
Maashi, Mashael (2014) An investigation of multi-
objective hyper-heuristics for multi-objective
optimisation. PhD thesis, University of Nottingham.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/14171/1/My_thesis.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may
be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk

AN INVESTIGATION OF

MULTI-OBJECTIVE HYPER-HEURISTICS FOR

MULTI-OBJECTIVE OPTIMISATION

by

Mashael Maashi, BSc, MSc

Thesis submitted to the University of Nottingham for

the degree of Doctor of Philosophy

April 2014

Contents

Abstract ... I

Acknowledgements .. II

έϛηϭ ˯΍Ωϫ΁ .. IV

List of Figures ... VI

List of Tables .. XI

1 Introduction .. 1

1.1 Background and Motivations ... 1

1.2 Aims and Scope .. 3

1.3 Overview of the Thesis ... 4

1.4 Contributions of the Thesis ... 6

1.5 Academic papers produced ... 7

2 Literature Review .. 8

2.1 Multi-objective Evolutionary Algorithms (MOEAs) 8

2.1.1 Pareto Dominance ... 10

2.1.2 MOEAs Background ... 11

2.1.3 MOEA Methodologies ... 15

2.1.4 Multi-objective Genetic Algorithm (MOGA) 16

2.1.5 Non-dominated Sorting Genetic Algorithm (NSGA) 16

2.1.6 Strength Pareto Evolutionary (SPEA) ... 18

2.1.7 Niched Pareto Genetic Algorithm (NPGA) 20

2.1.8 Multi-objective Messy Genetic Algorithm (MOMGA) 21

2.1.9 Overview of Many-objectives Optimisation 23

2.1.10 Overview of Performance Metrics for Multi-objective Optimisation

 .. 23

2.1.11 Studies on the Comparison of MOEAs 29

2.2 Meta-heuristics .. 32

2.2.1 Algorithm Complexity and Problem Complexity 32

2.2.2 Intensification and Diversification ... 34

2.2.3 Meta-heuristics Classification .. 34

2.2.4 Local Search .. 36

2.2.5 Simulated Annealing ... 37

2.2.6 The Great Deluge Algorithm ... 38

2.2.7 Tabu Search ... 40

2.2.8 Late Acceptance ... 41

2.2.9 Genetic Algorithms .. 43

2.2.10 Other Meta-heuristic Algorithms .. 45

2.2.11 Multi-objective Meta-heuristic ... 47

2.3 Hyper-heuristics ... 48

2.3.1 The Concept of Hyper-heuristics ... 50

2.3.2 Hyper-heuristics Classification .. 52

2.3.2.1 Selection Methodologies .. 53

2.3.2.2 Generation Methodologies ... 58

2.3.3 Multi-objective Hyper-heuristics Approaches............................... 60

2.3.4 Multi-objective Selection Hyper-heuristics versus Hybrid Methods for

Multi-objective Optimisation ... 63

2.4 Summary .. 64

3 Multi-objective Optimisation Test Problems................................... 66

3.1 Definitions of the Test Problems’ Features 66

3.2 The Features of the Test Problems .. 69

3.3 Test Suite for Multi-objective Optimisation 71

3.3.1 ZDT Test Suite ... 71

3.3.2 DTLZ Test Suite .. 72

3.3.3 WFG Test Suite ... 72

3.3.4 Other Test Suites .. 75

3.4 Other Test Functions Problems for Multi-objective Optimisation 77

3.5 Summary .. 77

4 A Multi-objective Hyper-heuristic Framework 79

4.1 A Selection Choice Function Hyper-heuristic Framework 79

4.2 The Online Learning Feedback Mechanism and the Ranking Scheme ... 86

4.3 The Choice Function Meta-heuristic Selection Method 88

4.4 Summary and Remarks ... 90

5 A Heuristic Selection Using Deterministic Move Acceptance Strategy

 ... 92

5.1 Choice Function All-Moves for Selecting Low Level Meta-heuristics

(HHMO_CF_AM) ... 92

5.2 Performance Comparison of Multi-objective Choice Function Based

Hyper-heuristic and Low Level Heuristics .. 94

5.2.1 Performance Evaluation Criteria .. 94

5.2.2 Experimental Settings ... 95

5.2.3 Tuning of  parameter ... 95

5.2.4 Comparison Results and Discussion ... 100

5.2.5 Behaviour of Low Level Heuristics ... 104

5.3 Performance Comparison of Multi-objective Choice Function Based

Hyper-heuristic to the Other Multi-objective Approaches 109

5.3.1 Performance Evaluation Criteria .. 110

5.3.2 Experimental Settings ... 110

5.3.3 Experimental Results and Discussion 112

5.4 Summary and Remarks ... 117

6 A Heuristic Selection Using Great Deluge as a Non-Deterministic

Move Acceptance Strategy .. 120

6.1 The Great Deluge Algorithm as a Move Acceptance Criteria 120

6.2 The Great Deluge and D Metric .. 122

6.3 Choice Function Great Deluge for Selecting Low Level Meta- heuristics

(HHMO_CF_GDA) ... 124

6.4 Performance Comparison of Choice Function Great Deluge Hyper-

heuristics .. 125

6.4.1 Tuning of Rain Speed Parameter (UP) 126

6.4.2 Experimental Settings and Performance Evaluation Criteria 127

6.4.3 Experimental Results and Discussion 128

6.5 Summary and Remarks ... 135

7 A Heuristic Selection Using Late Acceptance as a Non-Deterministic

Move Acceptance Strategy .. 138

7.1 Late Acceptance Strategy as Move Acceptance Criteria 138

7.2 Late Acceptance and D Metric .. 139

7.3 Choice Function Late Acceptance for Selecting Low Level Meta-

Heuristics (HHMO_CF_LA) ... 140

7.4 Comparison of Multi-objective Hyper-heuristics- the Case of Bi-objective

 ... 142

7.4.1 Performance Evaluation Criteria .. 142

7.4.2 Experimental Settings ... 142

7.4.3 Experimental Results and Discussion 143

7.4.4 Behaviour of Acceptance Strategies ... 150

7.5 Comparison of Multi-objective Hyper-heuristics- the Case of Tri-

objective ... 153

7.5.1 Performance Evaluation Criteria .. 153

7.5.2 Experimental Settings ... 154

7.5.3 Experimental Results and Discussion 154

7.5.4 Behaviour of Acceptance Strategies ... 157

7.6 Summary and Remarks ... 163

8 The Real-World Problem: The Multi-objective Vehicle

Crashworthiness Design ... 167

8.1 Problem Description .. 167

8.2 Problem Formulation ... 169

8.3 Experiments and Comparison ... 171

8.3.1 Performance Evaluation Criteria .. 171

8.3.2 Experimental Settings ... 171

8.3.3 Tuning of Number of Decision Points for Multi- objectives Hyper-

heuristics ... 172

8.3.4 Performance Comparison of Multi-objective Hyper-heuristics and

NSGAII .. 175

8.4 Summary and Remarks ... 187

9 Conclusions and Future Work .. 189

9.1 Conclusions ... 189

9.1.1 The Online Learning Selection Hyper-heuristic Framework for Multi-

objective Optimisation ... 190

9.1.2 Three Multi-objective Choice Function Based Hyper-heuristics. ... 191

9.1.3 Application of Proposed Hyper-heuristics to Benchmark Test

Problems and Real-world Problems .. 193

9.2 Future Work .. 196

9.2.1 From the High Level Strategy Perspective 196

9.2.2 From the Low Level Heuristics Perspective 197

9.2.3 From the Problem Domain ... 197

References .. 199

I | P a g e

Abstract

In this thesis, we investigate and develop a number of online learning

selection choice function based hyper-heuristic methodologies that attempt to

solve multi-objective unconstrained optimisation problems. For the first time,

we introduce an online learning selection choice function based hyper-

heuristic framework for multi-objective optimisation. Our multi-objective

hyper-heuristic controls and combines the strengths of three well-known

multi-objective evolutionary algorithms (NSGAII, SPEA2, and MOGA), which

are utilised as the low level heuristics. A choice function selection heuristic

acts as a high level strategy which adaptively ranks the performance of those

low-level heuristics according to feedback received during the search process,

deciding which one to call at each decision point. Four performance

measurements are integrated into a ranking scheme which acts as a feedback

learning mechanism to provide knowledge of the problem domain to the high

level strategy. To the best of our knowledge, for the first time, this thesis

investigates the influence of the move acceptance component of selection

hyper-heuristics for multi-objective optimisation. Three multi-objective choice

function based hyper-heuristics, combined with different move acceptance

strategies including All-Moves as a deterministic move acceptance and the

Great Deluge Algorithm (GDA) and Late Acceptance (LA) as a non-

deterministic move acceptance function.

 GDA and LA require a change in the value of a single objective at each

step and so a well-known hypervolume metric, referred to as D metric, is

proposed for their applicability to the multi-objective optimisation problems. D

metric is used as a way of comparing two non-dominated sets with respect to

the objective space. The performance of the proposed multi-objective

selection choice function based hyper-heuristics is evaluated on the Walking

Fish Group (WFG) test suite which is a common benchmark for multi-objective

optimisation. Additionally, the proposed approaches are applied to the vehicle

crashworthiness design problem, in order to test its effectiveness on a real-

world multi-objective problem. The results of both benchmark test problems

demonstrate the capability and potential of the multi-objective hyper-heuristic

approaches in solving continuous multi-objective optimisation problems. The

multi-objective choice function Great Deluge Hyper-Heuristic

(HHMO_CF_GDA) turns out to be the best choice for solving these types of

problems.

II | P a g e

Acknowledgements

I would like to express my respect and gratitude to my supervisor

Professor Graham Kendall for giving me this opportunity to pursue a PhD at

the University of Nottingham. I feel very lucky to be one of his students.

Sincere gratitude to Dr Ender Özcan who joined Professor Kendall soon after

in the supervision of my PhD research. I would like to thank both of them for

their ideas, insights, trust, patience, support and valuable guidance, as well

as sound advice and suggestions throughout my PhD. They are, and always

will be, sources of inspiration, and ensured that my project remained on

track. I appreciate their kind help and encouragement throughout my PhD

journey which has greatly helped me to overcome difficulties, gain confidence

and move forward.

My thanks also go to the Automated Scheduling, Optimisation and

Planning (ASAP) Research Group and the School of Computer Science at the

University of Nottingham for their help and assistance. I would like to

acknowledge the many colleagues who helped make the time enjoyable

especially my friends Dr Huanlai Xing and Shahriar Asta. I would like to thank

Dr. Dario Landa-Silva from University of Nottingham for his great help and

collaboration during my PhD study. I would also express my deep appreciation

to Professor Kalyanmoy Deb from Indian Institute of Technology Kanpur for

his advice and suggestions.

I would like to express my gratefulness to my Ph.D viva examiners; Dr

Dario Landa-Silva (Internal examiner) and Professor Peter Fleming from

University of Sheffield (external examiner), for providing insightful comments

which has greatly helped to improve the quality of my thesis.

Dedicated to my parents - the greatest Dad and Mum - without their

prayers, support and encouragement, I would not have come to the UK to

pursue my research. I am grateful to Allah that they are in my life and what

they dream about comes true.

Dedicated to Grandma, my sisters - Safa, Mervet, Manal, Khould, my

brother Abdulaziz, and all my nephews and nieces for their prayers, love, care

and patience. Thanks for being a good sister(s)/brother and for all the late

night/early morning chats. Although you were all far from me in distance,

your hearts live inside my soul.

III | P a g e

A special dedication to my sister Marwah (my soulmate), who shared

with me all the foreignness of life; as well as joyful and happy and even sad

and difficult moments. Thanks for her inspiration, support, encouragement,

prayers, care, patience, travelling and cooking. It would have not been

possible for me to finish my PhD without her warm heart.

To the who that is my life companion, my husband, Abdulrahman. Allah

sent you into my life at the right moment as Mr. Right. Having you in my life

makes it easier, more enjoyable, colourful, full of happiness and full of love.

Thanks for love, care, encouragement, prayers and patience. Love you Babe.

 Many thanks also to all of my friends - Amani, Mona, Shatha, Mashael,

Hend, Zhorah, Azhar and Afaf - for listening to me and supporting me. I have

enjoyed these years and my life would not have been as enjoyable without

you all.

Lastly, I am highly grateful to the University of Tabuk and the Saudi

Cultural Bureau in the UK and Ireland for making available the financial

funding without which I would not have been able to undertake my research.

I would like also to thank all those who painstakingly guided me during the

project. Thanks for your prayers, help and co-operation.

Mashael S. Maashi
4, December 2013

IV | P a g e

ήϜηϭ ˯΍Ϊϫ΁

ϦϴϤϟΎόϟ΍ Ώέ ͿΪϤΤϟ΍... ˴΍ήϴΧ΍ϭ ˱ϻϭ΍ ͿΪϤΤϟ΍ ..Ϫϴϓ ˱ΎϛέΎΒϣ ˱ΎΒϴρ ˱΍ήϴΜϛ ˱΍ΪϤΣ ͿΪϤΤϟ΍ ..Χ ΩΪϋ ͿΪϤΤϟ΍ Ύοέϭ ϪϘϠ
ϭ Ϫδϔϧ ϪΗΎϤϠϛ Ω΍Ϊϣ ..ήτϤϟ΍ ΕΎΧίϭ Ϟϣήϟ΍ ΏΎΒΣϭ ήΠθϟ΍ ϕ΍έϭ΃ ΩΪϋϭ .. ϦϬϴϓ Ϧϣϭ νέϷ΍ϭ Ε΍ϮϤδϟ΍ Ϟϣ ͿΪϤΤϟ΍

ήΤΒϟ΍ Ε΍ήτϗϭ ήθΒϟ΍ αΎϔϧ΍ ΩΪϋϭ ..ΕΎΤϟΎμϟ΍ ϪΘϤόϨΑ ϢΘΗ ϱάϟ΍ Ϳ ΪϤΤϟ΍ ..ϙ΍Ϯγ ϕϮϠΨϤϟ ϻ ͿΎϳ Ϛϟ ΪϤΤϟ΍ .. ήϴΨϟΎϓ
 ϚϤϠϋ ϢϠόϟ΍ϭ ϚϠπϓ Ϟπϔϟ΍ϭ Ϛϴϟ΍ϭ ϚϨϣ ..ΰΟ ϢϠόϟ΍ ΍άϫ ϲΑέ ήϴΒϜϟ΍ ϚϤϠϋ Ϧϣ ϞϴΌο ˯ .. ˱ϼϴϠϗ ϻ· ϢϠόϟ΍ Ϧϣ ΎϨϴΗϭ΃ ΎϤϓ

 ..ϚϘϠΧ ϪΑ ϊϔϨΗϭ ϲΗΎϤϣϭ ϲΗΎϴΣ ϲϓ ϪΑ ϲόϔϨΗϭ ϲϨϣ ϪϠΒϘΘΗ ϥ΃ ͿΎϳ Ϛϟ΄γ΍ .. ϢϠόϟ΍ ΍άϫ ήΟ΍ ϱ˷Ϊϟ΍ϭ ϲτόΗϭ ˬˬˬ Ϧϴϣ΁ .

ϡ΃ϭ Ώ΃ Ϣψϋ΃ ϱ˷Ϊϟ΍ϭ ϰϟ΍ ˯΍Ϊϫ΁ ..Ω .Ωϭ ϲθόϣ ϥΎϤϴϠγ . ϲϟΪΒόϟ΍ Δθ΋Ύϋس ˯΍Ϊϫ΁ ΔΣϭήρϻ΍ ϩάϫ ΎϤϜϟ ςϴδΑ
ΎϤϜϟ ϲΘΑήϏ ΎϬΘΒΒγ ϰΘϟ΍ ϡϻϵ΍ Ϟϛ ϰϠϋϭ ΎϤϜϨϋ ϱΪόΒϟ ΎϤϜϠϤΤΗϭ ΎϤϛήΒλ ϰϠϋ .Ύϧ΍ Γ΍έϮΘϛΪϟ΍ ϰϠϋ ϞμΣ΍ Ϣϟ .. Ϧϣ ϢΘϧΎϓ

 ΎϬϴϠϋ ϞμΣ.. ΎϤϜϤϋΩϭ έΎϬϧ Ϟϴϟ ΎϤϜΘϨδϟ΍ ϞΒϗ ΎϤϜΑϮϠϗ ΎϬΑ ΞϬϠΗ ϲΘϟ΍ϭ ϲϟ ΔϗΩΎμϟ΍ ΎϤϜΗ΍ϮϋΩ ϢΛ Ϧϣϭ ௌ ϻϮϟ
γ΍ ΎϤϟ ΔϤ΋΍Ϊϟ΍ ΎϤϜΘϳΎϋέϭ ΎϤϜόϴΠθΗϭ Γ΍έϮΘϛΪϟ΍ ΔΟέΩ ϰϠϋ ϝϮμΤϟ΍ϭ ϲϤϴϠόΗ ΔϠλ΍Ϯϣϭ ΔΜόΒϟΎΑ ϕΎΤΘϟϹ΍ ΖότΘ .

ϞϴϤΟ ϊϗ΍ϭ ϲϟ ΎϤϜϤϠΣ ϞόΟϭ ΎϤϜΗ΍ϮϋΪϟ ϪΘΑΎΠΘγ΍ ϰϠϋ ϩήϜη΃ϭ ϲΗΎϴΣ ϲϓ ΎϤϜϧϮϛ ௌ ϰϟ· ΔϨΘϤϣ . ϲϟ Ϟϴτϳ ϥ΍ ௌ ΍ϮϋΩ΍
ϲϟ ˱΍ΪϨγϭ ˱΍ήΧΫ ˱ΎϣϭΩ ΎϤϜϠόΠϳϭ ΎϤϛήϤϋ ϲϓ .ΎϣΎϣϭ ΎΑΎΑ ϢϜΒΣ΃ .

 ΔΒϴρ ϰΘγ ϰϟ΍ ˯΍Ϊϫ΁ Ε΍ΰϳΰόϟ΍ ϲΗ΍ϮΧ΃ ϰϟ΍ϭ ΔϤρΎϓ ϲΘγ Ρϭέ ϰϟ΍ϭ ΎϫήϤϋ ϲϓ ϲϟ ௌ ϝΎρ΍س ˯Ύϔλ ˬ

ϲΗ΍ϮΧ΍ ΕΎϨΑϭ Ωϻϭ΃ ϊϴϤΟ ϰϟ΍ϭ ˬ ΰϳΰόϟ΍ ΪΒϋ ΰϳΰόϟ΍ ϲΧ΃ ϭ ˬ ΩϮϠΧ ˬϝΎϨϣ ˬΖϓήϣ . ϢϜΒΣ ˬ ϢϜ΋ΎϋΪϟ ˱΍ήϜη ˬ ϢϜϣΎϤΘϫ΍
 ϢϛήΒλϭ . Ε΍ϮΧϷ΍ Ϣόϧ ϢϜϧϮϜϟ ˱΍ήϜη/ ΥϷ΍ .΍ ΕϻΎμΗϻ΍ϭ ΕΎΛΩΎΤϤϟ΍ Ϟϛ ϰϠϋ ˱΍ήϜη ήϛΎΒϟ΍ ΡΎΒμϟ΍ ϲϓ ΔϠϴϤΠϟ

ϞϴϠϟ΍ ήΧ΍ϭ΁ϭ .ϲΣϭέ ϞΧ΍Ω ˱ΎϣϭΩ ζϴόΗ Ζϟ΍ίΎϣϭ ΖϧΎϛ ϢϜΑϮϠϗ ϥ΃ ϻ· ΔϓΎδϤϟ΍ ϲϓ ϲϨϋ ϢϛΪόΑ Ϧϣ ϢϏήϟ΍ ϰϠϋ .

 Γϭήϣ ϲΘΧϷ ιΎΧ ˯΍Ϊϫ΁(Ρϭήϟ΍ ϡ΃ϮΗ)Ύϫήϣϭ ΎϫϮϠΤΑ ΔΑήϐϟ΍ ϲϨΘϛέΎη ϰΘϟ΍ ˬ .. ϰΘΣϭ ΓΪϴόδϟ΍ϭ ΔΠϴϬΒϟ΍ ΎϬΗΎψΤϟ ϞϜΑ
ΎϬϨϣ ΔΒόμϟ΍ϭ ΔϨϳΰΤϟ΍ .ϦϜϳ Ϣϟ Ίϓ΍Ϊϟ΍ ϚΒϠϗϭ Ϛϔτϋϭ ϙΩϮΟϭ ϥϭΩ ϩ΍έϮΘϛΪϟ΍ ΞϣΎϧήΑ ˯ΎϬϧ· ϲϟ ϦϜϤϤϟ΍ Ϧϣ . ˱΍ήϜη

ϚϤϋΩ ˬϚϣΎϬϟϹ ˬ ϚόϴΠθΗ ˬϲϔόοϭ ϱέΎϴϬϧ· ΕΎψΤϟ ϲϓ Ϣϴψόϟ΍ ϙήΒλϭ ϲοήϣ ΪϨϋ ϲϟ ϚΘϳΎϋήϟϭ ϚΗ΍ϮϋΩ . ˱΍ήϜη
ϲΗϼΣέ Ϟϛ ϲϓ ΓϮϠΤϟ΍ ϚΘϘϓέ ϰϠϋ .όϨλ ϰΘϟ΍ ΓάϳάϠϟ΍ϭ ΔϴϬθϟ΍ ϕΎΒρϷ΍ϭ ΕΎΒΟϮϟ΍ Ϟϛ ϰϠϋ ˱΍ήϜη ϚϳΪϳ ΎϬΘ): !!

 ϲΗΎϴΣ Ϛϳήη ϰϟ· ΐΤϟΎΑ ϒϠϐϣ ˯΍Ϊϫ΁ .. ϲΒϴΒΣϭ ϲΟϭί- ϦϤΣήϟ΍ ΪΒϋ .. ΖϧΎϓ ΐϴμϧ ϲϟ ϚϠόΟ Ϫϧ΃ ϰϠϋ ௌ ΪϤΣ΍

ΐϴΒΤϟ΍ϭ ϖϳΪμϟ΍ϭ Νϭΰϟ΍ Ϣόϧ . ΔόΘϣ ήΜϛ΃ϭ ϞϬγ΃ ΎϬϠόΟ ϲΗΎϴΣ ϲϓ ϙΩϮΟϭ..ΐΤϟ΍ϭ Ρήϔϟ΍ϭ ΓΩΎόδϟΎΑ ΔΌϴϠϣ . ΔϨΘϤϣ
όϴΠθΗϭ Ϛϔτϋϭ ϚϣΎϤΘϫ΍ϭ ϚΘϳΎϋήϟϭ ϚΒΤϟΐϴτϟ΍ ήϴΒϜϟ΍ ϚΒϠϘϟϭ ϙήΒλϭ ϚΗ΍ϮϋΩϭ Ϛ . ξόΑ ϲϓ ϲϨϴϋ ϙ΍ήΗ ϻ Ϊϗ

 ˱΍ήοΎΣ ˱ΎϣϭΩ ΐϠϘϟ΍ ϲϓ Ϛϧ΃ ϻ΍ ϥΎϴΣϷ΍.ϲΑ ϲΑ ϚΒΣ΃.

 ΕΎϗϭΪμϟ΍ ϲΗΎϘϳΪλ ϊϴϤΠϟ ϞϳΰΠϟ΍ ήϜθϟ΍- ϥΎϤϳ΍ˬϞϋΎθϣ ˬϯάη ˬϰϨϣ ˬϲϧΎϣ΃ ˬέΎϫί΍ ˬΪϨϫ ˬϑΎϔϋϭ Γήϫί .
΍ ϲϓ ϲΒϧΎΟ ˱ΎϣϭΩ ϦϜϓϮϗϭ ϦϜϤϋΩϭ ϲϟ ϢϜϋΎϤΘγϻ ˱΍ήϜηΔΑήϐϟ .ήϜγ ϰϟ΍ ΔΑήϐϟ΍ Γέ΍ήϣ ΖϟϮΤΗ ϦϛΩϮΟϮΑϭ . ϦϛϻϮϟ

ΔόΘϤϣϭ ΔϠϴϤΟ ϯήϛΫ Ώ΍ήΘϏϻ΍ Ϧϣ Ε΍ϮϨδϟ΍ ϚϠΗ Ϟϛ ΖΤΒλ΍ ΎϤϟ.

 ϲϟ Δλήϔϟ΍ ΔΣΎΗ΃ ϰϠϋ ϝ΍ΪϨϴϛ ϡΎϫ΍ήϏ έϮδϴϓϭήΒϟ΍ ϲγ΍έΪϟ΍ ϲϓήθϤϟ ϲϧΎϨΘϣ΍ϭ ϲϣ΍ήΘΣ΍ κϟΎΨΑ ϡΪϘΗ΃
ϡΎϬϐϨΗϮϧ ΔόϣΎΟ ϲϓ ϩ΍έϮΘϛΪϟ΍ ήϴπΤΘϟ .ΓέϮΨϓϭ ˱΍ΪΟ ΔυϮψΤϣ ϲϧ· ϪΑϼρ ΪΣ΃ ϲϧϮϛ . έϮΘϛΪϠϟ ˱Ύπϳ΃ ϲϧΎϨΘϣ΍ κϟΎΧ

 ϩ΍έϮΘϛΪϟ΍ ϲϓ ϲΜΤΑ ϰϠϋ ϑ΍ήηϺϟ ϝ΍ΪϨϴϛ έϮδϴϓϭήΒϟ΍ ϊϣ Ϣπϧ· ϱάϟ΍ ϥΎϛίϭ΃ έΪϧ΍ . Ϟϛ ϰϠϋ ΎϤϫήϜη΃ ϥ΃ Ωϭ΃
ήΒμϟ΍ ˬΔϘΜϟ΍ ˬέΎϜϓϻ΍ ˬΔϤϴϘϟ΍ ΕΎϬϴΟϮΘϟ΍ϭ ϢϋΪϟ΍ . ΡΎΠϧ ϰϠϋ ϢϬλήΣϭ ΕΎΣ΍ήΘϗϻ΍ϭ ΓέϮθϤϟ΍ ΎϤϬϤϳΪϘΗ ϰϠϋ ˱ϼπϓ

ϲΜΤΑ . ΎϤϫϲϟ ϡΎϬϟ· έΪμϣ ˱ΎϣϭΩ ΍ϮϧϮϜϴγϭ ΍ϮϧΎϛ . ϩ΍έϮΘϛΪϟ΍ ΔϠΣήϣ ϝ΍Ϯρ Ϣ΋΍Ϊϟ΍ ΎϤϬόϴΠθΗϭ ΎϤϬΗΪϋΎδϤϟ ΔϨΘϤϣ . ΪϘϓ
ΎϣΪϗ ϲπϤϟ΍ϭ ΔϘΜϟ΍ ΐδϛϭ ˬΕΎΑϮόμϟ΍ ϰϠϋ ΐϠϐΘϠϟ ϲΗΪϋΎδϤΑ ௌ ΪόΑ Ϟπϔϟ΍ ΎϤϬϟ ϥΎϛ˴ .

 ΚΤΒϟ΍ ΔϋϮϤΠϣ ϰϟ· ήϜθϟΎΑ ϪΟϮΗ΃ ΎϤϛ(ϞΜϣϷ΍ ςϴτΨΘϟ΍ϭ Δϴϟϵ΍ ΔϟϭΪΠϟ΍)ϋ ΔϴϠϛϭ ΔόϣΎΟ ϲϓ ϲϟϵ΍ ΐγΎΤϟ΍ ϡϮϠ

ϢϬϤϋΩϭ ϢϬΗΪϋΎδϣ ϰϠϋ ϡΎϬϐϨΗϮϧ . ΔλΎΧϭ ϊΘϤϣ Δγ΍έΪϟ΍ Ζϗϭ ΍ϮϠόΟ Ϧϳάϟ΍ ˯ϼϣΰϟ΍ Ϧϣ ΪϳΪόϟ΍ ήϜη΃ ϥ΃ Ωϭ΃ ΎϤϛϭ
ΎΘγ΁ έΎϳήϬηϭ ώϨϴη ϦϳϼϴϟϮΧ έϮΘϛΪϟ΍ ϲ΋ΎϗΪλ΃ . ϡΎϬϐϨΗϮϧ ΔόϣΎΟ Ϧϣ ˬ΍Ϊϧϻ ΎϔϠϴγ Ϯϳέ΍Ω έϮΘϛΪϟ΍ήϜη΍ ϥ΃ ˱Ύπϳ΍ Ωϭ΃ϭ

΍έΩ ϝϼΧ ϲόϣ ϪϧϭΎόΗ ϰϠϋ ϩ΍έϮΘϛΪϠϟ ϲΘγ . Ϧϣ ΐϳΩ ϲϧϮϤϴϠϛ έϮδϴϓϭήΒϟ ϖϴϤόϟ΍ ϱήϳΪϘΗ Ϧϋ Ώήϋ΃ ϥ΃ Ύπϳ΃ Ωϭ΃ϭ
έϮΒϧΎϛ ϲϓ ΎϴΟϮϟϮϨϜΘϠϟ ϱΪϨϬϟ΍ ΪϬόϤϟ΍- ΕΎΣ΍ήΘϗϻ΍ϭ ΓέϮθϤϟ΍ ϪϤϳΪϘΗ ϰϠϋ ΪϨϬϟ΍.

V | P a g e

 Γ΍έϮΘϛΪϟ΍ ΔθϗΎϨϣ ϲϨΤΘϤϤϠϟ ϲϧΎϨΘϣ΍ ϖϴϤϋ Ϧϋ ήΒϋ΃ ϥ΃ Ωϭ΃ ΎϤϛϭ : ˬ΍Ϊϧϻ ΎϔϠϴγ Ϯϳέ΍Ω έϮΘϛΪϟ΍(ϲϠΧ΍Ω ϦΤΘϤϣ)
ϭ ΪϠϴϔϴη ΔόϣΎΟ Ϧϣ ΞϨϤϴϠϓ ήΘϴΑ έϮδϴϓϭήΒϟ΍(ϲΟέΎΧ ϦΤΘϤϣ) ϲϓ ήϴΒϛ ΪΣ ϰϟ· ΕΪϋΎγ ϲΘϟ΍ ΔΒϗΎΜϟ΍ ϢϬΗΎϘϴϠόΗ ϰϠϋ ˬ

ϞϜη Ϟπϓ΄Α ΎϬΟ΍ήΧ΍ϭ ϲΘΣϭήρ΃ ΓΩϮΟ Ϧϣ ϦϴδΤΘϟ΍.

 ϢϬϠϳϮϤΘϟ ΍ΪϨϟήϳ΍ϭ ΓΪΤΘϤϟ΍ ΔϜϠϤϤϟ΍ ϲϓ ΔϳΩϮόδϟ΍ ΔϴϓΎϘΜϟ΍ ΔϴϘΤϠϤϟ΍ϭ ϙϮΒΗ ΔόϣΎΟ ϲϟ΍ ήϜθϟ΍ ϞϳΰΠΑ ˱Ύπϳ΍ ϡΪϘΗ΍ ϢϬϤϋΩϭ

ϱΩΎϤϟ΍ . ˱΍ήϴΧ΁ϭ .. ϝΎμΗΎΑ Ϯϟ ϲΑ΍ήΘϏ΍ϭ ϲΘγ΍έΩ ΓΪϣ ϝϼΧ ϲϨϤϋΩ κΨη Ϟϛ ϥΎϓήόϟ΍ϭ ήϜθϟ΍ Ϧϣ ϰδϧ΍ ϻ ..
ϝ΍ϮΟ ΔϟΎγέ ..ΐϴϐϟ΍ ήϬυ ϲϓ ΔϗΩΎλ ΓϮϋΩ ϰΘΣ ϭ΃ ΔϣΎδΘΑΎΑ .

ϲθόϣ ϥΎϤϴϠγ ϞϋΎθϣ
ϡΎϬΠϨΗϮϧ- ήΘδϴϟ

ΓΪΤΘϤϟ΍ ΔϜϠϤϤϟ΍
 ˯ΎΘη˻˹˺˼/˻˹˺˽

VI | P a g e

List of Figures

Figure 2.1: The mapping of Multi-objective spaces. Reprinted from (Van
Veldhuizen and Lamont, 2000). ... 8

Figure 2.2: An example of Pareto optimal front in two objective space. 11

Figure 2.3: Examples of strictly and loosely dominates solutions in the
minimisation optimisation problem: in (a) the solution number 2 strictly
dominates, in (b) the solutions numbers 2 and 4 are loosely dominates. 11

Figure 2.4: Examples of convexity, non-convexity sets. A set is convex if the
line segment connecting any two points in the set lies entirely inside the set.
in (a), an example of convex Pareto optimal front , in (b), an example of non-
convex Pareto optimal front. .. 13

Figure 2.5: Examples of good and bad approximate Pareto fronts. In (a) a
good example of approximate Pareto front, it is well-distributed over the
Pareto optimal front. (b) and (c) are poor examples of approximate Pareto
fronts. In (b) the distribution of approximate Pareto front not uniform and in
(c) the approximate Pareto front is not well spread across the Pareto optimal
front. Reprinted from (Li & Zhang, 2009). .. 13

Figure 2.6 :Example of D metric for two sets A and B and their fronts (front 1)
and (front 2) respectively. Reprinted from (Grosan et al., 2003). 28
Figure 2.7: A generic hyper-heuristic framework. Reprinted from (Burke et al.,
2003b). ... 51

Figure 2.8: A classification of Hyper-heuristic. Reprinted from (Burke et al.,
2010) .. 53

Figure 3.1: Examples of the mapping between the Pareto optimal set and the
Pareto optimal front (the fitness landscape). In (a) Pareto many-to-one, (b)
Pareto one-to-one. .. 67

Figure 3.2: Examples of deceptive and multimodal objectives. In (a) a
deceptive multimodal objective. (b) a nondeceptive multimodal objective.
Reprinted from (Huband et al., 2006). ... 68

Figure 3.3: Example of mixed geometry front consists of a half-convex and
half-concave component, a degenerate zero dimensional point, and a convex
component. Reprinted from (Huband et al., 2006). 69

Figure 4.1: The proposed framework of the hyper-heuristic choice function
based for multi-objective optimisation problems. In this framework, the choice
function acts as a high level strategy and three well-known multi-objective
evolutionary algorithms (NSGAII, SPEA2, and MOGA) act as low level
heuristics. .. 85

Figure 4.2: An example of how three low level heuristics, denoted as ݄ͳ, ݄ʹ
and ݄͵ are ranked against four performance metrics of AE, RNI, SSC, and UD.
The Ļ and Ĺ show that heuristics are ranked in decreasing and increasing
order for the given metric, respectively, 3 indicating the top ranking heuristic.
Each row in the top table represents each low level heuristic’s performance

VII | P a g e

with respect to the four metrics. Each row in the leftmost table represents
each heuristic’s rank among other heuristics for each metric. The rightmost
table represents the frequency of each heuristic ranking the top over all
metrics. ... 87

Figure 5.1: The performance of HH_CF with respect to the measure RNI, SSC
and UD during the search which were averaged over 30 trials for different 
settings (10, 100, 1000) on WFG1. ... 99

Figure 5.2: The average heuristic utilisation rate over 30 trials for the low
level heuristics (NSGAII, SPEA2 and MOGA) in HH_CF using different 
settings (10, 100, 1000) on the WFG1. ... 99

Figure 5.3:.Box plots of NSGAII, SPEA2, MOGA and HH_CF, for the measure
of ratio of non-dominated individuals (RNI) on the WFG test functions. 103

Figure 5.4: Box plots of NSGAII, SPEA2, MOGA and HH_CF for the measure of
hypervolume (SSC) on the WFG test functions. 103

Figure 5.5: Box plots of NSGAII, SPEA2, MOGA and HH_CF for the uniform
distribution (UD) of non-dominated population on the WFG test functions. . 104

Figure 5.6: The average heuristic utilisation rate for the low level heuristics
(NSGAII, SPEA2 and MOGA) in HH_CF on the WFG test suite. 106

Figure 5.7: The average of RNI,SSC and UD values versus decision point steps
plots across selected benchmark problems (the WFG3, WFG4 and WFG5).
Each step in the plot is associated with the most frequently selected low level
heuristics across 30 trial .. 111

Figure 5.8: Box plots of HH_CF, HH_RAND, and AMALGAM for the measure of
hypervolume (SSC) on the WFG test functions. 115

Figure 5.9: Box plots of HH_CF, HH_RAND, and AMALGAM for the measure of
generational distance (GD) on the WFG test functions. 115

Figure 5.10: Box plots of HH_CF, HH_RAND, and AMALGAM for the measure
of inverted generational distance (IGD) on the WFG test functions. 116

Figure 5.11: Pareto optimal front and 50% attainment surfaces for AMALGAM,
HH_RAND and HH_CF after 25,000 evaluation functions on the WFG1-WFG6
test functions. .. 118

Figure 5.12: Pareto optimal front and 50% attainment surfaces for AMALGAM,
HH_RAND and HH_CF after 25,000 evaluation functions on the WFG7-WFG9
test functions. .. 119

Figure 6.1: The performance of D metric (Green line) and Level (Blue line)
during the search across 25 decision points for HHMO CF GDA with different
sizes of UP (0.03 and 0.0003) on the WFG test suite – Continue. 131

VIII | P a g e

Figure 6.2: The performance HHMO_CF_GDA with different UP sizes (0.03 and
0.0003) during the search across 25 decision points with respect to the size of
space covered metric (SSC) during on the WFG test suite. 133

Figure 6.3: The performance HHMO_CF_GDA with different UP sizes (0.03 and
0.0003) during the search across 25 decision points with respect to the
uniform distribution metric (UD) on the WFG test suite. 134

Figure 6.4: The performance HHMO_CF_GDA with different UP sizes (0.3
,0.03 and 0.0003) during the search across 25 decision points with respect to
the size of space covered metric (SSC) and the uniform distribution metric
(UD) on WFG4. ... 134

Figure 6.5: The average heuristic utilisation rate for low level heuristic during
the search in HHMO_CF_GDA with different sizes of UP (0.03 and 0.0003) on
the WFG test suite. ... 137

Figure 7.1: Box plots of multi-objective choice function based hyper-heuristics
methodologies using AM, GDA and LA as a move acceptance criterion on the
bi-objective WFG test problems for the measure of ratio non-dominated
solutions (RNI). .. 147

Figure 7.2: Box plots of multi-objective choice function based hyper-heuristics
methodologies using AM, GDA and LA as a move acceptance criterion on the
bi-objective WFG test problems for the measure of hypervoulme (SSC). 147

Figure 7.3: Box plots of multi-objective choice function based hyper-heuristics
methodologies using AM, GDA and LA as a move acceptance criterion on the
bi-objective WFG test problems for the measure of uniform distribution (UD).
 .. 148

Figure 7.4: Box plots of multi-objective choice function based hyper-heuristics
methodologies using AM, GDA and LA as a move acceptance criterion on the
bi-objective WFG test problems for the measure of generational distance
(GD). .. 148

Figure 7.5: Box plots of multi-objective choice function based hyper-heuristics
methodologies using AM, GDA and LA as a move acceptance criterion on the
bi-objective WFG test problems for the measure of inverted generational
distance (IGD). .. 149

Figure 7.6: The average number of low level meta-heuristic invocations
(NSGAII, SPEA2 and MOGA) and accepted/rejected moves produced by
selection hyper-heuristics using AM, GDA and LA over the bi-objective WFG
test problems- continue. .. 151

Figure 8.1: The deformed results of (a) the full frontal impact and (b) the
offset-frontal impact. Reprinted from (Liao et al., 2008). 168

Figure 8.2: Design variables of the vehicle model. Reprinted from (Liao et al.,
2008). ... 169

IX | P a g e

Figure 8.3: The toe board intrusion of offset-frontal crash. Reprinted
from(Liao et al., 2008). ... 169

Figure 8.4: The plots showing how RNI values, averaged over 30 trials change
at each decision point (iteration) for a given move acceptance method (AM,
GDA and LA) combined with choice function heuristic selection considering
different number of decision points while solving the vehicle crashworthiness
problem (Car4). ... 176

Figure 8.5: The plots showing how SSC values, averaged over 30 trials
change at each decision point (iteration) for a given move acceptance method
(AM, GDA and LA) combined with choice function heuristic selection
considering different number of decision points while solving the vehicle
crashworthiness problem (Car4). .. 177

Figure 8.6: The plots showing how UD values, averaged over 30 trials change
at each decision point (iteration) for a given move acceptance method (AM,
GDA and LA) combined with choice function heuristic selection considering
different number of decision points while solving the vehicle crashworthiness
problem (Car4). ... 178

Figure 8.7: Box plots of multi-objective choice function based hyper-heuristics
methodologies using AM, GDA and LA as a move acceptance criterion on the
multi-objective vehicle crashworthiness design problems for the measure of
ratio non-dominated solutions (RNI). .. 183

Figure 8.8: Box plots of multi-objective choice function based hyper-heuristics
methodologies using AM, GDA and LA as a move acceptance criterion on the
multi-objective vehicle crashworthiness design problems for the measure the
hypervolume (SSC). .. 183

Figure 8.9: Box plots of multi-objective choice function based hyper-heuristics
methodologies using AM, GDA and LA as a move acceptance criterion on the
multi-objective vehicle crashworthiness design problems for the measure the
uniform distribution (UD). .. 184

Figure 8.10: Box plots of multi-objective choice function based hyper-
heuristics methodologies using AM, GDA and LA as a move acceptance
criterion on the multi-objective vehicle crashworthiness design problems for
the generational distance (GD). .. 184

Figure 8.11: Box plots of multi-objective choice function based hyper-
heuristics methodologies using AM, GDA and LA as a move acceptance
criterion on the multi-objective vehicle crashworthiness design problems for
the inverted generational distance (IGD). .. 185

Figure 8.12: The 50% attainment surfaces for NSGAII and the three multi-
objective choice function based hyper-heuristics (AM, GDA and LA) after
3,750 generations on the multi-objective design of vehicle crashworthiness
problem (Car1). ... 185

X | P a g e

Figure 8.13: The 50% attainment surfaces for NSGAII and the three multi-
objective choice function based hyper-heuristics (AM, GDA and LA) after
3,750 generations on the multi-objective design of vehicle crashworthiness
problem (Car2). ... 186

Figure 8.14: The 50% attainment surfaces for NSGAII and the three multi-
objective choice function based hyper-heuristics (AM, GDA and LA) after
3,750 generations on the multi-objective design of vehicle crashworthiness
problem (Car3). ... 186

Figure 8.15: The 50% attainment surfaces for NSGAII and the three multi-
objective choice function based hyper-heuristics (AM, GDA and LA) after
3,750 generations on the multi-objective design of vehicle crashworthiness
problem (Car4). ... 188

XI | P a g e

List of Tables

Table 2.1: The common strategies are employed in the search process for the
five MOEAs (MOGA, NSGA, SPEA, NPGA and MOMGA). * The elitism strategy
is employed in the second version of NSGA (NSGAII)
only……29

Table 2.2: Heuristic components and application domains of hyper-heuristics
for multi-objective optimisation……………………………………………………………………….63

Table 3.1: Listing of Test Problem Features in ZDT, DTLZ and WFG test suites.
...71

Table 3.2: ZDT test functions. Reprinted from (Zitzler et al., 2000)............. 73

Table 3.3: DTLZ test functions. Reprinted from (Deb et al., 2002) 74

Table 3.4: The properties of the WFG problems. Reprinted from (Huband et
al., 2006). ... 75

Table 3.5: WFG test functions. Reprinted from (Huband et al., 2006) 76

Table 5.1: The Performance of multi-objective choice function based hyper-
heuristic (HH_CF) using different values of  parameter 98

Table 5.2: The average performance of HH_CF compared to the low level
heuristics on the WFG test problems with respect to the ratio of non-
dominated individuals (RNI), the hypervolume (SSC) and the uniform
distribution (UD). .. 102

Table 5.3: The t-test results of HH_CF and low level heuristics on the WFG
test problems with respect to the ratio of non-dominated individuals (RNI),
the hypervolume (SSC) and the uniform distribution (UD). 105

Table 5.4: The performance of HH_CF compared to multi-objective hyper-
heuristics on the WFG test problems with respect to the Hypervolume (SSC),
the generational distance (GD) and the inverted generational distance (IGD).
 .. 114

Table 5.5: The t-test results of HH_CF,HH_RAND and AMALGAM on the WFG
test problems with respect to the hypervolume (SSC), the generational
distance(GD) and the inverted generational distance (IGD). 116

Table 6.1: The performance of the choice function great deluge based hyper-
heuristic (CF-GDA), choice function all-moves hyper-heuristic (CF-AM) and the
simple random great deluge based hyper-heuristic (SR-GDA) with respect to
the metrics of ratio of non-dominated individuals (RNI), size of space covered
(SSC), and uniform distribution (UD) of non-dominated population onWFG1.
 .. 126

XII | P a g e

Table 6.2: The average performance of HHMO_CF_GDA using a different UP
settings (0.3, 0.03, 0.0003) donated as GDA1, GDA2 and GDA3 on the WFG
test problems with respect to the ratio of non-dominated individuals (RNI),
the hypervolume (SSC) and the uniform distribution (UD). 130

Table 6.3: The t-test results of HHMO_CF_GDA using a different UP settings
(0.3, 0.03, 0.0003) donated as GDA1, GDA2 and GDA3 on the WFG test
problems with respect to the ratio of non-dominated individuals (RNI), the
hypervolume (SSC) and the uniform distribution (UD). 130

Table 7.1: The performance of selection choice function based hyper-
heuristics using different move acceptance strategies including all-moves
(AM), great deluge algorithm (GDA) and late acceptance (LA) on the bi-
objective WFG test problems with respect to the metrics; the ratio of non-
dominated individuals (RNI), the hypervolume (SSC), the uniform distribution
(UD). .. 144

Table 7.2: The performance of selection choice function based hyper-
heuristics using different move acceptance strategies including all-moves
(AM), great deluge algorithm (GDA) and late acceptance (LA) on the bi-
objective WFG test problems with respect to the metrics; the generational
distance (GD) and the inverted generational distance (IGD). 145

Table 7.3: The t-test results of multi-objective choice function based hyper-
heuristics methodologies using AM, GDA and LA as a move acceptance
criterion on the bi-objective WFG test problems with respect to the metrics;
the ratio of non-dominated individuals (RNI), the hypervolume (SSC), the
uniform distribution (UD) and the generational distance (GD). 146

Table 7.4: The t-test results of SPEA2 and three multi-objective choice
function based hyper-heuristics using all-move (AM), great deluge algorithm
(GDA) and late acceptance (LA) as a move acceptance criterion with respect
to the metrics; the hypervolume (SSC), the generational distance (GD) and
the inverted generational distance (IGD) on the tri-objective WFG test
problems. .. 156

Table 7.5 : The performance of multi-objective selection choice function based
hyper-heuristics using different move acceptance strategies including all-
moves (AM), great deluge algorithm (GDA) and late acceptance (LA) on the
tri-objective WFG test problems with respect to the metrics; the hypervolume
(SSC), the generational distance (GD) and the inverted generational distance
(IGD). ... 158

Table 7.6: The percentage improvement for the performance of HH_CF_GDA
against others methods with respect to the hypervolume (SSC) on the bi-
objective WFG test functions. ... 166

Table 8.1: The multi-objective vehicle crashworthiness design problems.... 170

Table 8.2: The performance of multi-objective selection hyper-heuristics with
different values of decision points (ܰܲܦ) on the multi-objective design of
vehicle crashworthiness problem (Car4) with respect to the metrics of ratio of

XIII | P a g e

non-dominated individuals (RNI), size of space covered (SSC), and uniform
distribution (UD) of non-dominated population. 174

Table 8.3: The performance NSGAII and the selection choice function based
hyper-heuristics using different move acceptance strategies including all-
moves (AM), great deluge algorithm (GDA) and late acceptance (LA) on the
vehicle crashworthiness problems with respect to the metrics; the ratio of
non-dominated individuals (RNI), the hypervolume (SSC)and the uniform
distribution (UD). .. 180

Table 8.4: The t-test results of NSGAII and the three multi-objective choice
function based hyper-heuristics methodologies using AM, GDA and LA as a
move acceptance criterion on the multi-objective vehicle crashworthiness
design problems with respect to the metrics; the ratio of non-dominated
individuals (RNI), the hypervolume (SSC), the uniform distribution (UD), the
generational distance (GD) and the inverted generational distance (IGD). . 182

Chapter 1: Introduction

1 | P a g e

1 Introduction

1.1 Background and Motivations

Many real-world problems are complex. Due to their (often) NP-hard

nature, researchers and practitioners frequently resort to problem tailored

heuristics to obtain a reasonable solution in a reasonable amount of time.

Hyper-heuristics are emerging methodologies designed to generate high

quality solutions in an attempt to solve difficult computational optimisation

problems by performing a search over the space of heuristics rather than

searching the solution space directly. One of their main aims is to raise the

level of generality of search methodologies, and to automatically adapt the

algorithm by combining the strength of each heuristic and making up for the

weaknesses of others. This process requires the incorporation of a learning

mechanism into the algorithm to adaptively direct the search at each decision

point for a particular state of the problem or the stage of search. Hyper-

heuristics have a strong link to Operations Research in terms of finding

optimal or near-optimal solutions to computational search problems. It is also

firmly linked to a branch of Artificial Intelligence in terms of machine learning

methodologies (Burke et al., 2010). In a hyper-heuristic approach, different

heuristics (or heuristic components) can be selected, generated or combined

to solve a given optimisation problem in an efficient way. Generally, there are

two recognized types of hyper-heuristics: selection and generation hyper-

heuristics. A selection hyper-heuristic framework manages a set of low level

heuristics and chooses the best one at any given time using a performance

measure for each low level heuristic. This type of hyper-heuristic comprises

two main stages: heuristic selection and move acceptance strategy.

Hyper-heuristics have drawn increasing attention from the research

community in recent years, although their roots can be traced back to the

1960s. Numerous hyper-heuristic papers have been published and several

studies are still being undertaken in this area of research. However, the

majority of research in this area has been limited to single-objective

optimisation. Hyper-heuristics for multi-objective optimisation problems is a

relatively new area of research in Operational Research and Evolutionary

Computation (Burke et al., 2010; Özcan et al., 2008). To date, few studies

have been identified that deal with hyper-heuristics for multi-objective

problems. Burke et al. (2003a) proposed a hyper-heuristic for multi-objective

problems which was based on tabu search (TSRoulette Wheel). Veerapen et

Chapter 1: Introduction

2 | P a g e

al. (2009) presented another multi-objective hyper-heuristic approach that

comprised two phases. An online selection hyper-heuristic, Markov chain

based, (MCHH) has been investigated in McClymont and Keedwell (2011).

Gomez and Terashima-Marʆn (2010) propose a new hyper-heuristic based on

the multi-objective evolutionary algorithm NSGAII (Deb and Goel, 2001). A

hyper-heuristic-based encoding was proposed by Armas et al. (2011) and

Miranda et al. (2010) for solving strip packing and cutting stock problems. An

adaptive multi-method search called AMALGAM is proposed by Vrugt and

Robinson (2007). A multi-strategy ensemble multi-objective evolutionary

algorithm called MS-MOEA for dynamic optimisation is proposed by Wang and

Li (2010). In Furtuna et al. (2012) a multi-objective hyper-heuristic for the

design and optimisation of a stacked neural network is proposed. Rafique

(2012) presented a multi-objective hyper-heuristic optimisation scheme for

engineering system design problems. Vázquez-Rodríguez and Petrovic (2013)

proposed a multi-indicator hyper-heuristic for multi-objective optimisation.Len

et al. (2009) proposed a hypervolume-based hyper-heuristic for a dynamic-

mapped multi-objective island-based model. Bai et al. (2013) proposed a

multiple neighbourhood hyper-heuristic for two-dimensional shelf space

allocation problem. Kumari et al. (2013) presented a multi-objective hyper-

heuristic genetic algorithm (MHypGA) for the solution of Multi-objective

Software Module Clustering Problem.

None of the above studies have used multi-objective evolutionary

algorithms (MOEAs), only in Rafique (2012), Gomez and Terashima-Marʆn

(2010) and Vrugt and Robinson (2007), and no continuous and standard

multi-objective test problems have been studied, only in McClymont and

Keedwell (2011), Vrugt and Robinson (2007), Len et al. (2009) and Vázquez-

Rodríguez and Petrovic (2013). Moreover, none of the previous hyper-

heuristics make use of the components specifically designed for multi-

objective optimisation that we introduce in this thesis. Our multi-objective

hyper-heuristic framework addresses four main research areas, these being:

multi-objective evolutionary algorithms, hyper-heuristics, meta-heuristics and

multi-objective test problems. This thesis highlights the lack of scientific study

that has been conducted in these areas and investigates the design of a

hyper-heuristic framework for multi-objective optimisation and develops

hyper-heuristic approaches for multi-objective optimisation (HHMOs) to solve

continuous multi-objective problems. We focus on an online learning selection

hyper-heuristics for multi-objective optimisation and their hybridisation with

multi-objective evolutionary algorithms which controls and combines the

Chapter 1: Introduction

3 | P a g e

strengths of three well-known multi-objective evolutionary algorithms

(NSGAII (Deb and Goel, 2001), SPEA2 (Zitzler et al., 2001) and MOGA

(Fonseca and Fleming, 1998)). The performance of the multi-objective hyper-

heuristic approaches (HHMOs), when combined with a choice function that

uses different move acceptance strategies such as all-moves, a great deluge

algorithm (Dueck, 1993) and late acceptance (Burke and Bykov, 2008) is also

studied.

1.2 Aims and Scope

References to multi-objective hyper-heuristics are scarce. This research,

combines hyper-heuristic methodologies and multi-objective evolutionary

algorithms in one approach in order to tackle multi-objective problems, in

particular, continuous unconstrained real-valued problems.

The main aim of this research is to investigate hyper-heuristic

approaches for multi-objective optimisation problems based on multi-

objective evolutionary algorithms (MOEAs), in order to produce a set of high

quality solutions (i.e. not necessarily optimal) compared with the existing

approaches in the MOEA literature.

In order to achieve this aim, several objectives are outlined as follows:

 Study existing meta-heuristics for single-objective and multi-objective

optimisation.

 Understand existing hyper-heuristic methodologies particularly those

based on heuristic selection.

 Understand existing multi-objective evolutionary algorithms and

identifying their strengths and weakness.

 Investigate existing multi-objective test problems and identifying their

desirable features.

 Investigate a hyper-heuristic method based on heuristic selection with

a deterministic move acceptance strategy.

 Investigate a hyper-heuristic method based on heuristic selection with

a non-deterministic move acceptance strategy.

 Develop hyper-heuristic approaches to effectively and efficiently

address multi-objective optimisation problems, demonstrating their

effectiveness and efficiency on both benchmark test problems and a

real-world problem.

Chapter 1: Introduction

4 | P a g e

In this thesis, a hyper-heuristic for multi-objective optimisation (HHMO)

is investigated using three common multi-objective evolutionary algorithms

NSGAII (Deb and Goel, 2001), SPEA2 (Zitzler et al., 2001) and MOGA

(Fonseca and Fleming, 1993) as low level heuristics. The choice function acts

as the selection mechanism. Four performance metrics; the algorithm effort

(Tan et al., 2002), the ratio of non-dominated individuals (Tan et al., 2002),

the uniform distribution of a non-dominated population (Srinivas and Deb,

1994), and the hypervoulme (Zitzler and Thiele, 1999) are used in the

framework to serve as a feedback mechanism. The use of different move

acceptance strategies; All-Moves, GDA (Dueck, 1993) and LA (Burke and

Bykov, 2008), combined with a choice function is also investigated. The

scope of this investigation is limited to continuous unconstrained problems.

Combinatorial or discrete problems are not considered. The Walking Fish

Group test suite (WFG) (Huband et al., 2006) is used as our benchmark

dataset. The multi-objective design of vehicle crashworthiness problem (Liao

et al., 2008) is used as a real-world application.

1.3 Overview of the Thesis

Our multi-objective hyper-heuristic framework addresses four main

research areas; multi-objective evolutionary algorithms, hyper-heuristics,

meta-heuristics and multi-objective test problems. Each area of research is

discussed in this thesis. In chapter 2, a literature review of multi-objective

evolutionary algorithms, hyper-heuristics and meta-heuristics are discussed.

Chapter 2 also provides a description of well-known methodologies that

address multi-objective optimisation and identify their strengths and

weaknesses. A review of the scientific research on the subject is also

presented. In chapter 3, the multi-objective test problems are identified and

discussed. A description of the most common multi-objective test problems

with an analysis of their features is given.

In this thesis, a hyper-heuristic for multi-objective optimisation is

investigated through two methods: 1) Heuristic selection with a deterministic

move acceptance strategy. 2) Heuristic selection with a non-deterministic

move acceptance strategy. This investigation is based on three common

multi-objective evolutionary algorithms; NSGAII (Deb and Goel, 2001), SPEA2

(Zitzler et al., 2001) and MOGA (Fonseca and Fleming, 1993) which act as low

level heuristics, and the choice function is used as the selection method. In

chapter 4, the details of the choice function based hyper-heuristic framework

Chapter 1: Introduction

5 | P a g e

for multi-objective optimisation is described. Also a description of the learning

feedback mechanism and the ranking scheme that is used within the hyper-

heuristic framework is given.

Chapter 5 presents an online learning selection choice function all-

moves based hyper-heuristic (HHMO_CF_AM). All-Moves is used as a

deterministic move acceptance strategy. The proposed approach is tested and

compared against the individual low level heuristics and other multi-objective

hyper-heuristics from the scientific literature over the Walking Fish Group

(WFG) test suite (Huband et al., 2006), a common benchmark for multi-

objective optimisation.

An investigation of using non-deterministic move acceptance strategies,

combined with a choice function as a heuristic selection method is provided in

Chapters 6 and 7. We integrate D metric into the non-deterministic move

acceptance criterion in order to convert the multi-objective optimisation to the

single-objective optimisation without having to define values weights for the

various objectives.

In Chapter 6, a selection choice function great deluge based hyper-

heuristics (HHMO_CF_GDA) is proposed, developed and tested on the WFG

test suite. The use of D metric within great deluge is discussed and described.

Also an investigation of tuning the rain speed parameter (UP) of GDA is

carried out.

In Chapter 7, a selection choice function late acceptance based hyper-

heuristic (HHMO_CF_LA) is proposed. The use of D metric within late

acceptance is presented. The comparison of the proposed approach and other

multi-objective selection hyper-heuristics approaches, from Chapters 5 and 6,

over the WFG test suite is investigated.

The three multi-objective hyper-heuristics, that are proposed in

Chapters 5, 6 and 7, are applied to a real-world problem in Chapter 8. A

description and formulation of the real-world multi-objective problem - the

design of vehicle crashworthiness - is provided. A well-known multi-objective

evolutionary algorithm and our three hyper-heuristics are compared and

evaluated over four instances of this problem. Also an investigation of tuning

the number of decision points for these hyper-heuristics is presented.

Chapter 1: Introduction

6 | P a g e

Finally, conclusions and recommendations for future work are presented

in Chapter 9.

1.4 Contributions of the Thesis

The contributions of this thesis are as follows:

 The thesis investigates hyper-heuristics hybridised with multi-

objective evolutionary algorithms (MOEAs) in order to tackle

multi-objective problems. For the first time, a general design of a

multi-objective hyper-heuristic framework based on a choice

function is proposed in this thesis. The framework is flexible and

could incorporate any meta-heuristic for multi-objective

optimisation. Three online learning multi-objective selection

choice function based hyper-heuristic are combined with three

different move acceptance strategies (HHMO_CF_AM,

HHMO_CF_GDA and HHMO_CF_LA). The first approach uses All-

Moves as a deterministic move acceptance strategy and the other

two approaches that are used GDA (Dueck, 1993) and LA (Burke

and Bykov, 2008) respectively as additional non-deterministic

move acceptance strategies. We show that those approaches,

using a non-deterministic move acceptance strategy, outperform

the approach that uses a deterministic move acceptance strategy

on the test instances used in this thesis.

 This thesis presents a ranking scheme to measure the

performance of low level heuristics, which also provides an online

learning mechanism. The ranking scheme is simple and flexible

and any number of low level heuristics can be incorporated.

 The thesis, for the first time, introduces D metric - a binary

hypervolume (Zitzler, 1999) - integrating this idea into the non-

deterministic move acceptance strategies (GDA and LA) in a

multi-objective hyper-heuristic framework. The D metric is

employed as the comparison tool in both move acceptance

criteria in order to covert the multi-objective problem to a single-

objective problem without having to define weights for each term.

 An application of a real-world problem on our multi-objective

choice function based hyper-heuristics is investigated to see their

Chapter 1: Introduction

7 | P a g e

performance on a real-world problem and measure the level of

generality they we are able to achieve. It is shown that our

methods produce better quality solutions when compared to other

methods.

1.5 Academic Papers Produced

Maashi, M., Kendall, G., and Özcan, E. (2012). A choice function based

hyper-heuristic for multi-objective optimisation. The 3rd Student

Conference on Operational Research (SCOR 2012). April, Abstract.

Maashi, M., Kendall, G., and Özcan, E. (2012). A great deluge based learning

hyper-heuristic for multi-objective optimisation. The 54th Operation

Research Annual Conference(OR54), September. Available at:

http://www.theorsociety.com/DocumentRepository/Browse.aspx?CatID=3,

(Accessed: 17th April 2013), Abstract.

Maashi, M., Özcan, E. and Kendall, G. (2014). A multi-objective hyper-

heuristic based on choice function, Expert Systems with Applications,

41(9): 4475-4493.

Maashi, M., Kendall, G., and Özcan, E. (2014). Choice function based hyper-

heuristics for multi-objective optimization, Applied Soft Computing, in

review.

Maashi, M., Kendall, G., and Özcan, E. (2014). Comparison of Multi objective

Hyper-heuristics on tri-objective WFG test problems. The 7th Saudi

Students Scientific Conference(SSCUK2013), Edinburgh, UK, February,

Abstract.

Chapter 2: Literature Review

8 | P a g e

2 Literature Review

 This chapter reviews three research areas; multi-objective evolutionary

algorithms, meta-heuristics and hyper-heuristics.

2.1 Multi-objective Evolutionary Algorithms (MOEAs)

A multi-objective problem (MOP) comprises several objectives (two or

more), which need to be minimised or maximised depending on the problem.

A general definition of a MOP (Van Veldhuizen and Lamont, 2000) is:

An MOP minimises ሺ ሻ ൌ ሺ ଵሺ ሻǡ Ǥ Ǥ Ǥ ǡ ୩ሺ ሻሻ subject to ୧ሺ ሻ ൑ ͲǢ ൌ ͳǡ ǥ ǡ ǡ א π.

An MOP solution minimises the components of a vector ሺ ሻǡ݁ݎ݄݁ݓ is an n-

dimensional decision variable vector ሺܺ ൌ ଵǡ ǥ ǡ ୬ሻ from some universe ƻ.

An MOP consists of ݊ decision variables, ݉ constraints, and ݇ objectives.

The MOP’s evaluation function, ׷ π ՜ ר maps decision variable vectors ሺܺ ൌ ଵǡ ǥ ǡ ୬ሻ to vectors ሺ ൌ ଵǡ ǥ ǡ ୩ሻ. The mapping between the decision

variable space and objective function space for multi-objective optimisation is

represented in Figure 2.1.

Figure 2.1: The mapping of Multi-objective spaces. Reprinted from (Van Veldhuizen
and Lamont, 2000).

The relationship between a pair of objectives can be dependent and

independent (Purshouse and Fleming, 2003a). Dependent objectives refers to

objectives are harmony or conflict. If objectives are in conflict with each

other, i.e. an improvement in one objective leads to deterioration in other,

multi-objective optimisation techniques are required to solve this case (Tan,

2002). However, if two objectives are in harmony, i.e. an improvement in one

Chapter 2: Literature Review

9 | P a g e

objective leads naturally to improvement in the other, the objectives can be

converted into a single-objective and tackled as a single optimisation problem

(Tan, 2002). Independent objectives refer to the objectives are not affect

each other. In this case, the objectives can be solved completely separately

from each other (Purshouse and Fleming, 2003a).

Historically, a MOP was solved by converting the problem to a single-

objective problem, due to the lack of multi-objective optimisation (MOO)

methodologies to find a set of optimal solutions instead of a single optimum

solution (Deb, 2005). However, many MOO techniques have now been

proposed; so that it is possible to find the so-called Pareto-optimal solutions.

From a decision maker’s perspective, multi-objective optimisation

techniques are divided into three classes (Landa-Silva et al., 2004; Van

Veldhuizen and Lamont, 2000; Coello et al., 2007a):

 A priori approach (decision-making and then a search)

In this class, the objective preferences or weights are set by the

decision maker prior to the search process. An example of this is

aggregation-based approaches such as the weighted sum approach.

The disadvantage of this approach is the requirement of the decision

maker’s experience to define the weights of the criteria values, which

is usually a complex task, requiring a lot of experience (Petrovic and

Bykov, 2003).

 A posteriori approach (a search and then decision-making)

The search is conducted to find solutions for the objective functions.

Following this, a decision process selects the most appropriate solutions

(often involving a trade off). Multi-objective evolutionary optimisation

(MOEA) techniques, whether non Pareto-based or Pareto-based, are

examples of this class. MOEA techniques will be discussed later (see

Section 2.1.3).

 Interactive or progressive approach (search and decision-making

simultaneously)

In this class, the preferences of the decision maker(s) are made and

adjusted during the search process.

Chapter 2: Literature Review

10 | P a g e

The scientific literature proposes three methods to evaluate the quality

of the solutions for any MOP (Coello et al., 2007a). The first method is

objective combination, which is the classical method to aggregate the

objectives into a single scalar value by using a weighted function, after

allocating weights to the objective criteria (Zitzler et al., 2000; Landa-Silva et

al., 2004). The second method is where one objective is optimised, while the

other objectives are defined as constraints. The drawback of this method is

the difficulty in deciding which objective function should be optimised at any

given point (Coello et al., 2007a). Pareto-based evaluation is the third method

used to evaluate the quality of MOP solutions. In this method, all objectives

are optimised simultaneously applying Pareto dominance concepts (see the

next subsection) and using a vector for the values of all objectives and their

solutions fitness. The two first methods are much simpler than the last one

but they are more subjective and not straightforward. Furthermore, the last

method is more methodical, more practical and less subjective compared to

the others (Deb, 2005).

2.1.1 Pareto Dominance

The idea behind the dominance concept is to generate a preference

between MOP solutions since there is no information regarding objective

preference provided by the decision maker. This preference is used to

compare the dominance between any two solutions (Coello et al., 2007a; Tan

et al., 2002). A more formal definition of Pareto dominance (for minimisation

case) is as follows (Coello et al., 2007a):

A vector ݑ ൌ ሺݑଵ ǡ ǥ ǡ ݒ ௞ሻ is said to dominate another vectorݑ ൌ ሺݒଵǡ ǥ ǡ ௞ሻݒ
(denoted by ػ ݑ is partially less ݑ according to ݇ objectives if and only if (ݒ

than ݒ, i.e., א ݅׊ ሼͳǡ ǥ ǡ ݇ሽ,ݑ௜ ൑ ௜ݒ א ݅ ׌ ר ሼͳǡ ǥ ǡ ݇ሽ ׷ ௜ ൏ݑ . ௜ݒ

In other words, a solution is known as non-dominated if there is no

other solution that is better than it in all objectives. All non-dominated

solutions are also known as the admissible set of the problem, non-inferior or

the Pareto optimal sets (Landa-Silva et al., 2004). The corresponding Pareto

optimal set, with respect to the objective space, is known as the non-

dominated frontier, the trade-off surface or the Pareto optimal front

(Gandibleux and Ehrgott, 2005). In the rest of thesis, the terms Pareto

Chapter 2: Literature Review

11 | P a g e

optimal set (PS) and Pareto optimal front (POF) will be used. An example of

Pareto optimal front in two objective space is shown in Figure 2.2.

Figure 2.2: An example of Pareto optimal front in two objective space.

To further illustrate this idea, a solution ݔ is known as strictly dominates

if it is better than another solution ݔ in all objectives. While a solution ݔ is

known as loosely dominates if it is better than another solution ݔ in some

objectives but it is equivalent to another solution ݔ at least in one objective

(Landa-Silva et al., 2004). See Figure 2.3 for an illustration of these two

concepts.

Figure 2.3: Examples of strictly and loosely dominates solutions in the minimisation

optimisation problem: in (a) the solution number 2 strictly dominates, in (b) the
solutions numbers 2 and 4 are loosely dominates.

2.1.2 MOEAs Background

 The idea of evolutionary algorithm(s) (EAs) is analogues to Darwin’s

principal of the biological evolution mechanism which adopted the concept of

“survival-of-the-fittest” (Darwin, 1859). Many EA researchers would argue

that evolutionary algorithm(s) are more suitable to deal with multi-objective

optimisation problems (Deb and Goldberg, 1989; Bäck, 1996; Fonseca and

Fleming, 1998; Deb, 2001; Coello et al., 2007a; Anderson et al., 2007;

Zhang and Li, 2007; Miranda et al., 2010) because of their population-based

0

2

4

6

0 2 4 6

F1

F2

2

3

4

1
1

2

3

0

2

4

6

0 1 2 3 4

F1

F2

Pareto optimal
front

݂ͳ
݂ʹ

(a) (b)

Chapter 2: Literature Review

12 | P a g e

nature, which means they can find Pareto optimal sets (trade-off solutions) in

a single run, allowing a decision maker to select a suitable compromise

solution. However, the task of an MOEA is not simply to find a Pareto optimal

set that corresponds to the objectives of a particular problem. It is more

complicated than that (Deb, 2005). MOEAs are multiple-objective in nature.

Therefore, its task is also to minimise the distance of the Pareto optimal front

and then maximise the extension of the Pareto optimal set (Zitzler et al.,

2000).

According to Gandibleux and Ehrgott (2005), an EA comprises several

components, which are the population, the evolutionary operators, (including

crossover and mutation), the ranking method, the guiding method, the

clustering method, the elite solutions archive, the fitness measurement and

the penalty strategy. These components are discussed in more depth later in

this section.

When applying an EA to a MOP, two important issues have to be

considered (Zitzler et al., 2000): (i) Guiding the search towards the Pareto

optimal set via an appropriate fitness assignment and selection strategies,

and (ii) maintaining a diverse Pareto optimal set to obtain a well-distributed

Pareto optimal front. It is worth noting that the EA may not find a diverse

Pareto optimal set in some cases because of the Pareto optimal set’s

characteristics such as convexity, non-convexity, non-uniformity etc. (Zitzler

et al., 2000). According to Coello et al. (2007a), a convex set is defined as

that of all pairs of two points ݔ and ݕ in a set of points in ݊-dimensional space

(see Figure 2.4 for examples of convexity, non-convexity sets).

Furthermore, three elements can determine the quality of the obtained

Pareto optimal set (Landa-Silva et al., 2004; Zitzler et al., 2000):

i. The extent of the Pareto optimal set i.e. how many solutions are in the

Pareto optimal set.

ii. The distance of the Pareto optimal front i.e. the closeness of the Pareto

optimal front and the obtained front. Note that in some MOPs the

Pareto optimal front is unknown.

Chapter 2: Literature Review

13 | P a g e

iii. The distribution of the Pareto optimal front i.e. the depth of the

coverage of the Pareto optimal front.

Examples of good and bad approximate Pareto fronts are shown in Figure 2.5.

Figure 2.4: Examples of convexity, non-convexity sets. A set is convex if the line
segment connecting any two points in the set lies entirely inside the set. in (a), an
example of convex Pareto optimal front , in (b), an example of non-convex Pareto
optimal front.

Figure 2.5: Examples of good and bad approximate Pareto fronts. In (a) a good
example of approximate Pareto front, it is well-distributed over the Pareto optimal
front. (b) and (c) are poor examples of approximate Pareto fronts. In (b) the
distribution of approximate Pareto front not uniform and in (c) the approximate Pareto
front is not well spread across the Pareto optimal front. Reprinted from (Li & Zhang,
2009).

With regard to the distribution of the Pareto optimal set, there are many

techniques proposed in the literature to improve it (Burke et al., 2003a).

These include:

 Tuning weights.

 Clustering or niching methods.

 Fitness sharing.

 Cellular structures and adaptive grids.

 Restricted mating sets.

 Relaxed forms of the dominance relation.

(a) (b)
(c)

X

Y

X

Y

(b) (a)

Chapter 2: Literature Review

14 | P a g e

The tuning weights strategy is used to guide the search towards the

target region of the Pareto optimal front by pushing the current solution

towards that region. Examples of approaches that have employed this

strategy are found in Czyzak and Jaszkiewicz (1998) and Ishibuchi et al.

(2002).

Clustering (niching) methods aim to obtain a well-distributed Pareto

optimal front via a fitness assignment based on the number of solutions on

the given area (a measure of the crowding area). Examples of approaches

that have employed this method are found in Lu and Yen (2002) and Socha

and Kisiel-Dorohinicki (2002).

The fitness sharing technique aims to find a uniform (so-called

equidistant) distribution of the Pareto optimal front (Van Veldhuizen and

Lamont, 2000) by reducing the fitness of solutions in a particular area that

are close together (Burke et al., 2003a). The fitness sharing method can be

either phenotypic-based, with respect to the objective function space, or

genotypic-based, with respect to the decision variable space (Horn et al.,

1994). A brief introduction of phenotype and genotype terms can be found in

the section on genetic algorithms (Section 2.2.9). The genotypic-based

method is often employed by the operational research community because

they are more concerned with the variable space in order to obtain a well-

distributed Pareto optimal set (Benson and Sayin, 1997). However, setting

appropriate values to the sharing parameter ıshare is not an easy task due to

the necessity of a priori shape and the separation of the niche information for

the problem at hand. Therefore, fitness sharing performance can be affected

by the population size (Van Veldhuizen and Lamont, 2000).

Cellular structures and adaptive grid techniques aim to uniformly

distribute the solutions over the Pareto optimal front. The micro genetic

algorithm 2 (micro-GA2) (Pulido and Coello, 2003) is an example of an

approach that has used this technique. In this approach, an online adaptation

is made using Pareto ranking and an external memory.

The restricted mating method aims to reduce the probability of

generating new, similar solutions by recombining these two solutions based

on the degree of similarity between them (Burke et al., 2003a). However, this

Chapter 2: Literature Review

15 | P a g e

method is not always effective for some MOPs (Van Veldhuizen and Lamont,

2000).

Relaxed forms of the dominance relation aim to allow a small detriment

in one or many objectives according to a relaxation factor, called ߳-
dominance, if a large improvement in other objective(s) is acquired. However,

an improvement in the objectives’ values can compensate for this relaxation

(Coello et al., 2007a).

2.1.3 MOEA Methodologies

Schaffer (1985) proposed a non-Pareto based approach, namely the

vector evaluated genetic algorithm (VEGA). It is considered as the first MOEA

that has been formally proposed (Zitzler et al., 2000. In each generation, the

population is divided into sub-populations based on the number of objectives.

Each sub-population attempts to optimise a certain objective. Then these sub-

populations are shuffled together and mutation and crossover operators are

applied in order to generate the new population. The main drawback of VEGA

is its inability to converge to non-convex areas of the Pareto optimal front.

Since 1985, various other MOEA techniques have been presented in the

scientific literature. The most common ones being: MOGA (Fonseca and

Fleming, 1993), NSGA (Srinivas and Deb, 1994), PESA (Knowles and Corne,

2000), SPEA (Zitzler and Thiele; 1999), MOMGA (Van Veldhuizen, 1999) and

NPGA (Horn et al., 1994). However, several MOEA techniques are still

emerging, while many existing MOEA techniques are being modified to create

new versions. A survey of MOEAs can be found in Zhou et al. (2011) and

Giagkiozis et al. (2013).

Tan et al. (2002) classifies MOEAs into three groups, with respect to

their implementation strategies (selection methods and cost assignments).

The three groups are naïve approaches, non-aggregation approaches and

Pareto-based approaches. However, some other researchers classify MOEAs

from a different perspective. Fonseca and Fleming (1995) classify MOEAs with

respect to their algorithmic basis and Coello et al. (2007a) classify them with

respect to the decision maker’s viewpoint (see Section 2.1).

Pareto-based approaches are classical MOEAs. This section focuses on

the Pareto-based approaches particularly MOGA, NGSA, SPEA, NPGA and

Chapter 2: Literature Review

16 | P a g e

MOMOGA, because they are efficient and effective and they also incorporate

much of the known MOEA theory (Van Veldhuizen and Lamont, 2000).

2.1.4 Multi-objective Genetic Algorithm (MOGA)

MOGA was proposed by Fonseca and Fleming (1993). In MOGA, the

Pareto ranking scheme is used i.e. each solution in the current population is

given a rank based on their dominance rank. All solutions in the Pareto

optimal set have a rank of 1. A niche-formation method (fitness sharing) is

employed in phenotypic-based cases to maintain a well-distributed population

over the POF (Coello et al., 2007a). The average value of the fitness for all

solutions that have the same rank is assigned to these solutions. A modified

version of this algorithm has been proposed by Fonseca and Fleming (1998).

This version employed restricted sharing between solutions that have the

same rank and the distance between two solutions is computed and compared

to the key sharing parameter ıshare. While MOGA is efficient and easy to

implement, its fitness sharing method prevents two vectors that have the

same value in the objective space existing simultaneously unless the fitness

sharing is genotypic-based. The pseudo code of MOGA is shown in algorithm

1.

2.1.5 Non-dominated Sorting Genetic Algorithm (NSGA)

The original version of the Non-dominated Sorting Genetic Algorithm

(NSGA) was proposed by Srinivas and Deb (1994). It employs a dominance

depth based on the Pareto ranking scheme (Van Veldhuizen and Lamont,

2000). Moreover, a dummy fitness value, proportional to the population size,

is used to classify all solutions in the Pareto optimal set. The fitness sharing

method is quite similar to that used in MOGA but it is genotypic-based and

applied to each level to maintain the diversity of the population and to obtain

a uniform distribution of the POF (Zitzler et al., 2000). Once all solutions in

the population are classified, the first Pareto front is assigned to the

maximum fitness value. Therefore, the first Pareto front must have more

copies than the other solutions in the population. A stochastic remainder

selection strategy is employed for this purpose (Coello et al., 2007a). The

complexity of NSGA is exhibited in its fitness sharing mechanism which

assigns the fitness values to solutions in the current population. Knowles and

Corne (2000), and many other researchers, have reported that NSGA has a

poorer performance than MOGA. It is also more sensitive to the sharing

Chapter 2: Literature Review

17 | P a g e

parameter ıshare than MOGA. However, some researchers point out that NGSA

helps obtain a well-spread POF (Coello et al., 2007a). The pseudo code of

NSGA is shown in algorithm 2.

Reprinted from (Coello et al., 2007a)

Algorithm 2: NSGA algorithm
 1: procedure NSGA ቀܰĻǡ ݃ǡ ௜݂ ሺݔ௞ሻቁ ٲ ܰĻܾ݉݁݉݁݁ݒ݈݋ݏ ݋ݐ ݏ݊݋݅ݐܽݎ݁݊݁݃ ݃ ݀݁ݒ݈݋ݒ݁ ݎ ௞݂ ሺݔሻ
 2: Initialise Population ƵĻ
 3: Evaluate Objective Values
 4: Assign Rank Based on Pareto dominance in Each ܹܽ݁ݒ
 5: Compute Niche Count
 6: Assign Shared Fitness
 7: for ݅ ൌ ͳ to ݃ do
 8: Selection via Stochastic Universal Sampling
 9: Single Point Crossover
10: Mutation
11: Evaluate Objective Values
12: Assign Rank Based on Pareto dominance in Each ܹܽ݁ݒ
13: Compute Niche Count
14: Assign Shared Fitness
15: end for
16:end procedure

Reprinted from Coello et al., 2007a)

A modified version of NSGA was proposed by Deb and Goel (2001). The

modified version (NSGAII), is a non-explicit building block MOEA technique

that incorporates the concept of elitism (Deb, 2005; Coello et al., 2007a). The

solutions compete, then each solution is ranked and sorted based on its

Pareto optimal level.

Genetic operators are applied to generate a new group of children who

are then merged with parents in the population (Coello et al., 2007a).

Furthermore, a niching method based on crowding distance is used during the

Algorithm 1: MOGA algorithm
 1: procedure MOGA ൫ܰᇱǡ ݃ǡ ௞݂ሺݔሻ൯ ٲ ܰᇱܾ݉݁݉݁݁ݒ݈݋ݏ ݋ݐ ݏ݊݋݅ݐܽݎ݁݊݁݃ ݃ ݀݁ݒ݈݋ݒ݁ ݎ ௞݂ሺݔሻ
 2: Initialise Population ƵĻ
 3: Evaluate Objective Values
 4: Assign Rank Based on Pareto dominance
 5: Compute Niche Count
 6: Assign Linearly Scaled Fitness
 7: Shared Fitness
 8: for ݅ ൌ ͳ to ݃ do
 9: Selection via Stochastic Universal Sampling
10: Single Point Crossover
11: Mutation
12: Evaluate Objective Values
13: Assign Rank Based on Pareto dominance
14: Compute Niche Count
15: Assign Linearly Scaled Fitness
16: Assign Shared Fitness
17: end for
18: end procedure

Chapter 2: Literature Review

18 | P a g e

selection process in order to maintain a diverse Pareto front (Zhang and Li,

2007). The pseudo code of NSGAII is shown in algorithm 3.

Algorithm 3: NSGAII algorithm
 1: procedure NSGAII ቀܰĻǡ ݃ǡ ௜݂ ሺݔ௞ሻቁ ٲ ܰĻܾ݉݁݉݁݁ݒ݈݋ݏ ݋ݐ ݏ݊݋݅ݐܽݎ݁݊݁݃ ݃ ݀݁ݒ݈݋ݒ݁ ݎ ௞݂ ሺݔሻ
 2: Initialise Population ƵĻ
 3: Generate random population- size ܰĻ
 4: Evaluate Objective Values
 5: Assign Rank (level) Based on Pareto dominance - ݐݎ݋ݏ
 6: Generate Child Population
 7: Binary Tournament Selection
 8: Recombination and Mutation
 9: for ݅ ൌ ͳ to ݃ do
10: for each Parent and Child in Population do
11: Assign Rank (level) Based on Pareto dominance - ݐݎ݋ݏ
12: Generate sets of nondominated vectors along ܲܨ௞௡௢௪௡
13: Loop (inside) by adding solutions to next generation starting from the ݂݅ݐݏݎ front until ܰĻindividuals found determine crowding distance
 between points on each front
14: end for
15: Select points (elitist) on the lower front (with lower rank) and are
 outside a crowding distance
16: Create next generation
17: Binary Tournament Selection
18: Recombination and Mutation
19: end for
20: end procedure

Reprinted from (Coello et al., 2007a)

Although NSGAII is more efficient than NSGA, it still has some

drawbacks. It cannot simply generate an approximate set in some regions of

the search space, particularly unpopulated regions (Coello and Pulido, 2001).

In addition, NSGAII performs very badly when used for many-objectives

optimisation (Purshouse and Fleming, 2007). As the number of objectives

increase, the proportion of the space becomes lager and the solutions

returned can be quite far from the Pareto optimal front. As result of this, the

algorithm biased towards poor proximity solutions to the Pareto optimal front

(Jaszkiewicz, 2001a; Purshouse and Fleming, 2007). Although, the algorithm

could obtain very good spread across the Pareto optimal front, it faces difficult

to achieve a good proximity.

2.1.6 Strength Pareto Evolutionary (SPEA)

The first version of Strength Pareto Evolutionary Algorithm (SPEA) was

proposed by Zitzler and Thiele (1999). It integrates different desirable

features in MOEAs which are (i) the use of the concept of dominance in the

evaluation and selection process, (ii) the use of an external archive

(secondary population) of the Pareto optimal set that was previously

Chapter 2: Literature Review

19 | P a g e

obtained, and (iii) the use of clustering and niching methods (Landa-Silva et

al., 2004). In each generation, the Pareto optimal set is added to the

secondary population. The solutions in the secondary population are used to

evaluate the fitness values for the solution in the current population by

summing the solutions’ rank in the secondary population (Landa-Silva et al.,

2004; Van Veldhuizen and Lamont, 2000).

The Pareto ranking scheme, based on the dominance count and rank, is

employed, which means any distance measurement such as niche radius is

not required (Coello et al., 2007a). The secondary population participates in

the selection process, which leads to an increase in the population size.

Therefore, a clustering technique, namely the average linkage method, is

adopted to deal with this issue (Coello et al., 2007a). The pseudo code of

SPEA is shown in algorithm 4.

Algorithm 4: SPEA algorithm
 1: procedure SPEA ൫ܰĻǡ ݃ǡ ௞݂ ሺݔሻ൯ ٲ ܰĻܾ݉݁݉݁݁ݒ݈݋ݏ ݋ݐ ݏ݊݋݅ݐܽݎ݁݊݁݃ ݃ ݀݁ݒ݈݋ݒ݁ ݎ ௞݂ ሺݔሻ
 2: Initialise Population ƵĻ
 3: Create empty external set ƪĻ ሺȁƪĻȁ ൏ ȁƵĻȁሻ
 4: for ݅ ൌ ͳ to ݃ do
 5: ƪĻ ൌ ƪĻ ׫ ٲ ሺƵĻሻܦߋ ƪ ݋ݐ Ƶ ݂݋ ݀݁ݐܽ݊݅݉݋݀݊݋݊ ܾ݁ ݋ݐ ݃݊݅ݑݐܽݑ݈ܽݒ݁ ݏݎܾ݁݉݁݉ ݕ݌݋ܥ
 6: ƪĻ ൌ ٲ ሺƪሻܦߋ ƪ ݊݅ ݏݎ݋ݐܿ݁ݒ ݀݁ݐܽ݊݅݉݋݀݊݋݊ ݋ݐ ݃݊݅ݐܽݑ݈ܽݒ݁ ݎܾ݁݉݁݉ ݕ݈݊݋ ݌݁݁݇
 7: Prune ƪĻ (using clustering) if max capacity of ƪĻ is exceeded
ƵĻ Evaluate ቀƵĻ௜ቁא௜׊ :8 ٲ ƪĻ ܽ݊݀ ƵĻ ݂݋ ݏݎܾ݁݉݁݉ ݈݈ܽ ݎ݋݂ ݏݏ݁݊ݐ݂݅ ݁ݐݑ݈ܽݒܧ
 ƪĻ Evaluate (ƪĻ௜)א௜׊ :9
10: ࣧ࣪ ՚ ࣮ ቀƵĻ ׫ ƪĻቁ ٲ ݄ݐ݅ݓ ݊݋݅ݐ݈ܿ݁݁ݏ ݐ݊݁݉ܽ݊ݎݑ݋ݐ ݕݎܾܽ݊݅ ݁ݏܷ
ٲ :11 ƪĻ ݉݋ݎ݂ ݏ݈ܽݑ݀݅ݒ݅݀݊݅ ݐ݈ܿ݁݁ݏ ݋ݐ ݐ݈݊݁݉݁ܿܽ݌݁ݎ ൅ ƵĻ
ٲ :12 ሺ݉݊݋݅݊ݑ ݐ݁ݏ݅ݐ݈ݑሻ݈݈ݑ݂ ݏ݅ ݈݋݋݌ ݃݊݅ݐܽ݉ ݄݁ݐ ݈݅ݐ݊ݑ
13: Apply crossover and mutation on ࣧ࣪
14: end for
15: end procedure

Reprinted from (Coello et al., 2007a)

Despite SPEA generally having a good performance, it has some

potential weak points in terms of fitness assignment, density estimation and

archive truncation, which may affect SPEA’s quality (Gandibleux and Ehrgott,

2005). To overcome these, an updated version called SPEA2 was proposed by

Zitzler et al. (2001). SPEA2 differs from the previous version in three aspects:

(i) it incorporates a fine-grained fitness assignment strategy which considers

the number of individuals for each solution that dominates it and which it is

dominated by, (ii) it uses a nearest neighbour density estimation technique in

order to increase the efficiency of the search, and (iii) it improves the archive

truncation method that guarantees the preservation of boundary points by

Chapter 2: Literature Review

20 | P a g e

replacing the average linkage method used in the previous version. The

experimental results show that SPEA2 performs well in terms of diversity and

distribution as the number of objectives increases. In addition, it significantly

outperforms its predecessor SPEA. The pseudo code of SPEA2 is shown in

algorithm 5.

Algorithm 5: SPEA2 algorithm

 1: procedure SPEA2 ൫ܰĻǡ ݃ǡ ௞݂ ሺݔሻ൯
 2: Initialise Population ƵĻ
 3: Create empty external set ƪĻ ሺȁƪĻȁ ൏ ȁƵĻȁሻ
 4: for ݅ ൌ ͳ to ݃ do
 5: Compute fitness of each individual in ƵĻ and ƪĻ
 6: Copy all individual evaluating to nondominated vectors ƵĻ and ƪĻ to ƪĻ
 7: Use the truncation operator to remove elements from ƪ when the
capacity of
 the file has been extended
 8: If the capacity of ƪĻ has not been exceeded then use dominated
individuals in ƵĻ to fill ƪĻ
 9: Perform binary tournament selection with replacement to fill the mating
pool
10: Apply crossover and mutation to the mating pool
11: end for
12: end procedure

Reprinted from (Coello et al., 2007a)

2.1.7 Niched Pareto Genetic Algorithm (NPGA)

The Niched Pareto Genetic Algorithm (NPGA) was proposed by Horn et

al. (1994). It uses the tournament selection scheme based on Pareto

dominance ranking. Two randomly selected solutions are compared against

~10% of the population. If one of them is dominated while the other is not,

the Pareto optimal set is selected. If both selected solutions are dominated or

non-dominated, the fitness sharing scheme (equivalence class sharing) is

employed to decide the results of the tournament. The pseudo code of NPGA

is shown in algorithm 6 (Coello et al., 2007a).

NPGA has some difficulties in terms of the convergence towards the

POF. To overcome this, an improved Niched Pareto Genetic Algorithm called

NPGA2 was proposed by Erickson et al. (2001). In NPGA2, Pareto ranking and

tournament selection schemes are used. NPGA2 evaluates the niche counts

based on the next generation, instead of the current generation, using a

continuously updated fitness sharing. The pseudo code of NPGA2 is shown in

algorithm 7.

Chapter 2: Literature Review

21 | P a g e

Reprinted from (Coello et al., 2007a)

Algorithm 7: NPGA2 algorithm

 1: procedure NPGA2 ሺܰĻǡ ݃ǡ ௞݂ ሺݔሻሻ ٲ ܰĻܾ݉݁݉݁݁ݒ݈݋ݏ ݋ݐ ݏ݊݋݅ݐܽݎ݁݊݁݃ ݃ ݀݁ݒ݈݋ݒ݁ ݎ ௞݂ ሺݔሻ
 2: Initialise Population ƵĻ
 3: Evaluate Objective Values
 4: for ݅ ൌ ͳ to ݃ do
 5: Specialized Binary Tournament Selection using rank as domination

degree
 6: Begin
 7: if Only Candidate 1 dominated then
 8: Select Candidate 2
 9: else if Only Candidate 2 dominated then

10: Select Candidate 1
11: else if Both are Dominated or Nondominated then
12: Perform specialized fitness sharing
13: Return Candidate with lower niche count
14: end if
15: End
16: Single Point Crossover
17: Mutation
18: Evaluate Objective Values
19: end for
20: end procedure

Reprinted from (Coello et al., 2007a)

2.1.8 Multi-objective Messy Genetic Algorithm (MOMGA)

The Multi-objective Messy Genetic Algorithm (MOMGA) was proposed by

Van Veldhuizen (1999). The algorithm is an extended version of the Messy

Genetic Algorithm that is designed for a MOP. It is an explicit building block

technique that comprises three stages: (i) the initialisation stage where

Algorithm 6: NPGA algorithm

 1: procedure NPGA ሺܰĻǡ ݃ǡ ௞݂ ሺݔሻሻ ٲ ܰĻܾ݉݁݉݁݁ݒ݈݋ݏ ݋ݐ ݏ݊݋݅ݐܽݎ݁݊݁݃ ݃ ݀݁ݒ݈݋ݒ݁ ݎ ௞݂ ሺݔሻ
 2: Initialise Population ƵĻ
 3: Evaluate Objective Values
 4: for ݅ ൌ ͳ to ݃ do
 5: Specialized Binary Tournament Selection
 6: Begin
 7: if Only Candidate 1 dominated then
 8: Select Candidate 2
 9: else if Only Candidate 2 dominated then

10: Select Candidate 1
11: else if Both are Dominated or Nondominated then
12: Perform specialized fitness sharing
13: Return Candidate with lower niche count
14: end if
15: End
16: Single Point Crossover
17: Mutation
18: Evaluate Objective Values
19: end for
20: end procedure

Chapter 2: Literature Review

22 | P a g e

building blocks of the population are generated in the partially enumerative

initialisation process, (ii) the primordial stage where a tournament selection

scheme is applied on the population, and finally (iii) the juxtapositional stage

where a recombination of Messy GA operators are applied to build up the

population.

The main advantage of MOMGA is that it is very powerful. However, it

has some difficulties related to the population size. Its population size grows

exponentially when the size of the building block increases. Many modified

versions of MOMGA have been proposed. MOMGA-II described in Zydallis et

al. (2001) is comprises three stages: the initialisation stage, the building

filtering stage and the juxtapositional stage. The first two stages are different

from MOMGA. MOMGA-III is the MOMGA recorded in an object-oriented form.

The pseudo code of MOMGA and MOMGA-II are shown in algorithm 8 and

algorithm 9 respectively.

Algorithm 8: MOMGA algorithm

 1: procedure MOMGA ሺܰĻǡ ݃ǡ ௞݂ ሺݔሻሻ
 2: for ݅ ൌ ͳ to ݄݁ܿ݋݌ do
ٲ :3 ݁ݏ݄ܽܲ ܫܧܲ
 4: Perform Partially Enumerative Initialisation
 5: Evaluate each population member’s fitness with respect to k templates
ٲ :6 ݁ݏ݄ܽܲ ݈ܽ݅݀ݎ݋݉݅ݎܲ
 7: for ݅ ൌ ͳ to ݏ݊݋݅ݐܽݎ݁݊݁ܩ ݈ܽ݅݀ݎ݋݉ݎ݅ܲ ݔܽܯ do
 8: Perform Tournament Thresholding Selection
 9: if Appropriate number of generations accomplished then

10: Reduce Population Size
11: end if
12: end for
ٲ :13 ݁ݏ݄ܽܲ ݈ܽ݊݋݅ݐ݅ݏ݋݌ܽݐݔݑܬ
14: for ݅ ൌ ͳ to ݏ݊݋݅ݐܽݎ݁݊݁ܩ ݈ܽ݊݋݅ݐ݅ݏ݋݌ܽݐݔݑܬ ݔܽܯ do
15: Cut-and-Slice
16: Evaluate Each Population member’s fitness with respect to k
 templates
17: Perform Tournament Thresholding Selection and Fitness Sharing
18: ௞ܲ௡௢௪௡ ሺݐሻ ൌ ௖ܲ௨௥௥௘௡௧ ሺݐሻ ׫ ௞ܲ௡௢௪௡ ሺݐ െ ͳሻ
19: end for
20: Update k templates ٲ ݁ݒ݅ݐ݆ܾܿ݁݋ ݄ܿܽ݁ ݊݅ ݁ݑ݈ܽݒ ݊ݓ݋݊݇ ݐݏܾ݁ ݃݊݅ݏܷ
21: end for
22: end procedure

Reprinted from (Coello et al., 2007a)

Chapter 2: Literature Review

23 | P a g e

Reprinted from (Coello et al., 2007a)

 2.1.9 Overview of Many-objectives Optimisation

As the focus of this thesis is on multi-objective optimisation (two or

three objectives), only a brief overview on many-objectives optimisation is

presented in this section.

Recently, more attention is has been paid from EAs research to the

many-objective optimisation (Purshouse and Fleming, 2004, 2007). In many-

objective optimisation, the number of objectives is more than two and three.

It might involve a large number of objectives. Unlike multi-objective

optimisation, many-objectives optimisation faces some difficulties in terms

diversity of solutions and obtaining an accurate approximation of the Pareto

optimal front. These difficulties are known as dominance resistance and

speciation (Purshouse and Fleming, 2004). Many-objectives optimisation also

faces challenge when the objectives are in harmony. The traditional MOEA

that designed for multi-objective optimisation cannot deal with many-

objectives optimisation effectively. As the number of objectives increases, the

proportion of non-dominated solution in the objective space becomes very

large. So the selection pressure based on dominance is less effective which

causes poor searching in seeking a good approximation of the Pareto front.

To overcome this, some suggestions have been proposed (Adra and Fleming,

2011) such as modifying Pareto dominance by using different ranking

Algorithm 9: MOMGA-II algorithm

 1: procedure MOMGA-II ሺܰĻǡ ݃ǡ ௞݂ ሺݔሻሻ
 2: for ݊ ൌ ͳ to ݇ do
 3: Perform Probabilistically Complete Initialisation
 4: Evaluate each population member’s fitness with respect to k templates
ٲ :5 ݁ݏ݄ܽܲ ܨܤܤ ݃݊݅ݎ݁ݐ݈݅ܨ ݇ܿ݋݈ܤ ݈݃݊݅݀݅ݑܤ
 6: for ݅ ൌ ͳ to ݏ݊݋݅ݐܽݎ݁݊݁ܩ ܨܤܤ ݂݋ ݏݎܾ݁݉ݑܰ ݔܽܯ do
 7: if BBF Required Based Off of Input Schedule then
 8: Perform BBF
 9: else Perform Tournament Thresholding Selection then

10: end if
11: end for
ٲ :12 ݁ݏ݄ܽܲ ݈ܽ݊݋݅ݐ݅ݏ݋݌ܽݐݔݑܬ
13: for ݅ ൌ ͳ to ݏ݊݋݅ݐܽݎ݁݊݁ܩ ݈ܽ݊݋݅ݐ݅ݏ݋݌ܽݐݔݑܬ ݔܽܯ do
14: Cut-and-Slice
15: Evaluate Each Population member’s fitness with respect to k
 templates
16: Perform Tournament Thresholding Selection and Fitness Sharing
17: ௞ܲ௡௢௪௡ ሺݐሻ ൌ ௖ܲ௨௥௥௘௡௧ ሺݐሻ ׫ ௞ܲ௡௢௪௡ ሺݐ െ ͳሻ
18: end for
19: Update k competitive templates ٲ ݁ݒ݅ݐ݆ܾܿ݁݋ ݄ܿܽ݁ ݊݅ ݁ݑ݈ܽݒ ݊ݓ݋݊݇ ݐݏܾ݁ ݃݊݅ݏܷ
20: end for
21: end procedure

Chapter 2: Literature Review

24 | P a g e

schemes, use of goals and preference information to limit the search space,

and employing different diversity management strategies. For more details

see (Purshouse and Fleming, 2003b).

2.1.10 Overview of Performance Metrics for Multi-

objective Optimisation

The comparison of the quality of solutions for multi-objective

optimisation is more complex than single-objective problems. The number of

non-dominated individuals should be maximised, the distance of the non-

dominated front should be minimised, i.e. the resulting non-dominated

set should be distributed uniformly as much as possible and converge well

toward the POF.

In the scientific literature, many performance metrics have been

proposed to measure different aspects of the quality and quantity of the

resulting non-dominated set. See (Van Veldhuizen, 1999; Coello et al.,

2007a). Some of these metrics require knowledge of the true Pareto front,

whilst others do not. Some metrics, known as unary metrics, are designed to

evaluate the performance of each algorithm independently of other

algorithms. While other metrics, known as binary metrics, are designed to

compare two non-dominated sets to each other. Deb (2001) classifies the

performance metrics into three classes- metrics for convergence, metrics for

diversity and metrics for both convergence and diversity. Knowles and Corne

(2002) classifies the performance metrics based on the outperformance

relations between two non-dominated sets into strong, weak and complete

outperformance of one non-dominated set to another.

 The quality of the obtained Pareto optimal set can be determined by

three criteria (Landa-Silva et al., 2004; Zitzler et al., 2000):

(i) The extent of the Pareto optimal set i.e. how many solutions

are in the Pareto optimal set? Ratio of non-dominated

individuals (RNI) (Tan et al., 2002) and Error ratio (ER) (Van

Veldhuizen, 1999) are examples of metrics that measure this

criterion.

Chapter 2: Literature Review

25 | P a g e

(ii) The distance of the Pareto optimal front, i.e. the closeness of

the Pareto optimal front and the obtained non-dominated front.

Examples of unary metrics that measure this criteria are the

size of space covered metric (SSC or S-metirc) (Zitzler and

Thiele, 1999), generational distance (GD) (Van Veldhuizen and

Lamont, 1998b) and inverted generational distance (IGD)

(Coello and Cruz Cortès, 2005). C metric and D metric (Zitzler,

1999) are examples of binary metrics that measure this

criterion.

(iii) The distribution of the Pareto optimal set i.e. the depth of the

coverage of the Pareto optimal front. Uniform distribution of a

non-dominated population (UD) (Srinivas and Deb, 1994) and

Spacing metric () (Deb and Jain, 2002) are examples of

metrics that measure this criterion.

Beside the above three criteria, the computational time of the algorithm

can be considered as a criterion to evaluate the performance of an optimiser,

i.e. the time that an algorithm needs to obtain a non-dominated set should be

minimised. Algorithm effort (AE) (Tan et al, 2002) is an example of metrics

that measure this criterion.

 Some of the performances that measure the above criteria are

described as follows:

 The size of space covered (SSC)

SSC is a hypervolume presented by Zitzler and Thiele (1999). It is also

known as the S-metric. This metric evaluates the size (volume) of the

objective functions space covered by the solutions around the POF. Let ܺ
be a population and ݔ௜ א ܺ, the function SSC(X) gives the volume enclosed

by the union of the polytopes in the objective domain, where each polytope

formed by the intersection of the following hyperplanes arising out of,

along with the axes i.e. any point within the polytopes is always dominated

by at least one ݔ௜ in ܺ. SSC does not require knowledge of the true POF

but it requires a reference point as the origin of the objective space. A

lager value of SSC indicates better quality of non-dominated set which

means a smaller distance to the true POF.

Chapter 2: Literature Review

26 | P a g e

 Uniform distribution of a non-dominated population (UD)

UD is a unary metric presented by Srinivas and Deb (1994). It evaluates

the distribution of non-dominated individuals over the POF. The distribution

should be as uniform as possible to gain consistent gaps among

neighbouring individuals in the population. Let ܺ be a set of nondominated

individual, UD defined as

ሺܺሻܦܷ ൌ ଵଵା ௌ೙೎ (2.1)

where ܵ௡௖ is the standard deviation of niche count of the overall set of non-

dominated set ܺ. The UD metric does not require prior knowledge of the

true POF. A lager value of UD indicates better quality of non-dominated set

which means the non-dominated front is spread well along the POF.

 Algorithm effort (AE)

AE measures the computational effort of an algorithm to obtain the

Pareto optimal set (Tan et al., 2002). It computes the ratio of the total

number of function evaluations over a fixed period of simulation time. It

ranges from [0,∞). A smaller value of AE indicates better performance

which means the optimiser requires less time to obtain non-dominated

solutions.

 Ratio of non-dominated individuals (RNI)

RNI is presented by Tan et al. (2002). It evaluates the fraction of non-

dominated individuals ݊ݏ̴݀݊݅݉݋݀݊݋ in the population ܺ. RNI defined as:

ሺܺሻܫܴܰ ൌ ௡௢௡ௗ௢௠ି௜௡ௗ௦௦௜௭௘ ௢௙ ௑ (2.2)

It ranges from [0,1]. If RNI=1, this indicates that all individuals for a given

population are non-dominated and RNI=0 indicates that none of the

individuals in the population are non-dominated. Although RNI gives an

Chapter 2: Literature Review

27 | P a g e

indication of the solution quality, it does not show how these solutions are

good in terms of the diversity and the convergence towards the POF.

.
 Generational distance (GD)

GD is a unary metric presented by Van Veldhuizen and Lamont (1998b).

It measures the distance (convergence) of the approximation non-

dominated front ܣ to the true POF ܤ. GD defined as:

ǡܣሺ ܦܩ ሻܤ ؠ ଵȁ஺ȁ ൫σ ሺܽ௜ǡ ݐݏ݅݀ ௣ሻȁ஺ȁ௜ୀଵܤ ൯భ೛ (2.3)

A smaller value of GD is more desirable and it indicates that the

approximation non-dominated front is closer to the POF. The GD metric

requires a prior knowledge of the true POF.

 Inverted generational distance (IGD)

IGD is a unary metric presented by Coello and Cruz Cortès (2005). It is

opposite of the metric of GD. It measures the distance from a set of

reference points (ideally the true POF) ܤ to the approximation non-

dominated set ܣ. IGD defined as:

ǡܣሺ ܦܩ ሻܤ ؠ ଵȁ஻ȁ ൫σ ሺܾ௜ǡ ݐݏ݅݀ ௣ሻȁ஻ȁ௜ୀଵܣ ൯భ೛ (2.4)

A smaller value of IGD is more desirable and it indicates that the

approximation non-dominated front is closer to the POF.

 Coverage difference of two sets (D metric)

D metric (Zitzler, 1999) is an extended version of the hypervolume, also

so-called the size of space covered metric (SSC) (Zitzler and Thiele, 1999).

The SSC metric does not compute the coverage difference of two sets A

and B when compared to each other, i.e it cannot be used to decide if one

set entirely dominates the other. However, D metric computes the

Chapter 2: Literature Review

28 | P a g e

coverage difference of two non-dominated sets (initial/current non-

dominated set) A and (candidate non-dominated set) B with respect to the

objective space. ܦሺܣǡ ሻ denotes the size of the space dominated by A andܤ

not dominated by B while ܦሺܤǡ ሻ denotes the size of the space dominatedܣ

by B and not dominated by A:

ǡܣሺܦ ሻܤ ൌ ܣሺܥܵܵ ൅ ሻܤ െ ሻ (2.5)ܤሺܥܵܵ

ǡܤሺܦ ሻܣ ൌ ܣሺܥܵܵ ൅ ሻܤ െ ሻ (2.6)ܣሺܥܵܵ

ǡܣሺܦ ሻܤ ൏ ǡܤሺܦ ሻ then B dominates A. In other words, the non-dominatedܣ

front of B (front 2) is better than the non-dominated front of A (front 1)

with respect to the D metric. An example of this is illustrated in Figure 2.6.

Figure 2.6 :Example of D metric for two sets A and B and their fronts (front 1) and
(front 2) respectively. Reprinted from (Grosan et al., 2003).

The relative size of the region (in the objective space) for a

maximisation problem that is dominated by A and not dominated by B is

suggested by Zitzler (1999):

ǡܣƲሺܦ ሻܤ ൌ ǡܣሺܦ ሻܸܤ (2.7)

ܸ ݁ݎ݄݁ݓ ൌ ෑሺ ௜݂௠௔௫ െ ௜݂௠௜௡ሻ௞
௜ୀଵ (2.8)

Chapter 2: Literature Review

29 | P a g e

௜݂௠௔௫, ௜݂௠௜௡ represent the maximum, minimum values respectively for the

objective ௜݂ .
2.1.11 Studies on the Comparison of MOEAs

Generally, most MOEAs have common strategies that are employed in

their search process. However, they are different in the way that they apply

these strategies. MOGA and NSGA both apply the selection process after they

have evaluated the rank values. However, MOGA classifies the solutions based

on the ranking scheme using linear or exponential interpolation and applies

the sharing scheme in the objective space, while NSGA uses dummy fitness

values assigned to the solutions and applies the sharing scheme in the

decision variable space (Van Veldhuizen and Lamont, 2000).

Furthermore, MOGA, NSGA, SPEA, NPGA and MOMGA incorporate fitness

sharing schemes in order to obtain a uniform distribution of the POF.

However, the mating restriction strategy is not always employed in any of

them. A secondary population is also not always required in MOEAs, except in

the case of SPEA. Van Veldhuizen and Lamont (2000) and Horn (1997)

believe that any MOEA must use a secondary population for all Pareto optimal

sets that have been found previously. Since MOEA(s) have a stochastic nature

and the solutions are found in a particular generation, they are not

necessarily found again in other generations. The second population helps to

keep the desirable solutions in the population at the end of the search. In

addition, some studies (Zitzler et al., 2000; Tan et al., 2002) report that

elitism is a significant element used to enhance MOEA performance. For

example, an NSGA with elitism performs as well as SPEA (Zitzler et al., 2000).

The common strategies are employed in the search process for the five

MOEAs- MOGA, NSGA, SPEA, NPGA and MOMGA- are presented in Table 2.1.

 MOEA

Strategies

MOGA NSGA SPEA NPGA MOMGA

Fitness Sharing Schemes √ √ √ √ √

Mating Restriction Strategy √

Secondary Population √

Elitism √* √

Table 2.1: The common strategies are employed in the search process for the five

MOEAs (MOGA, NSGA, SPEA, NPGA and MOMGA). * The elitism strategy is employed in
the second version of NSGA (NSGAII) only.

Chapter 2: Literature Review

30 | P a g e

In the scientific literature, some studies have compared MOEAs’

performance and quality against each other. Zitzler et al. (2000) conducted a

systematic comparison on eight algorithms including: five MOEAs (MOGA,

NPGA, VEGA, NSGA and SPEA), two weighted-sum based approaches (SOEA

and HLGA (Hajela and Lin, 1992)) and a random search strategy called RAND.

These algorithms were run on six domain-independent test functions that

provided sufficient complexity. The empirical results confirm that all MOEAs

perform better than the RAND. Nevertheless, HLGA, NPGA and MOGA, in

some cases, do not convergence well towards the POF. It is an interesting

point that NSGA performs better than other none-elitist MOEAs in terms of

distance and distribution along the POF, while SPEA has the best overall

performance. In addition, the study demonstrates that NSGA with elitism

performs similar to SPEA. Furthermore, the size of the population significantly

affects the performance of EAs to cover the POF.

Another comparison study of MOEAs is provided by Tan et al. (2002).

The study compares ten MOEAs which are VEGA, HLGA, NPGA, MOGA, NSGA,

SPEA, MIMOGA (Murata & Ishibuchi, 1995), IMOEA (Khor et al. 2000), EMOEA

(Khor et al. 2001) and a MOEA proposed by Tan et al. (1999). The ten MOEAs

were run on four benchmark tests considering six performance measures-

Ratio of non-dominated individuals (RNI), Uniform distribution of a non-

dominated population (UD), Algorithm effort (AE), the hypervolume- Size of

space covered (SSC), Noise sensitivity (NS) and Average best performance

(ABP)- to examine the strength and weakness of each algorithm. Generally,

the experimental results show that there is no existing algorithm that has the

best performance in the all performance measures. In addition, the results

confirm that elitism and sharing methods positively affect the performance of

SPEA, MOEA, IMOEA and EMOEA in terms of distribution and convergence

towards the POF. MIMOGA has relatively the lowest Algorithm effort (AE) in

all benchmark tests while Tan’s MOEA and IMOEA have the highest (better)

Ratio of non-dominated (RNI) for all benchmark tests. HLGA and NPGA have

relatively low noise sensitivity. MIMOGA, NPGA, MOGA and NSGA have

moderate ABP performance while SPEA, MOEA, IMOEA and EMOEA perform

well.

 A comparison study for SPEA2, NSGAII and MOGA on ZDT4 and ZDT6

problems (Zitzler et al., 2000) was presented in Watanabe et al. (2002). With

respect to the RNI metric, NSGAII has better performance than the others on

Chapter 2: Literature Review

31 | P a g e

ZDT4. However, SPEA2 outperforms MOGA and NSGAII for the same metric

on ZDT6. The authors concluded this study by stating that SPEA2 has an

advantage with regard to its accuracy over NSGAII. While NSGAII is superior

to SPEA2 in finding wide spread solutions.

Khare et al. (2003) conducted another comparative study for NSGAII,

SPEA2 and PAES on four test problems (DTLZ1, DTLZ2, DTLZ3 and DTLZ6)

with 2-8 objectives. Three performance metrics were used for convergence

and diversity of the obtained non-dominated set and the running time. SPEA2

performs better than NSGAII in terms of convergence for a small number of

objectives. However, both perform similarly for a higher number of objectives.

SPEA2 and NSGAII have good performance with respect to the diversity, but

they have some difficulties in the closeness of the obtained non-dominated

set to the POF. In comparison, PAES (Liu et al., 2007) performs very well in

converging to the POF but it fails in diversity and it requires a higher

computational time as the number of objectives increases. However, NSGAII

requires a less computational time compared to the others.

In Bradstreet et al. (2007) another comparative study between NSGAII

and SPEA2 on the WFG test problems with 24 real values and a different scale

of objectives. For two objectives, NSGAII is superior to SPEA2 on the WFG

test problems with respect to the SSC metric. In contrast, SPEA2 outperforms

NSGAII on all WFG problems expect WFG3 in three objectives with respect to

the same metric.

We can note from two last studies that the number of objectives can

affect the performance of an algorithm. SPEA2 works well with a high number

of objectives for WFG and a low number of objectives for DTLZ. The opposite

is true for NSGAII. We can also observe from these comparative studies that

an algorithm can perform better than another algorithm with respect to a

specific metric on a certain problem, while another algorithm performs better

than another algorithm with respect to another metric for the same problem.

Also an algorithm can perform differentially according to the number of

objectives. All these observations could be an advantage when combining

different algorithms in a hyper-heuristic framework for multi-objective

optimisation to derive the strengths of the algorithms and avoid their

weaknesses. These observations also supported by the No Free Lunch

Theorem (Wolpert and Macready, 1997).

Chapter 2: Literature Review

32 | P a g e

2.2 Meta-heuristics

The term Meta-heuristic was coined by Glover (1986). It refers to a

general algorithmic search framework that is utilised for solving complex

optimisation problems, instead of using classical approaches such as

mathematical and dynamic programming (Bianchi et al., 2009). Meta-

heuristics have the ability to find feasible solutions for problems of realistic

size in reasonable computation time (Bianchi et al., 2009). Sörensen and

Glover (2013) define Meta-heuristics as:

 “A Meta-heuristic is a high-level problem-independent algorithmic

framework that provides a set of guidelines or strategies to develop heuristic

optimization algorithms”.

It is worth noting that a problem-specific implementation of a heuristic

optimisation algorithm is also referred to as a meta-heuristic. In the context

of this thesis, meta-heuristics comprise a high level strategy that aims to

explore the search space via the use of local search procedures in order to

search for (approximate) optimal solutions and to escape from local optima.

Moreover, some meta-heuristic techniques may employ learning mechanisms

such as using memory in order to increase the efficacy of the search process

(Blum and Roli, 2003).

In the scientific literature, common meta-heuristics such as simulated

annealing (Kirkpatrick et al.,1983), tabu search (TS) (Glover,1986), genetic

algorithms (GA) (Holland, 1975; Goldberg, 1989), ant colony optimisation

(Dorigo et al., 1996), scatter search (Glover et al., 2000) and variable

neighbourhood search (VNS) (Hansen and Mladenovic, 1999) have been

successfully applied to solve different combinatorial optimisation problems

(see (Corne et al., 1999; Voß et al., 1999; Glover and Kochenberger, 2003)).

Further discussion of some meta-heuristics is presented in the following

sections.

2.2.1 Algorithm Complexity and Problem Complexity

Algorithm complexity refers to the resources required of an algorithm

that is required to solve a given problem (Garey and Johnson, 1979;

Chapter 2: Literature Review

33 | P a g e

Rayward-Smith, 1986). The efficiency of an algorithm is measured in terms of

execution time (the number of steps in the algorithm) and memory (the

amount of memory that is needed to run the algorithm). The time complexity

is as a function of the size of the input. In other words, it refers to the

number of basic operations that are performed by an algorithm for its worst-

case behaviour. The big Ƴ notation is used to describe the performance or

complexity of an algorithm. The computational complexity of a problem is

assessed by the time complexity of an algorithm that can be found to solve

the problem efficiently (Garey and Johnson, 1979).

Optimisation problems can be divided into two major classes, P and NP.

A P problem can be defined as an algorithm that can solve a problem in

polynomial time. An NP problem can be defined as an algorithm that can solve

a problem in non-deterministic polynomial time. For more details (see (Garey

and Johnson, 1979, Rayward-Smith, 1986)). If there is a deterministic

algorithm for a problem, a non-deterministic algorithm can be simply

constructed for the problem, i.e. P ك NP. This leads to, the most important

open question in computational complexity theory, whether PൌNP or P്NP? To

date, no efficient (polynomial) algorithms have been found for any NP

problems, which supports the assumption that P്NP, but this is still not

proved. An example of an NP problem is the classic Travelling Salesmen

Problems.

A special class of NP problems are NP-complete problems. These are the

hardest class of problem in NP. The theory of NP-completeness was presented

by Cook (1971). If PൌNP then all NP-complete problems can be efficiently

solved. All NP-complete problems could belong to P. However, NP-complete

problems belong to the set NP–P.

Given the open P=NP question, exact algorithms cannot always be used

to solve a given instance of an optimisation problem efficiently due to the

time complexity being bounded by an exponential function (we may be able to

solve small instances but this becomes impractical as the instance size

increases). So, heuristic methods, or approximation algorithms, are generally

more suitable to solve such problems since they can often produce near

optimal solutions, or at least produce solutions of acceptable quality in

reasonable computational time.

Chapter 2: Literature Review

34 | P a g e

2.2.2 Intensification and Diversification

In the context of meta-heuristics, the concepts of intensification and

diversification have a significant effect on the search behaviour.

Intensification refers to exploiting the accumulated search experience whereas

diversification refers to exploring the search space (Blum and Roli, 2003;

Bianchi et al., 2009). A dynamic balance between these concepts is required

in the search process. On the one hand we want to explore those areas of the

search space, than just those currently providing good quality solutions

(intensification). On other hand we also want to explore previously unvisited

areas of the search space (diversification) (Blum and Roli, 2003). It is worth

mentioning that the terms exploitation and exploration can sometimes be

used instead of intensification and diversification (Blum and Roli, 2003).

However, this may lead, in some cases, to different meanings. For example,

exploitation and exploration may infer short term methods limited to

randomness, whereas intensification and diversification may infer medium and

long term methods based on the usage of memory. In meta-heuristics, the

use of the local search strategy in simulated annealing is an example of

intensification, while the use of tabu lists in tabu search is an example of

diversification (Bianchi et al., 2009).

2.2.3 Meta-heuristics Classification

In the scientific literature, there are different points of view concerning

the classification of meta-heuristics approaches. Glover and Laguna (1997)

and Blum and Roli (2003) classify meta-heuristics into four main classes:

1) Nature-inspired and non-nature inspired methods

2) Dynamic and static objective functions

3) Memory usage and memory-less methods

4) Population-based and the single-point search methods

According to the origins of the search method, meta-heuristics divide

into two groups; nature-inspired and non-nature inspired methods. Examples

of these groups are genetic algorithms and tabu search respectively.

Criticisms of this classification have been made for two reasons (Blum and

Roli, 2003): (i) some hybrid meta-heuristics approaches cannot be

categorised based on this classification. For example, memetic approaches

Chapter 2: Literature Review

35 | P a g e

that employ a local search mechanism and a genetic algorithm fit into both

classes; and (ii) it is sometimes hard to classify an approach to one of the two

categories. For example, tabu search belongs to the non nature-inspired

category (memory-inspired), but it can be difficult to decide whether the use

of memory belongs to the same class as well.

Another school of thought classifies meta-heuristics into two classes,

dynamic and static objective functions. The first class changes the

representation of the objective function during the search process. An

example of this is Guided Local Search (GLS) (Voudouris and Tsang, 1999).

On the contrary, the second class retains the representation of the objective

function with no change.

Furthermore, memory usage and memory-less methods are important

classifications of meta-heuristics according to the way that the algorithm

makes use of search history. Memory usage can use short or long term

memory. Short term memory keeps track of the moves and visited solutions

whereas long memory accumulates synthetic parameters of the search.

Memory-less methods usually tend to use the information to decide the next

moves in the search process. Nowadays, memory is considered an essential

element in successful meta-heuristic approaches (Blum and Roli, 2003).

The classification of population-based search and single-point

approaches refers to the number of solutions that are maintained during the

search process at each iteration (Glover and Laguna, 1997). In population-

based meta-heuristics, a number of points (known as the population) are

provided in order to evolve a new generation. Genetic algorithms, evolution

strategies, ant colony optimisation, and scatter search are examples of

population-based methods. In single-point search, only one solution is

maintained during the search process. Single-point search based methods are

also known as trajectory methods which share the same characteristics as a

trajectory in the search space during the search process, and incorporate local

search strategies (Blum and Roli, 2003). Tabu search, simulated annealing,

iterated local search (Lourenco et al., 2003) and variable neighbourhood

search are examples of single-point search methods. Since the population-

based concept plays a significant role in hyper-heuristic for multi-objective

optimisation (HHMO) that is proposed in this thesis, this classification of

meta-heuristics is more suited to HHMO than the others.

Chapter 2: Literature Review

36 | P a g e

2.2.4 Local Search

The key idea behind a local search algorithm is attempting to find the

optimum (or an approximate) solution through exploring the neighborhoods of

the current solution and comparing new solutions with the incumbent

solution. If the new solution is better, then the current solution is replaced by

the new one. The simplest form of local search is an iterative improvement

algorithm. The algorithm starts with an initial solution and then explores the

neighbourhood of that solution in order to find a better one. When a better

solution is found, the current solution replaces it. This process is repeated

until the current solution is better than all its neighborhood solutions.

In the context of local search, the strategy to improve a solution

depends on the type of heuristic that is used in the algorithm (Lourenco at al.,

2003). Random walk, simple descent and steepest descent are examples of

local search heuristics. In random walk, a solution is selected randomly from

the search space. This heuristic is usually combined with other methods and

used as a diversification strategy. Simple descent is a typical local search

strategy. It is also known as hill climbing. At each iteration, a random solution

is selected. If the selected solution improves the objective value then it is

accepted and the previous solution is replaced by it. Steepest descent is

different from previous local search heuristics. This heuristic evaluates each

solution in neighbourhood, and accepts the best solution that generates a

better objective value. If there is no better objective value, the algorithm

terminates. This method can be computationally expensive for large-sized

neighbourhoods.

The main drawback of local search algorithms is that they can easily

become trapped in a local optima, i.e. the solution is not necessarily the

global optimal, because the search terminates once no better solutions can be

found. An optimal solution (global) can be in some area of the search space

that has not yet been explored (Focacci at al., 2003). To overcome this

problem, some techniques have been presented that allow the algorithm to

escape from local optima by accepting a worse solution (Aarts et al., 2005).

The local search algorithm terminates according to some conditions such

as the number of iterations, elapsed CPU time or until there is no further

improvement in the current solution for a given number of iterations.

Chapter 2: Literature Review

37 | P a g e

2.2.5 Simulated Annealing

Simulated annealing (SA) is a search algorithm that was proposed by

Kirkpatrick et al. (1983). It is considered the first meta-heuristic approach to

use an explicit method which accepts worse solutions in order to escape from

local optima (Henderson, 2003). Initially, SA was used to tackle combinatorial

optimisation problems (often within the discrete problem domain). More

recently, it has been extended to include continuous problems (Henderson,

2003). The concept of SA is based on the Metropolis algorithm for statistical

mechanics developed by Metropolis et al. (1953). The Metropolis algorithm is

a model for simulating the physical annealing process with solid materials like

metals and glass (Bianchi et al., 2009). These materials are placed in a heat

bath under a high temperature and then gradually cooled according to an

appropriate cooling schedule until they reach a thermal equilibrium state

(Dowsland, 1995 and Henderson, 2003).

In the context of meta-heuristics, SA incorporates thermodynamic

behaviour into the local search strategy (Henderson, 2003), and the search

process combines two local search heuristics; random walk and iterative

improvement (Dowsland, 1995). It also employs a predefined neighbourhood

structure of the search space (Bianchi et al., 2009). The algorithm starts with

a high temperature and an initial solution. This solution can be either

randomly selected or heuristically constructed (Blum and Roli, 2003). During

the search process, the temperature is slowly decreased based on a cooling

schedule (Dowsland, 1995). At each iteration, a solution of the neighbourhood

is selected and evaluated and then compared with the incumbent solution. If

it is better than the current one, it is accepted and replaces it to become the

current solution. Otherwise, worse solutions are accepted according to a

probabilistic function of temperature and the difference of objective function

values for the new and current solutions (Dowsland, 1995 and Bianchi et al.,

2009). The pseudo code of SA is shown in algorithm 10.

Two important issues can affect the performance of SA. Firstly, the

choice of neighbourhood structure (Aarts and Korst, 1998), and secondly, the

choice of a cooling schedule (Blum and Roli, 2003). There are two types of

cooling schedule, static and dynamic schedules. In a static cooling schedule

there is no change in the parameter values during the execution time. With a

Chapter 2: Literature Review

38 | P a g e

dynamic cooling schedule the parameters are adaptively changed during

execution time (Aarts et al., 2005). It is generally not easy to choose an

appropriate cooling schedule. In some cases in SA, the temperature is

reduced and reaches a very low value. So, an increase of cost function values

will be impossible and SA can lead to a local minimum. To overcome this

problem, a reheating scheme may be used when a local minimum has been

detected, in order to escape from it (Thanh and Anh, 2009). An example of

SA’s approaches that use the reheating scheme is simulated annealing with

non-monotonic reheating (Osman, 1993). The key idea of this approach is

that whenever the occurrence of a local minimum is detected, the use of

reheating scheme aims to escape from it by doubling the temperature at

which the best solution was obtained.

Reprinted from (Aarts et al., 2005)

Although SA is simple and flexible, a cooling schedule needs to be

defined for each problem in order for the algorithm to work effectively

(Hussin, 2005). Moreover, good quality cooling schedules (either static or

dynamic schedules) which can find a global optimal can be particularly slow.

2.2.6 The Great Deluge Algorithm

The great deluge algorithm (GDA) is a meta-heuristic local search

algorithm proposed by Dueck (1993). It is considered a reasonable alternative

to other meta-heuristic algorithms such as simulated annealing (SA)

(Kirkpatrick et al., 1983) and tabu search (TS) (Glover,1986), because of its

simplicity and dependency on fewer parameters (Petrovic et al., 2007). GDA

always accepts improving moves, while a worsening move is accepted only if

Algorithm 10: SA algorithm

 1: procedure SA
 2: Initialise ሺ݅௦௧௔௥௧ ǡ ଴ ǡܥ ଴ሻܮ
 3: ݇ ؔ ͲǢ
 4: repeat
 5: for ݈ ൌ ͳ to ܮ௞ do
 6: Generate ሺ ୧ሻ
 7: if ݂ ሺ ሻ ൑ ݂ሺ݅ሻ then ݅ ؔ ݆
 8: else
 9: if ሺ௙ሺ௜ሻି௙ሺ௝ሻ஼ೖ ሻ ൐ ሾͲǡ݉݋݀݊ܽݎ ͳሻ then ݅ ؔ ݆
10: end for
11: ݇ ؔ ݇ ൅ ͳǢ
12: Calculate_Length(ܮ௞) ;
13: Calculate_Control(ܥ௞) ;
14: until stop_criterion
15: end procedure

Chapter 2: Literature Review

39 | P a g e

it is better than a threshold (target improvement) at a given step. In a

generic GDA approach, the threshold changes gradually over time, e.g.

increases linearly.

 In the case of a maximisation problem, the GDA algorithm starts with

an initial water level, which is equivalent to the quality of the initial solution.

The water level is increased gradually (usually linearly) at each iteration,

during the search, according to a predefined rate referred to as Rain Speed

(UP). A worsening solution is accepted if the quality of the solution is greater

than or equal to the water level. This process is reversed for a minimisation

problem. The algorithm terminates when there is no change in the solution

quality within a predefined time or when the maximum number of iterations is

exceeded. The pseudo code of a GDA (for maximisation problem) is shown in

algorithm 11.

The main advantage of GDA is that it is simple and much easier to

implement when compared to the other meta-heuristics, such as SA or

evolutionary algorithms. Moreover, a better quality of solutions could be

produced with a longer search time (Burke et al., 2004). GDA requires fewer

input parameters; in fact it only has one parameter, rain speed (UP). The

value of UP is usually a small fraction greater than 0, and less than 0.03

(Scott and Geldenhuysys, 2000). Dueck (1993) provided various

recommendations regarding UP. For example, a suggestion is that UP value

should be on average smaller than 1% of the average distance between the

quality of the current solution and the water level. So the water level can be

calculated for the ݆ solution using:

ܮܧܸܧܮ ൌ ܮܧܸܧܮ െ ܷܲ ሺܮܧܸܧܮ െ ݂ሺ݆ሻሻ (2.9)

The value of UP can also be calculated based on the time allocated for

search and defining upper/lower bounds of an estimated quality of solution

(Petrovic. et al.,2000). However, both of those parameters depend on the

problem dimensions and can affect the quality of final solution for a given

problem (Telfar, 1995).

An extended GDA with reheating was proposed by McMullan and

McCollum (2007). The idea is similar to the reheating scheme utilised in SA.

The reheating (re-levelling in the GDA context) aims to widen the boundary

condition, via improving the rain speed, in order to allow a worsening move to

Chapter 2: Literature Review

40 | P a g e

be accepted and avoid becoming trapped in a local optimum. If there is no

improvement, water level is reset and re-levelling strategy is applied using a

new rain speed value based on the number of total moves in the process.

Reprinted from (Dueck,1993)

2.2.7 Tabu Search

Tabu search (TS) is a dynamic neighbourhood search technique (Stützle,

1999) that was first proposed by Glover (1986). It has been applied to many

combinatorial optimisation problems (Gendreau, 2003; Hussin, 2005); for

example, the Robust Tabu Search to the QAP problem (Taillard, 1991), and

the Reactive Tabu Search to the MAXSAT problem (Battiti and Protasi, 1997)

and to assignment problems (Dell'Amico et al., 1999).

Glover and Laguna (1997) define TS as follows:

“Tabu search is a meta-heuristic that guides a local heuristic

search procedure to explore the solution space beyond local

optimality.”

Tabu search is an advanced form of local search that employs the

steepest descent heuristic and adaptive memory (Bianchi et al., 2009). The

main aim of using memory and the search history is to avoid local optima and

promote the exploration process (Blum and Roli, 2003; Gendreau, 2003).

Furthermore, the key feature of TS is that it incorporates three specific

concepts these being best improvement, tabu lists and aspiration criteria

(Bianchi et al., 2009). Best improvement refers to always accepting a solution

of the neighbourhood, whether it is better or worse than the current solution

(Bianchi et al., 2009). However, that can result in the acceptance of solutions

Algorithm 11: GDA algorithm

 1: procedure GDA
 2: Begin
 3: Choose an initial configureuration ݅
 4: Choose an initial rain speed ܷܲ >0
 5: Choose an initial water level ٲ 0<ܮܧܸܧܮ ܮܧܸܧܮ ൌ ݂ሺ݅ሻ
 6: repeat
 7: Choose a neighbor ݆ ד ܰሺ݅ǡ ܳሻ
 8: if ݂ሺ݆ሻ ൏ then ܮܧܸܧܮ
 9: ݅ǣ ൌ ݆
ܮܧܸܧܮ :10 ൌ ܮܧܸܧܮ ൅ ܷܲ
11: end if
12: until (termination criteria are satisfied)
13: end procedure

Chapter 2: Literature Review

41 | P a g e

that were already previously accepted which may result in cycling. So, a short

term memory that employs the tabu list concept is implemented to avoid this

(Gendreau, 2003). Tabu lists prevent the recently visited solution being

revisited by storing the attributes of these solutions. In the tabu list, some

information about the search is stored to use it in the strategic guidance of

the search (Bianchi et al., 2009). The length of the tabu list (so-called tabu

tenure) is crucial for the performance of the algorithm. A small tabu tenure

limits the search to small regions of the search space whereas a large tabu

tenure results in the search exploring larger regions (Blum and Roli, 2003).

An aspiration criterion is a condition that has to be satisfied in order to

remove a solution from the tabu list (Gendreau, 2003). One example of this is

removing a specific solution from the tabu list, if it obtains a better objective

value than the best value previously found (Gendreau, 2003). In the scientific

literature, the aspiration criteria can be either time-dependent or time-

independent. However, the choice of aspiration criteria is particularly critical

because it can affect the search results (Gendreau, 2003). Other important

control parameters that can affect the search results are tabu tenure and the

structure of the neighbourhood.

 The most popular termination conditions used for TS is the number of

iterations, the CPU time or until no improvement in the object value has been

found for a given number of iterations.

2.2.8 Late Acceptance

The late acceptance (LA) is recently proposed iterative search method

proposed by Burke and Bykov (2008). It won an international competition to

automatically solve the Magic Square problem (Burke and Bykov, 2012). It is

based on the hill-climbing framework. The idea is delaying the comparison

between the cost of current solution and previous solution. The comparison

does not happen immediately, the cost of current solution is compared to the

solution obtained after a number of moves to allow acceptance of worsening

moves.

This method is very simple, easy to implement and yet powerful. It is

also not sensitive to initialisation. It has a single input parameter, which is the

length of array (ܮ௙௔) that contains the cost function values of the current

solutions in the previous several iterations. In the context of LA, all values of

Chapter 2: Literature Review

42 | P a g e

the current cost function for the previous iterations are maintained in a list of

a fixed length (ܮ௙௔), which is the only input parameter of LA. The last element

of that list is compared with the cost value of candidate solution, in order to

accept the move or reject it. If the candidate cost is better, or is equal to the

last element, then the candidate solution is accepted and its cost is inserted

into the beginning of the list, while the last element is removed from the end

of the list. This process is repeated until it meets a stopping condition.

In order to avoid the shifting of the whole list at each iteration and

reduce the processing time of LA, it is suggested to employ the virtual shifting

of the list; the list beginning ܸ is calculated by using: ܸ ൌ ௙௔ (2.10)ܮ ݀݋݉ ݅

where ݉݀݋ represents the remainder of integer division, ݅௧௛ is the current

iteration, ܮ௙௔ the length a fitness array ሺ݂ܽ ൌ ଴݂ǡ ଵ݂ǡ ଶ݂ǡ ǥ ǡ ௅݂೑ೌିଵ ሻǤ At each

iteration ݅௧௛, the candidate cost is compared with the value of ܥ௩. Then after

the acceptance procedure, the current cost is assigned to ܥ௩ ǡ if it is accepted.

The pseudo code of a LA is provided in algorithm 12.

 At the beginning of the search, the ݂ܽ can be filled by the initial cost

value. In order to obtain the LA unique properties, it is intuitive that the

length of the fitness array ܮ௙௔ should be less than the number of iterations

and equal to or greater than two. However, if ܮ௙௔ is equal to one or zero, the

LA performs as greedy hill-climbing (Burke and Bykov, 2008).

Reprinted from (Burke and Bykov, 2008)

Algorithm 12: LA algorithm

 1: procedure LA
 2: begin
 3: Produce an initial conFigureuration ݏ
 4: Calculate initial cost function ܥሺݏሻ
 5: for all ݇ ג ሼͲǡ ǥ ǡ ௙݈௔ െ ͳሽ dol 0 ܥ௞ ൌ ሻݏሺܥ
 6: Assign the initial number of iterations ݅ ൌ Ͳ

 7: repeat
 8: Construct a candidate solution ݏ כ
 9: Calculate its cost function ܥሺݏ ሻכ
10: ܸ ൌ ௙௔݈ ݀݋݉ ݅

11: if ܥሺݏ ሻכ ൑ ݏሺܥ ݎ݋ ௩ ܥ ሻכ ൑ ሻ thenݏሺܥ
12: Accept candidate ሺݏ ൌ ݏ ሻכ
13: Insert cost value into the list ܥ௩ ൌ ሻݏሺܥ
14: end if
15: Increment the number of iterations ݅ ൌ ݅ ൅ ͳ
16: until (a chosen stopping condition)
17: end procedure

Chapter 2: Literature Review

43 | P a g e

2.2.9 Genetic Algorithms

In the scientific literature covering meta-heuristics, various population-

based algorithms (so-called Evolutionary Computation (EC)) are presented,

including genetic algorithms (GA) in (Fraser, 1957; Bremermann, 1958;

Holland, 1975; Goldberg, 1989), evolution strategies (ES) by Rechenberg

(1965), genetic programming by Koza (1992), ant colonies (AC) by Dorigo et

al. (1996) and scatter search (SS) by Glover et al. (2000).

As described in the meta-heuristics classification in Section 2.2.3,

population-based methods deal with a set of solutions (population) whereas

single-point search methods such as simulated annealing and tabu search

(see Sections 2.2.5 and 2.2.7) maintain only a single solution.

The ideas underpinning GAs were first proposed independently by Fraser

(1957) and Bremermann (1958), although much of the important work can

also be attributed to Holland (1975). Genetic algorithms (GA) are a stochastic

search method, sometimes known as an evolutionary algorithm (EA). It is the

most common population-based meta-heuristic (Sastry et al., 2005). It is

based on the idea of "Survival of the fittest" presented by Darwin (1859). This

natural concept of evolution is adopted as a search mechanism in all

evolutionary computation algorithms (Reeves, 2003).

Unlike other meta-heuristics, the representation of solutions in GAs is

quite different. The decision variables (chromosomes) that encode the

solutions of problems are called “genotypes”, whereas the candidate solutions

of problems that represent the solutions themselves are called “phenotypes”

or individuals (Goldberg, 1989; Reeves, 2003). In this context, a set of

individuals (solutions) is called a population and each iteration during the

search is called a generation. In addition, the solutions can be encoded as

finite-length strings of binary or real numbers, or many other encodings

(Goldberg and Rudnick, 1991).

A typical GA comprises six main stages as follows (Goldberg, 1989;

Sastry et al., 2005):

1) Initialisation

2) Evaluation

http://en.wikipedia.org/wiki/Candidate_solution
http://en.wikipedia.org/wiki/Phenotype

Chapter 2: Literature Review

44 | P a g e

3) Selection

4) Recombination (crossover)

5) Mutation

6) Replacement

Stages 2 to 6 are repeated in every generation until the algorithm is

terminated by some criteria such as a maximum number of generations or a

given number of fitness evaluations (Reeves, 2003). The pseudo code of a GA

is shown in algorithm 13.

In the initialisation stage (step 2), an initial population of solutions is

generated, typically randomly, in the search space. When the population is

created, the fitness value of each solution in the population is evaluated by a

fitness function (step 3) (Sastry et al., 2005). The solutions with higher

fitness values are selected (step 5), usually stochastically, in order to

separate the good solutions from the poorer ones (Sastry et al., 2005). The

selection process can be accomplished by many proposed selection strategies

including roulette-wheel selection, tournament selection, stochastic universal

selection and ranking selection (Goldberg and Rudnick, 1991). For example, a

solution with the highest fitness has the highest probability of being selected

in roulette-wheel selection (Bianchi et al., 2009).

Algorithm13: The Genetic algorithm

 1: procedure GA
 2: Initialise ݊݋݅ݐ݈ܽݑ݌݋݌ ݄݁ݐ
 3: Evaluate each ݅݊݀݅ݏ݈ܽݑ݀݅ݒ
 4: repeat
 5: Select ݅݊݀݅ݏ݈ܽݑ݀݅ݒ for ݊݋݅ݐܾܽ݊݅݉݋ܿ݁ݎ
 6: for ݃݁݊݊݋݅ݐ݊݁ݐ ൌ ͳ to ݔܽܯ௚௘௡௧௘௔௧௜௢௡ do
 7: Recombine ݅݊݀݅ݏ݈ܽݑ݀݅ݒ generating new ones
 8: Mutate the new ݅݊݀݅ݏ݈ܽݑ݀݅ݒ
 9: Evaluate each ݅݊݀݅ݏ݈ܽݑ݀݅ݒ
10: Replace old ݅݊݀݅ݏ݈ܽݑ݀݅ݒ with the new ones
11: end for
12: until (a chosen stopping condition)
13: end procedure

Reprinted from (Goldberg, 1989).

The choice of an appropriate selection strategy has a significant effect

on the guidance of the search (Goldberg and Rudnick, 1991). After the

selection stage, genetic operators (crossover and mutation) are applied to the

selected solutions (steps 7 and 8) in order to create a new population

(offspring) for the next generation. Crossover and mutation are executed in

http://en.wikipedia.org/wiki/Stochastics

Chapter 2: Literature Review

45 | P a g e

the recombination and mutation stages respectively. In the recombination

stage (step 7), two or more solutions (parents) from the current generation

are combined to generate hopefully better new solutions (children) for the

next generation. Crossover can typically occur at one point or two points

(known as one-point and two-point crossover) depending on the method of

that is used (Goldberg et al., 1989). Many crossover operators have been

proposed, for example, Partially Matched Crossover (PMX) and Simulated

Binary Crossover (SBX). In the mutation stage (step 8), a change is made to

an individual solution. The mutation in a GA is considered as a subsidiary

operation that is used to increase the diversity of the population (Sastry et

al., 2005). A typical example of mutation is bit-flip. The last stage (step 10) is

replacement. The aim of this stage is to replace the old population with the

new one for the next generation (Goldberg et al., 1989; Sastry et al., 2005).

Examples of replacement methods are steady-state replacement, elitist

replacement and generation-wise replacement.

In the context of GAs, the diversification strategy is accommodated by

mutation, while intensification is accommodated by crossover operators and

the selection process. However, mutation and population size have a critical

impact on the scalability and performance of the algorithm. A small population

size results in limited search exploration while a large population size results

in long computational time (Reeves, 2003). Furthermore, too high a mutation

rate can affect the diversity of the population (Goldberg, 1999; Reeves,

2003).

The main disadvantage of GA is the requirement of the fitness function.

Some complex real-world problems such as structural optimisation problems

cannot be tackled by GA, because it requires hours (sometimes days) of

computational time for fitness evaluation (Reeves, 2003). Possible

alternatives are to use approximated fitness or delta evaluation.

2.2.10 Other Meta-heuristic Algorithms

Many other meta-heuristic approaches have been proposed in the

scientific literature, whether they belong to population-based approaches

scatter search, or they belong to single-point search class such as variable

neighbourhood search (VNS), iterated local search (ILS). Some may fit into

both classes such as memetic algorithms (MA).

http://en.wikipedia.org/wiki/Fitness_approximation

Chapter 2: Literature Review

46 | P a g e

Ant colony optimisation (ACO) is a constructive meta-heuristic

introduced by Dorigo et al. (1996). It simulates the behaviour of the real ants

and the way they deposit pheromone to communicate with other ants. ACO

use artificial pheromone trials as an indirect communication mechanism to

distribute information among artificial ants (agents) in order to produce new

solutions (Dorigo and Stützle, 2003).

Scatter search (SS) is a deterministic population-based alternatives for

evolutionary algorithms that was introduced by Glover (1977). The key idea

of this approach is to attempt to obtain better solutions through the

construction of new solutions by linear combinations. Its strategy is based on

the concept of combining decision rules and constraints in integer

programming (Glover at al., 2003). Scatter search involves five major

procedures: diversification generation, improvement, updating of a reference

set, generation of subsets and the combining of solution procedures. For more

details see (Glover at al., 2003).

Variable neighbourhood search (VNS) is a dynamic meta-heuristic

approach proposed by Hansen and Mladenovic (1999). The algorithm provides

several degrees of freedom to implement a wide range of variants (Blum and

Roli, 2003) through dynamically changing neighbourhood structures. The

basic design of VNS is different to other meta-heuristics. On some occasions

only a few parameters may be needed, or none at all (Hansen, 2005). A

standard VNS comprises three main phases: shaking, local search and move.

The main aim of the shaking phase is to apply perturbation to a solution in

order to make it a starting point for the local search (Hansen, 2005). In the

context of VNS, the neighbourhoods are randomly chosen; then a solution of

neighbourhoods is chosen (often randomly) as a starting point for the local

search. Once the local search is terminated, the new solution that is found is

compared with the initial solution. If it is better, the initial solution is replaced

by the new one. Otherwise, a new iteration is started, including a new shaking

phase with different neighbourhoods (Blum and Roli, 2003; Hansen, 2005).

Iterated local search (ILS) (Lourenco at el., 2003) is a stochastic local

search method, and is a simple and powerful meta-heuristic approach (Martin

et al., 1991; Stützle, 1999; Lourenco et al., 2003). It uses local search using

an initial solution. Once the local optimum is found, the perturbation strategy

Chapter 2: Literature Review

47 | P a g e

is used in order to escape from it, then the local search restarts. A typical ILS

includes three main processes: the choice of the initial solution, acceptance

criteria and perturbation. The perturbation operators are particularly

important (Blum and Roli, 2003); a larger perturbation makes the algorithm

behave as a random restart local search whereas a small perturbation may

result in an inability to escape from the local optima.

Memetic algorithms (MA) are a meta-heuristic that incorporates a local

search strategy within an evolutionary algorithm. It was proposed by Moscato

(1999). The most common memetic algorithms utilise genetic algorithm,

carrying out a local search on each member of population in every generation.

In the context of the memetic algorithm, the methods of individual learning

usually include some knowledge of the problem at hand. These methods can

be deterministic or stochastic. Moreover, many other studies have been

presented in the literature in hybrid evolutionary algorithms and hill climbing

strategies using multi-local searchers known as multimemes. Multimeme

algorithms adaptively select from a set of local search procedures. Example of

multimeme approaches can be found in Krasnogor and Smith, (2002) and

Krasnogor (2002) and Krasnogor and Gustafson (2004).

2.2.11 Multi-objective Meta-heuristic

Meta-heuristics were originally designed to tackle single-objective

optimisation problems. They have been extended to tackle multi-objective

problems in a single run, without converting it to a single-objective problem,

for example, by linearly weighting each objective. Multi-objective evolutionary

algorithms such as MOGA (Fonseca and Fleming, 1993) and NSGA (Srinivas

and Deb, 1994) (see Section 2.1.3) have had significant success in the multi-

objective field due to their suitability to tackle such types of problems.

However, a number of multi-objective meta-heuristics based on local search,

such as simulated annealing and tabu search have been successfully applied

to various multi-objective problems (Landa-Silva et al., 2004). The most

common application that has been successfully tackled by multi-objective

local search are multicriteria scheduling problems including flowshop

scheduling problems and machine scheduling problems (see (Blazewicz et al.,

1996; Baykasoglu et al., 1999 ; Gandibleux and Freville, 2000; Jaszkiewicz,

2001a)).

Chapter 2: Literature Review

48 | P a g e

Thompson and Dowsland (1996) proposed a multi-phased simulated

annealing algorithm to solve the examination timetabling problem. In this

approach, the problem is formulated as a graph colouring problem and has

two phases. The first phase aims to satisfy all the hard constraints (which is

the first objective). The second phase aims to minimise the violations of soft

constraints (which is the second objective). Moreover, Ulungu (1993)

presented a multi-objective simulated annealing approach (MOSA). The

author used simulated annealing to tackle a problem with multiple objectives

(maybe two or three objectives). Another multi-objective simulated annealing

based approach was proposed by Nam and Park (2000). The approach obtains

good results when compared to MOEAs.

Gandibleux et al. (1997) presented the first multi-objective tabu search

approach, the so-called MOTS. In this approach, special aspiration criteria,

intensification and diversification strategies are designed for the multi-

objective class, and a scalarising function and a reference point are used to

enumerate a set of possible good solutions.

Jaszkiewicz (2001b) introduced a hybrid multi-objective approach based

on genetic algorithm and local search. This is the so-called MOGLS. In this

approach, local improvement heuristics are combined with crossover

operators. Another hybrid method of a multi-objective approach has been

proposed by Barichard and Hao (2002) known as the MOGTS, it is based on a

combination of a genetic algorithm and tabu search. It is applied to the multi-

constraint knapsack problem and showed competitive results. Li and Landa-

Silva (2011) present an adaptive evolutionary multi-objective approach.

Based on simulated annealing, it is called EMOSA. It incorporates simulated

annealing and adapts weight vectors corresponding to various subproblems.

The proposed approach is applied to the multi-objective knapsack problem

and the multi-objective travelling salesman problem. It outperforms six multi-

objective meta-heuristic algorithms from the literature.

2.3 Hyper-heuristics

Some real-world problems are complex. Due to their (often) NP-hard

nature, researchers and practitioners frequently resort to problem tailored

heuristics to obtain a reasonable solution in a reasonable amount of time.

Hyper-heuristics are methodologies that operate on a search space of

Chapter 2: Literature Review

49 | P a g e

heuristics rather than directly searching the solution space for solving hard

computational problems, with one of the key aims being to raise the level of

generality. Many real-world computational problems have been solved

successfully using state-of-the-art approaches and meta-heuristics

techniques such as tabu search, genetic algorithms and simulated annealing

(Burke et al., 2013). However, this success is often limited to a particular

class of problem (or even particular problem instances) that has been solved

using a specific implementation (Burke et al., 2013). The same

implementation often cannot solve a new instance of the same problem

unless the related parameters are properly tuned. Such methods are usually

expensive to transfer to, and maintain, for new problems (Burke et al.,

2013; Qu & Burke, 2009). Hyper-heuristics approaches have been proposed

in order to raise the level of generality of search methodologies (Burke et

al., 2010). Moreover, hyper-heuristics produce general search algorithms

that are applicable for solving a wide range of the problems in different

domains (Burke et al., 2010; Burke et al., 2013; Özcan et al., 2008; Ross,

2005).

In a hyper-heuristic approach, different heuristics (or heuristic

components) can be selected, generated or combined to solve a given

optimisation problem in an efficient way. In their simplest form hyper-

heuristics are a search methodology that encompasses a high level strategy

(which could be a meta-heuristic) that controls the search over a set of

heuristics (heuristic components) rather than controlling a search over a

direct representation of the solutions (Burke et al., 2010, 2013). In other

words, hyper-heuristics performs as a “heuristic scheduler” within a set of low

level heuristics using deterministic or non–deterministic methods; it is also

sometimes termed Move acceptance strategies (Özcan et al., 2008).

Burke et al. (2013) define Hyper-heuristics as follows:

“A search method or learning mechanism for selecting or generating

heuristics to solve computational search problems”.

This definition will apply to the use of the term “hyper-heuristic“ throughout

this thesis. According to the recent definition of meta-heuristic, proposed by

Sörensen and Glover (2013), we can define hyper-heuristics as a set of meta-

heuristics.

Chapter 2: Literature Review

50 | P a g e

To date, numerous hyper-heuristics papers have been published and

several studies are being undertaken in this area of research. However, the

notion of hyper-heuristics is not new. According to Burke et al. (2010, 2013)

the idea of hyper-heuristics was first proposed in the early 1960s. Fisher and

Thompson (1961, 1963) and Crowston et al. (1963) proposed the idea of a

combination of dispatching rules (priority) to solve production scheduling

problems so these combined rules were demonstrated to be superior to any

rule taken in isolation. They also describe a method of combination by using

“probabilistic learning” that simulated the mechanism of reinforcement

learning in humans. Although computational search methodologies were still

not mature at that time, the learning method proposed is similar to a

stochastic local search algorithm performing in the space of scheduling rules'

sequences (Burke et al. 2013). The main important conclusions from Fisher

and Thompson’s (1963) study are “(1): an unbiased random combination of

scheduling rules is better than any of them taken separately, and (2) learning

is possible".

The first time the term hyper-heuristics appeared was in a technical

report by Denzinger et al. (1997) to illustrate a protocol that combines a

range of Artificial Intelligence (AI) algorithms. Cowling et al (2000) used the

term in a peer-reviewed conference paper to present the idea of the heuristic

selection in scheduling a sales summit. The ideas in this paper was further

developed and applied to scheduling problems in (Cowling et al, 2001,

2002a,b,c).

2.3.1 The Concept of Hyper-heuristics

In a hyper-heuristic approach, different heuristics can be selected,

generated or combined to solve a given optimisation problem in an efficient

way. Since each heuristic has its own strengths and weaknesses, one of the

aims of hyper-heuristics is to automatically inform the algorithm by combining

the strength of each heuristic and making up for the weaknesses of others.

This process requires the incorporation of a learning mechanism into the

algorithm to adaptively direct the search at each decision point for a particular

state of the problem or the stage of search. It is obvious that the concept of

hyper-heuristics has strong ties to Operational Research (OR) in terms of

finding optimal or near-optimal solutions to computational search problems. It

is also firmly linked to artificial intelligence (AI) in terms of machine learning

Chapter 2: Literature Review

51 | P a g e

methodologies (Burke et al., 2013). In the context of hyper-heuristics,

learning knowledge control mechanisms plays a significant role in applying the

appropriate low level heuristic at each decision point. Moreover, these

mechanisms guide the search adaptively to improve the search methodologies

(Burke et al., 2013).

The general framework of the hyper-heuristic is illustrated in Figure 2.7.

Usually, in a hyper-heuristic framework, there is a clear separation between

the high level hyper-heuristic approach (also referred to as strategy) and the

set of low level heuristics or heuristic components. It is assumed that there is

a domain barrier between them (Burke et al, 2003b). The purpose of domain

barrier is to give the hyper-heuristics a higher level of abstraction. This also

increases the level of generality of hyper-heuristics by being able to apply it

to a new of problem without changing the framework. Only a set of problem-

related heuristics are supplied.

Figure 2.7: A generic hyper-heuristic framework. Reprinted from (Burke et al., 2003b).

The barrier allows only problem domain independent information to flow

from the low level to the high level, such as the fitness/cost/penalty value

(measured by an evaluation function, indicating the quality of a solution)

(Hussin, 2005). Low level heuristics or heuristic components are the problem

domain specific elements of a hyper-heuristic framework; hence they have

access to any relevant information, such as candidate solution(s). The high

level strategy can be a (meta-) heuristic or a learning mechanism (Burke et

al.,2003b). The task of the high level strategy is to guide the search

intelligently and adapt according to the success/failure of the low level

Chapter 2: Literature Review

52 | P a g e

heuristics or combinations of heuristic components during the search process,

in order to enable the reuse of the same approach for solving different

problems (Qu and Burke, 2009). Thus, the high level strategy does not

change while both the low level heuristics or heuristic components and the

evaluation function require changing when tackling a new problem.

2.3.2 Hyper-heuristics Classification

Two types of hyper-heuristic methodologies can be identified in the

literature (Burke et al., 2013): (i) heuristic selection methodologies: (meta-

)heuristics to choose (meta-)heuristics, and (ii) heuristic generation

methodologies: (meta-)heuristics to generate new (meta-)heuristics from

given components. Selection hyper-heuristics produce sequences of heuristics

which lead to good quality solutions while generation hyper-heuristics produce

new heuristics. For both hyper-heuristic methodologies, there are two

recognized types of heuristics: (i) constructive heuristics which process a

partial solution(s) and build a complete solution(s), (ii) perturbative heuristics

which operate on complete solution(s). The notation of constructive and

perturbative indicates how the search through the solution space is managed

by the low level heuristics (Burke et al., 2013). However, a new direction of

hybrid approaches of hyper-heuristics might include a combination of heuristic

selection and heuristic generation methodologies, or a combination of

construction and perturbation heuristics (Burke et al., 2010). The selection

hyper-heuristics based on perturbative heuristics is the focus of this thesis.

More on generation hyper-heuristics can be found in (Burke et al., 2013;

Burke et al., 2010; Ross, 2005).

An orthogonal classification of hyper-heuristics is provided in Burke et

al. (2010) (see Figure 2.8) depending on: (i) the nature of the heuristic

search space and (ii) the source of feedback during the search process.

Hyper-heuristics can be used to select or generate constructive or

perturbative heuristics which determine the nature of the heuristic search

space. However, a new research direction of hybrid hyper-heuristics might

include a combination of heuristic selection and heuristic generation

methodologies, or a combination of constructive and perturbative heuristics. A

hyper-heuristic can employ no learning, online learning (getting feedback

from the search process while solving an instance), or offline learning (getting

feedback via training over a selected set of instances to be utilized for solving

unseen instances). A hyper-heuristic which combines simple random heuristic

Chapter 2: Literature Review

53 | P a g e

selection with a method of accepting improving and equal quality moves is an

example which uses a no learning approach (Özcan et al., 2008). If a hyper-

heuristic incorporates a mechanism to adaptively guide the search process

and enable the approach to make informed decisions about selecting or

generating a low level heuristic, then it is a learning hyper-heuristic. Machine

learning techniques are commonly used in hyper-heuristics. For example,

reinforcement learning (based on reward/punishment) is employed as an

online learning method for heuristic selection in hyper-heuristics (Cowling et

al., 2002c). Genetic programming is frequently used as an offline learning

hyper-heuristic which learns via the evolutionary process (Burke et al, 2009).

In this thesis, we present an online learning selection hyper-heuristic based

on perturbation heuristics (see Chapters 4-8).

Figure 2.8: A classification of Hyper-heuristic. Reprinted from (Burke et al., 2010)

 2.3.2.1 Selection Methodologies

In the context of selection hyper-heuristics, the search space involves a

set of widely known and understood heuristics. These heuristics are

decomposed into their primary components in order to solve a particular

problem (Burke et al., 2010). Heuristic selection methodologies can be based

on either perturbative low level heuristics or the construction low level

heuristics.

Selection hyper-heuristics based on perturbation heuristics perform a

search using two successive stages (Burke et al., 2013; Özcan et al, 2008):

(meta-)heuristic selection and acceptance. An initial solution (a set of initial

Chapter 2: Literature Review

54 | P a g e

solutions) is iteratively improved using the low level (meta-)heuristics until

some termination criteria is satisfied. During each iteration, the (meta-

)heuristic selection decides which low level (meta-)heuristic will be executed

next based on some criteria (perhaps randomly). After the selected (meta-

)heuristic is applied to the current solution (a set of solutions), a decision is

made whether to accept the new solution(s) or not using an acceptance

method. The low level (meta-)heuristics in a selection hyper-heuristic

framework are, in general, human designed heuristics which are fixed before

the search starts.

A wide variety of selection hyper-heuristics based on perturbation

heuristics are proposed using different heuristic selection and acceptance

strategies in different domains: packing, vehicle routing, timetabling, channel

assignment, component placement, personnel scheduling, planning and shelf

space allocation (Burke et al., 2010). Most of the existing selection hyper-

heuristics are based on perturbative low level heuristics, and favour single-

point search.

More elaborate acceptance mechanisms have been introduced and there

is a growing body of comparative studies which evaluate the performance of

different heuristic selection and acceptance combinations (Burke et al., 2013).

Cowling et al. (2002c) investigated the performance of different hyper-

heuristics, combining different heuristic selection, with different move

acceptance methods on a real world scheduling problem. Simple Random,

Random Descent, Random Permutation, Random Permutation Descent,

Greedy and Choice Function were introduced as heuristic selection methods.

The authors utilised the following deterministic acceptance methods: All-

Moves accepted and Only Improving moves accepted. The hyper-heuristic,

combining Choice Function with All-Moves acceptance, performed the best. In

Kendall et al. (2002) the choice function based hyper-heuristic was proposed

and applied to nurse scheduling and sales summit scheduling. The study

shows that the choice function hyper-heuristic is successful in making

effective use of low level heuristics, due to its ability of learning the dynamics

between the solution space and the low level heuristics to guide the search

process towards better quality solutions. Burke et al. (2003c) proposed

reinforcement learning with tabu search methodology in order to solve

rostering problems. The approach is tested on two problems, concerning

university timetabling and nurse rostering. The results were comparable to

other state-of-the-art approaches.

Chapter 2: Literature Review

55 | P a g e

Bai and Kendall (2005) proposed an approach using simulated annealing

as a non-deterministic move acceptance strategy in order to apply it to a shelf

space allocation problem. In this approach, improving solutions are always

accepted, and worsening moves are accepted based on the Metropolis

criterion. The results show that the Simple Random in hyper-heuristics

simulated annealing based produces a better solution than Simple Random-

Only Improving, Simple Random All-Moves, Greedy Only Improving and

Choice Function All-Move. Dowsland et al. (2007) present simulated

annealing with reheating as a non-deterministic move acceptance strategy in

order to determine shipper sizes for storage and transportation in relation to a

packing problem. Reinforcement-Learning with tabu search (RLTS) selection

heuristic strategy is employed. The experimental data are generated based on

actual data from a cosmetics company. The study’s results show that

simulated annealing with reheating and RLTS outperform the simpler local

search strategy of Random Descent, Bai et al (2012) presents an extended

hyper-heuristics framework based on the above studies. The proposed hyper-

heuristic uses a reinforcement learning mechanism with a short term memory

as a heuristic selection and SA with a reheating scheme as a move acceptance

method. The proposed approach evaluated on different problem domains

including nurse rostering, course timetabling and bin packing. Pisinger and

Ropke (2007) developed an approach using simulated annealing based on a

linear cooling rate as an acceptance strategy and applied it to five different

vehicle routing problems. A large neighbourhood search framework is

employed. The approach was tested over a wide range of vehicle routing

benchmark instances. The experimental results confirm that the strategies

used in the approach can produce better solutions over many instances.

 In Özcan et al. (2008) the performance of seven different heuristic

selection methods (Simple Random, Random Descent, Random Permutation,

Random Permutation Descent, Greedy, Choice Function and Tabu Search)

combined with five acceptance methods (All-Moves, Only Improving,

Improving & Equal, Exponential Monte Carlo with Counter and Great Deluge)

were investigated. The resultant hyper-heuristics were tested on fourteen

benchmark functions against genetic and memetic algorithms. The empirical

results confirmed the success of memetic algorithms over genetic algorithms

and the performance of a choice function based hyper-heuristic was

comparable to the performance of a memetic algorithm. Özcan et al. (2009)

Chapter 2: Literature Review

56 | P a g e

used late acceptance as the non-deterministic move acceptance strategy with

the best combination heuristic selection methods in order to solve exam

timetabling problems. The results show that Simple Random combined with

late acceptance outperforms Simple Random combined with other heuristic

selection methods like Greedy, Choice Function, Reinforcement-Learning and

Reinforcement-Learning Tabu Search. In Gibbs et al. (2011) the performance

of different hyper-heuristics are compared with different components

emphasising the influence of learning heuristic selection methods for solving a

sports scheduling problem. The experimental result shows that the proposed

approach is slightly better than the other approaches that use choice function

as heuristic selection and great deluge as an acceptance criteria for solving a

sports scheduling problem.

In Özcan and Kheiri (2011) a greedy heuristic selection strategy was

presented which aims to determine low level heuristics with good performance

based on the trade-off between the change (improvement) in the solution

quality and the number of steps taken. This method performs well with

respect to the competition hyper-heuristics on four problem domains.

Berberoglu and Uyar (2011) compared the performance of combining twenty

four learning and non-learning selection hyper-heuristics and seven

mutational and hill-climbing heuristics. The study shows that Random

Permutation Descent Only Improving performed the best on a short-term

electrical power scheduling problem.

Recently, a wide empirical analysis was conducted in Burke et al. (2012)

to compare many Monte Carlo based hyper-heuristics for examination

timetabling. The experimental results show that choice function simulated

annealing with reheating performs well. Another study was conducted by

Bilgin et al. (2007) using a set of eight heuristic selection strategies (Simple

Random, Random Gradient, Random Permutation, Random Permutation

Gradient, Greedy, Choice function, Reinforcement Learning and Tabu Search)

and five move acceptance strategies (All-Moves, Only Improving, Improving &

Equal, Great Deluge Algorithm and Exponential Probability Function based on

the computation time and a counter of consecutive (EMCQ)) which were

tested on different timetabling benchmark problems. The study showed that

there is no one strategy that dominates every other combination strategies.

Vinkö and Izzo (2007) proposed a new distributed solver based on

cooperatively standard versions of some stochastic solvers. The proposed

Chapter 2: Literature Review

57 | P a g e

approach outperforms the stand alone classical methods. Biazzini et al.

(2009) presented a set of distributed hyper-heuristic based on an island

model. The approach was compared against other hyper-heuristics over a set

of real parameter optimisation problems.

Misir et al. (2011) proposed a move acceptance method referred to as

Adaptive Iteration Limited List-based Threshold Acceptance (AILLA). The

proposed move acceptance is compared to other move acceptance strategies

including LA, SA, GDA and Improving & Equal. All the comparison methods

are combined with Simple Random heuristic selection. The results show that

AILLA and Late acceptance outperform the others. Misir et al. (2012) extend

the work by presenting a heuristic selection based on heuristic dynamic

learning. The approach that combined AILLA and this heuristic selection was

the winner of the CHeSC competition. Drake et al. (2012) presented a hyper-

heuristic employing a variant of the choice function as a heuristic selection

with a simple new initialisation and update scheme. Demeester et al. (2012)

presented Simple Random based hyper-heuristics using different move

acceptance strategies including Improving or Equal, GDA, SA, LA and

Steepest Descent Late Acceptance for examination timetabling. The

experimental results show that the Simple Random SA hyper-heuristic

performs the best over exam benchmark datasets. A recent study on hyper-

heuristics for continuous optimisation in dynamic environments is proposed by

Kiraz et al. (2011). The proposed approach uses a parameterised Gaussian

mutation to create different low level heuristics. The experimental results

show that the choice function Improving & Equal hyper-heuristic outperforms

Simple Random Improving & Equal hyper-heuristic.

There are a number of hyper-heuristic approaches in the literature

based on evolutionary algorithms. An example of a hyper-heuristic approach

based on a genetic algorithm can be in Dorndorf and Pesch (1995). Although

the term of hyper-heuristic was not created by the authors, the concept of a

hyper-heuristic was employed through a probabilistic learning strategy based

on the principles of evolution. The proposed algorithm was applied to solving

job shop scheduling problems. Another example of a hyper-heuristic approach

based on a genetic algorithm can be found in Hart et al. (1998). This

approach was used for handling a set of low level heuristics to solve a chicken

catching and transportation problem. Ross and Marin-Blazquez (2005) also

present a messy genetic algorithm hyper-heuristic based on graph colouring

Chapter 2: Literature Review

58 | P a g e

heuristics to tackle class and exam timetabling problems. The key idea behind

their approach was to devise an algorithm to find the problem states through

a set of labelled points which it refers to as a heuristic. The approach

produces fast problem-solving algorithms compared with other existing

algorithms. A messy genetic algorithm is employed by Terashima Marın et al.

(2008) for class and exam timetabling problems. The proposed offline

approach shows an ability to produce good quality solutions. Cobos et al

(2011) present different variants of evolutionary approaches under a multi-

point based search framework. The proposed approaches are tested on

different combinations of heuristic selection and move acceptance methods on

the document clustering problems. Grobler et al. (2012) presents a hybrid

approach on a set of meta-heuristics including a genetic algorithm, particle

swarm optimisation variants, CMA-ES and differential evolution that was

combined with local search under a multi-point hyper-heuristic framework.

In selection hyper-heuristics based on construction heuristics, an initial

solution is empty and is then built up gradually via the use of constructive

heuristics. A complete solution is obtained at the end of the run (Burke et al.,

2013). Various construction low level heuristic based approaches are

proposed using a variety of high level strategies in different domains.

According to a recent survey conducted by Burke et al. (2013), the popular

high level strategy used in heuristic selection based on constructive

heuristics are hill-climbing, genetic algorithms, tabu search, iterated local

search, variable neighbourhood search, fuzzy systems, case-based reasoning,

classifier systems, messy genetic algorithms and scatter search. In addition,

the common domains which have applied heuristic selection based on

constructive heuristics are packing, vehicle routing, timetabling and

production scheduling and constraint satisfaction domains.

 2.3.2.2 Generation Methodologies

As the focus of this thesis is on selection hyper-heuristic methodologies,

only a brief review of the literature on generation hyper-heuristic

methodologies is presented in this section.

Generation hyper-heuristic methodologies refer to generating new

heuristics from the basic components of existing heuristics, known as a set of

building blocks. Generation hyper-heuristic methodologies can be based on

Chapter 2: Literature Review

59 | P a g e

either construction low level heuristics or perturbation low level heuristics

(Burke et al., 2010). In the context of heuristic generation, the search space

involves a set of basic components of known and understood heuristics. A new

heuristic is generated to produce the solution for a given problem at the end

of a run (Burke et al., 2013). Although generation hyper-heuristics aim to

generate a new heuristic automatically, using building blocks of heuristics, the

heuristic components still have to be designed by humans (Burke et al.,

2010). Generation hyper-heuristics have some advantages in terms of their

ability to produce a better solution than human-designed heuristics. In

addition, they require less (human) time and human resources to be applied

to various problem instances. However, they do have some disadvantages in

the short term regarding their computational cost (Burke et al., 2013).

The most common generation hyper-heuristics are genetic

programming-based. That is because of this methodology’s suitability to

represent heuristics in an effective way (Jakobovic et al., 2007). Genetic

programming (Koza, 1992) is an evolutionary computation technique that

operates on a population of computer programs. However, other generation

approaches have been developed based on the squeaky wheel optimisation

methodology (Joslin and Clements,1999; Aickelin et al.,2009; Burke and

Newall, 2004).

Various automated generation hyper-heuristic approaches have been

proposed in different problem domains including the travelling salesman

problem, satisfiability testing (SAT), production scheduling, cutting and

packing, boolean satisfiability, binary decision diagrams, constraint

satisfaction and compiler optimisation. An example of the generation

approach for boolean satisfiability is presented by Bader-El-Den and Poli

(2007). The approach uses genetic programming to produce local search

heuristics. In their study, traditional crossover and mutation operators are

used within various heuristic generation methodologies. Burke et al. (2006;

2007a,b) propose the generation of construction heuristics using genetic

programming. The proposed approach was evaluated on the bin packing

problems. The study confirms the applicability of the approach to these types

of problems. Further, the results show that the approach can beat the human-

designed heuristics in terms of its ability to perform better over a new

instance of a particular class of heuristic rather than new instance of a

different class. Keller and Poli (2007) propose a genetic-programming hyper-

Chapter 2: Literature Review

60 | P a g e

heuristic approach to evolve local search heuristics in order to solve travelling

salesman problems. The evolved heuristics show good performance over two

TSP benchmark instances. Pillyay (2008) conducted an analysis of

performance in genetic programming systems under three representations

(alternative encodings, fixed length and variable length) for the examination

timetabling problem. The study shows that fixed length representation

perform badly. In Özcan and Parkes (2011) present a hyper-heuristic for

generating constructive heuristics (policies). The whole process is formulated

as a tuning process where there are many parameters in the system.

In term of multi-objective approaches, Tay and Ho (2008) propose a

genetic programming hyper-heuristic approach to evolve dispatching rules to

solve multi-objective job-shop problems in production scheduling. The

dispatching rules generated performed better than single dispatching rules.

Allen et al. (2009) present an empirical study comparing the quality of genetic

programming heuristics and human heuristics that were designed to solve 3D

knapsack packing problems. The results indicate that the generated heuristics

perform competitively against state-of–the-art approaches. Kumar et al.

(2009) propose multi-objective genetic programming for the minimum

spanning tree problem. The diameter and cost of the trees serve as

objectives. In this approach, the evolved heuristics are used to generate the

Pareto optimal front and produced good quality solutions compared with

existing heuristics.

This section has reviewed the papers in the area of research that are

particularly relevant to this thesis. For comprehensive surveys and examples

see (Burke et al, 2013). Some valuable guidelines for implementing a hyper-

heuristic approach can also be found in Ross (2005).

2.3.3 Multi-objective Hyper-heuristics Approaches

Hyper-heuristics have recently seen an increase in attention from

researchers. Although many hyper-heuristics papers have been published,

they are still mainly limited to single-objective optimisation. The hyper-

heuristics for multi-objective optimisation problems is a new area of research

in Evolutionary Computation and Operational Research (Özcan et al., 2008;

Burke et al., 2013). To date, few studies, have been identified that deal with

hyper-heuristics for multi-objective problems (see Table 2.2).

Chapter 2: Literature Review

61 | P a g e

The first approach (Burke et al., 2003a) is a multi-objective hyper-

heuristic based on tabu search (TSRoulette Wheel). The key feature of this

paper lies in choosing a suitable heuristic at each iteration to tackle the

problem at hand by using tabu search as a high-level search strategy. The

proposed approach was applied to space allocation and timetabling problems

and produced results with acceptable solution quality. An adaptive multi-

method (multi-point) search called AMALGAM is proposed in Vrugt and

Robinson (2007). It employs multiple search algorithms; NSGAII (Deb and

Goel, 2001), PSO (Kennedy, 2001), AMS (Haario et al., 2001), and DE (Storn

and Price, 1997) simultaneously using the concepts of multi-method search

and adaptive offspring creation. AMALGAM is applied to a number of

continuous multi-objective test problems and it was superior to other

methods. It was also applied to solve a number of water resource problems

and it yielded very good solutions (Raad et al., 2010; Zhang et al., 2010}.

Veerapen et al. (2009) present a multi-objective hyper-heuristic approach

comprising two phases: the first phase aims to produce an efficient Pareto

front (this may be of low quality based on the density), while the second

phase aims to deal with a given problem in a flexible way to drive a subset of

the population to the desired Pareto front. This approach was evaluated on

the multi-objective travelling salesman problems with eleven low level

heuristics. It is compared to other multi-objective approaches from the

literature which reveals that the proposed approach generates good quality

results but future work is still needed to improve the methodology. Len et al.

(2009) propose a hypervolume-based hyper-heuristic for a dynamic-mapped

multi-objective island-based model. The proposed method shows its

superiority when compared to the contribution based hyper-heuristic and

other standard parallel models over the WFG test problems (Huband et al.,

2006). A new hyper-heuristic based on the multi-objective evolutionary

algorithm NSGAII (Deb and Goel, 2001) is proposed in Gomez and Terashima-

Marʆn (2010). The main idea of this method is in producing the final Pareto-

optimal set, through a learning process that evolves combinations of

condition-action rules based on NSGAII. The proposed method was tested on

many instances of irregular 2D cutting stock benchmark problems and

produced promising results. A multi-strategy ensemble multi-objective

evolutionary algorithm called MS-MOEA for dynamic optimization is proposed

in Wang and Li (2010). It combines different strategies including a memory

strategy and genetic and differential operators to adaptively create offspring

and achieve fast convergence speed. Experimental results show that MS-

Chapter 2: Literature Review

62 | P a g e

MOEA is able to obtain promising results. In McClymont and Keedwell (2011)

an online selection hyper-heuristic, Markov chain based, (MCHH) is

investigated. The Markov chain guides the selection of heuristics and applies

online reinforcement learning to adapt transition weights between heuristics.

In MCHH, hybrid meta-heuristics and Evolution Strategies were incorporated

and applied to the DTLZ test (Deb et al., 2002) problems and compared to a

(1+1) evolution strategy meta-heuristic, a random hyper-heuristic and

TSRoulette Wheel (Burke et al., 2003a). The comparison shows the efficacy of

the proposed approach in terms of Pareto convergence and learning ability to

select good heuristic combinations. Further work is needed in terms of

diversity preserving mechanisms. The MCHH was applied to the WFG test

problems (Huband et al., 2006), the experiments shows efficacy of the

method but future work is still needed in terms of acceptance strategies to

improve the search (McClymont and Keedwell, 2011). The MCHH has also

been applied to real-world water distribution networks design problems and

produced competitive results (McClymont et al., 2013). In Miranda et al.

(2010) and Armas et al. (2011), a hyper-heuristic-based codification is

proposed for solving strip packing and cutting stock problems with two

objectives that maximise the total profit and minimise the total number of

cuts. Experimental results show that the proposed hyper-heuristic

outperforms single heuristics. In Furtuna et al. (2012) a multi-objective

hyper-heuristic for the design and optimisation of a stacked neural network is

proposed. The proposed approach is based on NSGAII combined with a local

search algorithm (Quasi-Newton algorithm). Rafique (2012) presented a

multi-objective hyper-heuristic optimisation scheme for engineering system

design problems. A genetic algorithm, simulated annealing and particle swarm

optimisation are used as low-level heuristics. Vázquez-Rodríguez and Petrovic

(2013) proposed a multi-indicator hyper-heuristic for multi-objective

optimisation. This was approach based on multiple rank indicators that taken

from NSGAII (Deb & Goel, 2001), IBEA (Zitzler and Künzli, 2004) and SPEA2

(Zitzler et al., 2001). Len et al. (2009) proposed a hypervolume-based hyper-

heuristic for a dynamic-mapped multi-objective island-based model. Bai et al.

(2013) proposed a multiple neighbourhood hyper-heuristic for two-

dimensional shelf space allocation problem. The proposed hyper-heuristic was

based on a simulated annealing algorithm. Kumari et al. (2013) present a

multi-objective hyper-heuristic genetic algorithm (MHypGA) for the solution of

Multi-objective Software Module Clustering Problem. In MHypGA, different

Chapter 2: Literature Review

63 | P a g e

methods of selection, crossover and mutation operations of genetic algorithms

are incorporated as a low level heuristics.

None of the above studies have used multi-objective evolutionary

algorithms (MOEAs), with the exception of Gomez and Terashima-Marín

(2010), Vrugt and Robinson (2007) and Rafique (2012) and no continuous

and standard multi-objective test problems studied, except in except in

McClymont and Keedwell (2011), Vrugt and Robinson (2007), Len et al.

(2009) and Vázquez-Rodríguez and Petrovic (2013). Moreover, none of the

previous hyper-heuristics make use of the components specifically designed

for multi-objective optimisation that we introduce in this thesis.

Component name Application domain/
test problems

Reference(s)

Tabu search Space allocation, timetabling Burke et al. (2003)

Travelling salesman problems Veerapen et al. (2009)
Markov chain, evolution strategy Real-world water distribution

networks design /DTLZ, WFG
McClymont and Keedwell
(2011)

NSGAII

Irregular 2D cutting stock Gomez and Terashima-Marín
(2010)

Strip packing and Cutting stock de Armas et al. (2011) and
Miranda et al.(2010)

NSGAII, quasi-Newton algorithm Stacked neural network Furtuna et al. (2012)
Number of operations from
NSGAII, SPEA2 and IBEA

A number of continuous multi-
objective test problems

Vázquez-Rodríguez and
Petrovic (2013)

Number of selection, crossover
and mutation operations of
evolutionary algorithms

Software module clustering Kumari et al. (2013)

Hypervolume Dynamic-mapped island-based
model/ WFG

Len et al. (2009)

Particle swarm optimisation,
adaptive metropolis algorithm,
differential evolution

Water resource problems/ a
number of continuous
multiobjective test problems

Vrugt and Robinson(2007),
Raad et al. (2010) and Zhang
et al. (2010)

Memory strategy, genetic and
differential operators

Dynamic optimization
problems/a number of
continuous multi-objective test
problems

Wang and Li (2010)

Genetic algorithm, simulated
annealing, particle swarm
optimization

Engineering system design
problems/a number of classical
multi-objective test problems

Rafique (2012)

Simulated annealing Shelf space allocation Bai et al. (2013)

Table 2.2: Heuristic components and application domains of hyper-heuristics for multi-
objective optimisation.

2.3.4 Multi-objective Selection Hyper-heuristics versus

Hybrid Methods for Multi-objective Optimisation

According to Ke Tang in Vrugt et al. (2010), the idea of combining

multiple algorithms is not new at all, and can be traced back to 1980s. In the

context of multi-objective and evolutionary computation, many methods are

presented utilising this idea, such as adaptive multi-method algorithms (Vrugt

Chapter 2: Literature Review

64 | P a g e

and Robinson, 2007) and multi-strategy ensemble algorithms (Wang and Li,

2010).

The adaptive multi-method/strategy ensemble algorithms rely on

running multiple algorithms (such as MOEAs or evolution strategies)

simultaneously and adaptively creating the offspring. Both methods are

closely similar to selection hyper-heuristics for multi-objective optimisation

problems. Other researchers would argue that the adaptive multi-

method/strategy ensemble algorithms are hyper-heuristic methods. According

to Burke et al. (2013), the hyper-heuristics defined in Section 2.3. It is hard

to classify the adaptive multi-method/strategy ensemble algorithms as

selection or generation hyper-heuristics. However, we cannot remove them

from the umbrella of hyper-heuristics, as they are combining different

heuristics/ meta- heuristics. These methods are similar to the multi-objective

selection hyper-heuristic methods in term of the incorporation of different

algorithms. However, they are different from selection hyper-heuristics in

their concept. Selection hyper-heuristic rely on two concepts: a selection

mechanism and an acceptance move strategy. Both concepts are not adopted

in the adaptive multi-method/strategy ensemble algorithms. Moreover,

multiple heuristic/meta-heuristics run concurrently in the adaptive multi-

method/strategy ensemble algorithms. Each heuristic/meta-heuristics produce

a different population of offsprings, and then all produced offsprings are

evaluated to evolve a new population of offspring by an adaptive creation

offspring strategy. In multi-objective selection hyper-heuristics, a sequence of

heurstic/meta-heuristic is executed during the search, i.e. one heurstic/meta-

heuristic is selected and applied at each stage (iteration/decision point) of the

search. The high level strategy in hyper-heuristics evaluates the performance

of a set of heurstic/meta-heuristic in order to improve the population of

solutions.

In this thesis, a new online learning selection hyper-heuristic framework

which supports multi-point search and cooperative low level meta-heuristics

for multi-objective optimisation is proposed. Further details of this hyper-

heuristic framework are discussed in Chapter 4.

2.4 Summary

Our multi-objective hyper-heuristic framework that is investigated in

this thesis addresses multi-objective evolutionary algorithms, hyper-

Chapter 2: Literature Review

65 | P a g e

heuristics, meta-heuristics research areas. This chapter has reviewed previous

research work for those areas.

In this chapter also we provided a description of well-known

methodologies that address multi-objective optimisation and identify their

strengths and weaknesses. In this chapter, we reviewed the previous research

for multi-objective hyper-heuristics. None of the previous hyper-heuristics

make use of the components particularly designed for multi-objective

optimisation that we introduce in this thesis.

Several multi-objective test problems have been proposed in the

literature; for example, real-world problems, combinatorial optimisation

problems, discrete or integer-based problems, noisy problems, dynamic

problems, and problems with side constraints. In the next chapter, we

presents an overview and discusses the multi-objective optimisation test

problems in specifically the continuous unconstrained problems.

Chapter 3: Multi-objective Optimisation Test Problems

66 | P a g e

3 Multi-objective Optimisation Test Problems

A multi-objective problem (MOP) comprises several objectives (two or

more), which need to be minimised or maximised depending on the problem.

Each objective has some measure as to the quality of the solution. It is

essential that MOEA algorithms are tested over a number of problems in order

to have a clear perception of their strengths and weaknesses. To accomplish

this effectively, it is crucial to first develop a strong understanding and

undertake a precise analysis of the test problems at hand. In the MOEAs

literature, several multi-objective test problems have been proposed; for

example, continuous problems, combinatorial optimisation problems, discrete

or integer-based problems, noisy problems, dynamic problems, problems

with side constraints and even real-world problems (see Coello et al., 2007b).

However, some of the multi-objective test problems do not fully examine the

characteristics of EAs. Also they sometimes have defects in their design such

as not being scalable in terms of parameters/objectives, or only being suitable

for simple algorithms (Huband et al., 2006). In order to fully understand the

features of test problems for multi-objective optimisation, some important

definitions and test problems features are described in this chapter.

3.1 Definitions of the Test Problems’ Features

Pareto one-to-one or Pareto many-to-one:

 If the mapping between the Pareto optimal set and the Pareto optimal

front (the fitness landscape) is one-to-one. The problem, in this case, is

called Pareto one-to-one. Otherwise, if the fitness landscape is many-to-one

the problem is called Pareto many-to-one (see Figure 3.1).

Flat regions:

A characteristic of many-to-one fitness landscapes is when a connected

open subset of parameter space maps to a singleton. The problem with flat

regions occurs when a tiny perturbation of the parameters in regions do not

change the objective values.

Chapter 3: Multi-objective Optimisation Test Problems

67 | P a g e

Figure 3.1: Examples of the mapping between the Pareto optimal set and the Pareto
optimal front (the fitness landscape). In (a) Pareto many-to-one, (b) Pareto one-to-
one.

Modality:

A problem can be described as a multimodal problem if it has a

multimodal objective which includes multiple local optima in the objective

space. Otherwise, if there is only a single optimum with the objective

function, the problem is described as a unimodal problem (see Figure 3.2).

Deception:

Deception is a special case of multimodality. If the objective function

has at least two optima (a true optimum and a deceptive optimum) then it

can be called a deceptive objective, and the problem which consists of this

objective function can be called a deceptive problem (see Figure 3.2).

Bias:

 In the fitness landscape, an evenly distributed sample of parameter

vectors in the search space maps to an evenly distributed set of objective

vectors in the fitness space, but the mapping from the Pareto optimal set to

the Pareto optimal front can be biased if significant variation occurs in

distribution. The variation is known as bias. It is worth mentioning that bias

has a significant effect on the convergence speed toward the Pareto optimal

front (POF).

(a)

(b)

Pareto
Optimal
Front

Pareto
Optimal

Set

Pareto
Optimal

Set

Pareto
Optimal
Front

Objective Space Decision Space

Chapter 3: Multi-objective Optimisation Test Problems

68 | P a g e

Figure 3.2: Examples of deceptive and multimodal objectives. In (a) a deceptive
multimodal objective. (b) a nondeceptive multimodal objective. Reprinted from
(Huband et al., 2006).

Separability:

 It refers to the parameter dependencies. If every objective of a

problem is separable, then it is a separable problem. Otherwise, it is a

nonseparable problem.

Pareto Front Geometries:

The geometry of the Pareto optimal front can be convex, concave,

degenerate, connect, discrete. It can also consist of different geometry fronts

which are known as mixed fronts (see Figure 3.3). A front is a convex front, if

it covers its convex hull. In contrast, if it is covered by its convex hull, it is a

concave front. A linear front is one that is both concave and convex. A

degenerate front is a front that is less than the number of dimensions in the

objective space such as front that only a point in two objectives and a line

segment in a three objective problem. (Huband et al., 2006). A connected

front is often referred to as continuous while a disconnected front is often

referred to as discontinuous. A mixed front is one with consists of strictly

convex, strictly concave, or linear front.

(b) (a)

Chapter 3: Multi-objective Optimisation Test Problems

69 | P a g e

Figure 3.3: Example of mixed geometry front consists of a half-convex and half-concave
component, a degenerate zero dimensional point, and a convex component. Reprinted
from (Huband et al., 2006).

3.2 The Features of the Test Problems

In the scientific literature, various features for multi-objective

optimisation test problems are presented. Those features are designed to

make the problems difficult enough to examine algorithmic performance.

Examples of these features are deception (Goldberg, 1987; Whitley, 1991),

multimodality (Horn and Goldberg, 1995), noise (Kargupta, 1995) and

epistasis (Davidor, 1990). Moreover, other features of test problems are

suggested in Deb (1999) such as multimodality, deceptive, isolated optimum

and collateral noise. These features can cause difficulties for evolutionary

optimisers in terms of converging to the Pareto optimal front (POF) and

maintaining the population diversity. Furthermore, some characteristics of the

POF such as convexity or non-convexity, discreteness, and non-uniformity

could cause difficulties in term of the population diversity (Zitzler et al.,

2000). Branke (1999) asserted that the test problems should be simple and

straightforward in order to understand the behaviour of the optimisation

algorithm more easily. In addition, they should be describable and analyzable,

Chapter 3: Multi-objective Optimisation Test Problems

70 | P a g e

and their parameters should be tunable. Nevertheless, they should be

complicated enough to provide a true reflection of real world problems.

The main features of test problems for multi-objective optimisation

presented in Deb et al. (2002) include the simplicity of formation, scalability

to any number of decision variables, scalability to any number of objectives,

accurate and specific knowledge of the shape and location of the Pareto

fronts, finding a widely distributed set of Pareto solutions, and the capability

to overcome the difficulty in converging to the true Pareto front. Furthermore,

Huband et al. (2006) introduced the following key features of multi-objective

test problems which present varying degrees of problem difficulty for the

multi-objective optimisers:

 Pareto Optimal Front Geometry such as convex, linear, concave,

mixed, degenerate and disconnected.

 Parameter Dependencies which refer to the problem and whether the

objective is separable or nonseparable.

 Bias refers to whether the test problem may or may not be biased.

 Many-to-One Mappings which refer to the fitness landscape, which are

either one-to-one or many-to-one.

 Modality refers to the problem objective; this may be unimodal or

multimodal (can also be deceptive multimodality).

Huband et al. (2006) introduce some useful recommendations for

designing multi-objective test problems including:

 No extremal parameters to the test problem in order to prevent

exploitation by truncation operators.

 No medial parameters for the test problem in order to prevent

exploitation by intermediate recombination.

 Scalability in the number of decision variables.

 Scalability in the number of objectives.

 The parameters of the test problem should have domains of dissimilar

magnitude to encourage an optimiser to scale the strengths of the

mutation operator.

 Knowledge of the POF in order to support the analysis of the results.

Chapter 3: Multi-objective Optimisation Test Problems

71 | P a g e

It can be seen that some of the recommendations of Huband et al.

(2006) are identical to the features described by Deb et al. (2002).

3.3 Test Suite for Multi-objective Optimisation

Typically, a test suite should include different test problems which

consist of a wide range of characteristics and features as mentioned in Section

3.2. However, it is impractical to have a test suite that incorporates all

possible combinations of features. The test suites most commonly employed

as benchmark multi-objective problems in the MOEA literature are the ZDT

test suite (Zitzler et al., 2000), the DTLZ test suite (Deb et al., 2002) , the

WFG (Huband et al., 2006) and more recently LZ09 (Li and Zhang, 2009). It

good to note ZDT, DTLZ and WFG test suites have been used by MOHH

approaches which presented in Section 2.3.3. The problem features in ZDT,

DTLZ and WFG test suites are presented in Table 3.1.

Test features ZDT DTLZ WFG

Pareto 1-1 √

Pareto M-1 √ √ √

Flat Regions √

Modality Unimodality √ √ √

Multimodality √ √ √

Deception √ √

Bias √ √ √

Pareto Front known √ √ √

Separability Separable √ √ √

Nonseparable √

Scalability No of Parameters √ √

No of objectives √ √

Front Geometry Convex √ √

Concave √ √ √

Disconnected √ √

Degenerate √

Linear √ √

Mixed √

Table 3.1: Listing of Test Problem Features in ZDT, DTLZ and WFG test suites.

3.3.1 ZDT Test Suite

This was introduced in Zitzler et al. (2000) and consists of six test

problems. All the problems are separable and complicated enough to enable

comparison over a variety of multi-objective evolutionary approaches. They

Chapter 3: Multi-objective Optimisation Test Problems

72 | P a g e

also include some features which make the problems sufficiently difficult for

optimisers such as multimodality, non-convexity and deception. For all

problems of ZDT, the global optimum has the same variable values for

different decision variables and objectives and the POF is known (Huang et

al., 2007). In addition, the ZDT test suite has been widely used by many

researchers in MOEAs. Therefore, test results are available and can be easily

accessed. However, ZDT has some limitations. In terms of scalability, the

number of decision variables and objectives only has one decision variable

with two objectives. Moreover, none of its test problems has fitness

landscapes with flat regions, a degenerate Pareto front or even non-separable

features. In addition, the only deceptive problem is binary encoded. Also the

global optimum for all ZDT problems lies on the lower bound, or in the centre

of the search bounds (Huang et al., 2007). The ZDT test functions are

presented in Table 3.2.

3.3.2 DTLZ Test Suite

This was introduced in Deb et al. (2002) and consists of seven different

test problems. Similar to ZDT, the global optimum of DTLZ test problems has

the same values for decision variables and objectives, all its problems are

separable (Huang et al., 2007), and the POF is known. However, it differs

from ZDT in terms of its scalability. DTLZ is scalable to any number of

objectives and distance parameters. However, DTLZ has several

shortcomings. For all problems, the global optimum is situated in the centre of

the search range or on the bounds. None of these problems has fitness

landscapes with flat regions, deceptive or non-separable features. Moreover,

the number of decision variables is always strongly tied to the number of

objectives (Huband et al., 2006). In addition, the increase in the number of

objectives may cause difficulties for an optimiser to find the Pareto solutions

(Deb et al., 2002; Kokolo et al., 2001). The DTLZ test functions are

presented in Table 3.3.

3.3.3 WFG Test Suite

The Walking Fish Group’s test suite (WFG) was created in Huband et al.

(2006). It consists of nine test problems. The benchmark problems fully

satisfy the recommendations set out in Section 3.2. The WFG is designed only

for real valued parameters with no side constraints which make the problems

Chapter 3: Multi-objective Optimisation Test Problems

73 | P a g e

ZDT1 ࢌ૚ ሺ࢞૚ሻ ൌ ૛ǡ࢞ሺࢍ ૚࢞ ǥ ǡ ሻࡹ࢞ ൌ ૚ ൅ ૢ ȉ෍࢓࢏࢞
ୀ૛࢏ ോ ሺ࢓ െ ૚ሻ ࢎሺ ࢌ૚ǡ ሻࢍ ൌൌ ૚ െ ඥ ࢌ૚ ോ ࢍ

subject to ૙ ൑ ࢏࢞ ൑ ૚

ZDT2 ࢌ૚ ሺ࢞૚ሻ ൌ ૛ǡ࢞ሺࢍ ૚࢞ ǥ ǡ ሻࡹ࢞ ൌ ૚ ൅ ૢ ȉ෍࢓࢏࢞
ୀ૛࢏ ോ ሺ࢓ െ ૚ሻ ࢎሺ ࢌ૚ǡ ሻࢍ ൌൌ ૚ െ ሺࢌ૚ ോ ሻ૛ࢍ

subject to ૙ ൑ ࢏࢞ ൑ ૚

ZDT3 ࢌ૚ ሺ࢞૚ሻ ൌ ૛ǡ࢞ሺࢍ ૚࢞ ǥ ǡ ሻࡹ࢞ ൌ ૚ ൅ ૢ ȉ෍࢓࢏࢞
ୀ૛࢏ ോ ሺ࢓ െ ૚ሻ ࢎሺ ࢌ૚ǡ ሻࢍ ൌൌ ૚ െ ඥ ࢌ૚ ോ ࢍ െ ሺࢌ૚ ോ ሻࢍ ૚൯࢏࢞ ࣊൫૚૙࢔࢏࢙

subject to ૙ ൑ ࢏࢞ ൑ ૚

ZDT4 ࢌ૚ ሺ࢞૚ሻ ൌ ૛ǡ࢞ሺࢍ ૚࢞ ǥ ǡ ሻࡹ࢞ ൌ ૚ ൅ ૚૙ ሺ࢓ െ ૚ሻ ൅෍࢏࢞૛࢓
ୀ૛࢏ െ ૚૙࢙࢕ࢉሺ૚૙ࢌ ࣊૚ሻ ോ ሺ࢓ െ ૚ሻ ࢎሺ ࢌ૚ǡ ሻࢍ ൌൌ ૚ െ ඥ ࢌ૚ ോ ࢍ

subject to െ૞ ൑ ࢓࢞ ൑ ૞, ૙ ൑ ૚࢞ ൑ ૚

ZDT5 ࢌ૚ ሺ࢞૚ሻ ൌ ૚ ൅ ૛ǡ࢞ሺࢍ ૚ ሻ࢞ ሺ࢛ ǥ ǡ ሻࡹ࢞ ൌ ෍ ࢜ሺ࢛ሺ ࢏࢞ ሻሻ࢓
ୀ૛࢏ ૚ǡࢌ ሺࢎ ሻࢍ ൌൌ ૚ ോ ૚ࢌ

subject to ࢜൫࢛ሺ ࢏࢞ ሻ൯ ൌ ૛ ൅ ሻ ࢏࢞ሺ࢛ ࢌ࢏ ሻ ࢏࢞ሺ࢛ ൏ ͷ ൌ ૚ ࢛ ࢌ࢏ሺ࢏࢞ ሻ ൌ ૚
ZDT6 ࢌ૚ ሺ࢞૚ሻ ൌ ૚ ൅ ૛ǡ࢞ሺࢍ ૚ ሻ࢞࣊૟ሺ૟࢔࢏࢙૚ ሻ࢞ሺ െ૝࢖࢞ࢋ ǥ ǡ ሻࡹ࢞ ൌ ૚ ൅ ૢ ȉ ሺሺ෍࢓࢏࢞

ୀ૛࢏ ോ ሺ࢓ െ ૚ሻሻ૙Ǥ૛૞ ࢎሺ ࢌ૚ǡ ሻࢍ ൌൌ ૚ െ ሺࢌ૚ ോ ሻ૛ࢍ

subject to ૙ ൑ ࢏࢞ ൑ ૚

Table 3.2: ZDT test functions. Reprinted from (Zitzler et al., 2000)

easy to analyse and implement. The features of the WFG dataset are seen as

the common choice for most MOEA researchers (Huband et al., 2006). Unlike

most of the multi-objective test suites such as ZDT and DTLZ, the WFG test

suite has powerful functionality; and a number of instances that have features

not included in other test suites. The benchmark problems are non-separable

problems, deceptive problems, a truly degenerate problem, and a mixed-

Chapter 3: Multi-objective Optimisation Test Problems

74 | P a g e

shape Pareto front problem. In addition, WFG is scalable to any number of

parameters and objectives, and the numbers of both distance- and position-

related parameters can be scaled independently (Huband et al., 2006). The

properties of the WFG problems are presented in Table 3.4.

DTLZ1 MIN ଵ݂ ሺݔሻ ൌ ͲǤͷ ݔଵ ݔଶ ǥ ݔெିଵሺͳ ൅ ݃ሺܺெሻሻ ڭ ڭ
MIN ெ݂ିଵ ሺݔሻ ൌ ͲǤͷ ݔଵ ሺͳ െ ଶሻ ሺͳݔ ൅ ݃ሺܺெሻሻ
MIN ெ݂ ሺݔሻ ൌ ͲǤͷ ሺͳ െ ଶሻሺͳݔ ൅ ݃ሺܺெሻሻ

subject to Ͳ ൑ ௜ݔ ൑ ͳ
 ݃ሺݔெሻ ൌ ͳͲͲ ሺȁܺெȁ ൅ ෍ ሺݔ௜ െ ͲǤͷሻଶ௫௜א௑ಾ െ ܿݏ݋ ʹͲߨሺݔ௜ െ ͲǤͷሻሻ

DTLZ2 MIN ଵ݂ ሺݔሻ ൌ ሺͳ ൅ ݃ሺܺெሻሻ ߨଵݔሺݏ݋ܿ ോ ʹሻǥܿݏ݋ሺݔெ െ ͳߨ ോ ʹሻ ڭ ڭ
MIN ெ݂ ሺݔሻ ൌ ሺͳ ൅ ݃ሺܺெሻ ሻ݊݅ݏሺݔଵߨ ോ ʹሻሻ
Ͳ ݋ݐ ݐ݆ܾܿ݁ݑݏ ൑ ௜ݔ ൑ ͳ
 ݃ሺݔெሻ ൌ ෍ ሺݔ௜ െ ͲǤͷሻଶ௫௜א௑ಾ

DTLZ3 As DTLZ2 with the ݃ function given in DTLZ1

DTLZ4 As DTLZ2 with different meta-variable mapping: ݔ௜ ื ൌן ௜ఈ whereݔ ͳͲͲ
DTLZ5 As DTLZ2 with different mapping of ߠ௜݄ெ ߠ௜ ൌ గଶ൫ଵା௚ሺ௥ሻ൯ ሺͳ ൅ ʹ݃ሺݎሻݔ௜ሻ ݂ݎ݋ ݅ ൌ ʹǡ͵ǡ ǥ,(M-1) ݐ௜ୀଵǣ௞ଵ ெሻݔሺ݃ ݁ݎ݄݁ݓ ൌ σ ௜ݔ ଴Ǥଵ௫௜א௑ಾ

DTLZ6 MIN ଵ݂ ሺ ଵܺሻ ൌ ڭ ڭ ଵݔ
MIN ெ݂ ሺܺሻ ൌ ሺͳ ൅ ݃ሺܺெሻ ሻ ݄ሺ ଵ݂ǡ ଶ݂ǡ Ǥ Ǥ ǡ ெ݂ିଵǡ ݃ሻ ݋ݐ ݐ݆ܾܿ݁ݑݏ Ͳ ൑ ௜ݔ ൑ ͳ ݁ݎ݄݁ݓ ݃ሺܺெሻ ൌ ͳ ൅ ͻȁܺெȁ ෍ ௑ಾא௜௫௜ݔ

 ݄ ൌ ܯ െ σ ቂ ௙೔ଵା௚ ሺͳ ൅ ߨ͵ሺ݊݅ݏ ௜݂ሻሻቃெିଵ௜ୀଵ

DTLZ7
MIN ௝݂ ሺܺሻ ൌ ଵቚ೙ಾቚ σ ௜ቔ௝೙ಾቕ௜ୀቔሺ௝ିଵሻ೙ಾቕݔ
Ͳ ݋ݐ ݐ݆ܾܿ݁ݑݏ ൑ ௜ݔ ൑ ͳ
 ௜݃ሺܺሻ ൌ ெ݂ ሺܺሻ ൅ Ͷ ௜݂ሺܺሻ െ ͳ ൒ Ͳ
 ݃ሺݔெሻ ൌ ʹ ெ݂ሺܺሻ ൅ ݉݅݊ெିଵ௜ǡ௝ୀଵ௜ஷ௝ ൣ ௜݂ሺܺሻ ൅ ௝݂ሺܺሻ൧ െ ͳ ൒ Ͳ

Table 3.3: DTLZ test functions. Reprinted from (Deb et al., 2002)

All WFG test problems are continuous problems that are constructed

based on a vector that corresponds to the problem’s fitness space. This vector

is derived through a series of transition vectors such as multimodality and

non-separability. The complexity of the problem can be increased according to

Chapter 3: Multi-objective Optimisation Test Problems

75 | P a g e

the number of transition vectors. The WFG test functions are presented in

Table 3.5.

The main advantage of the WFG test suite is that it is an excellent tool

for comparing the performance of EAs over a range of test problems, and it

has been shown to have a more comprehensive set of challenges when

compared to DTLZ using NSGAII in Huband et al. (2006). Therefore, the WFG

test suite has been selected to be the benchmark test suite employed in our

multi-objective hyper-heuristics that we present in this thesis.

Problem Obj. Separability Modality Bias Geometry

WFG1 ଵ݂ǣெ separable uni polynomial, flat convex, mixed

WFG2 ଵ݂ǣெିଵ non-separable uni no bias Convex, disconnected

ଵ݂ǣெ non-separable multi no bias

WFG3 ଵ݂ǣெ non-separable uni no bias liner, degenerate

WFG4 ଵ݂ǣெ separable multi no bias concave

WFG5 ଵ݂ǣெ separable deceptive no bias concave

WFG6 ଵ݂ǣெ non-separable uni no bias concave

WFG7 ଵ݂ǣெ separable uni parameter dependent concave

WFG8 ଵ݂ǣெ non-separable uni parameter dependent concave

WFG9 ଵ݂ǣெ non-separable multi, deceptive parameter dependent concave

Table 3.4: The properties of the WFG problems. Reprinted from (Huband et al., 2006).

3.3.4 Other Test Suites

The LZ09 test suite was created in Li and Zhang (2009) and consists of

nine problems with complicated Pareto fronts in decision space. All its

problems are continuous multimodal constrained problems that designed to

deal with two objectives, except LZ09-F6, which is a tri-objective. The main

advantages of problems with complicated Pareto set shapes (PSs) that they

are offer a challenge for MOEAs. However, LZ09 is considered a relatively new

test suite, few test results are available in the original study and in later work

(e.g. Nebro and Durillo, 2010; Batista et al., 2010; Durillo, 2011; Loshchilov,

2011).

Chapter 3: Multi-objective Optimisation Test Problems

76 | P a g e

WFG1 ݄ெୀଵ ׷ ܯ ൌ ߙ ெ (with݀݁ݔ݅݉ ௠ ݄ெ ൌݔ݁ݒ݊݋ܿ ൌ ͳ ܽ݊݀ ܣ ൌ ͷ) ݐ௜ୀଵǣ௞ଵ ൌ ௜ୀ௞ାଵǣ௡ଵݐ ௜ݕ ൌ ௜ݕሺݎ̴݈ܽ݁݊݅ܵ ǡͲǤ͵ͷሻ ݐ௜ୀଵǣ௞ଶ ൌ ௜ୀ௞ାଵǣ௡ଶݐ ௜ݕ ൌ ௜ݕሺݐ̴݈݂ܾܽ ǡͲǤͺǡͲǤ͹ͷǡͲǤͺͷሻ ݐ௜ୀଵǣ௡ଷ ൌ ௜ݕሺݕ݈݋݌̴ܾ ǡͲǤͲʹሻ ݐ௜ୀଵǣெିଵସ ൌ ሺ௜ିଵሻ௞Ȁሺெିଵሻݕሺሼ݉ݑݏ̴ݎ ൅ ͳ ǡǥ ǡ ௜௞Ȁሺெିଵሻሽǡݕ ሼʹሺሺ݅ െͳ݇Ȁሺܯ െ ͳǡǥ ǡʹ݅݇Ȁሺܯ െ ͳሻሽሻ ݐெସ ൌ ௞ାଵ ǡݕሺሼ݉ݑݏ̴ݎ ǥ ǡ ௡ሻሽǡݕ ሼʹሺ݇ ൅ ͳሻǡǥ Ǥʹ݊ሽሻ
WFG 2 ݄ெୀଵ ׷ ൌ ܯ ߙ ெ (withܿݏ݅݀ ௠ ݄ெ ൌݔ݁ݒ݊݋ܿ ൌ ߚ ൌ ͳ ܽ݊݀ ܣ ൌ ͷ) ݐ ݏܣଵ ݂ܩܨܹ ݉݋ݎͳǤ ሺݐ݂݄݅ݏ ݎܽ݁݊݅ܮǤ ሻ ݐ௜ୀଵǣ௞ଶ ൌ ௜ୀ௞ାଵǣ௞ା௟Ȁଶଶݐ ௜ݕ ൌ ௞ାଶሺ௜ି௞ሻିଵ ǡݕሺሼ݌݁ݏ݊݋̴݊ݎ ௜ୀଵǣெିଵଷݐ ௞ାଶሺ௜ି௞ሻሽǡʹሻݕ ൌ ሺ௜ିଵሻ௞Ȁሺெିଵሻݕሺሼ݉ݑݏ̴ݎ ൅ ͳ ǡǥ ǡ ௜௞Ȁሺெିଵሻሽǡݕ ሼͳǡ ǥ ǡͳሽሻ ݐெଷ ൌ ௞ାଵ ǡݕሺሼ݉ݑݏ̴ݎ ǥ ǡ ௞ା௟Ȁଶሻሽǡݕ ሼͳǡǥ ͳሽሻ
WFG 3 ݄ெୀଵ ׷ ܯ ൌ Ǥʹܩܨܹ ݉݋ݎ݂ ଵǣଷݐ ݏܣ ሻ݁ݐܽݎ௠ሺ݀݁݃݁݊݁ݎ݈ܽ݁݊݅ ሺݐ݂݄݅ݏ ݎܽ݁݊݅ܮǡ െ݊݋݊ ǡ݊݋݅ݐܿݑ݀݁ݎ ݈ܾ݁ܽݎܽ݌݁ݏ Ǥ݊݋݅ݐܿݑ݀݁ݎ ݉ݑݏ ݀݁ݐ݄݃݅݁ݓ ݀݊ܽ ሻ

WFG 4 ݄ெୀଵ ׷ ܯ ൌ ௜ୀଵǣ௡ଵݐ ௠݁ݒܽܿ݊݋ܿ ൌ ௜ݕሺ݅ݐ݈ݑ̴݉ܵ ǡ͵ͲǡͳͲǡͲǤ͵ͷሻ ݐ௜ୀଵǣெିଵଶ ൌ ሺ௜ିଵሻ௞Ȁሺெିଵሻݕሺሼ݉ݑݏ̴ݎ ൅ ͳ ǡǥ ǡ ௜௞Ȁሺெିଵሻሽǡݕ ሼͳǡ ǥ ǡͳሽሻ ݐெଶ ൌ ௞ାଵ ǡݕሺሼ݉ݑݏ̴ݎ ǥ ǡ ௡ሻሽǡݕ ሼͳǡ ǥ ͳሽሻ
WFG5 ݄ெୀଵ ׷ ܯ ൌ ௜ୀଵǣ௡ଵݐ ௠݁ݒܽܿ݊݋ܿ ൌ ௜ݕሺݐ݌̴݁ܿ݁݀ܵ ǡͲǤ͵ͷǡͲǤͲͲͳǡͲǤͲͷሻ ݐ ݏܣଶ ݂ܩܨܹ ݉݋ݎͶǤ ሺ݊݋݅ݐܿݑ݀݁ݎ ݉ݑݏ ݀݁ݐ݄݃݅݁ݓǤ ሻ
WFG 6 ݄ெୀଵ ׷ ܯ ൌ ͳǤܩܨܹ ݉݋ݎ݂ ଵݐ ݏܣ ௠݁ݒܽܿ݊݋ܿ ሺݐ݂݄݅ݏ ݎܽ݁݊݅ܮǤ ሻ ݐ௜ୀଵǣெିଵଶ ൌ ሺ௜ିଵሻ௞Ȁሺெିଵሻݕሺሼ݌݁ݏ݊݋̴݊ݎ ൅ ͳ ǡǥ ǡ ௜௞Ȁሺெିଵሻሽǡݕ ݇Ȁሺܯ െ ͳሻሻ ݐெଶ ൌ ௞ାଵ ǡݕሺሼ݌݁ݏ݊݋̴݊ݎ ǥ ǡ ௡ሻሽǡݕ ݈ሻ
WFG 7 ݄ெୀଵ ׷ ൌ ܯ ௜ୀଵǣ௞ଶݐ ௠݁ݒܽܿ݊݋ܿ ൌ ௜ݕሺ݉ܽݎܽ݌̴ܾ ǡ ሺ௜ିଵሻ ǡݕሺሼ݉ݑݏ̴ݎ ǥ ǡ ௡ሽǡݕ ሼͳǡ ǥ ǡͳሽሻǡ ଴Ǥଽ଼ସଽǤଽ଼ ǡ ͲǤͲʹǡͷͲሻ ݐ௜ୀ௞ାଵǣ௡ଶ ൌ ͳǤܩܨܹ ݉݋ݎ݂ ଵݐ ݏܣ ௜ݕ ሺݐ݂݄݅ݏ ݎܽ݁݊݅ܮǤ ሻ ݐ ݏܣଶ ݂ܩܨܹ ݉݋ݎͶǤ ሺ݊݋݅ݐܿݑ݀݁ݎ ݉ݑݏ ݀݁ݐ݄݃݅݁ݓǤ ሻ
WFG8 ݄ெୀଵ ׷ ൌ ܯ ௜ୀଵǣ௞ଵݐ ௠݁ݒܽܿ݊݋ܿ ൌ ௜ୀ௞ାଵǣ௡ଵݐ ௜ݕ ൌ ௜ݕሺ݉ܽݎܽ݌̴ܾ ǡ ଵ ǡݕሺሼ݉ݑݏ̴ݎ ǥ ǡ ௜ିଵሽǡݕ ሼͳǡǥ ǡͳሽሻǡ ଴Ǥଽ଼ସଽǤଽ଼ ǡ ͲǤͲʹǡͷͲሻ ݐ ݏܣଵ ݂ܩܨܹ ݉݋ݎͳǤ ሺݐ݂݄݅ݏ ݎܽ݁݊݅ܮǤ ሻ ݐ ݏܣଶ ݂ܩܨܹ ݉݋ݎͶǤ ሺ݊݋݅ݐܿݑ݀݁ݎ ݉ݑݏ ݀݁ݐ݄݃݅݁ݓǤ ሻ
WFG9 ݄ெୀଵ ׷ ܯ ൌ ௜ୀଵǣ௡ିଵଵݐ ௠݁ݒܽܿ݊݋ܿ ൌ ௜ݕሺ݉ܽݎܽ݌̴ܾ ǡ ௜ାଵ ǡݕሺሼ݉ݑݏ̴ݎ ǥ ǡ ௡ሽǡݕ ሼͳǡ ǥ ǡͳሽሻǡ ଴Ǥଽ଼ସଽǤଽ଼ ǡ ͲǤͲʹǡͷͲሻ ݐ௡ଵ ൌ ௜ୀଵǣ௞ଶݐ ௡ݕ ൌ ௜ݕሺݐ݌̴݁ܿ݁݀ܵ ǡͲǤ͵ͷǡͲǤͲͲͳǡͲǤͲͷሻ ݐ௜ୀ௞ାଵǣ௡ଶ ൌ ௜ݕሺ݅ݐ݈ݑ̴݉ܵ ǡ͵ͲǡͻͷǡͲǤ͵ͷሻ ݐ ݏܣଶ ݂ܩܨܹ ݉݋ݎ͸Ǥ ሺ݊݊݋ െ Ǥ݊݋݅ݐܿݑ݀݁ݎ ݈ܾ݁ܽݎܽ݌݁ݏ ሻ

Table 3.5: WFG test functions. Reprinted from (Huband et al., 2006)

 Van Veldhuizen’s test suite was created in Van Veldhuizen (1999) which

consists of seven multi-objective test problems. The main drawbacks of Van

Chapter 3: Multi-objective Optimisation Test Problems

77 | P a g e

Veldhuizen’s problems are that they were designed for only two or three

decision variables and are not scalable in terms of the number of objectives.

In addition, none of these problems has any deceptive, flat regions or many-

to-one fitness landscapes (Huband et al., 2006).

Deb (1999) introduced a toolkit for creating test problems for multi-

objective optimisation. Deb’s toolkit incorporates three functions: a

distribution function to assess the optimiser’s performance in terms of the

diversify along the POF, a distance function to assess the optimiser’s

performance in terms of convergence towards the POF, and a shape function

to specify the shape of the POF. Deb’s toolkit has shortcomings; it was

designed to construct a problem with two objectives only, and no problems

with flat regions, degenerate or even mixed Pareto front geometries are

provided. Moreover, no real valued deceptive functions are considered in the

toolkit.

3.4 Other Test Functions Problems for Multi-objective

Optimisation

In the MOEA literature, various test problems have been presented.

However, some test problems had shortcomings in terms of the simplicity of

construction and the scalability of the number of parameters and objectives

(Deb et al., 2002). For instance, Schaffer (1985) presented two test problems

(SCH1 and SCH1). Both problems were scalable but only to single decision

variable. Poloni et al. (2000) presented a test problem (POL) that has only

two decision variables. Fonseca and Fleming (1995) and Kursawe (1990)

introduced their own test problems, FON and KUR respectively. Both test

problems were scalable to any number of decision variables but were not

scalable in terms of the number of objectives. Viennet (1996) introduced a

test problem (VNT) that was scalable to only three objectives.

3.5 Summary

Several multi-objective test problems have been proposed in the

scientific literature such as real-world problems, combinatorial optimisation

problems, discrete or integer-based problems, noisy problems, dynamic

problems, and problems with side constraints. In this thesis, we focus on

continuous unconstrained real-valued problems. It is essential that algorithms

are tested in order to have a clear perception of their strengths and

Chapter 3: Multi-objective Optimisation Test Problems

78 | P a g e

weaknesses. To accomplish this effectively, it is crucial to first develop a

strong understanding and undertake a precise analysis of the test problems at

hand. This chapter has reviewed the multi-objective test problems that are

particularly relevant to this thesis. The most common multi-objective test

problem such as the ZDT test suite (Zitzler et al., 2000), the DTLZ test suite

(Deb et al., 2002) and the WFG (Huband et al., 2006) are identified and

discussed. A description of those problems with an analysis of their features is

given as well. The WFG test suite has been selected to be the benchmark test

suite employed in our multi-objective hyper-heuristics that we present in this

thesis, as it has been shown to have a more comprehensive set of challenges

among other test suites (Huband et al., 2006).

In next chapter, we discuss design issues related to the development of

hyper-heuristics for multi-objective optimisation. And we propose an online

learning selection choice function based hyper-heuristic for multi-objective

optimisation.

Chapter 4: A Multi-objective Hyper-heuristic Framework

79 | P a g e

4 A Multi-objective Hyper-heuristic Framework

Burke et al. (2003b) provide a generic hyper-heuristic framework (see

Section 2.3.1). Soubeiga (2003) presents general guidelines for designing an

effective framework for a hyper-heuristic for single-objective optimisation.

Burke et al. (2003a) discussed a framework for hyper-heuristic for multi-

objective combinatorial problems. However, no further investigations, nor any

related information, are given for how to build a hyper-heuristic for multi-

objective optimisation to deal specifically with continuous problems. In this

chapter, we discuss design issues related to the development of hyper-

heuristics for multi-objective optimisation. And we propose an online learning

selection choice function based hyper-heuristic for multi-objective

optimisation. A choice function is utilised as a selection mechanism for the

proposed framework.

4.1 A Selection Choice Function Hyper-heuristic

Framework

The design of the framework for our multi-objective hyper-heuristic is

inspired by two facts. Firstly, there is no existing algorithm that excels across

all types of problems. In the context of multi-objective optimisation, no single

MOEA algorithm has the best performance with respect to all performance

measures in all types of multi-objective problems. Some comparison studies

in MOEAs which emphasises this idea are presented in Section 2.1.11. This

fact is also supported by the No Free Lunch Theorem (Wolpert and

Macready,1997). Secondly, the hybridisation or combining different

(meta)heuristics/algorithms into one framework could yield promising results

compared to (meta)heuristics/algorithms when used alone. In Section 2.3, we

reviewed many studies that support this fact. According to those facts, we

are looking to gain an advantage of combining different algorithms in a hyper-

heuristic framework for multi-objective optimisation to get benefit from the

strengths of the algorithms and avoid their weaknesses.

The idea of hybridising a number of algorithms (heuristics) into a

selection hyper-heuristic framework is straightforward and meaningful.

However, many design issues related to the development of hyper-heuristics

for multi-objective optimisation require more attention when designing such a

framework to be applicable and effective.

Chapter 4: A Multi-objective Hyper-heuristic Framework

80 | P a g e

The main components of the hyper-heuristic framework are low level

heuristics, selection method, learning mechanism and move acceptance

method. The choosing of these components is critical. In our opinion, all

components are important and could affect the performance of the hyper-

heuristics. For instance, if we employ very powerful low level heuristics and a

poor move acceptance method, we have less chance of producing high quality

of solutions. This is especially true if we employ a complete algorithm as a low

level heuristic and this algorithm produces a good quality solution. With a

poor move acceptance method, the obtained solution could be rejected. The

reverse is also true. Therefore, each component in the hyper-heuristic

framework plays a significant role in improving the quality of both the search

and the eventual solution. The components of the hyper-heuristic in the

context of multi-objective optimisation are discussed in depth in as follows:

 Low level heuristics:

The choice of appropriate low level heuristics is not an easy task.

Many questions arise here, what heuristics (algorithms) are suitable to

deal with multi-objective optimisation problems. Are priori approaches

or a posteriori approaches more suitable? Are non Pareto-based or a

Pareto-based more applicable? (see Section 2.1). As one of hyper-

heuristic aims is raising the level of generality, a posteriori approach is

more suitable to achieve this aim. Unlike the priori approaches, there is

no need to set objective preferences or weights prior to the search

process in the posteriori approach such as MOEAs which based on Pareto

dominance. Moreover, we agree with many researchers (Deb and

Goldberg, 1989; Bäck, 1996; Fonseca and Fleming, 1998; Deb, 2001;

Coello et al., 2007a; Anderson et al., 2007; Zhang and Li, 2007;

Miranda et al., 2010) that evolutionary algorithms are more suitable in

dealing with multi-objective optimisation problems because of their

population-based nature, which means they can find Pareto optimal sets

(trade-off solutions) in a single run, which allows a decision maker to

select a suitable compromise solution (with respect to the space of the

solutions). In the context of multi-objective hyper-heuristics, a decision

maker here could be a selection method that decides which is the best

low level heuristic to select at each decision point (with respect to the

space of the heuristics).

Chapter 4: A Multi-objective Hyper-heuristic Framework

81 | P a g e

The main aim of hyper-heuristics is to draw on the strengths of

individual low level heuristics and avoid their weaknesses. This

motivates us to make use of classical Pareto-based MOEAs (NSGAII,

SPEA2 and MOGA) to act as low level heuristics within our hyper-

heuristics framework, as their features are more likely (in our view) to

generate high quality solutions. In other words, we reuse the

conventional MOEAs to benefit from their strengths even if they have

some shortcomings. The features of classical MOEAs make them

suitable to enable us to investigate their combined use within a multi-

objective hyper-heuristic framework. Although NSGAII, SPEA2 and

MOGA are no longer considered state-of-the-art MOEAs, more powerful

population-based methods such as decomposition-based approaches

MOEA/Ds (e.g. (Li and Zhang, 2009; Li and Landa-Silva, 2011)) and

indicator-based approaches (e.g. (Auger et al.,2012; Bader and Zitzler,

2011)) may outperform them. However, they are still viewed as a

baseline for MOEA. Moreover, they incorporate much of the known

MOEA theory (Van Veldhuizen and Lamont, 2000). Comparative

studies, which support this decision, are presented in Section 2.1.11.

 Selection method:

As a selection hyper-heuristic relies on an iterative process, the

main questions arise here are what is an effective way can use to

choose an appropriate heuristic at each decision point? And how to

choose this heuristic i.e. which criteria can be considered when

choosing a heuristic? In single-objective cases, this criterion is easy to

determine by measuring the quality of the solution such as the

objective/cost value and time. However, this is more complex when

tackling a multi-objective problem. The quality of the solution is not

easy to assess. There are many different criteria that should be

considered such as the number of non-dominated individuals and the

distance between the non-dominated front and the POF. We will

discuss this later when dealing with learning and the feedback

mechanism (will discuss later). As we aim to keep the framework

simple, we should keep in a higher level of abstraction as much as

possible. Therefore, we do not employ any information about problem-

specific such as the number of objectives nor information about the

nature of the solution space. We focus more on the performance of the

Chapter 4: A Multi-objective Hyper-heuristic Framework

82 | P a g e

low level heuristics. This will boost the intensification element. So, a

heuristic with the best performance will be chosen more frequently to

exploit the search area. We are not only looking for the intensification

but we also give attention to diversification. We attempt to achieve a

kind of balance between the intensification and diversification when

choosing a heuristic. Selection methods based on randomisation

support only the diversification by exploring unvisited areas of the

search space. Reinforcement learning (RL) (Sutton and Barto, 1998)

that use, as a selection method, support intensification by rewarding

and punishing each heuristic based on its performance during the

search using a scoring mechanism. An example of this can be found in

Nareyek (2003). The choice function that is used as a selection method

in hyper-heuristics provides a balance between intensification and

diversification. The choice function addresses the trade-off between

the undiscovered areas of the search space and the past performance

of each heuristic. The experimental results demonstrate that the choice

function based hyper-heuristic outperforms other random based hyper-

heuristics over shelf space allocation problems (Bai, 2005). In addition,

the computational results show the choice function all-moves based

hyper-heuristic is superior to other hyper-heuristics that combine

different selection methods with different move acceptance methods

on a project presentation problem (Cowling et al., 2002c). The choice

function meets our requirements for the selection method. Moreover, it

was successful when used as a selection method in the hyper-heuristic

for single-objective optimisation (Soubeiga, 2003). For these reasons,

we have decided to employ the choice function as a selection method

and to act as a high level strategy in our multi-objective hyper-

heuristic framework. More details about the choice function are

provided in Section 4.3.

 Learning and feedback mechanism:

 Not all hyper-heuristic approaches incorporate a learning

mechanism (see Section 2.3.2). However, a learning mechanism is

strongly linked to the selection method. An example of this is a

random hyper-heuristic which is classified as an offline learning

approach (Burke et al., 2010), because the random selection does not

provide any kind of learning. In the context of our multi-objective

Chapter 4: A Multi-objective Hyper-heuristic Framework

83 | P a g e

hyper-heuristic framework, a learning process is an essential element

in the choice function to do its task as a selection method effectively.

The learning mechanism guides the selection method to which best

heuristic should be chosen at each decision point. We mean by a best

heuristic the heuristic that produces solutions with good quality. As we

mention previously, the measurement of the quality of the solution for

multi-objective problems requires us to assess different aspects of the

non-dominated set in the objective space (see Section 2.1.9). As

inspiration from the first fact, that mentioned earlier, is that no single

MOEA excels across all performance measures (Tan et al., 2002).

Therefore, we employ a learning mechanism based on different

measures using the ranking scheme to provide a feedback about the

quality of the solutions. We do not aim to choose a heuristic that

performs well with respect to all measures. This cannot be achieved

anyway in accordance with the No Free Lunch Theorem (Wolpert and

Macready, 1997). But we aim to select a heuristic that performs well in

most measures. More details about the learning mechanism that is

employed in our multi-objective hyper-heuristic are provided in Section

4.2.

 Move acceptance method:

The selection hyper-heuristic framework comprises two main

stages: selection and move acceptance methods (Burke at al., 2010).

In the scientific literature, many methods are presented that act as

move acceptance strategies in hyper-heuristics (see Section 2.3.2.1) a

move acceptance criterion can be deterministic or non-deterministic. A

deterministic move acceptance criterion produces the same result,

given the configuration (e.g. proposed new solution etc). A non-

deterministic move acceptance criteria may generate a different result

even when the same solutions are used for the decision at a same

given time. This could be because the move acceptance criterion

depends on time or it might have a stochastic component while making

the accept/reject decision. Examples of deterministic move acceptance

criteria are All-Moves, Only-Improving and Improving & Equal. In All-

Moves, the candidate solution is always accepted whether a move

worsens or improves the solution quality. The candidate solution in

Only-Improving criteria is accepted only if it improves the solution

Chapter 4: A Multi-objective Hyper-heuristic Framework

84 | P a g e

quality, while in Improving & Equal criteria, the candidate solution is

accepted only if it improves or equal to the current solution. For non-

deterministic move acceptance criteria, the candidate solution is

always accepted if it improves the solution quality, while worsening

solutions can be accepted based on an acceptance function including

the great deluge algorithm (GDA) (Dueck, 1993), late acceptance

(Burke and Bykov, 2008), monte carlo (Glover and Laguna, 1995) and

simulated annealing (Kirkpatrick et al., 1983) . In this thesis, we

investigate a multi-objective choice function based hyper-heuristic

using different move acceptance methods including deterministic (All-

Moves) and non-deterministic strategies (GDA and LA). These

investigations are presented and discussed in Chapters 5-7. To the

best of the authors' knowledge, this thesis, for the first time,

investigates the influence of the move acceptance as a component in a

selection hyper-heuristic for multi-objective optimisation. Since no

similar work has been reported in the literature, this investigation is a

useful reference not only for the work presented in this thesis but also

for other researchers interested in selection hyper-heuristics for multi-

objective optimisation. We decided to employ GDA and LA as a move

acceptance component in our multi-objective hyper-heuristic choice

function as they are both simple and depend on a small number of

parameters (Petrovic et al., 2007). Moreover, it was successful with

single-objective optimisation (Kendall and Mohamad, 2004). We also

note that no work has been reported in the scientific literature that

utilises GDA and LA as a move acceptance component within a hyper-

heuristic framework for multi-objective optimisation.

The multi-objective choice function based hyper-heuristic framework is

shown in Figure 4.1. The choice function acts as the high level strategy and

three well-known multi-objective evolutionary algorithms (NSGAII, SPEA2,

and MOGA) act as low level heuristics. The choice function considers the

performances of low level heuristics in order to select a suitable heuristic as

the search progresses. This process adaptively ranks the performance of low

level heuristics with respect to the performance metrics, deciding which one

to call at each decision point.

Chapter 4: A Multi-objective Hyper-heuristic Framework

85 | P a g e

Figure 4.1: The proposed framework of the hyper-heuristic choice function based for
multi-objective optimisation problems. In this framework, the choice function acts as a
high level strategy and three well-known multi-objective evolutionary algorithms
(NSGAII, SPEA2, and MOGA) act as low level heuristics.

In this framework. the high level strategy does not have any knowledge

of the problem domain and solutions. This is a separation of domain

information known as the domain barrier. To provide the knowledge of the

problem domain to the high level strategy, a number of performance metrics

are utilised as a feedback mechanism. More details about the feedback

mechanism are presented in the next section. The high level strategy selects

one low level heuristic at each decision point according to the information

obtained from the feedback mechanism. Note that the three low level

heuristics operate in an encapsulated way. Each heuristic has its own

characteristics described in Section 2.1. There is no direct information

exchange between low level heuristics but they are sharing the same

population. The framework is flexible and could incorporate any MOEA(s) for

multi-objective optimisation in future work. The framework designed to make

used for the complete algorithm as low level heuristic. No much information

required from the low level heuristic, only the number of function evaluations

and objectives as input and non-dominated solutions as output.

Low Level
Heuristics

H2:

SPEA2

H3:

 MOGA

Population

H1: NSGAII
Problem Domain
-Problem representation

- Evaluation functions

Domain Barrier

High level Strategy

Apply selected low level heuristic

and get feedback

Selection Method (choice function)

Ranking scheme

& Feedback

mechanism

Acceptance

Method (Decision

points)

Chapter 4: A Multi-objective Hyper-heuristic Framework

86 | P a g e

4.2 The Online Learning Feedback Mechanism and the

Ranking Scheme

 Four performance metrics are selected to be indicators for the feedback

mechanism. These performance metrics are as follows (see Section 2.1.9. for

more details):

 Algorithm effort (AE) (Tan et al., 2002

 Ratio of non-dominated individuals (RNI) (Tan et al., 2002)

 Size of space covered or S-metric Hypervolume (SSC) (Zitzler and

Thiele, 1999).

 Uniform distribution of a non-dominated population (UD) (Srinivas and

Deb, 1994)

The motivation behind choosing these metrics is that they have been

commonly used for performance comparison of MOEAs to measure different

aspects of the final non-dominated solutions in the objective space (Tan et al.,

2002). In addition, they do not require prior knowledge of the POF, which

means that our framework, is suitable for tackling real-world problems in

future studies. The task of the performance metrics is to provide information

about the performance of the low level heuristics. It is to provide an online

learning mechanism in order to guide the high level strategy during the

search and determine which low level heuristic should be selected next. Since

those metrics are not in the same scalar units, it is difficult to determine the

best heuristic with respect to the four performance metrics. Therefore, we use

a ranking scheme to score the performance of heuristics. This ranking scheme

is simple and flexible and enables us to incorporate any number of low level

heuristics and performance indicators. Unlike the ranking scheme used in

Vázquez-Rodríguezand Petrovic (2012), which ranks the algorithms based on

their probabilities against the performance indicators’ using a mixture of

experiments, our ranking scheme relies on sorting the low level heuristics in

descending order based on the highest ranking among the other heuristics.

For ܰ number of low level heuristics and ܯ number of performance metrics, ܰ

heuristics are ranked according to their performances against ܯ metrics. For a

particular metric ݉௜ ǡ ݅ א a heuristic ௝݄ ǡ ,ܯ ݆ א ܰ with the best performance

among other heuristics assigns the highest rank, which is equal to ܰǤ Then

another heuristic with the second best performance is ranked as ܰ െ ͳ and so

on. If two heuristics have the same performance, both heuristics are assigned

Chapter 4: A Multi-objective Hyper-heuristic Framework

87 | P a g e

the same rank. This ranking process is applied for all ܯ metrics. After all

heuristics are ranked against all metrics, the frequency of the highest rank for

each heuristic is counted. A heuristic with the largest frequency count of the

highest rank is more desirable. An example of how the ranking scheme works

using the four performance metrics to rank three low level heuristics is

described in Figure 4.2.

Figure 4.2: An example of how three low level heuristics, denoted as ࢎ૚, ࢎ૛ and ࢎ૜ are

ranked against four performance metrics of AE, RNI, SSC, and UD. The Ļ and Ĺ show

that heuristics are ranked in decreasing and increasing order for the given metric,
respectively, 3 indicating the top ranking heuristic. Each row in the top table represents
each low level heuristic’s performance with respect to the four metrics. Each row in the
leftmost table represents each heuristic’s rank among other heuristics for each metric.
The rightmost table represents the frequency of each heuristic ranking the top over all
metrics.

As we are not only looking for the heuristic that has the best

performance, but also aiming to have a larger number of non-dominated

individuals, the frequency count of the highest rank for a heuristic ݄௜ is

summed with its RNI rank using:

ג ݅׊ ܰ ௜݂ሺ݄௜ሻ ൌ ௛௜௚௛௘௦௧̴௥௔௡௞ሺ݄௜ሻݍ݁ݎ݂ ൅ ௥௔௡௞ሺ݄௜ሻ (4.1)ܫܴܰ

where ܰ represents the number of the low level heuristics and ௜݂ሺ݄௜ሻ reflects

a performance of heuristic ݄௜. In the example presented in Figure 4.2, the

performance value of ݄ଶ is equal to 6 using Equation 4.1. In the case of two

heuristics ݄௜ and ௝݄ having the same value of ௜݂ሺ݄௜ሻ and ௝݂൫ ௝݄൯ , we consider

the heuristic that has a higher count of the second highest rank ሺܰ െ ͳሻ.

 AEĻ RNIĹ SSCĹ UDĹ ݄ଵ 0.0003 1.00 10.70 4.91 ݄ଶ 0.0001 1.00 11.90 3.75 ݄ଷ 0.0004 0.60 9.81 3.00

 AE RNI SSC UD ݄ଵ 2 3 2 3 ݄ଶ 3 3 3 2 ݄ଷ 1 2 1 1

݄ଵ 2 ࢎ૛ 3 ݄ଷ 0

Count

the

Highest

Rank

Rank

Chapter 4: A Multi-objective Hyper-heuristic Framework

88 | P a g e

4.3 The Choice Function Meta-heuristic Selection

Method

The key idea behind the use of a choice function as a selection

mechanism in a hyper-heuristic is guiding the search by choosing a heuristic

at each decision point based on its historical performance and the time passed

since the last call to the heuristic. This selection process supports both

intensification and diversification which provides a kind of learning for the

hyper-heuristic. If a heuristic performs well, the choice function will choose it

to exploit the search area. Even a heuristic that does not perform well still has

a chance to be called in order to explore new areas of the search space.

Cowling et al. (2002c) and Kendall et al. (2002) propose a choice

function based hyper-heuristic for a single-objective problem that employs the

choice function as a heuristic selection method which adaptively ranks the low

level heuristics ሺ݄௜ሻ using:

ሺ݄௜ሻܨܥ ൌ ߙ ଵ݂ሺ ݄௜ሻ ൅ ߚ ଶ݂ሺ ௝݄ ǡ ݄௜ሻ ൅ ߜ ଷ݂ሺ݄௜) (4.2)

where ଵ݂ measures the individual performance of each low level heuristic, ଶ݂
measures the performance of pairs of low level heuristics invoked

consecutively, and finally, ଷ݂ is the elapsed CPU time since the heuristic was

last called. Both ଵ݂ and ଶ݂ support intensification while ݂͵ supports

diversification. The parameter values for ߙǡ are changed adaptively ߜ and ߚ

based on a similar idea to reinforcement learning. The choice function based

hyper-heuristic was applied to nurse scheduling and sales summit scheduling.

The study shows that the hyper-heuristic combining Choice Function with All-

Moves acceptance performed the best when compared to the other methods.

The study also shows that the choice function hyper-heuristic is successful in

making effective use of low level heuristics, due to its ability to learn the

dynamics between the solution space and the low level heuristics to guide the

search process towards better quality solutions. For more details, see

(Soubeiga, 2003).

The formula in Equation 4.2 was extended for multi-criteria decision

making (MCDM) in Soubeiga (2003) as:

Chapter 4: A Multi-objective Hyper-heuristic Framework

89 | P a g e

ǡ݈׊ ௟ ሺ݄୧ሻܨܥ ൌ Ƚ௟ ଵ௟ሺ݄୧ሻ ൅ Ⱦ ௟ ଶ௟ሺ ݄௜ ǡ ݄୨ሻ ൅ ஔୡ ଷሺ݄୧ሻ (4.3)

Each individual criterion ݈ has its own choice function. The choice function ܨܥ௟ ሺ݄୧ሻ reflects the overall performance of each low level heuristic ݄୧ with

respect to each criterion ݈. Of course, Equation in 4.2 is still valid if several

criteria are aggregated into one objective function.

In this thesis, we propose a modified version of the choice function

heuristic selection method as a component in our multi-objective selection

hyper-heuristic. The modified choice function is formulated as

ג ݅׊ ܰǡ ܨܥ௜ሺ݄௜ሻ ൌ  ଵ݂௜ሺ݄௜ሻ ൅ ଶ݂௜ሺ݄௜ሻ (4.4)

where ଵ݂௜ሺ݄௜ሻ is computed using Equation 4.1 based on the ranking scheme

described earlier in Section 4.2. It measures the individual performance of

each low level heuristic ݄௜. ଶ݂௜ሺ݄௜ሻ is the number of CPU seconds elapsed since

the heuristic was last called. ଵ݂௜ሺ݄௜ሻ provides an element of intensification

while ଶ݂௜ሺ݄௜ሻ provides an element of diversification, by favouring those low

level heuristics that have not been called recently.  is a large positive value

(e.g. 100). It is important to strike a balance between ଵ݂ and ଶ݂ values, so

that they are in the same scalar unit. Experiments to tune  are conducted

in Chapter 5. The low level heuristic ݄௜ with the largest value of ܨܥ௜ሺ݄௜ሻ is the

heuristic that is applied for the next iteration of the search.

Equation 4.4 differs from Equations 4.2 and 4.3 as it is adjusted to deal

with a given multi-objective optimisation problem, but their goal is the same,

measuring the overall performance of a low level heuristic ݄௜. Unlike Equation

4.3 which reflects the performance of low level heuristics with respect to the

criteria (objective values), Equation 4.4 reflects the overall performance of

low level heuristics with respect to the performance metrics that measures the

resulting non-dominated set in the objective space. Our multi-objective

hyper-heuristic works at a high level of abstraction, no information for

problem-specific is required such as the number of objectives nor for the

nature of the solution space, only the number of low level heuristics. This

advantage makes our framework suitable to apply to single-objective

optimisation by replacing the performance metrics and low level heuristics to

those which are designed for single-objective problems.

Chapter 4: A Multi-objective Hyper-heuristic Framework

90 | P a g e

4.4 Summary and Remarks

Hyper-heuristics have drawn increasing attention from the research

community in recent years, although their roots can be traced back to the

1960’s. They perform a search over the space of heuristics rather than

searching over the solution space directly. Research attention has focussed on

two types of hyper-heuristics: selection and generation. A selection hyper-

heuristic manages a set of low level heuristics and aims to choose the best

heuristic at any given time using historic performance to make this decision,

along with the need to diversify the search at certain times.

References to a hyper-heuristic framework for multi-objective

optimisation are scarce. Burke et al., (2003b) provide a generic hyper-

heuristic and Soubeiga (2003) presents general guidelines for designing a

framework for hyper-heuristics. Burke et al. (2003a) discussed a framework

for a hyper-heuristic for multi-objective combinatorial problems. No further

investigations nor any related information are given for how to build a hyper-

heuristic for multi-objective optimisation in particular continuous problems.

This chapter has addressed the design issues related to the development of

hyper-heuristics for multi-objective optimisation. The framework of our multi-

objective hyper-heuristic is inspired by two facts: (i) no existing algorithm

that excels across all types of problems, and (ii) the hybridisation or

combining different (meta)heuristics/algorithms into one framework could

yield promising results compared to (meta)heuristics/ algorithms on their

own. Accordingly, we discussed each component of a hyper-heuristic

framework from the multi-objective prospective including the low level

heuristics, the selection method, the learning and feedback mechanisms and

finally the move acceptance method.

Hyper-heuristic frameworks, generally, impose a domain barrier which

separates the hyper-heuristic from the domain implementation along with low

level heuristics. Moreover, this barrier does not allow any problem specific

information to be passed to the hyper-heuristic itself during the search

process. We designed our framework in the same modular manner, making it

highly flexible and its components reusable and easily replaceable. Our online

selection choice function based hyper-heuristic for multi-objective (HHMO_CF)

controls and combines the strengths of three well-known multi-objective

evolutionary algorithms (NSGAII, SPEA2, and MOGA), which are utilised as

Chapter 4: A Multi-objective Hyper-heuristic Framework

91 | P a g e

the low level heuristics. The motivation behind choosing these MOEAs is that

they are efficient and effective and they also incorporate much of the known

MOEA theory (Van Veldhuizen and Lamont, 2000). The choice function

utilised, as a selection method, acts as a high level strategy which adaptively

ranks the performance of three low-level heuristics, deciding which one to call

at each decision point. Four performance metrics (AE, RNI, SSC and UD) act

as an online learning mechanism to provide knowledge of the problem domain

to the selection mechanism.

There is strong empirical evidence showing that different combinations

of heuristic selection and acceptance methods in a selection hyper-heuristic

framework yield different performance in single-objective optimisation (Burke

et al., 2012). In the next three chapters, we will investigate the proposed

multi-objective choice function based hyper-heuristic combined with different

move acceptance strategies including All-Moves as deterministic move

acceptance and Great Deluge (GDA) and Late Acceptance (LA) as non-

deterministic move acceptance.

Chapter 5: A Heuristic Selection Using Deterministic Move Acceptance

Strategy

92 | P a g e

5 A Heuristic Selection Using Deterministic Move

Acceptance Strategy

In the previous chapter, we presented the framework for an online

learning selection hyper-heuristic for multi-objective optimisation. The key

feature of the proposed selection hyper-heuristic is the use of a modified

choice function as a selection method based on ranking low level heuristics

according to their performance. This chapter investigates the proposed multi-

objective choice function based hyper-heuristic when combining All-Moves as

a move acceptance strategy.

5.1 Choice Function All-Moves for Selecting Low Level

Meta-heuristics (HHMO_CF_AM)

In single-objective optimisation, Cowling et al., (2002c) investigate the

performance of different hyper-heuristics, combining different heuristic

selection, with different move acceptance methods on a real world scheduling

problem. Simple Random, Random Descent, Random Permutation, Random

Permutation Descent, Greedy and Choice Function were introduced as

heuristic selection methods. The authors utilised the following deterministic

acceptance methods: All-Moves accepted and Only Improving moves

accepted. The hyper-heuristic combining Choice Function with All-Moves

acceptance performed the best. In this chapter, we investigate the

performance of the proposed multi-objective choice function based hyper-

heuristic, utilising All-Moves as a deterministic acceptance strategy, meaning,

that we accept the output of each low level heuristic whether it improves the

quality of the solution or not. We use the multi-objective hyper-heuristic

framework that we proposed in Chapter 4. Three well-known multi-objective

evolutionary algorithms (NSGAII, SPEA2, and MOGA), act as the low level

heuristics.

 The multi-objective choice function all-moves based hyper-heuristic

(HHMO_CF_AM) is shown in Algorithm 10. Initially, a greedy algorithm is

executed to determine the best low level heuristic to be selected for the first

iteration (steps 2-6). All three low level heuristics are run (step 3). Then, the

three low level heuristics are ranked by using Equation 4.1 and their choice

function values are computed by using Equation 4.4 (steps 4 & 5). The low

level heuristic with the largest choice function value is selected (step 6) to be

applied as an initial heuristic (step 8). Then, for all low level heuristics, the

Chapter 5: A Heuristic Selection Using Deterministic Move Acceptance

Strategy

93 | P a g e

ranking mechanism is updated (step 9). The choice function values are also

computed and updated (step 10). According to the updated choice function

values, the low level heuristic with the largest choice function value is

selected to be applied in the next iteration (step 11). This process is repeated

until the stopping condition is met (steps 7-12). Note that the greedy

algorithm is applied only once at the beginning of the search, in order to

determine which low level heuristic to apply first. Then, only one low level

heuristic is selected at each iteration.

Our multi-objective selection choice function based hyper-heuristic

(HHMO_CF) involves multi-objective meta-heuristics as low level heuristics

for solving -objective optimisation problems. Each low level heuristics

executes a fixed number of function evaluations where is the size of

population and is the number of generations. Because of the high level

abstraction in HHMO_CF, the number of objectives in is not considered.

HHMO_CF executes for a fixed number of iterations (decision points) () as

computational resource is always limited. In each iteration, HHMO_CF

evaluates function evaluations. That is, HHMO_CF executes for ൈ
function evaluations. Regardless of the computational cost for low level

heuristics are used, the high level strategy; the selection choice function

method in (Steps 9 & 10) ranks low level heuristics with respect to

performance metrics. So the computational cost of the choice function at each

iteration is ൈ . HHMO_CF takes linear time to execute; ൈ ൈ . We

note that and are negligible. In the best case, HHMO_CF only requites Ȫሺ ሻ basic operations per iteration to achieve an approximation Pareto front

which has a comparable quality to that obtained by the low level heuristic

when run individually. The experiments observation shows that there is no

notable difference between the execution time of our method and other low

Algorithm 10: Multi-objective Choice Function All-Moves based Hyper-heuristic
 1: procedure HHMO_CF_AM ሺܪሻ ܪ ݏܽ݁ݎ݄݁ݓ is a set of the low level heuristics
 2: Initialisation
 3: Run ݄ǡ ݄ ׊ א for ݊݃ function evaluations ܪ
 4: Rank ݄ǡ ݄ ׊ א based on the ranking scheme ܪ
 5: Get ܨܥሺ݄ሻǡ ݄ ׊ א ܪ
 6: Select ݄ with the largest ܨܥሺ݄ሻ as an initial heuristic
 7: repeat
 8: Execute the selected ݄ for ݊݃ function evaluations
 9: Update the rank of ݄ǡ א ݄ ׊ based on the ranking scheme ܪ
10: Update ܨܥሺ݄ሻǡ א ݄ ׊ ܪ

11: Select ݄ with the largest ܨܥሺ݄ሻǡ א ݄ ׊ ܪ
12: until (termination criteria are satisfied)
13: end procedure

Chapter 5: A Heuristic Selection Using Deterministic Move Acceptance

Strategy

94 | P a g e

level heuristics run on their own. It is good to note that all the methods are

executed the same number of function evaluations.

5.2 Performance Comparison of Multi-objective

Choice Function Based Hyper-heuristic and Low Level

Heuristics

A set of experiments using the WFG test suite is conducted to see the

performance difference between using each individual multi-objective meta-

heuristic (NSGAII, SPEA2, and MOGA) run on its own and the proposed

HHMO_CF_AM selection hyper-heuristic that combines them. Although NSGAII

and SPEA2 have previously been applied to the WFG test suite in Bradstreet

et al. (2007), we repeat the experiments, including MOGA, under our own

experimental settings. For short, we refer to the HHMO_CF_AM as HH_CF.

5.2.1 Performance Evaluation Criteria

The comparison of the quality of solutions for multi-objective

optimisation is more complex than single-objective problems. The number of

non-dominated individuals should be maximised, the distance to the non-

dominated front should be minimised, i.e. the resulting non-dominated set

should be distributed uniformly as much as possible and converge well toward

the POF. Because of that, we use three performance metrics RNI, SSC, and

UD, to assess the quality of approximation sets in different aspects. In

addition, we use the students test (t-test) as the statistical test while

comparing the average performances of a pair of algorithms with respect to a

metric averaged over 30 trials. The null hypothesis is as follows:

 ൜ ݏ݊ܽ݁݉ ݐ݊݁ݎ݂݂݁݅݀ ݁ݒ݄ܽ ݏ݄݉ݐ݅ݎ݋݈݃ܽ ݂݋ ݎ݅ܽ݌ ܽ ݂݋ ݁ܿ݊ܽ݉ݎ݋݂ݎ݁݌ ݄݁ݐ ଵܪ ݏ݊ܽ݁݉ ݁݉ܽݏ ݄݁ݐ ݁ݒ݄ܽ ݏ݄݉ݐ݅ݎ݋݈݃ܽ ݂݋ ݎ݅ܽ݌ ܽ ݂݋ ݁ܿ݊ܽ݉ݎ݋݂ݎ݁݌ ݄݁ݐ ଴ܪ

We assume two independent samples, unequal variance and one-tailed

distribution with 95% confidence level. We aim to reject the null hypothesis

and accept the alternative hypothesis and demonstrate the performance of

HH_CF is statistically different from the performance of other algorithms. We

use the following notation. Given two algorithms ܲ and ܳ, ܲǣܳ ൅ ሺെሻ indicates

that ܲ performs better/worse than ܳ on average and this performance

difference is statistically significant. The ~ sign indicates that both algorithms

Chapter 5: A Heuristic Selection Using Deterministic Move Acceptance

Strategy

95 | P a g e

deliver a similar performance. The notation n/a means the t-test is not

applicable since the performances of both algorithms are completely equal.

5.2.2 Experimental Settings

All experimental parameters are chosen accordingly to that commonly

used in the literature for continuous problems. Nine test problems for the

WFG suite (WFG1-WFG9) have 24 real parameters including four position

parameters, 20 distance parameters and two objectives. All settings for the

test suite are fixed using the same settings proposed in the previous studies

(Zitzler et al., 2000; Huband et al., 2006).

According to Voutchkov and Keane (2010) and Chow and Regan (2012),

an algorithm could reach better convergence by 6,250 generations. Therefore,

the HH_CF was terminated after 6,250 generations. That is, HH_CF runs for a

total of 25 iterations (stages). In each iteration, one low level heuristic is

applied and this is executed for 250 generations with a population size equal

to 100. The secondary population of SPEA2 is set to 100. The execution time

takes about 10-30 minutes depending on the given problem. In order to make

a fair comparison, each low level heuristic is used in isolation and is

terminated after 6,250 generations. For the WFG problems, 30 independent

trials were run for each algorithm with a different random seed. For all three

low level heuristics, the simulated binary crossover (SBX) operator is used for

recombination and a polynomial distribution for mutation (Deb and Agrawal,

1995). The crossover and mutation probability were set to 0.9 and 1/24

respectively. The distribution indices for crossover and mutation were set to

10 and 20 respectively. In the measure of SSC, the reference points for WFG

problems with ݇ objectives was set ݎ௜ ൌ ሺͲǡ ݅ כ ʹሻǡ ݅ ൌ ͳǡ Ǥ Ǥ Ǥ ǡ ݇; (Huband et al.,

2006). The distance sharing ߪ for the UD metric and MOGA was set to 0.01 in

the normalised space. These settings were used for SSC and UD as a

feedback indicator in the ranking scheme of HH_CF and as a performance

measure for the comparison. All algorithms were implemented with the same

common sub-functions using Microsoft Visual C++ 2008 on an Intel Core2

Duo 3GHz\2G\250G computer.

5.2.3 Tuning of  parameter

In our multi-objective hyper-heuristic framework, we employ a modified

choice function, a selection mechanism using Equation 4.4 (see Section 4.3).

The parameter value for  is important to strike a balance between ଵ݂ and ଶ݂

Chapter 5: A Heuristic Selection Using Deterministic Move Acceptance

Strategy

96 | P a g e

values, as they are not in the same scalar unit. However, the choice of the

right value is not trivial. We conducted initial experiments to determine the

right value of  that leads to obtain solutions with good quality. In this

experiment, we used three values in different ranges (small, middle and large

(10,100 and 1000) respectively). Four instances of the WFG with two

objectives (WFG1, WFG4, WFG6 and WFG8) are selected as they require a

varied execution time ranging approximately between 10-25 minutes and

they are run 30 times.

 The performance values of HH_CF using the different values of  (10,

100 and 1000) with respect to the performance metrics (RNI, SSC and UD) on

the selected WFG problems are summarised in Table 5.1. For each

performance metric, the average, minimum, maximum and standard

deviation values are computed. A higher value indicates a better performance.

We can observe that HH_CF has the highest (best) average of RNI when

=1000. However, HH_CF has the highest (best) averages of SSC and UD

metrics when =100. We note that HH_CF has the worst performance with

respect to three metrics when =10. These results can be explained by

answering some questions, what is a good balance between ଵ݂ሺ݄ሻ and ଶ݂ሺ݄ሻ to

reach in a satisfactory level (i.e. producing good solutions). How does

intensification and diversification affect the quality of the solutions during the

search? In the case of a small , more attention is given to ଶ݂ሺ݄ሻ and to

the diversification factor as well. Thus, no consideration for ଵ݂ሺ݄ሻ and the

intensification factor. The choice function acts as a random selection method;

a low level heuristic ሺ݄ሻ is invoked regardless of its performance; the learning

mechanism is not effective. In contrast, a large  gives more focus to ଵ݂ሺ݄ሻ
and for the intensification factor as well. The low level heuristic ሺ݄ሻ with the

best performance is always invoked during the search and no other low level

heuristics are considered. An example of this, let’s say ଵ݂ሺ݄ሻ=6 and ଶ݂ሺ݄ሻ ൌ

90.718 seconds, Based on this, the selection of the heuristics relies on ଶ݂ሺ݄ሻ
when =10 while it relies on ଵ݂ሺ݄ሻ when =1000. In case of =100, a

balance between ଵ݂ሺ݄ሻ and ଶ݂ሺ݄ሻ can be made. In the first few iterations of

the search, the intensification factor gives a low level heuristic, that performs

well, a chance to exploit the search area. Then as ଶ݂ increases during the

search, the selection method invokes a low level heuristic which is not

currently performing well, in order to explore unvisited search areas. The

value changing between ଵ݂ሺ݄ሻ and ଶ݂ሺ݄ሻ leads to a balance between

Chapter 5: A Heuristic Selection Using Deterministic Move Acceptance

Strategy

97 | P a g e

intensification and diversification. In Figures 5.1 and 5.2, we provide an

example of this situation for WFG1. In Figure 5.1, the average performance

values of RNI, SSC and UD metrics for the HH_CF during the search with

different settings =(10,100, 1000) on WFG1 is visualised. Also the average

heuristic utilisation rate which indicates how frequently a given heuristic is

chosen and applied during the whole search process across all runs on WFG1

for the HH_CF with different  values is computed and illustrated in Figure

5.2.

From both Figures 5.1 and 5.2, we note that the performance of HH_CF

during the search when =10 with respect to RNI is reduced, and it fluctuated

with respect to the SSC and UD metrics. This is due to the absence of the

intensification factor and the strong effect of the diversification factor on the

algorithm which result in the heuristics being called (almost randomly). The

performance of HH_CF during the search when =1000 with respect to the

three metrics is relatively the same. Although the performance of HH_CF has

slightly increased during the search and it does obtain better solutions,

diversification factor is not having any effect. This is clear in Figure 5.2, where

NSGAII has the highest utilisation rate as it performs well and MOGA have not

been executed at all. This is because of the effect of the intensification factor.

However, the performance of HH_CF during the search when =100, with

respect to the three metrics, is reflecting the good balance between

intensification and diversification. In Figure 5.2, HH_CF with =100 shows a

heuristic with the best performance for many iterations because of the effect

of the intensification factor, but it also gives a chance for other heuristics to

be called because of the diversification factor. This is shown in Figure 5.1, all

heuristics are invoked even if they do not perform well. From the above

observations, =100 is the best value compared to the others that obtains

better solutions for HH_CF on selected WFG problems. Therefore,  is set

to100 for our HH_CF in the experiments that are presented in the rest of this

chapter.

Chapter 5: A Heuristic Selection Using Deterministic Move Acceptance Strategy

98 | P a g e

 Table 5.1: The Performance of multi-objective choice function based hyper-heuristic (HH_CF) using different values of  parameter

 in the choice function selection method.

WFG  RNI SSC (HV) UD
AVG MIN MAX STD AVG MIN MAX STD AVG MIN MAX STD

1 10 0.1080 0.0400 0.2000 0.0593 3.1031 0.3251 8.11719 3.1183 0.3873 0.3364 0.7656 0.1401
100 0.8800 0.2800 1.0000 0.2539 12.1386 9.0338 12.5130 0.9101 0.4428 0.3490 0.6945 0.1007
1000 1.0000 1.0000 1.0000 0.0000 10.5048 6.4887 10.5168 0.0113 0.4101 0.3890 0.4284 0.0152

4 10 0.2340 0.2000 0.2500 0.1949 9.1308 8.7872 9.3591 0.2104 0.4932 0.4798 0.5505 0.0894
100 0.5443 0.4800 0.6400 0.0452 9.6588 9.5331 9.6643 0.0176 0.5596 0.4752 0.6317 0.0361

1000 1.0000 1.0000 1.0000 0.0000 9.6510 9.5000 9.6632 0.0038 0.4118 0.3955 0.4379 0.1574
6 10 0.2800 0.1600 0.2800 0.0438 8.8502 7.9699 9.1721 0.4976 0.5088 0.6231 0.7646 0.0544

100 0.4720 0.4000 0.5600 0.0412 9.3687 9.1500 9.3810 0.0542 0.5962 0.5042 0.6479 0.0363
1000 1.0000 1.0000 1.0000 0.0000 9.3346 9.2759 9.4105 0.0695 0.4155 0.3992 0.4337 0.0135

8 10 0.0640 0.0400 0.0800 0.0219 6.8731 5.0792 7.5603 7.5603 06668 0.5358 0.7387 0.8315
100 0.2627 0.2000 0.4400 0.0454 8.3033 8.1155 8.5676 0.1224 0.7886 0.6294 1.0000 0.2627
1000 0.9000 0.4000 1.0000 0.3000 7.6730 7.5321 7.7276 0.0797 0.4772 0.4125 0.6948 0.1218

Chapter 5: A Heuristic Selection Using Deterministic Move Acceptance

Strategy

99 | P a g e

Figure 5.1: The performance of HH_CF with respect to the measure RNI, SSC and UD

during the search which were averaged over 30 trials for different  settings (10, 100,

1000) on WFG1.

Figure 5.2: The average heuristic utilisation rate over 30 trials for the low level

heuristics (NSGAII, SPEA2 and MOGA) in HH_CF using different  settings (10, 100,

1000) on the WFG1.

Chapter 5: A Heuristic Selection Using Deterministic Move Acceptance

Strategy

100 | P a g e

 5.2.4 Comparison Results and Discussion

NSGAII, SPEA2, MOGA and HH_CF are tested on the nine WFG test

problems under the same experimental settings described in Section 5.2.2.

Table 5.2 summarises the average, minimum, maximum and standard

deviation values pairs for each algorithm with respect to RNI, SSC and UD

over 30 trials. For all performance metrics, a higher value indicates a better

performance. HH_CF has a higher RNI value than MOGA while it has a lower

value than NSGAII and SPEA2 for WFG1. HH_CF has the highest value of SSC

and UD metrics among the methods. We can put WFG5 and WFG6 in this

category. For WFG2 and WFG3, HH_CF has a RNI value similar to MOGA and

lower than the others. With respect to SSC, HH_CF has higher values than

SPEA2 and MOGA and similar to NSGAII. However, HH_CF has the highest

value among other methods in the measure of UD. For WFG4 and WGF7,

HH_CF has the lowest (worst) RNI value and the highest UD value. HH_CF has

a higher value than MOGA and similar to NSGAII and SPEA2 with respect to

the SSC metric. For WFG8 and WFG9, HH_CF has the lowest value with

respect to RNI and SSC metrics, and the highest value with respect to UD

metric.

These performance results with respect to RNI, SSC and UD are also

displayed as box plots in Figures 5.3, 5.4 and 5.5 in order to provide a clear

visualisation of the distribution of the simulation data of the 30 independent

runs. The statistical t-test comparing our proposed HH_CF and the three low

level heuristics (NSGAII, SPEA2 and MOGA), when used in isolation for the

three performance metrics (RNI, SSC and UD) are given in Table 5.3. We can

note that HH_CF and the other algorithms are statistically different in the

majority cases.

In Figure 5.3, NSGAII and SPEA2 perform better than the others and

produce the highest value of RNI for all datasets. This performance variation

is statistically significant as illustrated in Table 5.3. Moreover, NSGAII and

SPEA2 perform the same across all benchmarks with respect to RNI. However,

HH_CF and MOGA produce relatively low values for this metric. HH_CF

performs significantly better than MOGA on two instances of WFG1 and WFG5

and vice-versa for two instances of WFG8 and WFG9. For the rest of the

instances, they deliver the same performance. This indicates that HH_CF

Chapter 5: A Heuristic Selection Using Deterministic Move Acceptance

Strategy

101 | P a g e

performs badly according to the metric of RNI and produces a low number of

non-dominated solutions than other algorithms, except for MOGA.

In Figure 5.4, the performance of HH_CF for SSC is relatively better

than SPEA2 and MOGA across all test problems except for WFG9. HH_CF

performs significantly better than SPEA2 and MOGA on eight instances of WFG

(see Table 5.3). HH_CF also performs better than NSGA2 in WFG1, WFG5 and

WFG6. This performance variation is statistically significant as illustrated in

Table 5.3. HH_CF performs significantly better than NSGAII on three

instances of WFG1 and WFG5, WFG6.

In Figure 5.5, it can be seen that HH_CF has the highest uniform

distribution UD value across all test problems. This indicates that HH_CF is

superior to the other algorithms on all WFG instances in terms of the

distribution of non-dominated individuals over the POF. This performance

variation is statistically significant as illustrated in Table 5.3. HH_CF performs

significantly better than the other methods on all nine instances of WFG.

Although HH_CF performs similarly to NSGAII in WFG2, WFG3, WFG4 and

WFG7, HH_CF performs significantly slightly better than NSGAII on three

instances of WFG2, WFG4 and WFG7 (see Tables 5.2 and 5.3). For WFG8 and

WFG9, HH_CF does not perform well compared to the others, except MOGA.

HH_CF performs significantly worse than NSGAII and SPEA2 where HH_CF

performs significantly better than MOGA as shown in Table 5.3.

We note from all the above results that HH_CF performs worse than the

low level heuristics when used in isolation with respect to the RNI metric, and

it produces a lower number of non-dominated solutions for most of the WFG

problems. However, HH_CF performs very well and produces non- dominated

solutions that distribute uniformly well over the POF with respect to the UD

metric when compared to the other methods. HH_CF also performs better

than the others in most of the WFG problems and produces non-dominated

solutions with high diversity that cover a larger proportion of the objective

space with respect to the SSC metric, except for WFG8 and WFG9 where it

failed to converge towards the POF. As WFG8 and WFG9 have a significant

bias feature, HH_CF may have difficulties coping with bias.

Chapter 5: A Heuristic Selection Using Deterministic Move Acceptance Strategy

102 | P a g e

Table 5.2: The average performance of HH_CF compared to the low level heuristics on the WFG test problems with respect to the ratio of non-dominated
individuals (RNI), the hypervolume (SSC) and the uniform distribution (UD).

WFG Methods RNI SSC (HV) UD

AVG MIN MAX STD AVG MIN MAX STD AVG MIN MAX STD

1

HH_CF 0.8800 0.2800 1.0000 0.2539 12.1386 9.0338 12.5130 0.9101 0.4428 0.3490 0.6945 0.1007
NSGAII 1.0000 1.0000 1.0000 0.0000 11.6041 11.0016 12.3570 0.3880 0.4003 0.3727 0.4327 0.0140

SPEA2 1.0000 1.0000 1.0000 0.0000 6.4931 6.4811 6.5063 0.0066 0.4099 0.3760 0.4420 0.0148
MOGA 0.2650 0.1300 0.6300 0.1140 4.2184 3.5399 6.3178 0.6727 0.2117 0.1535 0.3718 0.0478

2

HH_CF 0.2293 0.1600 0.3600 0.0545 11.0219 10.6407 12.3894 0.3042 0.7278 0.6223 1.0000 0.0661
NSGAII 1.0000 1.0000 1.0000 0.0000 10.8199 10.8057 10.8249 0.0041 0.3747 0.3497 0.3988 0.0112

SPEA2 1.0000 1.0000 1.0000 0.0000 10.7898 10.2636 11.9569 0.7935 0.2874 0.2217 0.3488 0.0305
MOGA 1.0000 1.0000 1.0000 0.0000 9.7959 7.1533 10.1943 0.6978 0.5414 0.4294 0.6910 0.0597

3

HH_CF 0.6027 0.5200 0.6800 0.0445 11.8940 11.3990 11.9867 0.0853 0.5450 0.4959 0.6136 0.0289
NSGAII 1.0000 1.0000 1.0000 0.0000 11.9185 11.9046 11.9306 0.0063 0.4244 0.3980 0.4448 0.0120
SPEA2 1.0000 1.0000 1.0000 0.0000 11.4062 11.3664 11.4541 0.0189 0.4289 0.4110 0.4436 0.0078

MOGA 0.6070 0.5200 0.9600 0.0400 11.2921 10.9930 11.4508 0.1393 0.4468 0.3819 0.5116 0.0324

4

HH_CF 0.5443 0.4800 0.6400 0.0452 9.6588 9.5331 9.6643 0.0176 0.5596 0.4752 0.6317 0.0361
NSGAII 1.0000 1.0000 1.0000 0.0000 9.6460 9.6518 9.6683 0.0041 0.4132 0.3879 0.4402 0.0151
SPEA2 1.0000 1.0000 1.0000 0.0000 9.1853 9.1599 9.2091 0.0133 0.4058 0.3725 0.4301 0.0133

MOGA 0.5800 0.4900 0.7100 0.0540 8.9968 8.4897 9.3057 0.2056 0.4594 0.3940 0.5610 0.0387

5

HH_CF 0.8537 0.6000 1.0000 0.1723 9.2899 9.1526 9.2984 0.5744 0.4779 0.4279 0.5744 0.0468
NSGAII 1.0000 1.0000 1.0000 0.0000 9.2857 9.2672 9.2904 0.0043 0.3958 0.3705 0.4271 0.0129
SPEA2 1.0000 1.0000 1.0000 0.0000 9.2860 9.1952 9.2968 0.0214 0.4360 0.4222 0.4538 0.0087

MOGA 0.6820 0.6000 0.7400 0.0360 8.8946 8.4904 9.1028 0.4171 0.4184 0.3583 0.4690 0.0272

6

HH_CF 0.4720 0.4000 0.5600 0.0412 9.3687 9.1500 9.3810 0.0542 0.5962 0.5042 0.6479 0.0363
NSGAII 1.0000 1.0000 1.0000 0.0000 9.3503 9.1883 9.4401 0.0605 0.4082 0.3091 0.4479 0.0247
SPEA2 1.0000 1.0000 1.0000 0.0000 8.7135 8.4494 9.0349 0.1851 0.3761 0.3461 0.4068 0.0158

MOGA 0.4990 0.4300 0.5900 0.0420 8.8878 8.5542 9.0785 0.1345 0.4786 0.3929 0.5712 0.0367

7

HH_CF 0.6173 0.4000 0.7200 0.0653 9.6606 9.2261 9.6911 0.0926 0.5289 0.4734 0.6743 0.0416
NSGAII 1.0000 1.0000 1.0000 0.0000 9.6579 9.5053 9.6704 0.0294 0.4048 0.3766 0.4220 0.0117
SPEA2 1.0000 1.0000 1.0000 0.0000 9.2481 9.2109 9.2724 0.0161 0.4082 0.3777 0.4333 0.0116

MOGA 0.6300 0.5100 0.7600 0.0550 9.1685 8.6489 9.3474 0.1799 0.4331 0.3539 0.4980 0.0415

8

HH_CF 0.2627 0.2000 0.4400 0.0454 8.3033 8.1155 8.5676 0.1224 0.7886 0.6294 1.0000 0.1245
NSGAII 1.0000 1.0000 1.0000 0.0000 8.7155 8.6912 8.7391 0.0140 0.4178 0.3980 0.4404 0.0123
SPEA2 1.0000 1.0000 1.0000 0.0000 8.3957 8.3509 8.4412 0.0199 0.4069 0.3907 0.4226 0.0083

MOGA 0.4790 0.4000 0.6000 0.0460 8.0762 7.4237 8.9192 0.2777 0.4490 0.3679 0.5644 0.0450

9

HH_CF 0.6410 0.4000 0.8000 0.0896 8.6132 8.2356 9.2519 0.2236 0.5142 0.4141 0.6432 0.0525
NSGAII 1.0000 1.0000 1.0000 0.0000 8.7650 8.5787 9.2673 0.2960 0.3955 0.3641 0.4294 0.0163
SPEA2 1.0000 1.0000 1.0000 0.0000 8.7091 8.5700 9.0416 0.1967 0.4303 0.4031 0.4488 0.0106

MOGA 0.8260 0.6700 0.9700 0.0900 8.5723 8.2357 8.9845 0.2259 0.3693 0.2803 0.4257 0.0350

Chapter 5: A Heuristic Selection Using Deterministic Move Acceptance

Strategy

103 | P a g e

Figure 5.3:.Box plots of NSGAII, SPEA2, MOGA and HH_CF, for the measure of ratio of
non-dominated individuals (RNI) on the WFG test functions.

Figure 5.4: Box plots of NSGAII, SPEA2, MOGA and HH_CF for the measure of
hypervolume (SSC) on the WFG test functions.

Chapter 5: A Heuristic Selection Using Deterministic Move Acceptance

Strategy

104 | P a g e

Figure 5.5: Box plots of NSGAII, SPEA2, MOGA and HH_CF for the uniform distribution
(UD) of non-dominated population on the WFG test functions.

Generally, HH_CF produces competitive results across most of the WFG

problems with respect to two of the performance metrics (SSC and UD) out of

the three metrics. Although HH_CF obtains a low number of solutions, it

produces very good solutions in terms of diversity and convergence when

compared to the low level heuristics when used in isolation. HH_CF can

benefit from the strengths of the low level heuristics. Moreover, it has the

ability to intelligently adapt to calling combinations of low level heuristics. To

understand how the HH_CF could obtain these results, we analyse the

behaviour of the low level heuristics in the next sub-section.

5.2.5 Behaviour of Low Level Heuristics

We compute the average heuristic utilisation rate which indicates how

frequently a given low level heuristic is chosen and applied during the search

process, across all runs, in order to see which low level heuristic is used more

frequently. The results are presented in Figure 5.6. The average heuristic

utilisation rate of NSGAII is at least 44% and is the highest among all the low

level heuristics for each problem, except for WFG5 for which SPEA2 is chosen

Chapter 5: A Heuristic Selection Using Deterministic Move Acceptance

Strategy

105 | P a g e

Problem Methods Metrics
RNI SSC UD

WFG1 HH_CF:NSGAII - + +
HH_CF:SPEA2 - + +
HH_CF:MOGA + + +
NSGAII:SPEA2 n/a + -
NSGAII:MOGA + + +
SPEA2:MOGA + + +

WFG2 HH_CF:NSGAII - ~ +
HH_CF:SPEA2 - + +
HH_CF:MOGA ~ + +
NSGAII:SPEA2 n/a ~ +
NSGAII:MOGA + + -
SPEA2:MOGA + + -

WFG3 HH_CF:NSGAII - ~ +
HH_CF:SPEA2 - + +
HH_CF:MOGA ~ + +
NSGAII:SPEA2 n/a + +

NSGAII:MOGA + + -
SPEA2:MOGA + + -

WFG4 HH_CF:NSGAII - ~ +
HH_CF:SPEA2 - + +
HH_CF:MOGA - + +
NSGAII:SPEA2 n/a + +
NSGAII:MOGA + + -
SPEA2:MOGA + + -

WFG5 HH_CF:NSGAII - + +
HH_CF:SPEA2 - + +
HH_CF:MOGA + + +
NSGAII:SPEA2 n/a + -
NSGAII:MOGA + + -
SPEA2:MOGA + + +

WFG6 HH_CF:NSGAII - + +
HH_CF:SPEA2 - + +
HH_CF:MOGA ~ + +
NSGAII:SPEA2 n/a + +
NSGAII:MOGA + + -
SPEA2:MOGA + - -

WFG7 HH_CF:NSGAII - ~ +
HH_CF:SPEA2 - + +
HH_CF:MOGA ~ - +
NSGAII:SPEA2 n/a + ~
NSGAII:MOGA + + -
SPEA2:MOGA + + -

WFG8 HH_CF:NSGAII - - +
HH_CF:SPEA2 - - +
HH_CF:MOGA - + +
NSGAII:SPEA2 n/a + +
NSGAII:MOGA + + -
SPEA2:MOGA + + -

WFG9 HH_CF:NSGAII - - +
HH_CF:SPEA2 - - +
HH_CF:MOGA - + +
NSGAII:SPEA2 n/a + -
NSGAII:MOGA + + +
SPEA2:MOGA + + +

Table 5.3: The t-test results of HH_CF and low level heuristics on the WFG test
problems with respect to the ratio of non-dominated individuals (RNI), the
hypervolume (SSC) and the uniform distribution (UD).

Chapter 5: A Heuristic Selection Using Deterministic Move Acceptance

Strategy

106 | P a g e

most frequently with a utilisation rate of 55.72% during the search process. It

explains why HH_CF has either a similar or relatively better convergence to

the POF for most of the test problems when compared with NSGAII. It

indicates that NSGAII performs best among other low level heuristics in most

of the WFG problems. The authors theorise that HH_CF, therefore, prefers

NSGAII and it becomes preferable to be chosen more frequently than the

other low level heuristics. Our result is consistent with the result in

Bradstreet et al. (2007) that shows that the best performance is achieved by

NSGAII on the WFG test functions with two objectives.

Figure 5.6: The average heuristic utilisation rate for the low level heuristics (NSGAII,
SPEA2 and MOGA) in HH_CF on the WFG test suite.

Chapter 5: A Heuristic Selection Using Deterministic Move Acceptance

Strategy

107 | P a g e

The performance of MOGA is not that good on the WFG benchmark, thus

it is invoked relatively less frequently during the search process because of

the diversification factor ଶ in the selection choice function method (see

Sections 4.1 and 4.3). However, MOGA still influences the performance of

HH_CF, negatively, in particular with respect to the ratio of number of non-

dominated individuals (RNI). This is due to that fact that MOGA does not have

any archive mechanism or preserving strategy to maintain the non-dominated

solutions during the search. Although the selection choice function method

provides a kind of balance between the intensification (ଵ) and diversification

(ଶ) when choosing a heuristic, HH_CF obtains a low ratio of non-dominated

individuals (RNI) which indicates poor diversification. This is because of our

multi-objective hyper-heuristics do not incorporate any archive mechanisms

to maintain the non-dominated solutions during the search. So when MOGA is

called, it produces a low number of non-dominated individuals, leading to

poor diversification. The average utilisation rate of MOGA is the highest for

WFG8 (10.16%) and WFG9 (22.40%) among other WFG problems. This

utilisation rate explains why the performance of HH_CF is the worst

performing approach in terms of RNI. HH_CF also faces some difficulty while

solving WFG8 and WFG9 in terms of convergence as well.

In order to see the effectiveness of each chosen low level heuristic on

the performance of HH_CF, we looked into the performance of the low level

heuristics with respect to the RNI, SSC and UD metrics at twenty five decision

points during the search process. We observe that some problems are

following a specific pattern to invoke the low level heuristics during the

search. Each problem has its own pattern. For example, for WFG3, NSGAII is

invoked and executed for the first seven consecutive decision points. Then

SPEA2 is invoked for the next four decision points, followed by one iteration of

MOGA. Then NSGAII is chosen for the rest of the search. More of these

patterns are illustrated in Figure 5.7.

In order to analyse these results, we divide the WFG instances into four

categories based on the performance of HH_CF compared to the three low

level heuristics being used in isolation with respect to RNI, SSC and UD as

listed below:

(i) WFG1,WFG5 and WFG6:

Chapter 5: A Heuristic Selection Using Deterministic Move Acceptance

Strategy

108 | P a g e

 RNI: Better performance than MOGA and worse than NSGAII and

SPEA2

 SSC: The best performance among NSGAII, SPEA2 and MOGA

 UD: The best performance among NSGAII, SPEA2 and MOGA

(ii) WFG2 and WFG3:

 RNI: Similar performance to MOGA and worse than NSGAII and

SPEA2

 SSC: Better performance than SPEA2 and MOGA and similar to

NSGAII

 UD: The best performance among NSGAII, SPEA2 and MOGA

(iii) WFG4 and WGF7:

 RNI: The worst performance among NSGAII, SPEA2 and MOGA

 SSC: Better performance than SPEA2 and MOGA and similar to

 NSGAII

 UD: The best performance among NSGAII, SPEA2 and MOGA

(iv) WFG8 and WFG9:

 RNI: The worst performance among NSGAII, SPEA2 and MOGA

 SSC: The worst performance among NSGAII, SPEA2 and MOGA

 UD: The best performance among NSGAII, SPEA2 and MOGA

For each category described above, except the last one, we have

selected a sample problem to visualise the low level call patterns. WFG5 for

the first category, WFG3 for the second category and WFG4 for the third

category. For the last category, no specific pattern has been observed. The

selected three problems have different problems features in terms of

separability and modality (Huband et al., 2006). The average of RNI, SSC and

UD values versus decision point plots across selected benchmark problems

(WFG3, WFG4 and WFG5) are shown in Figure 5.7. Each step in the plot is

associated with the most frequently selected low level heuristics across 30

trials. Since we employed All-Moves as an acceptance strategy, some moves

are accepted even if it worsens the solution quality.

Chapter 5: A Heuristic Selection Using Deterministic Move Acceptance

Strategy

109 | P a g e

From Figure 5.7, it is clear that MOGA, during the search, produces a

worse solution with respect to RNI, and this solution is accepted which affects

the performance of HH_CF. However, some worsening moves are able to

produce better solutions. This can be noted in the performance HH_CF with

respect to the UD metric. SPEA2 produces low quality solutions in terms of the

distribution along the POF, but this helps it to escape from the local optimum

and obtain better solutions at the end. This is also true with respect to the

SSC performance indicator. In addition, we note that HH_CF has an

advantage over MOGA and outperforms the three MOEAs methods with

respect to the distribution of non-dominated individuals over the POF. It also

has an advantage over NSGAII in terms of convergence, in that it performs

better than all other methods in some problems while performing better or

similar to NSGAII on the other problems. However, HH_CF does not have an

advantage over NSGAII and SPEA2 with respect to the non-dominated

individuals in the population. HH_CF performs poorly because of MOGA's

effect.

It can be concluded that our choice function based hyper-heuristic can

benefit from the strengths of the low level heuristics. And it can avoid the

weaknesses of them (partially), as the poor performance of MOGA affects the

performance of HH_CF badly in the metric of RNI by producing a low number

of non-dominated individuals. We can avoid this by employing another

acceptance move strategy instead of All-Moves. A non-deterministic

acceptance strategy could accept worsening moves within a limited degree

and help improve the quality of the solutions. However, HH_CF has the ability

to intelligently adapt to calling combinations of low level heuristics.

5.3 Performance Comparison of Multi-objective

Choice Function Based Hyper-heuristic to the Other

Multi-objective Approaches

We conduct some experiments to examine the performance of our

proposed multi-objective choice function based hyper-heuristic (HH_CF)

compared to two multi-objective approaches; a random hyper-heuristic

(HH_RAND) and the adaptive multi-method search (AMALGAM) (Vrugt and

Robinson, 2007). In a random hyper-heuristic (HH_RAND), we employ a

simple random selection instead of the choice function selection this is used in

HH_CF. No ranking scheme, nor a learning mechanism, is embedded into

Chapter 5: A Heuristic Selection Using Deterministic Move Acceptance

Strategy

110 | P a g e

HH_RAND. In HH_RAND, we use the same three low level heuristics that are

used in HH_CF.

5.3.1 Performance Evaluation Criteria

The hypervolume (SSC) (Zitzler and Thiele, 1999), the generational

distance (GD) (Van Veldhuizen and Lamont, 1998b) and the inverted

generational distance (IGD) (Coello and Cruz Cortès, 2005) metrics were used

to compare the performance of multi-objective approaches for this set of

experiments. The GD and IGD measure the distance (convergence) between

the approximation non-dominated front and the POF. A smaller value of GD

and IGD is more desirable and it indicates that the approximation non-

dominated front is closer to the POF. In addition, we use t-test for the

average performance comparison of algorithms and the results are discussed

using the same notation as provided in Section 5.2.1.

5.3.2 Experimental Settings

All experimental parameters are chosen to be the same as those

commonly used in the scientific literature for continuous problems (Zitzler et

al., 2000; Huband et al., 2006). All methods were applied to the nine WFG

test problems with 24 real values and two objectives. In order to keep the

computational costs of the experiments to an affordable level, all the methods

were executed for 25,000 evaluation functions with a population size of 100

and 250 generations in each run. Depending on the given problem, the

execution time of HH_CF and HH_RAND for one run takes about 5-12

minutes. Both HH_CF and HH_RAND are executed for 2,500 evaluation

functions at each iteration. Other parameter settings of AMALGAM are

identical to those used in Vrugt and Robinson (2007). We used the Matlab

implementation of AMALGAM obtained from the authors via personal

communication. We implemented a C++ interface between AMALGAM and the

WFG test suite's C++ code. All other experimental settings are fixed the same

as discussed in Section 5.2.2.

Chapter 5: A Heuristic Selection Using Deterministic Move Acceptance Strategy

111 | P a g e

Figure 5.7: The average of RNI,SSC and UD values versus decision point steps plots across selected benchmark problems (the WFG3, WFG4 and
WFG5). Each step in the plot is associated with the most frequently selected low level heuristics across 30 trial

Chapter 5: A Heuristic Selection Using Deterministic Move Acceptance

Strategy

112 | P a g e

5.3.3 Experimental Results and Discussion

The performance values of HH_CF and the other hyper-heuristic

methods with respect to the performance metrics SSC, GD and IGD on the

WFG problems are summarised in Table 5.4. For each performance metric,

the average, minimum, maximum and standard deviation values are

computed.

These performance results with respect to SSC, GD and IGD are also

displayed as box plots in Figures 5.8, 5.9 and 5.10 in order to provide a

visualisation of the distribution of the simulation data of the 30 independent

runs. The statistical t-test comparing our proposed HH_CF and other multi-

objective hyper-heuristics for the metrics (SSC, GD and IGD) are given in

Table 5.5. The results show that the HH_CF performs better than the other

algorithms in most cases. As expected, HH_CF achieves better coverage and

diversity than HH_RAND according to both metrics. This is due to the learning

mechanism used in HH_CF which adaptively guides the search towards the

POF. Interestingly, HH_RAND performs better than AMALGAM according to the

hypervolume metric except in WFG9. However, HH_RAND performs worse

than AMALGAM according to the GD metric over all of the problems while it

better in all problems with respect to IGD except in WFG9. This performance

variation is statistically significant as illustrated in Table 5.5. HH_RAND

performs significantly better than AMALGAM for the SSC metric on eight

instances of WFG except in WFG9. HH_RAND also performs significantly better

than AMALGAM for the IGD metric on all instances except in WFG9. HH_RAND

also performs significantly better than AMALGAM for the GD metric on three

instances of WFG1, WFG6 and WFG7 while it performs significantly similar to

AMALGAM on one instance of WFG5 where it performs significantly worse than

AMALGAM for the rest.

Compared to AMALGAM, HH_CF performs better with respect to the

convergence and diversity on most of the WFG problems. According to the

SSC metric, HH_CF produced non-dominated solutions that cover a larger

proportion of the objective space than AMALGAM on all WFG problems except

for WFG9. In Table 5.5, HH_CF performs significantly better than AMALGAM

on eight instances of WFG except for WFG9 where AMALGAM performs

significantly better than HH_CF on this instance. The superiority of HH_CF on

the SSC metric is due to the stronger selection mechanism and the effective

Chapter 5: A Heuristic Selection Using Deterministic Move Acceptance

Strategy

113 | P a g e

ranking scheme that relies on choosing a heuristic with the best SSC value at

the right time (decision point) to guide the search to move toward more

spaces around the POF. This result is more reliable as shown in Figure 5.8.

According to the metrics of GD and IGD, HH_CF is superior to AMALGAM on

most of WFG problems as reported in Table 5.4 and displayed as box plots in

Figure 5.9 and 5.10. In Table 5.5, HH_CF performs significantly better than

AMALGAM on five instances out of nine including WFG1, WFG2, WFG5, WFG6,

and WFG7 for the metric of GD. And HH_CF performs significantly better than

AMALGAM on all instances except in WFG9 for the metric of IGD. Again, this

result is due to the online-learning selection mechanism and the ranking

scheme in HH_CF. The ranking scheme maintains the past performance of low

level heuristics using a set of performance indicators that measure different

aspects of the solutions. During the search process, the raking scheme

creates a balance between choosing the low level heuristics and their

performance according to a particular metric. This balance enhances the

algorithm performance to yield better solutions that converge toward the POF

as well as distribute uniformly along the POF. However, AMALGAM performs

significantly better than HH_CF on the other four instances for GD and one

instance for IGD (see Tables 5.4 and 5.5). This might be because of the

nature of the problems that present difficulties for HH_CF to converge toward

the POF or might slow down the convergence speed such as the bias in WFG8,

WFG9 and the multimodality of WFG4. It is good to report that AMALGAM has

better performance according to the both metrics; SSC, GD and IGD in WFG9.

This is shown in Table 5.5, where AMALGAM performs significantly better than

others on one instance of WFG9.

For each problem, we computed the 50% attainment surface for each

algorithm, from the 30 fronts after 25,000 evaluation functions. In Figures

5.11 and 5.12, we have plotted the POF and the 50% attainment surface of

the algorithms. HH_CF shows good convergence and uniform distribution for

most datasets. It seems clear that HH_CF has converged well on the POF in

WFG1 and WFG2 compared to other algorithms. Moreover, HH_CF produced

solutions that covered larger proportions of the objective space compared to

the other algorithms. AMALGAM has poor convergence most problems. It has

fewer solutions with poor convergence for WFG2. And it has no solutions over

the middle-lower segments of the POF for WFG3, WFG5, WFG6, WFG7, and

WFG8 and no solutions over the upper-middle segments of the POF for WFG4.

Chapter 5: A Heuristic Selection Using Deterministic Move Acceptance Strategy

114 | P a g e

Table 5.4: The performance of HH_CF compared to multi-objective hyper-heuristics on the WFG test problems with respect to the Hypervolume (SSC), the
generational distance (GD) and the inverted generational distance (IGD).

WFG Methods SSC (HV) GD IGD

AVG MIN MAX STD AVG MIN MAX STD AVG MIN MAX STD

1
HH_CF 12.0044 11.8430 12.2044 0.8301 0.00774 0.00340 0.04660 0.01106 0.00102 0.00039 0.00393 0.00098

HH_RAND 7.0258 2.4467 7.5580 0.7877 0.02420 0.02899 0.03556 0.00143 0.00583 0.00340 0.00658 0.00078
AMALGAM 7.7902 7.2863 8.2485 0.1941 0.02917 0.02620 0.03290 0.00155 0.00312 0.00276 0.00352 0.00016

2
HH_CF 11.0102 10.9907 11.2940 0.2033 0.00046 0.00090 0.00320 0.00049 0.00051 0.00022 0.00064 0.00008

HH_RAND 9.7547 7.0023 9.7798 0.5078 0.01680 0.00031 0.04145 0.01089 0.00191 0.00123 0.00330 0.00058
AMALGAM 1.7582 1.6036 6.1053 0.8210 0.00099 0.00030 0.01930 0.00346 0.00413 0.00412 0.00414 0.00001

3
HH_CF 11.7550 11.5650 11.8066 0.0743 0.00068 0.00030 0.00280 0.00045 0.00075 0.00068 0.00082 0.00005

HH_RAND 11.0290 10.8800 11. 0833 0.1490 0.00384 0.00220 0.02252 0.00357 0.00081 0.00045 0.00100 0.00009
AMALGAM 6.6890 6.6752 6.6980 0.0049 0.00036 0.00031 0.00041 0.00002 0.00272 0.00272 0.00272 0.00000

4
HH_CF 9.5610 9.5331 9.6700 0.0143 0.00097 0.00075 0.00151 0.00019 0.00036 0.00030 0.00043 0.00003

HH_RAND 9.2052 8.7032 9.2991 0.0145 0.00405 0.00329 0.00499 0.00053 0.00066 0.00060 0.00072 0.00004
AMALGAM 3.5687 3.5509 3.5838 0.0075 0.00081 0.00059 0.00070 0.00005 0.00194 0.00190 0.00200 0.00003

5
HH_CF 9.2701 8.7531 9.2954 0.5343 0.00273 0.00244 0.00333 0.00032 0.00058 0.00054 0.00069 0.00003

HH_RAND 9.2577 9.2152 9.2784 0.0556 0.00255 0.00245 0.00269 0.00010 0.00066 0.00055 0.00077 0.00005
AMALGAM 6.3554 6.2404 6.3766 0.0323 0.00281 0.00268 0.00381 0.00028 0.00126 0.00124 0.00137 0.00003

6
HH_CF 9.3579 9.0433 10.2011 0.0530 0.00225 0.00151 0.00391 0.00056 0.00065 0.00050 0.00078 0.00007

HH_RAND 9.3119 9.1005 9.4231 0.0501 0.00334 0.00227 0.00452 0.00052 0.00077 0.00072 0.00080 0.00002
AMALGAM 6.3554 6.2404 6.3766 0.0323 0.00298 0.00142 0.00554 0.00123 0.00193 0.00181 0.00217 0.00011

7
HH_CF 9.6498 9.2261 9.6540 0.0901 0.00047 0.00044 0.00136 0.00025 0.00030 0.00023 0.00037 0.00003

HH_RAND 9.1184 8.1243 9.1685 0.3473 0.00425 0.00309 0.00582 0.00067 0.00037 0.00030 0.00041 0.00004
AMALGAM 3.9171 3.9115 3.9263 0.0035 0.00067 0.00041 0.00051 0.00003 0.00345 0.00342 0.00347 0.00001

8
HH_CF 8.2843 8.0165 8.6621 0.1451 0.00442 0.00358 0.00498 0.00043 0.00072 0.00058 0.00088 0.00008

HH_RAND 8.1089 7.0121 8.6760 0.3867 0.01140 0.00677 0.01510 0.00207 0.00086 0.00050 0.00100 0.00012
AMALGAM 3.0945 3.0419 3.1293 0.0213 0.00241 0.00216 0.00281 0.00017 0.00243 0.00242 0.00245 0.00001

9
HH_CF 8.5981 8.2011 9.2660 0.2143 0.00528 0.00143 0.00639 0.00145 0.00183 0.00041 0.00218 0.00055

HH_RAND 8.4697 8.1138 8.8453 0.3059 0.00602 0.00044 0.00755 0.00167 0.00337 0.00302 0.00395 0.00024
AMALGAM 9.0676 8.6088 9.1480 0.1140 0.00113 0.00098 0.00156 0.00011 0.00026 0.00024 0.00032 0.00002

Chapter 5: A Heuristic Selection Using Deterministic Move Acceptance

Strategy

115 | P a g e

Figure 5.8: Box plots of HH_CF, HH_RAND, and AMALGAM for the measure of hypervolume
(SSC) on the WFG test functions.

Figure 5.9: Box plots of HH_CF, HH_RAND, and AMALGAM for the measure of generational
distance (GD) on the WFG test functions.

Chapter 5: A Heuristic Selection Using Deterministic Move Acceptance

Strategy

116 | P a g e

Figure 5.10: Box plots of HH_CF, HH_RAND, and AMALGAM for the measure of inverted
generational distance (IGD) on the WFG test functions.

Problem Methods Metrics
SSC GD IGD

WFG1 HH_CF:HH_RAND + + +
HH_CF:AMALGAM + + +
HH_RAND:AMALGAM + + +

WFG2 HH_CF:HH_RAND + + +
HH_CF:AMALGAM + + +
HH_RAND: AMALGAM + - +

WFG3 HH_CF:HH_RAND + + ~
HH_CF:AMALGAM + - +
HH_RAND: AMALGAM + - +

WFG4 HH_CF:HH_RAND + + +
HH_CF:AMALGAM + - +
HH_RAND:AMALGAM + - +

WFG5 HH_CF:HH_RAND + + ~
HH_CF:AMALGAM + + +
HH_RAND:AMALGAM + ~ +

WFG6 HH_CF:HH_RAND + + ~
HH_CF:AMALGAM + + +
HH_RAND:AMALGAM + + +

WFG7 HH_CF:HH_RAND + + ~
HH_CF:AMALGAM + + +
HH_RAND:AMALGAM + + +

WFG8 HH_CF:HH_RAND + + ~
HH_CF:AMALGAM + - +
HH_RAND:AMALGAM + - +

WFG9 HH_CF:HH_RAND + + +
HH_CF:AMALGAM - - -
HH_RAND:AMALGAM - - -

Table 5.5: The t-test results of HH_CF,HH_RAND and AMALGAM on the WFG test problems
with respect to the hypervolume (SSC), the generational distance(GD) and the inverted
generational distance (IGD).

Chapter 5: A Heuristic Selection Using Deterministic Move Acceptance

Strategy

117 | P a g e

It can be concluded that all the above results demonstrate the effectiveness

of HH_CF in terms of its ability to intelligently adapt to calling combinations of low

level heuristics and outperforming other hyper-heuristics for multi-objective

optimisation (HH_RAND and AMALGAM) for solving these kind of problems.

5.4 Summary and Remarks

 This chapter presented an online selection choice function based hyper-

heuristic for multi-objective optimisation (HHMO_CF) (or HH_CF for short)

employing All-Moves as an acceptance strategy. This is meaning that we accept

the output of each low level heuristic whether it improves the quality of the

solution or not. Four performance metrics (Algorithm effort (AE), Ratio of non-

dominated individuals (RNI), Size of space covered (SSC) and Uniform distribution

of a non-dominated population (UD)) act as an online learning mechanism to

provide knowledge of the problem domain to the high level strategy.

We have conducted a number of experiments to analyse HH_CF and compared

its performance to the low level heuristics (NSGAII, SPEA2 and MOGA), when

used in isolation over the nine WFG test functions which we utilise as our

benchmark instances. We have also conducted a number of experiments to

examine the performance of our proposed HH_CF, comparing with two multi-

objective hyper-heuristics; a random hyper-heuristics (HH_RAND) and the

adaptive multi-method search AMALGAM over the same benchmark instances.

The experimental results shows that the choice function all-moves based

hyper-heuristic can benefit from the strengths of the low level heuristics.

Moreover, it has the capability to intelligently adapt to calling combinations of low

level heuristics. Our hyper-heuristic performs well in terms of the distribution of

non-dominated individuals along the POF and obtains competitive results in terms

of converging towards the POF. However, it performs poorly with respect to the

number of non-dominated solutions in the population. Another acceptance

strategy instead of All-Moves can be employed to avoid this and improve the

quality of solutions. This is investigated in Chapters 6 and 7.

Chapter 5: A Heuristic Selection Using Deterministic Move Acceptance Strategy

118 | P a g e

Figure 5.11: Pareto optimal front and 50% attainment surfaces for AMALGAM, HH_RAND and HH_CF after 25,000 evaluation functions on the WFG1-WFG6 test
functions.

Chapter 5: A Heuristic Selection Using Deterministic Move Acceptance

Strategy

119 | P a g e

Figure 5.12: Pareto optimal front and 50% attainment surfaces for AMALGAM, HH_RAND
and HH_CF after 25,000 evaluation functions on the WFG7-WFG9 test functions.

Chapter 6: A Heuristic Selection Using Non-Deterministic Move

Acceptance Strategy (Great Deluge Algorithm)

120 | P a g e

6 A Heuristic Selection Using Great Deluge as a

Non-Deterministic Move Acceptance Strategy

In the previous chapter, we presented a choice function heuristic

selection combined with All-Moves as an acceptance strategy for multi-

objective optimisation. Our multi-objective choice function based hyper-

heuristic used the WFG test suit as our benchmark instances. It showed good

performance and produces good quality solutions in terms of the diversity and

convergence towards the POF. As All-Moves accepts all solutions of each low

level heuristic, whether it improves the quality of the solution or not, the

choice function all-moves based hyper-heuristic fails to avoid the MOGA

weakness by accepting solutions with poor quality in terms of the number of

non-dominated solutions. To overcome this, we propose to use another move

acceptance strategy instead of All-Moves that accepts worsening moves within

a limited degree and help improve the quality of the solutions. This chapter

investigates the performance of the choice function based hyper-heuristic

when combining great deluge (GDA) (Dueck, 1993) as an acceptance criteria.

We also investigate the sensitivity of our choice function based hyper-heuristic

using different parameter settings for the great deluge algorithm.

6.1 The Great Deluge Algorithm as a Move Acceptance

Criteria

In the scientific literature, there are many studies that investigate GDA

and its variants in tackling various optimisation problems. However, the

majority of them are applied to optimisation problems with a single-objective.

Petrovic et al. (2007) proposed a case based reasoning methodology with

GDA for solving examination timetabling problems. In Bykov (2003) GDA is

applied to thirteen benchmark problems for examination timetabling. The

experimental result shows that GDA yields the best result for the majority of

the problems when compared to a time predefined simulated annealing

approach. A new hybridised method based on a genetic algorithm and GDA is

proposed in Al-Milli (2010). The approach tackles course timetabling

problems, producing good quality solutions for standard benchmark problems.

In Scott and Geldenhuysys (2000) the performance of a GDA was compared

to tabu search (TS) for graph colouring. The results show that GDA was able

Chapter 6: A Heuristic Selection Using Non-Deterministic Move

Acceptance Strategy (Great Deluge Algorithm)

121 | P a g e

to obtain better colourings, particularly for large graphs in shorter times. GDA

was applied to the travelling salesman problem (TSP) in Telfar (1995). In

Dhouib (2000), a multi start great deluge approach was proposed to optimise

two continuous engineering design problems. The simulation results show that

this approach performs better than SA and a genetic algorithm. McMullan and

McCollum (2007) proposed an extended version of GDA using a reheating

(relevelling) technique. This GDA variant was applied to a dynamic job

scheduling problem, producing better results in most cases when compared to

SA. Another extended version of GDA was proposed by Baykasoglu et al.

(2011). This method was applied to two problems; industrial process control

and a simulation model of a job shop, yielding promising results. Nourelfath

et al. (2007) presented a hybrid approach combining GDA and ant colony

optimisation. This approach was applied to the discrete facility layout problem

(FLP) and tested on quadratic assignment problem (QAP) benchmarks. The

experimental results indicate that the hybrid algorithm outperforms many

other meta-heuristics. Nahas et al. (2010) proposed another version of the

GDA called the Iterated Great Deluge (IDA) to solve the dynamic facility

layout problem. The method produces competitive results. An extension to the

GDA was proposed by Burke and Bykov (2006). This approach, called Flex-

Deluge, introduces a flexibility coefficient that controls the move acceptance

and is. This GDA variant performed well for solving exam timetabling

problems. Another variant of GDA combined with evolutionary operators was

proposed by Landa-Silva and Obit (2009). GDA utilises a non-linear rate of

change for the threshold. This hybrid evolutionary approach, applied to a

university course timetabling problem, performed better for solving four out of

eleven instances. Pramodh and Ravi (2007) presented four variants of GDA

on three different benchmarks from banks for predicting bankruptcy.

The GDA is not only employed as a meta-heuristic to solve optimisation

problems. It is also used in many hyper-heuristic approaches as an

acceptance move strategy. Özcan et al. (2010) shows a reinforcement

learning great deluge hyper-heuristics and reinforcement learning late

acceptance are promising when applied to examination timetabling, and

produced good quality solutions when compared to some other approaches in

the literature. Kendall and Mohamad (2004) presented a variant of a GDA

based hyper-heuristics. It was applied to channel assignment benchmarks.

The experimental results show simple random-great deluge produced good

Chapter 6: A Heuristic Selection Using Non-Deterministic Move

Acceptance Strategy (Great Deluge Algorithm)

122 | P a g e

results when compared to a constructive heuristic and a genetic algorithm. In

addition, a variant of the GDA hyper-heuristic approach including flex deluge

(FD), non-linear (NLGD) and extended great deluge (EGD) is proposed in Sin

and Kham (2012). These approaches were applied to large scale and highly

constrained timetabling problems and tested on exam timetabling benchmark

problems. The experimental results demonstrate that NLGD produced the best

results compared to other approaches in the literature. In Gibbs et al. (2011)

the performance of different hyper-heuristics are compared with different

components emphasising the influence of learning heuristic selection methods

for solving a sports scheduling problem. It have been shown that the

proposed approach is slightly better than the other approaches that use

choice function as heuristic selection and great deluge algorithm as an

acceptance criteria for solving a sports scheduling problem.

An important observation is that all the above GDA studies deal with

single-objective optimisation problems. However, there is only one study that

has proposed the GDA for multi-objective optimisation (Petrovic and Bykov,

2003). This method is based on a trajectory that guides the search dynamics

by changing the criteria weights of the cost function values. This method was

applied to a set of real-world timetabling problems, producing high quality

solutions. We decide to employ GDA as a move acceptance component in our

multi-objective hyper-heuristics choice function as GDA is simple and depends

on fewer parameters (Petrovic et al, 2007). Moreover, it was successful with

single-objective optimisation (Kendall and Mohamad, 2004). And no work has

been reported in the literature that utilises the GDA as a move acceptance

component within a hyper-heuristic framework for multi-objective

optimisation. Details about the great deluge algorithm are formally discussed

in Section 2.2.6. GDA, as move acceptance strategy, requires computation of

the change in the value of a single objective at each step and so the D

performance metric (Zitzler, 1999) is proposed for its applicability to multi-

objective optimisation problems.

6.2 The Great Deluge and D Metric

In the context of move acceptance criterion, the quality measure of the

current solution and the candidate solution is essential in order to make a

decision regarding an acceptance decision. For the single-objective

Chapter 6: A Heuristic Selection Using Non-Deterministic Move

Acceptance Strategy (Great Deluge Algorithm)

123 | P a g e

optimisation problem, fitness can be used. However, this is not applicable in

multi-objective optimisation. In multi-objective problems, the output is a set

of solutions (a non-dominated set). We propose the use of the D metric

(Zitzler, 1999) as a way of comparing two non-dominated sets with respect to

the objective space. In this thesis, we use D metric, integrating into move

acceptance criterion, particularly GDA, in order to convert multi-objective

optimisation to single-objective optimisation without definition of criteria

weights. This is similar to the concept that is used in indicator-based multi-

objective optimisers (e.g. (Auger et al.,2012; Wang et al., 2013; Bader and

Zitzler, 2011)), where a multi-objective problem is converted to a single-

objective problem by optimising the quality indicator instead of optimising a

set of objective functions simultaneously. In an indicator-based evolutionary

algorithm, such as ESP (Huband et al., 2003), SMS-EMOA (Beume et al.,

2007), the hypervoulme is integrated into environmental selection. In our

multi-objective choice function hyper-heuristic, the D metric is integrated into

the move acceptance strategy. Our goal is to maximise the underlying D

metric as follows.

ܮܧܸܧܮ ൌ ǡܣሺܦ ǡܤሺܦ ࢌ࢏ ሻܤ ሻܣ ൐ ൌ ܣ ࢔ࢋࢎ࢚ ܮܧܸܧܮ ൌ ܮܧܸܧܮ ܤ ൅ ܮܧܸܧܮ ܷܲ

 (6.1)

A is a non-dominated front which represents an initial solution and B is

is a non-dominated front which represents a candidate solution from the

neighbourhood. The water level is assigned initially to ܦሺܣǡ ሻǤ Note that weܤ

are always looking to get a higher value (maximise) of ܦሺܤǡ ሻ in order toܣ

accept the candidate solution B, so the condition ܦሺܤǡ ሻܣ ൐ ǡܣሺܦ ǡܤሺܦ ሻ orܤ ሻܣ ൐ should be valid (see subsection 2.1.9). In the acceptance ܮܧܸܧܮ

case, B is accepted and the water level is increased linearly according to a

predefined speed rate (UP) which is usually a small fraction greater than 0

less than 0.03 (Scott and Geldenhuysys, 2000).

Chapter 6: A Heuristic Selection Using Non-Deterministic Move

Acceptance Strategy (Great Deluge Algorithm)

124 | P a g e

6.3 Choice Function Great Deluge for Selecting Low

Level Meta- heuristics (HHMO_CF_GDA)

In this section, we propose a multi-objective choice function based

hyper-heuristic combining it with great deluge as a non-deterministic

acceptance strategy (HHMO_CF_GDA). We use the same multi-objective

hyper-heuristic framework that we proposed in Chapter 4 including the

ranking scheme and learning mechanism. Three well-known (as previously)

multi-objective evolutionary algorithms (NSGAII, SPEA2, and MOGA), act as

the low level heuristics. The pseudo code of the proposed HHMO_CF_GDA for

multi-objective optimisation is shown in algorithm 11.

Initially, a greedy algorithm is applied to determine the best low level

heuristic h to be selected for the first iteration (steps 2-6). All low level

heuristics H are executed (step 3). Then, the low level heuristics are ranked

based on the ranking scheme using Equation 4.1 (step 4) and their choice

function values are computed using Equation 4.4 (step 5). The low level

heuristic h with the largest choice function value CF(h) is selected to be

applied at the next iteration and it produces the non-dominated front A (a

current solution) (steps 6 & 7). Then, for all low level heuristics H, the ranking

mechanism is updated (step 9). The choice function values are also computed

and updated (step 10). According to the updated choice function values, the

Algorithm 11: Multi-objective Choice Function Great Deluge based Hyper-
heuristic
 1: procedure HHMO_CF_GDA ሺܪሻ ܪ ݏܽ݁ݎ݄݁ݓ is a set of the low level heuristics
 2: Initialisation
 3: Run ݄ǡ ݄ ׊ א ܪ
 4: Rank ݄ǡ ݄ ׊ א based on the ranking scheme ܪ
 5: Get ܨܥሺ݄ሻǡ ݄ ׊ א ܪ
 6: Select ݄ with the largest ܨܥሺ݄ሻ as an initial heuristic
 7: Execute the selected ݄ and produce a front ܣ
 8: repeat
 9: Update the rank of ݄ǡ א ݄ ׊ based on the ranking scheme ܪ
10: Update ܨܥሺ݄ሻǡ א ݄ ׊ ܪ

11: Select ݄ with the largest ܨܥሺ݄ሻǡ א ݄ ׊ ܪ
12: Execute the selected ݄ and produce a front ܤ
ܮܧܸܧܮ :13 ൌ ǡܣሺܦ ሻܤ
14: If ܦሺܤǡ ሻܣ ൐ ܮܧܸܧܮ
ܣ :15 ൌ ܤ
ܮܧܸܧܮ :16 ൌ ܮܧܸܧܮ ൅ ܷܲ
17: until (termination criteria are satisfied)
18: end procedure

Chapter 6: A Heuristic Selection Using Non-Deterministic Move

Acceptance Strategy (Great Deluge Algorithm)

125 | P a g e

low level heuristic h with the largest choice function value CF(h) is executed

and it produces the non-dominated front B (a candidate solution) (steps 11 &

12). In steps 13-15, the acceptance procedure GDA is applied. As we are

aiming to maximise D(B,A), the condition in (step 14) should be valid in order

to accept the candidate front B (step 15). In the case of acceptance, the

water level is increased linearly based on a predefined rain speed rate (UP).

This process is repeated until the stopping condition is met which is a fixed

number of iterations (steps 8-17). Note that the greedy algorithm is applied

only once at the beginning of the search, in order to determine which low

level heuristic to apply first. Then, only one low level heuristic is selected at

each iteration.

6.4 Performance Comparison of Choice Function Great

Deluge Hyper-heuristics

 As a preliminary framework, we combine great deluge as a move

acceptance with simple random as a heuristic selection method. A low level

heuristic was selected randomly at each iteration in the search process.

According to the results that reported in Chapter 5, we believe that a simple

random selection strategy is not that successful as it does not retain any

knowledge about the performance of low level heuristics on which to base

future decisions. To examine our assumption, we conduct an initial

experiment to compare the performance of great deluge when combined with

simple random and a choice function as a selection method under the multi-

objective hyper-heuristic framework. For the choice function great deluge

based hyper-heuristic, we use the same multi-objective hyper-heuristic

framework that presented in Chapter 4, including the ranking scheme and

learning mechanism, and the same experimental settings that were used in

Section 5.2.2. The rain speed parameter (UP) is initially assigned to 0.03 as

recommended in the literature (Scott and Geldenhuysys, 2000). As we

expected the comparison revealed that choice function great deluge based

hyper-heuristic outperforms the simple random great deluge based hyper-

heuristic on the WFG1 benchmark with respect to the three performance

metrics; RNI, SSC and UD (see Table 6.1). The choice function great deluge

based hyper-heuristic also performs well when compared to the pervious

Chapter 6: A Heuristic Selection Using Non-Deterministic Move

Acceptance Strategy (Great Deluge Algorithm)

126 | P a g e

hyper-heuristic method, choice function all-moves, that presented in Chapter

5.

Table 6.1: The performance of the choice function great deluge based hyper-heuristic
(CF-GDA), choice function all-moves hyper-heuristic (CF-AM) and the simple random
great deluge based hyper-heuristic (SR-GDA) with respect to the metrics of ratio of
non-dominated individuals (RNI), size of space covered (SSC), and uniform distribution
(UD) of non-dominated population onWFG1.

We note from the Table 6.1 that both hyper-heuristics that have utilised

a choice function as a heuristic selection method outperforms the hyper-

heuristic that used a random selection method. Unlike the random selection

strategy, the choice function considers the performances of low level

heuristics in order to select a suitable heuristic as the search progresses. The

learning mechanism is essential in our multi-objective hyper-heuristic

framework. It plays a large role in guiding the high level strategy (selection

method) and deciding which low level heuristic to call at each decision point.

 6.4.1 Tuning of Rain Speed Parameter (UP)

One of the reasons for choosing the great deluge algorithm (GDA) as a

move acceptance component within our multi-objective hyper-heuristic

framework is due to its simplicity and dependency on fewer parameters

(Petrovic et al, 2007). In fact, GDA has one parameter which is the rain speed

(UP). In the literature, it recommended to set the UP to 0.03 or less (Scott

and Geldenhuysys, 2000). However, the choice of the rain speed value is not

trivial, bearing in mind that the suggestion for UP=0.03 was for single-

objective problems. Coming up with the right value requires domain

knowledge, such as, the target upper limit (for our case) and a specific

number of moves that we conduct during the search until we reach that target

level. The rain speed (UP) was fixed at 0.03 during the initial experiments.

Metric Methods AVG MIN MAX STD

RNI
CF-GDA 0.9480 0.1600 1.0000 0.1894

CF-AM 0.8800 0.2800 1.0000 0.2539
SR-GDA 0.6423 0.0300 1.0000 0.4124

SSC
CF-GDA 12.2380 8.3703 12.5154 0.7870

CF-AM 12.1386 9.0338 12.5130 0.9101
SR-GDA 8.2421 5.3700 8.4240 2.5423

UD
CF-GDA 0.4066 0.2083 0.8000 0.0988

CF-AM 0.4428 0.3490 0.6945 0.1007
SR-GDA 0.2937 0.2501 0.3900 0.2834

Chapter 6: A Heuristic Selection Using Non-Deterministic Move

Acceptance Strategy (Great Deluge Algorithm)

127 | P a g e

From our observation during the experiments, many questions have arisen

regarding UP. What is the best value for this parameter? Does it depend on

the given problem? How does changing UP influence the quality of solutions?

How about if we narrow/widen the level boundary? Will the solution be

improved? To answer these questions, we conducted a number of

experiments to investigate the effectiveness of the speed rain parameter on

the quality of solutions. We assigned different rain speed parameter values

comparing to our default parameter of 0.03. These settings include 0.3 as a

large value and 0.0003 as a small value. Please note the 0.3 value does not

come with any recommendation from the literature. However, we set UP=0.3

in order to examine the effectiveness of rain speed parameter and how this

could affect the acceptance process and the quality of solutions. The water

level is increased linearly according to a predefined rain speed rate.

 6.4.2 Experimental Settings and Performance Evaluation

Criteria

We use the same experimental settings that we presented in Section

5.2.2. Nine test problems for the WFG suite (WFG1-WFG9) have 24 real

parameters including four position parameter, 20 distance parameters and

two objectives. HHMO_CF_GDA was terminated after 6,250 generations. That

is, HHMO_CF_GDA runs for a total of 25 iterations. In each iteration, one low

level heuristic is applied and is executed for 250 generations, with a

population size equal to 100. The secondary population of SPEA2 is set to

100. For the WFG problems, 30 independent trials were run for each

algorithm with a different random seed. For GDA, the rain speed (UP) is

assigned to three values (0.3, 0.03 and 0.0003). HH_CF_GDA was

implemented with the same common sub-functions using Microsoft Visual

C++ 2008 on an Intel Core2 Duo 3GHz\2G\250G computer.

Three performance metrics are used to assess the quality of

approximation sets in different aspects including ratio of non-dominated

individuals (RNI), the hyper-volume (SSC), and Uniform distribution of non-

dominated individuals (UD). For all performance metrics, a higher value

indicates a better performance. In addition, t-test is used as a statistical test

for pairwise mean performance comparison of three version on

Chapter 6: A Heuristic Selection Using Non-Deterministic Move

Acceptance Strategy (Great Deluge Algorithm)

128 | P a g e

HHMO_CF_GDA using different UP values (0.3, 0.03 and 0.0003). The null

hypothesis is as follows:

 ൜ ݏ݊ܽ݁݉ ݐ݊݁ݎ݂݂݁݅݀ ݁ݒ݄ܽ ݏ݄݉ݐ݅ݎ݋݈݃ܽ ݂݋ ݎ݅ܽ݌ ܽ ݂݋ ݁ܿ݊ܽ݉ݎ݋݂ݎ݁݌ ݄݁ݐ ଵܪ ݏ݊ܽ݁݉ ݁݉ܽݏ ݄݁ݐ ݁ݒ݄ܽ ݏ݄݉ݐ݅ݎ݋݈݃ܽ ݂݋ ݎ݅ܽ݌ ܽ ݂݋ ݁ܿ݊ܽ݉ݎ݋݂ݎ݁݌ ݄݁ݐ ଴ܪ

The following notation is used while reporting the results. Given a pair of

algorithms, ܲ and ܳ (denoted as ܲǣ ܳ), The + (Ѹ) indicates that the algorithm ܲ performs better/worse than ܳ on average with respect to the given metric

and this performance difference is statistically significant within a confidence

interval of 95%. The ± (ѹ) indicates that ܲ performs slightly better (worse)

than ܳ without any statistically significance. The n/a means the t-test is not

applicable since the performances of both algorithms are completely equal.

6.4.3 Experimental Results and Discussion

The average, minimum, maximum and standard deviation values pairs

for HHMO_CF_GDA using different rain speed (UP) values with respect to RNI,

SSC and UD over 30 trials are provided in Table 6.2. The pairwise mean

performance comparisons (using t-test) of HHMO_CF_GDA using different UP

settings are provided in Table 6.3. We refer to the HHMO_CF_GDA using the

UP values (0.3, 0.03 and 0.0003) as GDA1, GDA2 and GDA3 respectively.

HHMO_CF_GDA with the smallest UP value (GDA3) performs the best.

We note from the Tables 6.2 and 6.3 that the pairwise performance

differences of GDAs are statistically significant for all benchmark functions,

except for the metric RNI where GDA1, GDA2 and GDA3 perform the same.

GDA1 and GDA2 perform significantly similar on average with respect to the

measure of SSC and UD. With respect to the measure of SSC, GDA3 is

statistically significant better than GDA1 and GDA2 for all benchmark

instances. GDA3 performs statistically better than the others in terms of

distribution along the POF (UD) in all test instances except WFG1 and WFG2.

 The results are illustrated in Figures 6.1, 6.2 and 6.3. We can see from

Figure 6.1, the water level when the rain speed set to UP=0.03 has been

increased more quickly compared when the rain speed set to UP=0.0003. The

rapid growth of the water level freezes the boundary condition in the early

stages of the search as is the case when UP=0.3 (see Figure 6.4). This leads

Chapter 6: A Heuristic Selection Using Non-Deterministic Move

Acceptance Strategy (Great Deluge Algorithm)

129 | P a g e

WFG Metric UP Method AVG MIN MAX STD

1

RNI
0.3 GDA1 0.9390 0.1100 1.0000 0.1441

0.003 GDA2 0.9480 0.1600 1.0000 0.1894
0.0003 GDA3 0.9357 0.3100 1.0000 0.1821

SSC
0.3 GDA1 11.6170 7.9112 12.0140 0.6905

0.003 GDA2 12.2380 8.3703 12.5154 0.7870
0.0003 GDA3 12.9388 8.2543 12.9966 1.2517

UD
0.3 GDA1 0.3561 0.2022 0.5841 0.0753
0.003 GDA2 0.4066 0.2083 0.8000 0.0988
0.0003 GDA3 0.3941 0.2047 0.5952 0.0698

2

RNI
0.3 GDA1 1.0000 1.0000 1.0000 0.0000

0.003 GDA2 1.0000 1.0000 1.0000 0.0000

0.0003 GDA3 1.0000 1.0000 1.0000 0.0000

SSC
0.3 GDA1 10.8023 10.5912 11.3981 0.0045

0.003 GDA2 10.8310 10.6391 12.4274 0.3034
0.0003 GDA3 11.8148 10.7433 11.8258 0.0146

UD
0.3 GDA1 0.3710 0.3497 0.3805 0.0057

0.003 GDA2 0.3756 0.3550 0.4187 0.0144
0.0003 GDA3 0.3729 0.3609 0.3862 0.0064

3

RNI
0.3 GDA1 1.0000 1.0000 1.0000 0.0000

0.003 GDA2 1.0000 1.0000 1.0000 0.0000

0.0003 GDA3 1.0000 1.0000 1.0000 0.0000

SSC
0.3 GDA1 11.7543 11.8356 11.9196 0.0054

0.003 GDA2 11.8930 11.8620 11.9201 0.0151
0.0003 GDA3 11.9197 11.9094 11.9296 0.0064

UD
0.3 GDA1 0.4190 0.3788 0.4578 0.0133
0.003 GDA2 0.4224 0.3874 0.4575 0.0129
0.0003 GDA3 0.4252 0.4059 0.4580 0.0120

4

RNI
0.3 GDA1 1.0000 1.0000 1.0000 0.0000

0.003 GDA2 1.0000 1.0000 1.0000 0.0000

0.0003 GDA3 1.0000 1.0000 1.0000 0.0000

SSC
0.3 GDA1 9.5921 9.5234 9.6100 0.0032

0.003 GDA2 9.6181 9.5821 9.6376 0.0146
0.0003 GDA3 9.6642 9.6210 9.6650 0.0100

UD
0.3 GDA1 0.4101 0.3510 0.4163 0.0122
0.003 GDA2 0.4115 0.3710 0.4415 0.0157
0.0003 GDA3 0.4145 0.3879 0.4423 0.0112

5

RNI
0.3 GDA1 1.0000 1.0000 1.0000 0.0000

0.003 GDA2 1.0000 1.0000 1.0000 0.0000

0.0003 GDA3 1.0000 1.0000 1.0000 0.0000

SSC
0.3 GDA1 9.2682 9.0977 9.2866 0.0094
0.003 GDA2 9.2771 9.2607 9.2928 0.0084

0.0003 GDA3 9.2964 9.1526 9.2984 0.4023

UD
0.3 GDA1 0.4083 0.3683 0.4399 0.0041

0.003 GDA2 0.4110 0.3772 0.4481 0.0235
0.0003 GDA3 0.4395 0.4238 0.4579 0.0086

6

RNI
0.3 GDA1 1.0000 1.0000 1.0000 0.0000

0.003 GDA2 1.0000 1.0000 1.0000 0.0000

0.0003 GDA3 1.0000 1.0000 1.0000 0.0000

SSC
0.3 GDA1 9.3394 9.2008 9.4683 0.0543

0.003 GDA2 9.3421 9.2102 9.4715 0.0581
0.0003 GDA3 9.3745 9.2346 9.4787 0.0628

UD
0.3 GDA1 0.4108 0.3711 0.4255 0.0045

0.003 GDA2 0.4115 0.3749 0.4287 0.0129
0.0003 GDA3 0.4128 0.3992 0.4308 0.0083

7

RNI
0.3 GDA1 1.0000 1.0000 1.0000 0.0000

0.003 GDA2 1.0000 1.0000 1.0000 0.0000

0.0003 GDA3 1.0000 1.0000 1.0000 0.0000

SSC
0.3 GDA1 9.6391 9.5754 9.6522 0.0154
0.003 GDA2 9.6402 9.5869 9.6571 0.0187
0.0003 GDA3 9.6650 9.6596 9.6700 0.0028

UD
0.3 GDA1 0.4011 0.3630 0.4321 0.0144

0.003 GDA2 0.4038 0.3660 0.4345 0.0162
0.0003 GDA3 0.4085 0.3792 0.4565 0.0151

Chapter 6: A Heuristic Selection Using Non-Deterministic Move

Acceptance Strategy (Great Deluge Algorithm)

130 | P a g e

Table 6.2: The average performance of HHMO_CF_GDA using a different UP settings
(0.3, 0.03, 0.0003) donated as GDA1, GDA2 and GDA3 on the WFG test problems with

respect to the ratio of non-dominated individuals (RNI), the hypervolume (SSC) and
the uniform distribution (UD).

Problem Methods Metrics

RNI SSC UD
WFG1 GDA1:GDA2 + െ െ

GDA1:GDA3 ± െ െ

GDA2:GDA3 െ െ +

WFG2 GDA1:GDA2 n/a െ െ

GDA1:GDA3 n/a െ ט

GDA2:GDA3 n.a െ ±

WFG3 GDA1:GDA2 n/a െ െ

GDA1:GDA3 n/a െ െ

GDA2:GDA3 n.a െ െ

WFG4 GDA1:GDA2 n/a െ ט

GDA1:GDA3 n/a െ െ

GDA2:GDA3 n.a െ െ

WFG5 GDA1:GDA2 n/a െ ט

GDA1:GDA3 n/a െ െ

GDA2:GDA3 n.a െ െ

WFG6 GDA1:GDA2 n/a ט ט

GDA1:GDA3 n/a െ -

GDA2:GDA3 n.a െ ט

WFG7 GDA1:GDA2 n/a ט ט

GDA1:GDA3 n/a െ ט

GDA2:GDA3 n.a െ ט

WFG8 GDA1:GDA2 n/a ט ט

GDA1:GDA3 n/a െ ט

GDA2:GDA3 n.a െ ט

WFG9 GDA1:GDA2 ט ט ט

GDA1:GDA3 ט െ െ

GDA2:GDA3 ט െ െ

Table 6.3: The t-test results of HHMO_CF_GDA using a different UP settings (0.3, 0.03,
0.0003) donated as GDA1, GDA2 and GDA3 on the WFG test problems with respect to
the ratio of non-dominated individuals (RNI), the hypervolume (SSC) and the uniform
distribution (UD).

WFG Metric UP Method AVG MIN MAX STD

8

RNI
0.3 GDA1 1.0000 1.0000 1.0000 0.0000

0.003 GDA2 1.0000 1.0000 1.0000 0.0000

0.0003 GDA3 1.0000 1.0000 1.0000 0.0000

SSC
0.3 GDA1 8.5643 8.4132 8.6588 0.0132
0.003 GDA2 8.5783 8.4534 8.6667 0.0150
0.0003 GDA3 8.7279 8.6708 8.7389 0.0120

UD
0.3 GDA1 0.4210 0.3920 0.4599 0.0050

0.003 GDA2 0.4228 0.4040 0.4610 0.0150
0.0003 GDA3 0.4248 0.3948 0.5933 0.0341

9

RNI
0.3 GDA1 0.9801 0.7500 1.0000 0.0073

0.003 GDA2 0.9866 0.7600 1.0000 0.0518
0.0003 GDA3 0.9893 0.8000 1.0000 0..4193

SSC
0.3 GDA1 8.7299 8.5498 9.4277 0.2487

0.003 GDA2 8.7313 8.5554 9.4465 0.2693
0.0003 GDA3 8.7689 8.5789 9.4346 0.3054

UD
0.3 GDA1 0.4021 0.3611 0.4559 0.0099

0.003 GDA2 0.4088 0.3657 0.4606 0.0210
0.0003 GDA3 0.4111 0.3661 0.6141 0.4442

Chapter 6: A Heuristic Selection Using Non-Deterministic Move

Acceptance Strategy (Great Deluge Algorithm)

131 | P a g e

to accept the good moves in few number of decision points in the beginning of

the search, while all other moves are rejected for the rest of the search.

However, the slow growth of the water level provides a wider space in the

search to accept more moves as the case when UP=0.0003. This helps to

improve solutions by escaping from the local optimum. From Figure 6.1, we

note that for both settings of UP (0.03 and 0.0003) in WFG1, there is no

effect on the acceptance criteria, i.e. for all decision points, all moves are

accepted since the boundary limit is under the candidate solutions level.

Figure 6.1: The performance of D metric (Green line) and Level (Blue line) during the
search across 25 decision points for HHMO CF GDA with different sizes of UP (0.03 and
0.0003) on the WFG test suite – Continue.

Chapter 6: A Heuristic Selection Using Non-Deterministic Move

Acceptance Strategy (Great Deluge Algorithm)

132 | P a g e

Figure 6.1: Continue- the performance of D metric (Green line) and Level (Blue line)
during the search across 25 decision points for HHMO CF GDA with different sizes of UP

(0.03 and 0.0003) on the WFG test suite.

Chapter 6: A Heuristic Selection Using Non-Deterministic Move

Acceptance Strategy (Great Deluge Algorithm)

133 | P a g e

Figure 6.2: The performance HHMO_CF_GDA with different UP sizes (0.03 and 0.0003)
during the search across 25 decision points with respect to the size of space covered
metric (SSC) during on the WFG test suite.

From Figures 6.2 and 6.3, HHMO_CF_GDA always performs better

during the search with respect SSC and UD metrics when the UP is small for

all WFG problems except WFG1 and WFG2. In general, the smaller rain speed

value allows for the acceptance of more moves with worse solution quality.

This helps escape from the local optimum and produce better solution. This is

clear in Figure 6.4. The HHMO_CF_GDA with the large UP value (0.3) has the

worst performance in WFG4. There is no change in the values of the SSC and

UD metrics which means no moves were accepted during the search. Moves

acceptance has been frozen in the 6th iterations because the level rose too

quickly. While in the 0.0003 case, the level rose slightly which gives the GDA

more boundary space to accept more moves. So, HHMO_CF_GDA with the

Chapter 6: A Heuristic Selection Using Non-Deterministic Move

Acceptance Strategy (Great Deluge Algorithm)

134 | P a g e

Figure 6.3: The performance HHMO_CF_GDA with different UP sizes (0.03 and 0.0003)
during the search across 25 decision points with respect to the uniform distribution
metric (UD) on the WFG test suite.

Figure 6.4: The performance HHMO_CF_GDA with different UP sizes (0.3 ,0.03 and
0.0003) during the search across 25 decision points with respect to the size of space
covered metric (SSC) and the uniform distribution metric (UD) on WFG4.

Chapter 6: A Heuristic Selection Using Non-Deterministic Move

Acceptance Strategy (Great Deluge Algorithm)

135 | P a g e

smallest UP value can produce better solutions. The reasons behind this are

the level boundary increased quickly with the large UP value which leads to

reject many moves up to the level.

The average heuristic utilisation rate, which indicates how frequently a

given low level heuristic is chosen and applied during the search process

across all runs on the WFG problems for the HHMO_CF_GDA with UP values

0.03 and 0.0003, is computed and illustrated in Figure 6.5. Although the

heuristic utilisation rate addresses the selection method (choice function) in

HHMO_CF_GDA, it can also give some insights about how many moves can be

accepted or rejected based on GDA as an acceptance criteria with different UP

settings. It is clear from Figure 6.5 that acceptance moves mainly happens

mostly when UP=0.0003, and the most rejected moves happen when

UP=0.03. This demonstrates that the smaller rain speed value provides a

wider boundary space to accept more moves. In WFG1, all moves have been

accepted for both rain speed values. This supports the results of Figure 6.1,

where the acceptance criteria does not affect the move acceptance because of

the wide boundary space. From the above observations, we conclude that

GDA with a smaller rain speed value produces better solutions for the WFG

test problems.

6.5 Summary and Remarks

We have presented a selection choice function based hyper-heuristic for

multi-objective optimisation utilising a great deluge algorithm as a non-

deterministic move acceptance strategy (HHMO_CF_GDA). The hyper-

heuristic proposed in this chapter differs from the hyper-heuristic that was

proposed in Chapter 5 in terms of a move acceptance criteria. Although both

hyper-heuristics used the same multi-objective hyper-heuristic framework

presented in Chapter 4, choice function great deluge based hyper-heuristic

employed a great deluge as a move acceptance method instead of all-move

acceptance method which was employed in choice function all-moves based

hyper-heuristic (HHMO_CF_AM). The motivation for choosing GDA as an

acceptance criteria is that it is simple and does not depend on many

parameters, this requiring less effort for parameter tuning. More importantly,

encouraging results have been reported in the literature for single-objective

Chapter 6: A Heuristic Selection Using Non-Deterministic Move

Acceptance Strategy (Great Deluge Algorithm)

136 | P a g e

optimisation, but there are only a few studies on their application to multi-

objective optimisation (e.g., (Petrovic and Bykov, 2003)).

In the context of move acceptance criterion, the quality measure of the

current solution and the candidate solution is essential in order to make a

decision regarding an acceptance decision. For the single-objective

optimisation problem, fitness can be used. However, this is not applicable in

multi-objective optimisation. In multi-objective problems, the output is a set

of solutions (a non-dominated set). In this thesis, for the first time, we

propose the use of D metric (Zitzler, 1999) integrating this into the move

acceptance criterion, particularly GDA as a way of comparing two non-

dominated sets with respect to the objective space, in order to covert the

multi-objective optimisation to the single optimisation without definition of

criteria values' weights.

 We conducted an initial experiment to compare the performance of the

proposed great deluge based hyper-heuristics combining the choice function

as a selection method and great deluge based hyper-heuristics combined with

simple random as a selection method under the multi-objective hyper-

heuristic framework. The choice function great deluge outperforms the simple

random great deluge over the WFG1 benchmark with respect to the three

performance metrics; RNI, SSC and UD. The learning mechanism is essential

in our multi-objectives hyper-heuristic framework. It plays a large role in

guiding the high level strategy (selection method) in deciding which low level

heuristic to call at each decision point. In the absence of a learning

mechanism, our multi-objective hyper-heuristic is not that successful.

Findings in Chapter 5 support this. The choice function great deluge based

hyper-heuristic outperforms the pervious hyper-heuristic method, choice

function all-moves based hyper-heuristic. Findings in Chapter 7 will further

confirm this.

We experimented with the proposed choice function great deluge based

hyper-heretics with different settings of the rain speed parameters (UP) to

investigate the effectiveness of this parameter on the move acceptance. We

assigned different rain speed parameter values; large (0.3), medium (0.03)

and small (0.0003) to examine how these setting affect the algorithm and the

Chapter 6: A Heuristic Selection Using Non-Deterministic Move

Acceptance Strategy (Great Deluge Algorithm)

137 | P a g e

quality of solutions that ultimately returned. The experimental results show

that HHMO_CF_GDA with the smallest UP value (0.0003) performs the best

for the WFG test problems. In general, the smaller rain speed value allows for

the acceptance of more moves that helps escape from the local optimum and

produce better solution.

Figure 6.5: The average heuristic utilisation rate for low level heuristic during the
search in HHMO_CF_GDA with different sizes of UP (0.03 and 0.0003) on the WFG test
suite.

Chapter 7: A Heuristic Selection Using Non-Deterministic Move Acceptance

Strategy (Late Acceptance strategy)

138 | P a g e

7 A Heuristic Selection Using Late Acceptance as a

Non-Deterministic Move Acceptance Strategy

In the previous chapter, we investigated the performance of a selection

choice function based hyper-heuristic that utilised the great deluge algorithm

(GDA) as a non-deterministic move acceptance criterion. The D metric was

integrated into GDA as a way of comparing two non-dominated sets in the

objective space based on the given acceptance criteria. In this chapter, we

further investigate the performance of the choice function based hyper-

heuristic that combines the late acceptance strategy (LA) as a non-

deterministic move acceptance criterion. We will also conduct computational

experiments to compare the performance of the three multi-objective choice

function based hyper-heuristic combined with different move acceptance

strategies including all-moves, great deluge and late acceptance that were

presented in Chapters 5, 6 and this chapter respectively. The comparison will

be conducted over the bi-objective and tri-objective Walking Fish Group

(WFG) test functions. This chapter is structured as follows. Sections 7.1 and

7.2 introduce late acceptance as a component in a choice function based

hyper-heuristic. In Section 7.3, a choice function late acceptance based

hyper-heuristic for multi-objective optimisation (HHMO_CF_LA) is proposed.

This is followed by computational experiments over bi-objective and tri-

objective WFG test function in Sections 7.4 and 7.5 respectively. Section 7.6

concludes the chapter.

7.1 Late Acceptance Strategy as Move Acceptance

Criteria

Since late acceptance (LA) is a new methodology, there are only a

limited number of studies in literature. There are very few investigations of

variant studies, and no multi-objective studies. In Özcan et al. (2009), the

late acceptance strategy was combined with different heuristic selection

methods (simple random, greedy, reinforcement learning, tabu search and

choice function) and applied to examination timetabling problem. The

experiments show that the random heuristic selection with late acceptance

performs well among other combination methods. In Burke and Bykov (2012)

Chapter 7: A Heuristic Selection Using Non-Deterministic Move Acceptance

Strategy (Late Acceptance strategy)

139 | P a g e

an experimental comparison of LA was presented, along with other well-

known search methodologies (simulated annealing (SA), threshold accepting

(TA) and GDA) on the travelling salesman and exam timetabling problems.

The results show that LA is more reliable and powerful than the others. In

Verstichel and Berghe (2009), a number of local search heuristics were

combined with the best improving move strategy and LA was presented for

solving the lock scheduling problem. The experimental results show that LA

has a positive effect on the performance of the heuristics. In Abuhamdah,

(2010) and Abuhamdah and Ayob (2010) a variant of LA using randomized

descent algorithm (LARD) is proposed to solve university course timetabling.

The results demonstrate that the proposed method can beat the original LA in

many cases. In Tierney (2013) LA is applied to solve a central problem in the

liner shipping industry. LA shows promising performance but it could not beat

SA on the same data sets. Yuan et al. (2013) employed LA to solve a two-

sided assembly line balancing problem with multiple constraints. The

computational results show the effectiveness of LA to solve this kind of

problem when compared to an integer programming model and the lower

bounds of the problem instances.

LA is successful for single-objective optimisation and it is simple,

depending on few parameters. Therefore, we employ LA as a component

within our choice function based hyper-heuristic framework for multi-objective

optimisation. To the best of our knowledge, no multi-objective LA based

studies have been investigated, nor has any work that utilises the LA as a

move acceptance component within a hyper-heuristic framework for multi-

objective optimisation been reported in the literature. Details about the late

acceptance strategy are discussed in Section 2.2.8.

 7.2 Late Acceptance and D Metric

In a similar way that the D metric was integrated into GDA (see Section

6.2), we also integrate D metric into LA as a move acceptance strategy.. This

is similar to the concept that was used in indicator-based multi-objective

optimisers (e.g. (Auger et al.,2012; Wang et al., 2013; Bader and Zitzler,

2011)), Our goal is to maximise the underlying D metric, integrating as an

acceptance criterion, in order to accept (or reject) a candidate solution (a

candidate non-dominated set).

Chapter 7: A Heuristic Selection Using Non-Deterministic Move Acceptance

Strategy (Late Acceptance strategy)

140 | P a g e

LA is modified to employ the D metric. The pseudo code of LA with D

metric is shown in algorithm 12.

For an ݅ iteration, A, B fronts are produced as an initial front and a

candidate front respectively. The fitness array is filled by the value of ܦሺܣǡ ሻ (step 3). Since we are aiming to accept the candidate front B, theܤ

condition ܦሺܤǡ ሻܣ ൐ ǡܣሺܦ ሻ should be valid (see Section 2.1.9) (step 6). Noteܤ

that we are always looking to get a higher value (maximise) of ܦሺܤǡ ሻ inܣ

order to accept the candidate solution B. In the acceptance case, front B is

accepted (step 7). The value of ܦሺܤǡ ሻ is inserted in the ݂ܽ (step 8), and theܣ

value of ܦሺܣǡ ௩ is removed from the ݂ܽ. Note the insertion andܥ ሻ orܤ

removing processes are made virtually in an ݅ iteration using Equation 2.10

(step 4).

 7.3 Choice Function Late Acceptance for Selecting

Low Level Meta- Heuristics (HHMO_CF_LA)

In this section, we propose multi-objective choice function based hyper-

heuristic combined with late acceptance as a non-deterministic acceptance

strategy (HHMO_CF_LA). We use the same multi-objective hyper-heuristic

framework that was proposed in Chapter 4, including the ranking scheme and

the learning mechanism. Three well-known multi-objective evolutionary

algorithms (NSGAII, SPEA2, and MOGA), act as low level heuristics. The

pseudo code of HHMO_CF_LA for multi-objective optimisation is shown in

algorithm 13.

Algorithm 12: The Late Acceptance with D Metric

 1: procedure LA (A,B, ݅)
 2: Calculate ܦሺܣǡ ሻܤ
 3: for all ݇ ג ሼͲǡ ǥ ǡ ௙݈௔ െ ͳሽ dol 0 ܥ௞ ൌ ǡܣሺܦ ሻܤ
 4: ܸ ൌ ௙௔݈ ݀݋݉ ݅
 5: Calculate ܦሺܤǡ ሻܣ
 6: if ܦሺܤǡ ሻܣ ൒ ǡܤሺܦ ݎ݋ ௩ ܥ ሻܣ ൒ ǡܣሺܦ ሻ thenܤ
 7: Accept candidate ܣ ൌ ܤ
 8: Insert cost value into the list ܥ௩ ൌ ǡܤሺܦ ሻܣ
 9: end if
10: end procedure

Chapter 7: A Heuristic Selection Using Non-Deterministic Move Acceptance

Strategy (Late Acceptance strategy)

141 | P a g e

Similar to the previous two multi-objective choice function based hyper-

heuristic HHMO_CF_AM and HHMO_CF_GDA, that were proposed in Chapters

5 and 6 respectively, a greedy algorithm is applied at the beginning of the

search to determine the best low level heuristic h to be selected for the first

iteration (steps 2-6). All low level heuristics H are executed simultaneously

(step 3). Then, the low level heuristics are ranked, based on the ranking

scheme using Equation 4.1 (step 4), and their choice function values are

computed using Equation 4.4 (step 5). The low level heuristic h with the

largest choice function value CF(h) is selected and applied at the next

iteration and it produces the non-dominated front A (a current solution)

(steps 6 & 7). Then, for all low level heuristics H, the ranking mechanism is

updated (step 9). The choice function values are also computed and updated

(step 11). According to the updated choice function values, the low level

heuristic h with the largest choice function value CF(h) is called to apply and it

produces the non-dominated front B (a candidate solution) (steps 12 & 13).

In step 14, the acceptance procedure; late acceptance LA (A,B,݅) is called and

applied using the parameters that were obtained from the search (see

algorithm 12). This process is repeated until the stopping condition is met

which is a fixed number of iterations (steps 9-17). Note the HHMO_CF_LA is

operated in a similar manner to the HHMO_CF_GDA unless the move

acceptance criteria that employed are different.

Algorithm 13: Multi-objective Choice Function Late Acceptance based Hyper-
heuristic
 1: procedure HHMO_CF_LA ሺܪሻ ܪ ݏܽ݁ݎ݄݁ݓ is a set of the low level heuristics
 2: Initialisation
 3: Run ݄ǡ ݄ ׊ א ܪ
 4: Rank ݄ǡ ݄ ׊ א based on the ranking scheme ܪ
 5: Get ܨܥሺ݄ሻǡ ݄ ׊ א ܪ
 6: Select ݄ with the largest ܨܥሺ݄ሻ as an initial heuristic
 7: Execute the selected ݄ and produce a front ܣ
 8: Assign the initial number of iterations ݅ ൌ Ͳ
 9: repeat
10: Update the rank of ݄ǡ א ݄ ׊ based on the ranking scheme ܪ
11: Update ܨܥሺ݄ሻǡ א ݄ ׊ ܪ

12: Select ݄ with the largest ܨܥሺ݄ሻǡ א ݄ ׊ ܪ
13: Execute the selected ݄ and produce a front ܤ
14: Call the late acceptance procedure LA (A, B, ݅) ٲ ͳʹǣ ݄ܶ݁ ܿ݅ݎݐ݁ܯ ܦ ݄ݐ݅ݓ ݁ܿ݊ܽݐ݌݁ܿܿܣ ݁ݐܽܮ
15: Increment the number of iterations ݅ ൌ ݅ ൅ ͳ

16: until (termination criteria are satisfied)
17: end procedure

Chapter 7: A Heuristic Selection Using Non-Deterministic Move Acceptance

Strategy (Late Acceptance strategy)

142 | P a g e

 7.4 Comparison of Multi-objective Hyper-heuristics-

the Case of Bi-objective

In this section, we conduct experiments over the bi-objective Walking

Fish Group (WFG) benchmark dataset (Hunband et al., 2006) to evaluate the

performance of our three multi-objective choice function based hyper-

heuristics for multi-objective optimisation using different move acceptance

strategies including all-moves as a deterministic move acceptance, and the

great deluge algorithm and late acceptance as non-deterministic move

acceptance functions. Experiments are also conducted to investigate the

influence of using non-deterministic move acceptance strategies; great deluge

algorithm and late acceptance on the performance of online learning selection

choice function based hyper-heuristic for multi-objective optimisation.

7.4.1 Performance Evaluation Criteria

We used five performance metrics to measure the quality of

approximation sets from different aspects: (i) ratio of non-dominated

individuals (RNI) (Tan et al., 2002), (ii) hypervolume (SSC) (Zitzler and

Thiele, 1999) (iii) uniform distribution of a non-dominated population (UD)

(Srinivas and Deb, 1994), (iv) generational distance (GD) (Van Veldhuizen

and Lamont, 1998b) and (v) inverted generational distance (IGD) (Coello and

Cruz Cortès, 2005). A higher value considering one of those performance

metrics indicates that non-dominated solutions have a good quality, except

for GD and IGD, where a lower value indicates that the approximation

nondominated front is closer to the POF.

We have compared the mean performance of three multi-objective

choice function based hyper-heuristics; HHMO_CF_AM, HHMO_CF_GDA and

HHMO_CF_LA across multiple trials with respect to the metrics across multiple

trials. t-test is used as a statistical test for pairwise mean performance

comparison of selection hyper-heuristics.

7.4.2 Experimental Settings

All experimental parameters are chosen according to those commonly

used in the literature for continuous problems (see (Zitzler et al. (2000) and

Chapter 7: A Heuristic Selection Using Non-Deterministic Move Acceptance

Strategy (Late Acceptance strategy)

143 | P a g e

Huband et al. (2006)). We use the same parameter settings that were used in

Sections 5.2.2 and 6.4.2 for a fair comparison. In the measure of SSC and D

metric for GDA and LA, the reference points for WFG problems with ݇ objectives was set ݎ௜ ൌ ሺͲǡ ݅ כ ʹሻǡ ݅ ൌ ͳǡ Ǥ Ǥ Ǥ ǡ ݇ (Huband et al., 2006). As for

HHMO_CF_GDA, the rain speed (UP) is set to 0.0003 based on the empirical

experiments that are presented in Chapter 6. The length of the fitness array ௙݈௔ in HHMO_CF_LA is set to 5 as recommended in Burke and Bykov (2012).

All methods are implemented using Microsoft Visual C++ 2008 on an Intel

Core2 Duo 3GHz\2G\250G computer.

7.4.3 Experimental Results and Discussion

The average, minimum, maximum and standard deviation considering

the performance metrics, including RNI, SSC, UD, GD and IGD for each WFG

problem generated by each hyper-heuristic across 30 trials are provided in

Tables 7.1 and 7.2. From this point onward, each hyper-heuristic will be

referred to by move acceptance method utilised within each hyper-heuristic.

The pairwise mean performance comparison of different selection choice

function based hyper-heuristics, each using a different move acceptance

method, are provided in Table 7.3 based on t-test. The box plots of RNI, SSC,

UD, GD and IGD values for each bi-objective WFG benchmark function using

AM, GDA and LA are also illustrated in Figures 7.1, 7.2, 7.3, 7.4 and 7.5. The

performance of the choice function based hyper-heuristics are statistically

different in the majority cases. In general, AM, GDA, LA are statistically

different from each other (i.e. we reject the null hypothesis). In the overall,

GDA performs the best.

From Figure 7.1, we note that the selection hyper-heuristic using GDA and LA

perform better than the one using AM on average with respect to the

measure of ratio non-dominated solutions (RNI). The pairwise performance

differences of GDA and LA from AM are statistically significant for all

benchmark functions with respect to RNI, except WFG1. GDA and LA perform

relatively similar (see Table 7.2).

Chapter 7: A Heuristic Selection Using Non-Deterministic Move Acceptance Strategy (Late Acceptance strategy)

144 | P a g e

Table 7.1: The performance of selection choice function based hyper-heuristics using different move acceptance strategies including all-moves (AM), great
deluge algorithm (GDA) and late acceptance (LA) on the bi-objective WFG test problems with respect to the metrics; the ratio of non-dominated individuals
(RNI), the hypervolume (SSC), the uniform distribution (UD).

WFG Methods RNI SSC (HV) UD

AVG MIN MAX STD AVG MIN MAX STD AVG MIN MAX STD

1
AM 0.8800 0.2800 1.0000 0.2539 12.1386 9.0338 12.5130 0.9101 0.4428 0.3490 0.6945 0.1007

GDA 0.9357 0.3100 1.0000 0.1821 12.9388 8.2543 12.9966 1.2517 0.3941 0.2047 0.5952 0.0698
LA 0.9950 0.8400 1.0000 0.0292 12.1867 6.4458 12.3515 0.9967 0.3117 0.1178 0.3800 0.0521

2
AM 0.2293 0.1600 0.3600 0.0545 11.0219 10.6407 12.3894 0.3042 0.7278 0.6223 1.0000 0.0661

GDA 1.0000 1.0000 1.0000 0.0000 11.8148 10.7433 11.8258 0.0146 0.3729 0.3609 0.3862 0.0064

LA 1.0000 1.0000 1.0000 0.0000 11.8139 10.7242 11.9365 0.1567 0.3716 0.3158 0.4055 0.0156

3
AM 0.6027 0.5200 0.6800 0.0445 11.8940 11.3990 11.9867 0.0853 0.5450 0.4959 0.6136 0.0289

GDA 1.0000 1.0000 1.0000 0.0000 11.9197 11.9094 11.9296 0.0064 0.4252 0.4059 0.4580 0.0120
LA 1.0000 1.0000 1.0000 0.0000 11.9093 11.8232 11.8933 0.0162 0.4222 0.3976 0.4352 0.0094

4
AM 0.5443 0.4800 0.6400 0.0452 9.6588 9.5331 9.6643 0.0176 0.5596 0.4752 0.6317 0.0361

GDA 1.0000 1.0000 1.0000 0.0000 9.6642 9.6210 9.6650 0.0100 0.4145 0.3879 0.4423 0.0112

LA 1.0000 1.0000 1.0000 0.0000 9.6512 9.5685 9.6330 0.0141 0.4150 0.3860 0.4402 0.0143

5
AM 0.8537 0.6000 1.0000 0.1723 9.2899 9.1526 9.2984 0.5744 0.4779 0.4279 0.5744 0.0468

GDA 1.0000 1.0000 1.0000 0.0000 9.2964 9.1526 9.2984 0.4023 0.4395 0.4238 0.4579 0.0086

LA 1.0000 1.0000 1.0000 0.0000 9.2772 9.2580 9.2859 0.0080 0.4170 0.3733 0.4484 0.0213

6
AM 0.4720 0.4000 0.5600 0.0412 9.3687 9.1500 9.3810 0.0542 0.5962 0.5042 0.6479 0.0363

GDA 1.0000 1.0000 1.0000 0.0000 9.3745 9.2346 9.4787 0.0628 0.4128 0.3992 0.4308 0.0083

LA 1.0000 1.0000 1.0000 0.0000 9.3711 9.2495 9.4553 0.0474 0.4136 0.3927 0.4377 0.0129

7
AM 0.6173 0.4000 0.7200 0.0653 9.6606 9.2261 9.6911 0.0926 0.5289 0.4734 0.6743 0.0416

GDA 1.0000 1.0000 1.0000 0.0000 9.6650 9.6596 9.6700 0.0028 0.4085 0.3792 0.4565 0.0151
LA 1.0000 1.0000 1.0000 0.0000 9.6641 9.6172 9.6550 0.0100 0.4112 0.3878 0.4342 0.0133

8
AM 0.2627 0.2000 0.4400 0.0454 8.3033 8.1155 8.5676 0.1224 0.7886 0.6294 1.0000 0.1245

GDA 1.0000 1.0000 1.0000 0.0000 8.7279 8.6708 8.7389 0.0120 0.4248 0.3948 0.5933 0.0341
LA 1.0000 1.0000 1.0000 0.0000 8.4859 8.3572 8.6371 0.0754 0.4128 0.3832 0.4488 0.0136

9
AM 0.6410 0.4000 0.8000 0.0896 8.6132 8.2356 9.2519 0.2236 0.5142 0.4141 0.6432 0.0525

GDA 0.9893 0.8000 1.0000 0.4193 8.7689 8.5789 9.4346 0.3054 0.4111 0.3661 0.6141 0.0210
LA 0.9973 0.9200 1.0000 0.0146 8.7132 8.5373 9.2002 0.2518 0.3953 0.3508 0.4201 0.0144

Chapter 7: A Heuristic Selection Using Non-Deterministic Move Acceptance Strategy (Late Acceptance strategy)

145 | P a g e

Table 7.2: The performance of selection choice function based hyper-heuristics using different move acceptance strategies including all-moves (AM), great
deluge algorithm (GDA) and late acceptance (LA) on the bi-objective WFG test problems with respect to the metrics; the generational distance (GD) and the
inverted generational distance (IGD).

WFG Methods GD IGD

AVG MIN MAX STD AVG MIN MAX STD

1
AM 7.740E-03 3.400E-03 4.660E-02 1.106E-02 7.300E-04 3.900E-04 2.930E-03 6.500E-04

GDA 8.240E-03 3.400E-03 4.400E-02 1.110E-02 1.020E-03 3.900E-04 4.940E-03 1.170E-03
LA 1.534E-02 8.200E-03 4.110E-02 7.260E-03 2.400E-03 1.680E-03 4.740E-03 7.200E-04

2
AM 1.460E-03 9.000E-04 3.200E-03 4.900E-04 4.400E-04 2.200E-04 5.400E-04 6.000E-05
GDA 4.500E-04 4.000E-04 8.000E-04 8.000E-05 3.500E-04 3.500E-04 3.600E-04 0.000E+00

LA 7.000E-04 4.000E-04 4.500E-03 7.300E-04 3.700E-04 3.500E-04 7.800E-04 8.000E-05

3
AM 6.800E-04 3.000E-04 2.800E-03 4.500E-04 6.853E-04 6.831E-04 7.229E-04 7.169E-06
GDA 2.000E-04 1.900E-04 3.000E-04 5.000E-05 6.835E-04 6.830E-04 6.839E-04 2.502E-07

LA 4.100E-04 3.000E-04 6.000E-04 7.000E-05 6.836E-04 6.813E-04 6.856E-04 1.184E-06

4
AM 9.700E-04 7.500E-04 1.510E-03 1.900E-04 2.563E-04 1.951E-04 3.311E-04 3.384E-05
GDA 4.700E-04 4.300E-04 5.800E-04 4.000E-05 1.297E-04 1.169E-04 1.613E-04 1.027E-05

LA 6.100E-04 5.400E-04 7.500E-04 5.000E-05 1.475E-04 1.343E-04 1.830E-04 1.099E-05

5
AM 2.730E-03 2.160E-03 2.440E-03 3.200E-04 5.439E-04 5.281E-04 5.987E-04 2.246E-05
GDA 2.450E-03 2.430E-03 2.430E-03 1.000E-05 5.292E-04 5.278E-04 5.304E-04 6.672E-07

LA 2.510E-03 2.460E-03 2.460E-03 3.000E-05 5.394E-04 5.293E-04 5.612E-04 8.862E-06

6
AM 2.250E-03 1.500E-03 3.900E-03 5.600E-04 5.523E-04 4.265E-04 7.191E-04 6.749E-05
GDA 2.000E-03 1.310E-03 2.700E-03 3.500E-04 4.441E-04 2.850E-04 5.791E-04 7.680E-05
LA 2.050E-03 1.420E-03 2.550E-03 2.700E-04 4.470E-04 3.089E-04 5.503E-04 5.602E-05

7
AM 4.700E-04 4.400E-04 1.360E-03 2.500E-04 2.206E-04 1.736E-04 4.141E-04 5.025E-05
GDA 3.300E-04 2.600E-04 4.100E-04 4.000E-05 1.191E-04 1.090E-04 1.392E-04 7.968E-06

LA 4.100E-04 2.900E-04 5.000E-04 4.000E-05 1.323E-04 1.096E-04 1.471E-04 1.185E-05

8
AM 4.420E-03 3.580E-03 4.980E-03 4.300E-04 6.195E-04 4.806E-04 7.753E-04 7.767E-05
GDA 3.890E-03 3.580E-03 5.850E-03 3.800E-04 3.634E-04 3.426E-04 4.198E-04 1.397E-05
LA 4.410E-03 4.080E-03 4.710E-03 1.500E-04 4.205E-04 3.863E-04 4.572E-04 1.371E-05

9
AM 5.280E-03 1.430E-03 6.390E-03 1.450E-03 9.545E-04 3.122E-04 1.176E-03 2.444E-04

GDA 3.640E-03 4.100E-04 5.500E-03 1.950E-03 7.879E-04 1.369E-04 1.025E-03 3.908E-04
LA 3.770E-03 5.700E-04 4.950E-03 1.690E-03 8.312E-04 1.787E-04 1.031E-03 3.538E-04

Chapter 7: A Heuristic Selection Using Non-Deterministic Move Acceptance

Strategy (Late Acceptance strategy)

146 | P a g e

Problem Methods
Metrics

RNI SSC UD GD IGD

WFG1
AM:GDA ט െ + ± +

AM:LA െ െ + + +

GDA:LA ט + ± ± +

WFG2
AM:GDA െ െ + െ െ

AM:LA െ െ + െ െ

GDA:LA n/a ± ± + +

WFG3
AM:GDA െ െ + െ ט

AM:LA െ െ + െ ט

GDA:LA n/a + ± + ±

WFG4
AM:GDA െ െ + െ െ

AM:LA െ െ ± െ െ

GDA:LA n/a + ט + +

WFG5
AM:GDA െ െ + െ െ

AM:LA െ ± + െ ט

GDA:LA n/a + + + ±

WFG6
AM:GDA െ െ + െ െ

AM:LA െ െ + െ െ

GDA:LA n/a + ט + ±

WFG7
AM:GDA െ െ + െ െ

AM:LA െ െ + െ െ

GDA:LA n/a + ט + ±

WFG8
AM:GDA െ െ + െ െ

AM:LA െ െ + െ െ

GDA:LA n/a + + + +

WFG9
AM:GDA െ െ + െ െ

AM:LA െ െ + െ െ

GDA:LA ט + + ± +

Table 7.3: The t-test results of multi-objective choice function based hyper-heuristics
methodologies using AM, GDA and LA as a move acceptance criterion on the bi-

objective WFG test problems with respect to the metrics; the ratio of non-dominated
individuals (RNI), the hypervolume (SSC), the uniform distribution (UD) and the
generational distance (GD).

From Figure 7.2 and Table 7.2, GDA has the best overall mean

performance when compared to AM and LA. With respect to the measure of

the hypervolume (SSC), this performance difference is statistically significant

across all WFG problems, except WFG2. For this instance, GDA performs

slightly better than LA. In addition, LA delivers a significantly better

performance than AM for all WFG problems, except WFG5. Similarly, GDA

delivers a significantly better mean performance when compared to AM and

LA with respect to the measure of generational distance (GD) for all

benchmark functions, except WFG1 and WFG9 (See Figure 7.4 and Table 7.2).

Chapter 7: A Heuristic Selection Using Non-Deterministic Move Acceptance

Strategy (Late Acceptance strategy)

147 | P a g e

Figure 7.1: Box plots of multi-objective choice function based hyper-heuristics
methodologies using AM, GDA and LA as a move acceptance criterion on the bi-
objective WFG test problems for the measure of ratio non-dominated solutions (RNI).

Figure 7.2: Box plots of multi-objective choice function based hyper-heuristics
methodologies using AM, GDA and LA as a move acceptance criterion on the bi-
objective WFG test problems for the measure of hypervoulme (SSC).

Chapter 7: A Heuristic Selection Using Non-Deterministic Move Acceptance

Strategy (Late Acceptance strategy)

148 | P a g e

Figure 7.3: Box plots of multi-objective choice function based hyper-heuristics
methodologies using AM, GDA and LA as a move acceptance criterion on the bi-
objective WFG test problems for the measure of uniform distribution (UD).

Figure 7.4: Box plots of multi-objective choice function based hyper-heuristics
methodologies using AM, GDA and LA as a move acceptance criterion on the bi-
objective WFG test problems for the measure of generational distance (GD).

Chapter 7: A Heuristic Selection Using Non-Deterministic Move Acceptance

Strategy (Late Acceptance strategy)

149 | P a g e

Figure 7.5: Box plots of multi-objective choice function based hyper-heuristics
methodologies using AM, GDA and LA as a move acceptance criterion on the bi-
objective WFG test problems for the measure of inverted generational distance (IGD).

For WFG1, AM performs slightly better than GDA and significantly better

than LA, while for WFG9, LA performs significantly better than AM and GDA

performs slightly better than AM. With respect to the measure of inverted

generational distance (IGD), GDA performs significantly better than AM in all

instances except in WFG1. In addition, GDA performs significantly better than

LA in four instances of WFG2, WFG4, WFG8 and WFG9 while it performs

significantly similar to LA in the rest (see Figure 7.5).

 Although non-deterministic move acceptance methods improve the

overall mean performance of the hyper-heuristic with respect to RNI, SSC, GD

and IGD, AM performs the best with respect to the measure of the uniform

distribution of non-dominated solutions (UD) (see Figure 7.3). The

performance differences from GDA and LA are statistically significant for all

problems, except WFG4, for which AM still performs slightly better than LA.

GDA and LA have relatively similar performance across all WFG problems (see

Table 7.2). The success of AM with respect to UD might be due to the use of

the D metric into acceptance procedure. Since D metric is a binary

hypervolume measure that is designed to compare two sets of non-dominated

Chapter 7: A Heuristic Selection Using Non-Deterministic Move Acceptance

Strategy (Late Acceptance strategy)

150 | P a g e

solutions with respect of their convergence towards the POF, there is no

consideration regarding how uniformly these solutions are distributed along

the POF. This might also be a reason for why non-deterministic move

acceptance produces high quality solutions in terms of the convergence

towards the POF.

7.4.4 Behaviour of Acceptance Strategies

To further understand how the move acceptance strategies, AM, GDA

and LA, are performing and how their performances could affect the quality of

the solutions, we compute the average accepted/rejected move rates which

indicates how frequently a move (solution) that is produced from the three

low level heuristics is accepted/ rejected under different acceptance methods

AM, GDA and LA. Figure 7.6 illustrates the average number of heuristic

invocations of each low level heuristic selected and applied at 25 consecutive

decision points (stages/iterations) during the search process over all runs.

Each bar in the plot also indicates the average number of accepted and

rejected Pareto fronts. A similar pattern for the choice of low level heuristics

during the search process has been observed in Figure 7.6 on almost all WFG

problems considering the three hyper-heuristics. This is high likely due to the

use of the same heuristic selection mechanism (choice function). However,

the pattern in the plots for accepted or rejected Pareto fronts produced by the

chosen low level heuristic varies for a given problem depending on the move

acceptance strategy that the hyper-heuristic employs. NSGAII is always

selected more than the other low level meta-heuristics regardless of the move

acceptance method, except for WFG5 and WFG9. For WFG5, SPEA2 is the

most frequently chosen algorithm regardless of the move acceptance

component of the hyper-heuristic during the search process. On the other

hand, SPEA2 is frequently chosen when GDA is used as the move acceptance

algorithm on WFG9. The performance of MOGA is the worst among three

hyper-heuristics on the WFG problems; thus it is invoked relatively less

frequently during the search process in all test problems for all methods.

Overall, NSGAII appears to be a good choice for solving the WFG

problems. Our observations are consistent with the result obtained in

Bradstreet et al. (2007) showing that the best performance is achieved by

NSGAII on the bi-objective WFG test suite. This indicates that NSGAII is a

good choice for solving the WFG problems. We theorise that the multi-

Chapter 7: A Heuristic Selection Using Non-Deterministic Move Acceptance

Strategy (Late Acceptance strategy)

151 | P a g e

Figure 7.6: The average number of low level meta-heuristic invocations (NSGAII,
SPEA2 and MOGA) and accepted/rejected moves produced by selection hyper-
heuristics using AM, GDA and LA over the bi-objective WFG test problems- continue.

Chapter 7: A Heuristic Selection Using Non-Deterministic Move Acceptance

Strategy (Late Acceptance strategy)

152 | P a g e

Figure 7.6: Continue- the average number of low level meta-heuristic invocations
(NSGAII, SPEA2 and MOGA) and accepted/rejected moves produced by selection
hyper-heuristics using AM, GDA and LA over the bi-objective WFG test problems.

objective choice function hyper-heuristic, therefore, prefers NSGAII and it

becomes preferable to be chosen more frequently than the other low level

heuristics.

Figure 7.6 shows that there is only one case in which all moves are

accepted when a non-deterministic strategy is used, that is GDA for WFG1.

The rate of moves rejected for LA is higher than that for GDA on all test

problems regardless of the low level meta-heuristic employed, except for

MOGA, where LA accepts more moves (solutions) than GDA on almost all

problems. These observations offer some explanation as to why the

performance of GDA is better than LA in terms of convergence towards the

Chapter 7: A Heuristic Selection Using Non-Deterministic Move Acceptance

Strategy (Late Acceptance strategy)

153 | P a g e

POF: (i) The good moves that are accepted in GDA are rejected in LA, and (ii)

as MOGA does not perform well in the WFG test problem and it is invoked

relatively less frequently during the search process, LA accepts all MOGA's

moves (solutions) while GDA rejects them. LA produces better solutions than

AM. So, the non-deterministic acceptance strategies (GDA and LA) beat the

deterministic acceptance strategy (AM). In addition, GDA and LA appear to

positively affect the performance of the multi-objective choice function based

hyper-heuristic when used as the move acceptance strategy over the bi-

objective WFG test problems.

7.5 Comparison of Multi-objective Hyper-heuristics-

the Case of Tri-objective

More experiments are conducted to evaluate the performance of the

three proposed selection online learning choice function based hyper-

heuristics for multi-objective optimisation (HHMO_CF_AM, HHMO_CF_GDA

and HHMO_CF_LA) over tri-objective Walking Fish Group (WFG) benchmark

dataset (Huband et al., 2006). The performance of our selection choice

function based hyper-heuristics is compared to the well-known multi-objective

evolutionary algorithm, SPEA2 (Zitzler et al., 2001) as well. The motivation

behind choosing SPEA2 to compare against our multi-objective hyper-heuristic

is that SPEA2 performs well on the WFG problems in three objectives

(Bradstreet et al., 2007). For brevity, we will refer to three multi-objective

choice function based hyper-heuristics; HHMO_CF_AM, HHMO_CF_GDA and

HHMO_CF_LA as AM, GDA and LA respectively.

7.5.1 Performance Evaluation Criteria

We used three performance metrics- the hypervolume- size of space

converged (SSC) (Zitzler and Thiele, 1999), generational distance (GD) (Van

Veldhuizen and Lamont, 1998b) and inverted generational distance (IGD)

(Coello and Cruz Cortès, 2005)- to assess the quality of approximation sets in

both diversity and convergence aspects. In addition, we use the students test

(t-test) statistic to compare the mean performance of SPEA2 and three choice

function based multi-objective hyper-heuristics using different acceptance

criteria; AM, GDA and LA across multiple trials with respect to the metrics

across multiple trials. We use the same notation that was presented in

Section 7.4.1.

Chapter 7: A Heuristic Selection Using Non-Deterministic Move Acceptance

Strategy (Late Acceptance strategy)

154 | P a g e

7.5.2 Experimental Settings

All experimental parameters are chosen according to those commonly

used in the scientific literature for the tri-objective problems (Huang et al.,

2007; Zielinski and Laur, 2007). The nine test problems (WFG1-WFG9) with

three objectives have 24 real parameters including four position parameter

and 20 distance parameters. For each problem, we run 30 independent trials

with a different random seed. For fair comparison, all methods in each run

were executed 300,000 evaluation functions in order to keep the

computational costs of the experiments in an affordable level. In other words,

all hyper-heuristics are run for a total of 30 stages (iterations). In each stage,

a low level heuristic is chosen and applied to execute 100 generations with a

population size equal to 100 (10,000 evaluation functions). SPEA2 executed

for 300,000 evaluation functions (3000 generations in total with primary and

secondary population sizes equal to 100). Other parameter settings are

identical to those used in Section 7.4.2. All methods were implemented with

the same common sub-functions using Microsoft Visual C++ 2008 on an Intel

Core2 Duo 3GHz\2G\250G computer.

7.5.3 Experimental Results and Discussion

The statistical t-test results of comparing three multi-objective choice

function based hyper-heuristics (AM, GDA and LA) and SPEA2 with respect to

the three performance metrics (SSC, GD and IGD) on the nine WFG test

problems are given in Table 7.4. We can note that our multi-objective choice

function based hyper-heuristics are statistically different from SPEA2 in the

majority cases (i.e. we reject the null hypothesis) except in AM whilst

performs similar to SPEA2 in most cases for the SSC metric.

The performance values of SPEA2 and our three multi-objective hyper-

heuristic methodologies (AM, GDA and LA) with respect to the performance

metrics (SSC, GD and IGD) on the tri-objective WFG function are summarised

in Table 7.5. For each performance metric, the average, minimum, maximum

and standard deviation values are shown. We also visualise the distribution of

the simulation data of the 30 independent runs for the comparison methods

with respect to these performance metrics shown in Figures 7.7 -7.9. A higher

value indicates a better performance in SSC while a lower value indicates a

better performance in GD and IGD.

Chapter 7: A Heuristic Selection Using Non-Deterministic Move Acceptance

Strategy (Late Acceptance strategy)

155 | P a g e

We note from both Table 7.5 and Figures 7.7-7.9. GDA has the highest

SSC value in five out of nine problems including WFG1, WFG3, WFG5, WFG7,

WFG9 while LA has the highest SSC’s value for the rest of the WFG problems.

The pairwise performance differences of GDA from other methods are

statistically significant for all benchmark functions with respect to the

measure of hypervoulme (SSC). It is interesting to note that AM and SPEA2

are performing similarly in the majority of cases for SSC. With respect to the

measure of generational distance (GD), GDA has the lowest GD’s value which

means it has the best performance among other methods for all WFG

problems except in WFG3 where SPEA2 performs the best. In contrast, LA has

the highest GD value, thus the worst performance among the comparison

methods. With respect to the measure of inverted generational distance

(IGD), GDA has the lowest GD value which means it has the best performance

among other methods for all WFG problems except in WFG1 and WFG9.

Generally, GDA is statistically significant better than AM, LA and SPEA2

in the most cases with respect to the SSC, GD and IGD metrics. Although AM

and LA perform better than SPEA2 in the measure of SSC for all WFG

problems, they perform worse than SPEA2 in the measure of GD and IGD in

the majority cases. The superiority of our multi-objective hyper-heuristics

compared to SPEA2 in the SSC metric is because of the influence of the

ranking scheme that is embedded in the selection mechanism (the choice

function). The ranking scheme maintains the past performance of low level

heuristics using a set of performance indicators that measure different aspects

of the solutions, the SSC metric is one of these indicators.

In Figure 7.10, we have plotted the POF and the distribution of the final

fronts obtained in the run with the lowest GD value of each method in each

WFG problem. It is clear that the GDA is converging well (closer to the POF)

compared to the other methods for all the datasets. However, GDA shows

poor distribution of final solutions in WFG8 and WFG9. This could be attributed

to the fact that WFG8 and WFG9 feature significant bias which causes

difficulty to the algorithm to spread well along the front. We can observe that

the multi-objective selection hyper-heuristic that utilised the GDA as a move

acceptance criterion outperforms SPEA2 and the other move acceptance

criteria AM and LA in most WFG problems with three objectives.

Chapter 7: A Heuristic Selection Using Non-Deterministic Move Acceptance

Strategy (Late Acceptance strategy)

156 | P a g e

Table 7.4: The t-test results of SPEA2 and three multi-objective choice function based
hyper-heuristics using all-move (AM), great deluge algorithm (GDA) and late
acceptance (LA) as a move acceptance criterion with respect to the metrics; the
hypervolume (SSC), the generational distance (GD) and the inverted generational
distance (IGD) on the tri-objective WFG test problems.

Problem Methods
Metrics

SSC GD IGD

WFG1

AM:GDA ט െ ±

AM:LA െ ± ±

AM:SPEA2 ט ± ±

GDA:LA + + ט

GDA:SPEA2 + + ט

LA:SPEA2 െ ט ט

WFG2

AM:GDA ט െ െ

AM:LA െ െ ±

AM:SPEA2 ט ± ט

GDA:LA െ + +

GDA:SPEA2 ט + +

LA:SPEA2 + + ט

WFG3

AM:GDA െ + ט

AM:LA ט ט +

AM:SPEA2 + െ ט

GDA:LA + െ +

GDA:SPEA2 + െ +

LA:SPEA2 ± െ +

WFG4

AM:GDA െ െ ט

AM:LA െ + ט

AM:SPEA2 ט ± ט

GDA:LA ט + +

GDA:SPEA2 + + +

LA:SPEA2 + െ ט

WFG5

AM:GDA + + െ

AM:LA + െ +

AM:SPEA2 ± െ +

GDA:LA + + +

GDA:SPEA2 + + +

LA:SPEA2 + െ +

WFG6

AM:GDA െ + ט

AM:LA െ െ +

AM:SPEA2 ט െ ט

GDA:LA െ + +

GDA:SPEA2 + െ ±

LA:SPEA2 + + െ

WFG7

AM:GDA െ െ െ

AM:LA െ + +

AM:SPEA2 ט ± െ

GDA:LA ± + +

GDA:SPEA2 + + +

LA:SPEA2 + െ െ

WFG8

AM:GDA െ െ ט

AM:LA െ ט ט

AM:SPEA2 െ െ െ

GDA:LA െ + ±

GDA:SPEA2 + + ±

LA:SPEA2 + െ െ

WFG9

AM:GDA െ െ െ

AM:LA െ ט ט

AM:SPEA2 െ ט െ

GDA:LA + + +

GDA:SPEA2 + ± ט

LA:SPEA2 + െ െ

Chapter 7: A Heuristic Selection Using Non-Deterministic Move Acceptance

Strategy (Late Acceptance strategy)

157 | P a g e

To understand why GDA works so well as an acceptance strategy and

outperforms the others, in the next subsection, we analyse the behaviour of

the move acceptance strategies and how many moves are accepted/rejected

based on these acceptance strategies.

7.5.4 Behaviour of Acceptance Strategies

In order to understand how the move acceptance strategies, AM, GDA

and LA, are performing and how their performances could affect the quality of

the solutions, we compute the average heuristic utilisation rate which

indicates how frequently a given low level heuristic is chosen and applied

during the search process (through 30 decision points/stages) across all runs.

We also compute the average accepted/rejected move rates which indicates

how frequently a move (solution) that is produced from the three low level

heuristics (NSGAII, SPEA2 and MOGA) is accepted/ rejected under different

acceptance methods (AM, GDA and LA). The results are presented in Figure

7.11.

It is clear from Figure 7.11 that all WFG problems have the same bar

graph patterns for the three hyper-heuristics methods (AM, GDA and LA), as

they use the same selection mechanism (choice function). Unlike the graph

patterns of the choice function in the two objective case (see Section 7.4)

where NSGAII has the highest average heuristic utilisation rate, SPEA2 has

the highest average heuristic utilisation rate among all low level heuristics for

each problem in the three objectives case. This indicates that SPEA2 performs

best among other low level heuristics in all WFG problems. We theorise that

multi-objective choice function based hyper-heuristics, therefore, prefers

SPEA2 and it becomes preferable to be chosen more frequently than the other

low level heuristics. Our result is consistent with the result in Bradstreet et al.

(2007) that show the best performance is achieved by SPEA2 on the tri-

objectives WFG test functions. NSGAII has the second highest average

heuristic utilisation rate among all low level heuristics for each problem in all

methods. As for the two objective case, the performance of MOGA is not

good on the WFG problems with three objectives; thus it is invoked relatively

less frequently during the search process on all test problems, for all methods

Chapter 7: A Heuristic Selection Using Non-Deterministic Move Acceptance Strategy (Late Acceptance strategy)

158 | P a g e

Table 7.5 : The performance of multi-objective selection choice function based hyper-heuristics using different move acceptance strategies including all-moves
(AM), great deluge algorithm (GDA) and late acceptance (LA) on the tri-objective WFG test problems with respect to the metrics; the hypervolume (SSC), the
generational distance (GD) and the inverted generational distance (IGD).

WFG Methods SSC (HV) GD IGD

AVG MIN MAX STD AVG MIN MAX STD AVG MIN MAX STD

1

AM 107.3712 9.1829 135.3410 32.6332 4.812E-02 3.497E-02 4.910E-02 2.552E-03 1.116E-02 9.979E-03 1.130E-02 2.506E-04

GDA 117.8262 32.7882 213.2110 77.3751 4.628E-02 4.307E-02 4.866E-02 2.029E-03 1.175E-02 1.114E-02 1.297E-02 6.065E-04
LA 84.9291 48.9161 175.3890 33.0404 4.936E-02 6.789E-02 4.656E-02 5.061E-03 1.142E-02 1.037E-02 1.188E-02 3.313E-04

SPEA2 114.3752 62.3193 125.9170 23.5923 4.871E-02 4.807E-02 4.919E-02 2.532E-04 1.125E-02 1.119E-02 1.133E-02 3.545E-05

2

AM 167.1861 89.2915 207.7816 45.1490 1.092E-02 5.084E-03 2.198E-02 3.936E-03 1.760E-03 1.070E-03 4.540E-03 6.627E-04
GDA 168.3010 82.2896 208.8914 37.0173 5.793E-03 2.238E-03 1.366E-02 2.512E-03 1.482E-03 8.193E-04 2.802E-03 4.752E-04
LA 187.3642 102.9195 216.7784 35.8396 9.523E-03 4.824E-03 1.879E-02 3.010E-03 1.822E-03 1.109E-03 2.203E-03 2.613E-04

SPEA2 171.0259 111.9220 201.3650 42.1033 1.119E-02 9.035E-03 1.425E-02 1.353E-03 1.677E-03 1.389E-03 2.023E-03 1.765E-04

3

AM 164.4504 161.1735 165.8882 0.8374 1.714E-02 3.725E-03 2.461E-02 8.661E-03 6.541E-04 2.289E-04 1.103E-03 2.737E-04
GDA 166.2142 164.4883 170.2537 1.4075 2.272E-02 2.115E-02 2.384E-02 6.695E-04 6.007E-04 4.123E-04 1.229E-03 1.901E-04

LA 164.9405 156.9436 172.9678 3.8900 1.700E-02 6.362E-03 2.374E-02 6.760E-03 9.436E-04 4.399E-04 1.518E-03 3.575E-04
SPEA2 155.5069 81.6381 159.0350 13.9708 3.764E-03 3.285E-03 4.627E-03 4.079E-04 1.237E-03 1.050E-03 1.379E-03 7.958E-05

4

AM 174.4465 172.2685 175.9692 0.9286 7.472E-03 6.802E-03 8.191E-03 2.959E-04 9.237E-04 8.192E-04 1.103E-03 6.690E-05
GDA 187.5106 172.2036 195.3434 4.7233 7.193E-03 4.590E-03 7.808E-03 5.411E-04 9.134E-04 8.162E-04 1.114E-03 7.101E-05
LA 188.8972 183.5044 195.8470 3.5147 7.947E-03 7.493E-03 8.451E-03 2.531E-04 9.767E-04 8.693E-04 1.241E-03 7.746E-05

SPEA2 174.5163 172.3850 176.8740 1.1343 7.579E-03 7.152E-03 8.029E-03 2.640E-04 9.320E-04 8.590E-04 1.102E-03 5.134E-05

5

AM 169.3947 91.8980 178.5882 21.2169 2.782E-03 2.496E-03 3.375E-03 3.030E-04 7.103E-04 6.378E-04 8.505E-04 5.944E-05
GDA 179.0575 171.1901 182.2547 3.0923 2.580E-03 2.497E-03 2.749E-03 7.342E-05 6.807E-04 6.455E-04 7.609E-04 2.865E-05

LA 178.9980 172.1897 184.6083 2.6278 4.884E-03 3.934E-03 6.704E-03 5.983E-04 7.738E-04 7.105E-04 9.724E-04 5.322E-05
SPEA2 168.8870 91.8184 179.1310 26.0557 2.520E-03 2.482E-03 2.578E-03 2.189E-05 9.252E-04 9.014E-04 9.714E-04 1.674E-05

6

AM 167.5519 162.3480 172.5244 2.4692 1.118E-02 4.877E-03 1.537E-02 2.958E-03 1.149E-03 8.090E-04 1.364E-03 1.365E-04
GDA 178.7681 129.1464 199.9808 17.3386 1.289E-02 3.130E-03 1.490E-02 3.293E-03 1.110E-03 7.975E-04 1.795E-03 2.281E-04
LA 184.4600 165.0770 201.0835 8.4301 1.490E-02 5.611E-03 1.683E-02 3.507E-03 1.306E-03 9.108E-04 1.534E-03 1.776E-04

SPEA2 168.3973 161.8640 177.6070 3.3697 1.130E-02 4.473E-03 1.537E-02 2.252E-03 1.141E-03 7.331E-04 1.400E-03 1.382E-04

7

AM 170.9187 89.4527 175.8396 15.4664 8.132E-03 3.416E-03 1.053E-02 1.038E-03 1.006E-03 8.988E-04 2.583E-03 3.000E-04
GDA 189.2783 149.3687 198.5367 10.1373 6.417E-03 2.159E-03 9.033E-03 2.197E-03 8.992E-04 3.045E-04 1.643E-03 2.573E-04
LA 180.1404 171.4541 200.4325 6.2589 8.819E-03 2.870E-03 1.032E-02 1.198E-03 1.061E-03 7.941E-04 1.323E-03 8.495E-05

SPEA2 174.4071 172.1070 176.1530 1.0187 8.368E-03 7.940E-03 8.808E-03 2.307E-04 9.566E-04 9.108E-04 1.006E-03 2.503E-05

8

AM 142.2636 142.2636 164.4628 4.2221 1.419E-02 9.033E-03 1.641E-02 2.217E-03 1.328E-03 1.129E-03 1.537E-03 1.365E-04
GDA 174.7478 167.1404 184.4929 4.9486 1.260E-02 9.033E-03 1.580E-02 1.569E-03 1.200E-03 1.010E-03 1.442E-03 1.024E-04

LA 179.6973 160.4983 186.7640 4.8295 1.345E-02 8.675E-03 1.443E-02 9.896E-04 1.312E-03 1.221E-03 1.446E-03 4.181E-05
SPEA2 162.7549 159.5230 164.8610 1.3546 1.267E-02 1.196E-02 1.352E-02 4.035E-04 1.222E-03 1.164E-03 1.301E-03 3.471E-05

9

AM 163.2564 84.2574 168.3284 14.9607 6.866E-03 3.043E-03 8.897E-03 1.191E-03 8.819E-04 7.524E-04 1.133E-03 6.585E-05
GDA 177.4758 166.6219 192.2547 4.3396 6.107E-03 4.049E-03 8.996E-03 8.073E-04 8.423E-04 7.670E-04 1.131E-03 8.428E-05
LA 175.4644 193.0402 157.9340 6.4698 6.927E-03 4.039E-03 8.244E-03 9.852E-04 8.713E-04 7.756E-04 1.167E-03 7.763E-05

SPEA2 168.0471 165.3200 170.8950 1.2861 6.428E-03 4.867E-03 1.286E-02 1.291E-03 8.306E-04 7.345E-04 9.993E-04 5.463E-05

Chapter 7: A Heuristic Selection Using Non-Deterministic Move Acceptance

Strategy (Late Acceptance strategy)

159 | P a g e

Figure 7.7: Box plots of multi-objective choice function based hyper-heuristics
methodologies using AM, GDA and LA as a move acceptance criterion on the tri-
objective WFG test problems for the measure of hypervoulme (SSC).

Figure 7.8: Box plots of multi-objective choice function based hyper-heuristics
methodologies using AM, GDA and LA as a move acceptance criterion on the tri-
objective WFG test problems for for the measure of generational distance (GD).

Chapter 7: A Heuristic Selection Using Non-Deterministic Move Acceptance

Strategy (Late Acceptance strategy)

160 | P a g e

Figure 7.9: Box plots of multi-objective choice function based hyper-heuristics
methodologies using AM, GDA and LA as a move acceptance criterion on the tri-
objective WFG test problems for for the measure of inverted generational distance
(IGD).

Figure 7.11 also gives some insights about how many moves are

accepted/rejected based on the acceptance strategy that was used. We can

observe that no moves are rejected for each test problem in AM, since it

employs an All-Moves acceptance strategy. For each test problem in AM,

SPEA2 has the highest heuristic utilisation rate among the other low level

heuristics, which means that SPEA2 is invoked more frequently during the

search process.

However, MOGA has a too low heuristic utilisation rate and NSGAII has a

slightly higher rate than MOGA but not as high as SPEA2. This explains why

AM performs relatively similar to SPEA2, in most cases, for the SSC metric

(see Table 7.4). It is also clear from the graphs that the rate of rejected

moves of LA is much higher than GDA on all test problems for all low level

heuristics. In other words, GDA accepts moves (solutions with good quality)

more than LA. These observations offer an explanation as to why the

performance of GDA is better than LA in terms of convergence towards the

POF. However, LA still produces better solutions than AM in most cases. This

Chapter 7: A Heuristic Selection Using Non-Deterministic Move Acceptance

Strategy (Late Acceptance strategy)

161 | P a g e

Figure 7.10: Plots of the non-dominated solutions in the objective space with the
lowest GD in 30 runs of SPEA2 and three multi-objective choice function based hyper-
heuristic using AM, GDA, LA as an acceptance criterion over the tri-objective WFG test
functions.

Chapter 7: A Heuristic Selection Using Non-Deterministic Move Acceptance

Strategy (Late Acceptance strategy)

162 | P a g e

.

Figure 7.11: The average number of low level meta-heuristic invocations (NSGAII,
SPEA2 and MOGA) and accepted/rejected moves produced by selection hyper-
heuristics using AM, GDA and LA over the tri-objective WFG test problems- continue.

Chapter 7: A Heuristic Selection Using Non-Deterministic Move Acceptance

Strategy (Late Acceptance strategy)

163 | P a g e

Figure 7.11: Continue- the average number of low level meta-heuristic invocations
(NSGAII, SPEA2 and MOGA) and accepted/rejected moves produced by selection
hyper-heuristics using AM, GDA and LA over the tri-objective WFG test problems.

indicates that is the condition criterion that used in LA help to produce

solutions with acceptable quality by rejecting the worse moves (solutions) at

the right decision points during the search process.

7.6 Summary and Remarks

This chapter proposed an online learning selection choice function based

hyper-heuristics using late acceptance (LA) as a non-deterministic move

acceptance criterion for multi-objective optimisation. To the best of our

Chapter 7: A Heuristic Selection Using Non-Deterministic Move Acceptance

Strategy (Late Acceptance strategy)

164 | P a g e

knowledge, D metric is used for the first time as a comparison measure

between two non-dominated fronts in order to covert the multi-objective

problem to a single-objective problem without definition of criteria values'

weights.

The performance of the proposed multi-objective choice function late

acceptance based hyper-heuristic (HHMO_CF_LA) is compared to two previous

multi-objective hyper-heuristics; choice function all-moves based hyper-

heuristic (HHMO_CF_AM) and choice function great deluge based hyper-

heuristic (HHMO_CF_GDA) that were presented in Chapters 5 and 6

respectively. The comparison is conducted over the bi-objective Walking

Fish Group (WFG) test functions benchmark for multi-objective optimisation.

Additionally, the performances of the three multi-objective hyper-heuristics

are compared to the well-known multi-objective algorithm, SPEA2.

The experimental results demonstrate the effectiveness of non-

deterministic move acceptance strategy based methodologies.

HHMO_CF_GDA and HHMO_CF_LA outperform HHMO_CF_AM over the bi-

objective WFG test problems, indicating that the non-deterministic acceptance

strategies improve the performance of the multi-objective selection choice

function based hyper-heuristic. Moreover, this observation is supported

further by empirical evidence obtained from testing those hyper-heuristics

against SPEA2 over the tri-objective WFG test problems. In overall,

HHMO_CF_GDA performs the best compared to other multi-objective hyper-

heuristics. The superiority of multi-objective choice function great deluge

based hyper-heuristic is due to the acceptance procedure that employed. The

experimental result also shows that the components of the hyper-heuristics

including the selection method, low level heuristics and move acceptance

strategy are important and significantly affect the performance of the hyper-

heuristics. The great deluge combined with choice function performs better

than the great deluge combined with random selection and All-Moves

combined with choice function

The benefit of using hyper-heuristics for multi-objective optimisation is

shown in Table 7.6. The results of multi-objective choice function great

deluge based hyper-heuristic improves solution by more than 5% when

compared to the results obtained by the low level heuristics when run in

isolation. This is the case except for NSGAII. The result obtained by the multi-

objective choice function great deluge based hyper-heuristic is improved

slightly when compared to the result obtained by NSGAII in the bi-objective

Chapter 7: A Heuristic Selection Using Non-Deterministic Move Acceptance

Strategy (Late Acceptance strategy)

165 | P a g e

WFG problems except WFG1 and WFG2. It is good to note that the results

obtained by our multi-objective choice function great deluge based hyper-

heuristic improved by more than 45% in five out of nine bi-objective WFG

problems, when compared to the results obtained by AMALGAM. This includes

WFG2, WFG3, WFG4, WFG7 and WFG8, and more than 25% of the other test

problems except WFG9. The results provide empirical evidence that combining

different combination of meta-heuristics under a selection hyper-heuristic

framework yields improved performance. The use of the combination of the

choice function as a selection method and GDA as an acceptance strategy

positively affects the performance of the multi-objective hyper-heuristics over

the WFG test problems.

Chapter 7: A Heuristic Selection Using Non-Deterministic Move Acceptance

Strategy (Late Acceptance strategy)

166 | P a g e

Table 7.6: The percentage improvement for the performance of HH_CF_GDA against
others methods with respect to the hypervolume (SSC) on the bi-objective WFG test
functions.

WFG Methods

SSC HH_CF_GDA
improvement %

1

HH_CF_GDA 12.9388

NSGAII 11.6041 10.32

SPEA2 6.4931 49.82

MOGA 4.2184 67.40

AMALGAM 7.7902 39.79

2

HH_CF_GDA 11.8148

NSGAII 10.8199 8.42

SPEA2 10.7898 8.68

MOGA 9.7959 17.09

AMALGAM 1.7582 85.12

3

HH_CF_GDA 11.9197

NSGAII 11.9185 0.01

SPEA2 11.4062 4.31

MOGA 11.2921 5.27

AMALGAM 6.6890 43.88

4

HH_CF_GDA 9.6642

NSGAII 9.6460 0.19

SPEA2 9.1853 4.96

MOGA 8.9968 6.91

AMALGAM 3.5687 63.07

5

HH_CF_GDA 9.2964

NSGAII 9.2857 0.12

SPEA2 9.2860 0.11

MOGA 8.8946 4.32

AMALGAM 6.3554 31.64

6

HH_CF_GDA 9.3745

NSGAII 9.3503 0.26

SPEA2 8.7135 7.05

MOGA 8.8878 5.19

AMALGAM 6.3554 32.21

7

HH_CF_GDA 9.6650

NSGAII 9.6579 0.07

SPEA2 9.2481 4.31

MOGA 9.1685 5.14

AMALGAM 3.9171 59.47

8

HH_CF_GDA 8.7279

NSGAII 8.7155 0.14

SPEA2 8.3957 3.81

MOGA 8.0762 7.47

AMALGAM 3.0945 64.54

9

HH_CF_GDA 8.7689

NSGAII 8.7650 0.04

SPEA2 8.7091 0.68

MOGA 8.5723 2.24

AMALGAM 9.0676 -3.41

Chapter 8: The Real-World Problem: The Multi-objective Vehicle

Crashworthiness Design

167 | P a g e

8 The Real-World Problem: The Multi-objective

Vehicle Crashworthiness Design

In the previous chapters we showed that our multi-objective choice

function based hyper-heuristics in general, and our choice function great

deluge based hyper-heuristic (HHMO_CF_GDA) in particular, can be effective

when testing over both bi- and tri-objective benchmarks the Walking Fish

Group (WFG) test problems. In this chapter, we further investigate the

power of our multi-objective choice function based hyper-heuristics. We apply

our hyper-heuristics to a real-world problem that of the multi-objective

vehicle crashworthiness design. We aim to demonstrate that hyper-heuristics

are not only effective on benchmarks, but that they are also applicable to a

real-world problem. We also investigate the sensitivity of our choice function

based hyper-heuristics, using a different size of decision points during the

search. The chapter is structured as follows: In Sections 8.1 and 8.2, we

describe and present the formulation of the application problem, that of the

design of vehicle crashworthiness. This is followed in Section 8.3 by

computational experiments and Section 8.4 presents summary and remarks.

 8.1 Problem Description

In the automotive industry, crashworthiness is a very important issue to

be dealt with when designing a vehicle. Crashworthiness design of real-world

vehicles involves optimisation of a number of objectives including the head,

injury criterion, chest acceleration and chest deflection etc (Redhe et al.

2004). However, some of these objectives may be, and usually are, in conflict

with each other, i.e. an improvement in one objective value leads to

deterioration in the values of the other objectives.

Multi-objective vehicle crashworthiness design was previously tackled as

a single (primary) objective optimisation with multiple constraints (e.g. Redhe

et al. 2004). However, it is not an easy task for most experienced design

engineers to identify a primary objective from a huge number of design

objectives. Alternatively, multi-objective vehicle crashworthiness design is

addressed in a multi-objective framework considering different design

requirements as design objectives. Fang et al. (2005) aggregated these

different objectives into a single cost function in terms of weight average

Chapter 8: The Real-World Problem: The Multi-objective Vehicle

Crashworthiness Design

168 | P a g e

taken into account a weight for full-scale vehicle model, peak acceleration and

energy-absorption as design objectives. In Deb (2001) an evolutionary

search method has been developed to construct a multi-objective vehicle

crashworthiness design based on the radial basis function. Lanzi et al. (2004)

proposed a multi-objective genetic algorithm (GA) to construct multi-objective

vehicle crashworthiness design by optimising composite absorber shapes

under different crashworthiness requirements.

Liao et al. (2008) construct a vehicle crashworthiness design using the

surrogate modelling techniques with latin hypercube sampling and stepwise

regression (Krishniah, 1982). To address different safety requirements of

crashworthiness design, a simulation of a full-scale vehicle model including

the full frontal crash and a 40% offset-frontal crash is developed. Figure 8.1

shows the simulation results in the scenarios of the full frontal crash and the

40% offset-frontal crash. The weight of vehicle, acceleration characteristics

and toe-board intrusion are addressed as the design objectives.

(a) (b)

Figure 8.1: The deformed results of (a) the full frontal impact and (b) the offset-frontal
impact. Reprinted from (Liao et al., 2008).

The multi-objective vehicle crashworthiness design problem has only

five decision variables and no constraints (Liao et al., 2008). The output of

problem provides a wider choice for engineers to make their final design

decision based on Pareto solution space. In this chapter, we are tackling this

problem that is presented in Liao et al. (2008) and we use it as a real-world

application to our multi-objective hyper-heuristics. The decision variables of

the problem represent the thickness of five reinforced members around the

front as they could have a significant effect on the crash safety. See Figure

8.2 for an illustration. The mass of the vehicle is tackled as the first design

Chapter 8: The Real-World Problem: The Multi-objective Vehicle

Crashworthiness Design

169 | P a g e

objective, while an integration of collision acceleration between ݐଵ=0.05s and ݐଶ=0.07s in the full frontal crash is considered as the second objective

function. The toe-board intrusion in the 40% offset-frontal crash is tackled as

the third objective as it is the most severe mechanical injury (see Figure 8.3).

The second and third objectives are constructed from the two crash conditions

to reflect the extreme crashworthiness and formulated in the quadratic

polynomial for the regression while the vehicle mass is formulated in a linear

basis function (Marklund and Nilsson, 2001).

Figure 8.2: Design variables of the vehicle model. Reprinted from (Liao et al., 2008).

Figure 8.3: The toe board intrusion of offset-frontal crash. Reprinted from(Liao et al.,
2008).

 8.2 Problem Formulation

The multi-objective vehicle crashworthiness design problem involves

optimisation of three objectives including the mass of the vehicle (mass), an

integration of collision acceleration between ݐଵ=0.05s and ݐଶ=0.07s in the full

Chapter 8: The Real-World Problem: The Multi-objective Vehicle

Crashworthiness Design

170 | P a g e

frontal crash (Ain) and the toe-board intrusion in the 40% offset-frontal crash

(Intrusion). The three objectives are formulated as follows: ݏݏܽܯ ൌ ͳ͸ͶͲǤʹͺʹ͵ ൅ ʹǤ͵ͷ͹͵ʹͺͷݐଵ െ ʹǤ͵ʹʹͲͲ͵ͷݐଶ ൅ ͶǤͷ͸ͺͺ͹͸ͺݐଷ ൅ ͹Ǥ͹ʹͳ͵͸͵͵ݐସ ൅ ͶǤͶͷͷͻͷͲͶݐହ

(8.1)

݊݅ܣ ൌ͸Ǥͷͺͷ͸ ൅ ͳǤͳͷݐଵ Ȃ ͳǤͲͶʹ͹ݐ ଶ ൅ ͲǤͻ͹͵ͺݐଷ ൅ ͲǤͺ͵͸Ͷݐସ Ȃ ͲǤ͵͸ͻͷݐଵݐସ ൅ ͲǤͲͺ͸ͳݐଵݐହ ൅ ͲǤ͵͸ʹͺݐଶݐସ Ȃ ͲǤͳͳͲ͸ݐ ଵଶȂ ͲǤ͵Ͷ͵͹ݐଷଶ ൅ ͲǤͳ͹͸Ͷݐସଶ

(8.2)

݊݋݅ݏݑݎݐ݊ܫ ൌ Ȃ ͲǤͲͷͷͳ ൅ ͲǤͲͳͺͳݐଵ ൅ ͲǤͳͲʹͶݐଶ ൅ ͲǤͲͶʹͳݐଷ Ȃ ͲǤͲͲ͹͵ݐଵݐଶ ൅ ͲǤͲʹͶݐଶݐଷ Ȃ ͲǤͲͳͳͺݐଶݐସ Ȃ ͲǤͲʹͲͶݐଷݐସ Ȃ ͲǤͲͲͺݐଷݐହ Ȃ ͲǤͲʹͶͳݐଶଶ ൅ ͲǤͲͳͲͻݐସଶ

(8.3)

So, the multi-objective design of vehicle crashworthiness problem in ܶ

decision variable space is formulated as: ݉݅݊ ܨሺݔሻ ൌ ሾݏݏܽܯǡ ǡ ݊݅ܣ ሿ݊݋݅ݏݑݎݐ݊ܫ
Ǥݏ Ǥ ͳ݉݉ݐ ൑ ݔ ൑ ͵݉݉

ݔ ݁ݎ݄݁ݓ ൌ ሺݐଵǡ ଶǡݐ ଷǡݐ ସǡݐ ହሻ்ݐ

 (8.4)

We created three more problem instances beside the original vehicle

crashworthiness problem as shown in Table 8.1 after a private communication

with Prof. Kalyanmoy Deb who recommended this problem. Each instance

contains a pair of objectives. NSGAII was applied to the original vehicle

crashworthiness problem in Liao et al. (2008) and produced reasonable

results for the three objective version.

Table 8.1: The multi-objective vehicle crashworthiness design problems.

Problem Name Objective Functions

Car1 Mass and Ain

Car2 Mass and Intrusion

Car3 Ain and Intrusion

Car4 Mass and Ain and Intrusion

Chapter 8: The Real-World Problem: The Multi-objective Vehicle

Crashworthiness Design

171 | P a g e

 8.3 Experiments and Comparison

In this section, a set of experiments are conducted over a multi-

objective vehicle crashworthiness design problem as a real-world problem to

evaluate the performance of our multi-objective choice function based hyper-

heuristics; HHMO_CF_AM, HHMO_CF_GDA and HHMO_CF_LA. The motivation

behind applying our three selection multi-objective hyper-heuristics to this

problem is to investigate their performance on a real-world problem and

measure the level of generality that they can achieve. The performance of

three multi-objective hyper-heuristics compared to the well-known multi-

objective evolutionary algorithm, NSGAII (Deb and Goel, 2001).

 8.3.1 Performance Evaluation Criteria

The same performance evaluation criteria and algorithms are used as

described in Section 7.4.1. Five performance metrics are used to measure

the quality of the approximation sets from different aspects: (i) ratio of non-

dominated individuals (RNI) (Tan et al., 2002), (ii) hypervolume (SSC)

(Zitzler and Thiele, 1999) (iii) uniform distribution of a non-dominated

population (UD) (Srinivas and Deb, 1994), (iv) generational distance (GD)

(Van Veldhuizen and Lamont, 1998b) and (v) inverted generational distance

(IGD) (Coello and Cruz Cortès, 2005). In addition, t-test is used as a

statistical test for the average performance comparison of selection hyper-

heuristics and the results are discussed using the same notation as provided

in Section 7.4.1.

 8.3.2 Experimental Settings

We performed 30 independent runs for each comparison method using

the same parameter settings as provided in Liao et al. (2008) with a

population size equal to 30. In order to make a fair comparison, we repeated

NSGAII experiments conducted in Liao et al. (2008) under our termination

conditions over the additional instances. All multi-objective hyper-heuristics

methodologies run for a total of 75 iterations (stages) based on the empirical

experiments that are presented in next subsection. In each iteration, a low

level heuristic is selected and applied to execute 50 generations. So, all

methods terminated after 3,750 generations. The distance sharing ߪ for the

Chapter 8: The Real-World Problem: The Multi-objective Vehicle

Crashworthiness Design

172 | P a g e

UD metric and MOGA was arbitrarily set to 0.09 in the normalised space.

These settings are used for the UD as a feedback indicator in the ranking

scheme of the hyper-heuristic framework and as a performance measure for

the comparison. As the true Pareto front is unknown, we consider the best

approximation found by combining results of all considered methods and used

it instead of the true Pareto front for the metrics of GD and IGD. In the

measure of SSC and D metric for GDA and LA, the reference points in our

experiments for ݇ objectives can be set as ݎ௜ ൌ ௡௔ௗ௜௥೔ ݖ ൅ ͲǤͷ ሺݖ ௡௔ௗ௜௥೔ െݖ ௜ௗ௘௔௟೔ሻǡ ݅ ൌ ͳǡ Ǥ Ǥ Ǥ ǡ ݇ (Li and Landa-Silva, 2011). Other experimental settings

are the same as those used in Section 7.4.2. All algorithms were implemented

with the same common sub-functions using Microsoft Visual C++ 2008 on an

Intel Core2 Duo 3GHz\2G\250G computer.

 8.3.3 Tuning of Number of Decision Points for Multi-

objectives Hyper-heuristics

In the context of our multi-objective selection hyper-heuristics, the

number of the decision points (ܰܲܦ) is the number of moves that we conduct

during the search. The ܰܲܦ is an important parameter in our multi-objective

hyper-heuristic framework. However, the choice of the right value of the

decision points is not trivial. We conducted initial experiments to determine

the right (or at least good) value of ܰܲܦ that leads to solutions of good

quality. The ܰܲܦ relies on the other parameters such as the number of

function evaluations and the number of generations. In these experiments,

each decision point is executed a fixed number of generation equals to 50

with a population size equal to 30. In other words, 1500 evaluation functions

are executed at each decision point (iteration or stage). For three multi-

objective hyper-heuristics; HHMO_CF_AM, HHMO_CF_GDA and HHMO_CF_LA,

we used four different values for ܰܲܦ (75 ,50 ,25 and 100). The three hyper-

heuristics were run for 30 times using these values with a different random

seed on the original vehicle crash worthiness problem (Car4). From this point

onward, each hyper-heuristic will be referred to by move acceptance method

utilised within each hyper-heuristic.

The performance of the comparison methods AM, GDA and LA for the

different sizes of the decision points (25, 50, 75 and 100) with respect to the

performance metrics (RNI, SSC and UD) on the original vehicle

crashworthiness problem (Car4) are summarised in Table 8.2.

Chapter 8: The Real-World Problem: The Multi-objective Vehicle

Crashworthiness Design

173 | P a g e

In Table 8.2, the average, the minimum, the maximum and standard

deviation values for each performance metric are computed. A higher value

indicates a better performance. We can observe that the highest averages of

RNI for AM are obtained with 25 and 75 decision points. The highest average

of SSC and UD values are obtained with 75, 100 decision points respectively.

So, no specific size of decision points for AM can obtain good results with

respect to all metrics except in 75 decision points where AM obtains good

results in terms of the convergence and the number of the non-dominated

solutions. GDA obtains the highest averages of RNI with 25, 50 and 75

decision points. It obtains the highest averages of SSC and UD with 75

decision points. GDA obtains good results with respect to the three

performance metrics with 75 decision points. LA obtains the highest averages

of RNI with 25, 50 and 75 decision points. It obtains the highest average of

SSC with 75 decision points, while it obtains the highest average of UD with

100 decision points. No specific size of decision points for AM can obtain good

results with respect to all metrics except for 75 decision points where LA

obtains good results in terms of the convergence and the number of the non-

dominated solutions. We note that 75 decision points produces better

solutions in most cases for the three multi-objective choice function based

hyper-heuristics.

To analyse these results, we visualise the average performance values

of RNI, SSC and UD metrics for the three multi-objective hyper-heuristics AM,

GDA and LA during the search using different values of the decision points ሺܰܲܦሻ (25, 50, 75 and 100) are shown in Figures 8.4-8.6. In Figure 8.4, the

performance of three methods with respect to RNI using a different values of

decision points are relatively the same, the smaller value of decision points

obtains a higher (better) value of RNI while increasing the value of decision

points leads to a lower (worse) value of RNI. This is clear in the case of 100

decision points. As our multi-objective hyper-heuristics do not incorporate any

archive mechanisms to maintain the non-dominated solutions during the

search, a large number of iterations (decision points) may exhibit the factor of

diversification in the selection method that calls a heuristic which produces

low quality solutions.

In Figure 8.5, AM and GDA and LA perform similar to each other during

the search using different values of the decision points with respect to the

metric of SSC. The three methods obtain a higher (better) value of SSC when

Chapter 8: The Real-World Problem: The Multi-objective Vehicle Crashworthiness Design

174 | P a g e

Table 8.2: The performance of multi-objective selection hyper-heuristics with different values of decision points (ࡼࡰࡺ) on the multi-objective design of vehicle

crashworthiness problem (Car4) with respect to the metrics of ratio of non-dominated individuals (RNI), size of space covered (SSC), and uniform distribution

(UD) of non-dominated population.

Methods ܰܲܦ RNI SSC UD
AVG MIN MAX STDDEV AVG MIN MAX STDDEV AVG MIN MAX STDDEV

AM 25 1.00 1.00 1.00 0.00 6.045E+07 3.625E+07 8.586E+07 1.669E+07 0.623 0.480 0.698 0.044

50 0.93 0.75 1.00 0.06 6.631E+07 2.089E+07 8.644E+07 1.979E+07 0.480 0.200 0.640 0.140
75 1.00 1.00 1.00 0.00 7.381E+07 5.315E+07 9.577E+07 1.463E+07 0.585 0.516 0.707 0.050
100 0.73 0.38 0.88 0.10 6.767E+07 2.965E+07 8.660E+07 1.998E+07 0.642 0.491 0.732 0.047

GDA 25 1.00 1.00 1.00 0.00 7.875E+07 4.853E+07 9.587E+07 1.274E+07 0.605 0.541 0.691 0.032

50 1.00 1.00 1.00 0.08 8.109E+07 6.294E+07 9.091E+07 1.007E+07 0.579 0.510 0.670 0.040
75 1.00 1.00 1.00 0.00 8.289E+07 6.294E+07 9.577E+07 1.954E+07 0.613 0.555 0.692 0.034
100 0.94 0.75 1.00 0.09 8.236E+07 5.910E+07 9.587E+07 1.138E+07 0.595 0.505 0.667 0.039

LA 25 1.00 1.00 1.00 0.00 7.301E+07 5.959E+07 8.800E+07 1.167E+07 0.584 0.494 0.694 0.056
50 1.00 1.00 1.00 0.00 7.526E+07 5.776E+07 9.549E+07 1.379E+07 0.580 0.490 0.660 0.040
75 1.00 1.00 1.00 0.00 7.538E+07 4.512E+07 9.550E+07 1.474E+07 0.582 0.302 0.641 0.062
100 0.98 0.95 1.00 0.01 6.972E+07 4.912E+07 8.800E+07 1.207E+07 0.600 0.530 0.650 0.030

Chapter 8: The Real-World Problem: The Multi-objective Vehicle

Crashworthiness Design

175 | P a g e

 the number of decision points is higher except in the case of 100 decision

points where the search is frozen and no further improvement is obtained.

This is true for the performance of the UD metric of AM and GDA and LA

in Figure 8.6. For all methods, a higher (better) value of UD is obtained when

the number of decision points is higher. AM and LA obtains the best solutions

with 100 decision points. While GDA obtains the best solutions with 75

decision points as the search is frozen and no further better improvement is

obtained with 100 decision points.

From the above observations, we conclude that a larger number (value)

of decision points produces better solutions, particularly 75 decision points,

according to performance metrics (RNI, SSC and UD) in the majority cases for

the three methods AM, GDA and LA over the original multi-objective vehicle

crashworthiness design problem (Car4). Therefore, all multi-objective hyper-

heuristics methodologies run for a total of 75 decision points

(iterations/stages) in our experiments over the additional instances of multi-

objective vehicle crashworthiness design problems.

 8.3.4 Performance Comparison of Multi-objective Hyper-

heuristics and NSGAII

The mean performance comparison of AM, GDA, LA and NSGAII based

on the performance metrics (RNI, SSC, UD , GD and IGD) for solving the

vehicle crashworthiness problems is provided in Table 8.3. For each

performance metric, the average, minimum, maximum and standard

deviation values are computed. For all metrics, a higher value indicates a

better performance, except in GD and IGD, where a lower value indicates a

better performance. The statistical t-test results of NSGAII and three multi-

objective choice function based hyper-heuristics (AM, GDA and LA) are given

in Table 8.4. We also visualise the distribution of the simulation data of the 30

independent runs for the comparison methods with respect to these

performance metrics as box plots, shown in Figures 8.7-8.11.

From Tables 8.3-8.5 and Figures 8.7-8.11, we can observe that GDA, LA

and NSGAII produce a slightly higher average ratio of non-dominated

individuals (RNI) compared to AM for all problems. This means that the

comparison methods produce non-dominated solutions that are equal to the

Chapter 8: The Real-World Problem: The Multi-objective Vehicle

Crashworthiness Design

176 | P a g e

Figure 8.4: The plots showing how RNI values, averaged over 30 trials change at each

decision point (iteration) for a given move acceptance method (AM, GDA and LA)

combined with choice function heuristic selection considering different number of

decision points while solving the vehicle crashworthiness problem (Car4).

Chapter 8: The Real-World Problem: The Multi-objective Vehicle

Crashworthiness Design

177 | P a g e

Figure 8.5: The plots showing how SSC values, averaged over 30 trials change at each
decision point (iteration) for a given move acceptance method (AM, GDA and LA)
combined with choice function heuristic selection considering different number of
decision points while solving the vehicle crashworthiness problem (Car4).

Chapter 8: The Real-World Problem: The Multi-objective Vehicle

Crashworthiness Design

178 | P a g e

Figure 8.6: The plots showing how UD values, averaged over 30 trials change at each
decision point (iteration) for a given move acceptance method (AM, GDA and LA)
combined with choice function heuristic selection considering different number of
decision points while solving the vehicle crashworthiness problem (Car4).

Chapter 8: The Real-World Problem: The Multi-objective Vehicle

Crashworthiness Design

179 | P a g e

given population size and perform very well with respect to this metric. AM

performs well with respect to RNI on Car4, but not for other problem

instances. With respect to the hypervolume (SSC), GDA has the highest

average value among the other methods for all problem instances. The

performance difference of GDA from the other hyper-heuristics is statistically

significant for Car1, Car3 and Car4. With respect to the measures of GD and

IGD, GDA is superior to the other methods for all problem instances, except

Car3, where NSGAII performs the best. This performance difference is

statistically significant for Car1 and Car2. GDA performs the best considering

convergence and diversity, producing solutions that converge towards the

POF. Similarly, considering UD, GDA produces solutions that are distributed

uniformly along the POF for all problem instances, except Car2, where NSGAII

performs the best. The above observations indicate that all methods perform

similarly to each other with respect to the metric of RNI over all problem

instances. GDA obtains the best performance in the metrics of SSC, GD and

IGD and it converges better towards the POF than the other methods. GDA is

also obtains the best performance in the metric of UD and distribute more

uniformly than other methods in the most problem instances.

For each problem instance, the 50% attainment surface for each

method, from the 30 fronts after 3,750 generations are computed and

illustrated in Figures 8.12-8.15. GDA appears to generate a good convergence

for all problem instances. This can be clearly observed for Car2 and Car3 (See

Figures 8.13 and 8.14), where GDA converges to the best POF with a well

spread Pareto front as compared to the other approaches. In contrast, AM

generates the poorest solutions in almost all cases. NSGAII and LA have

similar convergence for all problem instances, except Car2, where NSGAII

covered a larger proportion of objective space compared to LA.

From the above observations, we conclude that GDA outperforms

NSGAII and others methods in the majority of cases. The superiority of GDA

could be because of the acceptance condition criterion that was used. The

hyper-heuristics for even real world multi-objective problems benefits from

the use of a learning heuristic selection method as well as GDA.

Chapter 8: The Real-World Problem: The Multi-objective Vehicle Crashworthiness Design

180 | P a g e

Table 8.3: The performance NSGAII and the selection choice function based hyper-heuristics using different move acceptance strategies including all-moves
(AM), great deluge algorithm (GDA) and late acceptance (LA) on the vehicle crashworthiness problems with respect to the metrics; the ratio of non-dominated
individuals (RNI), the hypervolume (SSC)and the uniform distribution (UD).

problem Method RNI SSC UD

AVG MIN MAX STD AVG MIN MAX STD AVG MIN MAX STD

Car1 NSGAII 1.00 1.00 1.00 0.00 2.296E+04 2.296E+04 2.299E+04 1.400E-01 0.450 0.421 0.492 0.021
AM 0.98 0.78 1.00 0.05 2.113E+04 5.741E+03 2.255E+04 5.054E+03 0.430 0.203 0.484 0.067
GDA 1.00 1.00 1.00 0.00 2.298E+04 7.703E+03 2.302E+04 3.880E+03 0.453 0.410 0.487 0.020

LA 0.99 1.00 1.00 0.00 2.165E+04 7.701E+03 2.319E+04 3.983E+03 0.452 0.392 0.490 0.031
Car2 NSGAII 1.00 1.00 1.00 0.00 3.930E+04 2.109E+04 5.677E+04 1.632E+04 0.461 0.413 0.500 0.032

AM 0.95 0.75 1.00 0.09 3.773E+04 6.799E+03 5.667E+04 1.707E+04 0.427 0.170 0.534 0.095
GDA 1.00 1.00 1.00 0.00 3.953E+04 2.109E+04 5.680E+04 1.685E+04 0.451 0.413 0.502 0.020

LA 1.00 1.00 1.00 0.00 2.107E+03 2.089E+04 5.669E+04 1.508E+04 0.450 0.402 0.501 0.021
Car3 NSGAII 1.00 1.00 1.00 0.00 4.174E+01 2.637E+01 4.906E+01 8.820E+00 0.464 0.411 0.510 0.022

AM 0.98 0.63 1.00 0.08 4.058E+01 1.898E+01 4.907E+01 1.020E+01 0.478 0.425 0.543 0.031
GDA 1.00 1.00 1.00 0.00 4.175E+01 1.930E+01 4.979E+01 9.980E+00 0.480 0.445 0.527 0.021

LA 1.00 1.00 1.00 0.00 4.149E+01 1.977E+01 4.978E+01 9.680E+00 0.463 0.391 0.503 0.033
Car4 NSGAII 1.00 1.00 1.00 0.00 7.936E+07 4.168E+07 9.587E+07 1.595E+07 0.592 0.532 0.670 0.045

AM 1.00 1.00 1.00 0.00 7.381E+07 5.315E+07 9.577E+07 1.463E+07 0.585 0.516 0.707 0.050
GDA 1.00 1.00 1.00 0.00 8.289E+07 6.294E+07 9.580E+07 1.954E+07 0.613 0.555 0.692 0.034

LA 1.00 1.00 1.00 0.00 7.538E+07 4.512E+07 9.550E+07 1.474E+07 0.582 0.302 0.641 0.062

Chapter 8: The Real-World Problem: The Multi-objective Vehicle Crashworthiness Design

181 | P a g e

Table 8.4: The performance NSGAII and the selection choice function based hyper-heuristics using different move acceptance strategies including all-moves
(AM), great deluge algorithm (GDA) and late acceptance (LA) on the vehicle crashworthiness problems with respect to the metrics; the generational distance
(GD) and the inverted generational distance (IGD).

problem Method GD IGD

AVG MIN MAX STD AVG MIN MAX STD

Car1 NSGAII 8.10E-04 1.10E-04 1.79E-03 4.00E-04 4.657E-04 4.117E-04 5.260E-04 3.114E-05

AM 7.50E-04 1.00E-05 2.37E-03 4.70E-04 5.874E-03 3.994E-04 1.462E-02 5.990E-03
GDA 4.50E-04 0.00E+00 8.70E-04 2.00E-04 4.278E-04 3.722E-04 5.817E-04 5.763E-05
LA 8.40E-04 6.00E-05 2.72E-03 6.00E-04 6.912E-04 3.749E-04 7.866E-03 1.356E-03

Car2 NSGAII 2.45E-03 4.10E-04 9.21E-03 3.28E-03 3.174E-03 6.551E-04 6.647E-03 2.890E-03
AM 2.30E-03 3.50E-04 1.04E-02 3.12E-03 4.974E-03 7.021E-04 1.120E-02 3.527E-03
GDA 1.86E-03 3.60E-04 8.94E-03 2.12E-03 3.127E-03 6.607E-04 1.624E-02 3.630E-03
LA 2.50E-03 3.30E-04 8.97E-03 3.34E-03 4.184E-03 6.758E-04 6.724E-03 2.884E-03

Car3 NSGAII 1.01E-01 9.68E-02 1.08E-01 4.02E-03 9.925E-02 6.080E-02 2.094E-01 5.065E-02

AM 1.03E-01 9.79E-02 1.13E-01 3.83E-03 1.648E-01 6.066E-02 2.130E-01 6.292E-02
GDA 1.03E-01 9.65E-02 1.32E-01 7.53E-03 1.264E-01 6.016E-02 2.094E-01 6.472E-02
LA 1.03E-01 9.64E-02 1.13E-01 4.66E-03 1.420E-01 6.235E-02 2.100E-01 5.744E-02

Car4 NSGAII 2.48E-03 1.46E-03 4.21E-03 9.10E-04 4.156E-03 1.543E-03 1.289E-02 3.859E-03
AM 2.71E-03 1.59E-03 4.06E-03 7.90E-04 4.376E-03 1.738E-03 1.288E-02 4.168E-03
GDA 2.11E-03 1.10E-03 4.28E-03 7.10E-04 3.552E-03 1.661E-03 1.230E-02 3.075E-03
LA 3.32E-03 1.70E-03 6.76E-03 1.33E-03 3.604E-03 1.525E-03 1.238E-02 2.582E-03

Chapter 8: The Real-World Problem: The Multi-objective Vehicle

Crashworthiness Design

182 | P a g e

Table 8. 4: The t-test results of NSGAII and the three multi-objective choice function
based hyper-heuristics methodologies using AM, GDA and LA as a move acceptance
criterion on the multi-objective vehicle crashworthiness design problems with respect
to the metrics; the ratio of non-dominated individuals (RNI), the hypervolume (SSC),
the uniform distribution (UD), the generational distance (GD) and the inverted
generational distance (IGD).

Problem Methods
Metrics

RNI SSC UD GD IGD

Car1

NSGAII:AM ± + + ט +

NSGAII:GDA n\a െ െ െ ט

NSGAII:LA ± + െ ± ±

AM:GDA ט െ + െ െ

AM:LA ט ט െ െ െ

GDA:LA ± + ± + +

Car2

NSGAII:AM ± + + ט ±

NSGAII:GDA n/a ט ± െ ט

NSGAII:LA n/a + + ט +

AM:GDA ט െ െ െ െ

AM:LA ט + െ ± ט

GDA:LA n/a + ± + +

Car3

NSGAII:AM ± + + ± +

NSGAII:GDA n/a ט െ ± +

NSGAII:LA n/a ± ± ± +

AM:GDA ט െ ט ט െ

AM:LA ט െ + ± െ

GDA:LA n/a ± + ± +

Car4

NSGAII:AM n/a + ± ± ±

NSGAII:GDA n/a െ + ט െ

NSGAII:LA n/a + + + െ

AM:GDA n/a െ െ ט െ

AM:LA n/a െ ± + െ

GDA:LA n/a + + + ±

Chapter 8: The Real-World Problem: The Multi-objective Vehicle

Crashworthiness Design

183 | P a g e

Figure 8.7: Box plots of multi-objective choice function based hyper-heuristics
methodologies using AM, GDA and LA as a move acceptance criterion on the multi-
objective vehicle crashworthiness design problems for the measure of ratio non-
dominated solutions (RNI).

Figure 8.8: Box plots of multi-objective choice function based hyper-heuristics
methodologies using AM, GDA and LA as a move acceptance criterion on the multi-
objective vehicle crashworthiness design problems for the measure the hypervolume
(SSC).

Chapter 8: The Real-World Problem: The Multi-objective Vehicle

Crashworthiness Design

184 | P a g e

Figure 8.9: Box plots of multi-objective choice function based hyper-heuristics
methodologies using AM, GDA and LA as a move acceptance criterion on the multi-
objective vehicle crashworthiness design problems for the measure the uniform
distribution (UD).

Figure 8.10: Box plots of multi-objective choice function based hyper-heuristics
methodologies using AM, GDA and LA as a move acceptance criterion on the multi-
objective vehicle crashworthiness design problems for the generational distance (GD).

Chapter 8: The Real-World Problem: The Multi-objective Vehicle

Crashworthiness Design

185 | P a g e

Figure 8.11: Box plots of multi-objective choice function based hyper-heuristics
methodologies using AM, GDA and LA as a move acceptance criterion on the multi-
objective vehicle crashworthiness design problems for the inverted generational
distance (IGD).

Figure 8.12: The 50% attainment surfaces for NSGAII and the three multi-objective
choice function based hyper-heuristics (AM, GDA and LA) after 3,750 generations on

the multi-objective design of vehicle crashworthiness problem (Car1).

Chapter 8: The Real-World Problem: The Multi-objective Vehicle

Crashworthiness Design

186 | P a g e

Figure 8.13: The 50% attainment surfaces for NSGAII and the three multi-objective
choice function based hyper-heuristics (AM, GDA and LA) after 3,750 generations on
the multi-objective design of vehicle crashworthiness problem (Car2).

Figure 8.14: The 50% attainment surfaces for NSGAII and the three multi-objective
choice function based hyper-heuristics (AM, GDA and LA) after 3,750 generations on
the multi-objective design of vehicle crashworthiness problem (Car3).

Chapter 8: The Real-World Problem: The Multi-objective Vehicle

Crashworthiness Design

187 | P a g e

 8.4 Summary and Remarks

In this chapter, we have applied our multi-objective choice function

based hyper-heuristics to the vehicle crashworthiness design as a real-world

multi-objective problem to assess the level of generality they can achieve.

The performance of our multi-objective choice function based hyper-heuristics

are compared to the well-known multi-objective algorithm, NSGAII. In

general, the results demonstrate the effectiveness of our selection hyper-

heuristics particularly when combined with great deluge algorithm as a move

acceptance criterion.

The multi-objective choice function great deluge based hyper-heuristic

(HHMO_CF_GDA) beats other methods for solving both tri- objective vehicle

crashworthiness design problem and bi-objective additional instances. It also

benefits from the combination of GDA as an acceptance strategy and the

choice function as the selection method. It is worthwhile mentioning that this

result concurs with the findings in Chapter 7. In addition, HHMO_CF_GDA

excels over NSGAII on all instances of the problem. HHMO_CF_GDA turns out

to be the best choice for solving this problem. Although other multi-objective

hyper-heuristics still produce solutions with acceptable quality in some cases,

they could not perform as well as NSGAII. The reason for this relies on the

move acceptance strategy they employed. A sensitivity analysis of our multi-

objective choice function based hyper-heuristic was carried out and revealed a

larger number of decision points (ܰܲܦ) produce better solutions for the

vehicles crashworthiness design problem. This indicates that the number of

moves (decision point/iteration) conducted during the search could affect the

performance of the multi-objective selection choice function based hyper-

heuristic.

 In summary, the results of the real-world problem demonstrate the

capability and potential of the multi-objective hyper-heuristic approaches in

solving continuous multi-objective optimisation problems.

Chapter 8: The Real-World Problem: The Multi-objective Vehicle Crashworthiness Design

188 | P a g e

Figure 8.15: The 50% attainment surfaces for NSGAII and the three multi-objective choice function based hyper-heuristics (AM, GDA and LA) after 3,750
generations on the multi-objective design of vehicle crashworthiness problem (Car4).

Chapter 9: Conclusions and Future Work

189 | P a g e

9 Conclusions and Future Work

9.1 Conclusions

Hyper-heuristics are methodologies that operate on a search space of

heuristics rather than solutions directly for solving hard computational

problems. They have drawn increasing attention from the research community

in recent years. However, the majority of hyper-heuristics studies have been

limited to single-objective optimisation (Burke et al., 2013). Hyper-heuristics

for multi-objective optimisation is a relatively new area of research in

Operational Research and Evolutionary Computation (Burke et al., 2010;

Özcan et al., 2008). Few studies were identified that deal with hyper-

heuristics for multi-objective problems (e.g. (Burke et al., 2003a; Vrugt and

Robinson, 2007; Veerapen et al., 2009; McClymont and Keedwell, 2011;

Wang and Li, 2010; Gomez and Terashima-Marʆn, 2010)). None of these

studies used multi-objective evolutionary algorithms (MOEAs), only in Rafique

(2012), Gomez and Terashima-Marʆn, (2010), Vrugt and Robinson (2007),

and no continuous and standard multi-objective test problems studied, only in

McClymont and Keedwell (2011), Vrugt and Robinson (2007), Len et al.

(2009) and Vázquez-Rodríguez and Petrovic (2013). Moreover, none of the

previous hyper-heuristics made use of the components particularly designed

for multi-objective optimisation that we introduced in this thesis. The main

aim of this research was to investigate hyper-heuristic methodologies for

multi-objective optimisation combining MOEAs with the goal of producing a

set of high quality solutions (i.e. not necessarily optimal) compared to the

existing approaches in the MOEA literature. The scope of this study is limited

to continuous unconstrained multi-objective (two and three objectives)

problems. We have investigated into the design of a generic selection hyper-

heuristic framework for tackling multi-objective optimisation problems and

development of effective hyper-heuristics within this multi-objective

framework. The performance of different selection hyper-heuristics are tested

over both benchmark test problems and real-world application. The main

contributions and findings are summarised in the following subsections.

Chapter 9: Conclusions and Future Work

190 | P a g e

 9.1.1 The Online Learning Selection Hyper-heuristic

Framework for Multi-objective Optimisation

In this thesis, for the first time, we introduced an online learning

selection choice function based hyper-heuristic framework for multi-objective

optimisation (see Chapter 4). This framework is inspired from two facts: (i)

there is no existing algorithm which excels across all types of problems, and

(ii) there is empirical evidence showing that hybridisation or combining

different (meta-)heuristics/algorithms could yield improved performance

compared to (meta-)heuristics/ algorithms run on their own. Hyper-heuristic

frameworks, generally, impose a domain barrier which separates the hyper-

heuristic from the domain implementation along with low level heuristics to

provide a higher level of abstraction. The domain barrier does not allow any

problem specific information to be passed to the hyper-heuristic itself during

the search process. We designed our framework in this same modular

manner. One of advantages of the proposed framework is its simplicity. The

proposed framework is highly flexible and its components reusable. It is built

on an interface which allows other researchers to write their own hyper-

heuristic components easily. Even the low level heuristics can be easily

changed if required. If new and better performing components are found in

the future, the software can be easily modified to include those components

for testing. Our online selection choice function based hyper-heuristic for

multi-objective optimisation (HHMO_CF) controls and combines the strengths

of three well-known multi-objective evolutionary algorithms (NSGAII, SPEA2,

and MOGA), which are utilised as the low level heuristics. The choice function

utilised as a selection mechanism and a high level strategy which adaptively

ranks the performance of three low-level heuristics, deciding which one to call

at each decision point. The reason of use of the choice function as selection

method is that it provides a balance between intensification and

diversification. In addition, it was successful when used as a selection method

in the hyper-heuristic for single-objective optimisation (Soubeiga, 2003; Bia,

2005). In our multi-objective hyper-heuristic framework, learning process is

an essential component for guiding the heuristic selection method while it

decides on the most appropriate heuristic to apply at each step of the iterative

approach. The results that reported in Chapter 5 demonstrate that

effectiveness of the learning multi-objective hyper-heuristic approach when

compared to the one with no learning mechanism. This is understandable, as

Chapter 9: Conclusions and Future Work

191 | P a g e

it has been observed that the learning mechanism adaptively successfully

guides the search process towards the POF. In our learning multi-objective

choice function based hyper-heuristic framework, we employed four

performance metrics (Algorithm effort (AE), Ratio of non-dominated

individuals (RNI), Size of space covered (SSC) and Uniform distribution of a

non-dominated population (UD)) to act as an online learning mechanism to

provide knowledge of the problem domain to the selection mechanism. The

motivation behind choosing these metrics is that they have been commonly

used for performance comparison of approaches for multi-objective

optimisation to measure different aspects of the final non-dominated solutions

in the objective space (Tan et al., 2002). In addition, they do not require a

prior knowledge of the POF, which means that our framework is suitable for

tackling real-world problems in future studies (see Chapter 8). Four

performance metrics are integrated into a ranking scheme that we introduced

in this study for the first time (see Section 4.2). The task of online learning

ranking scheme is to score the performance of low level heuristics. Unlike the

ranking scheme used in Vázquez-Rodríguez and Petrovic (2012) which orders

the algorithms based on their probabilities against the performance indicators’

using a mixture of experiments, our ranking scheme relies on sorting the low

level heuristics in descending order based on the highest ranking among the

other heuristics. Our ranking scheme is simple and flexible and enables us to

incorporate any number of low level heuristics.

 9.1.2 Three Multi-objective Choice Function Based Hyper-

heuristics.

There is strong empirical evidence showing that different combinations

of heuristic selection and acceptance methods in a selection hyper-heuristic

framework yield different performances in single-objective optimisation

(Burke et al., 2012). In this thesis, we investigated the influence of combining

different acceptance methods under our online learning multi-objective choice

function based hyper-heuristic framework that presented in Chapter 4. Three

multi-objective choice function based hyper-heuristic combined with different

move acceptance strategies including All-Moves as a deterministic move

acceptance and Great Deluge Algorithm (GDA) and Late Acceptance (LA) as a

non-deterministic move acceptance are presented in Chapters 5, 6 and 7

respectively.

Chapter 9: Conclusions and Future Work

192 | P a g e

 The first multi-objective hyper-heuristic is utilised the choice function as

a heuristic selection method and All-Moves as a deterministic move

acceptance strategy (HHMO_CF_AM) (see Chapter 5). The choice function

based hyper-heuristic was initially reported to perform well when combined

with All-Moves acceptance for solving a single-objective optimisation problem

(Cowling et al., 2002c). Thus, we chose All-Moves as a move acceptance

strategy in our multi-objective hyper-heuristic framework, meaning that we

accept the output of each low level heuristic whether it improves the quality

of the solution or not.

A number of experiments are conducted to examine the performance of

HHMO_CF_AM comparing to the low level heuristics (NSGAII, SPEA2 and

MOGA), when used in isolation. It was shown that HHMO_CF_AM can benefit

from the strengths of the low level heuristics. Unfortunately, it cannot avoid

the weaknesses of them fully, as the poor performance of MOGA affects the

performance of HHMO_CF_AM badly with respect to the ratio of non-

dominated individual (RNI) by producing low number of non-dominated

solutions. Another reason is that our multi-objective hyper-heuristic

framework does not employ any archive mechanisms to maintain the number

of individual in the population. To overcome this issue, we had two options:

(i) employing an archive mechanism or (ii) employing a different move

acceptance strategy that allows worsening moves to a limited degree. As we

aim to keep our multi-objective hyper-heuristic framework in the same level

of abstraction and not to break the domain barrier by incorporating an archive

mechanism along the low level heuristics, the first option is ignored. So, we

employed another acceptance strategy instead of All-Moves to avoid

acceptance of all worsening moves.

In Chapters 6 and 7, we investigated the behaviour of great deluge

algorithm (GDA) and late acceptance (LA) as non-deterministic move

acceptance strategies under the choice function based hyper-heuristic

framework designed for solving multi-objective optimisation problems. To the

best of our knowledge, for the first time, this study investigated the influence

of move acceptance component of selection hyper-heuristics for multi-

objective optimisation. The motivation for choosing GDA and LA as acceptance

criteria is that both are simple and do not depend on many parameters,

requiring less effort for parameter tuning. More importantly, encouraging

results have been reported in the literature for single-objective optimisation,

Chapter 9: Conclusions and Future Work

193 | P a g e

but there are a few studies on their application to multi-objective optimisation

(e.g. Petrovic and Bykov, 2003). The GDA and LA as move acceptance

strategies require computation of the change in the value of a single-objective

at each step and so the use of D performance metric (Zitzler, 1999) is

proposed in order to be able to utilise those move acceptance methods under

the proposed multi-objective framework. D metric is usually used in the

literature as a performance metric to compare the final solutions obtained

from multi-objective optimisers. In this thesis, we used D metric integrating

into move acceptance criterion in order to covert the multi-objective

optimisation to the single-objective optimisation without definition of criteria

values' weights. D metric is used as a way of comparing two non-dominated

sets of solutions in the objective space. The goal is set to as optimising

(maximising) the D metric instead of a set of objectives simultaneously (see

Sections 6.2 and 7.2). The choice function great deluge based hyper-heuristic

(HHMO_CF_GDA) and choice function late acceptance based hyper-heuristic

(HHMO_CF_LA) outperforms the choice function all-moves based hyper-

heuristic (HHMO_CF_AM), indicating that the non-deterministic move

acceptance strategies (GDA and LA) improve the performance of the multi-

objective choice function based hyper-heuristic. Moreover, the multi-objective

choice function based hyper-heuristics using non-deterministic move

acceptance can successfully avoid accepting worse moves which result in the

production of a low number of non-dominated individuals, as in the case of

the original approach (HHMO_CF_AM). The main drawback of our selection

multi-objective hyper-heuristic is not exhibiting the feature of multi-objective

evolutionary algorithms, which act as low level heuristics. They are stochastic

and the decision of the acceptance move is made after a single run only. To

overcome this, we can execute each low level heuristic for many runs then

make the acceptance move decision, but this is could be computationally

expensive.

9.1.3 Application of Proposed Hyper-heuristics to

Benchmark Test Problems and Real-world Problems

 In this thesis, our multi-objective choice function based hyper-

heuristics are evaluated over two problems; the Walking Fish Group (WFG)

test problems (Huband et al., 2006) as our multi-objective benchmark test

dataset and the multi-objective vehicle crashworthiness design problem (Liao

et al., 2008) as a real-world problem.

Chapter 9: Conclusions and Future Work

194 | P a g e

The WFG test suite includes different test problems which consist of a

wide range of characteristics and features (see Section 3.3.3). The WFG test

suite has a number of instances that have features that are not included in

other test suites, such as ZDT and DTLZ. Moreover, the WFG test suite is an

excellent tool for comparing the performance of EAs, and they are the

common choice for most MOEA researchers (Huband et al., 2006).

Our multi-objective choice function based hyper-heuristics presented in

this thesis produced good results with acceptable quality over the nine WFG

test problems including bi-objective and tri-objective. These results are

reported in Chapters 5 and 7. We evaluated our approaches using two

objective and three objective problems. In Chapter 4, the choice function

heuristic selection combined with All-moves acceptance method

(HHMO_CF_AM) are compared to the low level heuristics on their own. It was

shown that HHMO_CF_AM performs better than MOGA over the bi-objective

WFG test functions in terms of the distribution of non-dominated individuals

along the POF., HHMO_CF_AM obtains competitive results performing better

than NSGAII in terms of convergence towards the POF. However,

HHMO_CF_AM fails to deliver a better performance as compared to NSGAII

and SPEA2 in terms of number of non-dominated solutions. HHMO_CF_AM

cannot avoid the weakness of MOGA with respect to this quality measure.

Still, HHMO_CF_AM outperforms the adaptive multi-method search

(AMALGAM) (Vrugt and Robinson, 2007) over the same test instances. The

superiority of HHMO_CF_AM is due to online learning heuristic selection

mechanism and the effective ranking scheme. The ranking scheme maintains

the past performance of low level heuristics using a set of performance

indicators that measure different aspects of the solutions. During the search

process, the ranking scheme creates a balance between choosing the low

level heuristics and their performance according to a particular quality metric.

This balance enhances the algorithm performance to yield better solutions

that converge toward the POF as well as distribute uniformly along the POF.

In Chapter 7, it was shown that the two multi-objective choice function

hyper-heuristics that combined with great deluge and late acceptance as non-

deterministic move acceptance criteria (HHMO_CF_GDA and HHMO_CF_LA)

superior to the multi-objective choice functions based hyper-heuristic that

combined with All-Moves as deterministic move acceptance criterion

(HHMO_CF_AM) over both bi-objective and tri- objective WFG test functions.

Chapter 9: Conclusions and Future Work

195 | P a g e

The non-deterministic move acceptance methods in particularly GDA and LA

improve the overall performance of the hyper-heuristic with respect to the

number of the solutions, convergence and diversity. However, All-Moves still

performs the best and produces better solutions in terms of the uniform

distribution of non-dominated solutions. The success of HHMO_CF_AM with

respect the uniform distribution of non-dominated solutions might be due to

the use of the D metric into acceptance procedure for multi-objective non-

deterministic acceptance based hyper-heuristics. Since D metric is a binary

hypervolume measure that is designed to compare two sets of non-dominated

solutions with respect of their convergence towards the POF, there is no

consideration regarding how uniformly these solutions are distributed along

the POF. This might also be a reason for why non-deterministic move

acceptance procedures obtain high quality solutions in terms of the

convergence towards the POF. In general, multi-objective choice function

great deluge based hyper-heuristic (HHMO_CF_GDA) performs the best over

WFG instances. The results in Chapter 7 provide an empirical evidence of

mixing different combination of meta-heuristics under a selection hyper-

heuristic framework yields with an improved performance. The use of the

combination of the choice function as selection method and great deluge

algorithm as acceptance strategy positively affect the performance of the

multi-objective hyper-heuristics. The superiority of multi-objective choice

function great deluge based hyper-heuristic is due to the acceptance

procedure employed. Analysis of GDA behaviour as acceptance move strategy

within the multi-objective choice function based hyper-heuristics framework is

provided in Chapter 6.

Moreover, this observation is supported further by empirical evidence

obtained from evaluating our multi-objective choice-function based hyper-

heuristics against NSGAII over the vehicle crashworthiness design problems

(See Chapter 8). The multi-objective choice function grate deluge based

hyper-heuristic (HHMO_CF_GDA) beats others methods for solving both the

original vehicle crashworthiness problem with three objectives and its bi-

objective additional instances. HHMO_CF_GDA excels NSGAII over all

instances of the problem. Although other multi-objective choice function

based hyper-heuristics still produce solutions with acceptable quality, they

could not perform better as well as NSGAII. The reason of this relies on the

move acceptance strategy they are employed.

Chapter 9: Conclusions and Future Work

196 | P a g e

 The results of both benchmark test problems (WFG) and the real-world

problems (vehicle crashworthiness design) demonstrate the capability and

potential of the multi-objective hyper-heuristic approaches in solving

continuous multi-objective optimisation problems. The choice function great

deluge based hyper-heuristic (HHMO_CF_GDA) mixing and managing

population based multi-objective meta-heuristic algorithms turns out to be the

best choice for multi-objective optimisation rather than running each meta-

heuristic algorithm on its own.

9.2 Future Work

Our multi-objective choice function based hyper-heuristic framework

which is used for managing a set of multi-objective meta-heuristics offers

interesting potential research directions in multi-objective optimisation. We

recommend three directions for future work as follows:

9.2.1 From the High Level Strategy Perspective

The empirical experiments demonstrate that combining different

(meta)heuristic selection and move acceptance methods as components

within a selection hyper-heuristic framework yield different performances in

single-objective optimisation (Burke et al., 2012). In this thesis, we have

adapted choice function as selection methods combined with three different

acceptance methods, which are all-moves, great deluge algorithm and late

acceptance, for multi-objective optimisation. More heuristic selection methods

and can be adapted from previous research in single-objective optimisation

and used for multi-objective optimisation. This process is not a trivial process

requiring elaboration of existing methods and their usefulness in a multi-

objective setting. Also other acceptance criteria such as simulated annealing

(SA) and tabu search (TS) could be employed as a move acceptance

component within our hyper-heuristic framework for multi-objective

optimisation. As those criteria involve many parameters, this methodology

would require initial experiments to tune the parameters for multi-objective

settings such defining a cooling schedule and an initial temperature for SA

and aspiration criterion and tabu tenure for TS.

Chapter 9: Conclusions and Future Work

197 | P a g e

In the context of multi-objective choice function great deluge based

hyper-heuristic, it is suggested to tuning the rain speed (UP) parameter

automatically based on the number of total moves in the search process in

order to investigate great deluge algorithm as a move acceptance with re-

levelling mechanism. This process requires resetting a water level (LEVEL)

and setting a new rain speed rate (UP). This suggestion could improve the

quality of results obtained from the original multi-objective choice function

great deluge based hyper-heuristic that presented in this thesis (see Chapter

6). And make it applicable for wide range of problems. This may require

further implementation of the high level strategy and more experiments could

be done over the WFG test suite and other test problems.

9.2.2 From the Low Level Heuristics Perspective

Our multi-objective choice function based hyper-heuristic framework is

designed to be highly flexible and its components can be reusable and easily

replaceable. In this thesis, we employed and combined the strengths of three

well-known multi-objective evolutionary algorithms (NSGAII, SPEA2, and

MOGA) within our multi-objective selection hyper-heuristic framework (see

Chapter 4). It would be interesting to employ other MOEA optimisers and

other population-based methods to act as low level heuristics within the same

framework. We anticipate that different low level heuristics could yield

different performances. It would be so beneficial if replace MOGA with other

more advance methods such as MOEA/D (Li and Zhang, 2009). There is huge

numbers of low level heuristics choices possible and therefore great scope for

research. Recent multi-objective hyper-heuristics studies obtain promising

results. This is the case in MCHH (McClymont and Keedwell, 2011) using

Evolution Strategies, and in AMALGAM (Vrugt and Robinson, 2007) using

Particle Swarm Optimisation (Kennedy, 2001), Adaptive Metropolis Search

(Haario et al., 2001) and Differential Evolution (Storn and Price, 1997).

9.2.3 From the Problem Domain

In this thesis, we evaluate our multi-objective choice function based

hyper-heuristics over both problems: the WFG test suite (Huband et al.,

2006) as our multi-objective benchmark test dataset and multi-objective

vehicle crashworthiness design (Liao et al., 2008) as real-world problem. It

would be interesting to test the level of generality of our multi-objective

Chapter 9: Conclusions and Future Work

198 | P a g e

hyper-heuristics framework further on some other problems and domains

including the continuous real-valued constrained, combinatorial, discrete and

dynamic problems. The real-world water distribution networks design

problems are applied to recent multi-objective hyper-heuristics studies in

Raad et al. (2010) and McClymont et al. (2013) and produce encouraging

results. In addition, extending our selection hyper-heuristics for many

objectives optimisation would be an interesting direction research. This

process might require adaptation of diversity management procedures and

modification of Pareto-dominance.

199 | P a g e

References

Aarts, E. and Korst, J. (1998). Simulated Annealing and Boltzman Machines.

Wiley.

Aarts, E., Korst, J., and Michiels,W. (2005). Search Methodolgies:

Introductory Tutorials in Optimization and Decision Support Techniques,
chapter Simulated Annealing. Springer.

Abuhamdah, A. (2010). Experimental result of late acceptance randomized

descent algorithm for solving course timetabling problems. IJCSNS

International Journal of Computer Science and Network Security, 10:192–200.

Abuhamdah, A. and Ayob, M. (2010). Average late acceptance randomized

descent algorithm for solving course timetabling problems. In Proceedings

of Information Technology International Symposium (ITSim), pages 748–753.

Adra, S. and Fleming, P. (2011). Diversity management in evolutionary many-

objective optimization. IEEE Transaction on Evolutionary Computation,
15(2):183–195.

Aickelin, U., Burke, E., and Li, J. (2009). Improved squeaky wheel

optimisation for robust personnel scheduling. IEEE Transactions on

Evolutionary Computation, 13(2):433–443.

Al-Milli, N. R. (2010). Hybrid genetic algorithms with great deluge for course

timetabling. International Journal of Computer Science and Network Security,
10(4):283–288.

Allen, S., Burke, E., Hyde, M., and Kendall, G. (2009). Evolving reusable 3d

packing heuristics with genetic programming. In Proceedings of the ACM

Genetic and Evolutionary Computation Conference (GECCO ’09), pages 931–
938.

Anderson, J. M., Sayers, T. M., and Bell, M. G. H. (2007). Optimisation of a

fuzzy logic traffic signal controller by a multiobjective genetic algorithm.
IEEE Road Transport Information and Control, 454:186–190.

Armas, J., Miranda, G., and Leòn, C. (2011). Hyperheuristic encoding scheme

for multiobjective guillotine cutting problems. In Proceedings of the 13th

Annual Genetic and Evolutionary Computation Conference, pages 1683–1690.

Auger, A., Bader, J., Brockhoff, D., and Zitzler, E. (2012). Hypervolume-based

multiobjective optimization: Theoretical foundations and practical
implications. Theoretical Computer Science, 425:75–103.

Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice. Oxford

University Press.

200 | P a g e

Bader, J. and Zitzler, E. (2011). Hype: An algorithm for fast hypervolume-
based many-objective optimization. Evolutionary Computation, 19(1):45–
76.

Bader-El-Den, M. and Poli, R. (2007). Generating sat local-search heuristics

using a gp hyperheuristic framework. In Proceedings of Artificial Evolution

(EA’07).

Bai, R. (2005). An Investigation Of Novel Approaches For Optimising Retail Shelf

Space Allocation. PhD thesis, School of Computer Science, University of
Nottingham, UK.

Bai, R., Woensel, T., Kendall, G., and Burke, E. K. (2013). A new model and a

hyper-heuristic approach for two-dimensional shelf space allocation.
Journal Operation Research, 11:31–55

Bai, R., Blazewicz, J., Burke, E., Kendall, G., and McCollum, B. (2012). A

simulated annealing hyper-heuristic methodology for exible decision
support. 4OR: A Quarterly Journal of Operations Research, 10(1):43–66.

Bai, R. and Kendall, G. (2005). An investigation of automated planograms

using a simulated annealing based hyper-heuristics. In Ibaraki, T., Nonobe,
K., and Yagiura, M., editors, Metaheuristics: Progress as Real Problem

Solver, Operations Research/Computer Science Interface Series, pages 87–
108. Springer.

Barichard, V. and Hao, J. (2002). Un algorithme hybride pour le probl`eme de

sac`a dos multiobjectifs. In Proceedings of Huiti`emes Journ`ees Nationales

sur la R`esolution Pratique de Probl`emes NP-Complets JNPC2002.

Batista, L., Campelo, F., Guimares, F., and Ramírez, J. (2010). A new self-

adaptive approach for evolutionary multiobjective optimization. In

Proceedings of IEEE Congress on Evolutionary Computation, pages 1–8.

Battiti, R. and Protasi, M. (1997). Reactive search, a history-base heuristic for

max-sat. ACM Journal of Experimental Algorithmics, 2.

Baykasoglu, A., Durmusoglu, Z. D., and Kaplanoglu, V. (2011). Training fuzzy

cognitive maps via extended great deluge algorithm with applications.
Computers in Industry, 62(2):187–195.

Baykasoglu, A., Owen, S., and Gindy, N. (1999). A taboo search based

approach to find the pareto optimal set in multiple objective optimisation.
Engineering Optimization, 31:731–748.

Benson, H. P. and Sayin, S. (1997). Towards finding global representations of

the efficient set in multiple objective mathematical programming. Naval

Research Logistics, 44:47–67.

Berberoglu, A. and Uyar, A. (2011). Experimental comparison of selection

hyper-heuristics for the short-term electrical power generation scheduling

201 | P a g e

problem. In Malyshkin, V., editor, Proceedings of EvoApplications,Part II,

Lecture Notes in Computer Science, pages 444–453. Springer.

Beume, N., Naujoks, B., and Emmerich, M. (2007). Sms-emoa: multiobjective

selection based on dominated hypervolume. European Journal of Operational

Research, 181(3):1653–1669.

Bianchi, L., Dorigo, M., Gambardella, L., and Gutjahr, W. (2009). A survey on

metaheuristics for stochastic combinatorial optimization. Natural Computing,
8(2):239–287.

Biazzini, M., Banhelyi, B., Montresor, A., and Jelasity, M. (2009). Distributed

hyper-heuristics for real parameter optimization. In Proceedings of the
11th Annual Conference on Genetic and Evolutionary Computation, pages
1339–1346.

Bilgin, B., Ozcan, E., and Korkmaz, E. (2007). An experimental study on

hyper-heuristics and final exam scheduling. In Proceedings of the

International Conference on the Practice and Theory of Automated Timetabling

VI, volume 3867 of Lecture Notes in Computer Science, pages 394–412.
Springer Berlin /Heidelberg.

Blazewicz, J., Domschke, W., and Pesch, E. (1996). The job shop scheduling

problem: Conventional and new solution techniques. European Journal of

Operational Research, 93:1–33.

Blum, C. and Roli, A. (2003). Metaheuristics in combinatorial optimization:

Overview and conceptual comparison. ACM Computing Surveys, 35(3):268–
308.

Bradstreet, L., Barone, L., While, L., Huband, S., and Hingston, P. (2007). Use

of the wfg toolkit and pisa for comparison of multi-objective evolutionary
algorithms. In Proceedings of IEEE Symposium on Computational Intelligence

in Multi-criteria Decision-making, pages 382–389.

Branke, J. (1999). Memory enhanced evolutionary algorithms for changing

optimization problems. In Proceedings of IEEE International Conference on

Evolutionary Computation, pages 1875–1882.

Bremermann, H. J. (1958). The evolution of intelligence. the nervous system

as a model of its environment. Technical report, Department of
Mathematics, University of Washington, Seattle, WA.

Burke, E., Landa-Silva, D., and Soubeiga, E. (2003a). Multi-objective hyper-

heuristic approaches for space allocation and timetabling. In MIC 2003-

Meta-heuristics: Progress as Real Problem Solvers, pages 129–158.

Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., and Schulenburg, S.

(2003b). Handbook of Meta-Heuristics, chapter Hyper-Heuristics: An
Emerging Direction in Modern Search Technology, pages 457–474. Kluwer
Academic Publishers.

202 | P a g e

Burke, E., Kendall, G., and Soubeiga, E. (2003c). A tabu-search

hyperheuristic for timetabling and rostering. Journal of Heuristics,
9(6):451–470.

Burke, E., Bykov, Y., Newall, J., and Petrovic, S. (2004). A time-predefined

local search approach to exam timetabling problems. IIE Transactions,
36(6):509–528.

Burke, E., Hyde, M., and Kendall, G. (2006). Evolving bin packing heuristics

with genetic programming. In Proceedings of the 9th International Conference

on Parallel Problem Solving from Nature (PPSN’06), pages 860–869.

Burke, E., McCollum, B., Meisels, A., Petrovic, S., and Qu, R. (2007a). A

graph-based hyperheuristic for educational timetabling problems. European

Journal of Operational Research, 176:177–192.

Burke, E., Hyde, M., Kendall, G., and Woodward, J. (2007a). The scalability of

evolved on line bin packing heuristics. In Proceedings of 2007 IEEE Congress

on Evolutionary Computation, pages 2530–2537.

Burke, E., Hyde, M., Kendall, G., and Woodward, J. (2007b). Automatic

heuristic generation with genetic programming: Evolving a jack-of-all-
trades or a master of one. In Proceedings of the 9th ACM Genetic and

Evolutionary Computation Conference (GECCO’07), pages 1559–1565.

Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., and Woodward, J.

(2009). Exploring hyper-heuristic methodologies with genetic
programming. In Mumford, C. and Jain, L., editors, Computational

Intelligence, Intelligent Systems Reference Library, pages 177–201.
Springer.

Burke, E., Hyde, M., Kendall, G., Ochoa, G., Özcan, E. and Woodward, J. R.

(2010). Handbook of Meta-Heuristics, chapter A Classification of Hyper-
heuristic Approaches, pages 449-468. Kluwer Academic Publishers.

Burke, E. K., Kendall, G., Misir, M., and Özcan, E. (2012). Monte carlo hyper-

heuristics for examination timetabling. Annals of Operations Research,
196:73–90.

Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., and

Qu, R. (2013). Hyper-heuristics: A survey of the state of the art. Journal of

the Operational Research Society, 64:1695-1724.

Burke, E. and Newall, J. (2004). A tabu-search hyperheuristic for timetabling

and rostering. Annals of Operations Research, 129:107–134.

Burke, E. K. and Bykov, Y. (2006). Solving exam timetabling problems with

flex-deluge algorithm. In Sixth International Conference on Practice and

Theory of Automated Timetabling (PATAT 2006), pages 370–372.

203 | P a g e

Burke, E. K. and Bykov, Y. (2008). A late acceptance strategy in hill-climbing
for exam timetabling problems. In International Conference on the Practice

and Theory of Automated Timetabling.

Burke, E. K. and Bykov, Y. (2012). The late acceptance hill-climbing heuristic.

Technical Report CSM-192, Computing Science and Mathematics,
University of Stirling.

Bykov, Y. (2003). Time-Predefined and Trajectory-Based Search: Single and

Multiobjective Approaches to Exam Timetabling. PhD thesis, School of
Computer Science, University of Nottingham, UK.

Bykov, Y. (2008). The late acceptance hill-climbing algorithm for the magic

square problem. In Proceedings of International Conference on the Practice

and Theory of Automated Timetabling (the PATAT 2008).

Chow, J. and Regan, A. (2012). A surrogate-based multiobjective

metaheuristic and network degradation simulation model for robust toll
pricing. Civil Engineering Working Papers.

Cobos, C., Mendoza, M., and Leon, E. (2011). A hyper-heuristic approach to

design and tuning heuristic methods for web document clustering. In
Proceedings of 20011 IEEE Congress on Evolutionary Computation, pages
1350–1358.

Coello, C. C. and Pulido, G. (2001). Multiobjective optimization using a micro-

genetic algoritm. In Proceedings of Genetic and Evolutionary Computation

Conference, pages 274–282.

Coello, C. C., Van Veldhuizen, D. V., and Lamont, G. (2007a). Evolutionary

Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers.

Coello, C. C., Van Veldhuizen, D. and Lamont, G. (2007b). MOEA Test Suites,

Evolutionary Algorithms for Solving Multi-Objective Problems, Kluwer Academic
Publishers.

Coello Coello, C. A. and Cruz Cortés, N. (2005). Solving multiobjective
optimization problems using an artificial immune system. Genetic

Programming and Evolvable Machines, 6(2):163–190.

Cook, S. (1971). The complexity of theorem-proving procedures. In

Proceedings of third annual ACM symposium on Theory of Computing, pages
151–158.

Corne, D., Dorigo, M., and Glover, F. (1999). New Ideas in Optimisation.

McGraw Hill.

Cowling, P., Kendall, G., and Soubeiga, E. (2000). A hyperheuristic approach

for scheduling a sales summit. In Selected Papers of the Third International

Conference on the Practice And Theory of Automated Timetabling, PATAT 2000,
Lecture Notes in Computer Science, pages 176–190. Springer.

204 | P a g e

Cowling, P., Kendall, G., and Soubeiga, E. (2001). A parameter-free
hyperheuristic for scheduling a sales summit. In Proceedings of the 4th

Metaheuristic International Conference, pages 127–131.

Cowling, P., Kendall, G., and Han, L. (2002a). An adaptive length

chromosome hyperheuristic genetic algorithm for a trainer scheduling
problem. In Proceedings of the 4th Asia-Pacific Conference on Simulated

Evolution And Learning (SEAL’02), pages 267–271.

Cowling, P., Kendall, G., and Han, L. (2002b). An investigation of a

hyperheuristic genetic algorithm applied to a trainer scheduling problem. In
Proceedings of the Congress on Evolutionary Computation (CEC2002), pages
1185–1190.

Cowling, P., Kendall, G., and Soubeiga, E. (2002c). A hyper-heuristic

approach to scheduling a sales summit. In Proceedings of 3rd International

Conference Practice and Theory of Automated Timetabling PATAT 2000.

Crowston, W., Glover, F., Thompson, G., and Trawick, J. (1963). Probabilistic

and parametric learning combinations of local job shop scheduling rules.
ONR Research memorandum, 117.

Czyzak, P. and Jaszkiewicz, A. (1998). Pareto simulated annealing: A

metaheuristic for multipleobjective combinatorial optimization. Journal of

Multicriteria Decision Analysis, 7(1):34–47.

Darwin, C. (1859). The origin of species. Murray.

Davidor, Y. (1990). Epistasis variance; A viewpoint on GA-hardness. Rawlins.

Deb, K. (1999). Multi-objective genetic algorithms: Problem difficulties and

construction of test problem. Evolutionary Computation, 7(3):205–230.

Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms.

Wiley.

Deb, K. (2005). Introductory Tutorials in Optimization and Decision Support

Methodologies, chapter Multi-objective optimization. Search Methodologies,
pages 273–316. Springer.

Deb, K. and Goldberg, D. (1989). An investigation on niche and species

formation in genetic function optimization. In Proceedings of 3rd

International Conference on Genetic Algorithms, pages 42–50.

Deb, K. and Agrawal, R. B. (1995). Simulated binary crossover for continuous

search space. Complex Systems, 9:115–148.

Deb, K. and Goel, T. (2001). Controlled elitist nondominated sorting genetic

algorithms for better convergence. In Proceedings of Evolution Multi Criterion

Optimization Conference, pages 67–81.

205 | P a g e

Deb, K. and Jain, S. (2002). Running performance metrics for evolutionary
multiobjective optimization. Technical Report KanGAL Report No. 2002004,
Kanpur Genetic Algorithms Laboratory, Indian Institute of Technology
Kanpur, India.

Deb, K., Thiele, L., Laumanns, M., and Zitzler, E. (2002). Scalable multi-

objective optimization test problems. In Proceedings of IEEE congress on

evolutionary computation, pages 825–830.

DellÁmico, M., Lodi, A., and Maffioli, F. (1999). Solution of the cumulative

assignment problem with a well structured tabu search method. Journal of

Heuristics, 5:123–143.

Demeester, P., Bilgin, B., Causmaecker, P., and Berghe, G. (2012). A

hyperheuristic approach to examination timetabling problems: Benchmarks
and a new problem from practice. Journal of Scheduling, 15(1):83–103.

Denzinger, J., Fuchs, M., and Fuchs, M. (1997). High performance atp

systems by combining several ai methods. In Proceedings of the Fifteenth

International Joint Conference on Artificial Intelligence (IJCAI 97), pages 102–
107.

Dhouib, S. (2000). A multi start great deluge metaheuristic for engineering

design problems. In Proceedings of the ACS/IEEE Int. Conference on

Computer Systems and Applications (AICCSA), pages 1–5.

Dorigo, M., Maniezzo, V., and Colorni, A. (1996). Ant system: Optimisation by

a colony of cooperating agents. IEEE Transactions on Systems, Man, and

Cybernetics-Part B, 26(1):29–41.

Dorigo, M. and Stützle, T. (2003). Handbook of Metaheuristics, chapter The

Ant Colony Optimization Metaheuristic: Algorithms, Applications, and
Advances. Kluwer Academic Publishers.

Dorndorf and Pesch (1995). Evolution based learning in a job shop scheduling

environment. Computers and Operations Research, 22:25–40.

Dowsland, K. (1995). Simulated Annealing. Advanced Topics in Computer

Science:Modern Heuristic Techniques for Combinatorial Problems. McGraw-
Hill International Limited.

Dowsland, K., Soubeiga, E., and Burke, E. (2007). A simulated annealing

hyper-heuristic for determining shipper sizes. European Journal of

Operational Research, 179(3):759-774.

Drake, J., Özcan, E., and Burke, E. (2012). An improved choice function

heuristic selection for cross domain heuristic search. In Parallel Problem

Solving from Nature-PPSN XII, volume 7492 of Lecture Notes in Computer
Science, pages 307–316.

206 | P a g e

Dueck, G. (1993). New optimization heuristics: The great deluge algorithm
and the record to record travel. Journal of Computational Physics, 104:86–
92.

Durillo, J. (2011). Metaheuristics for Multi-objective Optimization: Design,

Analysis, and Applications. PhD thesis, Universidad De Málaga.

Erickson, M., Mayer, A., and Horn, J. (2001). The niched pareto genetic

algorithm 2 applied to the design of groundwater remedistion systems. In
Proceedings of the First International Conference on Evolutionary Multi-Criterion

Optimization, pages 681–695.

Fang, H., Rais-Rohani, M., Liu, Z., and Horstemeyer, M. (2005). A

comparative study of metamodeling methods for multiobjective
crashworthiness optimization. Computers and Structures, 83(25-26):2121-
2136.

Fisher, H. and Thompson, G. (1961). Probabilistic learning combinations of

local job-shop scheduling rules. In Factory Scheduling Conference.

Fisher, H. and Thompson, G. (1963). Industrial Scheduling, Chapter

Probabilistic learning combinations of local job-shop scheduling rules,
pages 225–251. Prentice Hall.

Fleming, P., Purshouse, R., and Lygoe, R. (2005). Many-objective

optimization:an engineering design perspective. In Lecture Notes in

Computer Science, pages 14–32. Springer-Verlag Berlin Heidelberg.

Focacci, F., Laburthe, F., and Lodi, A. (2003). Handbook of Metaheuristics,

Chapter Local Search and Constraint Programming. Kluwer Academic
Publishers.

Fonseca, C. M. and Fleming, P. J. (1993). Genetic algorithms for

multiobjective optimization: Formulation, discussion and generalization. In
Proceedings of the 5th Genetic Algorithms Conference, pages 416–423.

Fonseca, C. M. and Fleming, P. J. (1995). An overview of evolutionary

algorithms in multiobjective optimization. Evolutionary Computation,
3(1):1–16.

Fonseca, C. and Fleming, P. (1998). Multiobjective optimization and multiple

constraint handling with evolutionary algorithms. IEEE Transactions on

Systems, Man, and Cybernetics.-Part A: Systems and Humans, 28(1):26–37.

Fraser, A. S. (1957). Simulation of genetic systems by automatic digital

computers II: Effect of linkage on rates under selection. Australian Journal

of Biological Sciences. 10:492-499.

Furtuna, R., Curteanu, S., and Leon, F. (2012). Multi-objective optimization of

a stacked neural network using an evolutionary hyper-heuristic. Applied

Soft Computing, 12(1).

207 | P a g e

Gandibleux, X. and Ehrgott, M. (2005). Evolutionary Multi-Criterion

Optimization, chapter 1984- 2004:20Years of Multiobjective Metaheuristics.
But What About the Solution of Combinatorial Problems with Multiple
Objective. Springer.

Gandibleux, X. and Fréville, A. (2000). Tabu search based procedure for

solving the 0-1 multiobjective knapsack problem: The two objectives case.
Journal of Heuristics, 6(3):361–383.

Gandibleux, X., Mezdaoui, N., and Fréville, A. (1997). A tabu search

procedure to solve multiobjective combinatorial optimization problems. In
Malyshkin, V., editor, Advances in Multiple Objective and Goal Programming,
volume 455 of Lecture Notes in Economics and Mathematical Systems, pages
291–300. Springer-Verlag.

Garey, M. and Johnson, D. (1979). Computers and Intractability - A Guide to the

Theory of NPCompleteness. W.H. Freeman.

Gendreau, M. (2003). An Introduction to Tabu Search, chapter Handbook of

Metaheuristics. Kluwer Academic Publishers.

Giagkiozis, I., Purshouse, R., and Fleming, P. (2013). An overview of

population-based algorithms for multi-objective optimisation. International

Journal of Systems Science. DOI:10.1080/00207721.2013.823526.

Gibbs, J., Kendall, G., and Özcan, E. (2011). Scheduling English football

fixtures over the holiday period using hyper-heuristics. In Proceedings of the

11th International Conference on Parallel Problem Solving From Nature, volume
6238, pages 496–505.

Glover, F. (1977). Heuristics for integer programming using surrogate

constraints. Decision Sciences, 8(1):156–166.

Glover, F. (1986). Future paths for integer programming and links to artificial

intelligence. Computer Operations Research, 13(5):533–549.

Glover, F. and Laguna, M. (1995). Modern heuristic techniques for combinatorial

problems, chapter Tabu search, pages 70–150.

Glover, F. and Laguna, M. (1997). Evolutionary Algorithms for Solving Multi-

Objective Problems. Kluwer Academic Publishers.

Glover, F. and Kochenberger, G. (2003). Handbook of Metaheuristics. Kluwer

Academic Publishers.

Glover, F., Laguna, M., and Martí, R. (2000). Fundamentals of scatter search

and path relinking. Control and Cybernetics, 39(3):653–68.

208 | P a g e

Glover, F. and Laguna, M., and Martí, R. (2003). Handbook of Metaheuristics,
chapter Scatter Search and Path Relinking: Advances and Applications,
Kluwer Academic Publishers.

Goldberg, D. E. (1987). Genetic Algorithms and Simulated Annealing, chapter

Simple genetic algorithms and the minimal, deceptive problem, pages 74–
88. Morgan Kaufmann.

Goldberg, D. E. (1989). Genetic Algorithms in Search Optimization and Machine

Learning. Addison-Wesley.

Goldberg, D. E. (1999), Using time efficiently: Genetic-evolutionary

algorithms and the continuation problem. In Proceedings of Genetic and

Evolutionary Computation Conference, pages 212-219.

Goldberg, D. E., and Rudnick, M. (1991). Genetic algorithms and the variance
of fitness. Complex Systems, 5:265-278.

Gomez, J., and Terashima-Marín, H. (2010). Approximating multi-objective

hyper-heuristics for solving 2d irregular cutting stock problems. In
Advances in Soft Computing, Lecture Notes in Computer Science, pages
349–360.

Grobler, J., Engelbrecht, A., Kendall, G. and Yadavalli, V. (2012),

Investigating the use of local search for improving meta-hyper-heuristic
performance. In Proceedings of IEEE Congress on Evolutionary
Computation, pages 1-8.

Grosan, C., Oltean, M., and Dumitrescu, D. (2003). Performance metrics for

multiobjective optimization evolutionary algorithms. In Proceedings of

Conference on Applied and Industrial Mathematics.

Haario, H., Saksman, E., and Tamminen, J. (2001). An adaptive metropolis

algorithm. Bernoulli, 7:223–242.

Hajela, P. and Lin, C. (1992). Genetic search strategies in multicriterion

optimal design. Journal of Structural Optimization. 4:99–107.

Hansen, P. and Mladenovic, N. (1999). Meta-Heuristics: Advances and Trends in

Local Search Paradigms for Optimization, chapter An introduction to variable
neighborhood search, pages 433-458, Kluwer Academic Publishers.

Hart, E., Ross, P. and Nelson, J. (1998). Solving a Real-World Problem Using

an Evolving Heuristically Driven Schedule Builder, Evolutionary Computation.
6(1):61–80.

Henderson, D. (2003). The Theory and Practice of Simulated Annealing.

Handbook of Metaheuristics, Kluwer Academic Publishers.

209 | P a g e

Holland, J. (1975). Adaptation in Natural and Artificial Systems, University of
Michigan Press, Ann Harbor.

Horn, J. and Goldberg, D. E. (1995). Genetic algorithm difficulty and the

modality of fitness landscape. In Proceedings of the 3rd Workshop on

Foundation of Genetic Algorithms, pages 243–270.

Horn, J., Nafpliotis, N., and Goldberg, D. (1994). A Niched Pareto Genetic

Algorithm for Multiobjective Optimization. In Proceedings of the First IEEE

Conference on Evolutionary Computation, pages 82–87.

Huang, V. L., Qin, A. K., Deb, K., Zitzler, E., Suganthan, P. N., Liang, J. J.,

Preuss, M. and Huband, S. (2007). Problem Definitions for Performance
Assessment of Multi-objective Optimization Algorithms. Technical Report.
Nanyang Technological University, Singapore.

Huband, S., Hingston, P., While, L., and Barone, L. (2003). An evolution
strategy with probabilistic mutation for multi-objective optimisation. In
Proceedings of Congress on Evolutionary Computation, pages. 2284–2291.

Huband, S., Hingston, P., Barone, L., and While, L. (2006). A review of

multiobjective test problems and a scalable test problem toolkit. IEEE

Transactions on Evolutionary Computation, 10:477–506.

Hussin, N. (2005). Tabu Search Based Hyper-heuristic Approaches for

Examination Timetabling. PhD thesis, The University of Nottingham,
Nottingham, UK.

Ishibuchi H., Yoshida T. and Murata T. (2002). Selection of Initial Solutions for

Local Search in Multiobjective Genetic Local Search. In Proceedings of the

2002 Congress on Evolutionary Computation (CEC 2002), pages 950-955.

Jakobovic, D., Jelenkovic, L. and Budin, L. (2007) Genetic programming

heuristics for multiple machine scheduling. In Proceedings of the European

Conference on Genetic Programming (EUROGP’07), pages 321–330.

Jaszkiewicz, A. (2001a). Comparison of local search-based metaheuristics on

the multiple objective knapsack problem. Foundations of Computing and

Decision Sciences, 26(1):99–120.

Jaszkiewicz, A. (2001b). Multiple objective genetic local search algorithm. In

Multiple Criteria Decision Making in the New Millennium, volume 507 of
Lecture Notes in Economics and Mathematical Systems, pages 231–240,
Springer-Verlag.

Joslin, D. and Clements, D. (1999). Squeaky wheel optimization. Journal of

Artificial Intelligence Research, 10:353-373.

210 | P a g e

Kargupta, H. (1995). Signal-to-noise, crosstalk, and long range problem
difficulty in genetic algorithms. In Proceedings of the 6th International

Conference on Genetic Algorithms, pages 193–200.

Keller, R. and Poli, R. (2007). Cost-benefit investigation of a genetic-

programming hyperheuristic. In Proceedings of Artificial Evolution (EA’07),
pages 13–24.

Kendall, G., Cowling, P., and Soubeiga, E. (2002). Choice function and

random hyperheuristics. In Proceedings of the 4th Asia Pacific Conference on

Simulated Evolution And Learning, pages 667–671.

Kendall, G. and Mohamad, M. (2004). Channel assignment in cellular

communication using a great deluge hyperheuristic. In IEEE International

Conference on Network, pages 769–773.

Kennedy, J., Eberhart, R., and Shi, Y. (2001). Swarm Intelligence. Morgan

Kaufmann.

Khare, V., Yao, X., and Deb, K. (2003). Performance scaling of multi-objective

evolutionary algorithms. In Proceedings of 2nd International Conference on

Evolutionary Multi-Criterion Optimization, pages 376–390.

Khor, E., Tan, K., Wang, M. and Lee, T. (2000). Evolutionary algorithm with

dynamic population size formulti-objective optimization. In Proceedings

Conference on Simulated Evolution and Learning 2000 (SEAL’2000), pages
2768–2773.

Khor, E., Tan, K., and Lee, T. (2001). Tabu-based exploratory evolutionary

algorithm for effective multi-objective optimization. In Proceedings of The

First International Conference on Evolutionary Multi-Criterion Optimization

(EMO’01), pages 344–358.

Kiraz, B., Sima Uyar, A., and Özcan, E. (2011). An investigation of selection

hyper-heuristics in dynamic environments. In Applications of Evolutionary

Computation, volume 6624 of Lecture Notes in Computer Science, pages 314–
323. Springer.

Kirkpatrick, S., Gelatt, C., and Vecchi, M. (1983). Optimization by simulated

annealing. Science, 220:671–680.

Knowles, J. and Corne, D. (2000). Approximating the nondominated front

using the pareto archived evolution strategy. Evolutionary Computation,
8(2):149–172.

Knowles, J. and Corne, D. (2002). One metrics for computing non-dominated

set. In Proceedings of the World Congress on Computational Intelligence,
pages 711–716.

211 | P a g e

Kokolo, I., Kita, H., and Kobayashi, S. (2001). Failure of pareto-based moeas:
Does nondominated really mean near to optimal? In Proceedings of the

Congress on Evolutionary Computation, pages 957–962.

Koza, J. (1992). Solving multiobjective optimization problems using an artificial

immune system. MIT Press.

Krasnogor, N. (2002). Studies on Theory and Design Space of Memtic

Algorithms. PhD thesis, University of the west of England, Bristol, UK.

Krasnogor, N. and Gustafson, S. (2004). A study on the use of self-generation

in memetic algorithms. Natural Computing, 3(1):54–76.

Krasnogor, N. and Smith, J. E. (2002). Multimeme algorithms for the

structure prediction and structure comparison of proteins. In Proceedings of

the Bird of a Feather Workshops, Genetic and Evolutionary Computation

Conference (GECCO02), pages 42–44.

Krishniah, P. (1982). Selection of variables under univariate regression

models. Handbook of statistics, 2:805–820.

Kumar, R., Bal, B., and Rockett, P. (2009). Multiobjective genetic

programming approach to evolving heuristics for the bounded diameter
minimum spanning tree problem. In Proceedings of the ACM Genetic and

Evolutionary Computation Conference (GECCO09), pages 309–316.

Kumari, A., Srinivas, K., and Gupta, M. (2013). Software module clustering

using a hyperheuristic based multi-objective genetic algorithm. In Advance

Computing Conference (IACC), 2013 IEEE 3rd International, pages 813–818.

Kursawe, F. (1990). A variant of evolution strategies for vector optimization.

In Parallel Problem Solving from Nature I (PPSN-I), pages 193–197.

Landa-Silva, J. D. (2003). Metaheuristic and Multiobjective Approaches for Space

Allocation. PhD thesis, University of Nottingham, UK.

Landa-Silva, D. And Obit, J. (2009), Evolutionary Non-linear Great Deluge for

University Course Timetabling. In HAIS, volume 5572 of Lecture Notes in

Computer Science, page 269-276. Springer.

Landa-Silva, D., Burke, E., and Petrovic, S. (2004). An introduction to

multiobjective metaheuristics for scheduling and timetabling. In Lecture

Notes in Economics and Mathematical Systems, pages 91–129. Springer.

Lanzi, L., Castelletti, L., and Anghileri, M. (2004). Multi-objective optimisation

of composite absorber shape under crashworthiness requirements.
Computer and Structures, 65(3-4):433–441.

Len, C., Miranda, G., and Segura, C. (2009). Hyperheuristics for a dynamic-

mapped multiobjective island-based model. In Distributed Computing,

Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted

212 | P a g e

Living, volume 5518 of Lecture Notes in Computer Science, pages 41–49.
Springer Berlin Heidelberg.

Li, H. and Landa-Silva, D. (2011). An adaptive evolutionary multi-objective

approach based on simulated annealing. Evolutionary Computation,
19(4):561–595.

Li, H. and Zhang, Q. (2009). Multiobjective optimization problems with

complicated pareto sets, MOEA/D and NSGA-II. IEEE Transactions on

Evolutionary Computation, 13(2):284–302.

Liao, X., Li, Q., Yang, X., Zhang, W., and Li, W. (2008). Multiobjective

optimization for crash safety design of vehicles using stepwise regression
model. Structural and Multidisciplinary Optimization, 35:561569.

Liu, D., Tan, K., Goh, C., and Ho, W. (2007). A multiobjective memetic

algorithm based on particle swarm optimization. IEEE Transactions on

Systems, Man, and Cybernetics, Part B: Cybernetics, 37(1):42–50.

Loshchilov, I., Schoenauer, M., and Sebag, M. (2011). Not all parents are

equal for mo-cmaes. In Proceedings of the 6th International Conference on

Evolutionary Multi-criterion Optimization EMO11, pages 31–45.

Lourenco, H., Martin, O., and Stutzle, T. (2003). Handbook of Metaheuristics,

chapter Iterated local search, pages 320–353. Springer.

Lu, H. and Yen, G. (2002). Rank-density based multiobjective genetic

algorithm. In Proceedings of the 2002 Congress on Evolutionary Computation

(CEC 2002), pages 944–949.

Marklund, P. and Nilsson, L. (2001). Optimization of a car body component

subjected to side impact. Structural and Multidisciplinary Optimization,
21(5):383–392.

Martin, O., Otto, S., and Felten, E. (1991). Large-step markov chains for the

traveling salesman problem. Complex Systems, 5(3):299–326.

McClymont, K., Keedwell, E., and Savic, D. (2013). A general multi-objective

hyper-heuristic for water distribution network design with discolouration
risk. to appear in Journal of Hydroinformatics.

McClymont, K. and Keedwell, E. C. (2011). Markov chain hyperheuristic

(mchh): an online selective hyper-heuristic for multiobjective continuous
problems. In Proceedings of Genetic and Evolutionary Computation Conference

(GECCO11), pages 2003–2010.

McMullan, P. and McCollum, B. (2007). Dynamic job scheduling on the grid

environment using the great deluge algorithm. In Parallel Computing

Technologies, volume 4671 of Lecture Notes in Computer Science, pages 283–
292. Springer Berlin/ Heidelberg.

213 | P a g e

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E.
(1953). Equation of state calculations by fast computing machines. Journal

of Chemistry and Physics, 21:1087–1092.

Miranda, G., Armas, J., Segura, C., and León, C. (2010). Hyperheuristic

codification for the multi-objective 2d guillotine strip packing problem. In
Proceedings of IEEE Congress on Evolutionary Computation, pages 1–8.

Misir, M., Vancroonenburg,W., Verbeeck, K., and Berghe, G. (2011).

Aselection hyperheuristic for scheduling deliveries of ready-mixed concrete.
In Proceedings of the Metaheuristics International Conference, pages 289–
298.

Misir, M., Verbeeck, K., De Causmaecker, P., and Vanden Berghe, G. (2012).

An intelligent hyperheuristic framework for chesc. In International

Conference on Learning and Intelligent Optimization (LION 6), volume 7219 of
Lecture Notes in Computer Science, pages 461–466. Springer.

Moscato, P. (1999). New Ideas in Optimisation, chapter Memetic algorithms: A

short introduction. McGraw Hill.

Murata, T. and Ishibuchi, H. (1995). Moga: Multi-objective genetic algorithms.

In Proceedings of the 1IEEE International Conference on Evolutionary

Computation, volume 1, pages 289–294.

Nahas, N., Nourelfath, M., and Ait-Kadi, D. (2010). Iterated great deluge for

the dynamic facility layout problem. Technical report, CIRRELT.

Nam, D. and Park, C. (2000). Multiobjective simulated annealing: A

comparative study to evolutionary algorithms. International Journal of Fuzzy

Systems, 2(2):87–97.

Nareyek, A. (2003). Metaheuristics: Computer Decision-Making, chapter

Choosing search heuristics by non-stationary reinforcement learning, pages
523–544. Kluwer.

Nebro, A. J. and Durillo, J. (2010). Study of the parallelization of the multi-

objective metaheuristics MOEA/D. Proceedings of 4th International

Conference of Learning and Intelligent Optimization (LION 4), 6073:303–317.

Nourelfath, M., Nahas, N., and Montreuil, B. (2007). Coupling ant colony

optimization and the extended great deluge algorithm for the discrete
facility layout problem. Engineering Optimization, 39(8):953–968.

Obit, J., Landa-Silva, D., Ouelhadj, D., and Sevaux, M. (2009). Non-linear

great deluge with learning mechanism for solving the course timetabling
problem. In 8th Metaheuristics International Conference (MIC 2009), pages
2010–2011.

214 | P a g e

Osman, H. (1993). Metastrategy simulated annealing and tabu search
algorithms for the vehicle routing problem. Annals of Operations Research,
41:421–451.

Özcan, E., Bilgin, B., and Korkmaz, E. (2008). A comprehensive analysis of

hyper-heuristics. Intelligent Data Analysis, 12(1):3–23.

Özcan, E., Bykov, Y., Birben, M., and Burke, E. K. (2009). Examination

timetabling using late acceptance hyper-heuristics. In the IEEE Congress on

Evolutionary Computation, pages 997–1004.

Özcan, E., Misir, M., Ochoa, G., and Burke, E. K. (2010). A reinforcement

learning - great-deluge hyper-heuristic for examination timetabling.
International Journal of Applied Metaheuristic Computing, 1(1):39–59.

Özcan, E. and Kheiri, A. (2011). A hyper-heuristic based on random gradient,

greedy and dominance. In Proceedings of Computer and Information Sciences

II: 26th International Symposium on Computer and Information Sciences, pages
404–409.

 Özcan, E. and Parkes, A. (2011). Policy matrix evolution for generation of

heuristics. In Proceedings of the 13th Annual Conference on Genetic and

Evolutionary Computation (GECCO11), pages 2011–2018.

Petrovic, S. and Bykov, Y. (2003). A multiobjective optimisation technique for

exam timetabling based on trajectories. In Practice and Theory of Automated

Timetabling IV, volume 2740 of Lecture Notes in Computer Science, pages
181–194. Springer Berlin/Heidelberg.

Petrovic, S., Yang, Y., and Dror, M. (2000). Case-based selection of

initialisation heuristics for metaheuristic examination timetabling.
Evolutionary Computation, 8(2):173–195.

Petrovic, S., Yang, Y., and Dror, M. (2007). Case-based selection of

initialisation heuristics for metaheuristic examination timetabling. Expert

Systems with Applications, 33(3):772–785.

Pillay, N. (2008). An analysis of representations for hyper-heuristics for the

uncapacitated examination timetabling problem in a genetic programming
system. In Proceedings of the 2008 Annual Conference of the South African

Institute of Computer Scientists and Information Technologists on IT Research

in Developing Countries, SAICSIT Conference, pages 188–192.

Pisinger, D. and Ropke, S. (2007). A general heuristic for vehicle routing

problems. Computers and operations research. 34:2403–2435.

Poloni, C., Giurgevich, A., Onesti, L., and Pediroda, V. (2000). Hybridization of

a multiobjective genetic algorithm, a neural network and a classical
optimizer for complex design problem in fluid dynamics. Computer Methods

in Applied Mechanics and Engineering, 186(2-4):403–420.

215 | P a g e

Pramodh, C. and Ravi, V. (2007). Modified great deluge algorithm based auto
associated neural network for bankruptcy prediction in banks. International

Journal of Computational Intelligence Research, 3(4):363–370.

Pulido, G. and Coello Coello, C. (2003). The micro genetic algorithm

2:towards online adaptation in evolutionary multiobjective optimization. In
Proceedings of the 2nd International Conference on Evolutionary Multi-

Criterion Optimization (EMO 2003), volume 2632 of Lecture Notes in
Computer Science, pages 252–266. Springer-Verlag Berlin Heidelberg.

Purshouse, R. and Fleming, P. (2003a). Conflict, harmony, and

independence: Relationships in evolutionary multicriterion optimisation. In
Proceedings of the 2nd International Conference on Evolutionary Multi-

Criterion Optimization (EMO 2003), volume 2632 of Lecture Notes in
Computer Science, pages 16–30. Springer-Verlag Berlin Heidelberg.

Purshouse, R. and Fleming, P. (2003b). Evolutionary many-objective

optimisation: an exploratory analysis. In Proceedings of Evolutionary

Computation (CEC '03), pages 2066-2073.

Purshouse, R. and Fleming, P. (2007). On the evolutionary optimization of

many conflicting objectives. IEEE Transaction on Evolutionary Computation,
11(6):770–784.

Qu, R. and Burke, E. (2009). Hybridisations within a graph based hyper-

heuristic framework for university timetabling problems. Journal of the
Operational Research Society, 60:1273–1285.

Raad, D., Sinkse, A., and Vuuren, J. (2010). Multiobjective optimization for

water distribution systemdesign using a hyperheuristic. Journal of Water

Resources Management, 136(5):592–596.

Rafique, A. F. (2012). Multiobjective hyper-heuristic scheme for system

design and optimization. In Proceedings of 9th International Conference on

Mathematical Problems in Engineering, Aerospace and Science, AIP Conference
1493, volume 764.

Rayward-Smith, V. (1986). A First Course in Computability. Blackwell.

Rechenberg, I. (1965). Cybernetic solution path of an experimental problem.
Library Translation 1122, Royal Aircraft Establishment.

Redhe, M., Giger, M., and Nilsson, L. (2004). An investigation of structural

optimization in crashworthiness design using a stochastic approach - a
comparison of stochastic optimization and the response surface
methodology. Structural and Multidisciplinary Optimization, 27(6):446–459.

Reeves, C. (2003). Handbook of Metaheuristics, chapter Genetic Algorithms.

Kluwer Academic Publishers.

216 | P a g e

Ross, P. (2005). Search Methodologies: Introductory Tutorials in Optimization and

Decision Support Methodologies, Chapter Hyper-heuristics, pages 529–556.
Springer.

Ross, P. and Marn-Blazquez, J. G. (2005). Constructive hyper-heuristics in

class timetabling. In Proceedings of IEEE Congress on Evolutionary

Computation, pages 1493–1500.

Sastry, K., Goldbreg, D., and Kendall, G. (2005). Search Methodolgies:

Introductory Tutorials in Optimization and Decision Support Techniques,
chapter Genetic Algorithms. Springer.

Schaffer, J. (1985). Multiple objective optimization with vector evaluated

genetic algorithms. In Proceedings of the 11th Annual Conference on Genetic

and Evolutionary Computation, pages 93–100.

Scott, E. and Geldenhuysys, G. (2000). A comparison of the tabu search and

great deluge methods for graph colouring. In Proceedings of the 16th IMACS

World Cong. on Scientific Computing Applied Mathematics and Simulation

(IMACS 2000).

Sin, E. S. and Kham, N. S. M. (2012). Hyper heuristic based on great deluge

and its variants for exam timetabling problem. CoRR, 12021891.

Socha, K. and Kisiel-Dorohinicki, M. (2002). Agent-based evolutionary

multiobjective optimization. In Proceedings of the 2002 Congress on

Evolutionary Computation (CEC 2002), pages 109–114.

Sörensen, K. and Glover, F. (2013). Encyclopedia of Operations Research and

Management Science, chapter Metaheuristics. Springer.

Soubeiga, E. (2003). Development and Application of Hyperheuristics to

Personnel Scheduling. PhD thesis, University of Nottingham, UK.

Srinivas, N. and Deb, K. (1994). Multiobjective optimization using

nondominated sorting in genetic algorithms. Evolutionary Computation,
2(3):221–248.

Storn, R. and Price, K. (1997). Differential evolution: A simple and efficient

heuristic for global optimization over continuous. Journal of Global

Optimization, 11:341–359.

Stützle, T. (1999). Local Search Algorithms for Combinatorial Problems, Analysis,

Algorithms and New Applications. DISKI.

Sutton, R. and Barto, A. (1998). Reinforcement Learning: An Introduction. MIT

Press.

Taillard, E. (1991). Robust taboo search for the quadratic assignment

problem. Parallel Computing, 17:443–455.

217 | P a g e

Tan, K., Lee, T., and Khor, E. (1999). Evolutionary algorithms with goal and
priority information for multi-objective optimization. In Proceedings of the

11th Annual Conference on Genetic and Evolutionary Computation, pages
106–113.

Tan, K. C., Lee, T. H., and Khor, E. F. (2002). Evolutionary algorithms for

multi-objective optimization: Performance assessments and comparisons.
Artificial Intelligence Review, 17:253–290.

Tay, J. and Ho, B. (2008). Evolving dispatching rules using genetic

programming for solving multi-objective flexible job-shop problems.
Computers and Industrial Engineering, 54:453–473.

Telfar, G. (1995). Generally applicable heuristicsfor global optimisation: An

investigation of algorithm performance for the euclidean traveling salesman

problem. Master’s thesis, Institute of Statistics and Operations Research,
Victoria University of Wellington.

Terashima-Marín, H., Ortiz-Bayliss, J., Ross, P., and Valenzuela-Rendon, M.

(2008). Hyperheuristics for the dynamic variable ordering in constraint
satisfaction problems. In Proceedings of Genetic and Evolutionary

Computation Conference (GECCO08), pages 571–578.

Thanh, N. and Anh, D. (2009). Comparing three improved variants of

simulated annealing for optimizing dorm room assignments. In Proceeding

of Computing and Communication Technologies International Conference

RIVF09.

Thompson, J. and Dowsland, K. (1996). Variants of simulated annealing for

the examination timetabling problem. Annals of Operations Research,
63:105–128.

Tierney, K. (2013). Late acceptance hill climbing for the liner shipping fleet

repositioning problem. In Proceedings of the 14th EU/ME Workshop. Helmut-

Schmidt-Universit¨at Hamburg.

Ulungu, E. (1993). Optimisation combinatoire multicrit‘ere: Determination de

l’ensemble des solutions efficaces et methodes interactives. PhD thesis,
Facult’e des Sciences, Universit’e de Mons-Hainaut. Mons, Belgium.

Van Veldhuizen, D. (1999). Multiobjective Evolutionary Algorithms:

Classifications, Analyses, and New Innovations. PhD thesis, Air Force
Institute of Technology, Wright-Patterson AFB. Ohio.

Van Veldhuizen, D. and Lamont, G. (1998a). Multiobjective evolutionary

algorithm research: A history and analysis. Technical Report TR-98-03,
Department of Electrical and Computer Engineering, Graduate School of
Engineering.

218 | P a g e

Van Veldhuizen, D. A., and Lamont, G.. (1998b). Evolutionary computation
and convergence to a pareto front. In Proceedings of Late Breaking Papers

at the Genetic Programming 1998 Conference, pages 221–228.

Van Veldhuizen, D. V. and Lamont, G. (2000). Multiobjective evolutionary

algorithms: Analyzing the state-of-the-art. Evolutionary Computation,
8(2):125–147.

Vázquez-Rodríguez, J. and Petrovic, S. (2012). Calibrating continuous multi-

objective heuristics using mixture experiments. The Journal of Heuristics,
18:699–726.

Veerapen, N., Landa-Silva, D., and Gandibleux, X. (2009). Hyperheuristic as

component of a multi-objective metaheuristic. In Proceedings of the Doctoral

Symposium on Engineering Stochastic Local Search Algorithms (SLS-DS 2009).

Verstichel, J. and Berghe, G. V. (2009). A late acceptance algorithm for the

lock scheduling problem. Logistic Management, 5:457–478.

Viennet, R. (1996). Multicriteria optimization using a genetic algorithm for

determining the pareto set. International Journal of System Science,
27(2):255–260.

Vinkó, T. and Izzo, D. (2007). Learning the best combination of solvers in a

distributed global optimization environment. In Advances in Global

Optimization: Methods and Applications.

Voß, S., Martello, R., Osman, I., and Roucairol, C. (1999). Meta-Heuristics:

Advances and Trends in Local Search Paradigms for Optimization. Kluwer
Academic Publishers.

Voudouris, C. and Tsang, E. (1999). Guided local search and its application to

the travelling salesman problem. European Journal of Operational Research,
113(2):469–499.

Voutchkov, I. and Keane, A. (2010). Computational Intelligence in Optimization:

Adaptation, Learning, and Optimization, chapter Multi-objective optimization
using surrogates, pages 155–175.

Vrugt, J. and Robinson, B. (2007). Improved evolutionary optimization from

genetically adaptive multimethod search. Proceedings of the National

Academy of Sciences, 104(3):708–711.

Vrugt, J., Robinson, B., and Hyman, J. (2010). Comment on paper ”multi-

strategy ensemble evolutionary algorithm for dynamic multi-objective
optimization” by wang and li. Memetic Computing, 2(2):161–162.

Wang, R., Purshouse, R., and Fleming, P. (2013). Preference-inspired

coevolutionary algorithms for many-objective optimization. IEEE

Transaction on Evolutionary Computation, 17(4):474–494.

219 | P a g e

Wang, Y. and Li, B. (2010). Multi-strategy ensemble evolutionary optimization

for dynamic multiobjective optimization. Memetic Computing, 2:3–24.

Watanabe, S., Hiroyasu, T., and Miki, M. (2002). Lcga: Local cultivation

genetic algorithm for multi-objective optimization problem. In Proceedings

of Genetic and Evolutionary Computation Conference (GECC2002).

Whitley, L. D. (1991). Foundations of Genetic Algorithms, chapter Fundamental

principles of deception in genetic search, pages 221–241. Morgan Kaufmann.

Wolpert, D. and Macready,W. (1997). No free lunch theorems for

optimization. IEEE Transactions on Evolutionary Computation, 1(1):67–8.

Yuan, B., Zhang, C., and Shao, X. (2013). A late acceptance hill-climbing

algorithm for balancing two-sided assembly lines with multiple constraints.
Journal of Intelligent Manufacturing. Publish online.

Zhang, Q. and Li, H. (2007). Evolutionary algorithms for multi-objective

optimization: Performance assessments and comparisons. IEEE

Transactions on Evolutionary Computation, 11(6):712–731.

Zhang, X., Srinivasan, R., and Liew, M. V. (2010). On the use of multi-

algorithm, genetically adaptive multi-objective method for multi-site
calibration of the swat model. Hydrological Processes, 24(8):955–1094.

Zhou, A., Qu, B. Y., Li, H., Zhao, S. Z., Suganthan, P. N., and Zhang, Q.

(2011). Multiobjective evolutionary algorithms: A survey of the state of the
art. Swarm and Evolutionary Computation, 1(1):32–49.

Zielinski,K., and Laur, R. (2007). Variants of Differential Evolution for Multi-

Objective Optimization. In Proceedings of the 2007 IEEE Symposium on

Computational Intelligence in Multicriteria Decision Making (MCDM2007), pages
91-99.

Zitzler, E. (1999). Evolutionary Algorithms for Multiobjective Optimization:

Methods and Applications. PhD thesis, ETH Zurich, Switzerland.

Zitzler, E., Deb, K., and Thiele, L. (2000). Comparison of multiobjective

evolutionary algorithms: Empirical results. Evolutionary Computation,
8(2):173–195.

Zitzler, E., Laumanns, M., and Thiele, L. (2001). Spea2: Improving the

strength Pareto evolutionary algorithm for multiobjective optimization. In
EUROGEN 2001-Evolutionary Methods for Design, Optimization and Control

with Applications to Industrial Problem, pages 95–100.

Zitzler, E. and Thiele, L. (1999). Multiobjective evolutionary algorithms: A

comparative case study and the strength Pareto approach. IEEE

Transactions on Evolutionary Computation, 3(4):253–290.

220 | P a g e

Zitzler, E. and K¨ unzli, S. (2004). Indicator-based selection in multiobjective
search. In Lecture Notes in Computer Science, Parallel Problem Solving from
Nature (PPSN VIII), page 832-842.Springer.

Zydallis, J., Van Veldhuizen, D., and Lamont, G. (2001). A statistical

comparison of multiobjective evolutionary algorithms including the
MOMGA-II. In Proceedings of the First International Conference on

Evolutionary Multi-Criterion Optimization, pages 226–240.

