.00 | 3.953E+04 | 2.109E+04 | 5.680E+04 | 1.685E+04 | 0.451 | 0.413 | 0.502 | 0.020
LA 1.00 | 1.00 | 1.00 | 0.00 | 2.107E+03 | 2.089E+04 | 5.669E+04 | 1.508E+04 | 0.450 | 0.402 | 0.501 | 0.021
Car3 NSGAII | 1.00 | 1.00 | 1.00 | 0.00 | 4.174E+01 | 2.637E+01 | 4.906E+01 | 8.820E+00 | 0.464 | 0.411 | 0.510 | 0.022
AM 0.98 | 0.63 | 1.00 | 0.08 | 4.058E+01 | 1.898E+01 | 4.907E+01 | 1.020E+01 | 0.478 | 0.425 | 0.543 | 0.031
GDA 1.00 | 1.00 | 1.00 | 0.00 | 4.175E+01 | 1.930E+01 | 4.979E+01 | 9.980E+00 | 0.480 | 0.445 | 0.527 | 0.021
LA 1.00 | 1.00 | 1.00 | 0.00 | 4.149E+01 | 1.977E+01 | 4.978E+01 | 9.680E+00 | 0.463 | 0.391 | 0.503 | 0.033
Car4d NSGAII | 1.00 | 1.00 | 1.00 | 0.00 | 7.936E+07 | 4.168E+07 | 9.587E+07 | 1.595E+07 | 0.592 | 0.532 | 0.670 | 0.045
AM 1.00 | 1.00 | 1.00 | 0.00 | 7.381E+07 | 5.315E+07 | 9.577E+07 | 1.463E+07 | 0.585 | 0.516 | 0.707 | 0.050
GDA 1.00 | 1.00 | 1.00 | 0.00 | 8.289E+07 | 6.294E+07 | 9.580E+07 | 1.954E+07 | 0.613 | 0.555 | 0.692 | 0.034
LA 1.00 | 1.00 | 1.00 | 0.00 | 7.538E+07 | 4.512E+07 | 9.550E+07 | 1.474E+07 | 0.582 | 0.302 | 0.641 | 0.062

Table 8.3: The performance NSGAII and the selection choice function based hyper-heuristics using different move acceptance strategies including
(AM), great deluge algorithm (GDA) and late acceptance (LA) on the vehicle crashworthiness problems with respect to the metrics; the ratio of non-dominated

individuals (RNI), the hypervolume (SSC)and the uniform distribution (UD).
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Table 8.4: The performance NSGAII and the selection choice function based hyper-heuristics using different move acceptance strategies including all-moves
(AM), great deluge algorithm (GDA) and late acceptance (LA) on the vehicle crashworthiness problems with respect to the metrics; the generational distance

problem | Method GD IGD
AVG MIN MAX STD AVG MIN MAX STD
Carl NSGAII | 8.10E-04 | 1.10E-04 | 1.79E-03 | 4.00E-04 4.657E-04 | 4.117E-04 | 5.260E-04 | 3.114E-05
AM 7.50E-04 | 1.00E-05 | 2.37E-03 | 4.70E-04 5.874E-03 | 3.994E-04 | 1.462E-02 | 5.990E-03
GDA 4.50E-04 | 0.00E+00 | 8.70E-04 | 2.00E-04 | 4.278E-04 | 3.722E-04 | 5.817E-04 | 5.763E-05
LA 8.40E-04 | 6.00E-05 | 2.72E-03 | 6.00E-04 6.912E-04 | 3.749E-04 | 7.866E-03 | 1.356E-03
Car2 NSGAII | 2.45E-03 | 4.10E-04 | 9.21E-03 | 3.28E-03 3.174E-03 | 6.551E-04 | 6.647E-03 | 2.890E-03
AM 2.30E-03 | 3.50E-04 | 1.04E-02 | 3.12E-03 4.974E-03 | 7.021E-04 | 1.120E-02 | 3.527E-03
GDA 1.86E-03 | 3.60E-04 | 8.94E-03 | 2.12E-03 | 3.127E-03 | 6.607E-04 | 1.624E-02 | 3.630E-03
LA 2.50E-03 | 3.30E-04 | 8.97E-03 | 3.34E-03 4.184E-03 | 6.758E-04 | 6.724E-03 | 2.884E-03
Car3 NSGAII | 1.01E-01 | 9.68E-02 | 1.08E-01 | 4.02E-03 | 9.925E-02 | 6.080E-02 | 2.094E-01 | 5.065E-02
AM 1.03E-01 | 9.79E-02 | 1.13E-01 | 3.83E-03 | 1.648E-01 | 6.066E-02 | 2.130E-01 | 6.292E-02
GDA 1.03E-01 | 9.65E-02 | 1.32E-01 | 7.53E-03 1.264E-01 | 6.016E-02 | 2.094E-01 | 6.472E-02
LA 1.03E-01 | 9.64E-02 | 1.13E-01 | 4.66E-03 1.420E-01 | 6.235E-02 | 2.100E-01 | 5.744E-02
Car4 NSGAII | 2.48E-03 | 1.46E-03 | 4.21E-03 | 9.10E-04 4.156E-03 | 1.543E-03 | 1.289E-02 | 3.859E-03
AM 2.71E-03 | 1.59E-03 | 4.06E-03 | 7.90E-04 4.376E-03 | 1.738E-03 | 1.288E-02 | 4.168E-03
GDA 2.11E-03 | 1.10E-03 | 4.28E-03 | 7.10E-04 | 3.552E-03 | 1.661E-03 | 1.230E-02 | 3.075E-03
LA 3.32E-03 | 1.70E-03 | 6.76E-03 | 1.33E-03 3.604E-03 | 1.525E-03 | 1.238E-02 | 2.582E-03

(GD) and the inverted generational distance (IGD).

181 | Page




Chapter 8: The Real-World Problem: The Multi-objective Vehicle
Crashworthiness Design

Metrics
Problem Methods RNITSSC | UD | GD 116D
NSGAII:AM + + + F +
NSGAIIL:GDA | n\a — — — ¥
Carl NSGAII:LA é + - + +
AM:GDA + — + — -
AM:LA + F — — —
GDA:LA + + + + +
NSGAII:AM + + + + +
NSGAII:GDA | n/a + + - +
Car2 NSGAII:LA nla + + F +
AM:GDA + - - - -
AM:LA F + — + ¥
GDA:LA n/a + + + +
NSGAII:AM + + + + +
NSGAII:GDA | n/a ¥ - + +
Car3 NSGAII:LA nla + % é +
AM:GDA + — + F —
AM:LA ¥ - + + —
GDA:LA n/a + + + +
NSGAII:AM n/a + + + t
NSGAII:GDA | n/a — + ¥ —
NSGAII:LA n/a + + + -
Car4  I"AM:GDA nja| - | - | ¥ | -
AM:LA n/a — + + -
GDA:LA n/a + + + +

Table 8. 4: The t-test results of NSGAII and the three multi-objective choice function
based hyper-heuristics methodologies using AM, GDA and LA as a move acceptance
criterion on the multi-objective vehicle crashworthiness design problems with respect
to the metrics; the ratio of non-dominated individuals (RNI), the hypervolume (SSC),
the uniform distribution (UD), the generational distance (GD) and the inverted
generational distance (IGD).
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Figure 8.13: The 50% attainment surfaces for NSGAII and the three multi-objective
choice function based hyper-heuristics (AM, GDA and LA) after 3,750 generations on
the multi-objective design of vehicle crashworthiness problem (Car2).
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Figure 8.14: The 50% attainment surfaces for NSGAII and the three multi-objective
choice function based hyper-heuristics (AM, GDA and LA) after 3,750 generations on
the multi-objective design of vehicle crashworthiness problem (Car3).
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8.4 Summary and Remarks

In this chapter, we have applied our multi-objective choice function
based hyper-heuristics to the vehicle crashworthiness design as a real-world
multi-objective problem to assess the level of generality they can achieve.
The performance of our multi-objective choice function based hyper-heuristics
are compared to the well-known multi-objective algorithm, NSGAIL. In
general, the results demonstrate the effectiveness of our selection hyper-
heuristics particularly when combined with great deluge algorithm as a move

acceptance criterion.

The multi-objective choice function great deluge based hyper-heuristic
(HHMO_CF_GDA) beats other methods for solving both tri- objective vehicle
crashworthiness design problem and bi-objective additional instances. It also
benefits from the combination of GDA as an acceptance strategy and the
choice function as the selection method. It is worthwhile mentioning that this
result concurs with the findings in Chapter 7. In addition, HHMO_CF_GDA
excels over NSGAII on all instances of the problem. HHMO_CF_GDA turns out
to be the best choice for solving this problem. Although other multi-objective
hyper-heuristics still produce solutions with acceptable quality in some cases,
they could not perform as well as NSGAII. The reason for this relies on the
move acceptance strategy they employed. A sensitivity analysis of our multi-
objective choice function based hyper-heuristic was carried out and revealed a
larger number of decision points (NDP) produce better solutions for the
vehicles crashworthiness design problem. This indicates that the number of
moves (decision point/iteration) conducted during the search could affect the
performance of the multi-objective selection choice function based hyper-

heuristic.

In summary, the results of the real-world problem demonstrate the
capability and potential of the multi-objective hyper-heuristic approaches in

solving continuous multi-objective optimisation problems.
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Figure 8.15: The 50% attainment surfaces for NSGAII and the three multi-objective choice function based hyper-heuristics (AM, GDA and LA) after 3,750
generations on the multi-objective design of vehicle crashworthiness problem (Car4).
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9 Conclusions and Future Work

9.1 Conclusions

Hyper-heuristics are methodologies that operate on a search space of
heuristics rather than solutions directly for solving hard computational
problems. They have drawn increasing attention from the research community
in recent years. However, the majority of hyper-heuristics studies have been
limited to single-objective optimisation (Burke et al., 2013). Hyper-heuristics
for multi-objective optimisation is a relatively new area of research in
Operational Research and Evolutionary Computation (Burke et al., 2010;
Ozcan et al., 2008). Few studies were identified that deal with hyper-
heuristics for multi-objective problems (e.g. (Burke et al., 2003a; Vrugt and
Robinson, 2007; Veerapen et al., 2009; McClymont and Keedwell, 2011;
Wang and Li, 2010; Gomez and Terashima-Marin, 2010)). None of these
studies used multi-objective evolutionary algorithms (MOEAs), only in Rafique
(2012), Gomez and Terashima-Marin, (2010), Vrugt and Robinson (2007),
and no continuous and standard multi-objective test problems studied, only in
McClymont and Keedwell (2011), Vrugt and Robinson (2007), Len et al.
(2009) and Vazquez-Rodriguez and Petrovic (2013). Moreover, none of the
previous hyper-heuristics made use of the components particularly designed
for multi-objective optimisation that we introduced in this thesis. The main
aim of this research was to investigate hyper-heuristic methodologies for
multi-objective optimisation combining MOEAs with the goal of producing a
set of high quality solutions (i.e. not necessarily optimal) compared to the
existing approaches in the MOEA literature. The scope of this study is limited
to continuous unconstrained multi-objective (two and three objectives)
problems. We have investigated into the design of a generic selection hyper-
heuristic framework for tackling multi-objective optimisation problems and
development of effective hyper-heuristics within this multi-objective
framework. The performance of different selection hyper-heuristics are tested
over both benchmark test problems and real-world application. The main

contributions and findings are summarised in the following subsections.
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9.1.1 The Online Learning Selection Hyper-heuristic
Framework for Multi-objective Optimisation

In this thesis, for the first time, we introduced an online learning
selection choice function based hyper-heuristic framework for multi-objective
optimisation (see Chapter 4). This framework is inspired from two facts: (i)
there is no existing algorithm which excels across all types of problems, and
(ii) there is empirical evidence showing that hybridisation or combining
different (meta-)heuristics/algorithms could vyield improved performance
compared to (meta-)heuristics/ algorithms run on their own. Hyper-heuristic
frameworks, generally, impose a domain barrier which separates the hyper-
heuristic from the domain implementation along with low level heuristics to
provide a higher level of abstraction. The domain barrier does not allow any
problem specific information to be passed to the hyper-heuristic itself during
the search process. We designed our framework in this same modular
manner. One of advantages of the proposed framework is its simplicity. The
proposed framework is highly flexible and its components reusable. It is built
on an interface which allows other researchers to write their own hyper-
heuristic components easily. Even the low level heuristics can be easily
changed if required. If new and better performing components are found in
the future, the software can be easily modified to include those components
for testing. Our online selection choice function based hyper-heuristic for
multi-objective optimisation (HHMO_CF) controls and combines the strengths
of three well-known multi-objective evolutionary algorithms (NSGAII, SPEA2,
and MOGA), which are utilised as the low level heuristics. The choice function
utilised as a selection mechanism and a high level strategy which adaptively
ranks the performance of three low-level heuristics, deciding which one to call
at each decision point. The reason of use of the choice function as selection
method is that it provides a balance between intensification and
diversification. In addition, it was successful when used as a selection method
in the hyper-heuristic for single-objective optimisation (Soubeiga, 2003; Bia,
2005). In our multi-objective hyper-heuristic framework, learning process is
an essential component for guiding the heuristic selection method while it
decides on the most appropriate heuristic to apply at each step of the iterative
approach. The results that reported in Chapter 5 demonstrate that
effectiveness of the learning multi-objective hyper-heuristic approach when

compared to the one with no learning mechanism. This is understandable, as
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it has been observed that the learning mechanism adaptively successfully
guides the search process towards the POF. In our learning multi-objective
choice function based hyper-heuristic framework, we employed four
performance metrics (Algorithm effort (AE), Ratio of non-dominated
individuals (RNI), Size of space covered (SSC) and Uniform distribution of a
non-dominated population (UD)) to act as an online learning mechanism to
provide knowledge of the problem domain to the selection mechanism. The
motivation behind choosing these metrics is that they have been commonly
used for performance comparison of approaches for multi-objective
optimisation to measure different aspects of the final non-dominated solutions
in the objective space (Tan et al., 2002). In addition, they do not require a
prior knowledge of the POF, which means that our framework is suitable for
tackling real-world problems in future studies (see Chapter 8). Four
performance metrics are integrated into a ranking scheme that we introduced
in this study for the first time (see Section 4.2). The task of online learning
ranking scheme is to score the performance of low level heuristics. Unlike the
ranking scheme used in Vazquez-Rodriguez and Petrovic (2012) which orders
the algorithms based on their probabilities against the performance indicators’
using a mixture of experiments, our ranking scheme relies on sorting the low
level heuristics in descending order based on the highest ranking among the
other heuristics. Our ranking scheme is simple and flexible and enables us to

incorporate any number of low level heuristics.

9.1.2 Three Multi-objective Choice Function Based Hyper-
heuristics.

There is strong empirical evidence showing that different combinations
of heuristic selection and acceptance methods in a selection hyper-heuristic
framework vyield different performances in single-objective optimisation
(Burke et al., 2012). In this thesis, we investigated the influence of combining
different acceptance methods under our online learning multi-objective choice
function based hyper-heuristic framework that presented in Chapter 4. Three
multi-objective choice function based hyper-heuristic combined with different
move acceptance strategies including All-Moves as a deterministic move
acceptance and Great Deluge Algorithm (GDA) and Late Acceptance (LA) as a
non-deterministic move acceptance are presented in Chapters 5, 6 and 7

respectively.
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The first multi-objective hyper-heuristic is utilised the choice function as
a heuristic selection method and All-Moves as a deterministic move
acceptance strategy (HHMO_CF_AM) (see Chapter 5). The choice function
based hyper-heuristic was initially reported to perform well when combined
with All-Moves acceptance for solving a single-objective optimisation problem
(Cowling et al., 2002c). Thus, we chose All-Moves as a move acceptance
strategy in our multi-objective hyper-heuristic framework, meaning that we
accept the output of each low level heuristic whether it improves the quality

of the solution or not.

A number of experiments are conducted to examine the performance of
HHMO_CF_AM comparing to the low level heuristics (NSGAII, SPEA2 and
MOGA), when used in isolation. It was shown that HHMO_CF_AM can benefit
from the strengths of the low level heuristics. Unfortunately, it cannot avoid
the weaknesses of them fully, as the poor performance of MOGA affects the
performance of HHMO_CF_AM badly with respect to the ratio of non-
dominated individual (RNI) by producing low number of non-dominated
solutions. Another reason is that our multi-objective hyper-heuristic
framework does not employ any archive mechanisms to maintain the number
of individual in the population. To overcome this issue, we had two options:
(i) employing an archive mechanism or (ii) employing a different move
acceptance strategy that allows worsening moves to a limited degree. As we
aim to keep our multi-objective hyper-heuristic framework in the same level
of abstraction and not to break the domain barrier by incorporating an archive
mechanism along the low level heuristics, the first option is ignored. So, we
employed another acceptance strategy instead of All-Moves to avoid

acceptance of all worsening moves.

In Chapters 6 and 7, we investigated the behaviour of great deluge
algorithm (GDA) and late acceptance (LA) as non-deterministic move
acceptance strategies under the choice function based hyper-heuristic
framework designed for solving multi-objective optimisation problems. To the
best of our knowledge, for the first time, this study investigated the influence
of move acceptance component of selection hyper-heuristics for multi-
objective optimisation. The motivation for choosing GDA and LA as acceptance
criteria is that both are simple and do not depend on many parameters,
requiring less effort for parameter tuning. More importantly, encouraging

results have been reported in the literature for single-objective optimisation,
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but there are a few studies on their application to multi-objective optimisation
(e.g. Petrovic and Bykov, 2003). The GDA and LA as move acceptance
strategies require computation of the change in the value of a single-objective
at each step and so the use of D performance metric (Zitzler, 1999) is
proposed in order to be able to utilise those move acceptance methods under
the proposed multi-objective framework. D metric is usually used in the
literature as a performance metric to compare the final solutions obtained
from multi-objective optimisers. In this thesis, we used D metric integrating
into move acceptance criterion in order to covert the multi-objective
optimisation to the single-objective optimisation without definition of criteria
values' weights. D metric is used as a way of comparing two non-dominated
sets of solutions in the objective space. The goal is set to as optimising
(maximising) the D metric instead of a set of objectives simultaneously (see
Sections 6.2 and 7.2). The choice function great deluge based hyper-heuristic
(HHMO_CF_GDA) and choice function late acceptance based hyper-heuristic
(HHMO_CF_LA) outperforms the choice function all-moves based hyper-
heuristic (HHMO_CF_AM), indicating that the non-deterministic move
acceptance strategies (GDA and LA) improve the performance of the multi-
objective choice function based hyper-heuristic. Moreover, the multi-objective
choice function based hyper-heuristics using non-deterministic move
acceptance can successfully avoid accepting worse moves which result in the
production of a low number of non-dominated individuals, as in the case of
the original approach (HHMO_CF_AM). The main drawback of our selection
multi-objective hyper-heuristic is not exhibiting the feature of multi-objective
evolutionary algorithms, which act as low level heuristics. They are stochastic
and the decision of the acceptance move is made after a single run only. To
overcome this, we can execute each low level heuristic for many runs then
make the acceptance move decision, but this is could be computationally

expensive.

9.1.3 Application of Proposed Hyper-heuristics to
Benchmark Test Problems and Real-world Problems

In this thesis, our multi-objective choice function based hyper-
heuristics are evaluated over two problems; the Walking Fish Group (WFG)
test problems (Huband et al., 2006) as our multi-objective benchmark test
dataset and the multi-objective vehicle crashworthiness design problem (Liao

et al., 2008) as a real-world problem.
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The WFG test suite includes different test problems which consist of a
wide range of characteristics and features (see Section 3.3.3). The WFG test
suite has a number of instances that have features that are not included in
other test suites, such as ZDT and DTLZ. Moreover, the WFG test suite is an
excellent tool for comparing the performance of EAs, and they are the

common choice for most MOEA researchers (Huband et al., 2006).

Our multi-objective choice function based hyper-heuristics presented in
this thesis produced good results with acceptable quality over the nine WFG
test problems including bi-objective and tri-objective. These results are
reported in Chapters 5 and 7. We evaluated our approaches using two
objective and three objective problems. In Chapter 4, the choice function
heuristic selection combined with All-moves acceptance method
(HHMO_CF_AM) are compared to the low level heuristics on their own. It was
shown that HHMO_CF_AM performs better than MOGA over the bi-objective
WFG test functions in terms of the distribution of non-dominated individuals
along the POF., HHMO_CF_AM obtains competitive results performing better
than NSGAII in terms of convergence towards the POF. However,
HHMO_CF_AM fails to deliver a better performance as compared to NSGAII
and SPEA2 in terms of number of non-dominated solutions. HHMO_CF_AM
cannot avoid the weakness of MOGA with respect to this quality measure.
Still, HHMO_CF_AM outperforms the adaptive multi-method search
(AMALGAM) (Vrugt and Robinson, 2007) over the same test instances. The
superiority of HHMO_CF_AM is due to online learning heuristic selection
mechanism and the effective ranking scheme. The ranking scheme maintains
the past performance of low level heuristics using a set of performance
indicators that measure different aspects of the solutions. During the search
process, the ranking scheme creates a balance between choosing the low
level heuristics and their performance according to a particular quality metric.
This balance enhances the algorithm performance to yield better solutions

that converge toward the POF as well as distribute uniformly along the POF.

In Chapter 7, it was shown that the two multi-objective choice function
hyper-heuristics that combined with great deluge and late acceptance as non-
deterministic move acceptance criteria (HHMO_CF_GDA and HHMO_CF_LA)
superior to the multi-objective choice functions based hyper-heuristic that
combined with All-Moves as deterministic move acceptance criterion
(HHMO_CF_AM) over both bi-objective and tri- objective WFG test functions.
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The non-deterministic move acceptance methods in particularly GDA and LA
improve the overall performance of the hyper-heuristic with respect to the
number of the solutions, convergence and diversity. However, All-Moves still
performs the best and produces better solutions in terms of the uniform
distribution of non-dominated solutions. The success of HHMO_CF_AM with
respect the uniform distribution of non-dominated solutions might be due to
the use of the D metric into acceptance procedure for multi-objective non-
deterministic acceptance based hyper-heuristics. Since D metric is a binary
hypervolume measure that is designed to compare two sets of non-dominated
solutions with respect of their convergence towards the POF, there is no
consideration regarding how uniformly these solutions are distributed along
the POF. This might also be a reason for why non-deterministic move
acceptance procedures obtain high quality solutions in terms of the
convergence towards the POF. In general, multi-objective choice function
great deluge based hyper-heuristic (HHMO_CF_GDA) performs the best over
WFG instances. The results in Chapter 7 provide an empirical evidence of
mixing different combination of meta-heuristics under a selection hyper-
heuristic framework yields with an improved performance. The use of the
combination of the choice function as selection method and great deluge
algorithm as acceptance strategy positively affect the performance of the
multi-objective hyper-heuristics. The superiority of multi-objective choice
function great deluge based hyper-heuristic is due to the acceptance
procedure employed. Analysis of GDA behaviour as acceptance move strategy
within the multi-objective choice function based hyper-heuristics framework is

provided in Chapter 6.

Moreover, this observation is supported further by empirical evidence
obtained from evaluating our multi-objective choice-function based hyper-
heuristics against NSGAII over the vehicle crashworthiness design problems
(See Chapter 8). The multi-objective choice function grate deluge based
hyper-heuristic (HHMO_CF_GDA) beats others methods for solving both the
original vehicle crashworthiness problem with three objectives and its bi-
objective additional instances. HHMO_CF_GDA excels NSGAII over all
instances of the problem. Although other multi-objective choice function
based hyper-heuristics still produce solutions with acceptable quality, they
could not perform better as well as NSGAII. The reason of this relies on the

move acceptance strategy they are employed.
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The results of both benchmark test problems (WFG) and the real-world
problems (vehicle crashworthiness design) demonstrate the capability and
potential of the multi-objective hyper-heuristic approaches in solving
continuous multi-objective optimisation problems. The choice function great
deluge based hyper-heuristic (HHMO_CF_GDA) mixing and managing
population based multi-objective meta-heuristic algorithms turns out to be the
best choice for multi-objective optimisation rather than running each meta-

heuristic algorithm on its own.

9.2 Future Work

Our multi-objective choice function based hyper-heuristic framework
which is used for managing a set of multi-objective meta-heuristics offers
interesting potential research directions in multi-objective optimisation. We

recommend three directions for future work as follows:

9.2.1 From the High Level Strategy Perspective

The empirical experiments demonstrate that combining different
(meta)heuristic selection and move acceptance methods as components
within a selection hyper-heuristic framework yield different performances in
single-objective optimisation (Burke et al., 2012). In this thesis, we have
adapted choice function as selection methods combined with three different
acceptance methods, which are all-moves, great deluge algorithm and late
acceptance, for multi-objective optimisation. More heuristic selection methods
and can be adapted from previous research in single-objective optimisation
and used for multi-objective optimisation. This process is not a trivial process
requiring elaboration of existing methods and their usefulness in a multi-
objective setting. Also other acceptance criteria such as simulated annealing
(SA) and tabu search (TS) could be employed as a move acceptance
component within our hyper-heuristic framework for multi-objective
optimisation. As those criteria involve many parameters, this methodology
would require initial experiments to tune the parameters for multi-objective
settings such defining a cooling schedule and an initial temperature for SA

and aspiration criterion and tabu tenure for TS.
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In the context of multi-objective choice function great deluge based
hyper-heuristic, it is suggested to tuning the rain speed (UP) parameter
automatically based on the number of total moves in the search process in
order to investigate great deluge algorithm as a move acceptance with re-
levelling mechanism. This process requires resetting a water level (LEVEL)
and setting a new rain speed rate (UP). This suggestion could improve the
quality of results obtained from the original multi-objective choice function
great deluge based hyper-heuristic that presented in this thesis (see Chapter
6). And make it applicable for wide range of problems. This may require
further implementation of the high level strategy and more experiments could

be done over the WFG test suite and other test problems.
9.2.2 From the Low Level Heuristics Perspective

Our multi-objective choice function based hyper-heuristic framework is
designed to be highly flexible and its components can be reusable and easily
replaceable. In this thesis, we employed and combined the strengths of three
well-known multi-objective evolutionary algorithms (NSGAII, SPEA2, and
MOGA) within our multi-objective selection hyper-heuristic framework (see
Chapter 4). It would be interesting to employ other MOEA optimisers and
other population-based methods to act as low level heuristics within the same
framework. We anticipate that different low level heuristics could yield
different performances. It would be so beneficial if replace MOGA with other
more advance methods such as MOEA/D (Li and Zhang, 2009). There is huge
numbers of low level heuristics choices possible and therefore great scope for
research. Recent multi-objective hyper-heuristics studies obtain promising
results. This is the case in MCHH (McClymont and Keedwell, 2011) using
Evolution Strategies, and in AMALGAM (Vrugt and Robinson, 2007) using
Particle Swarm Optimisation (Kennedy, 2001), Adaptive Metropolis Search
(Haario et al., 2001) and Differential Evolution (Storn and Price, 1997).

9.2.3 From the Problem Domain

In this thesis, we evaluate our multi-objective choice function based
hyper-heuristics over both problems: the WFG test suite (Huband et al.,
2006) as our multi-objective benchmark test dataset and multi-objective
vehicle crashworthiness design (Liao et al., 2008) as real-world problem. It

would be interesting to test the level of generality of our multi-objective
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hyper-heuristics framework further on some other problems and domains
including the continuous real-valued constrained, combinatorial, discrete and
dynamic problems. The real-world water distribution networks design
problems are applied to recent multi-objective hyper-heuristics studies in
Raad et al. (2010) and McClymont et al. (2013) and produce encouraging
results. In addition, extending our selection hyper-heuristics for many
objectives optimisation would be an interesting direction research. This
process might require adaptation of diversity management procedures and

modification of Pareto-dominance.
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