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Abstract 

 
 

In this thesis, we investigate and develop a number of online learning 

selection choice function based hyper-heuristic methodologies that attempt to 

solve multi-objective unconstrained optimisation problems. For the first time, 

we introduce an online learning selection choice function based hyper-

heuristic framework for multi-objective optimisation. Our multi-objective 

hyper-heuristic controls and combines the strengths of three well-known 

multi-objective evolutionary algorithms (NSGAII, SPEA2, and MOGA), which 

are utilised as the low level heuristics.  A choice function selection heuristic 

acts as a high level strategy which adaptively ranks the performance of those 

low-level heuristics according to feedback received during the search process, 

deciding which one to call at each decision point.  Four performance 

measurements are integrated into a ranking scheme which acts as a feedback 

learning mechanism to provide knowledge of the problem domain to the high 

level strategy. To the best of our knowledge, for the first time, this thesis 

investigates the influence of the move acceptance component of selection 

hyper-heuristics for multi-objective optimisation. Three multi-objective choice 

function based hyper-heuristics, combined with different move acceptance 

strategies including All-Moves as a deterministic move acceptance and the 

Great Deluge Algorithm (GDA) and Late Acceptance (LA) as a non-

deterministic move acceptance function. 

 

 GDA and LA require a change in the value of a single objective at each 

step and so a well-known hypervolume metric, referred to as D metric, is 

proposed for their applicability to the multi-objective optimisation problems. D 

metric is used as a way of comparing two non-dominated sets with respect to 

the objective space. The performance of the proposed multi-objective 

selection choice function based hyper-heuristics is evaluated on the Walking 

Fish Group (WFG) test suite which is a common benchmark for multi-objective 

optimisation. Additionally, the proposed approaches are applied to the vehicle 

crashworthiness design problem, in order to test its effectiveness on a real-

world multi-objective problem.  The results of both benchmark test problems 

demonstrate the capability and potential of the multi-objective hyper-heuristic 

approaches in solving continuous multi-objective optimisation problems. The 

multi-objective choice function Great Deluge Hyper-Heuristic 

(HHMO_CF_GDA) turns out to be the best choice for solving these types of 

problems. 
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ΔόΘϤϣϭ ΔϠϴϤΟ ϯήϛΫ Ώ΍ήΘϏϻ΍ Ϧϣ Ε΍ϮϨδϟ΍ ϚϠΗ Ϟϛ ΖΤΒλ΍ ΎϤϟ.  
 

 ϲϟ Δλήϔϟ΍ ΔΣΎΗ΃ ϰϠϋ ϝ΍ΪϨϴϛ ϡΎϫ΍ήϏ έϮδϴϓϭήΒϟ΍ ϲγ΍έΪϟ΍ ϲϓήθϤϟ ϲϧΎϨΘϣ΍ϭ ϲϣ΍ήΘΣ΍ κϟΎΨΑ ϡΪϘΗ΃
ϡΎϬϐϨΗϮϧ ΔόϣΎΟ ϲϓ ϩ΍έϮΘϛΪϟ΍ ήϴπΤΘϟ  .ΓέϮΨϓϭ ˱΍ΪΟ ΔυϮψΤϣ ϲϧ· ϪΑϼρ ΪΣ΃ ϲϧϮϛ . έϮΘϛΪϠϟ  ˱Ύπϳ΃ ϲϧΎϨΘϣ΍ κϟΎΧ

 ϩ΍έϮΘϛΪϟ΍ ϲϓ ϲΜΤΑ ϰϠϋ ϑ΍ήηϺϟ ϝ΍ΪϨϴϛ έϮδϴϓϭήΒϟ΍ ϊϣ Ϣπϧ· ϱάϟ΍ ϥΎϛίϭ΃ έΪϧ΍ . Ϟϛ ϰϠϋ ΎϤϫήϜη΃ ϥ΃ Ωϭ΃
ήΒμϟ΍ ˬΔϘΜϟ΍ ˬέΎϜϓϻ΍ ˬΔϤϴϘϟ΍ ΕΎϬϴΟϮΘϟ΍ϭ ϢϋΪϟ΍ . ΡΎΠϧ ϰϠϋ ϢϬλήΣϭ ΕΎΣ΍ήΘϗϻ΍ϭ ΓέϮθϤϟ΍  ΎϤϬϤϳΪϘΗ ϰϠϋ ˱ϼπϓ

ϲΜΤΑ . ΎϤϫϲϟ ϡΎϬϟ· έΪμϣ ˱ΎϣϭΩ ΍ϮϧϮϜϴγϭ ΍ϮϧΎϛ  . ϩ΍έϮΘϛΪϟ΍ ΔϠΣήϣ ϝ΍Ϯρ Ϣ΋΍Ϊϟ΍ ΎϤϬόϴΠθΗϭ ΎϤϬΗΪϋΎδϤϟ ΔϨΘϤϣ . ΪϘϓ
ΎϣΪϗ ϲπϤϟ΍ϭ ΔϘΜϟ΍ ΐδϛϭ ˬΕΎΑϮόμϟ΍ ϰϠϋ ΐϠϐΘϠϟ ϲΗΪϋΎδϤΑ ௌ ΪόΑ Ϟπϔϟ΍ ΎϤϬϟ ϥΎϛ˴ .  

 
  ΚΤΒϟ΍ ΔϋϮϤΠϣ  ϰϟ· ήϜθϟΎΑ ϪΟϮΗ΃ ΎϤϛ(ϞΜϣϷ΍ ςϴτΨΘϟ΍ϭ Δϴϟϵ΍ ΔϟϭΪΠϟ΍  )ϋ ΔϴϠϛϭ ΔόϣΎΟ ϲϓ ϲϟϵ΍ ΐγΎΤϟ΍ ϡϮϠ

ϢϬϤϋΩϭ ϢϬΗΪϋΎδϣ ϰϠϋ ϡΎϬϐϨΗϮϧ . ΔλΎΧϭ ϊΘϤϣ Δγ΍έΪϟ΍ Ζϗϭ ΍ϮϠόΟ Ϧϳάϟ΍ ˯ϼϣΰϟ΍ Ϧϣ ΪϳΪόϟ΍ ήϜη΃ ϥ΃ Ωϭ΃ ΎϤϛϭ
ΎΘγ΁ έΎϳήϬηϭ ώϨϴη ϦϳϼϴϟϮΧ έϮΘϛΪϟ΍ ϲ΋ΎϗΪλ΃ . ϡΎϬϐϨΗϮϧ ΔόϣΎΟ Ϧϣ ˬ΍Ϊϧϻ ΎϔϠϴγ Ϯϳέ΍Ω έϮΘϛΪϟ΍ήϜη΍ ϥ΃ ˱Ύπϳ΍ Ωϭ΃ϭ

΍έΩ ϝϼΧ ϲόϣ ϪϧϭΎόΗ ϰϠϋ ϩ΍έϮΘϛΪϠϟ ϲΘγ . Ϧϣ ΐϳΩ ϲϧϮϤϴϠϛ έϮδϴϓϭήΒϟ ϖϴϤόϟ΍ ϱήϳΪϘΗ Ϧϋ Ώήϋ΃ ϥ΃ Ύπϳ΃ Ωϭ΃ϭ
έϮΒϧΎϛ ϲϓ ΎϴΟϮϟϮϨϜΘϠϟ ϱΪϨϬϟ΍ ΪϬόϤϟ΍- ΕΎΣ΍ήΘϗϻ΍ϭ ΓέϮθϤϟ΍ ϪϤϳΪϘΗ ϰϠϋ  ΪϨϬϟ΍.  
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 Γ΍έϮΘϛΪϟ΍ ΔθϗΎϨϣ ϲϨΤΘϤϤϠϟ ϲϧΎϨΘϣ΍ ϖϴϤϋ Ϧϋ ήΒϋ΃ ϥ΃ Ωϭ΃ ΎϤϛϭ : ˬ΍Ϊϧϻ ΎϔϠϴγ Ϯϳέ΍Ω έϮΘϛΪϟ΍(ϲϠΧ΍Ω ϦΤΘϤϣ )
ϭ ΪϠϴϔϴη ΔόϣΎΟ Ϧϣ ΞϨϤϴϠϓ ήΘϴΑ έϮδϴϓϭήΒϟ΍(ϲΟέΎΧ ϦΤΘϤϣ) ϲϓ ήϴΒϛ ΪΣ ϰϟ· ΕΪϋΎγ ϲΘϟ΍ ΔΒϗΎΜϟ΍ ϢϬΗΎϘϴϠόΗ ϰϠϋ  ˬ

ϞϜη Ϟπϓ΄Α  ΎϬΟ΍ήΧ΍ϭ ϲΘΣϭήρ΃ ΓΩϮΟ Ϧϣ ϦϴδΤΘϟ΍.  
 
  ϢϬϠϳϮϤΘϟ  ΍ΪϨϟήϳ΍ϭ ΓΪΤΘϤϟ΍ ΔϜϠϤϤϟ΍ ϲϓ ΔϳΩϮόδϟ΍ ΔϴϓΎϘΜϟ΍ ΔϴϘΤϠϤϟ΍ϭ ϙϮΒΗ ΔόϣΎΟ ϲϟ΍ ήϜθϟ΍ ϞϳΰΠΑ  ˱Ύπϳ΍ ϡΪϘΗ΍ ϢϬϤϋΩϭ

ϱΩΎϤϟ΍  . ˱΍ήϴΧ΁ϭ .. ϝΎμΗΎΑ Ϯϟ ϲΑ΍ήΘϏ΍ϭ ϲΘγ΍έΩ ΓΪϣ ϝϼΧ ϲϨϤϋΩ  κΨη Ϟϛ  ϥΎϓήόϟ΍ϭ ήϜθϟ΍ Ϧϣ ϰδϧ΍ ϻ ..
ϝ΍ϮΟ ΔϟΎγέ ..ΐϴϐϟ΍ ήϬυ ϲϓ ΔϗΩΎλ ΓϮϋΩ  ϰΘΣ ϭ΃ ΔϣΎδΘΑΎΑ .  

ϲθόϣ ϥΎϤϴϠγ ϞϋΎθϣ 
ϡΎϬΠϨΗϮϧ- ήΘδϴϟ  

ΓΪΤΘϤϟ΍ ΔϜϠϤϤϟ΍ 
 ˯ΎΘη˻˹˺˼/˻˹˺˽  
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1 Introduction 
 

1.1 Background and Motivations 

 
Many real-world problems are complex. Due to their (often) NP-hard 

nature, researchers and practitioners frequently resort to problem tailored 

heuristics to obtain a reasonable solution in a reasonable amount of time. 

Hyper-heuristics are emerging methodologies designed to generate high 

quality solutions in an attempt to solve difficult computational optimisation 

problems by performing a search over the space of heuristics rather than 

searching the solution space directly. One of their main aims is to raise the 

level of generality of search methodologies, and to automatically adapt the 

algorithm by combining the strength of each heuristic and making up for the 

weaknesses of others. This process requires the incorporation of a learning 

mechanism into the algorithm to adaptively direct the search at each decision 

point for a particular state of the problem or the stage of search.  Hyper-

heuristics have a strong link to Operations Research in terms of finding 

optimal or near-optimal solutions to computational search problems. It is also 

firmly linked to a branch of Artificial Intelligence in terms of machine learning 

methodologies (Burke et al., 2010). In a hyper-heuristic approach, different 

heuristics (or heuristic components) can be selected, generated or combined 

to solve a given optimisation problem in an efficient way. Generally, there are 

two recognized types of hyper-heuristics: selection and generation hyper-

heuristics.  A selection hyper-heuristic framework manages a set of low level 

heuristics and chooses the best one at any given time using a performance 

measure for each low level heuristic. This type of hyper-heuristic comprises 

two main stages: heuristic selection and move acceptance strategy. 

Hyper-heuristics have drawn increasing attention from the research 

community in recent years, although their roots can be traced back to the 

1960s. Numerous hyper-heuristic papers have been published and several 

studies are still being undertaken in this area of research. However, the 

majority of research in this area has been limited to single-objective 

optimisation. Hyper-heuristics for multi-objective optimisation problems is a 

relatively new area of research in Operational Research and Evolutionary 

Computation (Burke et al., 2010; Özcan et al., 2008). To date, few studies 

have been identified that deal with hyper-heuristics for multi-objective 

problems. Burke et al. (2003a) proposed a hyper-heuristic for multi-objective 

problems which was based on tabu search (TSRoulette Wheel). Veerapen et 
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al. (2009) presented another multi-objective hyper-heuristic approach that 

comprised two phases. An online selection hyper-heuristic, Markov chain 

based, (MCHH) has been investigated in McClymont and Keedwell (2011). 

Gomez and Terashima-Marʆn (2010) propose a new hyper-heuristic based on 

the multi-objective evolutionary algorithm NSGAII (Deb and Goel, 2001). A 

hyper-heuristic-based encoding was proposed by Armas et al. (2011) and 

Miranda et al. (2010) for solving strip packing and cutting stock problems. An 

adaptive multi-method search called AMALGAM is proposed by Vrugt and 

Robinson (2007). A multi-strategy ensemble multi-objective evolutionary 

algorithm called MS-MOEA for dynamic optimisation is proposed by Wang and 

Li (2010).  In Furtuna et al.  (2012) a multi-objective hyper-heuristic for the 

design and optimisation of a stacked neural network is proposed. Rafique 

(2012) presented a multi-objective hyper-heuristic optimisation scheme for 

engineering system design problems. Vázquez-Rodríguez and Petrovic (2013) 

proposed a multi-indicator hyper-heuristic for multi-objective optimisation.Len 

et al. (2009) proposed a hypervolume-based hyper-heuristic for a dynamic-

mapped multi-objective island-based model. Bai et al. (2013) proposed a 

multiple neighbourhood hyper-heuristic for two-dimensional shelf space 

allocation problem. Kumari et al. (2013) presented a multi-objective hyper-

heuristic genetic algorithm (MHypGA) for the solution of Multi-objective 

Software Module Clustering Problem.  

 
None of the above studies have used multi-objective evolutionary 

algorithms (MOEAs), only in Rafique (2012), Gomez and Terashima-Marʆn 

(2010) and Vrugt and Robinson (2007), and no continuous and standard 

multi-objective test problems have been studied, only in McClymont and 

Keedwell (2011), Vrugt and Robinson (2007), Len et al. (2009) and Vázquez-

Rodríguez and Petrovic (2013). Moreover, none of the previous hyper-

heuristics make use of the components specifically designed for multi-

objective optimisation that we introduce in this thesis. Our multi-objective 

hyper-heuristic framework addresses four main research areas, these being: 

multi-objective evolutionary algorithms, hyper-heuristics, meta-heuristics and 

multi-objective test problems. This thesis highlights the lack of scientific study 

that has been conducted in these areas and investigates the design of a 

hyper-heuristic framework for multi-objective optimisation and develops 

hyper-heuristic approaches for multi-objective optimisation (HHMOs) to solve 

continuous multi-objective problems. We focus on an online learning selection 

hyper-heuristics for multi-objective optimisation and their hybridisation with 

multi-objective evolutionary algorithms which controls and combines the 
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strengths of three well-known multi-objective evolutionary algorithms 

(NSGAII (Deb and Goel, 2001), SPEA2 (Zitzler et al., 2001) and MOGA 

(Fonseca and Fleming, 1998)). The performance of the multi-objective hyper-

heuristic approaches (HHMOs), when combined with a choice function that 

uses different move acceptance strategies such as all-moves, a great deluge 

algorithm (Dueck, 1993) and late acceptance (Burke and Bykov, 2008) is also 

studied.  

1.2 Aims and Scope 
 

References to multi-objective hyper-heuristics are scarce. This research, 

combines hyper-heuristic methodologies and multi-objective evolutionary 

algorithms in one approach in order to tackle multi-objective problems, in 

particular, continuous unconstrained real-valued problems.   

 

The main aim of this research is to investigate hyper-heuristic 

approaches for multi-objective optimisation problems based on multi-

objective evolutionary algorithms (MOEAs), in order to produce a set of high 

quality solutions (i.e. not necessarily optimal) compared with the existing 

approaches in the MOEA literature. 

 
In order to achieve this aim, several objectives are outlined as follows: 

 
  Study existing meta-heuristics for single-objective and multi-objective 

optimisation. 

  Understand existing hyper-heuristic methodologies particularly those 

based on heuristic selection.    

  Understand existing multi-objective evolutionary algorithms and 

identifying their strengths and weakness. 

  Investigate existing multi-objective test problems and identifying their 

desirable features. 

  Investigate a hyper-heuristic method based on heuristic selection with 

a deterministic move acceptance strategy.  

 Investigate a hyper-heuristic method based on heuristic selection with 

a non-deterministic move acceptance strategy.  

 Develop hyper-heuristic approaches to effectively and efficiently 

address multi-objective optimisation problems, demonstrating their 

effectiveness and efficiency on both benchmark test problems and a 

real-world problem. 
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In this thesis, a hyper-heuristic for multi-objective optimisation (HHMO) 

is investigated using three common multi-objective evolutionary algorithms 

NSGAII (Deb and Goel, 2001), SPEA2 (Zitzler et al., 2001) and MOGA 

(Fonseca and Fleming, 1993) as low level heuristics. The choice function acts 

as the selection mechanism. Four performance metrics; the algorithm effort 

(Tan et al., 2002), the ratio of non-dominated individuals (Tan et al., 2002), 

the uniform distribution of a non-dominated population (Srinivas and Deb, 

1994), and the hypervoulme (Zitzler and Thiele, 1999) are used in the 

framework to serve as a feedback mechanism. The use of different move 

acceptance strategies; All-Moves, GDA (Dueck, 1993) and LA (Burke and 

Bykov, 2008), combined with a choice function is also investigated.  The 

scope of this investigation is limited to continuous unconstrained problems. 

Combinatorial or discrete problems are not considered. The Walking Fish 

Group test suite (WFG) (Huband et al., 2006) is used as our benchmark 

dataset. The multi-objective design of vehicle crashworthiness problem (Liao 

et al., 2008) is used as a real-world application. 

1.3 Overview of the Thesis 
 

Our multi-objective hyper-heuristic framework addresses four main 

research areas; multi-objective evolutionary algorithms, hyper-heuristics, 

meta-heuristics and multi-objective test problems. Each area of research is 

discussed in this thesis. In chapter 2, a literature review of multi-objective 

evolutionary algorithms, hyper-heuristics and meta-heuristics are discussed. 

Chapter 2 also provides a description of well-known methodologies that 

address multi-objective optimisation and identify their strengths and 

weaknesses. A review of the scientific research on the subject is also 

presented. In chapter 3, the multi-objective test problems are identified and 

discussed. A description of the most common multi-objective test problems 

with an analysis of their features is given.   

  

In this thesis, a hyper-heuristic for multi-objective optimisation is 

investigated through two methods: 1) Heuristic selection with a deterministic 

move acceptance strategy. 2) Heuristic selection with a non-deterministic 

move acceptance strategy. This investigation is based on three common 

multi-objective evolutionary algorithms; NSGAII (Deb and Goel, 2001), SPEA2 

(Zitzler et al., 2001) and MOGA (Fonseca and Fleming, 1993) which act as low 

level heuristics, and the choice function is used as the selection method. In 

chapter 4, the details of the choice function based hyper-heuristic framework 
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for multi-objective optimisation is described. Also a description of the learning 

feedback mechanism and the ranking scheme that is used within the hyper-

heuristic framework is given.  

 

Chapter 5 presents an online learning selection choice function all-

moves based hyper-heuristic (HHMO_CF_AM). All-Moves is used as a 

deterministic move acceptance strategy. The proposed approach is tested and 

compared against the individual low level heuristics and other multi-objective 

hyper-heuristics from the scientific literature over the Walking Fish Group 

(WFG) test suite (Huband et al., 2006), a common benchmark for multi-

objective optimisation. 

An investigation of using non-deterministic move acceptance strategies, 

combined with a choice function as a heuristic selection method is provided in 

Chapters 6 and 7. We integrate D metric into the non-deterministic move 

acceptance criterion in order to convert the multi-objective optimisation to the 

single-objective optimisation without having to define values weights for the 

various objectives.  

 

In Chapter 6, a selection choice function great deluge based hyper-

heuristics (HHMO_CF_GDA) is proposed, developed and tested on the WFG 

test suite. The use of D metric within great deluge is discussed and described. 

Also an investigation of tuning the rain speed parameter (UP) of GDA is 

carried out.  

 

In Chapter 7, a selection choice function late acceptance based hyper-

heuristic (HHMO_CF_LA) is proposed. The use of D metric within late 

acceptance is presented. The comparison of the proposed approach and other 

multi-objective selection hyper-heuristics approaches, from Chapters 5 and 6, 

over the WFG test suite is investigated.   

 

The three multi-objective hyper-heuristics, that are proposed in 

Chapters 5, 6 and 7, are applied to a real-world problem in Chapter 8. A 

description and formulation of the real-world multi-objective problem - the 

design of vehicle crashworthiness - is provided. A well-known multi-objective 

evolutionary algorithm and our three hyper-heuristics are compared and 

evaluated over four instances of this problem. Also an investigation of tuning 

the number of decision points for these hyper-heuristics is presented.  

 



Chapter 1: Introduction 

 

6 | P a g e  

  

Finally, conclusions and recommendations for future work are presented 

in Chapter 9. 

1.4 Contributions of the Thesis 
 
The contributions of this thesis are as follows: 

 

 The thesis investigates hyper-heuristics hybridised with multi-

objective evolutionary algorithms (MOEAs) in order to tackle 

multi-objective problems. For the first time, a general design of a 

multi-objective hyper-heuristic framework based on a choice 

function is proposed in this thesis.  The framework is flexible and 

could incorporate any meta-heuristic for multi-objective 

optimisation. Three online learning multi-objective selection 

choice function based hyper-heuristic are combined with three 

different move acceptance strategies (HHMO_CF_AM, 

HHMO_CF_GDA and HHMO_CF_LA). The first approach uses All-

Moves as a deterministic move acceptance strategy and the other 

two approaches that are used GDA (Dueck, 1993) and LA (Burke 

and Bykov, 2008) respectively as additional non-deterministic 

move acceptance strategies.  We show that those approaches, 

using a non-deterministic move acceptance strategy, outperform 

the approach that uses a deterministic move acceptance strategy 

on the test instances used in this thesis. 

 

 This thesis presents a ranking scheme to measure the 

performance of low level heuristics, which also provides an online 

learning mechanism. The ranking scheme is simple and flexible 

and any number of low level heuristics can be incorporated. 

 

 The thesis, for the first time, introduces D metric - a binary 

hypervolume (Zitzler, 1999) - integrating this idea into the non-

deterministic move acceptance strategies (GDA and LA) in a 

multi-objective hyper-heuristic framework. The D metric is 

employed as the comparison tool in both move acceptance 

criteria in order to covert the multi-objective problem to a single-

objective problem without having to define weights for each term. 

 

 An application of a real-world problem on our multi-objective 

choice function based hyper-heuristics is investigated to see their 



Chapter 1: Introduction 

 

7 | P a g e  

  

performance on a real-world problem and measure the level of 

generality they we are able to achieve. It is shown that our 

methods produce better quality solutions when compared to other 

methods.     

1.5 Academic Papers Produced 
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Conference on Operational Research (SCOR 2012). April, Abstract. 

Maashi, M., Kendall, G., and Özcan, E. (2012). A great deluge based learning 

hyper-heuristic for multi-objective optimisation. The 54th  Operation 

Research Annual Conference(OR54), September. Available at: 

http://www.theorsociety.com/DocumentRepository/Browse.aspx?CatID=3, 

(Accessed: 17th April 2013), Abstract. 

 

Maashi, M.,  Özcan, E. and Kendall, G. (2014). A multi-objective hyper-
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review.  
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Hyper-heuristics on tri-objective WFG test problems. The 7th  Saudi 
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Abstract. 
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2 Literature Review 
 

 This chapter reviews three research areas; multi-objective evolutionary 

algorithms, meta-heuristics and hyper-heuristics. 
 

2.1 Multi-objective Evolutionary Algorithms (MOEAs) 
 

A multi-objective problem (MOP) comprises several objectives (two or 

more), which need to be minimised or maximised depending on the problem. 

A general definition of a MOP (Van Veldhuizen and Lamont, 2000) is:  
 
 
An MOP minimises  ሺ ሻ  ൌ  ሺ ଵሺ ሻǡ Ǥ Ǥ Ǥ ǡ  ୩ሺ ሻሻ subject to  ୧ሺ ሻ ൑ ͲǢ    ൌ  ͳǡ ǥ ǡ ǡ א  π.  

An MOP solution minimises the components of a vector  ሺ ሻǡ݁ݎ݄݁ݓ   is an n-

dimensional decision variable vector  ሺܺ ൌ   ଵǡ ǥ ǡ  ୬ሻ from some universe ƻ. 

 

An MOP consists of ݊  decision variables, ݉  constraints, and ݇ objectives. 

The MOP’s evaluation function, ׷  π ՜ ר  maps decision variable vectors  ሺܺ ൌ   ଵǡ ǥ ǡ  ୬ሻ  to vectors ሺ ൌ   ଵǡ ǥ ǡ  ୩ሻ. The mapping between the decision 

variable space and objective function space for multi-objective optimisation is 

represented in Figure 2.1. 

 

 
 

Figure 2.1: The mapping of Multi-objective spaces.  Reprinted from (Van Veldhuizen 
and Lamont, 2000). 

 
The relationship between a pair of objectives can be dependent and 

independent (Purshouse and Fleming, 2003a). Dependent objectives refers to 

objectives are harmony or conflict.  If objectives are in conflict with each 

other, i.e. an improvement in one objective leads to deterioration in other, 

multi-objective optimisation techniques are required to solve this case (Tan, 

2002). However, if two objectives are in harmony, i.e. an improvement in one 
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objective leads naturally to improvement in the other, the objectives can be 

converted into a single-objective and tackled as a single optimisation problem 

(Tan, 2002). Independent objectives refer to the objectives are not affect 

each other. In this case, the objectives can be solved completely separately 

from each other (Purshouse and Fleming, 2003a). 

 
Historically, a MOP was solved by converting the problem to a single-

objective problem, due to the lack of multi-objective optimisation (MOO) 

methodologies to find a set of optimal solutions instead of a single optimum 

solution (Deb, 2005). However, many MOO techniques have now been 

proposed; so that it is possible to find the so-called Pareto-optimal solutions. 

  

From a decision maker’s perspective, multi-objective optimisation 

techniques are divided into three classes (Landa-Silva et al., 2004; Van 

Veldhuizen and Lamont, 2000; Coello et al., 2007a): 

  

 A priori approach (decision-making and then a search)  

In this class, the objective preferences or weights are set by the 

decision maker prior to the search process. An example of this is 

aggregation-based approaches such as the weighted sum approach. 

The disadvantage of this approach is the requirement of the decision 

maker’s experience to define the weights of the criteria values, which 

is usually a complex task, requiring a lot of experience (Petrovic and 

Bykov, 2003). 

   

 A posteriori approach (a search and then decision-making) 

The search is conducted to find solutions for the objective functions. 

Following this, a decision process selects the most appropriate solutions 

(often involving a trade off). Multi-objective evolutionary optimisation 

(MOEA) techniques, whether non Pareto-based or Pareto-based, are 

examples of this class. MOEA techniques will be discussed later (see 

Section 2.1.3). 

 

  Interactive or progressive approach (search and decision-making 

simultaneously)   

In this class, the preferences of the decision maker(s) are made and 

adjusted during the search process.  
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The scientific literature proposes three methods to evaluate the quality 

of the solutions for any MOP (Coello et al., 2007a). The first method is 

objective combination, which is the classical method to aggregate the 

objectives into a single scalar value by using a weighted function, after 

allocating weights to the objective criteria (Zitzler et al., 2000; Landa-Silva et 

al., 2004). The second method is where one objective is optimised, while the 

other objectives are defined as constraints. The drawback of this method is 

the difficulty in deciding which objective function should be optimised at any 

given point (Coello et al., 2007a). Pareto-based evaluation is the third method 

used to evaluate the quality of MOP solutions. In this method, all objectives 

are optimised simultaneously applying Pareto dominance concepts (see the 

next subsection) and using a vector for the values of all objectives and their 

solutions fitness. The two first methods are much simpler than the last one 

but they are more subjective and not straightforward. Furthermore, the last 

method is more methodical, more practical and less subjective compared to 

the others (Deb, 2005).     

2.1.1 Pareto Dominance 

 

The idea behind the dominance concept is to generate a preference 

between MOP solutions since there is no information regarding objective 

preference provided by the decision maker. This preference is used to 

compare the dominance between any two solutions (Coello et al., 2007a; Tan 

et al., 2002). A more formal definition of Pareto dominance (for minimisation 

case) is as follows (Coello et al., 2007a): 

 

A vector ݑ ൌ ሺݑଵ ǡ ǥ ǡ ݒ ௞ሻ is said to dominate another vectorݑ ൌ ሺݒଵǡ ǥ ǡ  ௞ሻݒ
(denoted by ػ ݑ  is partially less ݑ according to ݇  objectives if and only if (ݒ  

than ݒ, i.e., א ݅׊ ሼͳǡ ǥ ǡ ݇ሽ,ݑ௜ ൑ ௜ݒ א ݅ ׌ ר ሼͳǡ ǥ ǡ ݇ሽ ׷ ௜ ൏ݑ    . ௜ݒ
 

In other words, a solution is known as non-dominated if there is no 

other solution that is better than it in all objectives. All non-dominated 

solutions are also known as the admissible set of the problem, non-inferior or 

the Pareto optimal sets (Landa-Silva et al., 2004). The corresponding Pareto 

optimal set, with respect to the objective space, is known as the non-

dominated frontier, the trade-off surface or the Pareto optimal front 

(Gandibleux and Ehrgott, 2005). In the rest of thesis, the terms Pareto 
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optimal set (PS) and Pareto optimal front (POF) will be used. An example of 

Pareto optimal front in two objective space is shown in Figure 2.2.  

 

 

 

 

 

 

 
Figure 2.2: An example of Pareto optimal front in two objective space. 

 

To further illustrate this idea, a solution ݔ is known as strictly dominates 

if it is better than another solution ݔ  in all objectives.  While a solution ݔ is 

known as loosely dominates if it is better than another solution ݔ  in some 

objectives but it is equivalent to another solution ݔ   at least in one objective 

(Landa-Silva et al., 2004). See Figure 2.3 for an illustration of these two 

concepts. 

 

 

 

 

Figure 2.3: Examples of strictly and loosely dominates solutions in the minimisation 

optimisation problem: in (a) the solution number 2  strictly dominates, in (b) the 
solutions numbers 2 and 4 are loosely dominates. 

 

2.1.2 MOEAs Background 

 

 The idea of evolutionary algorithm(s) (EAs) is analogues to Darwin’s 

principal of the biological evolution mechanism which adopted the concept of 

“survival-of-the-fittest” (Darwin, 1859). Many EA researchers would argue 

that evolutionary algorithm(s) are more suitable to deal with multi-objective 

optimisation problems (Deb and Goldberg, 1989; Bäck, 1996;  Fonseca and 

Fleming, 1998;  Deb, 2001; Coello et al., 2007a; Anderson et al., 2007; 

Zhang and Li, 2007; Miranda et al., 2010)  because of their population-based 
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nature, which means they can find Pareto optimal sets (trade-off solutions) in 

a single run, allowing a decision maker to select a suitable compromise 

solution. However, the task of an MOEA is not simply to find a Pareto optimal 

set that corresponds to the objectives of a particular problem. It is more 

complicated than that (Deb, 2005). MOEAs are multiple-objective in nature. 

Therefore, its task is also to minimise the distance of the Pareto optimal front 

and then maximise the extension of the Pareto optimal set (Zitzler et al., 

2000).  

 

According to Gandibleux and Ehrgott (2005), an EA comprises several 

components, which are the population, the evolutionary operators, (including 

crossover and mutation), the ranking method, the guiding method, the 

clustering method, the elite solutions archive, the fitness measurement and 

the penalty strategy. These components are discussed in more depth later in 

this section. 

 

When applying an EA to a MOP, two important issues have to be 

considered (Zitzler et al., 2000): (i) Guiding the search towards the Pareto 

optimal set via an appropriate fitness assignment and selection strategies, 

and (ii) maintaining a diverse Pareto optimal set to obtain a well-distributed 

Pareto optimal front. It is worth noting that the EA may not find a diverse 

Pareto optimal set in some cases because of the Pareto optimal set’s 

characteristics such as convexity, non-convexity, non-uniformity etc. (Zitzler 

et al., 2000). According to Coello et al. (2007a), a convex set is defined as 

that of all pairs of two points ݔ and ݕ in a set of points in ݊-dimensional space 

(see Figure 2.4 for examples of convexity, non-convexity sets). 

 

Furthermore, three elements can determine the quality of the obtained 

Pareto optimal set (Landa-Silva et al., 2004; Zitzler et al., 2000):  

 

i. The extent of the Pareto optimal set i.e. how many solutions are in the 

Pareto optimal set.  

 

ii. The distance of the Pareto optimal front i.e. the closeness of the Pareto 

optimal front and the obtained front. Note that in some MOPs the 

Pareto optimal front is unknown. 
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iii. The distribution of the Pareto optimal front i.e. the depth of the 

coverage of the Pareto optimal front. 
 

Examples of good and bad approximate Pareto fronts are shown in Figure 2.5.   

 

 

  

 

 
 
 
 
 
 

 

Figure 2.4: Examples of convexity, non-convexity sets.  A set is convex if the line 
segment connecting any two points in the set lies entirely inside the set. in (a), an 
example of convex Pareto optimal front , in (b), an example of non-convex Pareto 
optimal front. 
 

   

 

 

Figure 2.5: Examples of good and bad approximate Pareto fronts. In (a) a good 
example of  approximate Pareto front, it is well-distributed over the Pareto optimal 
front. (b) and (c) are poor examples of approximate Pareto fronts. In (b) the 
distribution of approximate Pareto front not uniform and in (c) the approximate Pareto 
front  is not well spread across  the Pareto optimal front. Reprinted from (Li & Zhang, 
2009). 

 

With regard to the distribution of the Pareto optimal set, there are many 

techniques proposed in the literature to improve it (Burke et al., 2003a). 

These include:  

 
 Tuning weights. 

 Clustering or niching methods. 

 Fitness sharing. 

 Cellular structures and adaptive grids. 

 Restricted mating sets. 

 Relaxed forms of the dominance relation. 
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The tuning weights strategy is used to guide the search towards the 

target region of the Pareto optimal front by pushing the current solution 

towards that region. Examples of approaches that have employed this 

strategy are found in Czyzak and Jaszkiewicz (1998) and Ishibuchi et al. 

(2002).   

 

Clustering (niching) methods aim to obtain a well-distributed Pareto 

optimal front via a fitness assignment based on the number of solutions on 

the given area (a measure of the crowding area). Examples of approaches 

that have employed this method are found in Lu and Yen (2002) and Socha 

and Kisiel-Dorohinicki (2002).  

 

The fitness sharing technique aims to find a uniform (so-called 

equidistant) distribution of the Pareto optimal front (Van Veldhuizen and 

Lamont, 2000) by reducing the fitness of solutions in a particular area that 

are close together (Burke et al., 2003a). The fitness sharing method can be 

either phenotypic-based, with respect to the objective function space, or 

genotypic-based, with respect to the decision variable space (Horn et al., 

1994).  A brief introduction of phenotype and genotype terms can be found in 

the section on genetic algorithms (Section 2.2.9). The genotypic-based 

method is often employed by the operational research community because 

they are more concerned with the variable space in order to obtain a well-

distributed Pareto optimal set (Benson and Sayin, 1997). However, setting 

appropriate values to the sharing parameter ıshare is not an easy task due to 

the necessity of a priori shape and the separation of the niche information for 

the problem at hand. Therefore, fitness sharing performance can be affected 

by the population size (Van Veldhuizen and Lamont, 2000).  

 

Cellular structures and adaptive grid techniques aim to uniformly 

distribute the solutions over the Pareto optimal front. The micro genetic 

algorithm 2 (micro-GA2) (Pulido and Coello, 2003) is an example of an 

approach that has used this technique. In this approach, an online adaptation 

is made using Pareto ranking and an external memory. 

 

The restricted mating method aims to reduce the probability of 

generating new, similar solutions by recombining these two solutions based 

on the degree of similarity between them (Burke et al., 2003a). However, this 
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method is not always effective for some MOPs (Van Veldhuizen and Lamont, 

2000).  

 

Relaxed forms of the dominance relation aim to allow a small detriment 

in one or many objectives according to a relaxation factor, called ߳-
dominance, if a large improvement in other objective(s) is acquired. However, 

an improvement in the objectives’ values can compensate for this relaxation 

(Coello et al., 2007a).    

2.1.3 MOEA Methodologies 

 

Schaffer (1985) proposed a non-Pareto based approach, namely the 

vector evaluated genetic algorithm (VEGA). It is considered as the first MOEA 

that has been formally proposed (Zitzler et al., 2000. In each generation, the 

population is divided into sub-populations based on the number of objectives. 

Each sub-population attempts to optimise a certain objective. Then these sub-

populations are shuffled together and mutation and crossover operators are 

applied in order to generate the new population. The main drawback of VEGA 

is its inability to converge to non-convex areas of the Pareto optimal front.  

 
Since 1985, various other MOEA techniques have been presented in the 

scientific literature. The most common ones being:  MOGA (Fonseca and 

Fleming, 1993), NSGA (Srinivas and Deb, 1994), PESA (Knowles and Corne, 

2000), SPEA (Zitzler and Thiele; 1999), MOMGA (Van Veldhuizen, 1999) and 

NPGA (Horn et al., 1994). However, several MOEA techniques are still 

emerging, while many existing MOEA techniques are being modified to create 

new versions.  A survey of MOEAs can be found in Zhou et al. (2011) and 

Giagkiozis et al. (2013).    

 
Tan et al. (2002) classifies MOEAs into three groups, with respect to 

their implementation strategies (selection methods and cost assignments). 

The three groups are naïve approaches, non-aggregation approaches and 

Pareto-based approaches. However, some other researchers classify MOEAs 

from a different perspective. Fonseca and Fleming (1995) classify MOEAs with 

respect to their algorithmic basis and Coello et al. (2007a) classify them with 

respect to the decision maker’s viewpoint (see Section 2.1).    

 
Pareto-based approaches are classical MOEAs. This section focuses on 

the Pareto-based approaches particularly MOGA, NGSA, SPEA, NPGA and 
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MOMOGA, because they are efficient and effective and they also incorporate 

much of the known MOEA theory (Van Veldhuizen and Lamont, 2000).  

2.1.4 Multi-objective Genetic Algorithm (MOGA) 

 

MOGA was proposed by Fonseca and Fleming (1993). In MOGA, the 

Pareto ranking scheme is used i.e. each solution in the current population is 

given a rank based on their dominance rank. All solutions in the Pareto 

optimal set have a rank of 1. A niche-formation method (fitness sharing) is 

employed in phenotypic-based cases to maintain a well-distributed population 

over the POF (Coello et al., 2007a). The average value of the fitness for all 

solutions that have the same rank is assigned to these solutions. A modified 

version of this algorithm has been proposed by Fonseca and Fleming (1998). 

This version employed restricted sharing between solutions that have the 

same rank and the distance between two solutions is computed and compared 

to the key sharing parameter ıshare. While MOGA is efficient and easy to 

implement, its fitness sharing method prevents two vectors that have the 

same value in the objective space existing simultaneously unless the fitness 

sharing is genotypic-based. The pseudo code of MOGA is shown in algorithm 

1. 

2.1.5 Non-dominated Sorting Genetic Algorithm (NSGA) 

         

The original version of the Non-dominated Sorting Genetic Algorithm 

(NSGA) was proposed by Srinivas and Deb (1994). It employs a dominance 

depth based on the Pareto ranking scheme (Van Veldhuizen and Lamont, 

2000). Moreover, a dummy fitness value, proportional to the population size, 

is used to classify all solutions in the Pareto optimal set.  The fitness sharing 

method is quite similar to that used in MOGA but it is genotypic-based and 

applied to each level to maintain the diversity of the population and to obtain 

a uniform distribution of the POF (Zitzler et al., 2000). Once all solutions in 

the population are classified, the first Pareto front is assigned to the 

maximum fitness value. Therefore, the first Pareto front must have more 

copies than the other solutions in the population. A stochastic remainder 

selection strategy is employed for this purpose (Coello et al., 2007a). The 

complexity of NSGA is exhibited in its fitness sharing mechanism which 

assigns the fitness values to solutions in the current population. Knowles and 

Corne (2000), and many other researchers, have reported that NSGA has a 

poorer performance than MOGA. It is also more sensitive to the sharing 
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parameter ıshare than MOGA. However, some researchers point out that NGSA 

helps obtain a well-spread POF (Coello et al., 2007a). The pseudo code of 

NSGA is shown in algorithm 2. 

 

Reprinted from (Coello et al., 2007a) 
 

Algorithm 2: NSGA algorithm  
  1: procedure NSGA ቀܰĻǡ ݃ǡ ௜݂ ሺݔ௞ሻቁ ٲ ܰĻܾ݉݁݉݁݁ݒ݈݋ݏ ݋ݐ ݏ݊݋݅ݐܽݎ݁݊݁݃ ݃ ݀݁ݒ݈݋ݒ݁ ݎ ௞݂ ሺݔሻ 
  2:         Initialise Population ƵĻ 
  3:          Evaluate Objective Values 
  4:         Assign Rank Based on Pareto dominance in Each ܹܽ݁ݒ 
  5:         Compute Niche Count 
  6:         Assign Shared Fitness 
  7:         for ݅ ൌ ͳ to ݃ do 
  8:                Selection via Stochastic Universal Sampling 
  9:                Single Point Crossover 
10:                Mutation 
11:                Evaluate Objective Values  
12:                Assign Rank Based on Pareto dominance in Each ܹܽ݁ݒ 
13:                Compute Niche Count 
14:                Assign Shared Fitness  
15:        end for 
16:end procedure 

Reprinted from Coello et al., 2007a) 
 

A modified version of NSGA was proposed by Deb and Goel (2001). The 

modified version (NSGAII), is a non-explicit building block MOEA technique 

that incorporates the concept of elitism (Deb, 2005; Coello et al., 2007a). The 

solutions compete, then each solution is ranked and sorted based on its 

Pareto optimal level. 

 

Genetic operators are applied to generate a new group of children who 

are then merged with parents in the population (Coello et al., 2007a). 

Furthermore, a niching method based on crowding distance is used during the 

Algorithm 1: MOGA algorithm  
  1: procedure MOGA ൫ܰᇱǡ ݃ǡ ௞݂ሺݔሻ൯ ٲ ܰᇱܾ݉݁݉݁݁ݒ݈݋ݏ ݋ݐ ݏ݊݋݅ݐܽݎ݁݊݁݃ ݃ ݀݁ݒ݈݋ݒ݁ ݎ ௞݂ሺݔሻ 
  2:      Initialise Population ƵĻ  
  3:       Evaluate Objective Values 
  4:       Assign Rank Based on Pareto dominance 
  5:       Compute Niche Count 
  6:       Assign Linearly Scaled Fitness 
  7:       Shared Fitness      
  8:       for ݅ ൌ ͳ to ݃ do 
  9:             Selection via Stochastic Universal Sampling 
10:             Single Point Crossover 
11:             Mutation 
12:             Evaluate Objective Values 
13:             Assign Rank Based on Pareto dominance 
14:             Compute Niche Count  
15:             Assign Linearly Scaled Fitness 
16:             Assign Shared Fitness 
17:       end for 
18: end procedure 
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selection process in order to maintain a diverse Pareto front (Zhang and Li, 

2007). The pseudo code of NSGAII is shown in algorithm 3. 

 

Algorithm 3: NSGAII algorithm  
  1: procedure NSGAII ቀܰĻǡ ݃ǡ ௜݂ ሺݔ௞ሻቁ ٲ ܰĻܾ݉݁݉݁݁ݒ݈݋ݏ ݋ݐ ݏ݊݋݅ݐܽݎ݁݊݁݃ ݃ ݀݁ݒ݈݋ݒ݁ ݎ ௞݂ ሺݔሻ 
  2:         Initialise Population ƵĻ 
  3:          Generate random population- size ܰĻ 
  4:          Evaluate Objective Values 
  5:         Assign Rank (level) Based on Pareto dominance - ݐݎ݋ݏ 
  6:         Generate Child Population 
  7:            Binary Tournament Selection 
  8:            Recombination and Mutation   
  9:         for ݅ ൌ ͳ to ݃ do 
10:                for each Parent  and Child in Population do 
11:                   Assign Rank (level) Based on Pareto dominance - ݐݎ݋ݏ 
12:                   Generate sets of nondominated vectors along  ܲܨ௞௡௢௪௡ 
13:                   Loop (inside) by adding solutions to next generation starting from the                                      ݂݅ݐݏݎ  front until ܰĻindividuals found determine crowding distance   
                       between points on each front  
14:                end for  
15:                Select points (elitist) on the lower front (with lower rank) and are  
                     outside a crowding distance 
16:                Create next generation  
17:                Binary Tournament Selection 
18:                Recombination and Mutation 
19:       end for  
20: end procedure 

Reprinted from (Coello et al., 2007a) 
 

Although NSGAII is more efficient than NSGA, it still has some 

drawbacks. It cannot simply generate an approximate set in some regions of 

the search space, particularly unpopulated regions (Coello and Pulido, 2001). 

In addition, NSGAII performs very badly when used for many-objectives 

optimisation (Purshouse and Fleming, 2007). As the number of objectives 

increase, the proportion of the space becomes lager and the solutions 

returned can be quite far from the Pareto optimal front. As result of this, the 

algorithm biased towards poor proximity solutions to the Pareto optimal front 

(Jaszkiewicz, 2001a; Purshouse and Fleming, 2007). Although, the algorithm 

could obtain very good spread across the Pareto optimal front, it faces difficult 

to achieve a good proximity. 

2.1.6 Strength Pareto Evolutionary (SPEA) 

 

The first version of Strength Pareto Evolutionary Algorithm (SPEA) was 

proposed by Zitzler and Thiele (1999). It integrates different desirable 

features in MOEAs which are (i) the use of the concept of dominance in the 

evaluation and selection process, (ii) the use of an external archive 

(secondary population) of the Pareto optimal set that was previously 
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obtained, and  (iii) the use of clustering and niching methods (Landa-Silva et 

al., 2004).  In each generation, the Pareto optimal set is added to the 

secondary population. The solutions in the secondary population are used to 

evaluate the fitness values for the solution in the current population by 

summing the solutions’ rank in the secondary population (Landa-Silva et al., 

2004; Van Veldhuizen and Lamont, 2000). 

 

The Pareto ranking scheme, based on the dominance count and rank, is 

employed, which means any distance measurement such as niche radius is 

not required (Coello et al., 2007a). The secondary population participates in 

the selection process, which leads to an increase in the population size. 

Therefore, a clustering technique, namely the average linkage method, is 

adopted to deal with this issue (Coello et al., 2007a). The pseudo code of 

SPEA is shown in algorithm 4. 

 

Algorithm 4: SPEA algorithm 
  1: procedure SPEA  ൫ܰĻǡ ݃ǡ ௞݂ ሺݔሻ൯ ٲ ܰĻܾ݉݁݉݁݁ݒ݈݋ݏ ݋ݐ ݏ݊݋݅ݐܽݎ݁݊݁݃ ݃ ݀݁ݒ݈݋ݒ݁ ݎ ௞݂ ሺݔሻ 
  2:         Initialise Population ƵĻ 
  3:         Create empty external set  ƪĻ  ሺȁƪĻȁ ൏ ȁƵĻȁሻ 
  4:         for ݅ ൌ ͳ to ݃ do 
  5:               ƪĻ ൌ ƪĻ ׫ ٲ ሺƵĻሻܦߋ  ƪ ݋ݐ Ƶ ݂݋ ݀݁ݐܽ݊݅݉݋݀݊݋݊ ܾ݁ ݋ݐ ݃݊݅ݑݐܽݑ݈ܽݒ݁ ݏݎܾ݁݉݁݉  ݕ݌݋ܥ
  6:               ƪĻ ൌ ٲ ሺƪሻܦߋ  ƪ ݊݅ ݏݎ݋ݐܿ݁ݒ ݀݁ݐܽ݊݅݉݋݀݊݋݊ ݋ݐ ݃݊݅ݐܽݑ݈ܽݒ݁ ݎܾ݁݉݁݉ ݕ݈݊݋ ݌݁݁݇
  7:               Prune ƪĻ  (using clustering) if max capacity of  ƪĻ is exceeded 
ƵĻ Evaluate ቀƵĻ௜ቁא௜׊               :8   ٲ   ƪĻ ܽ݊݀ ƵĻ ݂݋ ݏݎܾ݁݉݁݉ ݈݈ܽ ݎ݋݂ ݏݏ݁݊ݐ݂݅ ݁ݐݑ݈ܽݒܧ
 ƪĻ Evaluate (ƪĻ௜)א௜׊               :9  
10:               ࣧ࣪ ՚ ࣮ ቀƵĻ ׫ ƪĻቁ ٲ   ݄ݐ݅ݓ ݊݋݅ݐ݈ܿ݁݁ݏ ݐ݊݁݉ܽ݊ݎݑ݋ݐ ݕݎܾܽ݊݅ ݁ݏܷ
ٲ                                                 :11 ƪĻ ݉݋ݎ݂ ݏ݈ܽݑ݀݅ݒ݅݀݊݅ ݐ݈ܿ݁݁ݏ ݋ݐ ݐ݈݊݁݉݁ܿܽ݌݁ݎ ൅ ƵĻ    
ٲ                                                 :12 ሺ݉݊݋݅݊ݑ ݐ݁ݏ݅ݐ݈ݑሻ݈݈ݑ݂ ݏ݅ ݈݋݋݌ ݃݊݅ݐܽ݉ ݄݁ݐ ݈݅ݐ݊ݑ 
13:                Apply crossover and mutation on  ࣧ࣪ 
14:        end for  
15: end procedure 

Reprinted from (Coello et al., 2007a) 
 

Despite SPEA generally having a good performance, it has some 

potential weak points in terms of fitness assignment, density estimation and 

archive truncation, which may affect SPEA’s quality (Gandibleux and Ehrgott, 

2005). To overcome these, an updated version called SPEA2 was proposed by 

Zitzler et al. (2001). SPEA2 differs from the previous version in three aspects: 

(i) it incorporates a fine-grained fitness assignment strategy which considers 

the number of individuals for each solution that dominates it and which it is 

dominated by, (ii) it uses a nearest neighbour density estimation technique in 

order to increase the efficiency of the search, and  (iii) it improves the archive 

truncation method that guarantees the preservation of boundary points by 
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replacing the average linkage method used in the previous version. The 

experimental results show that SPEA2 performs well in terms of diversity and 

distribution as the number of objectives increases. In addition, it significantly 

outperforms its predecessor SPEA. The pseudo code of SPEA2 is shown in 

algorithm 5. 

 

Algorithm 5: SPEA2 algorithm  

  1: procedure SPEA2  ൫ܰĻǡ ݃ǡ ௞݂ ሺݔሻ൯ 
  2:         Initialise Population ƵĻ 
  3:         Create empty external set  ƪĻ  ሺȁƪĻȁ ൏ ȁƵĻȁሻ 
  4:         for ݅ ൌ ͳ to ݃ do 
  5:             Compute fitness of each individual in  ƵĻ and ƪĻ 
  6:             Copy all individual evaluating to nondominated vectors  ƵĻ and ƪĻ to ƪĻ 
  7:             Use the truncation operator to remove elements from ƪ  when  the 
capacity of  
                  the file has been extended  
  8:             If the capacity of  ƪĻ has not been exceeded then use dominated 
individuals in                              ƵĻ to fill ƪĻ  
  9:             Perform binary tournament selection with replacement to fill the mating 
pool 
10:             Apply crossover and mutation to the mating pool 
11:        end for  
12: end procedure 

Reprinted from (Coello et al., 2007a) 

2.1.7 Niched Pareto Genetic Algorithm (NPGA) 

 

The Niched Pareto Genetic Algorithm (NPGA) was proposed by Horn et 

al. (1994).  It uses the tournament selection scheme based on Pareto 

dominance ranking. Two randomly selected solutions are compared against 

~10% of the population. If one of them is dominated while the other is not, 

the Pareto optimal set is selected. If both selected solutions are dominated or 

non-dominated, the fitness sharing scheme (equivalence class sharing) is 

employed to decide the results of the tournament. The pseudo code of NPGA 

is shown in algorithm 6 (Coello et al., 2007a). 

 
NPGA has some difficulties in terms of the convergence towards the 

POF. To overcome this, an improved Niched Pareto Genetic Algorithm called 

NPGA2 was proposed by Erickson et al. (2001). In NPGA2, Pareto ranking and 

tournament selection schemes are used. NPGA2 evaluates the niche counts 

based on the next generation, instead of the current generation, using a 

continuously updated fitness sharing. The pseudo code of NPGA2 is shown in 

algorithm 7. 

 

 

 



Chapter 2: Literature Review  

 

21 | P a g e  

  

 

Reprinted from (Coello et al., 2007a) 
 

 

Algorithm 7: NPGA2 algorithm  

  1: procedure NPGA2  ሺܰĻǡ ݃ǡ ௞݂ ሺݔሻሻ ٲ ܰĻܾ݉݁݉݁݁ݒ݈݋ݏ ݋ݐ ݏ݊݋݅ݐܽݎ݁݊݁݃ ݃ ݀݁ݒ݈݋ݒ݁ ݎ ௞݂ ሺݔሻ 
  2:         Initialise Population ƵĻ 
  3:         Evaluate Objective Values  
  4:         for ݅ ൌ ͳ to ݃ do 
  5:             Specialized Binary Tournament Selection using rank as domination 

degree 
  6:             Begin 
  7:                  if  Only Candidate 1 dominated then  
  8:                      Select Candidate 2 
  9:                  else if Only Candidate 2 dominated then 

10:                      Select Candidate 1 
11:                  else if Both are Dominated or Nondominated then 
12:                       Perform specialized fitness sharing 
13:                       Return Candidate with lower niche count 
14:                  end if 
15:             End 
16:             Single Point Crossover 
17:             Mutation 
18:             Evaluate Objective Values  
19:        end for  
20: end procedure 

Reprinted from (Coello et al., 2007a) 
 

 

2.1.8 Multi-objective Messy Genetic Algorithm (MOMGA) 

  

The Multi-objective Messy Genetic Algorithm (MOMGA) was proposed by 

Van Veldhuizen (1999). The algorithm is an extended version of the Messy 

Genetic Algorithm that is designed for a MOP. It is an explicit building block 

technique that comprises three stages: (i) the initialisation stage where 

Algorithm 6: NPGA algorithm  

  1: procedure NPGA  ሺܰĻǡ ݃ǡ ௞݂ ሺݔሻሻ ٲ ܰĻܾ݉݁݉݁݁ݒ݈݋ݏ ݋ݐ ݏ݊݋݅ݐܽݎ݁݊݁݃ ݃ ݀݁ݒ݈݋ݒ݁ ݎ ௞݂ ሺݔሻ 
  2:         Initialise Population ƵĻ 
  3:         Evaluate Objective Values  
  4:         for ݅ ൌ ͳ to ݃ do 
  5:             Specialized Binary Tournament Selection 
  6:             Begin 
  7:                  if  Only Candidate 1 dominated then  
  8:                      Select Candidate 2 
  9:                  else if Only Candidate 2 dominated then 

10:                      Select Candidate 1 
11:                  else if Both are Dominated or Nondominated then 
12:                       Perform specialized fitness sharing 
13:                       Return Candidate with lower niche count 
14:                  end if 
15:             End 
16:             Single Point Crossover 
17:             Mutation 
18:             Evaluate Objective Values  
19:        end for  
20: end procedure 
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building blocks of the population are generated in the partially enumerative 

initialisation process, (ii) the primordial stage where a tournament selection 

scheme is applied on the population, and finally (iii) the juxtapositional  stage 

where a recombination of Messy GA operators are applied to build up the 

population.  

 

The main advantage of MOMGA is that it is very powerful. However, it 

has some difficulties related to the population size. Its population size grows 

exponentially when the size of the building block increases. Many modified 

versions of MOMGA have been proposed. MOMGA-II described in Zydallis et 

al. (2001) is comprises three stages: the initialisation stage, the building 

filtering stage and the juxtapositional stage. The first two stages are different 

from MOMGA. MOMGA-III is the MOMGA recorded in an object-oriented form. 

The pseudo code of MOMGA and MOMGA-II are shown in algorithm 8 and 

algorithm 9 respectively. 

 

Algorithm 8: MOMGA algorithm  

  1: procedure MOMGA  ሺܰĻǡ ݃ǡ ௞݂ ሺݔሻሻ  
  2:         for ݅ ൌ ͳ to ݄݁ܿ݋݌ do 
ٲ         :3    ݁ݏ݄ܽܲ ܫܧܲ
  4:              Perform Partially Enumerative Initialisation 
  5:              Evaluate each population member’s fitness with respect to k templates 
ٲ             :6    ݁ݏ݄ܽܲ ݈ܽ݅݀ݎ݋݉݅ݎܲ
  7:                  for ݅ ൌ ͳ to ݏ݊݋݅ݐܽݎ݁݊݁ܩ ݈ܽ݅݀ݎ݋݉ݎ݅ܲ ݔܽܯ do 
  8:                        Perform Tournament Thresholding Selection  
  9:                        if Appropriate number of generations accomplished then 

10:                            Reduce Population Size 
11:                        end if  
12:                   end for                      
ٲ                   :13      ݁ݏ݄ܽܲ ݈ܽ݊݋݅ݐ݅ݏ݋݌ܽݐݔݑܬ
14:                  for ݅ ൌ ͳ to ݏ݊݋݅ݐܽݎ݁݊݁ܩ ݈ܽ݊݋݅ݐ݅ݏ݋݌ܽݐݔݑܬ ݔܽܯ do                   
15:                       Cut-and-Slice 
16:                       Evaluate Each Population member’s fitness with respect to k  
                            templates 
17:                       Perform Tournament Thresholding Selection and Fitness Sharing 
18:                       ௞ܲ௡௢௪௡ ሺݐሻ ൌ ௖ܲ௨௥௥௘௡௧ ሺݐሻ ׫   ௞ܲ௡௢௪௡ ሺݐ െ ͳሻ  
19:                end for 
20:                Update k templates  ٲ  ݁ݒ݅ݐ݆ܾܿ݁݋ ݄ܿܽ݁ ݊݅ ݁ݑ݈ܽݒ ݊ݓ݋݊݇ ݐݏܾ݁  ݃݊݅ݏܷ
21:        end for  
22: end procedure 

Reprinted from (Coello et al., 2007a) 
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Reprinted from (Coello et al., 2007a) 

 2.1.9 Overview of Many-objectives Optimisation 

 

As the focus of this thesis is on multi-objective optimisation (two or 

three objectives), only a brief overview on many-objectives optimisation is 

presented in this section.  

 

Recently, more attention is has been paid from EAs research to the 

many-objective optimisation (Purshouse and Fleming, 2004, 2007). In many-

objective optimisation, the number of objectives is more than two and three. 

It might involve a large number of objectives. Unlike multi-objective 

optimisation, many-objectives optimisation faces some difficulties in terms 

diversity of solutions and obtaining an accurate approximation of the Pareto 

optimal front. These difficulties are known as dominance resistance and 

speciation (Purshouse and Fleming, 2004). Many-objectives optimisation also 

faces challenge when the objectives are in harmony.  The traditional MOEA 

that designed for multi-objective optimisation cannot deal with many-

objectives optimisation effectively. As the number of objectives increases, the 

proportion of non-dominated solution in the objective space becomes very 

large. So the selection pressure based on dominance is less effective which 

causes poor searching in seeking a good approximation of the Pareto front.  

To overcome this, some suggestions have been proposed (Adra and Fleming, 

2011) such as modifying Pareto dominance by using different ranking 

Algorithm 9: MOMGA-II algorithm 

  1: procedure MOMGA-II  ሺܰĻǡ ݃ǡ ௞݂ ሺݔሻሻ  
  2:         for ݊ ൌ ͳ to ݇ do 
  3:         Perform Probabilistically Complete Initialisation 
  4:         Evaluate each population member’s fitness with respect to k templates 
ٲ         :5    ݁ݏ݄ܽܲ ܨܤܤ ݃݊݅ݎ݁ݐ݈݅ܨ ݇ܿ݋݈ܤ ݈݃݊݅݀݅ݑܤ
  6:            for ݅ ൌ ͳ to ݏ݊݋݅ݐܽݎ݁݊݁ܩ  ܨܤܤ ݂݋ ݏݎܾ݁݉ݑܰ ݔܽܯ do  
  7:                  if  BBF Required Based Off of Input Schedule  then 
  8:                        Perform BBF 
  9:                 else Perform Tournament Thresholding Selection then 

10:                 end if 
11:            end  for           
ٲ                :12         ݁ݏ݄ܽܲ ݈ܽ݊݋݅ݐ݅ݏ݋݌ܽݐݔݑܬ
13:            for ݅ ൌ ͳ to ݏ݊݋݅ݐܽݎ݁݊݁ܩ ݈ܽ݊݋݅ݐ݅ݏ݋݌ܽݐݔݑܬ ݔܽܯ do                   
14:                  Cut-and-Slice 
15:                       Evaluate Each Population member’s fitness with respect to k  
                            templates 
16:                       Perform Tournament Thresholding Selection and Fitness Sharing 
17:                       ௞ܲ௡௢௪௡ ሺݐሻ ൌ ௖ܲ௨௥௥௘௡௧ ሺݐሻ ׫   ௞ܲ௡௢௪௡ ሺݐ െ ͳሻ  
18:                end for 
19:                Update k  competitive templates  ٲ  ݁ݒ݅ݐ݆ܾܿ݁݋ ݄ܿܽ݁ ݊݅ ݁ݑ݈ܽݒ ݊ݓ݋݊݇ ݐݏܾ݁  ݃݊݅ݏܷ
20:        end for  
21: end procedure 
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schemes, use of goals and preference information to limit the search space, 

and employing different diversity management strategies. For more details 

see (Purshouse and Fleming, 2003b). 

2.1.10 Overview of Performance Metrics for Multi-

objective Optimisation 

 

The comparison of the quality of solutions for multi-objective 

optimisation is more complex than single-objective problems. The number of 

non-dominated individuals should be maximised, the distance of the non-

dominated   front   should be minimised, i.e. the  resulting  non-dominated  

set should be distributed uniformly as much as possible and converge well 

toward the POF. 

 

In the scientific literature, many performance metrics have been 

proposed to measure different aspects of the quality and quantity of the 

resulting non-dominated set. See (Van Veldhuizen, 1999; Coello et al., 

2007a).  Some of these metrics require knowledge of the true Pareto front, 

whilst others do not.  Some metrics, known as unary metrics, are designed to 

evaluate the performance of each algorithm independently of other 

algorithms. While other metrics, known as binary metrics, are designed to 

compare two non-dominated sets to each other. Deb (2001) classifies the 

performance metrics into three classes- metrics for convergence, metrics for 

diversity and metrics for both convergence and diversity.  Knowles and Corne 

(2002) classifies the performance metrics based on the outperformance 

relations between two non-dominated sets into strong, weak and complete 

outperformance of one non-dominated set to another.  

 

 The quality of the obtained Pareto optimal set can be determined by 

three criteria (Landa-Silva et al., 2004; Zitzler et al., 2000):  

 

(i) The extent of the Pareto optimal set i.e. how many solutions 

are in the Pareto optimal set? Ratio of non-dominated 

individuals (RNI) (Tan et al., 2002) and Error ratio (ER) (Van 

Veldhuizen, 1999) are examples of metrics that measure this 

criterion. 
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(ii) The distance of the Pareto optimal front, i.e. the closeness of 

the Pareto optimal front and the obtained non-dominated front. 

Examples of unary metrics that measure this criteria are the 

size of space covered metric (SSC or S-metirc) (Zitzler and 

Thiele, 1999), generational distance (GD) (Van Veldhuizen and 

Lamont, 1998b) and inverted generational distance (IGD) 

(Coello and Cruz Cortès, 2005). C metric and D metric (Zitzler, 

1999) are examples of binary metrics that measure this 

criterion. 
 

(iii) The distribution of the Pareto optimal set i.e. the depth of the 

coverage of the Pareto optimal front. Uniform distribution of a 

non-dominated population (UD) (Srinivas and Deb, 1994) and 

Spacing metric () (Deb and Jain, 2002) are examples of 

metrics that measure this criterion. 

Beside the above three criteria, the computational time of the algorithm 

can be considered as a criterion to evaluate the performance of an optimiser, 

i.e. the time that an algorithm needs to obtain a non-dominated set should be 

minimised.  Algorithm effort (AE) (Tan et al, 2002) is an example of metrics 

that measure this criterion. 

 

 Some of the performances that measure the above criteria are 

described as follows: 

 

 The size of space covered (SSC) 

 

SSC is a hypervolume presented by Zitzler and Thiele (1999). It is also 

known as the S-metric. This metric evaluates the size (volume) of the 

objective functions space covered by the solutions around the POF. Let ܺ  
be a population and ݔ௜ א   ܺ, the function SSC(X) gives the volume enclosed 

by the union of the polytopes in the objective domain, where each polytope 

formed by the intersection of the following hyperplanes arising out of, 

along with the axes i.e. any point within the polytopes is always dominated 

by at least one ݔ௜   in  ܺ.  SSC does not require knowledge of the true POF 

but it requires a reference point as the origin of the objective space.   A 

lager value of SSC indicates better quality of non-dominated set which 

means a smaller distance to the true POF.  
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 Uniform distribution of a non-dominated population (UD) 

UD is a unary metric presented by Srinivas and Deb (1994). It evaluates 

the distribution of non-dominated individuals over the POF. The distribution 

should be as uniform as possible to gain consistent gaps among 

neighbouring individuals in the population. Let ܺ  be a set of nondominated 

individual, UD defined as 

ሺܺሻܦܷ                            ൌ ଵଵା ௌ೙೎                                   (2.1) 

 

where ܵ௡௖ is the standard deviation of niche count of the overall set of non-

dominated set ܺ. The UD metric does not require prior knowledge of the 

true POF. A lager value of UD indicates better quality of non-dominated set 

which means the non-dominated front is spread well along the POF. 

 
 

 Algorithm effort (AE) 

AE measures the computational effort of an algorithm to obtain the 

Pareto optimal set (Tan et al., 2002). It computes the ratio of the total 

number of function evaluations over a fixed period of simulation time.  It 

ranges from [0,∞). A smaller value of AE indicates better performance 

which means the optimiser requires less time to obtain non-dominated 

solutions. 

 

 Ratio of non-dominated individuals (RNI) 

 

RNI is presented by Tan et al. (2002). It evaluates the fraction of non-

dominated individuals ݊ݏ̴݀݊݅݉݋݀݊݋ in the population ܺ.  RNI defined as: 

 

ሺܺሻܫܴܰ            ൌ ௡௢௡ௗ௢௠ି௜௡ௗ௦௦௜௭௘ ௢௙ ௑                          (2.2) 

 

It ranges from [0,1]. If RNI=1, this indicates that all individuals for a given 

population are non-dominated and RNI=0 indicates that none of the 

individuals in the population are non-dominated. Although RNI gives an 
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indication of the solution quality, it does not show how these solutions are 

good in terms of the diversity and the convergence towards the POF.  

 

. 
 Generational distance (GD)  

GD is a unary metric presented by Van Veldhuizen and Lamont (1998b). 

It measures the distance (convergence) of the approximation non-

dominated front ܣ to the true POF ܤ. GD defined as:  

ǡܣሺ ܦܩ                                  ሻܤ ؠ ଵȁ஺ȁ ൫σ ሺܽ௜ǡ ݐݏ݅݀ ௣ሻȁ஺ȁ௜ୀଵܤ ൯భ೛                (2.3)           

 

 

A smaller value of GD is more desirable and it indicates that the 

approximation non-dominated front is closer to the POF. The GD metric 

requires a prior knowledge of the true POF.  

 

 Inverted generational distance (IGD)  

IGD is a unary metric presented by Coello and Cruz Cortès (2005). It is 

opposite of the metric of GD.  It measures the distance from a set of 

reference points (ideally the true POF) ܤ to the approximation non-

dominated set ܣ. IGD defined as:  

ǡܣሺ ܦܩ                             ሻܤ ؠ ଵȁ஻ȁ ൫σ ሺܾ௜ǡ ݐݏ݅݀ ௣ሻȁ஻ȁ௜ୀଵܣ ൯భ೛                (2.4) 

 

 

A smaller value of IGD is more desirable and it indicates that the 

approximation non-dominated front is closer to the POF. 

 

 Coverage difference of two sets (D  metric) 

 

D metric (Zitzler, 1999) is an extended version of the hypervolume, also 

so-called the size of space covered metric (SSC) (Zitzler and Thiele, 1999). 

The SSC metric does not compute the coverage difference of two sets A 

and B when compared to each other, i.e it cannot be used to decide if one 

set entirely dominates the other. However, D metric computes the 
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coverage difference of two non-dominated sets (initial/current non-

dominated set) A and (candidate non-dominated set) B with respect to the 

objective space. ܦሺܣǡ  ሻ denotes the size of the space dominated by A andܤ

not dominated by B while ܦሺܤǡ  ሻ denotes the size of the space dominatedܣ

by B and not dominated by A: 

ǡܣሺܦ                     ሻܤ ൌ ܣሺܥܵܵ ൅ ሻܤ െ  ሻ                                          (2.5)ܤሺܥܵܵ

ǡܤሺܦ                      ሻܣ ൌ ܣሺܥܵܵ ൅ ሻܤ െ  ሻ                                           (2.6)ܣሺܥܵܵ

ǡܣሺܦ  ሻܤ ൏ ǡܤሺܦ  ሻ then B dominates  A. In other words, the non-dominatedܣ

front of B (front 2) is better than the non-dominated front of A (front 1) 

with respect to the D metric. An example of this is illustrated in Figure 2.6. 

 

 

 

Figure 2.6 :Example of D metric for two sets A and B and their fronts (front 1) and 
(front 2) respectively. Reprinted from (Grosan et al., 2003). 

 

The relative size of the region (in the objective space) for a 

maximisation problem that is dominated by A and not dominated by B is 

suggested by Zitzler (1999): 

ǡܣƲሺܦ  ሻܤ ൌ ǡܣሺܦ ሻܸܤ  (2.7) 

ܸ  ݁ݎ݄݁ݓ ൌ ෑሺ ௜݂௠௔௫ െ ௜݂௠௜௡ሻ௞
௜ୀଵ  (2.8) 
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௜݂௠௔௫, ௜݂௠௜௡ represent the maximum, minimum values respectively for the 

objective ௜݂ . 
2.1.11 Studies on the Comparison of MOEAs 

 
Generally, most MOEAs have common strategies that are employed in 

their search process. However, they are different in the way that they apply 

these strategies. MOGA and NSGA both apply the selection process after they 

have evaluated the rank values. However, MOGA classifies the solutions based 

on the ranking scheme using linear or exponential interpolation and applies 

the sharing scheme in the objective space, while NSGA uses dummy fitness 

values assigned to the solutions and applies the sharing scheme in the 

decision variable space (Van Veldhuizen and Lamont, 2000).  

Furthermore, MOGA, NSGA, SPEA, NPGA and MOMGA incorporate fitness 

sharing schemes in order to obtain a uniform distribution of the POF. 

However, the mating restriction strategy is not always employed in any of 

them. A secondary population is also not always required in MOEAs, except in 

the case of SPEA.  Van Veldhuizen and Lamont (2000) and Horn (1997) 

believe that any MOEA must use a secondary population for all Pareto optimal 

sets that have been found previously. Since MOEA(s) have a stochastic nature 

and the solutions are found in a particular generation, they are not 

necessarily found again in other generations. The second population helps to 

keep the desirable solutions in the population at the end of the search. In 

addition, some studies (Zitzler et al., 2000; Tan et al., 2002) report that 

elitism is a significant element used to enhance MOEA performance. For 

example, an NSGA with elitism performs as well as SPEA (Zitzler et al., 2000). 

The common strategies are employed in the search process for the five 

MOEAs- MOGA, NSGA, SPEA, NPGA and MOMGA- are presented in Table 2.1. 

 

                         MOEA 

Strategies  

MOGA NSGA SPEA NPGA MOMGA 

Fitness Sharing Schemes √ √ √ √ √ 

Mating Restriction Strategy √     

Secondary Population   √   

Elitism  √* √   

 
Table 2.1: The common strategies are employed in the search process for the five 

MOEAs (MOGA, NSGA, SPEA, NPGA and MOMGA). * The elitism strategy is employed in 
the second version of NSGA (NSGAII) only.  
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In the scientific literature, some studies have compared MOEAs’ 

performance and quality against each other.  Zitzler et al. (2000) conducted a 

systematic comparison on eight algorithms including: five MOEAs (MOGA, 

NPGA, VEGA, NSGA and SPEA), two weighted-sum based approaches (SOEA 

and HLGA (Hajela and Lin, 1992)) and a random search strategy called RAND. 

These algorithms were run on six domain-independent test functions that 

provided sufficient complexity. The empirical results confirm that all MOEAs 

perform better than the RAND. Nevertheless, HLGA, NPGA and MOGA, in 

some cases, do not convergence well towards the POF. It is an interesting 

point that NSGA performs better than other none-elitist MOEAs in terms of 

distance and distribution along the POF, while SPEA has the best overall 

performance. In addition, the study demonstrates that NSGA with elitism 

performs similar to SPEA. Furthermore, the size of the population significantly 

affects the performance of EAs to cover the POF. 

 

Another comparison study of MOEAs is provided by Tan et al. (2002). 

The study compares ten MOEAs which are VEGA, HLGA, NPGA, MOGA, NSGA, 

SPEA, MIMOGA (Murata & Ishibuchi, 1995), IMOEA (Khor et al. 2000), EMOEA 

(Khor et al. 2001) and a MOEA proposed by Tan et al. (1999). The ten MOEAs 

were run on four benchmark tests considering six performance measures- 

Ratio of non-dominated individuals (RNI), Uniform distribution of a non-

dominated population (UD), Algorithm effort (AE), the hypervolume- Size of 

space covered (SSC), Noise sensitivity (NS) and Average best performance 

(ABP)- to examine the strength and weakness of each algorithm. Generally, 

the experimental results show that there is no existing algorithm that has the 

best performance in the all performance measures. In addition, the results 

confirm that elitism and sharing methods positively affect the performance of 

SPEA, MOEA, IMOEA and EMOEA in terms of distribution and convergence 

towards the POF.  MIMOGA has relatively the lowest Algorithm effort (AE) in 

all benchmark tests while Tan’s MOEA and IMOEA have the highest (better) 

Ratio of non-dominated (RNI) for all benchmark tests.  HLGA and NPGA have 

relatively low noise sensitivity. MIMOGA, NPGA, MOGA and NSGA have 

moderate ABP performance while SPEA, MOEA, IMOEA and EMOEA perform 

well. 

 

 A comparison study for SPEA2, NSGAII and MOGA on ZDT4 and ZDT6 

problems (Zitzler et al., 2000) was presented in Watanabe et al. (2002). With 

respect to the RNI metric, NSGAII has better performance than the others on 



Chapter 2: Literature Review  

 

31 | P a g e  

  

ZDT4. However, SPEA2 outperforms MOGA and NSGAII for the same metric 

on ZDT6. The authors concluded this study by stating that SPEA2 has an 

advantage with regard to its accuracy over NSGAII. While NSGAII is superior 

to SPEA2 in finding wide spread solutions.   

 

Khare et al. (2003) conducted another comparative study for NSGAII, 

SPEA2 and PAES on four test problems (DTLZ1, DTLZ2, DTLZ3 and DTLZ6) 

with 2-8 objectives. Three performance metrics were used for convergence 

and diversity of the obtained non-dominated set and the running time. SPEA2 

performs better than NSGAII in terms of convergence for a small number of 

objectives. However, both perform similarly for a higher number of objectives. 

SPEA2 and NSGAII have good performance with respect to the diversity, but 

they have some difficulties in the closeness of the obtained non-dominated 

set to the POF. In comparison, PAES (Liu et al., 2007) performs very well in 

converging to the POF but it fails in diversity and it requires a higher 

computational time as the number of objectives increases. However, NSGAII 

requires a less computational time compared to the others.  

 

In Bradstreet et al. (2007) another comparative study between NSGAII 

and SPEA2 on the WFG test problems with 24 real values and a different scale 

of objectives. For two objectives, NSGAII is superior to SPEA2 on the WFG 

test problems with respect to the SSC metric. In contrast, SPEA2 outperforms 

NSGAII on all WFG problems expect WFG3 in three objectives with respect to 

the same metric. 

 

We can note from two last studies that the number of objectives can 

affect the performance of an algorithm. SPEA2 works well with a high number 

of objectives for WFG and a low number of objectives for DTLZ. The opposite 

is true for NSGAII. We can also observe from these comparative studies that 

an algorithm can perform better than another algorithm with respect to a 

specific metric on a certain problem, while another algorithm performs better 

than another algorithm with respect to another metric for the same problem. 

Also an algorithm can perform differentially according to the number of 

objectives. All these observations could be an advantage when combining 

different algorithms in a hyper-heuristic framework for multi-objective 

optimisation to derive the strengths of the algorithms and avoid their 

weaknesses. These observations also supported by the No Free Lunch 

Theorem (Wolpert and Macready, 1997). 
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2.2 Meta-heuristics 
 

The term Meta-heuristic was coined by Glover (1986). It refers to a 

general algorithmic search framework that is utilised for solving complex 

optimisation problems, instead of using classical approaches such as 

mathematical and dynamic programming (Bianchi et al., 2009). Meta-

heuristics have the ability to find feasible solutions for problems of realistic 

size in reasonable computation time (Bianchi et al., 2009).  Sörensen and 

Glover (2013) define Meta-heuristics as: 

 

 “A Meta-heuristic is a high-level problem-independent algorithmic 

framework that provides a set of guidelines or strategies to develop heuristic 

optimization algorithms”. 

 
 

It is worth noting that a problem-specific implementation of a heuristic 

optimisation algorithm is also referred to as a meta-heuristic. In the context 

of this thesis, meta-heuristics comprise a high level strategy that aims to 

explore the search space via the use of local search procedures in order to 

search for (approximate) optimal solutions and to escape from local optima. 

Moreover, some meta-heuristic techniques may employ learning mechanisms 

such as using memory in order to increase the efficacy of the search process 

(Blum and Roli, 2003).  

 

In the scientific literature, common meta-heuristics such as simulated 

annealing (Kirkpatrick et al.,1983),  tabu search (TS) (Glover,1986), genetic 

algorithms (GA) (Holland, 1975; Goldberg, 1989), ant colony optimisation 

(Dorigo et al., 1996),  scatter search (Glover et al., 2000) and variable 

neighbourhood search (VNS) (Hansen and Mladenovic, 1999) have been 

successfully applied to solve different combinatorial optimisation problems 

(see (Corne et al., 1999; Voß et al., 1999; Glover and Kochenberger, 2003)). 

Further discussion of some meta-heuristics is presented in the following 

sections. 

2.2.1 Algorithm Complexity and Problem Complexity  
 

Algorithm complexity refers to the resources required of an algorithm 

that is required to solve a given problem (Garey and Johnson, 1979; 
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Rayward-Smith, 1986). The efficiency of an algorithm is measured in terms of 

execution time (the number of steps in the algorithm) and memory (the 

amount of memory that is needed to run the algorithm). The time complexity 

is as a function of the size of the input. In other words, it refers to the 

number of basic operations that are performed by an algorithm for its worst-

case behaviour. The big Ƴ notation is used to describe the performance or 

complexity of an algorithm.  The computational complexity of a problem is 

assessed by the time complexity of an algorithm that can be found to solve 

the problem efficiently (Garey and Johnson, 1979).  

 

Optimisation problems can be divided into two major classes, P and NP. 

A P problem can be defined as an algorithm that can solve a problem in 

polynomial time. An NP problem can be defined as an algorithm that can solve 

a problem in non-deterministic polynomial time. For more details (see (Garey 

and Johnson, 1979, Rayward-Smith, 1986)). If there is a deterministic 

algorithm for a problem, a non-deterministic algorithm can be simply 

constructed for the problem, i.e. P ك NP.  This leads to, the most important 

open question in computational complexity theory, whether PൌNP or P്NP? To 

date, no efficient (polynomial) algorithms have been found for any NP 

problems, which supports the assumption that P്NP, but this is still not 

proved. An example of an NP problem is the classic Travelling Salesmen 

Problems. 

 

A special class of NP problems are NP-complete problems. These are the 

hardest class of problem in NP. The theory of NP-completeness was presented 

by Cook (1971). If PൌNP then all NP-complete problems can be efficiently 

solved. All NP-complete problems could belong to P. However, NP-complete 

problems belong to the set NP–P.  

 

Given the open P=NP question, exact algorithms cannot always be used 

to solve a given instance of an optimisation problem efficiently due to the 

time complexity being bounded by an exponential function (we may be able to 

solve small instances but this becomes impractical as the instance size 

increases). So, heuristic methods, or approximation algorithms, are generally 

more suitable to solve such problems since they can often produce near 

optimal solutions, or at least produce solutions of acceptable quality in 

reasonable computational time. 
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2.2.2 Intensification and Diversification 

 

In the context of meta-heuristics, the concepts of intensification and 

diversification have a significant effect on the search behaviour. 

Intensification refers to exploiting the accumulated search experience whereas 

diversification refers to exploring the search space (Blum and Roli, 2003; 

Bianchi et al., 2009).  A dynamic balance between these concepts is required 

in the search process.  On the one hand we want to explore those areas of the 

search space, than just those currently providing good quality solutions 

(intensification). On other hand we also want to explore previously unvisited 

areas of the search space (diversification) (Blum and Roli, 2003). It is worth 

mentioning that the terms exploitation and exploration can sometimes be 

used instead of intensification and diversification (Blum and Roli, 2003).  

However, this may lead, in some cases, to different meanings. For example, 

exploitation and exploration may infer short term methods limited to 

randomness, whereas intensification and diversification may infer medium and 

long term methods based on the usage of memory. In meta-heuristics, the 

use of the local search strategy in simulated annealing is an example of 

intensification, while the use of tabu lists in tabu search is an example of 

diversification (Bianchi et al., 2009).  

2.2.3 Meta-heuristics Classification 

 

In the scientific literature, there are different points of view concerning 

the classification of meta-heuristics approaches. Glover and Laguna (1997) 

and Blum and Roli (2003) classify meta-heuristics into four main classes: 

 

1) Nature-inspired and non-nature inspired methods 

2) Dynamic and static objective functions 

3) Memory usage and memory-less methods 

4) Population-based and the single-point search methods 

 

According to the origins of the search method, meta-heuristics divide 

into two groups; nature-inspired and non-nature inspired methods. Examples 

of these groups are genetic algorithms and tabu search respectively. 

Criticisms of this classification have been made for two reasons (Blum and 

Roli, 2003): (i) some hybrid meta-heuristics approaches cannot be 

categorised based on this classification. For example, memetic approaches 
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that employ a local search mechanism and a genetic algorithm fit into both 

classes; and (ii) it is sometimes hard to classify an approach to one of the two 

categories. For example, tabu search belongs to the non nature-inspired 

category (memory-inspired), but it can be difficult to decide whether the use 

of memory belongs to the same class as well. 

 
Another school of thought classifies meta-heuristics into two classes, 

dynamic and static objective functions. The first class changes the 

representation of the objective function during the search process. An 

example of this is Guided Local Search (GLS) (Voudouris and Tsang, 1999). 

On the contrary, the second class retains the representation of the objective 

function with no change. 

 
Furthermore, memory usage and memory-less methods are important 

classifications of meta-heuristics according to the way that the algorithm 

makes use of search history. Memory usage can use short or long term 

memory. Short term memory keeps track of the moves and visited solutions 

whereas long memory accumulates synthetic parameters of the search. 

Memory-less methods usually tend to use the information to decide the next 

moves in the search process. Nowadays, memory is considered an essential 

element in successful meta-heuristic approaches (Blum and Roli, 2003).   

 

The classification of population-based search and single-point 

approaches refers to the number of solutions that are maintained during the 

search process at each iteration (Glover and Laguna, 1997).  In population-

based meta-heuristics, a number of points (known as the population) are 

provided in order to evolve a new generation. Genetic algorithms, evolution 

strategies, ant colony optimisation, and scatter search are examples of 

population-based methods. In single-point search, only one solution is 

maintained during the search process. Single-point search based methods are 

also known as trajectory methods which share the same characteristics as a 

trajectory in the search space during the search process, and incorporate local 

search strategies (Blum and Roli, 2003). Tabu search, simulated annealing, 

iterated local search (Lourenco et al., 2003) and variable neighbourhood 

search are examples of single-point search methods.  Since the population-

based concept plays a significant role in hyper-heuristic for multi-objective 

optimisation (HHMO) that is proposed in this thesis, this classification of 

meta-heuristics is more suited to HHMO than the others. 
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2.2.4 Local Search 

 

The key idea behind a local search algorithm is attempting to find the 

optimum (or an approximate) solution through exploring the neighborhoods of 

the current solution and comparing new solutions with the incumbent 

solution. If the new solution is better, then the current solution is replaced by 

the new one. The simplest form of local search is an iterative improvement 

algorithm. The algorithm starts with an initial solution and then explores the 

neighbourhood of that solution in order to find a better one.  When a better 

solution is found, the current solution replaces it. This process is repeated 

until the current solution is better than all its neighborhood solutions. 

 

In the context of local search, the strategy to improve a solution 

depends on the type of heuristic that is used in the algorithm (Lourenco at al., 

2003). Random walk, simple descent and steepest descent are examples of 

local search heuristics. In random walk, a solution is selected randomly from 

the search space. This heuristic is usually combined with other methods and 

used as a diversification strategy. Simple descent is a typical local search 

strategy. It is also known as hill climbing. At each iteration, a random solution 

is selected. If the selected solution improves the objective value then it is 

accepted and the previous solution is replaced by it. Steepest descent is 

different from previous local search heuristics. This heuristic evaluates each 

solution in neighbourhood, and accepts the best solution that generates a 

better objective value. If there is no better objective value, the algorithm 

terminates. This method can be computationally expensive for large-sized 

neighbourhoods.    

   

The main drawback of local search algorithms is that they can easily 

become trapped in a local optima, i.e. the solution is not necessarily the 

global optimal, because the search terminates once no better solutions can be 

found. An optimal solution (global) can be in some area of the search space 

that has not yet been explored (Focacci at al., 2003). To overcome this 

problem, some techniques have been presented that allow the algorithm to 

escape from local optima by accepting a worse solution (Aarts et al., 2005). 

 

The local search algorithm terminates according to some conditions such 

as the number of iterations, elapsed CPU time or until there is no further 

improvement in the current solution for a given number of iterations. 
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2.2.5 Simulated Annealing 

 

Simulated annealing (SA) is a search algorithm that was proposed by 

Kirkpatrick et al. (1983). It is considered the first meta-heuristic approach to 

use an explicit method which accepts worse solutions in order to escape from 

local optima (Henderson, 2003). Initially, SA was used to tackle combinatorial 

optimisation problems (often within the discrete problem domain). More 

recently, it has been extended to include continuous problems (Henderson, 

2003).  The concept of SA is based on the Metropolis algorithm for statistical 

mechanics developed by Metropolis et al. (1953). The Metropolis algorithm is 

a model for simulating the physical annealing process with solid materials like 

metals and glass (Bianchi et al., 2009). These materials are placed in a heat 

bath under a high temperature and then gradually cooled according to an 

appropriate cooling schedule until they reach a thermal equilibrium state 

(Dowsland, 1995 and Henderson, 2003).  

 
In the context of meta-heuristics, SA incorporates thermodynamic 

behaviour into the local search strategy (Henderson, 2003), and the search 

process combines two local search heuristics; random walk and iterative 

improvement (Dowsland, 1995). It also employs a predefined neighbourhood 

structure of the search space (Bianchi et al., 2009). The algorithm starts with 

a high temperature and an initial solution. This solution can be either 

randomly selected or heuristically constructed (Blum and Roli, 2003). During 

the search process, the temperature is slowly decreased based on a cooling 

schedule (Dowsland, 1995). At each iteration, a solution of the neighbourhood 

is selected and evaluated and then compared with the incumbent solution. If 

it is better than the current one, it is accepted and replaces it to become the 

current solution. Otherwise, worse solutions are accepted according to a 

probabilistic function of temperature and the difference of objective function 

values for the new and current solutions (Dowsland, 1995 and Bianchi et al., 

2009). The pseudo code of SA is shown in algorithm 10.  

 

 

Two important issues can affect the performance of SA. Firstly, the 

choice of neighbourhood structure (Aarts and Korst, 1998), and secondly, the 

choice of a cooling schedule (Blum and Roli, 2003). There are two types of 

cooling schedule, static and dynamic schedules. In a static cooling schedule 

there is no change in the parameter values during the execution time. With a 
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dynamic cooling schedule the parameters are adaptively changed during 

execution time (Aarts et al., 2005). It is generally not easy to choose an 

appropriate cooling schedule. In some cases in SA, the temperature is 

reduced and reaches a very low value. So, an increase of cost function values 

will be impossible and SA can lead to a local minimum. To overcome this 

problem, a reheating scheme may be used when a local minimum has been 

detected, in order to escape from it (Thanh and Anh, 2009). An example of 

SA’s approaches that use the reheating scheme is simulated annealing with 

non-monotonic reheating (Osman, 1993). The key idea of this approach is 

that whenever the occurrence of a local minimum is detected, the use of 

reheating scheme aims to escape from it by doubling the temperature at 

which the best solution was obtained.  

Reprinted from (Aarts et al., 2005) 

 

Although SA is simple and flexible, a cooling schedule needs to be 

defined for each problem in order for the algorithm to work effectively 

(Hussin, 2005). Moreover, good quality cooling schedules (either static or 

dynamic schedules) which can find a global optimal can be particularly slow. 

2.2.6 The Great Deluge Algorithm 

  

The great deluge algorithm (GDA) is a meta-heuristic local search 

algorithm proposed by Dueck (1993). It is considered a reasonable alternative 

to other meta-heuristic algorithms such as simulated annealing (SA) 

(Kirkpatrick et al., 1983) and tabu search (TS) (Glover,1986), because of its 

simplicity and dependency on fewer parameters  (Petrovic et al., 2007). GDA 

always accepts improving moves, while a worsening move is accepted only if 

Algorithm 10:  SA algorithm  

  1: procedure SA   
  2:         Initialise ሺ݅௦௧௔௥௧ ǡ ଴ ǡܥ  ଴ሻܮ
  3:         ݇ ؔ ͲǢ 
  4:         repeat 
  5:           for ݈ ൌ ͳ to ܮ௞ do 
  6:              Generate ሺ        ୧ሻ 
  7:              if ݂ ሺ ሻ ൑ ݂ሺ݅ሻ then ݅ ؔ ݆   
  8:              else 
  9:             if     ሺ௙ሺ௜ሻି௙ሺ௝ሻ஼ೖ ሻ  ൐ ሾͲǡ݉݋݀݊ܽݎ  ͳሻ  then ݅ ؔ ݆   
10:           end for 
11:          ݇ ؔ ݇ ൅ ͳǢ 
12:         Calculate_Length(ܮ௞) ; 
13:         Calculate_Control(ܥ௞) ; 
14:      until stop_criterion 
15:    end procedure   
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it is better than a threshold (target improvement) at a given step.  In a 

generic GDA approach, the threshold changes gradually over time, e.g. 

increases linearly. 

 

 In the case of a maximisation problem, the GDA algorithm starts with 

an initial water level, which is equivalent to the quality of the initial solution. 

The water level is increased gradually (usually linearly) at each iteration, 

during the search, according to a predefined rate referred to as Rain Speed 

(UP).  A worsening solution is accepted if the quality of the solution is greater 

than or equal to the water level. This process is reversed for a minimisation 

problem.  The algorithm terminates when there is no change in the solution 

quality within a predefined time or when the maximum number of iterations is 

exceeded. The pseudo code of a GDA (for maximisation problem) is shown in 

algorithm 11.  

 

The main advantage of GDA is that it is simple and much easier to 

implement when compared to the other meta-heuristics, such as SA or 

evolutionary algorithms. Moreover, a better quality of solutions could be 

produced with a longer search time (Burke et al., 2004).  GDA requires fewer 

input parameters; in fact it only has one parameter, rain speed (UP). The 

value of UP is usually a small fraction greater than 0, and less than 0.03 

(Scott and Geldenhuysys, 2000).  Dueck (1993) provided various 

recommendations regarding UP.  For example, a suggestion is that UP value 

should be on average smaller than 1% of the average distance between the 

quality of the current solution and the water level. So the water level can be 

calculated for the ݆ solution using: 

 

ܮܧܸܧܮ                ൌ ܮܧܸܧܮ െ ܷܲ ሺܮܧܸܧܮ െ  ݂ሺ݆ሻሻ                           (2.9)                             
 

The value of UP can also be  calculated based on the time allocated for 

search and defining upper/lower bounds of an estimated quality of solution 

(Petrovic. et al.,2000).  However, both of those parameters depend on the 

problem dimensions and can affect the quality of final solution for a given 

problem (Telfar, 1995). 

An extended GDA with reheating was proposed by McMullan and 

McCollum (2007). The idea is similar to the reheating scheme utilised in SA. 

The reheating (re-levelling in the GDA context) aims to widen the boundary 

condition, via improving the rain speed, in order to allow a worsening move to 
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be accepted and avoid becoming trapped in a local optimum.  If there is no 

improvement, water level is reset and re-levelling strategy is applied using a 

new rain speed value based on the number of total moves in the process. 

 

Reprinted from (Dueck,1993) 

2.2.7 Tabu Search 

 
Tabu search (TS) is a dynamic neighbourhood search technique (Stützle, 

1999) that was first proposed by Glover (1986). It has been applied to many 

combinatorial optimisation problems (Gendreau, 2003; Hussin, 2005); for 

example, the Robust Tabu Search to the QAP problem (Taillard, 1991), and 

the Reactive Tabu Search to the MAXSAT problem (Battiti and Protasi, 1997) 

and to assignment problems (Dell'Amico et al., 1999).  

 

Glover and Laguna (1997) define TS as follows: 

 

“Tabu search is a meta-heuristic that guides a local heuristic 

search procedure to explore the solution space beyond local 

optimality.” 

 

Tabu search is an advanced form of local search that employs the 

steepest descent heuristic and adaptive memory (Bianchi et al., 2009). The 

main aim of using memory and the search history is to avoid local optima and 

promote the exploration process (Blum and Roli, 2003; Gendreau, 2003). 

Furthermore, the key feature of TS is that it incorporates three specific 

concepts these being best improvement, tabu lists and aspiration criteria 

(Bianchi et al., 2009). Best improvement refers to always accepting a solution 

of the neighbourhood, whether it is better or worse than the current solution 

(Bianchi et al., 2009). However, that can result in the acceptance of solutions 

Algorithm 11: GDA algorithm 

  1: procedure GDA   
  2:          Begin 
  3:              Choose an initial configureuration ݅ 
  4:             Choose an initial rain speed ܷܲ >0 
  5:             Choose an initial water level   ٲ  0<ܮܧܸܧܮ ܮܧܸܧܮ ൌ ݂ሺ݅ሻ 
  6:              repeat 
  7:                 Choose a neighbor  ݆ ד ܰሺ݅ǡ ܳሻ 
  8:                        if ݂ሺ݆ሻ ൏  then  ܮܧܸܧܮ
  9:                                  ݅ǣ ൌ ݆ 
ܮܧܸܧܮ                                 :10 ൌ ܮܧܸܧܮ ൅ ܷܲ 
11:                                end if  
12:       until (termination criteria are satisfied) 
13:  end procedure   
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that were already previously accepted which may result in cycling. So, a short 

term memory that employs the tabu list concept is implemented to avoid this 

(Gendreau, 2003). Tabu lists prevent the recently visited solution being 

revisited by storing the attributes of these solutions. In the tabu list, some 

information about the search is stored to use it in the strategic guidance of 

the search (Bianchi et al., 2009). The length of the tabu list (so-called tabu 

tenure) is crucial for the performance of the algorithm. A small tabu tenure 

limits the search to small regions of the search space whereas a large tabu 

tenure results in the search exploring larger regions (Blum and Roli, 2003). 

 

An aspiration criterion is a condition that has to be satisfied in order to 

remove a solution from the tabu list (Gendreau, 2003). One example of this is 

removing a specific solution from the tabu list, if it obtains a better objective 

value than the best value previously found (Gendreau, 2003). In the scientific 

literature, the aspiration criteria can be either time-dependent or time-

independent. However, the choice of aspiration criteria is particularly critical 

because it can affect the search results (Gendreau, 2003). Other important 

control parameters that can affect the search results are tabu tenure and the 

structure of the neighbourhood.  

 The most popular termination conditions used for TS is the number of 

iterations, the CPU time or until no improvement in the object value has been 

found for a given number of iterations. 

2.2.8 Late Acceptance  

 

The late acceptance (LA) is recently proposed iterative search method 

proposed by Burke and Bykov (2008). It won an international competition to 

automatically solve the Magic Square problem (Burke and Bykov, 2012).  It is 

based on the hill-climbing framework. The idea is delaying the comparison 

between the cost of current solution and previous solution. The comparison 

does not happen immediately, the cost of current solution is compared to the 

solution obtained after a number of moves to allow acceptance of worsening 

moves. 

This method is very simple, easy to implement and yet powerful. It is 

also not sensitive to initialisation. It has a single input parameter, which is the 

length of array (ܮ௙௔) that contains the cost function values of the current 

solutions in the previous several iterations. In the context of LA, all values of 
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the current cost function for the previous iterations are maintained in a list of 

a fixed length (ܮ௙௔), which is the only input parameter of LA. The last element 

of that list is compared with the cost value of candidate solution, in order to 

accept the move or reject it. If the candidate cost is better, or is equal to the 

last element, then the candidate solution is accepted and its cost is inserted 

into the beginning of the list, while the last element is removed from the end 

of the list. This process is repeated until it meets a stopping condition. 

In order to avoid the shifting of the whole list at each iteration and 

reduce the processing time of LA, it is suggested to employ the virtual shifting 

of the list; the list beginning  ܸ is calculated by using:                                                   ܸ ൌ  ௙௔                                             (2.10)ܮ ݀݋݉ ݅

where ݉݀݋ represents the remainder of integer division, ݅௧௛ is the current 

iteration, ܮ௙௔ the length a fitness array ሺ݂ܽ ൌ  ଴݂ǡ ଵ݂ǡ ଶ݂ǡ ǥ ǡ ௅݂೑ೌିଵ ሻǤ At each 

iteration ݅௧௛, the candidate cost is compared with the value of  ܥ௩. Then after 

the acceptance procedure, the current cost is assigned to ܥ௩ ǡ if it is accepted. 

The pseudo code of a LA is provided in algorithm 12.  

 At the beginning of the search, the ݂ܽ can be filled by the initial cost 

value. In order to obtain the LA unique properties, it is intuitive that the 

length of the fitness array ܮ௙௔ should be less than the number of iterations 

and equal to or greater than two. However, if ܮ௙௔ is equal to one or zero, the 

LA performs as greedy hill-climbing (Burke and Bykov, 2008). 

 

Reprinted from (Burke and Bykov, 2008) 

Algorithm 12: LA algorithm 

  1: procedure LA   
  2:          begin 
  3:              Produce  an initial conFigureuration ݏ 
  4:             Calculate initial cost function  ܥሺݏሻ  
  5:             for all   ݇ ג ሼͲǡ ǥ ǡ ௙݈௔ െ ͳሽ  dol   0  ܥ௞ ൌ  ሻݏሺܥ
    6:              Assign the initial number of iterations ݅ ൌ  Ͳ 

  7:              repeat 
  8:                 Construct a candidate solution   ݏ  כ
  9:                 Calculate its cost function ܥሺݏ  ሻכ
10:                      ܸ ൌ  ௙௔݈ ݀݋݉ ݅

11:                           if ܥሺݏ ሻכ ൑ ݏሺܥ ݎ݋ ௩ ܥ  ሻכ  ൑         ሻ thenݏሺܥ 
12:                                    Accept candidate ሺݏ ൌ ݏ   ሻכ
13:                         Insert cost value into the list ܥ௩  ൌ  ሻݏሺܥ 
14:                      end if 
15:                   Increment the number of iterations ݅ ൌ  ݅ ൅  ͳ 
16:       until ( a chosen stopping condition) 
17:  end procedure   
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2.2.9 Genetic Algorithms 

 

In the scientific literature covering meta-heuristics, various population-

based algorithms (so-called Evolutionary Computation (EC)) are presented, 

including genetic algorithms (GA) in (Fraser, 1957; Bremermann, 1958; 

Holland, 1975; Goldberg, 1989), evolution strategies (ES) by Rechenberg 

(1965), genetic programming by Koza (1992), ant colonies (AC) by Dorigo et 

al. (1996) and scatter search (SS) by Glover et al. (2000). 

 

As described in the meta-heuristics classification in Section 2.2.3, 

population-based methods deal with a set of solutions (population) whereas 

single-point search methods such as simulated annealing and tabu search 

(see Sections 2.2.5 and 2.2.7) maintain only a single solution. 

 

The ideas underpinning GAs were first proposed independently by Fraser 

(1957) and Bremermann (1958), although much of the important work can 

also be attributed to Holland (1975). Genetic algorithms (GA) are a stochastic 

search method, sometimes known as an evolutionary algorithm (EA). It is the 

most common population-based meta-heuristic (Sastry et al., 2005). It is 

based on the idea of "Survival of the fittest" presented by Darwin (1859). This 

natural concept of evolution is adopted as a search mechanism in all 

evolutionary computation algorithms (Reeves, 2003). 

 

Unlike other meta-heuristics, the representation of solutions in GAs is 

quite different. The decision variables (chromosomes) that encode the 

solutions of problems are called “genotypes”, whereas the candidate solutions 

of problems that represent the solutions themselves are called “phenotypes” 

or individuals (Goldberg, 1989; Reeves, 2003). In this context, a set of 

individuals (solutions) is called a population and each iteration during the 

search is called a generation. In addition, the solutions can be encoded as 

finite-length strings of binary or real numbers, or many other encodings 

(Goldberg and Rudnick, 1991). 

 

A typical GA comprises six main stages as follows (Goldberg, 1989; 

Sastry et al., 2005): 

 

1) Initialisation  

2) Evaluation 

http://en.wikipedia.org/wiki/Candidate_solution
http://en.wikipedia.org/wiki/Phenotype
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3) Selection 

4) Recombination (crossover) 

5) Mutation 

6) Replacement    

 

Stages 2 to 6 are repeated in every generation until the algorithm is 

terminated by some criteria such as a maximum number of generations or a 

given number of fitness evaluations (Reeves, 2003). The pseudo code of a GA 

is shown in algorithm 13. 

 

In the initialisation stage (step 2), an initial population of solutions is 

generated, typically randomly, in the search space. When the population is 

created, the fitness value of each solution in the population is evaluated by a 

fitness function (step 3) (Sastry et al., 2005). The solutions with higher 

fitness values are selected (step 5), usually stochastically, in order to 

separate the good solutions from the poorer ones (Sastry et al., 2005). The 

selection process can be accomplished by many proposed selection strategies 

including roulette-wheel selection, tournament selection, stochastic universal 

selection and ranking selection (Goldberg and Rudnick, 1991). For example, a 

solution with the highest fitness has the highest probability of being selected 

in roulette-wheel selection (Bianchi et al., 2009). 

 

Algorithm13:  The Genetic algorithm 

  1: procedure GA   
  2:         Initialise  ݊݋݅ݐ݈ܽݑ݌݋݌ ݄݁ݐ  
  3:         Evaluate  each ݅݊݀݅ݏ݈ܽݑ݀݅ݒ   
  4:         repeat  
  5:           Select   ݅݊݀݅ݏ݈ܽݑ݀݅ݒ  for ݊݋݅ݐܾܽ݊݅݉݋ܿ݁ݎ 
  6:           for ݃݁݊݊݋݅ݐ݊݁ݐ ൌ ͳ to ݔܽܯ௚௘௡௧௘௔௧௜௢௡   do 
  7:              Recombine ݅݊݀݅ݏ݈ܽݑ݀݅ݒ generating new ones 
  8:              Mutate the new ݅݊݀݅ݏ݈ܽݑ݀݅ݒ  
  9:              Evaluate  each ݅݊݀݅ݏ݈ܽݑ݀݅ݒ   
10:           Replace old ݅݊݀݅ݏ݈ܽݑ݀݅ݒ with the new ones 
11:           end for 
12:       until (a  chosen stopping condition) 
13:    end procedure   
 

Reprinted from (Goldberg, 1989). 
 

The choice of an appropriate selection strategy has a significant effect 

on the guidance of the search (Goldberg and Rudnick, 1991). After the 

selection stage, genetic operators (crossover and mutation) are applied to the 

selected solutions (steps 7 and 8) in order to create a new population 

(offspring) for the next generation. Crossover and mutation are executed in 

http://en.wikipedia.org/wiki/Stochastics
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the recombination and mutation stages respectively. In the recombination 

stage (step 7), two or more solutions (parents) from the current generation 

are combined to generate hopefully better new solutions (children) for the 

next generation. Crossover can typically occur at one point or two points 

(known as one-point and two-point crossover) depending on the method of 

that is used (Goldberg et al., 1989). Many crossover operators have been 

proposed, for example, Partially Matched Crossover (PMX) and Simulated 

Binary Crossover (SBX).  In the mutation stage (step 8), a change is made to 

an individual solution. The mutation in a GA is considered as a subsidiary 

operation that is used to increase the diversity of the population (Sastry et 

al., 2005). A typical example of mutation is bit-flip. The last stage (step 10) is 

replacement. The aim of this stage is to replace the old population with the 

new one for the next generation (Goldberg et al., 1989; Sastry et al., 2005). 

Examples of replacement methods are steady-state replacement, elitist 

replacement and generation-wise replacement.  

 

In the context of GAs, the diversification strategy is accommodated by 

mutation, while intensification is accommodated by crossover operators and 

the selection process. However, mutation and population size have a critical 

impact on the scalability and performance of the algorithm. A small population 

size results in limited search exploration while a large population size results 

in long computational time (Reeves, 2003). Furthermore, too high a mutation 

rate can affect the diversity of the population (Goldberg, 1999; Reeves, 

2003).  

 

The main disadvantage of GA is the requirement of the fitness function.  

Some complex real-world problems such as structural optimisation problems 

cannot be tackled by GA, because it requires hours (sometimes days) of 

computational time for fitness evaluation (Reeves, 2003). Possible 

alternatives are to use approximated fitness or delta evaluation. 

2.2.10 Other Meta-heuristic Algorithms 

 

Many other meta-heuristic approaches have been proposed in the 

scientific literature, whether they belong to population-based approaches 

scatter search, or they belong to single-point search class such as variable 

neighbourhood search (VNS), iterated local search (ILS). Some may fit into 

both classes such as memetic algorithms (MA). 

http://en.wikipedia.org/wiki/Fitness_approximation
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Ant colony optimisation (ACO) is a constructive meta-heuristic 

introduced by Dorigo et al. (1996). It simulates the behaviour of the real ants 

and the way they deposit pheromone to communicate with other ants. ACO 

use artificial pheromone trials as an indirect communication mechanism to 

distribute information among artificial ants (agents) in order to produce new 

solutions (Dorigo and Stützle, 2003).   

 

Scatter search (SS) is a deterministic population-based alternatives for 

evolutionary algorithms that was introduced by Glover (1977). The key idea 

of this approach is to attempt to obtain better solutions through the 

construction of new solutions by linear combinations. Its strategy is based on 

the concept of combining decision rules and constraints in integer 

programming (Glover at al., 2003).  Scatter search involves five major 

procedures: diversification generation, improvement, updating of a reference 

set, generation of subsets and the combining of solution procedures. For more 

details see (Glover at al., 2003). 

       

Variable neighbourhood search (VNS) is a dynamic meta-heuristic 

approach proposed by Hansen and Mladenovic (1999). The algorithm provides 

several degrees of freedom to implement a wide range of variants (Blum and 

Roli, 2003) through dynamically changing neighbourhood structures. The 

basic design of VNS is different to other meta-heuristics. On some occasions 

only a few parameters may be needed, or none at all (Hansen, 2005). A 

standard VNS comprises three main phases: shaking, local search and move.  

The main aim of the shaking phase is to apply perturbation to a solution in 

order to make it a starting point for the local search (Hansen, 2005). In the 

context of VNS, the neighbourhoods are randomly chosen; then a solution of 

neighbourhoods is chosen (often randomly) as a starting point for the local 

search. Once the local search is terminated, the new solution that is found is 

compared with the initial solution.  If it is better, the initial solution is replaced 

by the new one. Otherwise, a new iteration is started, including a new shaking 

phase with different neighbourhoods (Blum and Roli, 2003; Hansen, 2005).  

 

Iterated local search (ILS) (Lourenco at el., 2003) is a stochastic local 

search method, and is a simple and powerful meta-heuristic approach (Martin 

et al., 1991; Stützle, 1999; Lourenco et al., 2003). It uses local search using 

an initial solution. Once the local optimum is found, the perturbation strategy 
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is used in order to escape from it, then the local search restarts. A typical ILS 

includes three main processes: the choice of the initial solution, acceptance 

criteria and perturbation. The perturbation operators are particularly 

important (Blum and Roli, 2003); a larger perturbation makes the algorithm 

behave as a random restart local search whereas a small perturbation may 

result in an inability to escape from the local optima. 

 

Memetic algorithms (MA) are a meta-heuristic that incorporates a local 

search strategy within an evolutionary algorithm. It was proposed by Moscato 

(1999). The most common memetic algorithms utilise genetic algorithm, 

carrying out a local search on each member of population in every generation. 

In the context of the memetic algorithm, the methods of individual learning 

usually include some knowledge of the problem at hand. These methods can 

be deterministic or stochastic. Moreover, many other studies have been 

presented in the literature in hybrid evolutionary algorithms and hill climbing 

strategies using multi-local searchers known as multimemes.  Multimeme 

algorithms adaptively select from a set of local search procedures. Example of 

multimeme approaches can be found in Krasnogor and Smith, (2002) and 

Krasnogor (2002) and Krasnogor and Gustafson (2004). 

2.2.11 Multi-objective Meta-heuristic 

 
Meta-heuristics were originally designed to tackle single-objective 

optimisation problems. They have been extended to tackle multi-objective 

problems in a single run, without converting it to a  single-objective problem, 

for example, by linearly weighting each objective. Multi-objective evolutionary 

algorithms such as MOGA (Fonseca and Fleming, 1993) and NSGA (Srinivas 

and Deb, 1994) (see Section 2.1.3) have had significant success in the multi-

objective field due to their suitability to tackle such types of problems. 

However, a number of multi-objective meta-heuristics based on local search, 

such as simulated annealing and tabu search have been successfully applied 

to various multi-objective problems (Landa-Silva et al., 2004).  The most 

common application that has been successfully tackled by multi-objective 

local search are multicriteria scheduling problems including flowshop 

scheduling problems and machine scheduling problems (see (Blazewicz et al., 

1996; Baykasoglu et al., 1999 ; Gandibleux and Freville, 2000; Jaszkiewicz, 

2001a)).  
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Thompson and Dowsland (1996) proposed a multi-phased simulated 

annealing algorithm to solve the examination timetabling problem. In this 

approach, the problem is formulated as a graph colouring problem and has 

two phases. The first phase aims to satisfy all the hard constraints (which is 

the first objective). The second phase aims to minimise the violations of soft 

constraints (which is the second objective).  Moreover, Ulungu (1993) 

presented a multi-objective simulated annealing approach (MOSA). The 

author used simulated annealing to tackle a problem with multiple objectives 

(maybe two or three objectives). Another multi-objective simulated annealing 

based approach was proposed by Nam and Park (2000). The approach obtains 

good results when compared to MOEAs. 

 

Gandibleux et al. (1997) presented the first multi-objective tabu search 

approach, the so-called MOTS. In this approach, special aspiration criteria, 

intensification and diversification strategies are designed for the multi-

objective class, and a scalarising function and a reference point are used to 

enumerate a set of possible good solutions.   

 

Jaszkiewicz (2001b) introduced a hybrid multi-objective approach based 

on genetic algorithm and local search. This is the so-called MOGLS. In this 

approach, local improvement heuristics are combined with crossover 

operators. Another hybrid method of a multi-objective approach has been 

proposed by Barichard and Hao (2002) known as the MOGTS, it is based on a 

combination of a genetic algorithm and tabu search. It is applied to the multi-

constraint knapsack problem and showed competitive results. Li and Landa-

Silva (2011) present an adaptive evolutionary multi-objective approach. 

Based on simulated annealing, it is called EMOSA. It incorporates simulated 

annealing and adapts weight vectors corresponding to various subproblems. 

The proposed approach is applied to the multi-objective knapsack problem 

and the multi-objective travelling salesman problem. It outperforms six multi-

objective meta-heuristic algorithms from the literature. 

2.3 Hyper-heuristics 
 
 

Some real-world problems are complex. Due to their (often) NP-hard 

nature, researchers and practitioners frequently resort to problem tailored 

heuristics to obtain a reasonable solution in a reasonable amount of time.  

Hyper-heuristics are methodologies that operate on a search space of 
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heuristics rather than directly searching the solution space for solving hard 

computational problems, with one of the key aims being to raise the level of 

generality. Many real-world computational problems have been solved 

successfully using state-of-the-art approaches and meta-heuristics 

techniques such as tabu search, genetic algorithms and simulated annealing 

(Burke et al., 2013). However, this success is often limited to a particular 

class of problem (or even particular problem instances) that has been solved 

using a specific implementation (Burke et al., 2013). The same 

implementation often cannot solve a new instance of the same problem 

unless the related parameters are properly tuned. Such methods are usually 

expensive to transfer to, and maintain, for new problems (Burke et al., 

2013; Qu & Burke, 2009). Hyper-heuristics approaches have been proposed 

in order to raise the level of generality of search methodologies (Burke et 

al., 2010). Moreover, hyper-heuristics produce general search algorithms 

that are applicable for solving a wide range of the problems in different 

domains (Burke et al., 2010; Burke et al., 2013; Özcan et al., 2008; Ross, 

2005). 

 

In a hyper-heuristic approach, different heuristics (or heuristic 

components) can be selected, generated or combined to solve a given 

optimisation problem in an efficient way. In their simplest form hyper-

heuristics are a search methodology that encompasses a high level strategy 

(which could be a meta-heuristic) that controls the search over a set of 

heuristics (heuristic components) rather than controlling a search over a 

direct representation of the solutions (Burke et al., 2010, 2013). In other 

words, hyper-heuristics performs as a “heuristic scheduler” within a set of low 

level heuristics using deterministic or non–deterministic methods; it is also 

sometimes termed Move acceptance strategies (Özcan et al., 2008). 

Burke et al. (2013) define Hyper-heuristics as follows: 

 

“A search method or learning mechanism for selecting or generating 

heuristics to solve computational search problems”. 

 

This definition will apply to the use of the term “hyper-heuristic“ throughout 

this thesis. According to the recent definition of meta-heuristic, proposed by 

Sörensen and Glover (2013), we can define hyper-heuristics as a set of meta-

heuristics. 
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To date, numerous hyper-heuristics papers have been published and 

several studies are being undertaken in this area of research. However, the 

notion of hyper-heuristics is not new. According to Burke et al. (2010, 2013) 

the idea of hyper-heuristics was first proposed in the early 1960s. Fisher and 

Thompson (1961, 1963) and Crowston et al. (1963) proposed the idea of a 

combination of dispatching rules (priority) to solve production scheduling 

problems so these combined rules were demonstrated to be superior to any 

rule taken in isolation. They also describe a method of combination by using 

“probabilistic learning” that simulated the mechanism of reinforcement 

learning in humans. Although computational search methodologies were still 

not mature at that time, the learning method proposed is similar to a 

stochastic local search algorithm performing in the space of scheduling rules' 

sequences (Burke et al. 2013). The main important conclusions from Fisher 

and Thompson’s (1963) study are “(1): an unbiased random combination of 

scheduling rules is better than any of them taken separately, and (2) learning 

is possible".  

The first time the term hyper-heuristics appeared was in a technical 

report by Denzinger et al. (1997) to illustrate a protocol that combines a 

range of Artificial Intelligence (AI) algorithms.  Cowling et al (2000) used the 

term in a peer-reviewed conference paper to present the idea of the heuristic 

selection in scheduling a sales summit. The ideas in this paper was further 

developed and applied to scheduling problems in (Cowling et al, 2001, 

2002a,b,c). 

2.3.1 The Concept of Hyper-heuristics 

 

In a hyper-heuristic approach, different heuristics can be selected, 

generated or combined to solve a given optimisation problem in an efficient 

way. Since each heuristic has its own strengths and weaknesses, one of the 

aims of hyper-heuristics is to automatically inform the algorithm by combining 

the strength of each heuristic and making up for the weaknesses of others. 

This process requires the incorporation of a learning mechanism into the 

algorithm to adaptively direct the search at each decision point for a particular 

state of the problem or the stage of search. It is obvious that the concept of 

hyper-heuristics has strong ties to Operational Research (OR) in terms of 

finding optimal or near-optimal solutions to computational search problems. It 

is also firmly linked to artificial intelligence (AI) in terms of machine learning 
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methodologies (Burke et al., 2013). In the context of hyper-heuristics, 

learning knowledge control mechanisms plays a significant role in applying the 

appropriate low level heuristic at each decision point. Moreover, these 

mechanisms guide the search adaptively to improve the search methodologies 

(Burke et al., 2013). 

The general framework of the hyper-heuristic is illustrated in Figure 2.7. 

Usually, in a hyper-heuristic framework, there is a clear separation between 

the high level hyper-heuristic approach (also referred to as strategy) and the 

set of low level heuristics or heuristic components. It is assumed that there is 

a domain barrier between them (Burke et al, 2003b). The purpose of domain 

barrier is to give the hyper-heuristics a higher level of abstraction. This also 

increases the level of generality of hyper-heuristics by being able to apply it 

to a new of problem without changing the framework. Only a set of problem-

related heuristics are supplied. 

 
Figure 2.7: A generic hyper-heuristic framework. Reprinted from (Burke et al., 2003b). 

 

The barrier allows only problem domain independent information to flow 

from the low level to the high level, such as the fitness/cost/penalty value 

(measured by an evaluation function, indicating the quality of a solution) 

(Hussin, 2005). Low level heuristics or heuristic components are the problem 

domain specific elements of a hyper-heuristic framework; hence they have 

access to any relevant information, such as candidate solution(s). The high 

level strategy can be a (meta-) heuristic or a learning mechanism (Burke et 

al.,2003b). The task of the high level strategy is to guide the search 

intelligently and adapt according to the success/failure of the low level 
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heuristics or combinations of heuristic components during the search process, 

in order to enable the reuse of the same approach for solving different 

problems (Qu and Burke, 2009). Thus, the high level strategy does not 

change while both the low level heuristics or heuristic components and the 

evaluation function require changing when tackling a new problem. 

2.3.2 Hyper-heuristics Classification 

 

Two types of hyper-heuristic methodologies can be identified in the 

literature (Burke et al., 2013): (i) heuristic selection methodologies: (meta-

)heuristics to choose (meta-)heuristics, and (ii) heuristic generation 

methodologies: (meta-)heuristics to generate new (meta-)heuristics from 

given components. Selection hyper-heuristics produce sequences of heuristics 

which lead to good quality solutions while generation hyper-heuristics produce 

new heuristics. For both hyper-heuristic methodologies, there are two 

recognized types of heuristics: (i) constructive heuristics which process a 

partial solution(s) and build a complete solution(s), (ii) perturbative heuristics 

which operate on complete solution(s). The notation of constructive and 

perturbative indicates how the search through the solution space is managed 

by the low level heuristics (Burke et al., 2013). However, a new direction of 

hybrid approaches of hyper-heuristics might include a combination of heuristic 

selection and heuristic generation methodologies, or a combination of 

construction and perturbation heuristics (Burke et al., 2010). The selection 

hyper-heuristics based on perturbative heuristics is the focus of this thesis. 

More on generation hyper-heuristics can be found in (Burke et al., 2013; 

Burke et al., 2010; Ross, 2005). 

An orthogonal classification of hyper-heuristics is provided in Burke et 

al. (2010) (see Figure 2.8) depending on: (i) the nature of the heuristic 

search space and (ii) the source of feedback during the search process. 

Hyper-heuristics can be used to select or generate constructive or 

perturbative heuristics which determine the nature of the heuristic search 

space. However, a new research direction of hybrid hyper-heuristics might 

include a combination of heuristic selection and heuristic generation 

methodologies, or a combination of constructive and perturbative heuristics. A 

hyper-heuristic can employ no learning, online learning (getting feedback 

from the search process while solving an instance), or offline learning (getting 

feedback via training over a selected set of instances to be utilized for solving 

unseen instances). A hyper-heuristic which combines simple random heuristic 
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selection with a method of accepting improving and equal quality moves is an 

example which uses a no learning approach (Özcan et al., 2008).  If a hyper- 

heuristic incorporates a mechanism to adaptively guide the search process 

and enable the approach to make informed decisions about selecting or 

generating a low level heuristic, then it is a learning hyper-heuristic.  Machine 

learning techniques are commonly used in hyper-heuristics. For example, 

reinforcement learning (based on reward/punishment) is employed as an 

online learning method for heuristic selection in hyper-heuristics (Cowling et 

al., 2002c). Genetic programming is frequently used as an offline learning 

hyper-heuristic which learns via the evolutionary process (Burke et al, 2009). 

In this thesis, we present an online learning selection hyper-heuristic based 

on perturbation heuristics (see Chapters 4-8). 

 

 
 

Figure 2.8: A classification of Hyper-heuristic. Reprinted from (Burke et al., 2010) 

 

     2.3.2.1 Selection Methodologies 

 

In the context of selection hyper-heuristics, the search space involves a 

set of widely known and understood heuristics. These heuristics are 

decomposed into their primary components in order to solve a particular 

problem (Burke et al., 2010). Heuristic selection methodologies can be based 

on either perturbative low level heuristics or the construction low level 

heuristics.  

 

Selection hyper-heuristics based on perturbation heuristics perform a 

search using two successive stages (Burke et al., 2013; Özcan et al, 2008): 

(meta-)heuristic selection and acceptance. An initial solution (a set of initial 
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solutions) is iteratively improved using the low level (meta-)heuristics until 

some termination criteria is satisfied. During each iteration, the (meta-

)heuristic selection decides which low level (meta-)heuristic will be executed 

next based on some criteria (perhaps randomly). After the selected (meta-

)heuristic is applied to the current solution (a set of solutions), a decision is 

made whether to accept the new solution(s) or not using an acceptance 

method. The low level (meta-)heuristics in a selection hyper-heuristic 

framework are, in general, human designed heuristics which are fixed before 

the search starts. 

A wide variety of selection hyper-heuristics based on perturbation 

heuristics are proposed using different heuristic selection and acceptance 

strategies in different domains: packing, vehicle routing, timetabling, channel 

assignment, component placement, personnel scheduling, planning and shelf 

space allocation (Burke et al., 2010).  Most of the existing selection hyper-

heuristics are based on perturbative low level heuristics, and favour single-

point search.  

 

More elaborate acceptance mechanisms have been introduced and there 

is a growing body of comparative studies which evaluate the performance of 

different heuristic selection and acceptance combinations (Burke et al., 2013). 

Cowling et al. (2002c) investigated the performance of different hyper-

heuristics, combining different heuristic selection, with different move 

acceptance methods on a real world scheduling problem. Simple Random, 

Random Descent, Random Permutation, Random Permutation Descent, 

Greedy and Choice Function were introduced as heuristic selection methods. 

The authors utilised the following deterministic acceptance methods: All-

Moves accepted and Only Improving moves accepted.  The hyper-heuristic, 

combining Choice Function with All-Moves acceptance, performed the best. In 

Kendall et al. (2002) the choice function based hyper-heuristic was proposed 

and applied to nurse scheduling and sales summit scheduling. The study 

shows that the choice function hyper-heuristic is successful in making 

effective use of low level heuristics, due to its ability of learning the dynamics 

between the solution space and the low level heuristics to guide the search 

process towards better quality solutions. Burke et al. (2003c) proposed 

reinforcement learning with tabu search methodology in order to solve 

rostering problems. The approach is tested on two problems, concerning 

university timetabling and nurse rostering. The results were comparable to 

other state-of-the-art approaches.  
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Bai and Kendall (2005) proposed an approach using simulated annealing 

as a non-deterministic move acceptance strategy in order to apply it to a shelf 

space allocation problem. In this approach, improving solutions are always 

accepted, and worsening moves are accepted based on the Metropolis 

criterion. The results show that the Simple Random in hyper-heuristics 

simulated annealing based produces a better solution than Simple Random-

Only Improving, Simple Random All-Moves, Greedy Only Improving and 

Choice Function All-Move.  Dowsland et al. (2007) present simulated 

annealing with reheating as a non-deterministic move acceptance strategy in 

order to determine shipper sizes for storage and transportation in relation to a 

packing problem. Reinforcement-Learning with tabu search (RLTS) selection 

heuristic strategy is employed. The experimental data are generated based on 

actual data from a cosmetics company. The study’s results show that 

simulated annealing with reheating and RLTS outperform the simpler local 

search strategy of Random Descent, Bai et al (2012) presents an extended 

hyper-heuristics framework based on the above studies. The proposed hyper-

heuristic uses a reinforcement learning mechanism with a short term memory 

as a heuristic selection and SA with a reheating scheme as a move acceptance 

method. The proposed approach evaluated on different problem domains 

including nurse rostering, course timetabling and bin packing. Pisinger and 

Ropke (2007) developed an approach using simulated annealing based on a 

linear cooling rate as an acceptance strategy and applied it to five different 

vehicle routing problems. A large neighbourhood search framework is 

employed. The approach was tested over a wide range of vehicle routing 

benchmark instances. The experimental results confirm that the strategies 

used in the approach can produce better solutions over many instances. 

 

 In Özcan et al. (2008) the performance of seven different heuristic 

selection methods (Simple Random, Random Descent, Random Permutation, 

Random Permutation Descent, Greedy, Choice Function and Tabu Search) 

combined with five acceptance methods (All-Moves, Only Improving, 

Improving & Equal, Exponential Monte Carlo with Counter and Great Deluge) 

were investigated. The resultant hyper-heuristics were tested on fourteen 

benchmark functions against genetic and memetic algorithms. The empirical 

results confirmed the success of memetic algorithms over genetic algorithms 

and the performance of a choice function based hyper-heuristic was 

comparable to the performance of a memetic algorithm. Özcan et al. (2009) 
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used late acceptance as the non-deterministic move acceptance strategy with 

the best combination heuristic selection methods in order to solve exam 

timetabling problems. The results show that Simple Random combined with 

late acceptance outperforms Simple Random combined with other heuristic 

selection methods like Greedy, Choice Function, Reinforcement-Learning and 

Reinforcement-Learning Tabu Search. In Gibbs et al. (2011) the performance 

of different hyper-heuristics are compared with different components 

emphasising the influence of learning heuristic selection methods for solving a 

sports scheduling problem. The experimental result shows that the proposed 

approach is slightly better than the other approaches that use choice function 

as heuristic selection and great deluge as an acceptance criteria for solving a 

sports scheduling problem.  

 

In Özcan and Kheiri (2011) a greedy heuristic selection strategy was 

presented which aims to determine low level heuristics with good performance 

based on the trade-off between the change (improvement) in the solution 

quality and the number of steps taken. This method performs well with 

respect to the competition hyper-heuristics on four problem domains.  

Berberoglu and Uyar (2011) compared the performance of combining twenty 

four learning and non-learning selection hyper-heuristics and seven 

mutational and hill-climbing heuristics. The study shows that Random 

Permutation Descent Only Improving performed the best on a short-term 

electrical power scheduling problem.  

 

Recently, a wide empirical analysis was conducted in Burke et al. (2012) 

to compare many Monte Carlo based hyper-heuristics for examination 

timetabling. The experimental results show that choice function simulated 

annealing with reheating performs well.  Another study was conducted by 

Bilgin et al. (2007) using a set of eight heuristic selection strategies (Simple 

Random, Random Gradient, Random Permutation, Random Permutation 

Gradient, Greedy, Choice function, Reinforcement Learning and Tabu Search) 

and five move acceptance strategies (All-Moves, Only Improving, Improving & 

Equal, Great Deluge Algorithm and Exponential Probability Function based on 

the computation time and a counter of consecutive (EMCQ)) which were 

tested on different timetabling benchmark problems. The study showed that 

there is no one strategy that dominates every other combination strategies. 

Vinkö and Izzo (2007) proposed a new distributed solver based on 

cooperatively standard versions of some stochastic solvers. The proposed 
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approach outperforms the stand alone classical methods. Biazzini et al. 

(2009) presented a set of distributed hyper-heuristic based on an island 

model. The approach was compared against other hyper-heuristics over a set 

of real parameter optimisation problems. 

 

Misir et al. (2011) proposed a move acceptance method referred to as 

Adaptive Iteration Limited List-based Threshold Acceptance (AILLA). The 

proposed move acceptance is compared to other move acceptance strategies 

including LA, SA, GDA and Improving & Equal. All the comparison methods 

are combined with Simple Random heuristic selection. The results show that 

AILLA and Late acceptance outperform the others. Misir et al. (2012) extend 

the work by presenting a heuristic selection based on heuristic dynamic 

learning. The approach that combined AILLA and this heuristic selection was 

the winner of the CHeSC competition. Drake et al. (2012) presented a hyper-

heuristic employing a variant of the choice function as a heuristic selection 

with a simple new initialisation and update scheme.  Demeester et al. (2012) 

presented Simple Random based hyper-heuristics using different move 

acceptance strategies including Improving or Equal, GDA, SA, LA and 

Steepest Descent Late Acceptance for examination timetabling. The 

experimental results show that the Simple Random SA hyper-heuristic 

performs the best over exam benchmark datasets. A recent study on hyper-

heuristics for continuous optimisation in dynamic environments is proposed by 

Kiraz et al. (2011). The proposed approach uses a parameterised Gaussian 

mutation to create different low level heuristics. The experimental results 

show that the choice function Improving & Equal hyper-heuristic outperforms 

Simple Random Improving & Equal hyper-heuristic. 

 

There are a number of hyper-heuristic approaches in the literature 

based on evolutionary algorithms. An example of a hyper-heuristic approach 

based on a genetic algorithm can be in Dorndorf and Pesch (1995). Although 

the term of hyper-heuristic was not created by the authors, the concept of a 

hyper-heuristic was employed through a probabilistic learning strategy based 

on the principles of evolution. The proposed algorithm was applied to solving 

job shop scheduling problems. Another example of a hyper-heuristic approach 

based on a genetic algorithm can be found in Hart et al. (1998).  This 

approach was used for handling a set of low level heuristics to solve a chicken 

catching and transportation problem. Ross and Marin-Blazquez (2005) also 

present a messy genetic algorithm hyper-heuristic based on graph colouring 
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heuristics to tackle class and exam timetabling problems. The key idea behind 

their approach was to devise an algorithm to find the problem states through 

a set of labelled points which it refers to as a heuristic. The approach 

produces fast problem-solving algorithms compared with other existing 

algorithms. A messy genetic algorithm is employed by Terashima Marın et al. 

(2008) for class and exam timetabling problems.  The proposed offline 

approach shows an ability to produce good quality solutions. Cobos et al 

(2011) present different variants of evolutionary approaches under a multi-

point based search framework. The proposed approaches are tested on 

different combinations of heuristic selection and move acceptance methods on 

the document clustering problems. Grobler et al. (2012) presents a hybrid 

approach  on  a set of meta-heuristics including a genetic algorithm, particle 

swarm optimisation variants, CMA-ES and  differential evolution that was 

combined with local search  under a multi-point hyper-heuristic framework.  

 

In selection hyper-heuristics based on construction heuristics, an initial 

solution is empty and is then built up gradually via the use of constructive 

heuristics. A complete solution is obtained at the end of the run (Burke et al., 

2013).  Various construction low level heuristic based approaches are 

proposed using a variety of high level strategies in different domains. 

According to  a recent survey conducted by Burke et al. (2013),  the  popular  

high  level strategy used in heuristic selection  based on  constructive 

heuristics are hill-climbing, genetic algorithms, tabu search, iterated local 

search, variable neighbourhood search, fuzzy systems, case-based reasoning, 

classifier systems, messy genetic algorithms and scatter search. In addition, 

the common domains which have applied heuristic selection based on 

constructive heuristics are packing, vehicle routing, timetabling and 

production scheduling and constraint satisfaction domains.  

     2.3.2.2 Generation Methodologies 

 

As the focus of this thesis is on selection hyper-heuristic methodologies, 

only a brief review of the literature on generation hyper-heuristic 

methodologies is presented in this section.  

 

Generation hyper-heuristic methodologies refer to generating new 

heuristics from the basic components of existing heuristics, known as a set of 

building blocks. Generation hyper-heuristic methodologies can be based on 
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either construction low level heuristics or perturbation low level heuristics 

(Burke et al., 2010). In the context of heuristic generation, the search space 

involves a set of basic components of known and understood heuristics. A new 

heuristic is generated to produce the solution for a given problem at the end 

of a run (Burke et al., 2013). Although generation hyper-heuristics aim to 

generate a new heuristic automatically, using building blocks of heuristics, the 

heuristic components still have to be designed by humans (Burke et al., 

2010). Generation hyper-heuristics have some advantages in terms of their 

ability to produce a better solution than human-designed heuristics. In 

addition, they require less (human) time and human resources to be applied 

to various problem instances. However, they do have some disadvantages in 

the short term regarding their computational cost (Burke et al., 2013).  

 

The most common generation hyper-heuristics are genetic 

programming-based. That is because of this methodology’s suitability to 

represent heuristics in an effective way (Jakobovic et al., 2007). Genetic 

programming (Koza, 1992) is an evolutionary computation technique that 

operates on a population of computer programs. However, other generation 

approaches have been developed based on the squeaky wheel optimisation 

methodology (Joslin and Clements,1999; Aickelin et al.,2009; Burke and 

Newall, 2004).  

 
Various automated generation hyper-heuristic approaches have been 

proposed in different problem domains including the travelling salesman 

problem, satisfiability testing (SAT), production scheduling, cutting and 

packing, boolean satisfiability, binary decision diagrams, constraint 

satisfaction and compiler optimisation. An example of the generation 

approach for boolean satisfiability is presented by Bader-El-Den and Poli 

(2007). The approach uses genetic programming to produce local search 

heuristics. In their study, traditional crossover and mutation operators are 

used within various heuristic generation methodologies. Burke et al. (2006; 

2007a,b) propose the generation of construction heuristics using genetic 

programming.  The proposed approach was evaluated on the bin packing 

problems. The study confirms the applicability of the approach to these types 

of problems. Further, the results show that the approach can beat the human-

designed heuristics in terms of its ability to perform better over a new 

instance of a particular class of heuristic rather than new instance of a 

different class. Keller and Poli (2007) propose a genetic-programming hyper-
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heuristic approach to evolve local search heuristics in order to solve travelling 

salesman problems. The evolved heuristics show good performance over two 

TSP benchmark instances. Pillyay (2008) conducted an analysis of 

performance in genetic programming systems under three representations 

(alternative encodings, fixed length and variable length) for the examination 

timetabling problem. The study shows that fixed length representation 

perform badly. In Özcan and Parkes (2011) present a hyper-heuristic for 

generating constructive heuristics (policies). The whole process is formulated 

as a tuning process where there are many parameters in the system. 

 

In term of multi-objective approaches, Tay and Ho (2008) propose a 

genetic programming hyper-heuristic approach to evolve dispatching rules to 

solve multi-objective job-shop problems in production scheduling. The 

dispatching rules generated performed better than single dispatching rules. 

Allen et al. (2009) present an empirical study comparing the quality of genetic 

programming heuristics and human heuristics that were designed to solve 3D 

knapsack packing problems. The results indicate that the generated heuristics 

perform competitively against state-of–the-art approaches. Kumar et al. 

(2009) propose multi-objective genetic programming for the minimum 

spanning tree problem. The diameter and cost of the trees serve as 

objectives. In this approach, the evolved heuristics are used to generate the 

Pareto optimal front and produced good quality solutions compared with 

existing heuristics. 

 

This section has reviewed the papers in the area of research that are 

particularly relevant to this thesis. For comprehensive surveys and examples 

see (Burke et al, 2013). Some valuable guidelines for implementing a hyper-

heuristic approach can also be found in Ross (2005). 

2.3.3 Multi-objective Hyper-heuristics Approaches 

 

Hyper-heuristics have recently seen an increase in attention from 

researchers. Although many hyper-heuristics papers have been published, 

they are still mainly limited to single-objective optimisation. The hyper-

heuristics for multi-objective optimisation problems is a new area of research 

in Evolutionary Computation and Operational Research (Özcan et al., 2008; 

Burke et al., 2013). To date, few studies, have been identified that deal with 

hyper-heuristics for multi-objective problems (see Table 2.2).  
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The first approach (Burke et al., 2003a) is a multi-objective hyper-

heuristic based on tabu search (TSRoulette Wheel). The key feature of this 

paper lies in choosing a suitable heuristic at each iteration to tackle the 

problem at hand by using tabu search as a high-level search strategy. The 

proposed approach was applied to space allocation and timetabling problems 

and produced results with acceptable solution quality. An adaptive multi-

method (multi-point) search called AMALGAM is proposed in Vrugt and 

Robinson (2007). It employs multiple search algorithms; NSGAII (Deb and 

Goel, 2001), PSO (Kennedy, 2001), AMS (Haario et al., 2001), and DE (Storn 

and Price, 1997) simultaneously using the concepts of multi-method search 

and adaptive offspring creation. AMALGAM is applied to a number of 

continuous multi-objective test problems and it was superior to other 

methods. It was also applied to solve a number of water resource problems 

and it yielded very good solutions (Raad et al., 2010; Zhang et al., 2010}.  

Veerapen et al. (2009) present a multi-objective hyper-heuristic approach 

comprising two phases: the first phase aims to produce an efficient Pareto 

front (this may be of low quality based on the density), while the second 

phase aims to deal with a given problem in a flexible way to drive a subset of 

the population to the desired Pareto front. This approach was evaluated on 

the multi-objective travelling salesman problems with eleven low level 

heuristics. It is compared to other multi-objective approaches from the 

literature which reveals that the proposed approach generates good quality 

results but future work is still needed to improve the methodology.  Len et al. 

(2009) propose a hypervolume-based hyper-heuristic for a dynamic-mapped 

multi-objective island-based model. The proposed method shows its 

superiority when compared to the contribution based hyper-heuristic and 

other standard parallel models over the WFG test problems (Huband et al., 

2006). A new hyper-heuristic based on the multi-objective evolutionary 

algorithm NSGAII (Deb and Goel, 2001) is proposed in Gomez and Terashima-

Marʆn (2010). The main idea of this method is in producing the final Pareto-

optimal set, through a learning process that evolves combinations of 

condition-action rules based on NSGAII. The proposed method was tested on 

many instances of irregular 2D cutting stock benchmark problems and 

produced promising results. A multi-strategy ensemble multi-objective 

evolutionary algorithm called MS-MOEA for dynamic optimization is proposed 

in Wang and Li (2010). It combines different strategies including a memory 

strategy and genetic and differential operators to adaptively create offspring 

and achieve fast convergence speed. Experimental results show that MS-
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MOEA is able to obtain promising results. In McClymont and Keedwell (2011) 

an online selection hyper-heuristic, Markov chain based, (MCHH) is 

investigated. The Markov chain guides the selection of heuristics and applies 

online reinforcement learning to adapt transition weights between heuristics.  

In MCHH, hybrid meta-heuristics and Evolution Strategies were incorporated 

and applied to the DTLZ test (Deb et al., 2002) problems and compared to a 

(1+1) evolution strategy meta-heuristic, a random hyper-heuristic and 

TSRoulette Wheel (Burke et al., 2003a). The comparison shows the efficacy of 

the proposed approach in terms of Pareto convergence and learning ability to 

select good heuristic combinations. Further work is needed in terms of 

diversity preserving mechanisms.  The MCHH was applied to the WFG test 

problems (Huband et al., 2006), the experiments shows efficacy of the 

method but future work is still needed in terms of acceptance strategies to 

improve the search (McClymont and Keedwell, 2011). The MCHH has also 

been applied to real-world water distribution networks design problems and 

produced competitive results (McClymont et al., 2013).  In Miranda et al. 

(2010) and Armas et al. (2011), a hyper-heuristic-based codification is 

proposed for solving strip packing and cutting stock problems with two 

objectives that maximise the total profit and minimise the total number of 

cuts. Experimental results show that the proposed hyper-heuristic 

outperforms single heuristics. In Furtuna et al.  (2012) a multi-objective 

hyper-heuristic for the design and optimisation of a stacked neural network is 

proposed. The proposed approach is based on NSGAII combined with a local 

search algorithm (Quasi-Newton algorithm). Rafique (2012) presented a 

multi-objective hyper-heuristic optimisation scheme for engineering system 

design problems. A genetic algorithm, simulated annealing and particle swarm 

optimisation are used as low-level heuristics. Vázquez-Rodríguez and Petrovic 

(2013) proposed a multi-indicator hyper-heuristic for multi-objective 

optimisation. This was approach based on multiple rank indicators that taken 

from NSGAII (Deb & Goel, 2001), IBEA (Zitzler and Künzli, 2004) and SPEA2 

(Zitzler et al., 2001). Len et al. (2009) proposed a hypervolume-based hyper-

heuristic for a dynamic-mapped multi-objective island-based model. Bai et al.  

(2013) proposed a multiple neighbourhood hyper-heuristic for two-

dimensional shelf space allocation problem. The proposed hyper-heuristic was 

based on a simulated annealing algorithm. Kumari et al. (2013) present a 

multi-objective hyper-heuristic genetic algorithm (MHypGA) for the solution of 

Multi-objective Software Module Clustering Problem. In MHypGA, different 
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methods of selection, crossover and mutation operations of genetic algorithms 

are incorporated as a low level heuristics.   

None of the above studies have used multi-objective evolutionary 

algorithms (MOEAs), with the exception of Gomez and Terashima-Marín 

(2010), Vrugt and Robinson (2007) and Rafique (2012) and no continuous 

and standard multi-objective test problems studied, except in except in 

McClymont and Keedwell (2011), Vrugt and Robinson (2007), Len et al. 

(2009) and Vázquez-Rodríguez and Petrovic (2013). Moreover, none of the 

previous hyper-heuristics make use of the components specifically designed 

for multi-objective optimisation that we introduce in this thesis. 

 

Component name Application domain/ 
test problems 

Reference(s) 

Tabu search Space allocation, timetabling Burke et al. (2003) 

Travelling salesman problems Veerapen et al. (2009) 
Markov chain, evolution strategy Real-world water distribution 

networks design /DTLZ, WFG 
McClymont and Keedwell 
(2011) 

NSGAII 

 

Irregular 2D cutting stock Gomez and Terashima-Marín 
(2010) 

Strip packing and Cutting stock de Armas et al. (2011) and 
Miranda et al.(2010) 

NSGAII, quasi-Newton algorithm Stacked neural network Furtuna et al. (2012) 
Number of operations from 
NSGAII, SPEA2 and IBEA 

A number of continuous multi-
objective test problems 

Vázquez-Rodríguez and 
Petrovic (2013) 

Number of selection, crossover 
and mutation operations of 
evolutionary algorithms 

Software module clustering Kumari et al. (2013) 

Hypervolume Dynamic-mapped island-based 
model/ WFG 

Len et al. (2009) 

Particle swarm optimisation, 
adaptive metropolis algorithm, 
differential evolution 

Water resource problems/ a 
number of continuous 
multiobjective test problems 

Vrugt and Robinson(2007), 
Raad et al. (2010) and Zhang 
et al. (2010) 

Memory strategy, genetic and 
differential operators 

Dynamic optimization 
problems/a number of 
continuous multi-objective test 
problems 

Wang and Li (2010) 

Genetic algorithm, simulated 
annealing, particle swarm 
optimization 

Engineering system design 
problems/a number of classical 
multi-objective test problems 

Rafique (2012) 

Simulated annealing Shelf space allocation Bai et al. (2013) 
 

Table 2.2: Heuristic components and application domains of hyper-heuristics for multi-
objective optimisation. 

2.3.4 Multi-objective Selection Hyper-heuristics versus 

Hybrid Methods for Multi-objective Optimisation 

 

According to Ke Tang in Vrugt et al. (2010), the idea of combining 

multiple algorithms is not new at all, and can be traced back to 1980s. In the 

context of multi-objective and evolutionary computation, many methods are 

presented utilising this idea, such as adaptive multi-method algorithms (Vrugt 
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and Robinson, 2007) and multi-strategy ensemble algorithms (Wang and Li, 

2010).  

The adaptive multi-method/strategy ensemble algorithms rely on 

running multiple algorithms (such as MOEAs or evolution strategies) 

simultaneously and adaptively creating the offspring. Both methods are 

closely similar to selection hyper-heuristics for multi-objective optimisation 

problems. Other researchers would argue that the adaptive multi-

method/strategy ensemble algorithms are hyper-heuristic methods. According 

to Burke et al. (2013), the hyper-heuristics defined in Section 2.3. It is hard 

to classify the adaptive multi-method/strategy ensemble algorithms as 

selection or generation hyper-heuristics. However, we cannot remove them 

from the umbrella of hyper-heuristics, as they are combining different 

heuristics/ meta- heuristics. These methods are similar to the multi-objective 

selection hyper-heuristic methods in term of the incorporation of different 

algorithms. However, they are different from selection hyper-heuristics in 

their concept. Selection hyper-heuristic rely on two concepts: a selection 

mechanism and an acceptance move strategy. Both concepts are not adopted 

in the adaptive multi-method/strategy ensemble algorithms. Moreover, 

multiple heuristic/meta-heuristics run concurrently in the adaptive multi-

method/strategy ensemble algorithms. Each heuristic/meta-heuristics produce 

a different population of offsprings, and then all produced offsprings are 

evaluated to evolve a new population of offspring by an adaptive creation 

offspring strategy. In multi-objective selection hyper-heuristics, a sequence of 

heurstic/meta-heuristic is executed during the search, i.e. one heurstic/meta-

heuristic is selected and applied at each stage (iteration/decision point) of the 

search. The high level strategy in hyper-heuristics evaluates the performance 

of a set of heurstic/meta-heuristic in order to improve the population of 

solutions. 

In this thesis, a new online learning selection hyper-heuristic framework 

which supports multi-point search and cooperative low level meta-heuristics 

for multi-objective optimisation is proposed. Further details of this hyper-

heuristic framework are discussed in Chapter 4. 

2.4 Summary 
 

Our multi-objective hyper-heuristic framework that is investigated in 

this thesis addresses multi-objective evolutionary algorithms, hyper-
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heuristics, meta-heuristics research areas. This chapter has reviewed previous 

research work for those areas.  

In this chapter also we provided a description of well-known 

methodologies that address multi-objective optimisation and identify their 

strengths and weaknesses. In this chapter, we reviewed the previous research 

for multi-objective hyper-heuristics. None of the previous hyper-heuristics 

make use of the components particularly designed for multi-objective 

optimisation that we introduce in this thesis. 

Several multi-objective test problems have been proposed in the 

literature; for example, real-world problems, combinatorial optimisation 

problems, discrete or integer-based problems, noisy problems, dynamic 

problems, and problems with side constraints. In the next chapter, we 

presents an overview and discusses the multi-objective optimisation test 

problems in specifically the continuous unconstrained problems. 
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3 Multi-objective Optimisation Test Problems 
 

A multi-objective problem (MOP) comprises several objectives (two or 

more), which need to be minimised or maximised depending on the problem. 

Each objective has some measure as to the quality of the solution. It is 

essential that MOEA algorithms are tested over a number of problems in order 

to have a clear perception of their strengths and weaknesses. To accomplish 

this effectively, it is crucial to first develop a strong understanding and 

undertake a precise analysis of the test problems at hand. In the MOEAs 

literature, several multi-objective test problems have been proposed; for 

example, continuous problems, combinatorial optimisation problems, discrete 

or integer-based problems, noisy problems, dynamic problems,  problems 

with side constraints and even real-world problems (see Coello et al., 2007b). 

However, some of the multi-objective test problems do not fully examine the 

characteristics of EAs.  Also they sometimes have defects in their design such 

as not being scalable in terms of parameters/objectives, or only being suitable 

for simple algorithms (Huband et al., 2006). In order to fully understand the 

features of test problems for multi-objective optimisation, some important 

definitions and test problems features are described in this chapter.  

3.1 Definitions of the Test Problems’ Features 
 

Pareto one-to-one or Pareto many-to-one: 

 

 If the mapping between the Pareto optimal set and the Pareto optimal 

front (the fitness landscape) is one-to-one.  The problem, in this case, is 

called Pareto one-to-one. Otherwise, if the fitness landscape is many-to-one 

the problem is called Pareto many-to-one (see Figure 3.1). 

 

Flat regions:  

 

A characteristic of many-to-one fitness landscapes is when a connected 

open subset of parameter space maps to a singleton. The problem with flat 

regions occurs when a tiny perturbation of the parameters in regions do not 

change the objective values. 
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Figure 3.1: Examples of the mapping between the Pareto optimal set and the Pareto 
optimal front (the fitness landscape). In (a) Pareto many-to-one, (b) Pareto one-to-
one.  

 

Modality:  

 

A problem can be described as a multimodal problem if it has a 

multimodal objective which includes multiple local optima in the objective 

space. Otherwise, if there is only a single optimum with the objective 

function, the problem is described as a unimodal problem (see Figure 3.2).  

 

Deception:  

 

Deception is a special case of multimodality. If the objective function 

has at least two optima (a true optimum and a deceptive optimum) then it 

can be called a deceptive objective, and the problem which consists of this 

objective function can be called a deceptive problem (see Figure 3.2).  

 

Bias: 

 

 In the fitness landscape, an evenly distributed sample of parameter 

vectors in the search space maps to an evenly distributed set of objective 

vectors in the fitness space, but the mapping from the Pareto optimal set to 

the Pareto optimal front can be biased if significant variation occurs in 

distribution. The variation is known as bias. It is worth mentioning that bias 

has a significant effect on the convergence speed toward the Pareto optimal 

front (POF). 

(a) 

(b) 
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Figure 3.2: Examples of deceptive and multimodal objectives. In (a) a deceptive 
multimodal objective. (b) a nondeceptive multimodal objective. Reprinted from 
(Huband et al., 2006). 

 

Separability: 

 

 It refers to the parameter dependencies.  If every objective of a 

problem is separable, then it is a separable problem. Otherwise, it is a 

nonseparable problem. 

 

Pareto Front Geometries:  

 

The geometry of the Pareto optimal front can be convex, concave, 

degenerate, connect, discrete. It can also consist of different geometry fronts 

which are known as mixed fronts (see Figure 3.3). A front is a convex front, if 

it covers its convex hull. In contrast, if it is covered by its convex hull, it is a 

concave front. A linear front is one that is both concave and convex. A 

degenerate front is a front that is less than the number of dimensions in the 

objective space such as front that only a point in two objectives and a line 

segment in a three objective problem. (Huband et al., 2006). A connected 

front is often referred to as continuous while a disconnected front is often 

referred to as discontinuous. A mixed front is one with consists of strictly 

convex, strictly concave, or linear front.  

 

(b) (a) 
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Figure 3.3: Example of mixed geometry front consists of a half-convex and half-concave 
component, a degenerate zero dimensional point, and a convex component. Reprinted 
from (Huband et al., 2006). 

 

3.2 The Features of the Test Problems 
 

In the scientific literature, various features for multi-objective 

optimisation test problems are presented. Those features are designed to 

make the problems difficult enough to examine algorithmic performance. 

Examples of these features are deception (Goldberg, 1987; Whitley, 1991), 

multimodality (Horn and Goldberg, 1995), noise (Kargupta, 1995) and 

epistasis (Davidor, 1990). Moreover, other features of test problems are 

suggested in Deb  (1999) such as multimodality, deceptive, isolated optimum 

and collateral noise. These features can cause difficulties for evolutionary 

optimisers in terms of converging to the Pareto optimal front (POF) and 

maintaining the population diversity. Furthermore, some characteristics of the 

POF such as convexity or non-convexity, discreteness, and non-uniformity 

could cause difficulties in term of the population diversity (Zitzler et al., 

2000). Branke (1999) asserted that the test problems should be simple and 

straightforward in order to understand the behaviour of the optimisation 

algorithm more easily. In addition, they should be describable and analyzable, 
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and their parameters should be tunable. Nevertheless, they should be 

complicated enough to provide a true reflection of real world problems. 

The main features of test problems for multi-objective optimisation 

presented in Deb et al. (2002) include the simplicity of formation, scalability 

to any number of decision variables, scalability to any number of objectives, 

accurate and specific knowledge of the shape and location of the Pareto 

fronts, finding a widely distributed set of Pareto solutions, and the capability 

to overcome the difficulty in converging to the true Pareto front. Furthermore, 

Huband et al. (2006) introduced the following key features of multi-objective 

test problems which present varying degrees of problem difficulty for the 

multi-objective optimisers: 

 Pareto Optimal Front Geometry such as convex, linear, concave, 

mixed, degenerate and disconnected.  

 Parameter Dependencies which refer to the problem and whether the 

objective is separable or nonseparable. 

 Bias refers to whether the test problem may or may not be biased. 

 Many-to-One Mappings which refer to the fitness landscape, which are 

either one-to-one or many-to-one. 

 Modality refers to the problem objective; this may be unimodal or 

multimodal (can also be deceptive multimodality). 

 

Huband et al. (2006) introduce some useful recommendations for 

designing multi-objective test problems including: 

 

 No extremal parameters to the test problem in order to prevent 

exploitation by truncation operators. 

 No medial parameters for the test problem in order to prevent 

exploitation by intermediate recombination. 

 Scalability in the number of decision variables. 

 Scalability in the number of objectives. 

 The parameters of the test problem should have domains of dissimilar 

magnitude to encourage an optimiser to scale the strengths of the 

mutation operator. 

 Knowledge of the POF in order to support the analysis of the results. 
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It can be seen that some of the recommendations of Huband et al. 

(2006) are identical to the features described by Deb et al. (2002).  

 

3.3 Test Suite for Multi-objective Optimisation 
 

Typically, a test suite should include different test problems which 

consist of a wide range of characteristics and features as mentioned in Section 

3.2. However, it is impractical to have a test suite that incorporates all 

possible combinations of features. The test suites most commonly employed 

as benchmark multi-objective problems in the MOEA literature are the ZDT 

test suite (Zitzler et al., 2000), the DTLZ test suite (Deb et al., 2002) , the 

WFG (Huband et al., 2006) and more recently LZ09 (Li and Zhang, 2009). It 

good to note ZDT, DTLZ and WFG  test suites have been used by MOHH 

approaches which presented in Section 2.3.3.  The problem features in ZDT, 

DTLZ and WFG test suites are presented in Table 3.1. 

 

 

Test features ZDT DTLZ WFG 

Pareto 1-1    √ 

Pareto M-1 √ √ √ 

Flat Regions   √ 

Modality Unimodality √ √ √ 

Multimodality √ √ √ 

Deception √  √ 

Bias √ √ √ 

Pareto Front known  √ √ √ 

Separability Separable √ √ √ 

Nonseparable   √ 

Scalability  No of Parameters   √ √ 

No of objectives  √ √ 

Front Geometry Convex √  √ 

Concave √ √ √ 

Disconnected √  √ 

Degenerate   √ 

Linear   √ √ 

Mixed   √ 

Table 3.1: Listing of Test Problem Features in ZDT, DTLZ and WFG test suites. 

 

3.3.1 ZDT Test Suite 

 

This was introduced in Zitzler et al. (2000) and consists of six test 

problems. All the problems are separable and complicated enough to enable 

comparison over a variety of multi-objective evolutionary approaches. They 
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also include some features which make the problems sufficiently difficult for 

optimisers such as multimodality, non-convexity and deception. For all 

problems of ZDT, the global optimum has the same variable values for 

different decision variables and objectives and the POF is known (Huang et 

al., 2007). In addition, the ZDT test suite has been widely used by many 

researchers in MOEAs. Therefore, test results are available and can be easily 

accessed. However, ZDT has some limitations. In terms of scalability, the 

number of decision variables and objectives only has one decision variable 

with two objectives. Moreover, none of its test problems has fitness 

landscapes with flat regions, a degenerate Pareto front or even non-separable 

features. In addition, the only deceptive problem is binary encoded. Also the 

global optimum for all ZDT problems lies on the lower bound, or in the centre 

of the search bounds (Huang et al., 2007). The ZDT test functions are 

presented in Table 3.2. 

3.3.2 DTLZ Test Suite 

 
This was introduced in Deb et al. (2002) and consists of seven different 

test problems. Similar to ZDT, the global optimum of DTLZ test problems has 

the same values for decision variables and objectives, all its problems are 

separable (Huang et al., 2007), and the POF is known. However, it differs 

from ZDT in terms of its scalability. DTLZ is scalable to any number of 

objectives and distance parameters. However, DTLZ has several 

shortcomings. For all problems, the global optimum is situated in the centre of 

the search range or on the bounds. None of these problems has fitness 

landscapes with flat regions, deceptive or non-separable features. Moreover, 

the number of decision variables is always strongly tied to the number of 

objectives (Huband et al., 2006). In addition, the increase in the number of 

objectives may cause difficulties for an optimiser to find the Pareto solutions 

(Deb et al., 2002; Kokolo et al., 2001).  The DTLZ test functions are 

presented in Table 3.3. 

 

3.3.3 WFG Test Suite 

 
The Walking Fish Group’s test suite (WFG) was created in Huband et al. 

(2006). It consists of nine test problems. The benchmark problems fully 

satisfy the recommendations set out in Section 3.2. The WFG is designed only 

for real valued parameters with no side constraints which make the problems  
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ZDT1 ࢌ૚ ሺ࢞૚ሻ ൌ ૛ǡ࢞ሺࢍ  ૚࢞   ǥ ǡ ሻࡹ࢞ ൌ ૚ ൅ ૢ ȉ෍࢓࢏࢞
ୀ૛࢏  ോ ሺ࢓ െ ૚ሻ ࢎሺ ࢌ૚ǡ ሻࢍ ൌൌ  ૚ െ ඥ ࢌ૚ ോ   ࢍ

 
subject to ૙ ൑ ࢏࢞ ൑ ૚ 

ZDT2   ࢌ૚ ሺ࢞૚ሻ ൌ ૛ǡ࢞ሺࢍ  ૚࢞   ǥ ǡ ሻࡹ࢞ ൌ ૚ ൅ ૢ ȉ෍࢓࢏࢞
ୀ૛࢏  ോ ሺ࢓ െ ૚ሻ ࢎሺ ࢌ૚ǡ ሻࢍ ൌൌ  ૚ െ ሺࢌ૚ ോ   ሻ૛ࢍ

 
subject to ૙ ൑ ࢏࢞ ൑ ૚ 

ZDT3   ࢌ૚ ሺ࢞૚ሻ ൌ ૛ǡ࢞ሺࢍ  ૚࢞   ǥ ǡ ሻࡹ࢞ ൌ ૚ ൅ ૢ ȉ෍࢓࢏࢞
ୀ૛࢏  ോ ሺ࢓ െ ૚ሻ ࢎሺ ࢌ૚ǡ ሻࢍ ൌൌ  ૚ െ ඥ ࢌ૚ ോ ࢍ െ ሺࢌ૚ ോ ሻࢍ   ૚൯࢏࢞ ࣊൫૚૙࢔࢏࢙

 
subject to ૙ ൑ ࢏࢞ ൑ ૚ 

ZDT4   ࢌ૚ ሺ࢞૚ሻ ൌ ૛ǡ࢞ሺࢍ  ૚࢞   ǥ ǡ ሻࡹ࢞ ൌ ૚ ൅ ૚૙ ሺ࢓ െ ૚ሻ ൅෍࢏࢞૛࢓
ୀ૛࢏ െ ૚૙࢙࢕ࢉሺ૚૙ࢌ ࣊૚ሻ  ോ ሺ࢓ െ ૚ሻ ࢎሺ ࢌ૚ǡ ሻࢍ ൌൌ  ૚ െ ඥ ࢌ૚ ോ   ࢍ

 
subject to െ૞ ൑ ࢓࢞ ൑ ૞, ૙ ൑ ૚࢞ ൑ ૚ 

ZDT5 ࢌ૚ ሺ࢞૚ሻ ൌ  ૚ ൅ ૛ǡ࢞ሺࢍ ૚ ሻ࢞ ሺ࢛ ǥ ǡ ሻࡹ࢞ ൌ ෍ ࢜ሺ࢛ሺ ࢏࢞ ሻሻ࢓
ୀ૛࢏ ૚ǡࢌ ሺࢎ  ሻࢍ ൌൌ  ૚ ോ  ૚ࢌ

 

subject to  ࢜൫࢛ሺ ࢏࢞ ሻ൯ ൌ ૛ ൅ ሻ ࢏࢞ሺ࢛ ࢌ࢏   ሻ ࢏࢞ሺ࢛  ൏ ͷ                                         ൌ ૚                   ࢛ ࢌ࢏ሺ࢏࢞ ሻ ൌ ૚     
ZDT6 ࢌ૚ ሺ࢞૚ሻ ൌ  ૚ ൅ ૛ǡ࢞ሺࢍ ૚ ሻ࢞࣊૟ሺ૟࢔࢏࢙૚ ሻ࢞ሺ െ૝࢖࢞ࢋ ǥ ǡ ሻࡹ࢞ ൌ ૚ ൅ ૢ ȉ ሺሺ෍࢓࢏࢞

ୀ૛࢏  ോ ሺ࢓ െ ૚ሻሻ૙Ǥ૛૞ ࢎሺ ࢌ૚ǡ ሻࢍ ൌൌ  ૚ െ ሺࢌ૚ ോ  ሻ૛ࢍ
 
subject to  ૙ ൑ ࢏࢞ ൑ ૚ 

 
Table 3.2: ZDT test functions. Reprinted from (Zitzler et al., 2000) 

 

easy to analyse and implement. The features of the WFG dataset are seen as 

the common choice for most MOEA researchers (Huband et al., 2006).  Unlike 

most of the multi-objective test suites such as ZDT and DTLZ, the WFG test 

suite has powerful functionality; and a number of instances that have features 

not included in other test suites. The benchmark problems are non-separable 

problems, deceptive problems, a truly degenerate problem, and a mixed-
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shape Pareto front problem.  In addition, WFG is scalable to any number of 

parameters and objectives, and the numbers of both distance- and position-

related parameters can be scaled independently (Huband et al., 2006). The 

properties of the WFG problems are presented in Table 3.4. 

 

DTLZ1 MIN  ଵ݂ ሺݔሻ ൌ  ͲǤͷ ݔଵ ݔଶ ǥ ݔெିଵሺͳ ൅ ݃ሺܺெሻሻ   ڭ          ڭ 
MIN  ெ݂ିଵ ሺݔሻ ൌ  ͲǤͷ ݔଵ ሺͳ െ ଶሻ ሺͳݔ ൅ ݃ሺܺெሻሻ 
MIN  ெ݂ ሺݔሻ ൌ  ͲǤͷ ሺͳ െ ଶሻሺͳݔ ൅ ݃ሺܺெሻሻ          
 

subject to Ͳ ൑ ௜ݔ ൑ ͳ 
 ݃ሺݔெሻ ൌ ͳͲͲ ሺȁܺெȁ ൅ ෍ ሺݔ௜  െ   ͲǤͷሻଶ௫௜א௑ಾ െ ܿݏ݋ ʹͲߨሺݔ௜ െ ͲǤͷሻሻ 

DTLZ2 MIN  ଵ݂ ሺݔሻ ൌ ሺͳ ൅ ݃ሺܺெሻሻ ߨଵݔሺݏ݋ܿ ോ ʹሻǥܿݏ݋ሺݔெ െ ͳߨ ോ ʹሻ   ڭ          ڭ 
MIN  ெ݂ ሺݔሻ ൌ  ሺͳ ൅ ݃ሺܺெሻ ሻ݊݅ݏሺݔଵߨ ോ ʹሻሻ          
Ͳ ݋ݐ ݐ݆ܾܿ݁ݑݏ   ൑ ௜ݔ ൑ ͳ 
 ݃ሺݔெሻ ൌ  ෍ ሺݔ௜  െ   ͲǤͷሻଶ௫௜א௑ಾ  

DTLZ3 As DTLZ2  with the ݃ function given  in DTLZ1 

DTLZ4 As DTLZ2  with different meta-variable mapping: ݔ௜  ื ൌן ௜ఈ  whereݔ  ͳͲͲ 
DTLZ5 As DTLZ2  with different mapping of ߠ௜݄ெ                  ߠ௜ ൌ గଶ൫ଵା௚ሺ௥ሻ൯ ሺͳ ൅ ʹ݃ሺݎሻݔ௜ሻ   ݂ݎ݋ ݅ ൌ ʹǡ͵ǡ ǥ,(M-1) ݐ௜ୀଵǣ௞ଵ ெሻݔሺ݃  ݁ݎ݄݁ݓ         ൌ  σ ௜ݔ  ଴Ǥଵ௫௜א௑ಾ    

 

DTLZ6 MIN  ଵ݂ ሺ ଵܺሻ ൌ  ڭ          ڭ     ଵݔ
MIN  ெ݂ ሺܺሻ ൌ  ሺͳ ൅ ݃ሺܺெሻ ሻ ݄ሺ ଵ݂ǡ ଶ݂ǡ Ǥ Ǥ ǡ ெ݂ିଵǡ ݃ሻ   ݋ݐ ݐ݆ܾܿ݁ݑݏ Ͳ ൑ ௜ݔ ൑ ͳ                 ݁ݎ݄݁ݓ ݃ሺܺெሻ ൌ  ͳ ൅ ͻȁܺெȁ ෍   ௑ಾא௜௫௜ݔ

        ݄ ൌ ܯ  െ σ ቂ ௙೔ଵା௚   ሺͳ ൅ ߨ͵ሺ݊݅ݏ ௜݂ሻሻቃெିଵ௜ୀଵ        

DTLZ7 
MIN  ௝݂  ሺܺሻ ൌ ଵቚ೙ಾቚ  σ ௜ቔ௝೙ಾቕ௜ୀቔሺ௝ିଵሻ೙ಾቕݔ    
Ͳ ݋ݐ ݐ݆ܾܿ݁ݑݏ  ൑ ௜ݔ ൑ ͳ 
 ௜݃ሺܺሻ ൌ  ெ݂  ሺܺሻ ൅  Ͷ ௜݂ሺܺሻ െ ͳ ൒ Ͳ 
 ݃ሺݔெሻ ൌ ʹ ெ݂ሺܺሻ  ൅ ݉݅݊ெିଵ௜ǡ௝ୀଵ௜ஷ௝ ൣ ௜݂ሺܺሻ ൅ ௝݂ሺܺሻ൧ െ ͳ ൒ Ͳ 

  

Table 3.3: DTLZ test functions. Reprinted from (Deb et al., 2002) 

 

All WFG test problems are continuous problems that are constructed 

based on a vector that corresponds to the problem’s fitness space. This vector 

is derived through a series of transition vectors such as multimodality and 

non-separability. The complexity of the problem can be increased according to 
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the number of transition vectors. The WFG test functions are presented in 

Table 3.5. 

 

The main advantage of the WFG test suite is that it is an excellent tool 

for comparing the performance of EAs over a range of test problems, and it 

has been shown to have a more comprehensive set of challenges when 

compared to DTLZ using NSGAII in Huband et al. (2006). Therefore, the WFG 

test suite has been selected to be the benchmark test suite employed in our 

multi-objective hyper-heuristics that we present in this thesis. 

 

Problem Obj. Separability Modality Bias Geometry 

WFG1 ଵ݂ǣெ separable uni polynomial, flat convex, mixed 

WFG2 ଵ݂ǣெିଵ non-separable uni no bias Convex, disconnected 

ଵ݂ǣெ non-separable multi no bias  

WFG3 ଵ݂ǣெ non-separable uni no bias liner, degenerate 

WFG4 ଵ݂ǣெ separable multi no bias concave 

WFG5 ଵ݂ǣெ separable deceptive no bias concave 

WFG6 ଵ݂ǣெ non-separable uni no bias concave 

WFG7 ଵ݂ǣெ separable uni parameter dependent concave 

WFG8 ଵ݂ǣெ non-separable uni parameter dependent concave 

WFG9 ଵ݂ǣெ non-separable multi, deceptive parameter dependent concave 

  

Table 3.4: The properties of the WFG problems. Reprinted from (Huband et al., 2006). 

 

3.3.4 Other Test Suites 

 
The LZ09 test suite was created in Li and Zhang (2009) and consists of 

nine problems with complicated Pareto fronts in decision space. All its 

problems are continuous multimodal constrained problems that designed to 

deal with two objectives, except LZ09-F6, which is a tri-objective. The main 

advantages of problems with complicated Pareto set shapes (PSs) that they 

are offer a challenge for MOEAs. However, LZ09 is considered a relatively new 

test suite, few test results are available in the original study and in later work 

(e.g. Nebro and Durillo, 2010; Batista et al., 2010; Durillo, 2011; Loshchilov, 

2011). 

 



Chapter 3: Multi-objective Optimisation Test Problems 

 

76 | P a g e  

  

WFG1 ݄ெୀଵ ׷ ܯ ൌ ߙ ெ (with݀݁ݔ݅݉ ௠ ݄ெ           ൌݔ݁ݒ݊݋ܿ  ൌ ͳ ܽ݊݀ ܣ ൌ ͷ) ݐ௜ୀଵǣ௞ଵ         ൌ ௜ୀ௞ାଵǣ௡ଵݐ   ௜ݕ     ൌ ௜ݕሺݎ̴݈ܽ݁݊݅ܵ  ǡͲǤ͵ͷሻ ݐ௜ୀଵǣ௞ଶ         ൌ ௜ୀ௞ାଵǣ௡ଶݐ   ௜ݕ     ൌ ௜ݕሺݐ̴݈݂ܾܽ  ǡͲǤͺǡͲǤ͹ͷǡͲǤͺͷሻ ݐ௜ୀଵǣ௡ଷ         ൌ ௜ݕሺݕ݈݋݌̴ܾ  ǡͲǤͲʹሻ ݐ௜ୀଵǣெିଵସ    ൌ ሺ௜ିଵሻ௞Ȁሺெିଵሻݕሺሼ݉ݑݏ̴ݎ ൅ ͳ ǡǥ ǡ ௜௞Ȁሺெିଵሻሽǡݕ ሼʹሺሺ݅ െͳ݇Ȁሺܯ െ ͳǡǥ ǡʹ݅݇Ȁሺܯ െ ͳሻሽሻ ݐெସ              ൌ ௞ାଵ ǡݕሺሼ݉ݑݏ̴ݎ ǥ ǡ ௡ሻሽǡݕ ሼʹሺ݇ ൅ ͳሻǡǥ Ǥʹ݊ሽሻ 
WFG 2 ݄ெୀଵ ׷ ൌ     ܯ ߙ ெ (withܿݏ݅݀ ௠ ݄ெ                  ൌݔ݁ݒ݊݋ܿ  ൌ ߚ ൌ ͳ ܽ݊݀ ܣ ൌ ͷ) ݐ ݏܣଵ ݂ܩܨܹ ݉݋ݎͳǤ ሺݐ݂݄݅ݏ ݎܽ݁݊݅ܮǤ ሻ ݐ௜ୀଵǣ௞ଶ                ൌ ௜ୀ௞ାଵǣ௞ା௟Ȁଶଶݐ   ௜ݕ     ൌ ௞ାଶሺ௜ି௞ሻିଵ ǡݕሺሼ݌݁ݏ݊݋̴݊ݎ ௜ୀଵǣெିଵଷݐ ௞ାଶሺ௜ି௞ሻሽǡʹሻݕ          ൌ ሺ௜ିଵሻ௞Ȁሺெିଵሻݕሺሼ݉ݑݏ̴ݎ ൅ ͳ ǡǥ ǡ ௜௞Ȁሺெିଵሻሽǡݕ ሼͳǡ ǥ ǡͳሽሻ ݐெଷ                   ൌ ௞ାଵ ǡݕሺሼ݉ݑݏ̴ݎ ǥ ǡ ௞ା௟Ȁଶሻሽǡݕ ሼͳǡǥ ͳሽሻ 
WFG 3 ݄ெୀଵ ׷ ܯ ൌ Ǥʹܩܨܹ ݉݋ݎ݂ ଵǣଷݐ ݏܣ ሻ݁ݐܽݎ௠ሺ݀݁݃݁݊݁ݎ݈ܽ݁݊݅  ሺݐ݂݄݅ݏ ݎܽ݁݊݅ܮǡ െ݊݋݊ ǡ݊݋݅ݐܿݑ݀݁ݎ ݈ܾ݁ܽݎܽ݌݁ݏ Ǥ݊݋݅ݐܿݑ݀݁ݎ ݉ݑݏ ݀݁ݐ݄݃݅݁ݓ ݀݊ܽ ሻ 

 
WFG 4 ݄ெୀଵ ׷ ܯ ൌ ௜ୀଵǣ௡ଵݐ ௠݁ݒܽܿ݊݋ܿ           ൌ ௜ݕሺ݅ݐ݈ݑ̴݉ܵ  ǡ͵ͲǡͳͲǡͲǤ͵ͷሻ ݐ௜ୀଵǣெିଵଶ    ൌ ሺ௜ିଵሻ௞Ȁሺெିଵሻݕሺሼ݉ݑݏ̴ݎ ൅ ͳ ǡǥ ǡ ௜௞Ȁሺெିଵሻሽǡݕ ሼͳǡ ǥ ǡͳሽሻ ݐெଶ              ൌ ௞ାଵ ǡݕሺሼ݉ݑݏ̴ݎ ǥ ǡ ௡ሻሽǡݕ ሼͳǡ ǥ ͳሽሻ 
WFG5  ݄ெୀଵ ׷ ܯ ൌ ௜ୀଵǣ௡ଵݐ ௠݁ݒܽܿ݊݋ܿ           ൌ ௜ݕሺݐ݌̴݁ܿ݁݀ܵ  ǡͲǤ͵ͷǡͲǤͲͲͳǡͲǤͲͷሻ ݐ ݏܣଶ ݂ܩܨܹ ݉݋ݎͶǤ ሺ݊݋݅ݐܿݑ݀݁ݎ ݉ݑݏ ݀݁ݐ݄݃݅݁ݓǤ ሻ 
WFG 6 ݄ெୀଵ ׷ ܯ ൌ ͳǤܩܨܹ ݉݋ݎ݂ ଵݐ ݏܣ ௠݁ݒܽܿ݊݋ܿ  ሺݐ݂݄݅ݏ ݎܽ݁݊݅ܮǤ ሻ ݐ௜ୀଵǣெିଵଶ    ൌ ሺ௜ିଵሻ௞Ȁሺெିଵሻݕሺሼ݌݁ݏ݊݋̴݊ݎ ൅ ͳ ǡǥ ǡ ௜௞Ȁሺெିଵሻሽǡݕ ݇Ȁሺܯ െ ͳሻሻ ݐெଶ              ൌ ௞ାଵ ǡݕሺሼ݌݁ݏ݊݋̴݊ݎ ǥ ǡ ௡ሻሽǡݕ ݈ሻ 
WFG 7 ݄ெୀଵ ׷ ൌ ܯ ௜ୀଵǣ௞ଶݐ ௠݁ݒܽܿ݊݋ܿ           ൌ ௜ݕሺ݉ܽݎܽ݌̴ܾ ǡ ሺ௜ିଵሻ ǡݕሺሼ݉ݑݏ̴ݎ ǥ ǡ ௡ሽǡݕ ሼͳǡ ǥ ǡͳሽሻǡ ଴Ǥଽ଼ସଽǤଽ଼ ǡ ͲǤͲʹǡͷͲሻ ݐ௜ୀ௞ାଵǣ௡ଶ      ൌ ͳǤܩܨܹ ݉݋ݎ݂ ଵݐ ݏܣ  ௜ݕ ሺݐ݂݄݅ݏ ݎܽ݁݊݅ܮǤ ሻ ݐ ݏܣଶ ݂ܩܨܹ ݉݋ݎͶǤ ሺ݊݋݅ݐܿݑ݀݁ݎ ݉ݑݏ ݀݁ݐ݄݃݅݁ݓǤ ሻ 
WFG8 ݄ெୀଵ ׷ ൌ   ܯ ௜ୀଵǣ௞ଵݐ ௠݁ݒܽܿ݊݋ܿ              ൌ ௜ୀ௞ାଵǣ௡ଵݐ ௜ݕ         ൌ ௜ݕሺ݉ܽݎܽ݌̴ܾ ǡ ଵ ǡݕሺሼ݉ݑݏ̴ݎ ǥ ǡ ௜ିଵሽǡݕ ሼͳǡǥ ǡͳሽሻǡ ଴Ǥଽ଼ସଽǤଽ଼ ǡ ͲǤͲʹǡͷͲሻ ݐ ݏܣଵ ݂ܩܨܹ ݉݋ݎͳǤ ሺݐ݂݄݅ݏ ݎܽ݁݊݅ܮǤ ሻ ݐ ݏܣଶ ݂ܩܨܹ ݉݋ݎͶǤ ሺ݊݋݅ݐܿݑ݀݁ݎ ݉ݑݏ ݀݁ݐ݄݃݅݁ݓǤ ሻ 
WFG9 ݄ெୀଵ ׷ ܯ ൌ ௜ୀଵǣ௡ିଵଵݐ ௠݁ݒܽܿ݊݋ܿ       ൌ ௜ݕሺ݉ܽݎܽ݌̴ܾ ǡ ௜ାଵ ǡݕሺሼ݉ݑݏ̴ݎ ǥ ǡ ௡ሽǡݕ ሼͳǡ ǥ ǡͳሽሻǡ ଴Ǥଽ଼ସଽǤଽ଼ ǡ ͲǤͲʹǡͷͲሻ ݐ௡ଵ               ൌ ௜ୀଵǣ௞ଶݐ ௡ݕ          ൌ ௜ݕሺݐ݌̴݁ܿ݁݀ܵ  ǡͲǤ͵ͷǡͲǤͲͲͳǡͲǤͲͷሻ ݐ௜ୀ௞ାଵǣ௡ଶ          ൌ ௜ݕሺ݅ݐ݈ݑ̴݉ܵ  ǡ͵ͲǡͻͷǡͲǤ͵ͷሻ ݐ ݏܣଶ ݂ܩܨܹ ݉݋ݎ͸Ǥ ሺ݊݊݋ െ Ǥ݊݋݅ݐܿݑ݀݁ݎ ݈ܾ݁ܽݎܽ݌݁ݏ ሻ 

  
Table 3.5: WFG test functions. Reprinted from (Huband et al., 2006) 

 

 Van Veldhuizen’s test suite was created in Van Veldhuizen (1999) which 

consists of seven multi-objective test problems. The main drawbacks of Van 
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Veldhuizen’s problems are that they were designed for only two or three 

decision variables and are not scalable in terms of the number of objectives. 

In addition, none of these problems has any deceptive, flat regions or many-

to-one fitness landscapes (Huband et al., 2006). 

 
Deb (1999) introduced a toolkit for creating test problems for multi-

objective optimisation. Deb’s toolkit incorporates three functions: a 

distribution function to assess the optimiser’s performance in terms of the  

diversify along the POF, a distance function to assess the optimiser’s 

performance in terms of convergence  towards the POF, and a shape function 

to specify the shape of the POF. Deb’s toolkit has shortcomings; it was 

designed to construct a problem with two objectives only, and no problems 

with flat regions, degenerate or even mixed Pareto front geometries are 

provided. Moreover, no real valued deceptive functions are considered in the 

toolkit. 

3.4 Other Test Functions Problems for Multi-objective 

Optimisation 
 

In the MOEA literature, various test problems have been presented. 

However, some test problems had shortcomings in terms of the simplicity of 

construction and the scalability of the number of parameters and objectives 

(Deb et al., 2002). For instance, Schaffer (1985) presented two test problems 

(SCH1 and SCH1).  Both problems were scalable but only to single decision 

variable. Poloni et al. (2000) presented a test problem (POL) that has only 

two decision variables. Fonseca and Fleming (1995) and Kursawe (1990) 

introduced their own test problems, FON and KUR respectively. Both test 

problems were scalable to any number of decision variables but were not 

scalable in terms of the number of objectives. Viennet (1996) introduced a 

test problem (VNT) that was scalable to only three objectives. 

3.5 Summary 
 

Several multi-objective test problems have been proposed in the 

scientific literature such as real-world problems, combinatorial optimisation 

problems, discrete or integer-based problems, noisy problems, dynamic 

problems, and problems with side constraints.  In this thesis, we focus on 

continuous unconstrained real-valued problems. It is essential that algorithms 

are tested in order to have a clear perception of their strengths and 
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weaknesses. To accomplish this effectively, it is crucial to first develop a 

strong understanding and undertake a precise analysis of the test problems at 

hand. This chapter has reviewed the multi-objective test problems that are 

particularly relevant to this thesis. The most common multi-objective test 

problem such as the ZDT test suite (Zitzler et al., 2000), the DTLZ test suite 

(Deb et al., 2002) and the WFG (Huband et al., 2006) are identified and 

discussed. A description of those problems with an analysis of their features is 

given as well. The WFG test suite has been selected to be the benchmark test 

suite employed in our multi-objective hyper-heuristics that we present in this 

thesis, as it has been shown to have a more comprehensive set of challenges 

among other test suites (Huband et al., 2006).  

 

In next chapter, we discuss design issues related to the development of 

hyper-heuristics for multi-objective optimisation. And we propose an online 

learning selection choice function based hyper-heuristic for multi-objective 

optimisation. 
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4 A Multi-objective Hyper-heuristic Framework  
 

Burke et al. (2003b) provide a generic hyper-heuristic framework (see 

Section 2.3.1). Soubeiga (2003) presents general guidelines for designing an 

effective framework for a hyper-heuristic for single-objective optimisation. 

Burke et al. (2003a) discussed a framework for hyper-heuristic for multi-

objective combinatorial problems. However, no further investigations, nor any 

related information, are given for how to build a hyper-heuristic for multi-

objective optimisation to deal specifically with continuous problems. In this 

chapter, we discuss design issues related to the development of hyper-

heuristics for multi-objective optimisation. And we propose an online learning 

selection choice function based hyper-heuristic for multi-objective 

optimisation. A choice function is utilised as a selection mechanism for the 

proposed framework. 

 

4.1 A Selection Choice Function Hyper-heuristic 

Framework 
 

The design of the framework for our multi-objective hyper-heuristic is 

inspired by two facts. Firstly, there is no existing algorithm that excels across 

all types of problems. In the context of multi-objective optimisation, no single 

MOEA algorithm has the best performance with respect to all performance 

measures in all types of multi-objective problems. Some comparison studies 

in MOEAs which emphasises this idea are presented in Section 2.1.11. This 

fact is also supported by the No Free Lunch Theorem (Wolpert and 

Macready,1997). Secondly, the hybridisation or combining different 

(meta)heuristics/algorithms into one framework could yield promising results 

compared to (meta)heuristics/algorithms when used alone. In Section 2.3, we 

reviewed many studies that support this fact.  According to those facts, we 

are looking to gain an advantage of combining different algorithms in a hyper-

heuristic framework for multi-objective optimisation to get benefit from the 

strengths of the algorithms and avoid their weaknesses. 

 

The idea of hybridising a number of algorithms (heuristics) into a 

selection hyper-heuristic framework is straightforward and meaningful. 

However, many design issues related to the development of hyper-heuristics 

for multi-objective optimisation require more attention when designing such a 

framework to be applicable and effective.  
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The main components of the hyper-heuristic framework are low level 

heuristics, selection method, learning mechanism and move acceptance 

method. The choosing of these components is critical. In our opinion, all 

components are important and  could affect the performance of the hyper-

heuristics. For instance, if we employ very powerful low level heuristics and a 

poor move acceptance method, we have less chance of producing high quality 

of solutions. This is especially true if we employ a complete algorithm as a low 

level heuristic and this algorithm produces a good quality solution. With a 

poor move acceptance method, the obtained solution could be rejected. The 

reverse is also true. Therefore, each component in the hyper-heuristic 

framework plays a significant role in improving the quality of both the search 

and the eventual solution. The components of the hyper-heuristic in the 

context of multi-objective optimisation are discussed in depth in as follows: 

 Low level heuristics:  

The choice of appropriate low level heuristics is not an easy task. 

Many questions arise here, what heuristics (algorithms) are suitable to 

deal with multi-objective optimisation problems. Are priori approaches 

or a posteriori approaches more suitable?  Are non Pareto-based or a 

Pareto-based more applicable? (see Section 2.1).  As one of hyper-

heuristic aims is raising the level of generality, a posteriori approach is 

more suitable to achieve this aim. Unlike the priori approaches, there is 

no need to set objective preferences or weights prior to the search 

process in the posteriori approach such as MOEAs which based on Pareto 

dominance. Moreover, we agree with many researchers (Deb and 

Goldberg, 1989; Bäck, 1996;  Fonseca and Fleming, 1998;  Deb, 2001; 

Coello et al., 2007a; Anderson et al., 2007; Zhang and Li, 2007; 

Miranda et al., 2010) that evolutionary algorithms are more suitable in 

dealing with multi-objective optimisation problems because of their 

population-based nature, which means they can find Pareto optimal sets 

(trade-off solutions) in a single run, which allows a decision maker to 

select a suitable compromise solution (with respect to the space of the 

solutions). In the context of multi-objective hyper-heuristics, a decision 

maker here could be a selection method that decides which is the best 

low level heuristic to select at each decision point (with respect to the 

space of the heuristics).  
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The main aim of hyper-heuristics is to draw on the strengths of 

individual low level heuristics and avoid their weaknesses. This 

motivates us to make use of classical Pareto-based MOEAs (NSGAII, 

SPEA2 and MOGA) to act as low level heuristics within our hyper-

heuristics framework, as their features are more likely (in our view) to 

generate high quality solutions. In other words, we reuse the 

conventional MOEAs to benefit from their strengths even if they have 

some shortcomings.  The features of classical MOEAs make them 

suitable to enable us to investigate their combined use within a multi-

objective hyper-heuristic framework. Although NSGAII, SPEA2 and 

MOGA are no longer considered state-of-the-art MOEAs, more powerful 

population-based methods such as decomposition-based approaches 

MOEA/Ds (e.g. (Li and Zhang, 2009; Li and Landa-Silva, 2011)) and 

indicator-based approaches (e.g. (Auger et al.,2012; Bader and Zitzler, 

2011)) may outperform them. However, they are still viewed as a 

baseline for MOEA. Moreover, they incorporate much of the known 

MOEA theory (Van Veldhuizen and Lamont, 2000).  Comparative 

studies, which support this decision, are presented in Section 2.1.11. 

 

 Selection method:  

 

As a selection hyper-heuristic relies on an iterative process, the 

main questions arise here are what is an effective way can use to 

choose an appropriate heuristic at each decision point? And how to 

choose this heuristic i.e. which criteria can be considered when 

choosing a heuristic? In single-objective cases, this criterion is easy to 

determine by measuring the quality of the solution such as the 

objective/cost value and time.  However, this is more complex when 

tackling a multi-objective problem. The quality of the solution is not 

easy to assess. There are many different criteria that should be 

considered such as the number of non-dominated individuals and the 

distance between the non-dominated front and the POF. We will 

discuss this later when dealing with learning and the feedback 

mechanism (will discuss later). As we aim to keep the framework 

simple, we should keep in a higher level of abstraction as much as 

possible. Therefore, we do not employ any information about problem- 

specific such as the number of objectives nor information about the 

nature of the solution space. We focus more on the performance of the 
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low level heuristics. This will boost the intensification element. So, a 

heuristic with the best performance will be chosen more frequently to 

exploit the search area. We are not only looking for the intensification 

but we also give attention to diversification. We attempt to achieve a 

kind of balance between the intensification and diversification when 

choosing a heuristic. Selection methods based on randomisation 

support only the diversification by exploring unvisited areas of the 

search space. Reinforcement learning (RL) (Sutton and Barto, 1998) 

that use, as a selection method, support intensification by rewarding 

and punishing each heuristic based on its performance during the 

search using a scoring mechanism. An example of this can be found in 

Nareyek (2003). The choice function that is used as a selection method 

in hyper-heuristics provides a balance between intensification and 

diversification. The choice function addresses the trade-off between 

the undiscovered areas of the search space and the past performance 

of each heuristic. The experimental results demonstrate that the choice 

function based hyper-heuristic outperforms other random based hyper-

heuristics over shelf space allocation problems (Bai, 2005). In addition, 

the computational results show the choice function all-moves based 

hyper-heuristic is superior to other hyper-heuristics that combine 

different selection methods with different move acceptance methods 

on a project presentation problem (Cowling et al., 2002c). The choice 

function meets our requirements for the selection method. Moreover, it 

was successful when used as a selection method in the hyper-heuristic 

for single-objective optimisation (Soubeiga, 2003). For these reasons, 

we have decided to employ the choice function as a selection method 

and to act as a high level strategy in our multi-objective hyper-

heuristic framework. More details about the choice function are 

provided in Section 4.3. 

 

 Learning and feedback mechanism: 

 

 Not all hyper-heuristic approaches incorporate a learning 

mechanism (see Section 2.3.2). However, a learning mechanism is 

strongly linked to the selection method.  An example of this is a 

random hyper-heuristic which is classified as an offline learning 

approach (Burke et al., 2010), because the random selection does not 

provide any kind of learning. In the context of our multi-objective 
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hyper-heuristic framework, a learning process is an essential element 

in the choice function to do its task as a selection method effectively. 

The learning mechanism guides the selection method to which best 

heuristic should be chosen at each decision point. We mean by a best 

heuristic the heuristic that produces solutions with good quality. As we 

mention previously, the measurement of the quality of the solution for 

multi-objective problems requires us to assess different aspects of the 

non-dominated set in the objective space (see Section 2.1.9). As 

inspiration from the first fact, that mentioned earlier, is that no single 

MOEA excels across all performance measures (Tan et al., 2002). 

Therefore, we employ a learning mechanism based on different 

measures using the ranking scheme to provide a feedback about the 

quality of the solutions. We do not aim to choose a heuristic that 

performs well with respect to all measures. This cannot be achieved 

anyway in accordance with the No Free Lunch Theorem (Wolpert and 

Macready, 1997). But we aim to select a heuristic that performs well in 

most measures. More details about the learning mechanism that is 

employed in our multi-objective hyper-heuristic are provided in Section 

4.2. 

 

 Move acceptance method:  

 

The selection hyper-heuristic framework comprises two main 

stages:  selection and move acceptance methods (Burke at al., 2010). 

In the scientific literature, many methods are presented that act as 

move acceptance strategies in hyper-heuristics (see Section 2.3.2.1) a 

move acceptance criterion can be deterministic or non-deterministic. A 

deterministic move acceptance criterion produces the same result, 

given the configuration (e.g. proposed new solution etc). A non-

deterministic move acceptance criteria may generate a different result 

even when the same solutions are used for the decision at a same 

given time. This could be because the move acceptance criterion 

depends on time or it might have a stochastic component while making 

the accept/reject decision. Examples of deterministic move acceptance 

criteria are All-Moves, Only-Improving and Improving & Equal. In All-

Moves, the candidate solution is always accepted whether a move 

worsens or improves the solution quality. The candidate solution in 

Only-Improving criteria is accepted only if it improves the solution 
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quality, while in Improving & Equal criteria, the candidate solution is 

accepted only if it improves or equal to the current solution.  For non-

deterministic move acceptance criteria, the candidate solution is 

always accepted if it improves the solution quality, while worsening 

solutions can be accepted based on an acceptance function including 

the great deluge algorithm (GDA) (Dueck, 1993),  late acceptance 

(Burke and Bykov, 2008), monte carlo (Glover and Laguna, 1995) and 

simulated annealing (Kirkpatrick et al., 1983) . In this thesis, we 

investigate a multi-objective choice function based hyper-heuristic 

using different move acceptance methods including deterministic (All-

Moves) and non-deterministic strategies (GDA and LA). These 

investigations are presented and discussed in Chapters 5-7.  To the 

best of the authors' knowledge, this thesis, for the first time, 

investigates the influence of the move acceptance as a component in a 

selection hyper-heuristic for multi-objective optimisation. Since no 

similar work has been reported in the literature, this investigation is a 

useful reference not only for the work presented in this thesis but also 

for other researchers interested in selection hyper-heuristics for multi-

objective optimisation.  We decided to employ GDA and LA as a move 

acceptance component in our multi-objective hyper-heuristic choice 

function as they are both simple and depend on a small number of 

parameters (Petrovic et al., 2007). Moreover, it was successful with 

single-objective optimisation (Kendall and Mohamad, 2004). We also 

note that no work has been reported in the scientific literature that 

utilises GDA and LA as a move acceptance component within a hyper-

heuristic framework for multi-objective optimisation. 

The multi-objective choice function based hyper-heuristic framework is 

shown in Figure 4.1. The choice function acts as the high level strategy and 

three well-known multi-objective evolutionary algorithms (NSGAII, SPEA2, 

and MOGA) act as low level heuristics.  The choice function considers the 

performances of low level heuristics in order to select a suitable heuristic as 

the search progresses. This process adaptively ranks the performance of low 

level heuristics with respect to the performance metrics, deciding which one 

to call at each decision point.  
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Figure 4.1: The proposed framework of the hyper-heuristic choice function based for 
multi-objective optimisation problems. In this framework, the choice function acts as a 
high level strategy and three well-known multi-objective evolutionary algorithms 
(NSGAII, SPEA2, and MOGA) act as low level heuristics. 

 

In this framework. the high level strategy does not have any knowledge 

of the problem domain and solutions. This is a separation of domain 

information known as the domain barrier. To provide the knowledge of the 

problem domain to the high level strategy, a number of performance metrics 

are utilised as a feedback mechanism. More details about the feedback 

mechanism are presented in the next section. The high level strategy selects 

one low level heuristic at each decision point according to the information 

obtained from the feedback mechanism. Note that the three low level 

heuristics operate in an encapsulated way. Each heuristic has its own 

characteristics described in Section 2.1. There is no direct information 

exchange between low level heuristics but they are sharing the same 

population. The framework is flexible and could incorporate any MOEA(s) for 

multi-objective optimisation in future work. The framework designed to make 

used for the complete algorithm as low level heuristic. No much information 

required from the low level heuristic, only the number of function evaluations 

and objectives as input and non-dominated solutions as output.     
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4.2 The Online Learning Feedback Mechanism and the 

Ranking Scheme   
 

 Four performance metrics are selected to be indicators for the feedback 

mechanism. These performance metrics are as follows (see Section 2.1.9. for 

more details): 

  

 Algorithm effort (AE) (Tan et al., 2002 

 Ratio of non-dominated individuals (RNI) (Tan et al., 2002) 

 Size of space covered or S-metric Hypervolume (SSC) (Zitzler and 

Thiele, 1999). 

 Uniform distribution of a non-dominated population (UD) (Srinivas and 

Deb, 1994)  

The motivation behind choosing these metrics is that they have been 

commonly used for performance comparison of MOEAs to measure different 

aspects of the final non-dominated solutions in the objective space (Tan et al., 

2002).  In addition, they do not require prior knowledge of the POF, which 

means that our framework, is suitable for tackling real-world problems in 

future studies. The task of the performance metrics is to provide information 

about the performance of the low level heuristics. It is to provide an online 

learning mechanism in order to guide the high level strategy during the 

search and determine which low level heuristic should be selected next. Since 

those metrics are not in the same scalar units, it is difficult to determine the 

best heuristic with respect to the four performance metrics. Therefore, we use 

a ranking scheme to score the performance of heuristics. This ranking scheme 

is simple and flexible and enables us to incorporate any number of low level 

heuristics and performance indicators. Unlike the ranking scheme used in 

Vázquez-Rodríguezand Petrovic (2012), which ranks the algorithms based on 

their probabilities against the performance indicators’ using a mixture of 

experiments, our ranking scheme relies on sorting the low level heuristics in 

descending order based on the highest ranking among the other heuristics. 

For ܰ number of low level heuristics and ܯ number of performance metrics, ܰ 

heuristics are ranked according to their performances against ܯ metrics. For a 

particular metric ݉௜ ǡ ݅ א a heuristic ௝݄ ǡ ,ܯ ݆ א ܰ with the best performance 

among other heuristics assigns the highest rank, which is equal to ܰǤ Then 

another heuristic with the second best performance is ranked as ܰ െ ͳ and so 

on. If two heuristics have the same performance, both heuristics are assigned 
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the same rank. This ranking process is applied for all ܯ metrics. After all 

heuristics are ranked against all metrics, the frequency of the highest rank for 

each heuristic is counted. A heuristic with the largest frequency count of the 

highest rank is more desirable. An example of how the ranking scheme works 

using the four performance metrics to rank three low level heuristics is 

described in Figure 4.2.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: An example of how three low level heuristics, denoted as ࢎ૚, ࢎ૛ and ࢎ૜ are 

ranked against four performance metrics of AE, RNI, SSC, and UD. The Ļ and Ĺ show 

that heuristics are ranked in decreasing and increasing order for the given metric, 
respectively, 3 indicating the top ranking heuristic. Each row in the top table represents 
each low level heuristic’s performance with respect to the four metrics. Each row in the 
leftmost table represents each heuristic’s rank among other heuristics for each metric. 
The rightmost table represents the frequency of each heuristic ranking the top over all 
metrics. 

 

As we are not only looking for the heuristic that has the best 

performance, but also aiming to have a larger number of non-dominated 

individuals, the frequency count of the highest rank for a heuristic ݄௜    is 

summed with its RNI rank using: 

ג ݅׊              ܰ     ௜݂ሺ݄௜ሻ   ൌ ௛௜௚௛௘௦௧̴௥௔௡௞ሺ݄௜ሻݍ݁ݎ݂   ൅  ௥௔௡௞ሺ݄௜ሻ              (4.1)ܫܴܰ 

where ܰ represents the number of the low level heuristics and  ௜݂ሺ݄௜ሻ  reflects 

a performance of heuristic  ݄௜. In the example presented in Figure 4.2, the 

performance value of ݄ଶ is equal to 6 using Equation 4.1.  In the case of two 

heuristics ݄௜  and ௝݄  having the same value of   ௜݂ሺ݄௜ሻ  and ௝݂൫ ௝݄൯ , we consider 

the heuristic that has a higher count of the second highest rank ሺܰ െ ͳሻ.  
 

 AEĻ RNIĹ SSCĹ UDĹ ݄ଵ 0.0003  1.00  10.70  4.91  ݄ଶ 0.0001  1.00  11.90  3.75  ݄ଷ 0.0004  0.60  9.81  3.00  

 AE RNI SSC UD ݄ଵ 2 3 2 3 ݄ଶ 3 3 3 2 ݄ଷ 1 2 1 1 

݄ଵ 2 ࢎ૛ 3 ݄ଷ 0  

Count 

  

the 

Highest 

Rank 

Rank  
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4.3 The Choice Function Meta-heuristic Selection 

Method 

 
The key idea behind the use of a choice function as a selection 

mechanism in a hyper-heuristic is guiding the search by choosing a heuristic 

at each decision point based on its historical performance and the time passed 

since the last call to the heuristic. This selection process supports both 

intensification and diversification which provides a kind of learning for the 

hyper-heuristic. If a heuristic performs well, the choice function will choose it 

to exploit the search area. Even a heuristic that does not perform well still has 

a chance to be called in order to explore new areas of the search space. 

 

Cowling et al. (2002c) and Kendall et al. (2002) propose a choice 

function based hyper-heuristic for a single-objective problem that employs the 

choice function as a heuristic selection method which adaptively ranks the low 

level heuristics ሺ݄௜ሻ using: 

ሺ݄௜ሻܨܥ                                   ൌ ߙ  ଵ݂ሺ ݄௜ሻ  ൅ ߚ  ଶ݂ሺ ௝݄ ǡ  ݄௜ሻ  ൅ ߜ  ଷ݂ሺ݄௜)                     (4.2) 

 

where ଵ݂ measures the individual performance of each low level heuristic, ଶ݂ 
measures the performance of pairs of low level heuristics invoked 

consecutively, and finally, ଷ݂ is the elapsed CPU time since the heuristic was 

last called. Both ଵ݂ and ଶ݂ support intensification while ݂͵ supports 

diversification. The parameter values for ߙǡ  are changed adaptively ߜ and ߚ

based on a similar idea to reinforcement learning. The choice function based 

hyper-heuristic was applied to nurse scheduling and sales summit scheduling. 

The study shows that the hyper-heuristic combining Choice Function with All-

Moves acceptance performed the best when compared to the other methods. 

The study also shows that the choice function hyper-heuristic is successful in 

making effective use of low level heuristics, due to its ability to learn the 

dynamics between the solution space and the low level heuristics to guide the 

search process towards better quality solutions. For more details, see 

(Soubeiga, 2003). 

  

The formula in Equation 4.2 was extended for multi-criteria decision 

making (MCDM) in Soubeiga (2003) as:  
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ǡ݈׊               ௟ ሺ݄୧ሻܨܥ ൌ  Ƚ௟    ଵ௟ሺ݄୧ሻ ൅ Ⱦ ௟ ଶ௟ሺ ݄௜ ǡ ݄୨ሻ ൅ ஔୡ   ଷሺ݄୧ሻ                             (4.3) 

   

Each individual criterion ݈  has its own choice function. The choice function ܨܥ௟ ሺ݄୧ሻ reflects the overall performance of each low level heuristic ݄୧ with 

respect to each criterion ݈.  Of course, Equation in 4.2 is still valid if several 

criteria are aggregated into one objective function. 

  
In this thesis, we propose a modified version of the choice function 

heuristic selection method as a component in our multi-objective selection 

hyper-heuristic. The modified choice function is formulated as  

ג ݅׊                  ܰǡ   ܨܥ௜ሺ݄௜ሻ ൌ   ଵ݂௜ሺ݄௜ሻ  ൅  ଶ݂௜ሺ݄௜ሻ                                                  (4.4) 
 
 
where  ଵ݂௜ሺ݄௜ሻ is computed using Equation 4.1 based on the ranking scheme 

described earlier in Section 4.2. It measures the individual performance of 

each low level heuristic ݄௜. ଶ݂௜ሺ݄௜ሻ is the number of CPU seconds elapsed since 

the heuristic was last called. ଵ݂௜ሺ݄௜ሻ provides an element of intensification 

while ଶ݂௜ሺ݄௜ሻ provides an element of diversification, by favouring those low 

level heuristics that have not been called recently.    is a large positive value 

(e.g. 100). It is important to strike a balance between ଵ݂ and ଶ݂ values, so 

that they are in the same scalar unit.   Experiments to tune   are conducted 

in Chapter 5.  The low level heuristic ݄௜ with the largest value of  ܨܥ௜ሺ݄௜ሻ is the 

heuristic that is applied for the next iteration of the search. 

  

Equation 4.4 differs from Equations 4.2 and 4.3 as it is adjusted to deal 

with a given multi-objective optimisation problem, but their goal is the same, 

measuring the overall performance of a low level heuristic  ݄௜. Unlike Equation 

4.3 which reflects the performance of low level heuristics with respect to the 

criteria (objective values), Equation 4.4 reflects the overall performance of  

low level heuristics with respect to the performance metrics that measures the 

resulting non-dominated set in the objective space. Our multi-objective 

hyper-heuristic works at a high level of abstraction, no information for 

problem-specific is required such as the number of objectives nor for the 

nature of the solution space, only the number of low level heuristics. This 

advantage makes our framework suitable to apply to single-objective 

optimisation by replacing the performance metrics and low level heuristics to 

those which are designed for single-objective problems.   
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4.4 Summary and Remarks 

 

Hyper-heuristics have drawn increasing attention from the research 

community in recent years, although their roots can be traced back to the 

1960’s. They perform a search over the space of heuristics rather than 

searching over the solution space directly. Research attention has focussed on 

two types of hyper-heuristics: selection and generation. A selection hyper-

heuristic manages a set of low level heuristics and aims to choose the best 

heuristic at any given time using historic performance to make this decision, 

along with the need to diversify the search at certain times. 

 

References to a hyper-heuristic framework for multi-objective 

optimisation are scarce. Burke et al., (2003b) provide a generic hyper-

heuristic and Soubeiga (2003) presents general guidelines for designing a 

framework for hyper-heuristics. Burke et al. (2003a) discussed a framework 

for a hyper-heuristic for multi-objective combinatorial problems. No further 

investigations nor any related information are given for how to build a hyper-

heuristic for multi-objective optimisation in particular continuous problems. 

This chapter has addressed the design issues related to the development of 

hyper-heuristics for multi-objective optimisation.  The framework of our multi-

objective hyper-heuristic is inspired by two facts: (i) no existing algorithm 

that excels across all types of problems, and (ii) the hybridisation or 

combining different (meta)heuristics/algorithms into one framework could 

yield promising results compared to  (meta)heuristics/ algorithms on their 

own.  Accordingly, we discussed each component of a hyper-heuristic 

framework from the multi-objective prospective including the low level 

heuristics, the selection method, the learning and feedback mechanisms and 

finally the move acceptance method.    

 

Hyper-heuristic frameworks, generally, impose a domain barrier which 

separates the hyper-heuristic from the domain implementation along with low 

level heuristics. Moreover, this barrier does not allow any problem specific 

information to be passed to the hyper-heuristic itself during the search 

process. We designed our framework in the same modular manner, making it 

highly flexible and its components reusable and easily replaceable. Our online 

selection choice function based hyper-heuristic for multi-objective (HHMO_CF) 

controls and combines the strengths of three well-known multi-objective 

evolutionary algorithms (NSGAII, SPEA2, and MOGA), which are utilised as 
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the low level heuristics. The motivation behind choosing these MOEAs is that 

they are efficient and effective and they also incorporate much of the known 

MOEA theory (Van Veldhuizen and Lamont, 2000). The choice function 

utilised, as a selection method, acts as a high level strategy which adaptively 

ranks the performance of three low-level heuristics, deciding which one to call 

at each decision point. Four performance metrics (AE, RNI, SSC and UD) act 

as an online learning mechanism to provide knowledge of the problem domain 

to the selection mechanism.  

 

There is strong empirical evidence showing that different combinations 

of heuristic selection and acceptance methods in a selection hyper-heuristic 

framework yield different performance in single-objective optimisation (Burke 

et al., 2012). In the next three chapters, we will investigate the proposed 

multi-objective choice function based hyper-heuristic combined with different 

move acceptance strategies including All-Moves as deterministic move 

acceptance and Great Deluge (GDA) and Late Acceptance (LA) as non-

deterministic move acceptance. 
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5 A Heuristic Selection Using Deterministic Move 

Acceptance Strategy  
 

In the previous chapter, we presented the framework for an online 

learning selection hyper-heuristic for multi-objective optimisation. The key 

feature of the proposed selection hyper-heuristic is the use of a modified 

choice function as a selection method based on ranking low level heuristics 

according to their performance. This chapter investigates the proposed multi-

objective choice function based hyper-heuristic when combining All-Moves as 

a move acceptance strategy. 

5.1 Choice Function All-Moves for Selecting Low Level 

Meta-heuristics (HHMO_CF_AM) 
 

In single-objective optimisation, Cowling et al., (2002c) investigate the 

performance of different hyper-heuristics, combining different heuristic 

selection, with different move acceptance methods on a real world scheduling 

problem. Simple Random, Random Descent, Random Permutation, Random 

Permutation Descent, Greedy and Choice Function were introduced as 

heuristic selection methods. The authors utilised the following deterministic 

acceptance methods: All-Moves accepted and Only Improving moves 

accepted. The hyper-heuristic combining Choice Function with All-Moves 

acceptance performed the best.  In this chapter, we investigate the 

performance of the proposed multi-objective choice function based hyper-

heuristic, utilising All-Moves as a deterministic acceptance strategy, meaning, 

that we accept the output of each low level heuristic whether it improves the 

quality of the solution or not.  We use the multi-objective hyper-heuristic 

framework that we proposed in Chapter 4. Three well-known multi-objective 

evolutionary algorithms (NSGAII, SPEA2, and MOGA), act as the low level 

heuristics.  

 
 The multi-objective choice function all-moves based hyper-heuristic 

(HHMO_CF_AM) is shown in Algorithm 10.  Initially, a greedy algorithm is 

executed to determine the best low level heuristic to be selected for the first 

iteration (steps 2-6). All three low level heuristics are run (step 3). Then, the 

three low level heuristics are ranked by using Equation 4.1 and their choice 

function values are computed by using Equation 4.4 (steps 4 & 5). The low 

level heuristic with the largest choice function value is selected (step 6) to be 

applied as an initial heuristic (step 8). Then, for all low level heuristics, the 
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ranking mechanism is updated (step 9). The choice function values are also 

computed and updated (step 10). According to the updated choice function 

values, the low level heuristic with the largest choice function value is 

selected to be applied in the next iteration (step 11). This process is repeated 

until the stopping condition is met (steps 7-12). Note that the greedy 

algorithm is applied only once at the beginning of the search, in order to 

determine which low level heuristic to apply first. Then, only one low level 

heuristic is selected at each iteration. 

 

Our multi-objective selection choice function based hyper-heuristic 

(HHMO_CF) involves   multi-objective meta-heuristics as low level heuristics 

for solving  -objective optimisation problems. Each low level heuristics 

executes a fixed number of function evaluations    where   is the size of 

population and   is the number of generations. Because of the high level 

abstraction in HHMO_CF, the number of objectives in   is not considered. 

HHMO_CF executes for a fixed number of iterations (decision points) (   ) as 

computational resource is always limited.  In each iteration, HHMO_CF 

evaluates     function evaluations. That is, HHMO_CF executes for    ൈ     
function evaluations.  Regardless of the computational cost for low level 

heuristics are used, the high level strategy; the selection choice function 

method in (Steps 9 & 10) ranks   low level heuristics with respect to   

performance metrics. So the computational cost of the choice function at each 

iteration is   ൈ  .  HHMO_CF takes linear time to execute;   ൈ  ൈ .  We 

note that   and   are negligible.  In the best case, HHMO_CF only requites Ȫሺ  ሻ basic operations per iteration to achieve an approximation Pareto front 

which has a comparable quality to that obtained by the low level heuristic 

when run individually. The experiments observation shows that there is no 

notable difference between the execution time of our method and other low 

Algorithm 10: Multi-objective Choice Function All-Moves based Hyper-heuristic 
 1: procedure HHMO_CF_AM ሺܪሻ ܪ ݏܽ݁ݎ݄݁ݓ  is a set of the low level heuristics 
 2:  Initialisation   
 3:  Run ݄ǡ ݄ ׊ א  for ݊݃ function evaluations ܪ
 4:  Rank   ݄ǡ ݄ ׊ א   based on  the ranking scheme ܪ
 5:  Get  ܨܥሺ݄ሻǡ ݄ ׊ א    ܪ
 6:  Select ݄ with the largest ܨܥሺ݄ሻ as an initial heuristic             
 7: repeat 
 8:    Execute the selected ݄ for  ݊݃  function evaluations 
 9:    Update the rank of  ݄ǡ א ݄ ׊  based on the ranking scheme ܪ 
10:   Update ܨܥሺ݄ሻǡ א ݄ ׊  ܪ 

11:   Select ݄ with the largest ܨܥሺ݄ሻǡ א ݄ ׊   ܪ 
12: until (termination criteria are satisfied) 
13: end procedure 
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level heuristics run on their own. It is good to note that all the methods are 

executed the same number of function evaluations.   

5.2 Performance Comparison of Multi-objective 

Choice Function Based Hyper-heuristic and Low Level 

Heuristics 
 

A set of experiments using the WFG test suite is conducted to see the 

performance difference between using each individual multi-objective meta-

heuristic (NSGAII, SPEA2, and MOGA) run on its own and the proposed 

HHMO_CF_AM selection hyper-heuristic that combines them. Although NSGAII 

and SPEA2 have previously been applied to the WFG test suite in Bradstreet 

et al. (2007), we repeat the experiments, including MOGA, under our own 

experimental settings. For short, we refer to the HHMO_CF_AM as HH_CF. 

5.2.1 Performance Evaluation Criteria 

 
The comparison of the quality of solutions for multi-objective 

optimisation is more complex than single-objective problems. The number of 

non-dominated individuals should be maximised, the distance to the non-

dominated front should be minimised, i.e. the resulting non-dominated set 

should be distributed uniformly as much as possible and converge well toward 

the POF. Because of that, we use three performance metrics RNI, SSC, and 

UD, to assess the quality of approximation sets in different aspects. In 

addition, we use the students test (t-test) as the statistical test while 

comparing the average performances of a pair of algorithms with respect to a 

metric averaged over 30 trials.  The null hypothesis is as follows: 

 
 ൜   ݏ݊ܽ݁݉ ݐ݊݁ݎ݂݂݁݅݀ ݁ݒ݄ܽ  ݏ݄݉ݐ݅ݎ݋݈݃ܽ ݂݋ ݎ݅ܽ݌ ܽ ݂݋ ݁ܿ݊ܽ݉ݎ݋݂ݎ݁݌ ݄݁ݐ ଵܪ ݏ݊ܽ݁݉ ݁݉ܽݏ ݄݁ݐ ݁ݒ݄ܽ   ݏ݄݉ݐ݅ݎ݋݈݃ܽ ݂݋ ݎ݅ܽ݌ ܽ ݂݋ ݁ܿ݊ܽ݉ݎ݋݂ݎ݁݌ ݄݁ݐ ଴ܪ
 

 

We assume two independent samples, unequal variance and one-tailed 

distribution with 95% confidence level. We aim to reject the null hypothesis 

and accept the alternative hypothesis and demonstrate the performance of 

HH_CF is statistically different from the performance of other algorithms. We 

use the following notation. Given two algorithms ܲ and  ܳ, ܲǣܳ ൅ ሺെሻ indicates 

that ܲ  performs better/worse than ܳ on average and this performance 

difference is statistically significant. The ~ sign indicates that both algorithms 
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deliver a similar performance. The notation n/a means the t-test is not 

applicable since the performances of both algorithms are completely equal. 

 

5.2.2 Experimental Settings 

 
All experimental parameters are chosen accordingly to that commonly 

used in the literature for continuous problems. Nine test problems for the 

WFG suite (WFG1-WFG9) have 24 real parameters including four position 

parameters, 20 distance parameters and two objectives. All settings for the 

test suite are fixed using the same settings proposed in the previous studies 

(Zitzler et al., 2000; Huband et al., 2006). 

 

According to Voutchkov and Keane (2010) and Chow and Regan (2012), 

an algorithm could reach better convergence by 6,250 generations. Therefore, 

the HH_CF was terminated after 6,250 generations. That is, HH_CF runs for a 

total of 25 iterations (stages). In each iteration, one low level heuristic is 

applied and this is executed for 250 generations with a population size equal 

to 100. The secondary population of SPEA2 is set to 100.  The execution time 

takes about 10-30 minutes depending on the given problem. In order to make 

a fair comparison, each low level heuristic is used in isolation and is 

terminated after 6,250 generations. For the WFG problems, 30 independent 

trials were run for each algorithm with a different random seed.  For all three 

low level heuristics, the simulated binary crossover (SBX) operator is used for 

recombination and a polynomial distribution for mutation (Deb and Agrawal, 

1995). The crossover and mutation probability were set to 0.9 and 1/24 

respectively. The distribution indices for crossover and mutation were set to 

10 and 20 respectively. In the measure of SSC, the reference points for WFG 

problems with ݇ objectives was set  ݎ௜  ൌ ሺͲǡ ݅ כ ʹሻǡ ݅ ൌ ͳǡ Ǥ Ǥ Ǥ ǡ ݇; (Huband et al., 

2006). The distance sharing ߪ for the UD metric and MOGA was set to 0.01 in 

the normalised space. These settings were used for SSC and UD as a 

feedback indicator in the ranking scheme of HH_CF and as a performance 

measure for the comparison. All algorithms were implemented with the same 

common sub-functions using Microsoft Visual C++ 2008 on an Intel Core2 

Duo 3GHz\2G\250G computer. 

 

5.2.3 Tuning of    parameter  
 

In our multi-objective hyper-heuristic framework, we employ a modified 

choice function, a selection mechanism using Equation 4.4 (see Section 4.3).   

The parameter value for  is important to strike a balance between ଵ݂ and ଶ݂ 
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values, as they are not in the same scalar unit. However, the choice of the 

right value is not trivial. We conducted initial experiments to determine the 

right value of  that leads to obtain solutions with good quality. In this 

experiment, we used three values in different ranges (small, middle and large 

(10,100 and 1000) respectively). Four instances of the WFG with two 

objectives (WFG1, WFG4, WFG6 and WFG8) are selected as they require a 

varied execution time ranging approximately between 10-25 minutes and 

they are run 30 times.  

 

 The performance values of HH_CF using the different values of  (10, 

100 and 1000) with respect to the performance metrics (RNI, SSC and UD) on 

the selected WFG problems are summarised in Table 5.1. For each 

performance metric, the average, minimum, maximum and standard 

deviation values are computed. A higher value indicates a better performance. 

We can observe that HH_CF has the highest (best) average of RNI when  

=1000. However, HH_CF has the highest (best) averages of SSC and UD 

metrics when =100.  We note that HH_CF has the worst performance with 

respect to three metrics when =10. These results can be explained by 

answering some questions, what is a good balance between ଵ݂ሺ݄ሻ and ଶ݂ሺ݄ሻ to 

reach in a satisfactory level (i.e. producing good solutions). How does 

intensification and diversification affect the quality of the solutions during the 

search?  In the case of a small ,  more attention  is given to  ଶ݂ሺ݄ሻ  and to 

the diversification factor as well. Thus, no consideration for ଵ݂ሺ݄ሻ and the 

intensification factor. The choice function acts as a random selection method; 

a low level heuristic ሺ݄ሻ is invoked regardless of its performance; the learning 

mechanism is not effective. In contrast, a large  gives more focus to ଵ݂ሺ݄ሻ  
and for the intensification factor as well. The low level heuristic ሺ݄ሻ with the 

best performance is always invoked during the search and no other low level 

heuristics are considered.  An example of this, let’s say ଵ݂ሺ݄ሻ=6 and ଶ݂ሺ݄ሻ ൌ 

90.718 seconds, Based on this, the selection of the heuristics relies on ଶ݂ሺ݄ሻ  
when =10 while it relies on ଵ݂ሺ݄ሻ when =1000.  In case of =100, a 

balance between ଵ݂ሺ݄ሻ and ଶ݂ሺ݄ሻ can be made. In the first few iterations of 

the search, the intensification factor gives a low level heuristic, that performs 

well, a chance to exploit the search area. Then as ଶ݂  increases during the 

search, the selection method invokes a low level heuristic which is not 

currently performing well, in order to explore unvisited search areas. The 

value changing between ଵ݂ሺ݄ሻ and ଶ݂ሺ݄ሻ leads to a balance between 
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intensification and diversification. In Figures 5.1 and 5.2, we provide an 

example of this situation for WFG1. In Figure 5.1, the average performance 

values of RNI, SSC and UD metrics for the HH_CF during the search with 

different settings =(10,100, 1000) on WFG1 is visualised. Also the average 

heuristic utilisation rate which indicates how frequently a given heuristic is 

chosen and applied during the whole search process across all runs on WFG1 

for the HH_CF with different  values is computed and illustrated in Figure 

5.2. 

 

From both Figures 5.1 and 5.2, we note that the performance of HH_CF 

during the search when =10 with respect to RNI is reduced, and it fluctuated 

with respect to the SSC and UD metrics. This is due to the absence of the 

intensification factor and the strong effect of the diversification factor on the 

algorithm which result in the heuristics being called (almost randomly). The 

performance of HH_CF during the search when =1000 with respect to the 

three metrics is relatively the same. Although the performance of HH_CF has 

slightly increased during the search and it does obtain better solutions, 

diversification factor is not having any effect. This is clear in Figure 5.2, where 

NSGAII has the highest utilisation rate as it performs well and MOGA have not 

been executed at all. This is because of the effect of the intensification factor. 

However, the performance of HH_CF during the search when =100, with 

respect to the three metrics, is reflecting the good balance between 

intensification and diversification. In Figure 5.2, HH_CF with =100 shows a 

heuristic with the best performance for many iterations because of the effect 

of the intensification factor, but it also gives a chance for other heuristics to 

be called because of the diversification factor. This is shown in Figure 5.1, all 

heuristics are invoked even if they do not perform well. From the above 

observations, =100 is the best value compared to the others that obtains 

better solutions for HH_CF on selected WFG problems. Therefore,  is set 

to100 for our HH_CF in the experiments that are presented in the rest of this 

chapter. 
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 Table 5.1: The Performance of multi-objective choice function based hyper-heuristic (HH_CF) using different values of  parameter   

   in the choice function selection method. 

 

 

WFG  RNI SSC (HV) UD 
AVG MIN MAX STD AVG MIN MAX STD AVG MIN MAX STD 

1 10 0.1080 0.0400 0.2000 0.0593 3.1031 0.3251 8.11719 3.1183 0.3873 0.3364 0.7656 0.1401 
100 0.8800 0.2800 1.0000 0.2539 12.1386 9.0338 12.5130 0.9101 0.4428 0.3490 0.6945 0.1007 
1000 1.0000 1.0000 1.0000 0.0000 10.5048 6.4887 10.5168 0.0113 0.4101 0.3890 0.4284 0.0152 

4 10 0.2340 0.2000 0.2500 0.1949 9.1308 8.7872 9.3591 0.2104 0.4932 0.4798 0.5505 0.0894 
100 0.5443 0.4800 0.6400 0.0452 9.6588 9.5331 9.6643 0.0176 0.5596 0.4752 0.6317 0.0361 

1000 1.0000 1.0000 1.0000 0.0000 9.6510 9.5000 9.6632 0.0038 0.4118 0.3955 0.4379 0.1574 
6 10 0.2800 0.1600 0.2800 0.0438 8.8502 7.9699 9.1721 0.4976 0.5088 0.6231 0.7646 0.0544 

100 0.4720 0.4000 0.5600 0.0412 9.3687 9.1500 9.3810 0.0542 0.5962 0.5042 0.6479 0.0363 
1000 1.0000 1.0000 1.0000 0.0000 9.3346 9.2759 9.4105 0.0695 0.4155 0.3992 0.4337 0.0135 

8 10 0.0640 0.0400 0.0800 0.0219 6.8731 5.0792 7.5603 7.5603 06668 0.5358 0.7387 0.8315 
100 0.2627 0.2000 0.4400 0.0454 8.3033 8.1155 8.5676 0.1224 0.7886 0.6294 1.0000 0.2627 
1000 0.9000 0.4000 1.0000 0.3000 7.6730 7.5321 7.7276 0.0797 0.4772 0.4125 0.6948 0.1218 
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Figure 5.1: The performance of  HH_CF with respect to the measure RNI, SSC and UD 

during the search which were averaged over 30 trials for different  settings (10, 100, 

1000) on WFG1. 

 

Figure 5.2: The average heuristic utilisation rate over 30 trials for the low level 

heuristics (NSGAII, SPEA2 and MOGA) in HH_CF using different  settings (10, 100, 

1000) on the WFG1. 
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 5.2.4 Comparison Results and Discussion 

 

NSGAII, SPEA2, MOGA and HH_CF are tested on the nine WFG test 

problems under the same experimental settings described in Section 5.2.2. 

Table 5.2 summarises the average, minimum, maximum and standard 

deviation values pairs for each algorithm with respect to RNI, SSC and UD 

over 30 trials. For all performance metrics, a higher value indicates a better 

performance. HH_CF has a higher RNI value than MOGA while it has a lower 

value than NSGAII and SPEA2 for WFG1. HH_CF has the highest value of SSC 

and UD metrics among the methods. We can put WFG5 and WFG6 in this 

category.  For WFG2 and WFG3, HH_CF has a RNI value similar to MOGA and 

lower than the others. With respect to SSC, HH_CF has higher values than 

SPEA2 and MOGA and similar to NSGAII. However, HH_CF has the highest 

value among other methods in the measure of UD. For WFG4 and WGF7, 

HH_CF has the lowest (worst) RNI value and the highest UD value. HH_CF has 

a higher value than MOGA and similar to NSGAII and SPEA2 with respect to 

the SSC metric. For WFG8 and WFG9, HH_CF has the lowest value with 

respect to RNI and SSC metrics, and the highest value with respect to UD 

metric.  

 

These performance results with respect to RNI, SSC and UD are also 

displayed as box plots in Figures 5.3, 5.4 and 5.5 in order to provide a clear 

visualisation of the distribution of the simulation data of the 30 independent 

runs. The statistical t-test comparing our proposed HH_CF and the three low 

level heuristics (NSGAII, SPEA2 and MOGA), when used in isolation for the 

three performance metrics (RNI, SSC and UD) are given in Table 5.3. We can 

note that HH_CF and the other algorithms are statistically different in the 

majority cases. 

 

In Figure 5.3, NSGAII and SPEA2 perform better than the others and 

produce the highest value of RNI for all datasets. This performance variation 

is statistically significant as illustrated in Table 5.3. Moreover, NSGAII and 

SPEA2 perform the same across all benchmarks with respect to RNI. However, 

HH_CF and MOGA produce relatively low values for this metric. HH_CF 

performs significantly better than MOGA on two instances of WFG1 and WFG5 

and vice-versa for two instances of WFG8 and WFG9. For the rest of the 

instances, they deliver the same performance. This indicates that HH_CF 
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performs badly according to the metric of RNI and produces a low number of 

non-dominated solutions than other algorithms, except for MOGA. 

 

In Figure 5.4, the performance of HH_CF for SSC is relatively better 

than SPEA2 and MOGA across all test problems except for WFG9. HH_CF 

performs significantly better than SPEA2 and MOGA on eight instances of WFG 

(see Table 5.3). HH_CF also performs better than NSGA2 in WFG1, WFG5 and 

WFG6. This performance variation is statistically significant as illustrated in 

Table 5.3. HH_CF performs significantly better than NSGAII on three 

instances of WFG1 and WFG5, WFG6. 

 

In Figure 5.5, it can be seen that HH_CF has the highest uniform 

distribution UD value across all test problems. This indicates that HH_CF is 

superior to the other algorithms on all WFG instances in terms of the 

distribution of non-dominated individuals over the POF.  This performance 

variation is statistically significant as illustrated in Table 5.3. HH_CF performs 

significantly better than the other methods on all nine instances of WFG. 

Although HH_CF performs similarly to NSGAII in WFG2, WFG3, WFG4 and 

WFG7, HH_CF performs significantly slightly better than NSGAII on three 

instances of WFG2, WFG4 and WFG7 (see Tables 5.2 and 5.3). For WFG8 and 

WFG9, HH_CF does not perform well compared to the others, except MOGA. 

HH_CF performs significantly worse than NSGAII and SPEA2 where HH_CF 

performs significantly better than MOGA as shown in Table 5.3. 

 

We note from all the above results that HH_CF performs worse than the 

low level heuristics when used in isolation with respect to the RNI metric, and 

it produces a lower number of non-dominated solutions for most of the WFG 

problems.  However, HH_CF performs very well and produces non- dominated 

solutions that distribute uniformly well over the POF with respect to the UD 

metric when compared to the other methods.  HH_CF also performs better 

than the others in most of the WFG problems and produces non-dominated  

solutions with high diversity that cover a larger proportion of the objective 

space with respect to the SSC metric, except for WFG8 and WFG9 where it 

failed to converge towards the POF. As WFG8 and WFG9 have a significant 

bias feature, HH_CF may have difficulties coping with bias. 

 



Chapter 5:  A Heuristic Selection Using Deterministic Move Acceptance Strategy  

 

102 | P a g e   
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Table 5.2: The average performance of HH_CF compared to the low level heuristics on the WFG test problems with respect to the ratio of  non-dominated 
individuals (RNI), the hypervolume (SSC) and the uniform distribution (UD). 

WFG Methods RNI SSC (HV) UD 

AVG MIN MAX STD AVG MIN MAX STD AVG MIN MAX STD 

1 

HH_CF 0.8800 0.2800 1.0000 0.2539 12.1386 9.0338 12.5130 0.9101 0.4428 0.3490 0.6945 0.1007 
NSGAII 1.0000 1.0000 1.0000 0.0000 11.6041 11.0016 12.3570 0.3880 0.4003 0.3727 0.4327 0.0140 

SPEA2 1.0000 1.0000 1.0000 0.0000 6.4931 6.4811 6.5063 0.0066 0.4099 0.3760 0.4420 0.0148 
MOGA 0.2650 0.1300 0.6300 0.1140 4.2184 3.5399 6.3178 0.6727 0.2117 0.1535 0.3718 0.0478 

2 

HH_CF 0.2293 0.1600 0.3600 0.0545 11.0219 10.6407 12.3894 0.3042 0.7278 0.6223 1.0000 0.0661 
NSGAII 1.0000 1.0000 1.0000 0.0000 10.8199 10.8057 10.8249 0.0041 0.3747 0.3497 0.3988 0.0112 

SPEA2 1.0000 1.0000 1.0000 0.0000 10.7898 10.2636 11.9569 0.7935 0.2874 0.2217 0.3488 0.0305 
MOGA 1.0000 1.0000 1.0000 0.0000 9.7959 7.1533 10.1943 0.6978 0.5414 0.4294 0.6910 0.0597 

3 

HH_CF 0.6027 0.5200 0.6800 0.0445 11.8940 11.3990 11.9867 0.0853 0.5450 0.4959 0.6136 0.0289 
NSGAII 1.0000 1.0000 1.0000 0.0000 11.9185 11.9046 11.9306 0.0063 0.4244 0.3980 0.4448 0.0120 
SPEA2 1.0000 1.0000 1.0000 0.0000 11.4062 11.3664 11.4541 0.0189 0.4289 0.4110 0.4436 0.0078 

MOGA 0.6070 0.5200 0.9600 0.0400 11.2921 10.9930 11.4508 0.1393 0.4468 0.3819 0.5116 0.0324 

4 

HH_CF 0.5443 0.4800 0.6400 0.0452 9.6588 9.5331 9.6643 0.0176 0.5596 0.4752 0.6317 0.0361 
NSGAII 1.0000 1.0000 1.0000 0.0000 9.6460 9.6518 9.6683 0.0041 0.4132 0.3879 0.4402 0.0151 
SPEA2 1.0000 1.0000 1.0000 0.0000 9.1853 9.1599 9.2091 0.0133 0.4058 0.3725 0.4301 0.0133 

MOGA 0.5800 0.4900 0.7100 0.0540 8.9968 8.4897 9.3057 0.2056 0.4594 0.3940 0.5610 0.0387 

5 

HH_CF 0.8537 0.6000 1.0000 0.1723 9.2899 9.1526 9.2984 0.5744 0.4779 0.4279 0.5744 0.0468 
NSGAII 1.0000 1.0000 1.0000 0.0000 9.2857 9.2672 9.2904 0.0043 0.3958 0.3705 0.4271 0.0129 
SPEA2 1.0000 1.0000 1.0000 0.0000 9.2860 9.1952 9.2968 0.0214 0.4360 0.4222 0.4538 0.0087 

MOGA 0.6820 0.6000 0.7400 0.0360 8.8946 8.4904 9.1028 0.4171 0.4184 0.3583 0.4690 0.0272 

6 

HH_CF 0.4720 0.4000 0.5600 0.0412 9.3687 9.1500 9.3810 0.0542 0.5962 0.5042 0.6479 0.0363 
NSGAII 1.0000 1.0000 1.0000 0.0000 9.3503 9.1883 9.4401 0.0605 0.4082 0.3091 0.4479 0.0247 
SPEA2 1.0000 1.0000 1.0000 0.0000 8.7135 8.4494 9.0349 0.1851 0.3761 0.3461 0.4068 0.0158 

MOGA 0.4990 0.4300 0.5900 0.0420 8.8878 8.5542 9.0785 0.1345 0.4786 0.3929 0.5712 0.0367 

7 

HH_CF 0.6173 0.4000 0.7200 0.0653 9.6606 9.2261 9.6911 0.0926 0.5289 0.4734 0.6743 0.0416 
NSGAII 1.0000 1.0000 1.0000 0.0000 9.6579 9.5053 9.6704 0.0294 0.4048 0.3766 0.4220 0.0117 
SPEA2 1.0000 1.0000 1.0000 0.0000 9.2481 9.2109 9.2724 0.0161 0.4082 0.3777 0.4333 0.0116 

MOGA 0.6300 0.5100 0.7600 0.0550 9.1685 8.6489 9.3474 0.1799 0.4331 0.3539 0.4980 0.0415 

8 

HH_CF 0.2627 0.2000 0.4400 0.0454 8.3033 8.1155 8.5676 0.1224 0.7886 0.6294 1.0000 0.1245 
NSGAII 1.0000 1.0000 1.0000 0.0000 8.7155 8.6912 8.7391 0.0140 0.4178 0.3980 0.4404 0.0123 
SPEA2 1.0000 1.0000 1.0000 0.0000 8.3957 8.3509 8.4412 0.0199 0.4069 0.3907 0.4226 0.0083 

MOGA 0.4790 0.4000 0.6000 0.0460 8.0762 7.4237 8.9192 0.2777 0.4490 0.3679 0.5644 0.0450 

9 

HH_CF 0.6410 0.4000 0.8000 0.0896 8.6132 8.2356 9.2519 0.2236 0.5142 0.4141 0.6432 0.0525 
NSGAII 1.0000 1.0000 1.0000 0.0000 8.7650 8.5787 9.2673 0.2960 0.3955 0.3641 0.4294 0.0163 
SPEA2 1.0000 1.0000 1.0000 0.0000 8.7091 8.5700 9.0416 0.1967 0.4303 0.4031 0.4488 0.0106 

MOGA 0.8260 0.6700 0.9700 0.0900 8.5723 8.2357 8.9845 0.2259 0.3693 0.2803 0.4257 0.0350 
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Figure 5.3:.Box plots of NSGAII, SPEA2, MOGA and HH_CF, for the measure of ratio of 
non-dominated individuals (RNI) on the WFG test functions.  

   

   

   

Figure 5.4: Box plots of NSGAII, SPEA2, MOGA and HH_CF for the measure of 
hypervolume (SSC) on the WFG test functions. 
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Figure 5.5: Box plots of NSGAII, SPEA2, MOGA and HH_CF for the uniform distribution 
(UD) of non-dominated population on the WFG test functions. 

 

Generally, HH_CF produces competitive results across most of the WFG 

problems with respect to two of the performance metrics (SSC and UD) out of 

the three metrics. Although HH_CF obtains a low number of solutions, it 

produces very good solutions in terms of diversity and convergence when 

compared to the low level heuristics when used in isolation.  HH_CF can 

benefit from the strengths of the low level heuristics. Moreover, it has the 

ability to intelligently adapt to calling combinations of low level heuristics. To 

understand how the HH_CF could obtain these results, we analyse the 

behaviour of the low level heuristics in the next sub-section. 

 

5.2.5 Behaviour of Low Level Heuristics 

 

We compute the average heuristic utilisation rate which indicates how 

frequently a given low level heuristic is chosen and applied during the search 

process, across all runs, in order to see which low level heuristic is used more 

frequently. The results are presented in Figure 5.6. The average heuristic 

utilisation rate of NSGAII is at least 44% and is the highest among all the low 

level heuristics for each problem, except for WFG5 for which SPEA2 is chosen  
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Problem Methods Metrics 
RNI SSC UD 

WFG1 HH_CF:NSGAII - + + 
HH_CF:SPEA2 - + + 
HH_CF:MOGA + + + 
NSGAII:SPEA2 n/a + - 
NSGAII:MOGA + + + 
SPEA2:MOGA + + + 

WFG2 HH_CF:NSGAII - ~ + 
HH_CF:SPEA2 - + + 
HH_CF:MOGA ~ + + 
NSGAII:SPEA2 n/a ~ + 
NSGAII:MOGA + + - 
SPEA2:MOGA + + - 

WFG3 HH_CF:NSGAII - ~ + 
HH_CF:SPEA2 - + + 
HH_CF:MOGA ~ + + 
NSGAII:SPEA2 n/a + + 

NSGAII:MOGA + + - 
SPEA2:MOGA + + - 

WFG4 HH_CF:NSGAII - ~ + 
HH_CF:SPEA2 - + + 
HH_CF:MOGA - + + 
NSGAII:SPEA2 n/a + + 
NSGAII:MOGA + + - 
SPEA2:MOGA + + - 

WFG5 HH_CF:NSGAII - + + 
HH_CF:SPEA2 - + + 
HH_CF:MOGA + + + 
NSGAII:SPEA2 n/a + - 
NSGAII:MOGA + + - 
SPEA2:MOGA + + + 

WFG6 HH_CF:NSGAII - + + 
HH_CF:SPEA2 - + + 
HH_CF:MOGA ~ + + 
NSGAII:SPEA2 n/a + + 
NSGAII:MOGA + + - 
SPEA2:MOGA + - - 

WFG7 HH_CF:NSGAII - ~ + 
HH_CF:SPEA2 - + + 
HH_CF:MOGA ~ - + 
NSGAII:SPEA2 n/a + ~ 
NSGAII:MOGA + + - 
SPEA2:MOGA + + - 

WFG8 HH_CF:NSGAII - - + 
HH_CF:SPEA2 - - + 
HH_CF:MOGA - + + 
NSGAII:SPEA2 n/a + + 
NSGAII:MOGA + + - 
SPEA2:MOGA + + - 

WFG9 HH_CF:NSGAII - - + 
HH_CF:SPEA2 - - + 
HH_CF:MOGA - + + 
NSGAII:SPEA2 n/a + - 
NSGAII:MOGA + + + 
SPEA2:MOGA + + + 

 

Table 5.3: The t-test results of HH_CF and low level heuristics on the WFG test 
problems with respect to the ratio of non-dominated individuals (RNI), the 
hypervolume (SSC) and the uniform distribution (UD). 
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most frequently with a utilisation rate of 55.72% during the search process. It 

explains why HH_CF has either a similar or relatively better convergence to 

the POF for most of the test problems when compared with NSGAII. It 

indicates that NSGAII performs best among other low level heuristics in most 

of the WFG problems. The authors theorise that HH_CF, therefore, prefers 

NSGAII and it becomes preferable to be chosen more frequently than the 

other   low   level   heuristics.  Our   result   is consistent with  the  result  in 

Bradstreet et al. (2007) that shows that the best performance is achieved by 

NSGAII on the WFG test functions with two objectives. 

 

 

Figure 5.6: The average heuristic utilisation rate for the low level heuristics (NSGAII, 
SPEA2 and MOGA) in HH_CF on the WFG test suite. 
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The performance of MOGA is not that good on the WFG benchmark, thus 

it is invoked relatively less frequently during the search process because of 

the diversification factor  ଶ in the selection choice function method (see 

Sections 4.1 and 4.3). However, MOGA still influences the performance of 

HH_CF, negatively, in particular with respect to the ratio of number of non-

dominated individuals (RNI). This is due to that fact that MOGA does not have 

any archive mechanism or preserving strategy to maintain the non-dominated 

solutions during the search. Although the selection choice function method 

provides a kind of balance between the intensification ( ଵ) and diversification 

( ଶ) when choosing a heuristic, HH_CF obtains a low ratio of non-dominated 

individuals (RNI) which indicates poor diversification. This is because of our 

multi-objective hyper-heuristics do not incorporate any archive mechanisms 

to maintain the non-dominated solutions during the search. So when MOGA is 

called, it produces a low number of non-dominated individuals, leading to 

poor diversification. The average utilisation rate of MOGA is the highest for 

WFG8 (10.16%) and WFG9 (22.40%) among other WFG problems. This 

utilisation rate explains why the performance of HH_CF is the worst 

performing approach in terms of RNI. HH_CF also faces some difficulty while 

solving WFG8 and WFG9 in terms of convergence as well. 

 

In order to see the effectiveness of each chosen low level heuristic on 

the performance of HH_CF, we looked into the performance of the low level 

heuristics with respect to the RNI, SSC and UD metrics at twenty five decision 

points during the search process. We observe that some problems are 

following a specific pattern to invoke the low level heuristics during the 

search. Each problem has its own pattern. For example, for WFG3, NSGAII is 

invoked and executed for the first seven consecutive decision points. Then 

SPEA2 is invoked for the next four decision points, followed by one iteration of 

MOGA. Then NSGAII is chosen for the rest of the search. More of these 

patterns are illustrated in Figure 5.7. 

 

In order to analyse these results, we divide the WFG instances into four 

categories based on the performance of HH_CF compared to the three low 

level heuristics being used in isolation with respect to RNI, SSC and UD as 

listed below: 
 

(i) WFG1,WFG5 and WFG6: 
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 RNI: Better performance than MOGA and worse than NSGAII and 

SPEA2 

 SSC: The best performance among NSGAII, SPEA2 and MOGA 

 UD: The best performance among NSGAII, SPEA2 and MOGA 

 

(ii) WFG2 and WFG3: 

 

 RNI: Similar performance to MOGA and worse than NSGAII and 

SPEA2 

 SSC: Better performance than SPEA2 and MOGA and similar to 

NSGAII 

 UD: The best performance among NSGAII, SPEA2 and MOGA 

 

(iii) WFG4 and WGF7: 

 

 RNI: The worst performance among NSGAII, SPEA2 and MOGA 

 SSC: Better performance than SPEA2 and MOGA and similar to 

 NSGAII 

 UD: The best performance among NSGAII, SPEA2 and MOGA 

 

(iv) WFG8 and WFG9: 

 

 RNI: The worst performance among NSGAII, SPEA2 and MOGA 

 SSC: The worst performance among NSGAII, SPEA2 and MOGA 

 UD: The best performance among NSGAII, SPEA2 and MOGA 

For each category described above, except the last one, we have 

selected a sample problem to visualise the low level call patterns. WFG5 for 

the first category, WFG3 for the second category and WFG4 for the third 

category. For the last category, no specific pattern has been observed. The 

selected three problems have different problems features in terms of 

separability and modality (Huband et al., 2006). The average of RNI, SSC and 

UD values versus decision point plots across selected benchmark problems 

(WFG3, WFG4 and WFG5) are shown in Figure 5.7. Each step in the plot is 

associated with the most frequently selected low level heuristics across 30 

trials. Since we employed All-Moves as an acceptance strategy, some moves 

are accepted even if it worsens the solution quality. 
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From Figure 5.7, it is clear that MOGA, during the search, produces a 

worse solution with respect to RNI, and this solution is accepted which affects 

the performance of HH_CF. However, some worsening moves are able to 

produce better solutions. This can be noted in the performance HH_CF with 

respect to the UD metric. SPEA2 produces low quality solutions in terms of the 

distribution along the POF, but this helps it to escape from the local optimum 

and obtain better solutions at the end. This is also true with respect to the 

SSC performance indicator. In addition, we note that HH_CF has an 

advantage over MOGA and outperforms the three MOEAs methods with 

respect to the distribution of non-dominated individuals over the POF.  It also 

has an advantage over NSGAII in terms of convergence, in that it performs 

better than all other methods in some problems while performing better or 

similar to NSGAII on the other problems. However, HH_CF does not have an 

advantage over NSGAII and SPEA2 with respect to the non-dominated 

individuals in the population. HH_CF performs poorly because of MOGA's 

effect. 

 

It can be concluded that our choice function based hyper-heuristic can 

benefit from the strengths of the low level heuristics. And it can avoid the 

weaknesses of them (partially), as the poor performance of MOGA affects the 

performance of HH_CF badly in the metric of RNI by producing a low number 

of non-dominated individuals.  We can avoid this by employing another 

acceptance move strategy instead of All-Moves. A non-deterministic 

acceptance strategy could accept worsening moves within a limited degree 

and help improve the quality of the solutions. However, HH_CF has the ability 

to intelligently adapt to calling combinations of low level heuristics. 

5.3 Performance Comparison of Multi-objective 

Choice Function Based Hyper-heuristic to the Other 

Multi-objective Approaches  
 

We conduct some experiments to examine the performance of our 

proposed multi-objective choice function based hyper-heuristic (HH_CF) 

compared to two multi-objective approaches; a random hyper-heuristic 

(HH_RAND) and the adaptive multi-method search (AMALGAM) (Vrugt and 

Robinson, 2007). In a random hyper-heuristic (HH_RAND), we employ a 

simple random selection instead of the choice function selection this is used in 

HH_CF. No ranking scheme, nor a learning mechanism, is embedded into 
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HH_RAND. In HH_RAND, we use the same three low level heuristics that are 

used in HH_CF. 

 

5.3.1 Performance Evaluation Criteria 

 

The hypervolume (SSC) (Zitzler and Thiele, 1999), the generational 

distance (GD) (Van Veldhuizen and Lamont, 1998b) and the inverted 

generational distance (IGD) (Coello and Cruz Cortès, 2005) metrics were used 

to compare the performance of multi-objective approaches for this set of 

experiments. The GD and IGD measure the distance (convergence) between 

the approximation non-dominated front and the POF. A smaller value of GD 

and IGD is more desirable and it indicates that the approximation non-

dominated front is closer to the POF. In addition, we use t-test for the 

average performance comparison of algorithms and the results are discussed 

using the same notation as provided in Section 5.2.1. 

 

5.3.2 Experimental Settings 

 

All experimental parameters are chosen to be the same as those 

commonly used in the scientific literature for continuous problems   (Zitzler et 

al., 2000; Huband et al., 2006). All methods were applied to the nine WFG 

test problems with 24 real values and two objectives. In order to keep the 

computational costs of the experiments to an affordable level, all the methods 

were executed for 25,000 evaluation functions with a population size of 100 

and 250 generations in each run. Depending on the given problem, the 

execution time of HH_CF and HH_RAND for one run takes about 5-12 

minutes. Both HH_CF and HH_RAND are executed for 2,500 evaluation 

functions at each iteration. Other parameter settings of AMALGAM are 

identical to those used in Vrugt and Robinson (2007). We used the Matlab 

implementation of AMALGAM obtained from the authors via personal 

communication. We implemented a C++ interface between AMALGAM and the 

WFG test suite's C++ code. All other experimental settings are fixed the same 

as discussed in Section 5.2.2. 
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Figure 5.7: The average of RNI,SSC and UD values versus decision point steps plots across  selected benchmark problems (the WFG3, WFG4 and 
WFG5). Each step in the plot is associated with the most frequently selected low level heuristics across 30 trial
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5.3.3 Experimental Results and Discussion 

 
The performance values of HH_CF and the other hyper-heuristic 

methods with respect to the performance metrics SSC, GD and IGD on the 

WFG problems are summarised in Table 5.4. For each performance metric, 

the average, minimum, maximum and standard deviation values are 

computed. 

These performance results with respect to SSC, GD and IGD are also 

displayed as box plots in Figures 5.8, 5.9 and 5.10 in order to provide a 

visualisation of the distribution of the simulation data of the 30 independent 

runs. The statistical t-test comparing our proposed HH_CF and other multi-

objective hyper-heuristics for the metrics (SSC, GD and IGD) are given in 

Table 5.5. The results show that the HH_CF performs better than the other 

algorithms in most cases. As expected, HH_CF achieves better coverage and 

diversity than HH_RAND according to both metrics. This is due to the learning 

mechanism used in HH_CF which adaptively guides the search towards the 

POF. Interestingly, HH_RAND performs better than AMALGAM according to the 

hypervolume metric except in WFG9. However, HH_RAND performs worse 

than AMALGAM according to the GD metric over all of the problems while it 

better in all problems with respect to IGD except in WFG9. This performance 

variation is statistically significant as illustrated in Table 5.5. HH_RAND 

performs significantly better than AMALGAM for the SSC metric on eight 

instances of WFG except in WFG9. HH_RAND also performs significantly better 

than AMALGAM for the IGD metric on all instances except in WFG9. HH_RAND 

also performs significantly better than AMALGAM for the GD metric on three 

instances of WFG1, WFG6 and WFG7 while it performs significantly similar to 

AMALGAM on one instance of WFG5 where it performs significantly worse than 

AMALGAM for the rest.  

Compared to AMALGAM, HH_CF performs better with respect to the 

convergence and diversity on most of the WFG problems. According to the 

SSC metric, HH_CF produced non-dominated solutions that cover a larger 

proportion of the objective space than AMALGAM on all WFG problems except 

for WFG9. In Table 5.5, HH_CF performs significantly better than AMALGAM 

on eight instances of WFG except for WFG9 where AMALGAM performs 

significantly better than HH_CF on this instance. The superiority of HH_CF on 

the SSC metric is due to the stronger selection mechanism and the effective 
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ranking scheme that relies on choosing a heuristic with the best SSC value at 

the right time (decision point) to guide the search to move toward more 

spaces around the POF. This result is more reliable as shown in Figure 5.8. 

 

According to the metrics of GD and IGD, HH_CF is superior to AMALGAM on 

most of WFG problems as reported in Table 5.4 and displayed as box plots in 

Figure 5.9 and 5.10. In Table 5.5, HH_CF performs significantly better than 

AMALGAM on five instances out of nine including WFG1, WFG2, WFG5, WFG6, 

and WFG7 for the metric of GD. And HH_CF performs significantly better than 

AMALGAM on all instances except in WFG9 for the metric of IGD. Again, this 

result is due to the online-learning selection mechanism and the ranking 

scheme in HH_CF. The ranking scheme maintains the past performance of low 

level heuristics using a set of performance indicators that measure different 

aspects of the solutions. During the search process, the raking scheme 

creates a balance between choosing the low level heuristics and their 

performance according to a particular metric. This balance enhances the 

algorithm performance to yield better solutions that converge toward the POF 

as well as distribute uniformly along the POF. However, AMALGAM performs 

significantly better than HH_CF on the other four instances for GD and one 

instance for IGD (see Tables 5.4 and 5.5). This might be because of the 

nature of the problems that present difficulties for HH_CF to converge toward 

the POF or might slow down the convergence speed such as the bias in WFG8, 

WFG9 and the multimodality of WFG4. It is good to report that AMALGAM has 

better performance according to the both metrics; SSC, GD and IGD in WFG9. 

This is shown in Table 5.5, where AMALGAM performs significantly better than 

others on one instance of WFG9. 

 

For each problem, we computed the 50% attainment surface for each 

algorithm, from the 30 fronts after 25,000 evaluation functions. In Figures 

5.11 and 5.12, we have plotted the POF and the 50% attainment surface of 

the algorithms. HH_CF shows good convergence and uniform distribution for 

most datasets. It seems clear that HH_CF has converged well on the POF in 

WFG1 and WFG2 compared to other algorithms. Moreover, HH_CF produced 

solutions that covered larger proportions of the objective space compared to 

the other algorithms. AMALGAM has poor convergence most problems. It has 

fewer solutions with poor convergence for WFG2. And it has no solutions over 

the middle-lower segments of the POF for WFG3, WFG5, WFG6, WFG7, and 

WFG8 and no solutions over the upper-middle segments of the POF for WFG4. 
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Table 5.4: The  performance of HH_CF compared to multi-objective hyper-heuristics on the WFG test problems with respect to  the Hypervolume  (SSC),  the 
generational distance (GD) and the inverted generational distance (IGD). 

WFG Methods SSC (HV) GD IGD 

AVG MIN MAX STD AVG MIN MAX STD AVG MIN MAX STD 

1 
HH_CF 12.0044 11.8430 12.2044 0.8301 0.00774 0.00340 0.04660 0.01106 0.00102 0.00039 0.00393 0.00098 

HH_RAND 7.0258 2.4467 7.5580 0.7877 0.02420 0.02899 0.03556 0.00143 0.00583 0.00340 0.00658 0.00078 
AMALGAM 7.7902 7.2863 8.2485 0.1941 0.02917 0.02620 0.03290 0.00155 0.00312 0.00276 0.00352 0.00016 

2 
HH_CF 11.0102 10.9907 11.2940 0.2033 0.00046 0.00090 0.00320 0.00049 0.00051 0.00022 0.00064 0.00008 

HH_RAND 9.7547 7.0023 9.7798 0.5078 0.01680 0.00031 0.04145 0.01089 0.00191 0.00123 0.00330 0.00058 
AMALGAM 1.7582 1.6036 6.1053 0.8210 0.00099 0.00030 0.01930 0.00346 0.00413 0.00412 0.00414 0.00001 

3 
HH_CF 11.7550 11.5650 11.8066 0.0743 0.00068 0.00030 0.00280 0.00045 0.00075 0.00068 0.00082 0.00005 

HH_RAND 11.0290 10.8800 11. 0833 0.1490 0.00384 0.00220 0.02252 0.00357 0.00081 0.00045 0.00100 0.00009 
AMALGAM 6.6890 6.6752 6.6980 0.0049 0.00036 0.00031 0.00041 0.00002 0.00272 0.00272 0.00272 0.00000 

4 
HH_CF 9.5610 9.5331 9.6700 0.0143 0.00097 0.00075 0.00151 0.00019 0.00036 0.00030 0.00043 0.00003 

HH_RAND 9.2052 8.7032 9.2991 0.0145 0.00405 0.00329 0.00499 0.00053 0.00066 0.00060 0.00072 0.00004 
AMALGAM 3.5687 3.5509 3.5838 0.0075 0.00081 0.00059 0.00070 0.00005 0.00194 0.00190 0.00200 0.00003 

5 
HH_CF 9.2701 8.7531 9.2954 0.5343 0.00273 0.00244 0.00333 0.00032 0.00058 0.00054 0.00069 0.00003 

HH_RAND 9.2577 9.2152 9.2784 0.0556 0.00255 0.00245 0.00269 0.00010 0.00066 0.00055 0.00077 0.00005 
AMALGAM 6.3554 6.2404 6.3766 0.0323 0.00281 0.00268 0.00381 0.00028 0.00126 0.00124 0.00137 0.00003 

6 
HH_CF 9.3579 9.0433 10.2011 0.0530 0.00225 0.00151 0.00391 0.00056 0.00065 0.00050 0.00078 0.00007 

HH_RAND 9.3119 9.1005 9.4231 0.0501 0.00334 0.00227 0.00452 0.00052 0.00077 0.00072 0.00080 0.00002 
AMALGAM 6.3554 6.2404 6.3766 0.0323 0.00298 0.00142 0.00554 0.00123 0.00193 0.00181 0.00217 0.00011 

7 
HH_CF 9.6498 9.2261 9.6540 0.0901 0.00047 0.00044 0.00136 0.00025 0.00030 0.00023 0.00037 0.00003 

HH_RAND 9.1184 8.1243 9.1685 0.3473 0.00425 0.00309 0.00582 0.00067 0.00037 0.00030 0.00041 0.00004 
AMALGAM 3.9171 3.9115 3.9263 0.0035 0.00067 0.00041 0.00051 0.00003 0.00345 0.00342 0.00347 0.00001 

8 
HH_CF 8.2843 8.0165 8.6621 0.1451 0.00442 0.00358 0.00498 0.00043 0.00072 0.00058 0.00088 0.00008 

HH_RAND 8.1089 7.0121 8.6760 0.3867 0.01140 0.00677 0.01510 0.00207 0.00086 0.00050 0.00100 0.00012 
AMALGAM 3.0945 3.0419 3.1293 0.0213 0.00241 0.00216 0.00281 0.00017 0.00243 0.00242 0.00245 0.00001 

9 
HH_CF 8.5981 8.2011 9.2660 0.2143 0.00528 0.00143 0.00639 0.00145 0.00183 0.00041 0.00218 0.00055 

HH_RAND 8.4697 8.1138 8.8453 0.3059 0.00602 0.00044 0.00755 0.00167 0.00337 0.00302 0.00395 0.00024 
AMALGAM 9.0676 8.6088 9.1480 0.1140 0.00113 0.00098 0.00156 0.00011 0.00026 0.00024 0.00032 0.00002 
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Figure 5.8: Box plots of HH_CF, HH_RAND, and AMALGAM  for the measure of hypervolume 
(SSC) on the WFG test functions. 

 

Figure 5.9: Box plots of HH_CF, HH_RAND, and AMALGAM for the measure of generational 
distance (GD) on the WFG test functions. 
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Figure 5.10: Box plots of HH_CF, HH_RAND, and AMALGAM for the measure of inverted 
generational distance (IGD) on the WFG test functions. 

Problem Methods Metrics 
SSC GD IGD 

WFG1 HH_CF:HH_RAND + + + 
HH_CF:AMALGAM + + + 
HH_RAND:AMALGAM + + + 

WFG2 HH_CF:HH_RAND + + + 
HH_CF:AMALGAM + + + 
HH_RAND: AMALGAM + - + 

WFG3 HH_CF:HH_RAND + + ~ 
HH_CF:AMALGAM + - + 
HH_RAND: AMALGAM + - + 

WFG4 HH_CF:HH_RAND + + + 
HH_CF:AMALGAM + - + 
HH_RAND:AMALGAM + - + 

WFG5 HH_CF:HH_RAND + + ~ 
HH_CF:AMALGAM + + + 
HH_RAND:AMALGAM + ~ + 

WFG6 HH_CF:HH_RAND + + ~ 
HH_CF:AMALGAM + + + 
HH_RAND:AMALGAM + + + 

WFG7 HH_CF:HH_RAND + + ~ 
HH_CF:AMALGAM + + + 
HH_RAND:AMALGAM + + + 

WFG8 HH_CF:HH_RAND + + ~ 
HH_CF:AMALGAM + - + 
HH_RAND:AMALGAM + - + 

WFG9 HH_CF:HH_RAND + + + 
HH_CF:AMALGAM - - - 
HH_RAND:AMALGAM - - - 

 
Table 5.5: The t-test results of  HH_CF,HH_RAND and AMALGAM  on the WFG test problems 
with respect to the hypervolume (SSC),  the generational distance(GD) and the inverted 
generational distance (IGD). 
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It can be concluded that all the above results demonstrate the effectiveness 

of HH_CF in terms of its ability to intelligently adapt to calling combinations of low 

level heuristics and outperforming other hyper-heuristics for multi-objective 

optimisation (HH_RAND and AMALGAM) for solving these kind of problems. 

5.4 Summary and Remarks 
 

 This chapter presented an online selection choice function based hyper-

heuristic for multi-objective optimisation (HHMO_CF) (or HH_CF for short) 

employing  All-Moves as an acceptance strategy. This is meaning that we accept 

the output of each low level heuristic whether it improves the quality of the 

solution or not. Four performance metrics (Algorithm effort (AE), Ratio of non-

dominated individuals (RNI), Size of space covered (SSC) and Uniform distribution 

of a non-dominated population (UD)) act as an online learning mechanism to 

provide knowledge of the problem domain to the high level strategy. 

 

We have conducted a number of experiments to analyse HH_CF and compared 

its performance to the low level heuristics (NSGAII, SPEA2 and MOGA), when 

used in isolation over the nine WFG test functions which we utilise as our 

benchmark instances. We have also conducted a number of experiments to 

examine the performance of our proposed HH_CF, comparing with two multi-

objective hyper-heuristics; a random hyper-heuristics (HH_RAND) and the 

adaptive multi-method search AMALGAM over the same benchmark instances.   

 

The experimental results shows that the choice function all-moves based 

hyper-heuristic can benefit from the strengths of the low level heuristics. 

Moreover, it has the capability to intelligently adapt to calling combinations of low 

level heuristics.  Our hyper-heuristic performs well in terms of the distribution of 

non-dominated individuals along the POF and obtains competitive results in terms 

of converging towards the POF. However, it performs poorly with respect to the 

number of non-dominated solutions in the population. Another acceptance 

strategy instead of All-Moves can be employed to avoid this and improve the 

quality of solutions. This is investigated in Chapters 6 and 7. 



Chapter 5:  A Heuristic Selection Using Deterministic Move Acceptance Strategy  

 

118 | P a g e   
 

Figure 5.11: Pareto optimal front and 50% attainment surfaces for AMALGAM, HH_RAND and HH_CF after 25,000 evaluation functions on the WFG1-WFG6 test 
functions. 
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Figure 5.12: Pareto optimal front and 50% attainment surfaces for AMALGAM, HH_RAND 
and HH_CF after 25,000 evaluation functions on the WFG7-WFG9 test functions. 
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6 A Heuristic Selection Using Great Deluge as a 

Non-Deterministic Move Acceptance Strategy 
 

In the previous chapter, we presented a choice function heuristic 

selection combined with All-Moves as an acceptance strategy for multi-

objective optimisation. Our multi-objective choice function based hyper-

heuristic used the WFG test suit as our benchmark instances. It showed good 

performance and produces good quality solutions in terms of the diversity and 

convergence towards the POF. As All-Moves accepts all solutions of each low 

level heuristic, whether it improves the quality of the solution or not, the 

choice function all-moves based hyper-heuristic fails to avoid the MOGA 

weakness by accepting solutions with poor quality in terms of the number of 

non-dominated solutions.  To overcome this, we propose to use another move 

acceptance strategy instead of All-Moves that accepts worsening moves within 

a limited degree and help improve the quality of the solutions. This chapter 

investigates the performance of the choice function based hyper-heuristic 

when combining great deluge (GDA) (Dueck, 1993) as an acceptance criteria. 

We also investigate the sensitivity of our choice function based hyper-heuristic 

using different parameter settings for the great deluge algorithm.  

 

6.1 The Great Deluge Algorithm as a Move Acceptance 

Criteria 
 

In the scientific literature, there are many studies that investigate GDA 

and its variants in tackling various optimisation problems.  However, the 

majority of them are applied to optimisation problems with a single-objective. 

Petrovic et al. (2007) proposed a case based reasoning methodology with 

GDA for solving examination timetabling problems. In Bykov (2003) GDA is 

applied to thirteen benchmark problems for examination timetabling. The 

experimental result shows that GDA yields the best result for the majority of 

the problems when compared to a time predefined simulated annealing 

approach.  A new hybridised method based on a genetic algorithm and GDA is 

proposed in Al-Milli (2010). The approach tackles course timetabling 

problems, producing good quality solutions for standard benchmark problems. 

In Scott and Geldenhuysys (2000) the performance of a GDA was compared 

to tabu search (TS) for graph colouring.  The results show that GDA was able 
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to obtain better colourings, particularly for large graphs in shorter times. GDA 

was applied to the travelling salesman problem (TSP) in Telfar (1995). In 

Dhouib (2000), a multi start great deluge approach was proposed to optimise 

two continuous engineering design problems. The simulation results show that 

this approach performs better than SA and a genetic algorithm. McMullan and 

McCollum (2007) proposed an extended version of GDA using a reheating 

(relevelling) technique. This GDA variant was applied to a dynamic job 

scheduling problem, producing better results in most cases when compared to 

SA. Another extended version of GDA was proposed by Baykasoglu et al. 

(2011). This method was applied to two problems; industrial process control 

and a simulation model of a job shop, yielding promising results.  Nourelfath 

et al. (2007) presented a hybrid approach combining GDA and ant colony 

optimisation. This approach was applied to the discrete facility layout problem 

(FLP) and tested on quadratic assignment problem (QAP) benchmarks. The 

experimental results indicate that the hybrid algorithm outperforms many 

other meta-heuristics.  Nahas et al. (2010) proposed another version of the 

GDA called the Iterated Great Deluge (IDA) to solve the dynamic facility 

layout problem. The method produces competitive results. An extension to the 

GDA was proposed by Burke and Bykov (2006). This approach, called Flex-

Deluge, introduces a flexibility coefficient that controls the move acceptance 

and is. This GDA variant performed well for solving exam timetabling 

problems. Another variant of GDA combined with evolutionary operators was 

proposed by Landa-Silva and Obit (2009). GDA utilises a non-linear rate of 

change for the threshold. This hybrid evolutionary approach, applied to a 

university course timetabling problem, performed better for solving four out of 

eleven instances.  Pramodh and Ravi (2007) presented four variants of GDA 

on three different benchmarks from banks for predicting bankruptcy. 

 

The GDA is not only employed as a meta-heuristic to solve optimisation 

problems. It is also used in many hyper-heuristic approaches as an 

acceptance move strategy. Özcan et al. (2010) shows a reinforcement 

learning great deluge hyper-heuristics and reinforcement learning late 

acceptance are promising when applied to examination timetabling, and 

produced good quality solutions when compared to some other approaches in 

the literature. Kendall and Mohamad (2004) presented a variant of a GDA 

based hyper-heuristics. It was applied to channel assignment benchmarks. 

The experimental results show simple random-great deluge produced good 



Chapter 6:  A Heuristic Selection Using Non-Deterministic Move 

Acceptance Strategy (Great Deluge Algorithm) 

 

122 | P a g e  

  

results when compared to a constructive heuristic and a genetic algorithm. In 

addition, a variant of the GDA hyper-heuristic approach including flex deluge 

(FD), non-linear (NLGD) and extended great deluge (EGD) is proposed in Sin 

and Kham (2012). These approaches were applied to large scale and highly 

constrained timetabling problems and tested on exam timetabling benchmark 

problems. The experimental results demonstrate that NLGD produced the best 

results compared to other approaches in the literature. In Gibbs et al. (2011) 

the performance of different hyper-heuristics are compared with different 

components emphasising the influence of learning heuristic selection methods 

for solving a sports scheduling problem. It have been shown that the 

proposed approach is slightly better than the other approaches that use 

choice function as heuristic selection and great deluge algorithm as an 

acceptance  criteria for solving a sports scheduling problem. 

 

An important observation is that all the above GDA studies deal with 

single-objective optimisation problems. However, there is only one study that 

has proposed the GDA for multi-objective optimisation (Petrovic and Bykov, 

2003). This method is based on a trajectory that guides the search dynamics 

by changing the criteria weights of the cost function values. This method was 

applied to a set of real-world timetabling problems, producing high quality 

solutions. We decide to employ GDA as a move acceptance component in our 

multi-objective hyper-heuristics choice function as GDA is simple and depends 

on fewer parameters (Petrovic et al, 2007). Moreover, it was successful with 

single-objective optimisation (Kendall and Mohamad, 2004). And no work has 

been reported in the literature that utilises the GDA as a move acceptance 

component within a hyper-heuristic framework for multi-objective 

optimisation. Details about the great deluge algorithm are formally discussed 

in Section 2.2.6.  GDA, as move acceptance strategy, requires computation of 

the change in the value of a single objective at each step and so the D 

performance metric (Zitzler, 1999) is proposed for its applicability to multi-

objective optimisation problems. 

6.2 The Great Deluge and D Metric  
 

In the context of move acceptance criterion, the quality measure of the 

current solution and the candidate solution is essential in order to make a 

decision regarding an acceptance decision. For the single-objective 
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optimisation problem, fitness can be used. However, this is not applicable in 

multi-objective optimisation. In multi-objective problems, the output is a set 

of solutions (a non-dominated set). We propose the use of the D metric 

(Zitzler, 1999) as a way of comparing two non-dominated sets with respect to 

the objective space. In this thesis, we use D metric, integrating into move 

acceptance criterion, particularly GDA, in order to convert multi-objective 

optimisation to single-objective optimisation without definition of criteria 

weights. This is similar to the concept that is used in indicator-based multi-

objective optimisers (e.g. (Auger et al.,2012; Wang et al., 2013; Bader and 

Zitzler, 2011)), where a multi-objective problem is converted to a single-

objective problem by optimising the quality indicator instead of optimising a 

set of objective functions simultaneously. In an indicator-based evolutionary 

algorithm, such as ESP (Huband et al., 2003), SMS-EMOA (Beume et al., 

2007), the hypervoulme is integrated into environmental selection. In our 

multi-objective choice function hyper-heuristic, the D metric is integrated into 

the move acceptance strategy. Our goal is to maximise the underlying D 

metric as follows. 

ܮܧܸܧܮ                                            ൌ ǡܣሺܦ ǡܤሺܦ  ࢌ࢏   ሻܤ ሻܣ ൐ ൌ ܣ   ࢔ࢋࢎ࢚                                         ܮܧܸܧܮ  ൌ ܮܧܸܧܮ                                                    ܤ  ൅ ܮܧܸܧܮ   ܷܲ 

 (6.1) 

 

 

A is a non-dominated front which represents an initial solution and B is 

is a non-dominated front which represents a candidate solution from the 

neighbourhood. The water level is assigned initially to ܦሺܣǡ  ሻǤ Note that weܤ

are always looking to get a higher value (maximise) of ܦሺܤǡ  ሻ in order toܣ

accept the candidate solution B, so the condition ܦሺܤǡ ሻܣ  ൐ ǡܣሺܦ  ǡܤሺܦ ሻ orܤ ሻܣ  ൐  should be valid (see subsection 2.1.9). In the acceptance ܮܧܸܧܮ 

case, B is accepted and the water level is increased linearly according to a 

predefined speed rate (UP) which is usually a small fraction greater than 0 

less than 0.03 (Scott and Geldenhuysys, 2000). 
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6.3 Choice Function Great Deluge for Selecting Low 

Level Meta- heuristics (HHMO_CF_GDA)  
 

In this section, we propose a multi-objective choice function based 

hyper-heuristic combining it with great deluge as a non-deterministic 

acceptance strategy (HHMO_CF_GDA).  We use the same multi-objective 

hyper-heuristic framework that we proposed in Chapter 4 including the 

ranking scheme and learning mechanism. Three well-known (as previously) 

multi-objective evolutionary algorithms (NSGAII, SPEA2, and MOGA), act as 

the low level heuristics.  The pseudo code of the proposed HHMO_CF_GDA for 

multi-objective optimisation is shown in algorithm 11.  

 

 

Initially, a greedy algorithm is applied to determine the best low level 

heuristic h to be selected for the first iteration (steps 2-6). All low level 

heuristics H are executed (step 3). Then, the low level heuristics are ranked 

based on the ranking scheme using Equation 4.1 (step 4) and their choice 

function values are computed using Equation 4.4 (step 5). The low level 

heuristic h with the largest choice function value CF(h) is selected to be 

applied at the next iteration and it produces the non-dominated front A (a 

current solution) (steps 6 & 7). Then, for all low level heuristics H, the ranking 

mechanism is updated (step 9). The choice function values are also computed 

and updated (step 10). According to the updated choice function values, the 

Algorithm 11: Multi-objective Choice Function Great Deluge based Hyper-
heuristic 
 1: procedure HHMO_CF_GDA ሺܪሻ ܪ ݏܽ݁ݎ݄݁ݓ  is a set of the low level heuristics 
 2:  Initialisation   
 3:  Run ݄ǡ ݄ ׊ א  ܪ
 4:  Rank   ݄ǡ ݄ ׊ א   based on  the ranking scheme ܪ
 5:  Get  ܨܥሺ݄ሻǡ ݄ ׊ א    ܪ
 6:  Select ݄ with the largest ܨܥሺ݄ሻ as an initial heuristic   
 7:  Execute the selected  ݄ and produce a front ܣ           
 8: repeat 
 9:    Update the rank of  ݄ǡ א ݄ ׊  based on the ranking scheme ܪ 
10:   Update ܨܥሺ݄ሻǡ א ݄ ׊  ܪ 

11:   Select ݄ with the largest ܨܥሺ݄ሻǡ א ݄ ׊   ܪ 
12:   Execute the selected  ݄ and produce a front ܤ  
ܮܧܸܧܮ   :13 ൌ ǡܣሺܦ  ሻܤ
14:   If ܦሺܤǡ ሻܣ  ൐     ܮܧܸܧܮ 
ܣ      :15 ൌ  ܤ 
ܮܧܸܧܮ      :16 ൌ ܮܧܸܧܮ ൅ ܷܲ    
17: until (termination criteria are satisfied) 
18: end procedure 
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low level heuristic h with the largest choice function value CF(h) is executed 

and it produces the non-dominated front B (a candidate solution) (steps 11 &  

12). In steps 13-15, the acceptance procedure GDA is applied. As we are 

aiming to maximise D(B,A), the condition in (step 14) should be valid in order 

to accept the candidate front B (step 15).  In the case of acceptance, the 

water level is increased linearly based on a predefined rain speed rate (UP).  

This process is repeated until the stopping condition is met which is a fixed 

number of iterations (steps 8-17). Note that the greedy algorithm is applied 

only once at the beginning of the search, in order to determine which low 

level heuristic to apply first. Then, only one low level heuristic is selected at 

each iteration. 

 

6.4 Performance Comparison of Choice Function Great 

Deluge Hyper-heuristics 
 

 As a preliminary framework, we combine great deluge as a move 

acceptance with simple random as a heuristic selection method. A low level 

heuristic was selected randomly at each iteration in the search process. 

According to the results that reported in Chapter 5, we believe that a simple 

random selection strategy is not that successful as it does not retain any 

knowledge about the performance of low level heuristics on which to base 

future decisions. To examine our assumption, we conduct an initial 

experiment to compare the performance of great deluge when combined with 

simple random and a choice function as a selection method under the multi-

objective hyper-heuristic framework. For the choice function great deluge 

based hyper-heuristic, we use the same multi-objective hyper-heuristic 

framework that presented in Chapter 4, including the ranking scheme and 

learning mechanism, and the same experimental settings that were used in 

Section 5.2.2.  The rain speed parameter (UP) is initially assigned to 0.03 as 

recommended in the literature (Scott and Geldenhuysys, 2000).  As we 

expected the comparison revealed that choice function great deluge based 

hyper-heuristic outperforms the simple random great deluge based hyper-

heuristic on the WFG1 benchmark with respect to the three performance 

metrics; RNI, SSC and UD (see Table 6.1).  The choice function great deluge 

based hyper-heuristic also performs well when compared to the pervious 
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hyper-heuristic method, choice function all-moves, that presented in Chapter 

5.  

 

 

 

 

 

 

 

 

Table 6.1: The performance of the choice function great deluge based hyper-heuristic 
(CF-GDA), choice function all-moves hyper-heuristic (CF-AM) and the simple random 
great deluge  based hyper-heuristic (SR-GDA) with respect to the metrics of ratio of 
non-dominated individuals (RNI), size of space covered (SSC), and uniform distribution 
(UD) of non-dominated population onWFG1. 

 

We note from the Table 6.1 that both hyper-heuristics that have utilised 

a choice function as a heuristic selection method outperforms the hyper-

heuristic that used a random selection method.  Unlike the random selection 

strategy, the choice function considers the performances of low level 

heuristics in order to select a suitable heuristic as the search progresses. The 

learning mechanism is essential in our multi-objective hyper-heuristic 

framework. It plays a large role in guiding the high level strategy (selection 

method) and deciding which low level heuristic to call at each decision point.   

 6.4.1 Tuning of Rain Speed Parameter (UP) 

 

One of the reasons for choosing the great deluge algorithm (GDA) as a 

move acceptance component within our multi-objective hyper-heuristic 

framework is due to its simplicity and dependency on fewer parameters 

(Petrovic et al, 2007). In fact, GDA has one parameter which is the rain speed 

(UP). In the literature, it recommended to set the UP to 0.03 or less (Scott 

and Geldenhuysys, 2000). However, the choice of the rain speed value is not 

trivial, bearing in mind that the suggestion for UP=0.03 was for single-

objective problems. Coming up with the right value requires domain 

knowledge, such as, the target upper limit (for our case) and a specific 

number of moves that we conduct during the search until we reach that target 

level. The rain speed (UP) was fixed at 0.03 during the initial experiments. 

Metric Methods AVG MIN MAX STD 

RNI 
CF-GDA 0.9480 0.1600 1.0000 0.1894 

CF-AM 0.8800 0.2800 1.0000 0.2539 
SR-GDA 0.6423 0.0300 1.0000 0.4124 

SSC 
CF-GDA 12.2380 8.3703 12.5154 0.7870 

CF-AM 12.1386 9.0338 12.5130 0.9101 
SR-GDA 8.2421 5.3700 8.4240 2.5423 

UD 
CF-GDA 0.4066 0.2083 0.8000 0.0988 

CF-AM 0.4428 0.3490 0.6945 0.1007 
SR-GDA 0.2937 0.2501 0.3900 0.2834 
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From our observation during the experiments, many questions have arisen 

regarding UP. What is the best value for this parameter? Does it depend on 

the given problem? How does changing UP influence the quality of solutions? 

How about if we narrow/widen the level boundary? Will the solution be 

improved? To answer these questions, we conducted a number of 

experiments to investigate the effectiveness of the speed rain parameter on 

the quality of solutions. We assigned different rain speed parameter values 

comparing to our default parameter of 0.03. These settings include 0.3 as a 

large value and 0.0003 as a small value. Please note the 0.3 value does not 

come with any recommendation from the literature. However, we set UP=0.3 

in order to examine the effectiveness of rain speed parameter and how this 

could affect the acceptance process and the quality of solutions. The water 

level is increased linearly according to a predefined rain speed rate.  

 

 6.4.2 Experimental Settings and Performance Evaluation 

Criteria 

 

We use the same experimental settings that we presented in Section 

5.2.2. Nine test problems for the WFG suite (WFG1-WFG9) have 24 real 

parameters including four position parameter, 20 distance parameters and 

two objectives. HHMO_CF_GDA was terminated after 6,250 generations. That 

is, HHMO_CF_GDA runs for a total of 25 iterations. In each iteration, one low 

level heuristic is applied and is executed for 250 generations, with a 

population size equal to 100. The secondary population of SPEA2 is set to 

100. For the WFG problems, 30 independent trials were run for each 

algorithm with a different random seed.  For GDA, the rain speed (UP) is 

assigned to three values (0.3, 0.03 and 0.0003). HH_CF_GDA was 

implemented with the same common sub-functions using Microsoft Visual 

C++ 2008 on an Intel Core2 Duo 3GHz\2G\250G computer. 

 

Three performance metrics are used to assess the quality of 

approximation sets in different aspects including ratio of non-dominated 

individuals (RNI), the hyper-volume (SSC), and Uniform distribution of non-

dominated individuals (UD). For all performance metrics, a higher value 

indicates a better performance.  In addition, t-test is used as a statistical test 

for pairwise mean performance comparison of three version on 
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HHMO_CF_GDA using different UP values (0.3, 0.03 and 0.0003). The null 

hypothesis is as follows: 

 ൜   ݏ݊ܽ݁݉ ݐ݊݁ݎ݂݂݁݅݀ ݁ݒ݄ܽ  ݏ݄݉ݐ݅ݎ݋݈݃ܽ ݂݋ ݎ݅ܽ݌ ܽ ݂݋ ݁ܿ݊ܽ݉ݎ݋݂ݎ݁݌ ݄݁ݐ ଵܪ ݏ݊ܽ݁݉ ݁݉ܽݏ ݄݁ݐ ݁ݒ݄ܽ   ݏ݄݉ݐ݅ݎ݋݈݃ܽ ݂݋ ݎ݅ܽ݌ ܽ ݂݋ ݁ܿ݊ܽ݉ݎ݋݂ݎ݁݌ ݄݁ݐ ଴ܪ
 
 

The following notation is used while reporting the results. Given a pair of 

algorithms, ܲ and ܳ (denoted as ܲǣ ܳ), The + (Ѹ) indicates that the algorithm ܲ performs better/worse than ܳ on average with respect to the given metric 

and this performance difference is statistically significant within a confidence 

interval of 95%. The ± (ѹ) indicates that ܲ performs slightly better (worse) 

than ܳ without any statistically significance. The n/a means the t-test is not 

applicable since the performances of both algorithms are completely equal. 

6.4.3 Experimental Results and Discussion  

 

The average, minimum, maximum and standard deviation values pairs 

for HHMO_CF_GDA using different rain speed (UP) values with respect to RNI, 

SSC and UD over 30 trials are provided in Table 6.2. The pairwise mean 

performance comparisons (using t-test) of HHMO_CF_GDA using different UP 

settings are provided in Table 6.3. We refer to the HHMO_CF_GDA using the 

UP values (0.3, 0.03 and 0.0003) as GDA1, GDA2 and GDA3 respectively.  

 
HHMO_CF_GDA with the smallest UP value (GDA3) performs the best. 

We note from the Tables 6.2 and 6.3 that the pairwise performance 

differences of GDAs are statistically significant for all benchmark functions, 

except for the metric RNI where GDA1, GDA2 and GDA3 perform the same.  

GDA1 and GDA2 perform significantly similar on average with respect to the  

measure of SSC and UD. With respect to the measure of SSC, GDA3 is 

statistically significant better than GDA1 and GDA2 for all benchmark 

instances. GDA3 performs statistically better than the others in terms of 

distribution along the POF (UD) in all test instances except WFG1 and WFG2. 

 

 The results are illustrated in Figures 6.1, 6.2 and 6.3. We can see from 

Figure 6.1, the water level when the rain speed set to UP=0.03 has been 

increased more quickly compared when the rain speed set to UP=0.0003. The 

rapid growth of the water level freezes the boundary condition in the early 

stages of the search as is the case when UP=0.3 (see Figure 6.4). This leads  
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WFG Metric UP Method AVG MIN MAX STD 

1 

RNI 
0.3 GDA1 0.9390 0.1100 1.0000 0.1441 

0.003 GDA2 0.9480 0.1600 1.0000 0.1894 
0.0003 GDA3 0.9357 0.3100 1.0000 0.1821 

SSC 
0.3 GDA1 11.6170 7.9112 12.0140 0.6905 

0.003 GDA2 12.2380 8.3703 12.5154 0.7870 
0.0003 GDA3 12.9388 8.2543 12.9966 1.2517 

UD 
0.3 GDA1 0.3561 0.2022 0.5841 0.0753 
0.003 GDA2 0.4066 0.2083 0.8000 0.0988 
0.0003 GDA3 0.3941 0.2047 0.5952 0.0698 

2 

RNI 
0.3 GDA1 1.0000 1.0000 1.0000 0.0000 

0.003 GDA2 1.0000 1.0000 1.0000 0.0000 

0.0003 GDA3 1.0000 1.0000 1.0000 0.0000 

SSC 
0.3 GDA1 10.8023 10.5912 11.3981 0.0045 

0.003 GDA2 10.8310 10.6391 12.4274 0.3034 
0.0003 GDA3 11.8148 10.7433 11.8258 0.0146 

UD 
0.3 GDA1 0.3710 0.3497 0.3805 0.0057 

0.003 GDA2 0.3756 0.3550 0.4187 0.0144 
0.0003 GDA3 0.3729 0.3609 0.3862 0.0064 

3 

RNI 
0.3 GDA1 1.0000 1.0000 1.0000 0.0000 

0.003 GDA2 1.0000 1.0000 1.0000 0.0000 

0.0003 GDA3 1.0000 1.0000 1.0000 0.0000 

SSC 
0.3 GDA1 11.7543 11.8356 11.9196 0.0054 

0.003 GDA2 11.8930 11.8620 11.9201 0.0151 
0.0003 GDA3 11.9197 11.9094 11.9296 0.0064 

UD 
0.3 GDA1 0.4190 0.3788 0.4578 0.0133 
0.003 GDA2 0.4224 0.3874 0.4575 0.0129 
0.0003 GDA3 0.4252 0.4059 0.4580 0.0120 

4 

RNI 
0.3 GDA1 1.0000 1.0000 1.0000 0.0000 

0.003 GDA2 1.0000 1.0000 1.0000 0.0000 

0.0003 GDA3 1.0000 1.0000 1.0000 0.0000 

SSC 
0.3 GDA1 9.5921 9.5234 9.6100 0.0032 

0.003 GDA2 9.6181 9.5821 9.6376 0.0146 
0.0003 GDA3 9.6642 9.6210 9.6650 0.0100 

UD 
0.3 GDA1 0.4101 0.3510 0.4163 0.0122 
0.003 GDA2 0.4115 0.3710 0.4415 0.0157 
0.0003 GDA3 0.4145 0.3879 0.4423 0.0112 

5 

RNI 
0.3 GDA1 1.0000 1.0000 1.0000 0.0000 

0.003 GDA2 1.0000 1.0000 1.0000 0.0000 

0.0003 GDA3 1.0000 1.0000 1.0000 0.0000 

SSC 
0.3 GDA1 9.2682 9.0977 9.2866 0.0094 
0.003 GDA2 9.2771 9.2607 9.2928 0.0084 

0.0003 GDA3 9.2964 9.1526 9.2984 0.4023 

UD 
0.3 GDA1 0.4083 0.3683 0.4399 0.0041 

0.003 GDA2 0.4110 0.3772 0.4481 0.0235 
0.0003 GDA3 0.4395 0.4238 0.4579 0.0086 

6 

RNI 
0.3 GDA1 1.0000 1.0000 1.0000 0.0000 

0.003 GDA2 1.0000 1.0000 1.0000 0.0000 

0.0003 GDA3 1.0000 1.0000 1.0000 0.0000 

SSC 
0.3 GDA1 9.3394 9.2008 9.4683 0.0543 

0.003 GDA2 9.3421 9.2102 9.4715 0.0581 
0.0003 GDA3 9.3745 9.2346 9.4787 0.0628 

UD 
0.3 GDA1 0.4108 0.3711 0.4255 0.0045 

0.003 GDA2 0.4115 0.3749 0.4287 0.0129 
0.0003 GDA3 0.4128 0.3992 0.4308 0.0083 

7 

RNI 
0.3 GDA1 1.0000 1.0000 1.0000 0.0000 

0.003 GDA2 1.0000 1.0000 1.0000 0.0000 

0.0003 GDA3 1.0000 1.0000 1.0000 0.0000 

SSC 
0.3 GDA1 9.6391 9.5754 9.6522 0.0154 
0.003 GDA2 9.6402 9.5869 9.6571 0.0187 
0.0003 GDA3 9.6650 9.6596 9.6700 0.0028 

UD 
0.3 GDA1 0.4011 0.3630 0.4321 0.0144 

0.003 GDA2 0.4038 0.3660 0.4345 0.0162 
0.0003 GDA3 0.4085 0.3792 0.4565 0.0151 
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Table 6.2: The average performance of HHMO_CF_GDA using a different UP settings 
(0.3, 0.03, 0.0003) donated as GDA1, GDA2 and GDA3 on the WFG test problems with 

respect to the ratio of non-dominated individuals (RNI), the hypervolume (SSC) and 
the uniform distribution (UD). 

 
Problem Methods Metrics 

RNI SSC UD 
WFG1 GDA1:GDA2  + െ െ 

GDA1:GDA3 ±  െ െ 

GDA2:GDA3 െ െ + 

WFG2 GDA1:GDA2 n/a െ െ 

GDA1:GDA3 n/a െ ט 

GDA2:GDA3 n.a െ ± 

WFG3 GDA1:GDA2 n/a െ െ 

GDA1:GDA3 n/a െ െ 

GDA2:GDA3 n.a െ െ 

WFG4 GDA1:GDA2 n/a െ ט 

GDA1:GDA3 n/a െ െ 

GDA2:GDA3 n.a െ െ 

WFG5 GDA1:GDA2 n/a െ ט 

GDA1:GDA3 n/a െ െ 

GDA2:GDA3 n.a െ െ 

WFG6 GDA1:GDA2 n/a ט ט 

GDA1:GDA3 n/a െ - 

GDA2:GDA3 n.a െ ט 

WFG7 GDA1:GDA2 n/a ט ט 

GDA1:GDA3 n/a െ ט 

GDA2:GDA3 n.a െ ט 

WFG8 GDA1:GDA2 n/a ט ט 

GDA1:GDA3 n/a െ ט 

GDA2:GDA3 n.a െ ט 

WFG9 GDA1:GDA2 ט ט ט 

GDA1:GDA3 ט െ െ 

GDA2:GDA3 ט െ െ 

 

Table 6.3: The t-test results of  HHMO_CF_GDA using a different UP settings (0.3, 0.03, 
0.0003) donated as GDA1, GDA2 and GDA3 on the WFG test problems with respect to 
the ratio of non-dominated individuals (RNI), the hypervolume (SSC) and the uniform 
distribution (UD). 

 
 

WFG Metric UP Method AVG MIN MAX STD 

8 

RNI 
0.3 GDA1 1.0000 1.0000 1.0000 0.0000 

0.003 GDA2 1.0000 1.0000 1.0000 0.0000 

0.0003 GDA3 1.0000 1.0000 1.0000 0.0000 

SSC 
0.3 GDA1 8.5643 8.4132 8.6588 0.0132 
0.003 GDA2 8.5783 8.4534 8.6667 0.0150 
0.0003 GDA3 8.7279 8.6708 8.7389 0.0120 

UD 
0.3 GDA1 0.4210 0.3920 0.4599 0.0050 

0.003 GDA2 0.4228 0.4040 0.4610 0.0150 
0.0003 GDA3 0.4248 0.3948 0.5933 0.0341 

9 

RNI 
0.3 GDA1 0.9801 0.7500 1.0000 0.0073 

0.003 GDA2 0.9866 0.7600 1.0000 0.0518 
0.0003 GDA3 0.9893 0.8000 1.0000 0..4193 

SSC 
0.3 GDA1 8.7299 8.5498 9.4277 0.2487 

0.003 GDA2 8.7313 8.5554 9.4465 0.2693 
0.0003 GDA3 8.7689 8.5789 9.4346 0.3054 

UD 
0.3 GDA1 0.4021 0.3611 0.4559 0.0099 

0.003 GDA2 0.4088 0.3657 0.4606 0.0210 
0.0003 GDA3 0.4111 0.3661 0.6141 0.4442 
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to accept the good moves in few number of decision points in the beginning of 

the search, while all other moves are rejected for the rest of the search. 

However, the slow growth of the water level provides a wider space in the 

search to accept more moves as the case when UP=0.0003. This helps to 

improve solutions by escaping from the local optimum. From Figure 6.1, we 

note that for both settings of UP (0.03 and 0.0003) in WFG1, there is no 

effect on the acceptance criteria, i.e. for all decision points, all moves are 

accepted since the boundary limit is under the candidate solutions level.  

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

Figure 6.1: The performance of D metric (Green line) and Level (Blue line) during the 
search across 25 decision points for HHMO CF GDA with different sizes of UP (0.03 and 
0.0003) on the WFG test suite – Continue. 
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Figure 6.1: Continue- the performance of D metric (Green line) and Level (Blue line) 
during the search across 25 decision points for HHMO CF GDA with different sizes of UP 

(0.03 and 0.0003) on the WFG test suite. 
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Figure 6.2: The performance HHMO_CF_GDA with different UP sizes (0.03 and 0.0003) 
during the search across 25 decision points with respect to the size of space covered 
metric (SSC) during on the WFG test suite. 

 
From Figures 6.2 and 6.3, HHMO_CF_GDA always performs better 

during the search with respect SSC and UD metrics when the UP is small for  

all WFG problems except  WFG1 and WFG2. In general, the smaller rain speed 

value allows for the acceptance of more moves with worse solution quality. 

This helps escape from the local optimum and produce better solution. This is 

clear in Figure 6.4. The HHMO_CF_GDA with the large UP value (0.3) has the 

worst performance in WFG4. There is no change in the values of the SSC and 

UD metrics which means no moves were accepted during the search. Moves 

acceptance has been frozen in the 6th iterations because the level rose too 

quickly. While in the 0.0003 case, the level rose slightly which gives the GDA 

more boundary space to accept more moves.  So, HHMO_CF_GDA with the 
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Figure 6.3: The performance HHMO_CF_GDA with different UP sizes (0.03 and 0.0003) 
during the search across 25 decision points with respect to the uniform distribution 
metric (UD) on the WFG test suite. 

 

 

 

 
 
Figure 6.4: The performance HHMO_CF_GDA with different UP sizes ( 0.3 ,0.03 and 
0.0003) during the search across 25 decision points with respect to the size of space 
covered metric (SSC) and the uniform distribution metric (UD) on WFG4. 
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smallest UP value can produce better solutions. The reasons behind this are 

the level boundary increased quickly with the large UP value which leads to 

reject many moves up to the level. 

The average heuristic utilisation rate, which indicates how frequently a 

given low level heuristic is chosen and applied during the search process 

across all runs on the WFG problems for the HHMO_CF_GDA with UP values 

0.03 and 0.0003, is computed and illustrated in Figure 6.5. Although the 

heuristic utilisation rate addresses the selection method (choice function) in 

HHMO_CF_GDA, it can also give some insights about how many moves can be 

accepted or rejected based on GDA as an acceptance criteria with different UP 

settings. It is clear from Figure 6.5 that acceptance moves mainly happens 

mostly when UP=0.0003, and the most rejected moves happen when 

UP=0.03. This demonstrates that the smaller rain speed value provides a 

wider boundary space to accept more moves. In WFG1, all moves have been 

accepted for both rain speed values. This supports the results of Figure 6.1, 

where the acceptance criteria does not affect the move acceptance because of 

the wide boundary space. From the above observations, we conclude that 

GDA with a smaller rain speed value produces better solutions for the WFG 

test problems. 

 

6.5 Summary and Remarks 
 

We have presented a selection choice function based hyper-heuristic for 

multi-objective optimisation utilising a great deluge algorithm as a non-

deterministic move acceptance strategy (HHMO_CF_GDA). The hyper-

heuristic proposed in this chapter differs from the hyper-heuristic that was 

proposed in Chapter 5 in terms of a move acceptance criteria.  Although both 

hyper-heuristics used the same multi-objective hyper-heuristic framework 

presented in Chapter 4,   choice function great deluge based hyper-heuristic 

employed a great deluge as a move acceptance method instead of all-move 

acceptance method which was employed in choice function all-moves based 

hyper-heuristic (HHMO_CF_AM).  The motivation for choosing GDA as an 

acceptance criteria is that it is simple and does not depend on many 

parameters, this requiring less effort for parameter tuning. More importantly, 

encouraging results have been reported in the literature for single-objective 
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optimisation, but there are only a few studies on their application to multi-

objective optimisation (e.g., (Petrovic and Bykov, 2003)).  

 

In the context of move acceptance criterion, the quality measure of the 

current solution and the candidate solution is essential in order to make a 

decision regarding an acceptance decision. For the single-objective 

optimisation problem, fitness can be used. However, this is not applicable in 

multi-objective optimisation. In multi-objective problems, the output is a set 

of solutions (a non-dominated set). In this thesis, for the first time, we 

propose the use of D metric (Zitzler, 1999)  integrating this into the move 

acceptance criterion, particularly GDA as a way of comparing two non-

dominated sets with respect to the objective space, in order to covert the 

multi-objective optimisation to the single optimisation without definition of 

criteria values' weights. 

 

      We conducted an initial experiment to compare the performance of the 

proposed great deluge based hyper-heuristics combining the choice function 

as a selection method and great deluge based hyper-heuristics combined with 

simple random as a selection method under the multi-objective hyper-

heuristic framework. The choice function great deluge outperforms the simple 

random great deluge over the WFG1 benchmark with respect to the three 

performance metrics; RNI, SSC and UD. The learning mechanism is essential 

in our multi-objectives hyper-heuristic framework. It plays a large role in 

guiding the high level strategy (selection method) in deciding which low level 

heuristic to call at each decision point.  In the absence of a learning 

mechanism, our multi-objective hyper-heuristic is not that successful. 

Findings in Chapter 5 support this.  The choice function great deluge based 

hyper-heuristic outperforms the pervious hyper-heuristic method, choice 

function all-moves based hyper-heuristic. Findings in Chapter 7 will further 

confirm this. 

 

We experimented with the proposed choice function great deluge based 

hyper-heretics with different settings of the rain speed parameters (UP) to 

investigate the effectiveness of this parameter on the move acceptance. We 

assigned different rain speed parameter values; large (0.3), medium (0.03) 

and small (0.0003) to examine how these setting affect the algorithm and the  
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quality of solutions that ultimately returned. The experimental results show 

that HHMO_CF_GDA with the smallest UP value (0.0003) performs the best 

for the WFG test problems. In general, the smaller rain speed value allows for 

the acceptance of more moves that helps escape from the local optimum and 

produce better solution. 

 

    

    

    

    

  
 

Figure 6.5: The average heuristic utilisation rate for low level heuristic during the 
search in HHMO_CF_GDA with different sizes of UP (0.03 and 0.0003) on the WFG test 
suite. 
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7 A Heuristic Selection Using Late Acceptance as a 

Non-Deterministic Move Acceptance Strategy  
 

 

 
In the previous chapter, we investigated the performance of a selection 

choice function based hyper-heuristic that utilised the great deluge algorithm 

(GDA) as a non-deterministic move acceptance criterion. The D metric was 

integrated into GDA as a way of comparing two non-dominated sets in the 

objective space based on the given acceptance criteria.   In this chapter, we 

further investigate the performance of the choice function based hyper-

heuristic that combines the late acceptance strategy (LA) as a non-

deterministic move acceptance criterion. We will also conduct computational 

experiments to compare the performance of the three multi-objective choice 

function based hyper-heuristic combined with different move acceptance 

strategies including all-moves, great deluge and late acceptance that were 

presented in Chapters 5, 6 and this chapter respectively. The comparison will 

be conducted over the bi-objective and tri-objective Walking Fish Group 

(WFG) test functions.  This chapter is structured as follows. Sections 7.1 and 

7.2 introduce late acceptance as a component in a choice function based 

hyper-heuristic. In Section 7.3, a choice function late acceptance based 

hyper-heuristic for multi-objective optimisation (HHMO_CF_LA) is proposed. 

This is followed by computational experiments over bi-objective and tri-

objective WFG test function in Sections 7.4 and 7.5 respectively. Section 7.6 

concludes the chapter. 

 

7.1 Late Acceptance Strategy as Move Acceptance 

Criteria 
 

Since late acceptance (LA) is a new methodology, there are only a 

limited number of studies in literature. There are very few investigations of 

variant studies, and no multi-objective studies. In Özcan et al. (2009), the 

late acceptance strategy was combined with different heuristic selection 

methods (simple random, greedy, reinforcement learning, tabu search and 

choice function) and applied to examination timetabling problem. The 

experiments show that the random heuristic selection with late acceptance 

performs well among other combination methods. In Burke and Bykov (2012) 



Chapter 7: A Heuristic Selection Using Non-Deterministic Move Acceptance 

Strategy (Late Acceptance strategy) 

139 | P a g e  

  

an experimental comparison of LA was presented, along with other well-

known search methodologies (simulated annealing (SA), threshold accepting 

(TA) and GDA) on the travelling salesman and exam timetabling problems. 

The results show that LA is more reliable and powerful than the others. In 

Verstichel and Berghe (2009), a number of local search heuristics were 

combined with the best improving move strategy and LA was presented for 

solving the lock scheduling problem. The experimental results show that LA 

has a positive effect on the performance of the heuristics. In Abuhamdah, 

(2010) and Abuhamdah and Ayob (2010) a variant of LA using randomized 

descent algorithm (LARD) is proposed to solve university course timetabling. 

The results demonstrate that the proposed method can beat the original LA in 

many cases. In Tierney (2013) LA is applied to solve a central problem in the 

liner shipping industry. LA shows promising performance but it could not beat 

SA on the same data sets.  Yuan et al. (2013) employed LA to solve a two-

sided assembly line balancing problem with multiple constraints. The 

computational results show the effectiveness of LA to solve this kind of 

problem when compared to an integer programming model and the lower 

bounds of the problem instances.  

LA is successful for single-objective optimisation and it is simple, 

depending on few parameters. Therefore, we employ LA as a component 

within our choice function based hyper-heuristic framework for multi-objective 

optimisation. To the best of our knowledge, no multi-objective LA based 

studies have been investigated, nor has any work that utilises the LA as a 

move acceptance component within a hyper-heuristic framework for multi-

objective optimisation been reported in the literature. Details about the late 

acceptance strategy are discussed in Section 2.2.8.   

  7.2 Late Acceptance and D Metric  

 
In a similar way that the D metric was integrated into GDA (see Section 

6.2), we also integrate D metric into LA as a move acceptance strategy..  This 

is similar to the concept that was used in indicator-based multi-objective 

optimisers (e.g. (Auger et al.,2012; Wang et al., 2013; Bader and Zitzler, 

2011)),  Our goal is to maximise the underlying D metric, integrating as an 

acceptance criterion, in order to accept (or reject) a candidate solution (a 

candidate non-dominated set). 
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LA is modified to employ the D metric. The pseudo code of LA with D 

metric is shown in algorithm 12.  

 

 

For an ݅ iteration, A, B fronts are produced as an initial front and a 

candidate front respectively. The fitness array is filled by the value of ܦሺܣǡ  ሻ (step 3). Since we are aiming to accept the candidate front B, theܤ

condition ܦሺܤǡ ሻܣ  ൐ ǡܣሺܦ   ሻ should be valid (see Section 2.1.9) (step 6). Noteܤ

that we are always looking to get a higher value (maximise) of ܦሺܤǡ  ሻ inܣ

order to accept the candidate solution B. In the acceptance case, front B is 

accepted (step 7). The value of ܦሺܤǡ  ሻ is inserted in the ݂ܽ (step 8), and theܣ

value of ܦሺܣǡ  ௩ is removed from the ݂ܽ. Note the insertion andܥ ሻ orܤ

removing processes are made virtually in an ݅ iteration using Equation 2.10 

(step 4). 

 

 7.3 Choice Function Late Acceptance for Selecting 

Low Level Meta- Heuristics (HHMO_CF_LA) 

 

In this section, we propose multi-objective choice function based hyper-

heuristic combined with late acceptance as a non-deterministic acceptance 

strategy (HHMO_CF_LA).  We use the same multi-objective hyper-heuristic 

framework that was proposed in Chapter 4, including the ranking scheme and 

the learning mechanism. Three well-known multi-objective evolutionary 

algorithms (NSGAII, SPEA2, and MOGA), act as low level heuristics. The 

pseudo code of HHMO_CF_LA for multi-objective optimisation is shown in 

algorithm 13.  

 

 

 

Algorithm 12: The Late Acceptance  with D Metric  

  1: procedure LA (A,B, ݅ )  
  2:             Calculate  ܦሺܣǡ   ሻܤ
  3:             for all   ݇ ג ሼͲǡ ǥ ǡ ௙݈௔ െ ͳሽ  dol   0  ܥ௞ ൌ ǡܣሺܦ  ሻܤ
  4:                  ܸ ൌ  ௙௔݈ ݀݋݉ ݅
  5:                   Calculate  ܦሺܤǡ  ሻܣ
  6:                    if ܦሺܤǡ ሻܣ ൒ ǡܤሺܦ  ݎ݋ ௩ ܥ  ሻܣ   ൒ ǡܣሺܦ         ሻ thenܤ
  7:                              Accept candidate ܣ ൌ  ܤ 
  8:                     Insert cost value into the list  ܥ௩  ൌ ǡܤሺܦ   ሻܣ
  9:                  end if 
10:  end procedure   
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Similar to the previous two multi-objective choice function based hyper-

heuristic HHMO_CF_AM and HHMO_CF_GDA, that were proposed in Chapters 

5 and 6 respectively,  a greedy algorithm is applied at the beginning  of the 

search to determine the best low level heuristic h to be selected for the first 

iteration (steps 2-6). All low level heuristics H are executed simultaneously 

(step 3). Then, the low level heuristics are ranked, based on the ranking 

scheme using Equation 4.1 (step 4), and their choice function values are 

computed using Equation 4.4 (step 5). The low level heuristic h with the 

largest choice function value CF(h) is selected and applied at the next 

iteration and it produces the non-dominated front A (a current solution) 

(steps 6 & 7). Then, for all low level heuristics H, the ranking mechanism is 

updated (step 9). The choice function values are also computed and updated 

(step 11). According to the updated choice function values, the low level 

heuristic h with the largest choice function value CF(h) is called to apply and it 

produces the non-dominated front B (a candidate solution) (steps 12 & 13). 

In step 14, the acceptance procedure; late acceptance LA (A,B,݅) is called and 

applied using the parameters that were obtained from the search (see 

algorithm 12 ). This process is repeated until the stopping condition is met 

which is a fixed number of iterations (steps 9-17). Note the HHMO_CF_LA is 

operated in a similar manner to the HHMO_CF_GDA unless the move 

acceptance criteria that employed are different.   

Algorithm 13: Multi-objective Choice Function Late Acceptance based Hyper-
heuristic 
  1: procedure HHMO_CF_LA ሺܪሻ ܪ ݏܽ݁ݎ݄݁ݓ  is a set of the low level heuristics 
  2:  Initialisation   
  3:  Run ݄ǡ ݄ ׊ א  ܪ
  4:  Rank ݄ǡ ݄ ׊ א   based on  the ranking scheme ܪ
  5:  Get  ܨܥሺ݄ሻǡ ݄ ׊ א    ܪ
  6:  Select ݄ with the largest ܨܥሺ݄ሻ as an initial heuristic   
  7:  Execute the selected  ݄ and produce a front ܣ       
  8:  Assign the initial number of iterations ݅ ൌ  Ͳ 
  9:  repeat 
10:   Update the rank of  ݄ǡ א ݄ ׊  based on the ranking scheme ܪ 
11:   Update ܨܥሺ݄ሻǡ א ݄ ׊  ܪ 

12:   Select ݄ with the largest ܨܥሺ݄ሻǡ א ݄ ׊   ܪ 
13:   Execute the selected  ݄ and produce a front ܤ  
14:   Call the late acceptance procedure  LA (A, B, ݅ )            ٲ           ͳʹǣ ݄ܶ݁ ܿ݅ݎݐ݁ܯ ܦ ݄ݐ݅ݓ  ݁ܿ݊ܽݐ݌݁ܿܿܣ ݁ݐܽܮ  
15:  Increment the number of iterations ݅ ൌ  ݅ ൅  ͳ 

16: until (termination criteria are satisfied) 
17: end procedure 
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  7.4 Comparison of Multi-objective Hyper-heuristics- 

the Case of Bi-objective 

 

In this section, we conduct experiments over the bi-objective Walking 

Fish Group (WFG) benchmark dataset (Hunband et al., 2006) to evaluate the 

performance of our three multi-objective choice function based hyper-

heuristics for multi-objective optimisation using different move acceptance 

strategies including all-moves as a deterministic move acceptance, and the 

great deluge algorithm and late acceptance as non-deterministic move 

acceptance functions.  Experiments are also conducted to investigate the 

influence of using non-deterministic move acceptance strategies; great deluge 

algorithm and late acceptance on the performance of online learning selection 

choice function based hyper-heuristic for multi-objective optimisation. 

 

7.4.1 Performance Evaluation Criteria 

 
We used five performance metrics to measure the quality of 

approximation sets from different aspects: (i) ratio of non-dominated 

individuals (RNI) (Tan et al., 2002), (ii) hypervolume (SSC) (Zitzler and 

Thiele, 1999) (iii) uniform distribution of a non-dominated population (UD) 

(Srinivas and Deb, 1994),  (iv) generational distance (GD) (Van Veldhuizen 

and Lamont, 1998b) and (v) inverted generational distance (IGD) (Coello and 

Cruz Cortès, 2005). A higher value considering one of those performance 

metrics indicates that non-dominated solutions have a good quality, except 

for GD and IGD, where a lower value indicates that the approximation 

nondominated front is closer to the POF. 

 

We have compared the mean performance of three multi-objective 

choice function based hyper-heuristics; HHMO_CF_AM, HHMO_CF_GDA and 

HHMO_CF_LA across multiple trials with respect to the metrics across multiple 

trials. t-test is used as a statistical test for pairwise mean performance 

comparison of selection hyper-heuristics.   

7.4.2 Experimental Settings 

 
All experimental parameters are chosen according to those commonly 

used in the literature for continuous problems (see (Zitzler et al. (2000) and 
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Huband et al. (2006)). We use the same parameter settings that were used in 

Sections 5.2.2 and 6.4.2 for a fair comparison.  In the measure of SSC and D 

metric for GDA and LA, the reference points for WFG problems with ݇ objectives was set ݎ௜ ൌ ሺͲǡ ݅ כ ʹሻǡ ݅ ൌ ͳǡ Ǥ Ǥ Ǥ ǡ ݇ (Huband et al., 2006). As for 

HHMO_CF_GDA, the rain speed (UP) is set to 0.0003 based on the empirical 

experiments that are presented in Chapter 6. The length of the fitness array ௙݈௔ in HHMO_CF_LA is set to 5 as recommended in Burke and Bykov (2012). 

All methods are implemented using Microsoft Visual C++ 2008 on an Intel 

Core2 Duo 3GHz\2G\250G computer. 

 

7.4.3 Experimental Results and Discussion 

 
The average, minimum, maximum and standard deviation considering 

the performance metrics, including RNI, SSC, UD, GD and IGD for each WFG 

problem generated by each hyper-heuristic across 30 trials are provided in 

Tables 7.1 and 7.2.  From this point onward, each hyper-heuristic will be 

referred to by move acceptance method utilised within each hyper-heuristic.   

 

The pairwise mean performance comparison of different selection choice 

function based hyper-heuristics, each using a different move acceptance 

method, are provided in Table 7.3 based on t-test. The box plots of RNI, SSC, 

UD, GD and IGD values for each bi-objective WFG benchmark function using  

AM, GDA and LA are also illustrated in Figures 7.1, 7.2, 7.3, 7.4 and 7.5.  The 

performance of the choice function based hyper-heuristics are statistically 

different in the majority cases. In general, AM, GDA, LA are statistically 

different from each other (i.e. we reject the null hypothesis). In the overall, 

GDA performs the best. 

 

From Figure 7.1, we note that the selection hyper-heuristic using GDA and LA 

perform better than the one using AM on average with respect to the  

measure of ratio non-dominated solutions (RNI). The pairwise performance 

differences of GDA and LA from AM are statistically significant for all 

benchmark functions with respect to RNI, except WFG1. GDA and LA perform 

relatively similar (see Table 7.2). 
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Table 7.1: The performance of selection choice function based hyper-heuristics using different move acceptance strategies including all-moves (AM), great 
deluge algorithm (GDA) and late acceptance (LA) on the bi-objective WFG test problems with respect to the metrics;  the ratio of non-dominated individuals 
(RNI), the hypervolume (SSC), the uniform distribution (UD).   

WFG Methods RNI SSC (HV) UD 

AVG MIN MAX STD AVG MIN MAX STD AVG MIN MAX STD 

1 
AM 0.8800 0.2800 1.0000 0.2539 12.1386 9.0338 12.5130 0.9101 0.4428 0.3490 0.6945 0.1007 

GDA 0.9357 0.3100 1.0000 0.1821 12.9388 8.2543 12.9966 1.2517 0.3941 0.2047 0.5952 0.0698 
LA 0.9950 0.8400 1.0000 0.0292 12.1867 6.4458 12.3515 0.9967 0.3117 0.1178 0.3800 0.0521 

2 
AM 0.2293 0.1600 0.3600 0.0545 11.0219 10.6407 12.3894 0.3042 0.7278 0.6223 1.0000 0.0661 

GDA 1.0000 1.0000 1.0000 0.0000 11.8148 10.7433 11.8258 0.0146 0.3729 0.3609 0.3862 0.0064 

LA 1.0000 1.0000 1.0000 0.0000 11.8139 10.7242 11.9365 0.1567 0.3716 0.3158 0.4055 0.0156 

3 
AM 0.6027 0.5200 0.6800 0.0445 11.8940 11.3990 11.9867 0.0853 0.5450 0.4959 0.6136 0.0289 

GDA 1.0000 1.0000 1.0000 0.0000 11.9197 11.9094 11.9296 0.0064 0.4252 0.4059 0.4580 0.0120 
LA 1.0000 1.0000 1.0000 0.0000 11.9093 11.8232 11.8933 0.0162 0.4222 0.3976 0.4352 0.0094 

4 
AM 0.5443 0.4800 0.6400 0.0452 9.6588 9.5331 9.6643 0.0176 0.5596 0.4752 0.6317 0.0361 

GDA 1.0000 1.0000 1.0000 0.0000 9.6642 9.6210 9.6650 0.0100 0.4145 0.3879 0.4423 0.0112 

LA 1.0000 1.0000 1.0000 0.0000 9.6512 9.5685 9.6330 0.0141 0.4150 0.3860 0.4402 0.0143 

5 
AM 0.8537 0.6000 1.0000 0.1723 9.2899 9.1526 9.2984 0.5744 0.4779 0.4279 0.5744 0.0468 

GDA 1.0000 1.0000 1.0000 0.0000 9.2964 9.1526 9.2984 0.4023 0.4395 0.4238 0.4579 0.0086 

LA 1.0000 1.0000 1.0000 0.0000 9.2772 9.2580 9.2859 0.0080 0.4170 0.3733 0.4484 0.0213 

6 
AM 0.4720 0.4000 0.5600 0.0412 9.3687 9.1500 9.3810 0.0542 0.5962 0.5042 0.6479 0.0363 

GDA 1.0000 1.0000 1.0000 0.0000 9.3745 9.2346 9.4787 0.0628 0.4128 0.3992 0.4308 0.0083 

LA 1.0000 1.0000 1.0000 0.0000 9.3711 9.2495 9.4553 0.0474 0.4136 0.3927 0.4377 0.0129 

7 
AM 0.6173 0.4000 0.7200 0.0653 9.6606 9.2261 9.6911 0.0926 0.5289 0.4734 0.6743 0.0416 

GDA 1.0000 1.0000 1.0000 0.0000 9.6650 9.6596 9.6700 0.0028 0.4085 0.3792 0.4565 0.0151 
LA 1.0000 1.0000 1.0000 0.0000 9.6641 9.6172 9.6550 0.0100 0.4112 0.3878 0.4342 0.0133 

8 
AM 0.2627 0.2000 0.4400 0.0454 8.3033 8.1155 8.5676 0.1224 0.7886 0.6294 1.0000 0.1245 

GDA 1.0000 1.0000 1.0000 0.0000 8.7279 8.6708 8.7389 0.0120 0.4248 0.3948 0.5933 0.0341 
LA 1.0000 1.0000 1.0000 0.0000 8.4859 8.3572 8.6371 0.0754 0.4128 0.3832 0.4488 0.0136 

9 
AM 0.6410 0.4000 0.8000 0.0896 8.6132 8.2356 9.2519 0.2236 0.5142 0.4141 0.6432 0.0525 

GDA 0.9893 0.8000 1.0000 0.4193 8.7689 8.5789 9.4346 0.3054 0.4111 0.3661 0.6141 0.0210 
LA 0.9973 0.9200 1.0000 0.0146 8.7132 8.5373 9.2002 0.2518 0.3953 0.3508 0.4201 0.0144 
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Table 7.2: The performance of selection choice function based hyper-heuristics using different move acceptance strategies including all-moves (AM), great 
deluge algorithm (GDA)  and late acceptance (LA) on the bi-objective WFG test problems with respect to the metrics;  the generational distance  (GD) and the 
inverted generational distance (IGD). 

WFG Methods GD IGD 

AVG MIN MAX STD AVG MIN MAX STD 

1 
AM 7.740E-03 3.400E-03 4.660E-02 1.106E-02 7.300E-04 3.900E-04 2.930E-03 6.500E-04 

GDA 8.240E-03 3.400E-03 4.400E-02 1.110E-02 1.020E-03 3.900E-04 4.940E-03 1.170E-03 
LA 1.534E-02 8.200E-03 4.110E-02 7.260E-03 2.400E-03 1.680E-03 4.740E-03 7.200E-04 

2 
AM 1.460E-03 9.000E-04 3.200E-03 4.900E-04 4.400E-04 2.200E-04 5.400E-04 6.000E-05 
GDA 4.500E-04 4.000E-04 8.000E-04 8.000E-05 3.500E-04 3.500E-04 3.600E-04 0.000E+00 

LA 7.000E-04 4.000E-04 4.500E-03 7.300E-04 3.700E-04 3.500E-04 7.800E-04 8.000E-05 

3 
AM 6.800E-04 3.000E-04 2.800E-03 4.500E-04 6.853E-04 6.831E-04 7.229E-04 7.169E-06 
GDA 2.000E-04 1.900E-04 3.000E-04 5.000E-05 6.835E-04 6.830E-04 6.839E-04 2.502E-07 

LA 4.100E-04 3.000E-04 6.000E-04 7.000E-05 6.836E-04 6.813E-04 6.856E-04 1.184E-06 

4 
AM 9.700E-04 7.500E-04 1.510E-03 1.900E-04 2.563E-04 1.951E-04 3.311E-04 3.384E-05 
GDA 4.700E-04 4.300E-04 5.800E-04 4.000E-05 1.297E-04 1.169E-04 1.613E-04 1.027E-05 

LA 6.100E-04 5.400E-04 7.500E-04 5.000E-05 1.475E-04 1.343E-04 1.830E-04 1.099E-05 

5 
AM 2.730E-03 2.160E-03 2.440E-03 3.200E-04 5.439E-04 5.281E-04 5.987E-04 2.246E-05 
GDA 2.450E-03 2.430E-03 2.430E-03 1.000E-05 5.292E-04 5.278E-04 5.304E-04 6.672E-07 

LA 2.510E-03 2.460E-03 2.460E-03 3.000E-05 5.394E-04 5.293E-04 5.612E-04 8.862E-06 

6 
AM 2.250E-03 1.500E-03 3.900E-03 5.600E-04 5.523E-04 4.265E-04 7.191E-04 6.749E-05 
GDA 2.000E-03 1.310E-03 2.700E-03 3.500E-04 4.441E-04 2.850E-04 5.791E-04 7.680E-05 
LA 2.050E-03 1.420E-03 2.550E-03 2.700E-04 4.470E-04 3.089E-04 5.503E-04 5.602E-05 

7 
AM 4.700E-04 4.400E-04 1.360E-03 2.500E-04 2.206E-04 1.736E-04 4.141E-04 5.025E-05 
GDA 3.300E-04 2.600E-04 4.100E-04 4.000E-05 1.191E-04 1.090E-04 1.392E-04 7.968E-06 

LA 4.100E-04 2.900E-04 5.000E-04 4.000E-05 1.323E-04 1.096E-04 1.471E-04 1.185E-05 

8 
AM 4.420E-03 3.580E-03 4.980E-03 4.300E-04 6.195E-04 4.806E-04 7.753E-04 7.767E-05 
GDA 3.890E-03 3.580E-03 5.850E-03 3.800E-04 3.634E-04 3.426E-04 4.198E-04 1.397E-05 
LA 4.410E-03 4.080E-03 4.710E-03 1.500E-04 4.205E-04 3.863E-04 4.572E-04 1.371E-05 

9 
AM 5.280E-03 1.430E-03 6.390E-03 1.450E-03 9.545E-04 3.122E-04 1.176E-03 2.444E-04 

GDA 3.640E-03 4.100E-04 5.500E-03 1.950E-03 7.879E-04 1.369E-04 1.025E-03 3.908E-04 
LA 3.770E-03 5.700E-04 4.950E-03 1.690E-03 8.312E-04 1.787E-04 1.031E-03 3.538E-04 
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Problem Methods 
Metrics 

RNI SSC UD GD IGD 

WFG1 
AM:GDA ט െ + ± + 

AM:LA െ െ + + + 

GDA:LA ט + ± ± + 

WFG2 
AM:GDA െ െ + െ െ 

AM:LA െ െ + െ െ 

GDA:LA n/a ± ± + + 

WFG3 
AM:GDA െ െ + െ ט 

AM:LA െ െ + െ ט 

GDA:LA n/a + ± + ± 

WFG4 
AM:GDA െ െ + െ െ 

AM:LA െ െ ± െ െ 

GDA:LA n/a + ט + + 

WFG5 
AM:GDA െ െ + െ െ 

AM:LA െ ± + െ ט 

GDA:LA n/a + + + ± 

WFG6 
AM:GDA െ െ + െ െ 

AM:LA െ െ + െ െ 

GDA:LA n/a + ט + ± 

WFG7 
AM:GDA െ െ + െ െ 

AM:LA െ െ + െ െ 

GDA:LA n/a + ט + ± 

WFG8 
AM:GDA െ െ + െ െ 

AM:LA െ െ + െ െ 

GDA:LA n/a + + + + 

WFG9 
AM:GDA െ െ + െ െ 

AM:LA െ െ + െ െ 

GDA:LA ט + + ± + 

 

Table 7.3: The t-test results of multi-objective choice function based hyper-heuristics  
methodologies using AM, GDA and LA as a move acceptance  criterion on the bi-

objective WFG test problems with respect to the metrics; the ratio of non-dominated 
individuals (RNI), the hypervolume (SSC), the uniform distribution (UD) and the 
generational distance (GD). 

 

From Figure 7.2 and Table 7.2, GDA has the best overall mean 

performance when compared to AM and LA. With respect to the measure of 

the hypervolume (SSC), this performance difference is statistically significant 

across all WFG problems, except WFG2. For this instance, GDA performs 

slightly better than LA. In addition, LA delivers a significantly better 

performance than AM for all WFG problems, except WFG5.  Similarly, GDA 

delivers a significantly better mean performance when compared to AM and 

LA with respect  to  the measure of generational distance (GD) for all 

benchmark functions, except WFG1 and WFG9 (See Figure 7.4 and Table 7.2). 
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Figure 7.1: Box plots of multi-objective choice function based hyper-heuristics 
methodologies using AM, GDA and LA as a move acceptance criterion on the bi-
objective WFG test problems for the measure of ratio non-dominated solutions (RNI).  

Figure 7.2: Box plots of multi-objective choice function based hyper-heuristics 
methodologies using AM, GDA and LA as a move acceptance criterion on the bi-
objective WFG test problems for the measure of hypervoulme (SSC).  
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Figure 7.3: Box plots of multi-objective choice function based hyper-heuristics 
methodologies using AM, GDA and LA as a move acceptance criterion on the bi-
objective WFG test problems for the measure of uniform distribution (UD).  

 

   

   

   
Figure 7.4: Box plots of multi-objective choice function based hyper-heuristics 
methodologies using AM, GDA and LA as a move acceptance criterion on the bi-
objective WFG test problems for the measure of generational distance (GD).  
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Figure 7.5: Box plots of multi-objective choice function based hyper-heuristics 
methodologies using AM, GDA and LA as a move acceptance criterion on the bi-
objective WFG test problems for the measure of inverted generational distance (IGD).  

 

For WFG1, AM performs slightly better than GDA and significantly better 

than LA, while for WFG9, LA performs significantly better than AM and GDA 

performs slightly better than AM. With respect to the measure of inverted 

generational distance (IGD), GDA performs significantly better than AM in all 

instances except in WFG1. In addition, GDA performs significantly better than 

LA in four instances of WFG2, WFG4, WFG8 and WFG9 while it performs 

significantly similar to LA in the rest (see Figure 7.5). 

 Although non-deterministic move acceptance methods improve the 

overall mean performance of the hyper-heuristic with respect to RNI, SSC, GD 

and IGD, AM performs the best with respect to the measure of the uniform 

distribution of non-dominated solutions (UD) (see Figure 7.3). The 

performance differences from GDA and LA are statistically significant for all 

problems, except WFG4, for which AM still performs slightly better than LA.  

GDA and LA have relatively similar performance across all WFG problems (see 

Table 7.2). The success of AM with respect to UD might be due to the use of 

the D metric into acceptance procedure. Since D metric is a binary 

hypervolume measure that is designed to compare two sets of non-dominated 
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solutions with respect of their convergence towards the POF, there is no 

consideration regarding how uniformly these solutions are distributed along 

the POF. This might also be a reason for why non-deterministic move 

acceptance produces high quality solutions in terms of the convergence 

towards the POF. 

7.4.4 Behaviour of Acceptance Strategies  

 
To further understand how the move acceptance strategies, AM, GDA 

and LA, are performing and how their performances could affect the quality of 

the solutions, we compute the average  accepted/rejected move rates which 

indicates how frequently  a move (solution) that is produced from the three 

low level heuristics is accepted/ rejected under different acceptance methods 

AM, GDA and LA. Figure 7.6 illustrates the average number of heuristic 

invocations of each low level heuristic selected and applied at 25 consecutive 

decision points (stages/iterations) during the search process over all runs. 

Each bar in the plot also indicates the average number of accepted and 

rejected Pareto fronts.  A similar pattern for the choice of low level heuristics 

during the search process has been observed in Figure 7.6 on almost all WFG 

problems considering the three hyper-heuristics. This is high likely due to the 

use of the same heuristic selection mechanism (choice function). However, 

the pattern in the plots for accepted or rejected Pareto fronts produced by the 

chosen low level heuristic varies for a given problem depending on the move 

acceptance strategy that the hyper-heuristic employs. NSGAII is always 

selected more than the other low level meta-heuristics regardless of the move 

acceptance method, except for WFG5 and WFG9. For WFG5, SPEA2 is the 

most frequently chosen algorithm regardless of the move acceptance 

component of the hyper-heuristic during the search process. On the other 

hand, SPEA2 is frequently chosen when GDA is used as the move acceptance 

algorithm on WFG9. The performance of MOGA is the worst among three 

hyper-heuristics on the WFG problems; thus it is invoked relatively less 

frequently during the search process in all test problems for all methods. 

 

Overall, NSGAII appears to be a good choice for solving the WFG 

problems. Our observations are consistent with the result obtained in 

Bradstreet et al. (2007) showing that the best performance is achieved by 

NSGAII on the bi-objective WFG test suite. This indicates that NSGAII is a 

good  choice  for  solving  the  WFG  problems.  We  theorise  that  the  multi-  
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Figure 7.6: The average number of low level meta-heuristic invocations (NSGAII, 
SPEA2 and MOGA) and accepted/rejected moves produced by selection hyper-
heuristics using AM, GDA and LA over the bi-objective WFG test problems- continue. 

 

 

   

   

   

   

   



Chapter 7: A Heuristic Selection Using Non-Deterministic Move Acceptance 

Strategy (Late Acceptance strategy) 

152 | P a g e  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6: Continue- the average number of low level meta-heuristic invocations 
(NSGAII, SPEA2 and MOGA) and accepted/rejected moves produced by selection 
hyper-heuristics using AM, GDA and LA  over the bi-objective WFG test problems. 

 

objective choice function hyper-heuristic, therefore, prefers NSGAII and it 

becomes preferable to be chosen more frequently than the other low level 

heuristics.  

Figure 7.6 shows that there is only one case in which all moves are 

accepted when a non-deterministic strategy is used, that is GDA for WFG1. 

The rate of moves rejected for LA is higher than that for GDA on all test 

problems regardless of the low level meta-heuristic employed, except for 

MOGA, where LA accepts more moves (solutions) than GDA on almost all 

problems. These observations offer some explanation as to why the 

performance of GDA is better than LA in terms of convergence towards the 
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POF: (i) The good moves that are accepted in GDA are rejected in LA, and (ii) 

as MOGA does not perform well in the WFG test problem and it is invoked 

relatively less frequently during the search process, LA accepts all MOGA's 

moves (solutions) while GDA rejects them.  LA produces better solutions than 

AM. So, the non-deterministic acceptance strategies (GDA and LA) beat the 

deterministic acceptance strategy (AM). In addition, GDA and LA appear to 

positively affect the performance of the multi-objective choice function based 

hyper-heuristic when used as the move acceptance strategy over the bi-

objective WFG test problems. 

7.5 Comparison of Multi-objective Hyper-heuristics- 

the Case of Tri-objective 

 
More experiments are conducted to evaluate the performance of the 

three proposed selection online learning choice function based hyper-

heuristics for multi-objective optimisation (HHMO_CF_AM, HHMO_CF_GDA 

and HHMO_CF_LA) over tri-objective Walking Fish Group (WFG) benchmark 

dataset (Huband et al., 2006). The performance of our selection choice 

function based hyper-heuristics is compared to the well-known multi-objective 

evolutionary algorithm, SPEA2 (Zitzler et al., 2001) as well.  The motivation 

behind choosing SPEA2 to compare against our multi-objective hyper-heuristic 

is that SPEA2 performs well on the WFG problems in three objectives 

(Bradstreet et al., 2007). For brevity, we will refer to three multi-objective 

choice function based hyper-heuristics; HHMO_CF_AM, HHMO_CF_GDA and 

HHMO_CF_LA as AM, GDA and LA respectively. 

7.5.1 Performance Evaluation Criteria 

 
We used three performance metrics- the hypervolume- size of space 

converged (SSC) (Zitzler and Thiele, 1999), generational distance (GD) (Van 

Veldhuizen and Lamont, 1998b) and inverted generational distance (IGD) 

(Coello and Cruz Cortès, 2005)- to assess the quality of approximation sets in 

both diversity and convergence aspects. In addition, we use the students test 

(t-test) statistic to compare the mean performance of SPEA2 and three choice 

function based multi-objective hyper-heuristics using different acceptance 

criteria; AM, GDA and LA across multiple trials with respect to the metrics 

across multiple trials.  We use the same notation that was presented in 

Section 7.4.1.  
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7.5.2 Experimental Settings 

 
All experimental parameters are chosen according to those commonly 

used in the scientific literature for the tri-objective problems (Huang et al., 

2007; Zielinski and Laur, 2007). The nine test problems (WFG1-WFG9) with 

three objectives have 24 real parameters including four position parameter 

and 20 distance parameters. For each problem, we run 30 independent trials 

with a different random seed.  For fair comparison, all methods in each run 

were executed 300,000 evaluation functions in order to keep the 

computational costs of the experiments in an affordable level.  In other words, 

all hyper-heuristics are run for a total of 30 stages (iterations). In each stage, 

a low level heuristic is chosen and applied to execute 100 generations with a 

population size equal to 100 (10,000 evaluation functions).  SPEA2 executed 

for 300,000 evaluation functions (3000 generations in total with primary and 

secondary population sizes equal to 100).  Other parameter settings are 

identical to those used in Section 7.4.2.  All methods were implemented with 

the same common sub-functions using Microsoft Visual C++ 2008 on an Intel 

Core2 Duo 3GHz\2G\250G computer. 

7.5.3 Experimental Results and Discussion 

 

The statistical t-test results of comparing three multi-objective choice 

function based hyper-heuristics (AM, GDA and LA) and SPEA2 with respect to 

the three performance metrics (SSC, GD and IGD) on the nine WFG test 

problems are given in Table 7.4.  We can note that our multi-objective choice 

function based hyper-heuristics are statistically different from SPEA2 in the 

majority cases (i.e. we reject the null hypothesis) except in AM whilst 

performs similar to SPEA2 in most cases for the SSC metric.  

The performance values of SPEA2 and our three multi-objective hyper-

heuristic methodologies (AM, GDA and LA) with respect to the performance 

metrics (SSC, GD and IGD) on the tri-objective WFG function are summarised 

in Table 7.5. For each performance metric, the average, minimum, maximum 

and standard deviation values are shown. We also visualise the distribution of 

the simulation data of the 30 independent runs for the comparison methods 

with respect to these performance metrics shown in Figures 7.7 -7.9. A higher 

value indicates a better performance in SSC while a lower value indicates a 

better performance in GD and IGD. 
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We note from both Table 7.5 and Figures 7.7-7.9. GDA has the highest 

SSC value in five out of nine problems including WFG1, WFG3, WFG5, WFG7, 

WFG9 while LA has the highest SSC’s value for the rest of the WFG problems. 

The pairwise performance differences of GDA from other methods are 

statistically significant for all benchmark functions with respect to the 

measure of hypervoulme (SSC). It is interesting to note that AM and SPEA2 

are performing similarly in the majority of cases for SSC.  With respect to the 

measure of generational distance (GD), GDA has the lowest GD’s value which 

means it has the best performance among other methods for all WFG 

problems except in WFG3 where SPEA2 performs the best. In contrast, LA has 

the highest GD value, thus the worst performance among the comparison 

methods. With respect to the measure of inverted generational distance 

(IGD), GDA has the lowest GD value which means it has the best performance 

among other methods for all WFG problems except in WFG1 and WFG9.  

Generally, GDA is statistically significant better than AM, LA and SPEA2 

in the most cases with respect to the SSC, GD and IGD metrics.  Although AM 

and LA perform better than SPEA2 in the measure of SSC for all WFG 

problems, they perform worse than SPEA2 in the measure of GD and IGD in 

the majority cases. The superiority of our multi-objective hyper-heuristics 

compared to SPEA2 in the SSC metric is because of the influence of the 

ranking scheme that is embedded in the selection mechanism (the choice 

function). The ranking scheme maintains the past performance of low level 

heuristics using a set of performance indicators that measure different aspects 

of the solutions, the SSC metric is one of these indicators. 

 

In Figure 7.10, we have plotted the POF and the distribution of the final 

fronts obtained in the run with the lowest GD value of each method in each 

WFG problem. It is clear that the GDA is converging well (closer to the POF) 

compared to the other methods for all the datasets. However, GDA shows 

poor distribution of final solutions in WFG8 and WFG9. This could be attributed 

to the fact that WFG8 and WFG9 feature significant bias which causes 

difficulty to the algorithm to spread well along the front. We can observe that 

the multi-objective selection hyper-heuristic that utilised the GDA as a move 

acceptance criterion outperforms SPEA2 and the other move acceptance 

criteria AM and LA in most WFG problems with three objectives.  
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Table 7.4: The t-test results of SPEA2 and three multi-objective choice function based 
hyper-heuristics using all-move (AM), great deluge algorithm (GDA) and late 
acceptance (LA) as a move acceptance criterion with respect to the metrics; the 
hypervolume (SSC), the generational distance (GD) and the inverted generational 
distance (IGD) on the tri-objective WFG test problems. 

 

 

Problem Methods 
Metrics 

SSC GD IGD 

WFG1 

AM:GDA ט െ ± 

AM:LA െ ± ± 

AM:SPEA2 ט ± ± 

GDA:LA + + ט 

GDA:SPEA2 + + ט 

LA:SPEA2 െ ט ט 

WFG2 

AM:GDA ט െ െ 

AM:LA െ െ ± 

AM:SPEA2 ט ± ט 

GDA:LA െ + + 

GDA:SPEA2 ט + + 

LA:SPEA2 + + ט 

WFG3 

AM:GDA െ + ט 

AM:LA ט ט + 

AM:SPEA2 + െ ט 

GDA:LA + െ + 

GDA:SPEA2 + െ + 

LA:SPEA2 ± െ + 

WFG4 

AM:GDA െ െ ט 

AM:LA െ + ט 

AM:SPEA2 ט ± ט 

GDA:LA ט + + 

GDA:SPEA2 + + + 

LA:SPEA2 + െ ט 

WFG5 

AM:GDA + + െ 

AM:LA + െ + 

AM:SPEA2 ± െ + 

GDA:LA + + + 

GDA:SPEA2 + + + 

LA:SPEA2 + െ + 

WFG6 

AM:GDA െ + ט 

AM:LA െ െ + 

AM:SPEA2 ט െ ט 

GDA:LA െ + + 

GDA:SPEA2 + െ ± 

LA:SPEA2 + + െ 

WFG7 

AM:GDA െ െ െ 

AM:LA െ + + 

AM:SPEA2 ט ± െ 

GDA:LA ± + + 

GDA:SPEA2 + + + 

LA:SPEA2 + െ െ 

WFG8 

AM:GDA െ െ ט 

AM:LA െ ט ט 

AM:SPEA2 െ െ െ 

GDA:LA െ + ± 

GDA:SPEA2 + + ± 

LA:SPEA2 + െ െ 

WFG9 

AM:GDA െ െ െ 

AM:LA െ ט ט 

AM:SPEA2 െ ט െ 

GDA:LA + + + 

GDA:SPEA2 + ± ט 

LA:SPEA2 + െ െ 
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To understand why GDA works so well as an acceptance strategy and 

outperforms the others, in the next subsection, we analyse the behaviour of 

the move acceptance strategies and how many moves are accepted/rejected 

based on these acceptance strategies. 

 

7.5.4 Behaviour of Acceptance Strategies  

 
In order to understand how the move acceptance strategies, AM, GDA 

and LA, are performing and how their performances could affect the quality of 

the solutions, we compute the average heuristic utilisation rate which 

indicates how frequently a given low level heuristic is chosen and applied 

during the search process (through 30 decision points/stages) across all runs. 

We also compute the average accepted/rejected move rates which indicates 

how frequently a move (solution) that is produced from the three low level 

heuristics (NSGAII, SPEA2 and MOGA) is accepted/ rejected under different  

acceptance methods (AM, GDA and LA). The results are presented in Figure 

7.11. 

 

It is clear from Figure 7.11  that all WFG problems have the same bar 

graph patterns for the three hyper-heuristics methods (AM, GDA and LA), as 

they use the same selection mechanism (choice function).  Unlike the graph 

patterns of the choice function in the two objective case  (see Section 7.4) 

where NSGAII has the highest average heuristic utilisation rate, SPEA2 has 

the highest average heuristic utilisation rate among all low level heuristics for 

each problem in the three objectives case. This indicates that SPEA2 performs 

best among other low level heuristics in all WFG problems. We theorise that 

multi-objective choice function based hyper-heuristics, therefore, prefers 

SPEA2 and it becomes preferable to be chosen more frequently than the other 

low level heuristics. Our result is consistent with the result in Bradstreet et al. 

(2007) that show the best performance is achieved by SPEA2 on the tri- 

objectives WFG test functions. NSGAII has the second highest average 

heuristic utilisation rate among all low level heuristics for each problem in all 

methods.  As for the two objective case, the performance of MOGA is not 

good on the WFG problems with three objectives; thus it is invoked relatively 

less frequently during the search process on all test problems, for all methods  
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Table 7.5 : The performance of multi-objective selection choice function based hyper-heuristics using different move acceptance strategies including all-moves 
(AM),  great deluge algorithm (GDA)  and late acceptance (LA) on the tri-objective WFG test problems with respect to the metrics;  the hypervolume (SSC), the 
generational distance (GD) and the inverted generational distance (IGD). 

WFG Methods SSC (HV) GD IGD 

AVG MIN MAX STD AVG MIN MAX STD AVG MIN MAX STD 

1 

AM 107.3712 9.1829 135.3410 32.6332 4.812E-02 3.497E-02 4.910E-02 2.552E-03 1.116E-02 9.979E-03 1.130E-02 2.506E-04 

GDA 117.8262 32.7882 213.2110 77.3751 4.628E-02 4.307E-02 4.866E-02 2.029E-03 1.175E-02 1.114E-02 1.297E-02 6.065E-04 
LA 84.9291 48.9161 175.3890 33.0404 4.936E-02 6.789E-02 4.656E-02 5.061E-03 1.142E-02 1.037E-02 1.188E-02 3.313E-04 

SPEA2 114.3752 62.3193 125.9170 23.5923 4.871E-02 4.807E-02 4.919E-02 2.532E-04 1.125E-02 1.119E-02 1.133E-02 3.545E-05 

2 

AM 167.1861 89.2915 207.7816 45.1490 1.092E-02 5.084E-03 2.198E-02 3.936E-03 1.760E-03 1.070E-03 4.540E-03 6.627E-04 
GDA 168.3010 82.2896 208.8914 37.0173 5.793E-03 2.238E-03 1.366E-02 2.512E-03 1.482E-03 8.193E-04 2.802E-03 4.752E-04 
LA 187.3642 102.9195 216.7784 35.8396 9.523E-03 4.824E-03 1.879E-02 3.010E-03 1.822E-03 1.109E-03 2.203E-03 2.613E-04 

SPEA2 171.0259 111.9220 201.3650 42.1033 1.119E-02 9.035E-03 1.425E-02 1.353E-03 1.677E-03 1.389E-03 2.023E-03 1.765E-04 

3 

AM 164.4504 161.1735 165.8882 0.8374 1.714E-02 3.725E-03 2.461E-02 8.661E-03 6.541E-04 2.289E-04 1.103E-03 2.737E-04 
GDA 166.2142 164.4883 170.2537 1.4075 2.272E-02 2.115E-02 2.384E-02 6.695E-04 6.007E-04 4.123E-04 1.229E-03 1.901E-04 

LA 164.9405 156.9436 172.9678 3.8900 1.700E-02 6.362E-03 2.374E-02 6.760E-03 9.436E-04 4.399E-04 1.518E-03 3.575E-04 
SPEA2 155.5069 81.6381 159.0350 13.9708 3.764E-03 3.285E-03 4.627E-03 4.079E-04 1.237E-03 1.050E-03 1.379E-03 7.958E-05 

4 

AM 174.4465 172.2685 175.9692 0.9286 7.472E-03 6.802E-03 8.191E-03 2.959E-04 9.237E-04 8.192E-04 1.103E-03 6.690E-05 
GDA 187.5106 172.2036 195.3434 4.7233 7.193E-03 4.590E-03 7.808E-03 5.411E-04 9.134E-04 8.162E-04 1.114E-03 7.101E-05 
LA 188.8972 183.5044 195.8470 3.5147 7.947E-03 7.493E-03 8.451E-03 2.531E-04 9.767E-04 8.693E-04 1.241E-03 7.746E-05 

SPEA2 174.5163 172.3850 176.8740 1.1343 7.579E-03 7.152E-03 8.029E-03 2.640E-04 9.320E-04 8.590E-04 1.102E-03 5.134E-05 

5 

AM 169.3947 91.8980 178.5882 21.2169 2.782E-03 2.496E-03 3.375E-03 3.030E-04 7.103E-04 6.378E-04 8.505E-04 5.944E-05 
GDA 179.0575 171.1901 182.2547 3.0923 2.580E-03 2.497E-03 2.749E-03 7.342E-05 6.807E-04 6.455E-04 7.609E-04 2.865E-05 

LA 178.9980 172.1897 184.6083 2.6278 4.884E-03 3.934E-03 6.704E-03 5.983E-04 7.738E-04 7.105E-04 9.724E-04 5.322E-05 
SPEA2 168.8870 91.8184 179.1310 26.0557 2.520E-03 2.482E-03 2.578E-03 2.189E-05 9.252E-04 9.014E-04 9.714E-04 1.674E-05 

6 

AM 167.5519 162.3480 172.5244 2.4692 1.118E-02 4.877E-03 1.537E-02 2.958E-03 1.149E-03 8.090E-04 1.364E-03 1.365E-04 
GDA 178.7681 129.1464 199.9808 17.3386 1.289E-02 3.130E-03 1.490E-02 3.293E-03 1.110E-03 7.975E-04 1.795E-03 2.281E-04 
LA 184.4600 165.0770 201.0835 8.4301 1.490E-02 5.611E-03 1.683E-02 3.507E-03 1.306E-03 9.108E-04 1.534E-03 1.776E-04 

SPEA2 168.3973 161.8640 177.6070 3.3697 1.130E-02 4.473E-03 1.537E-02 2.252E-03 1.141E-03 7.331E-04 1.400E-03 1.382E-04 

7 

AM 170.9187 89.4527 175.8396 15.4664 8.132E-03 3.416E-03 1.053E-02 1.038E-03 1.006E-03 8.988E-04 2.583E-03 3.000E-04 
GDA 189.2783 149.3687 198.5367 10.1373 6.417E-03 2.159E-03 9.033E-03 2.197E-03 8.992E-04 3.045E-04 1.643E-03 2.573E-04 
LA 180.1404 171.4541 200.4325 6.2589 8.819E-03 2.870E-03 1.032E-02 1.198E-03 1.061E-03 7.941E-04 1.323E-03 8.495E-05 

SPEA2 174.4071 172.1070 176.1530 1.0187 8.368E-03 7.940E-03 8.808E-03 2.307E-04 9.566E-04 9.108E-04 1.006E-03 2.503E-05 

8 

AM 142.2636 142.2636 164.4628 4.2221 1.419E-02 9.033E-03 1.641E-02 2.217E-03 1.328E-03 1.129E-03 1.537E-03 1.365E-04 
GDA 174.7478 167.1404 184.4929 4.9486 1.260E-02 9.033E-03 1.580E-02 1.569E-03 1.200E-03 1.010E-03 1.442E-03 1.024E-04 

LA 179.6973 160.4983 186.7640 4.8295 1.345E-02 8.675E-03 1.443E-02 9.896E-04 1.312E-03 1.221E-03 1.446E-03 4.181E-05 
SPEA2 162.7549 159.5230 164.8610 1.3546 1.267E-02 1.196E-02 1.352E-02 4.035E-04 1.222E-03 1.164E-03 1.301E-03 3.471E-05 

9 

AM 163.2564 84.2574 168.3284 14.9607 6.866E-03 3.043E-03 8.897E-03 1.191E-03 8.819E-04 7.524E-04 1.133E-03 6.585E-05 
GDA 177.4758 166.6219 192.2547 4.3396 6.107E-03 4.049E-03 8.996E-03 8.073E-04 8.423E-04 7.670E-04 1.131E-03 8.428E-05 
LA 175.4644 193.0402 157.9340 6.4698 6.927E-03 4.039E-03 8.244E-03 9.852E-04 8.713E-04 7.756E-04 1.167E-03 7.763E-05 

SPEA2 168.0471 165.3200 170.8950 1.2861 6.428E-03 4.867E-03 1.286E-02 1.291E-03 8.306E-04 7.345E-04 9.993E-04 5.463E-05 
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Figure 7.7: Box plots of multi-objective choice function based hyper-heuristics 
methodologies using AM, GDA and LA as a move acceptance criterion on the tri-
objective WFG test problems for the measure of hypervoulme (SSC). 

Figure 7.8: Box plots of multi-objective choice function based hyper-heuristics 
methodologies using AM, GDA and LA as a move acceptance  criterion on the tri-
objective WFG test problems for for the measure of generational distance (GD).  
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Figure 7.9: Box plots of multi-objective choice function based hyper-heuristics 
methodologies using AM, GDA and LA as a move acceptance criterion on the tri-
objective WFG test problems for for the measure of inverted generational distance 
(IGD).  

 

Figure 7.11 also gives some insights about how many moves are 

accepted/rejected based on the acceptance strategy that was used. We can 

observe that no moves are rejected for each test problem in AM, since it 

employs an All-Moves acceptance strategy.  For each test problem in AM, 

SPEA2 has the highest heuristic utilisation rate among the other low level 

heuristics, which means that SPEA2 is invoked more frequently during the 

search process.  

 

However, MOGA has a too low heuristic utilisation rate and NSGAII has a 

slightly higher rate than MOGA but not as high as SPEA2. This explains why 

AM performs relatively similar to SPEA2, in most cases, for the SSC metric 

(see Table 7.4). It is also clear from the graphs that the rate of rejected 

moves of LA is much higher than GDA on all test problems for all low level 

heuristics. In other words, GDA accepts moves (solutions with good quality) 

more than LA. These observations offer an explanation as to why the 

performance of GDA is better than LA in terms of convergence towards the 

POF. However, LA still produces better solutions than AM in most cases.  This 
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Figure 7.10: Plots of the non-dominated solutions in the objective space with the 
lowest GD in 30 runs of SPEA2 and three multi-objective choice function based hyper-
heuristic using AM, GDA, LA as an acceptance criterion over the tri-objective WFG test 
functions. 
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. 

 

Figure 7.11: The average number of low level meta-heuristic invocations (NSGAII, 
SPEA2 and MOGA) and accepted/rejected moves produced by selection hyper-
heuristics using AM, GDA and LA over the tri-objective WFG test problems- continue. 
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Figure 7.11: Continue- the average number of low level meta-heuristic invocations 
(NSGAII, SPEA2 and MOGA) and accepted/rejected moves produced by selection 
hyper-heuristics using AM, GDA and LA over the tri-objective WFG test problems. 

 

indicates that is the condition criterion that used in LA help to produce 

solutions with acceptable quality by rejecting the worse moves (solutions) at 

the right decision points during the search process.     

7.6 Summary and Remarks 
 

This chapter proposed an online learning selection choice function based 

hyper-heuristics using late acceptance (LA) as a non-deterministic move 

acceptance criterion for multi-objective optimisation. To the best of our 

   

   

   

   



Chapter 7: A Heuristic Selection Using Non-Deterministic Move Acceptance 

Strategy (Late Acceptance strategy) 

164 | P a g e  

  

knowledge, D metric is used for the first time as a comparison measure 

between two non-dominated fronts in order to covert the multi-objective 

problem to a single-objective problem without definition of criteria values' 

weights.  

The performance of the proposed multi-objective choice function late 

acceptance based hyper-heuristic (HHMO_CF_LA) is compared to two previous 

multi-objective   hyper-heuristics;   choice function   all-moves   based hyper- 

heuristic (HHMO_CF_AM)  and choice function great deluge based hyper-

heuristic (HHMO_CF_GDA) that were presented in Chapters 5 and 6 

respectively.  The comparison is conducted over the  bi-objective  Walking 

Fish Group (WFG) test functions benchmark for multi-objective optimisation. 

Additionally, the performances of the three multi-objective hyper-heuristics 

are compared to the well-known multi-objective algorithm, SPEA2. 

 

The experimental results demonstrate the effectiveness of non-

deterministic move acceptance strategy based methodologies. 

HHMO_CF_GDA and HHMO_CF_LA outperform HHMO_CF_AM over the bi-

objective WFG test problems, indicating that the non-deterministic acceptance 

strategies improve the performance of the multi-objective selection choice 

function based hyper-heuristic. Moreover, this observation is supported 

further by empirical evidence obtained from testing those hyper-heuristics 

against SPEA2 over the tri-objective WFG test problems. In overall, 

HHMO_CF_GDA performs the best compared to other multi-objective hyper-

heuristics. The superiority of multi-objective choice function great deluge 

based hyper-heuristic is due to the acceptance procedure that employed. The 

experimental result also shows that the components of the hyper-heuristics 

including the selection method, low level heuristics and move acceptance 

strategy are important and significantly affect the performance of the hyper-

heuristics. The great deluge combined with choice function performs better 

than the great deluge combined with random selection and All-Moves 

combined with choice function 

The benefit of using hyper-heuristics for multi-objective optimisation is 

shown in Table 7.6. The results of  multi-objective choice function great 

deluge based hyper-heuristic improves solution by more than 5% when 

compared to the results obtained by the low level heuristics when run in 

isolation. This is the case except for NSGAII. The result obtained by the multi-

objective choice function great deluge based hyper-heuristic is improved 

slightly when compared to the result obtained by NSGAII in the bi-objective 
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WFG problems except WFG1 and WFG2. It is good to note that the results 

obtained by our multi-objective choice function great deluge based hyper-

heuristic improved by more than 45% in five out of nine bi-objective WFG 

problems, when compared to the results obtained by AMALGAM. This includes 

WFG2, WFG3, WFG4, WFG7 and WFG8, and more than 25% of the other test 

problems except WFG9. The results provide empirical evidence that combining 

different combination of meta-heuristics under a selection hyper-heuristic 

framework yields improved performance. The use of the combination of the 

choice function as a selection method and GDA as an acceptance strategy 

positively affects the performance of the multi-objective hyper-heuristics over 

the WFG test problems. 
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Table 7.6: The percentage improvement for the performance of HH_CF_GDA against 
others methods with respect to the hypervolume (SSC) on the bi-objective WFG test 
functions.  

WFG Methods 

SSC HH_CF_GDA 
improvement % 

1 

HH_CF_GDA 12.9388  

NSGAII 11.6041 10.32 

SPEA2 6.4931 49.82 

MOGA 4.2184 67.40 

AMALGAM 7.7902 39.79 

2 

HH_CF_GDA 11.8148  

NSGAII 10.8199 8.42 

SPEA2 10.7898 8.68 

MOGA 9.7959 17.09 

AMALGAM 1.7582 85.12 

3 

HH_CF_GDA  11.9197  

NSGAII 11.9185 0.01 

SPEA2 11.4062 4.31 

MOGA 11.2921 5.27 

AMALGAM 6.6890 43.88 

4 

HH_CF_GDA 9.6642  

NSGAII 9.6460 0.19 

SPEA2 9.1853 4.96 

MOGA 8.9968 6.91 

AMALGAM 3.5687 63.07 

5 

HH_CF_GDA 9.2964  

NSGAII 9.2857 0.12 

SPEA2 9.2860 0.11 

MOGA 8.8946 4.32 

AMALGAM 6.3554 31.64 

6 

HH_CF_GDA 9.3745  

NSGAII 9.3503 0.26 

SPEA2 8.7135 7.05 

MOGA 8.8878 5.19 

AMALGAM 6.3554 32.21 

7 

HH_CF_GDA 9.6650  

NSGAII 9.6579 0.07 

SPEA2 9.2481 4.31 

MOGA 9.1685 5.14 

AMALGAM 3.9171 59.47 

8 

HH_CF_GDA 8.7279  

NSGAII 8.7155 0.14 

SPEA2 8.3957 3.81 

MOGA 8.0762 7.47 

AMALGAM 3.0945 64.54 

9 

HH_CF_GDA 8.7689  

NSGAII 8.7650 0.04 

SPEA2 8.7091 0.68 

MOGA 8.5723 2.24 

AMALGAM 9.0676 -3.41 
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8 The Real-World Problem: The Multi-objective 

Vehicle Crashworthiness Design 
 

In the previous chapters we showed that our multi-objective choice 

function based hyper-heuristics in general, and our choice function great 

deluge  based hyper-heuristic (HHMO_CF_GDA) in particular, can be effective 

when testing over both bi- and tri-objective benchmarks the Walking Fish 

Group  (WFG) test problems.  In this chapter, we further investigate the 

power of our multi-objective choice function based hyper-heuristics. We apply 

our hyper-heuristics to a real-world problem that of the multi-objective 

vehicle crashworthiness design. We aim to demonstrate that hyper-heuristics 

are not only effective on benchmarks, but that they are also applicable to a 

real-world problem. We also investigate the sensitivity of our choice function 

based hyper-heuristics, using a different size of decision points during the 

search. The chapter is structured as follows: In Sections 8.1 and 8.2, we 

describe and present the formulation of the application problem, that of the 

design of vehicle crashworthiness. This is followed in Section 8.3 by 

computational experiments and Section 8.4 presents summary and remarks. 

  8.1 Problem Description  
 

In the automotive industry, crashworthiness is a very important issue to 

be dealt with when designing a vehicle. Crashworthiness design of real-world 

vehicles involves optimisation of a number of objectives including the head, 

injury criterion, chest acceleration and chest deflection etc (Redhe et al. 

2004). However, some of these objectives may be, and usually are, in conflict 

with each other, i.e. an improvement in one objective value leads to 

deterioration in the values of the other objectives. 

Multi-objective vehicle crashworthiness design was previously tackled as 

a single (primary) objective optimisation with multiple constraints (e.g. Redhe 

et al. 2004). However, it is not an easy task for most experienced design 

engineers to identify a primary objective from a huge number of design 

objectives.  Alternatively, multi-objective vehicle crashworthiness design is 

addressed in a multi-objective framework considering different design 

requirements as design objectives. Fang et al. (2005) aggregated these 

different objectives into a single cost function in terms of weight average 
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taken into account a weight for full-scale vehicle model, peak acceleration and 

energy-absorption as design objectives.  In Deb (2001) an evolutionary 

search method has been developed to construct a multi-objective vehicle 

crashworthiness design based on the radial basis function.  Lanzi et al. (2004) 

proposed a multi-objective genetic algorithm (GA) to construct multi-objective 

vehicle crashworthiness design by optimising composite absorber shapes 

under different crashworthiness requirements. 

Liao et al.  (2008) construct a vehicle crashworthiness design using the 

surrogate modelling techniques with latin hypercube sampling and stepwise 

regression (Krishniah, 1982). To address different safety requirements of 

crashworthiness design, a simulation of a full-scale vehicle model including 

the full frontal crash and a 40% offset-frontal crash is developed. Figure 8.1 

shows the simulation results in the scenarios of the full frontal crash and the 

40% offset-frontal crash. The weight of vehicle, acceleration characteristics 

and toe-board intrusion are addressed as the design objectives.  

 

(a) (b) 

Figure 8.1: The deformed results of (a) the full frontal impact and (b) the offset-frontal 
impact. Reprinted from (Liao et al., 2008). 

 

The multi-objective vehicle crashworthiness design problem has only 

five decision variables and no constraints (Liao et al., 2008). The output of 

problem provides a wider choice for engineers to make their final design 

decision based on Pareto solution space. In this chapter, we are tackling this 

problem that is presented in Liao et al. (2008) and we use it as a real-world 

application to our multi-objective hyper-heuristics. The decision variables of 

the problem represent the thickness of five reinforced members around the 

front as they could have a significant effect on the crash safety. See Figure 

8.2 for an illustration. The mass of the vehicle is tackled as the first design 
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objective, while an integration of collision acceleration between ݐଵ=0.05s and ݐଶ=0.07s in the full frontal crash is considered as the second objective 

function. The toe-board intrusion in the 40% offset-frontal crash is tackled as 

the third objective as it is the most severe mechanical injury (see Figure 8.3). 

The second and third objectives are constructed from the two crash conditions 

to reflect the extreme crashworthiness and formulated in the quadratic 

polynomial for the regression while the vehicle mass is formulated in a linear 

basis function (Marklund and Nilsson, 2001). 

 

 

 

Figure 8.2: Design variables of the vehicle model. Reprinted from (Liao et al., 2008). 

 
 
 

 

Figure 8.3: The toe board intrusion of offset-frontal crash. Reprinted from(Liao et al., 
2008). 

 

  8.2 Problem Formulation 
 

The multi-objective vehicle crashworthiness design problem involves 

optimisation of three objectives including the mass of the vehicle (mass), an 

integration of collision acceleration between ݐଵ=0.05s and ݐଶ=0.07s in the full 
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frontal crash (Ain) and the toe-board intrusion in the 40% offset-frontal crash 

(Intrusion).  The three objectives are formulated as follows: ݏݏܽܯ ൌ ͳ͸ͶͲǤʹͺʹ͵ ൅   ʹǤ͵ͷ͹͵ʹͺͷݐଵ  െ ʹǤ͵ʹʹͲͲ͵ͷݐଶ  ൅  ͶǤͷ͸ͺͺ͹͸ͺݐଷ      ൅ ͹Ǥ͹ʹͳ͵͸͵͵ݐସ  ൅  ͶǤͶͷͷͻͷͲͶݐହ         
                                  

(8.1) 

݊݅ܣ ൌ͸Ǥͷͺͷ͸ ൅  ͳǤͳͷݐଵ Ȃ  ͳǤͲͶʹ͹ݐ ଶ ൅  ͲǤͻ͹͵ͺݐଷ  ൅  ͲǤͺ͵͸Ͷݐସ Ȃ  ͲǤ͵͸ͻͷݐଵݐସ  ൅  ͲǤͲͺ͸ͳݐଵݐହ  ൅  ͲǤ͵͸ʹͺݐଶݐସ Ȃ  ͲǤͳͳͲ͸ݐ ଵଶȂ  ͲǤ͵Ͷ͵͹ݐଷଶ ൅  ͲǤͳ͹͸Ͷݐସଶ   
                                    

(8.2) 

݊݋݅ݏݑݎݐ݊ܫ ൌ Ȃ ͲǤͲͷͷͳ ൅  ͲǤͲͳͺͳݐଵ  ൅  ͲǤͳͲʹͶݐଶ  ൅  ͲǤͲͶʹͳݐଷ Ȃ  ͲǤͲͲ͹͵ݐଵݐଶ  ൅ ͲǤͲʹͶݐଶݐଷ Ȃ ͲǤͲͳͳͺݐଶݐସ Ȃ  ͲǤͲʹͲͶݐଷݐସ Ȃ  ͲǤͲͲͺݐଷݐହ Ȃ ͲǤͲʹͶͳݐଶଶ  ൅  ͲǤͲͳͲͻݐସଶ  

(8.3) 

 

So, the multi-objective design of vehicle crashworthiness problem in ܶ 

decision variable space is formulated as: ݉݅݊ ܨሺݔሻ ൌ ሾݏݏܽܯǡ ǡ ݊݅ܣ  ሿ݊݋݅ݏݑݎݐ݊ܫ
Ǥݏ Ǥ   ͳ݉݉ݐ ൑ ݔ ൑ ͵݉݉ 

ݔ ݁ݎ݄݁ݓ ൌ ሺݐଵǡ ଶǡݐ ଷǡݐ ସǡݐ  ହሻ்ݐ

 (8.4) 

 

We created three more problem instances beside the original vehicle 

crashworthiness problem as shown in Table 8.1 after a private communication 

with Prof. Kalyanmoy Deb who recommended this problem. Each instance 

contains a pair of objectives. NSGAII was applied to the original vehicle 

crashworthiness problem in Liao et al. (2008) and produced reasonable 

results for the three objective version. 

 

 
 
 

 
 
 
 

Table 8.1: The multi-objective vehicle crashworthiness design problems. 

  

Problem Name Objective Functions 

Car1 Mass and Ain 

Car2 Mass and Intrusion 

Car3 Ain and Intrusion 

Car4 Mass and Ain and Intrusion 
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  8.3 Experiments and Comparison 

  
In this section, a set of experiments are conducted over a multi-

objective vehicle crashworthiness design problem as a real-world problem to 

evaluate the performance of our multi-objective choice function based hyper-

heuristics; HHMO_CF_AM, HHMO_CF_GDA and HHMO_CF_LA.  The motivation 

behind applying our three selection multi-objective hyper-heuristics to this 

problem is to investigate their performance on a real-world problem and 

measure the level of generality that they can achieve. The performance of 

three multi-objective hyper-heuristics compared to the well-known multi-

objective evolutionary algorithm, NSGAII (Deb and Goel, 2001).  

 

  8.3.1 Performance Evaluation Criteria 

 
The same performance evaluation criteria and algorithms are used as 

described in Section 7.4.1.  Five performance metrics are used to measure 

the quality of the approximation sets from different aspects: (i) ratio of non-

dominated individuals (RNI) (Tan et al., 2002), (ii) hypervolume (SSC) 

(Zitzler and Thiele, 1999) (iii) uniform distribution of a non-dominated 

population (UD) (Srinivas and Deb, 1994),  (iv) generational distance (GD) 

(Van Veldhuizen and Lamont, 1998b) and (v) inverted generational distance 

(IGD) (Coello and Cruz Cortès, 2005). In addition, t-test is used as a 

statistical test for the average performance comparison of selection hyper-

heuristics and the results are discussed using the same notation as provided 

in Section 7.4.1. 

 

  8.3.2 Experimental Settings 

 
We performed 30 independent runs for each comparison method using 

the same parameter settings as provided in Liao et al. (2008) with a 

population size equal to 30. In order to make a fair comparison, we repeated 

NSGAII experiments conducted in Liao et al. (2008) under our termination 

conditions over the additional instances. All multi-objective hyper-heuristics 

methodologies run for a total of 75 iterations (stages) based on the empirical 

experiments that are presented in next subsection. In each iteration, a low 

level heuristic is selected and applied to execute 50 generations. So, all 

methods terminated after 3,750 generations. The distance sharing ߪ  for the 
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UD metric and MOGA was arbitrarily set to 0.09 in the normalised space. 

These settings are used for the UD as a feedback indicator in the ranking 

scheme of the hyper-heuristic framework and as a performance measure for 

the comparison. As the true Pareto front is unknown, we consider the best 

approximation found by combining results of all considered methods and used 

it instead of the true Pareto front for the metrics of GD and IGD. In the 

measure of SSC and D metric for GDA and LA, the reference points in our 

experiments for ݇ objectives can be set as ݎ௜  ൌ ௡௔ௗ௜௥೔ ݖ  ൅  ͲǤͷ ሺݖ ௡௔ௗ௜௥೔ െݖ ௜ௗ௘௔௟೔ሻǡ ݅ ൌ ͳǡ Ǥ Ǥ Ǥ ǡ ݇ (Li and Landa-Silva, 2011). Other experimental settings 

are the same as those used in Section 7.4.2. All algorithms were implemented 

with the same common sub-functions using Microsoft Visual C++ 2008 on an 

Intel Core2 Duo 3GHz\2G\250G computer. 

 

  8.3.3 Tuning of Number of Decision Points for Multi- 

objectives Hyper-heuristics 

 
In the context of our multi-objective selection hyper-heuristics, the 

number of the decision points (ܰܲܦ) is the number of moves that we conduct 

during the search.  The ܰܲܦ is an important parameter in our multi-objective 

hyper-heuristic framework. However, the choice of the right value of the 

decision points is not trivial.  We conducted initial experiments to determine 

the right (or at least good) value of  ܰܲܦ  that leads to solutions of good 

quality. The ܰܲܦ relies on the other parameters such as the number of 

function evaluations and the number of generations.  In these experiments, 

each decision point is executed a fixed number of generation equals to 50 

with a population size equal to 30. In other words, 1500 evaluation functions 

are executed at each decision point (iteration or stage). For three multi-

objective hyper-heuristics; HHMO_CF_AM, HHMO_CF_GDA and HHMO_CF_LA, 

we used four different values for ܰܲܦ  (75 ,50 ,25 and 100). The three hyper-

heuristics were run for 30 times using these values with a different random 

seed on the original vehicle crash worthiness problem (Car4).  From this point 

onward, each hyper-heuristic will be referred to by move acceptance method 

utilised within each hyper-heuristic. 

The performance of the comparison methods AM, GDA and LA for the 

different sizes of the decision points (25, 50, 75 and 100) with respect to the 

performance metrics (RNI, SSC and UD) on the original vehicle 

crashworthiness problem (Car4) are summarised in Table 8.2.  
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In Table 8.2, the average, the minimum, the maximum and standard 

deviation values for each performance metric are computed. A higher value 

indicates a better performance. We can observe that the highest averages of 

RNI for AM are obtained with 25 and 75 decision points. The highest average 

of SSC and UD values are obtained with 75, 100 decision points respectively. 

So, no specific size of decision points for AM can obtain good results with 

respect to all metrics except in 75 decision points where AM obtains good 

results in terms of the convergence and the number of the non-dominated 

solutions. GDA obtains the highest averages of RNI with 25, 50 and 75 

decision points. It obtains the highest averages of SSC and UD with 75 

decision points. GDA obtains good results with respect to the three 

performance metrics with 75 decision points. LA obtains the highest averages 

of RNI with 25, 50 and 75 decision points. It obtains the highest average of 

SSC with 75 decision points, while it obtains the highest average of UD with 

100 decision points. No specific size of decision points for AM can obtain good 

results with respect to all metrics except for 75 decision points where LA 

obtains good results in terms of the convergence and the number of the non-

dominated solutions. We note that 75 decision points produces better 

solutions in most cases for the three multi-objective choice function based 

hyper-heuristics. 

To analyse these results, we visualise the average performance values 

of RNI, SSC and UD metrics for the three multi-objective hyper-heuristics AM, 

GDA and LA during the search using different values of the decision points ሺܰܲܦሻ (25, 50, 75 and 100) are shown in Figures 8.4-8.6.  In Figure 8.4, the  

performance of three methods with respect to RNI using a different values of 

decision points are relatively the same, the smaller value of decision points 

obtains a higher (better) value of RNI while increasing the value of decision 

points leads to a lower (worse) value of RNI. This is clear in the case of 100 

decision points. As our multi-objective hyper-heuristics do not incorporate any 

archive mechanisms to maintain the non-dominated solutions during the 

search, a large number of iterations (decision points) may exhibit the factor of 

diversification in the selection method that calls a heuristic which produces 

low quality solutions. 

In Figure 8.5, AM and GDA and LA perform similar to each other during 

the search using different values of the decision points with respect to the 

metric of SSC. The three methods obtain a higher (better) value of SSC when  
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Table 8.2: The performance of multi-objective selection hyper-heuristics with different values of decision points (ࡼࡰࡺ) on the multi-objective design of  vehicle 

crashworthiness problem (Car4) with respect to the metrics of ratio of non-dominated individuals (RNI), size of space covered (SSC), and uniform distribution 

(UD) of non-dominated population. 
 

Methods ܰܲܦ RNI SSC UD 
AVG MIN MAX STDDEV AVG MIN MAX STDDEV AVG MIN MAX STDDEV 

AM 25 1.00 1.00 1.00 0.00 6.045E+07 3.625E+07 8.586E+07 1.669E+07 0.623 0.480 0.698 0.044 

50 0.93 0.75 1.00 0.06 6.631E+07 2.089E+07 8.644E+07 1.979E+07 0.480 0.200 0.640 0.140 
75 1.00 1.00 1.00 0.00 7.381E+07 5.315E+07 9.577E+07 1.463E+07 0.585 0.516 0.707 0.050 
100 0.73 0.38 0.88 0.10 6.767E+07 2.965E+07 8.660E+07 1.998E+07 0.642 0.491 0.732 0.047 

GDA 25 1.00 1.00 1.00 0.00 7.875E+07 4.853E+07 9.587E+07 1.274E+07 0.605 0.541 0.691 0.032 

50 1.00 1.00 1.00 0.08 8.109E+07 6.294E+07 9.091E+07 1.007E+07 0.579 0.510 0.670 0.040 
75 1.00 1.00 1.00 0.00 8.289E+07 6.294E+07 9.577E+07 1.954E+07 0.613 0.555 0.692 0.034 
100 0.94 0.75 1.00 0.09 8.236E+07 5.910E+07 9.587E+07 1.138E+07 0.595 0.505 0.667 0.039 

LA 25 1.00 1.00 1.00 0.00 7.301E+07 5.959E+07 8.800E+07 1.167E+07 0.584 0.494 0.694 0.056 
50 1.00 1.00 1.00 0.00 7.526E+07 5.776E+07 9.549E+07 1.379E+07 0.580 0.490 0.660 0.040 
75 1.00 1.00 1.00 0.00 7.538E+07 4.512E+07 9.550E+07 1.474E+07 0.582 0.302 0.641 0.062 
100 0.98 0.95 1.00 0.01 6.972E+07 4.912E+07 8.800E+07 1.207E+07 0.600 0.530 0.650 0.030 
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 the number of decision points is higher except in the case of 100 decision 

points where the search is frozen and no further improvement is obtained.  

This is true for the performance of the UD metric of AM and GDA and LA 

in Figure 8.6. For all methods, a higher (better) value of UD is obtained when 

the number of decision points is higher. AM and LA obtains the best solutions 

with 100 decision points. While GDA obtains the best solutions with 75 

decision points as the search is frozen and no further better improvement is 

obtained with 100 decision points. 

From the above observations, we conclude that a larger number (value) 

of decision points produces better solutions, particularly 75 decision points, 

according to performance metrics (RNI, SSC and UD) in the majority cases for 

the three methods AM, GDA and LA over the original multi-objective vehicle 

crashworthiness design problem (Car4). Therefore, all multi-objective hyper-

heuristics methodologies run for a total of 75 decision points 

(iterations/stages) in our experiments over the additional instances of multi-

objective vehicle crashworthiness design problems. 

  8.3.4 Performance Comparison of Multi-objective Hyper-

heuristics and NSGAII 

  
The mean performance comparison of AM, GDA, LA and NSGAII based 

on the performance metrics (RNI, SSC, UD , GD and IGD) for solving the 

vehicle crashworthiness problems is provided in Table 8.3.  For each 

performance metric, the average, minimum, maximum and standard 

deviation values are computed. For all metrics, a higher value indicates a 

better performance, except in GD and IGD, where a lower value indicates a 

better performance. The statistical t-test results of NSGAII and three multi-

objective choice function based hyper-heuristics (AM, GDA and LA) are given 

in Table 8.4. We also visualise the distribution of the simulation data of the 30 

independent runs for the comparison methods with respect to these 

performance metrics as box plots, shown in Figures 8.7-8.11. 

From Tables 8.3-8.5 and Figures 8.7-8.11, we can observe that GDA, LA 

and NSGAII produce a slightly higher average ratio of non-dominated 

individuals (RNI) compared to AM for all problems. This means that the 

comparison methods produce non-dominated solutions that are equal to the 
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Figure 8.4: The plots showing how RNI values, averaged over 30 trials change at each 

decision point (iteration) for a given move acceptance method (AM, GDA and LA) 

combined with choice function heuristic selection considering different number of 

decision points while solving the vehicle crashworthiness problem (Car4). 
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Figure 8.5: The plots showing how SSC values, averaged over 30 trials change at each 
decision point (iteration) for a given move acceptance method (AM, GDA and LA) 
combined with choice function heuristic selection considering different number of 
decision points while solving the vehicle crashworthiness problem (Car4). 
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Figure 8.6: The plots showing how UD values, averaged over 30 trials change at each 
decision point (iteration) for a given move acceptance method (AM, GDA and LA) 
combined with choice function heuristic selection considering different number of 
decision points while solving the vehicle crashworthiness problem (Car4). 
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given population size and perform very well with respect to this metric. AM 

performs well with respect to RNI on Car4, but not for other problem 

instances. With respect to the hypervolume (SSC), GDA has the highest 

average value among the other methods for all problem instances. The 

performance difference of GDA from the other hyper-heuristics is statistically 

significant for Car1, Car3 and Car4. With respect to the measures of GD and 

IGD, GDA is superior to the other methods for all problem instances, except 

Car3, where NSGAII performs the best. This performance difference is 

statistically significant for Car1 and Car2. GDA performs the best considering 

convergence and diversity, producing solutions that converge towards the 

POF. Similarly, considering UD, GDA produces solutions that are distributed 

uniformly along the POF for all problem instances, except Car2, where NSGAII 

performs the best. The above observations indicate that all methods perform 

similarly to each other with respect to the metric of RNI over all problem 

instances. GDA obtains the best performance in the metrics of SSC, GD and 

IGD and it converges better towards the POF than the other methods. GDA is 

also obtains the best performance in the metric of UD and distribute more 

uniformly than other methods in the most problem instances. 

For each problem instance, the 50% attainment surface for each 

method, from the 30 fronts after 3,750 generations are computed and 

illustrated in Figures 8.12-8.15. GDA appears to generate a good convergence 

for all problem instances. This can be clearly observed for Car2 and Car3 (See 

Figures 8.13 and 8.14), where GDA converges to the best POF with a well 

spread Pareto front as compared to the other approaches. In contrast, AM 

generates the poorest solutions in almost all cases. NSGAII and LA have 

similar convergence for all problem instances, except Car2, where NSGAII 

covered a larger proportion of objective space compared to LA. 

From the above observations, we conclude that GDA outperforms 

NSGAII and others methods in the majority of cases. The superiority of GDA 

could be because of the acceptance condition criterion that was used. The 

hyper-heuristics for even real world multi-objective problems benefits from 

the use of a learning heuristic selection method as well as GDA. 
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Table 8.3: The performance NSGAII and the selection choice function based hyper-heuristics using different move acceptance strategies including all-moves 
(AM),  great deluge algorithm (GDA)  and late acceptance (LA) on the vehicle crashworthiness problems  with respect to the metrics;  the ratio of non-dominated  
individuals (RNI), the hypervolume (SSC)and the uniform distribution (UD). 

 

problem Method RNI SSC UD 

AVG MIN MAX STD AVG MIN MAX STD AVG MIN MAX STD 

Car1 NSGAII 1.00 1.00 1.00 0.00 2.296E+04 2.296E+04 2.299E+04 1.400E-01 0.450 0.421 0.492 0.021 
AM 0.98 0.78 1.00 0.05 2.113E+04 5.741E+03 2.255E+04 5.054E+03 0.430 0.203 0.484 0.067 
GDA 1.00 1.00 1.00 0.00 2.298E+04 7.703E+03 2.302E+04 3.880E+03 0.453 0.410 0.487 0.020 

LA 0.99 1.00 1.00 0.00 2.165E+04 7.701E+03 2.319E+04 3.983E+03 0.452 0.392 0.490 0.031 
Car2 NSGAII 1.00 1.00 1.00 0.00 3.930E+04 2.109E+04 5.677E+04 1.632E+04 0.461 0.413 0.500 0.032 

AM 0.95 0.75 1.00 0.09 3.773E+04 6.799E+03 5.667E+04 1.707E+04 0.427 0.170 0.534 0.095 
GDA 1.00 1.00 1.00 0.00 3.953E+04 2.109E+04 5.680E+04 1.685E+04 0.451 0.413 0.502 0.020 

LA 1.00 1.00 1.00 0.00 2.107E+03 2.089E+04 5.669E+04 1.508E+04 0.450 0.402 0.501 0.021 
Car3 NSGAII 1.00 1.00 1.00 0.00 4.174E+01 2.637E+01 4.906E+01 8.820E+00 0.464 0.411 0.510 0.022 

AM 0.98 0.63 1.00 0.08 4.058E+01 1.898E+01 4.907E+01 1.020E+01 0.478 0.425 0.543 0.031 
GDA 1.00 1.00 1.00 0.00 4.175E+01 1.930E+01 4.979E+01 9.980E+00 0.480 0.445 0.527 0.021 

LA 1.00 1.00 1.00 0.00 4.149E+01 1.977E+01 4.978E+01 9.680E+00 0.463 0.391 0.503 0.033 
Car4 NSGAII 1.00 1.00 1.00 0.00 7.936E+07 4.168E+07 9.587E+07 1.595E+07 0.592 0.532 0.670 0.045 

AM 1.00 1.00 1.00 0.00 7.381E+07 5.315E+07 9.577E+07 1.463E+07 0.585 0.516 0.707 0.050 
GDA 1.00 1.00 1.00 0.00 8.289E+07 6.294E+07 9.580E+07 1.954E+07 0.613 0.555 0.692 0.034 

LA 1.00 1.00 1.00 0.00 7.538E+07 4.512E+07 9.550E+07 1.474E+07 0.582 0.302 0.641 0.062 
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Table 8.4: The performance NSGAII and the selection choice function based hyper-heuristics using different move acceptance strategies including all-moves 
(AM), great deluge algorithm (GDA) and late acceptance (LA) on the vehicle crashworthiness problems with respect to the metrics;  the generational distance 
(GD) and the inverted generational distance (IGD). 

problem Method GD IGD 

AVG MIN MAX STD AVG MIN MAX STD 

Car1 NSGAII 8.10E-04 1.10E-04 1.79E-03 4.00E-04 4.657E-04 4.117E-04 5.260E-04 3.114E-05 

AM 7.50E-04 1.00E-05 2.37E-03 4.70E-04 5.874E-03 3.994E-04 1.462E-02 5.990E-03 
GDA 4.50E-04 0.00E+00 8.70E-04 2.00E-04 4.278E-04 3.722E-04 5.817E-04 5.763E-05 
LA 8.40E-04 6.00E-05 2.72E-03 6.00E-04 6.912E-04 3.749E-04 7.866E-03 1.356E-03 

Car2 NSGAII 2.45E-03 4.10E-04 9.21E-03 3.28E-03 3.174E-03 6.551E-04 6.647E-03 2.890E-03 
AM 2.30E-03 3.50E-04 1.04E-02 3.12E-03 4.974E-03 7.021E-04 1.120E-02 3.527E-03 
GDA 1.86E-03 3.60E-04 8.94E-03 2.12E-03 3.127E-03 6.607E-04 1.624E-02 3.630E-03 
LA 2.50E-03 3.30E-04 8.97E-03 3.34E-03 4.184E-03 6.758E-04 6.724E-03 2.884E-03 

Car3 NSGAII 1.01E-01 9.68E-02 1.08E-01 4.02E-03 9.925E-02 6.080E-02 2.094E-01 5.065E-02 

AM 1.03E-01 9.79E-02 1.13E-01 3.83E-03 1.648E-01 6.066E-02 2.130E-01 6.292E-02 
GDA 1.03E-01 9.65E-02 1.32E-01 7.53E-03 1.264E-01 6.016E-02 2.094E-01 6.472E-02 
LA 1.03E-01 9.64E-02 1.13E-01 4.66E-03 1.420E-01 6.235E-02 2.100E-01 5.744E-02 

Car4 NSGAII 2.48E-03 1.46E-03 4.21E-03 9.10E-04 4.156E-03 1.543E-03 1.289E-02 3.859E-03 
AM 2.71E-03 1.59E-03 4.06E-03 7.90E-04 4.376E-03 1.738E-03 1.288E-02 4.168E-03 
GDA 2.11E-03 1.10E-03 4.28E-03 7.10E-04 3.552E-03 1.661E-03 1.230E-02 3.075E-03 
LA 3.32E-03 1.70E-03 6.76E-03 1.33E-03 3.604E-03 1.525E-03 1.238E-02 2.582E-03 
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Table 8. 4: The t-test results of NSGAII and the three multi-objective choice function 
based hyper-heuristics methodologies using AM, GDA and LA as a move acceptance  
criterion on  the multi-objective vehicle crashworthiness design  problems with respect 
to the metrics; the ratio of non-dominated  individuals (RNI), the hypervolume (SSC), 
the uniform distribution (UD), the generational distance (GD) and the inverted 
generational distance (IGD). 

 

 

 

 

 

 

Problem Methods 
Metrics 

RNI SSC UD GD IGD 

Car1 

NSGAII:AM ± + + ט + 

NSGAII:GDA n\a െ െ െ ט 

NSGAII:LA ± + െ ± ± 

AM:GDA ט െ + െ െ 

AM:LA ט ט െ െ െ 

GDA:LA ± + ± + + 

Car2 

NSGAII:AM ± + + ט ± 

NSGAII:GDA n/a ט ± െ ט 

NSGAII:LA n/a + + ט + 

AM:GDA ט െ െ െ െ 

AM:LA ט + െ ± ט 

GDA:LA n/a + ± + + 

Car3 

NSGAII:AM ± + + ± + 

NSGAII:GDA n/a ט െ ± + 

NSGAII:LA n/a ± ± ± + 

AM:GDA ט െ ט ט െ 

AM:LA ט െ + ± െ 

GDA:LA n/a ± + ± + 

Car4 

NSGAII:AM n/a + ± ± ± 

NSGAII:GDA n/a െ + ט െ 

NSGAII:LA n/a + + + െ 

AM:GDA n/a െ െ ט െ 

AM:LA n/a െ ± + െ 

GDA:LA n/a + + + ± 
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Figure 8.7: Box plots of multi-objective choice function based hyper-heuristics 
methodologies using AM, GDA and LA as a move acceptance criterion on   the multi-
objective vehicle crashworthiness design problems for the measure of ratio non-
dominated solutions (RNI). 

 

Figure 8.8: Box plots of multi-objective choice function based hyper-heuristics 
methodologies using AM, GDA and LA as a move acceptance criterion on the multi-
objective vehicle crashworthiness design problems for the measure the hypervolume 
(SSC). 
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Figure 8.9: Box plots of multi-objective choice function based hyper-heuristics 
methodologies using AM, GDA and LA as a move acceptance criterion on   the multi-
objective vehicle crashworthiness design problems for the measure the uniform 
distribution (UD).  

  

  

  
 
Figure 8.10: Box plots of multi-objective choice function based hyper-heuristics 
methodologies using AM, GDA and LA as a move acceptance criterion on   the multi-
objective vehicle crashworthiness design problems for the generational distance (GD). 
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Figure 8.11: Box plots of multi-objective choice function based hyper-heuristics 
methodologies using AM, GDA and LA as a move acceptance criterion on   the multi-
objective vehicle crashworthiness design problems for the inverted generational 
distance (IGD). 

 

  

  
Figure 8.12:  The 50% attainment surfaces for NSGAII and the three multi-objective 
choice function based hyper-heuristics (AM, GDA and LA) after 3,750 generations on 

the multi-objective design of vehicle crashworthiness problem (Car1).  
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Figure 8.13: The 50% attainment surfaces for NSGAII and the three multi-objective 
choice function based hyper-heuristics (AM, GDA and LA) after 3,750 generations on 
the multi-objective design of vehicle crashworthiness problem (Car2). 

 

  

  
 
Figure 8.14: The 50% attainment surfaces for NSGAII and the three multi-objective 
choice function based hyper-heuristics (AM, GDA and LA) after 3,750 generations on 
the multi-objective design of vehicle crashworthiness problem (Car3).
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  8.4 Summary and Remarks 
 

In this chapter, we have applied our multi-objective choice function 

based hyper-heuristics to the vehicle crashworthiness design as a real-world 

multi-objective problem to assess the level of generality they can achieve. 

The performance of our multi-objective choice function based hyper-heuristics 

are compared to the well-known multi-objective algorithm, NSGAII. In 

general, the results demonstrate the effectiveness of our selection hyper-

heuristics particularly when combined with great deluge algorithm as a move 

acceptance criterion.  

 

The multi-objective choice function great deluge based hyper-heuristic 

(HHMO_CF_GDA) beats other methods for solving both tri- objective vehicle 

crashworthiness design problem and  bi-objective additional instances. It also 

benefits from the combination of GDA as an acceptance strategy and the 

choice function as the selection method. It is worthwhile mentioning that this 

result concurs with the findings in Chapter 7. In addition, HHMO_CF_GDA 

excels over NSGAII on all instances of the problem.  HHMO_CF_GDA turns out 

to be the best choice for solving this problem.  Although other multi-objective 

hyper-heuristics still produce solutions with acceptable quality in some cases, 

they could not perform as well as NSGAII. The reason for this relies on the 

move acceptance strategy they employed.  A sensitivity analysis of our multi-

objective choice function based hyper-heuristic was carried out and revealed a 

larger number of decision points (ܰܲܦ) produce better solutions for the 

vehicles crashworthiness design problem. This indicates that the number of 

moves (decision point/iteration) conducted during the search could affect the 

performance of the multi-objective selection choice function based hyper-

heuristic.  

  In summary, the results of the real-world problem demonstrate the 

capability and potential of the multi-objective hyper-heuristic approaches in 

solving continuous multi-objective optimisation problems. 
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Figure 8.15: The 50% attainment surfaces for NSGAII and the three multi-objective choice function based hyper-heuristics (AM, GDA and LA) after 3,750 
generations on the multi-objective design of vehicle crashworthiness problem (Car4).
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9 Conclusions and Future Work  
 

9.1 Conclusions 
 

Hyper-heuristics are methodologies that operate on a search space of 

heuristics rather than solutions directly for solving hard computational 

problems. They have drawn increasing attention from the research community 

in recent years. However, the majority of hyper-heuristics studies have been 

limited to single-objective optimisation (Burke et al., 2013). Hyper-heuristics 

for multi-objective optimisation is a relatively new area of research in 

Operational Research and Evolutionary Computation (Burke et al., 2010; 

Özcan et al., 2008). Few studies were identified that deal with hyper-

heuristics for multi-objective problems (e.g. (Burke et al., 2003a; Vrugt and 

Robinson, 2007; Veerapen et al., 2009; McClymont and Keedwell, 2011; 

Wang and Li, 2010; Gomez and Terashima-Marʆn, 2010)). None of these 

studies used multi-objective evolutionary algorithms (MOEAs), only in Rafique 

(2012), Gomez and Terashima-Marʆn, (2010), Vrugt and Robinson (2007), 

and no continuous and standard multi-objective test problems studied, only in 

McClymont and Keedwell (2011), Vrugt and Robinson (2007), Len et al. 

(2009) and Vázquez-Rodríguez and Petrovic (2013). Moreover, none of the 

previous hyper-heuristics made use of the components particularly designed 

for multi-objective optimisation that we introduced in this thesis. The main 

aim of this research was to investigate hyper-heuristic methodologies for 

multi-objective optimisation combining MOEAs with the goal of producing a 

set of high quality solutions (i.e. not necessarily optimal) compared to the 

existing approaches in the MOEA literature. The scope of this study is limited 

to continuous unconstrained multi-objective (two and three objectives) 

problems. We have investigated into the design of a generic selection hyper-

heuristic framework for tackling multi-objective optimisation problems and 

development of effective hyper-heuristics within this multi-objective 

framework. The performance of different selection hyper-heuristics are tested 

over both benchmark test problems and real-world application. The main 

contributions and findings are summarised in the following subsections.    
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 9.1.1 The Online Learning Selection Hyper-heuristic 

Framework for Multi-objective Optimisation 

 

In this thesis, for the first time, we introduced an online learning 

selection choice function based hyper-heuristic framework for multi-objective 

optimisation (see Chapter 4). This framework is inspired from two facts: (i) 

there is no existing algorithm which excels across all types of problems, and 

(ii) there is empirical evidence showing that hybridisation or combining 

different (meta-)heuristics/algorithms could yield improved performance 

compared to  (meta-)heuristics/ algorithms run on their own.  Hyper-heuristic 

frameworks, generally, impose a domain barrier which separates the hyper-

heuristic from the domain implementation along with low level heuristics to 

provide a higher level of abstraction. The domain barrier does not allow any 

problem specific information to be passed to the hyper-heuristic itself during 

the search process. We designed our framework in this same modular 

manner. One of advantages of the proposed framework is its simplicity. The 

proposed framework is highly flexible and its components reusable. It is built 

on an interface which allows other researchers to write their own hyper-

heuristic components easily. Even the low level heuristics can be easily 

changed if required. If new and better performing components are found in 

the future, the software can be easily modified to include those components 

for testing. Our online selection choice function based hyper-heuristic for 

multi-objective optimisation (HHMO_CF) controls and combines the strengths 

of three well-known multi-objective evolutionary algorithms (NSGAII, SPEA2, 

and MOGA), which are utilised as the low level heuristics. The choice function 

utilised as a selection mechanism and a high level strategy which adaptively 

ranks the performance of three low-level heuristics, deciding which one to call 

at each decision point. The reason of use of the choice function as selection 

method is that it provides a balance between intensification and 

diversification. In addition, it was successful when used as a selection method 

in the hyper-heuristic for single-objective optimisation (Soubeiga, 2003; Bia, 

2005).  In our multi-objective hyper-heuristic framework, learning process is 

an essential component for guiding the heuristic selection method while it 

decides on the most appropriate heuristic to apply at each step of the iterative 

approach. The results that reported in Chapter 5 demonstrate that 

effectiveness of the learning multi-objective hyper-heuristic approach when 

compared to the one with no learning mechanism. This is understandable, as 
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it has been observed that the learning mechanism adaptively successfully 

guides the search process towards the POF.  In our learning multi-objective 

choice function based hyper-heuristic framework, we employed four 

performance metrics (Algorithm effort (AE), Ratio of non-dominated 

individuals (RNI), Size of space covered (SSC) and Uniform distribution of a 

non-dominated population (UD)) to act as an online learning mechanism to 

provide knowledge of the problem domain to the selection mechanism.  The 

motivation behind choosing these metrics is that they have been commonly 

used for performance comparison of approaches for multi-objective 

optimisation to measure different aspects of the final non-dominated solutions 

in the objective space (Tan et al., 2002).  In addition, they do not require a 

prior knowledge of the POF, which means that our framework is suitable for 

tackling real-world problems in future studies (see Chapter 8). Four 

performance metrics are integrated into a ranking scheme that we introduced 

in this study for the first time (see Section 4.2). The task of online learning 

ranking scheme is to score the performance of low level heuristics. Unlike the 

ranking scheme used in Vázquez-Rodríguez and Petrovic (2012) which orders 

the algorithms based on their probabilities against the performance indicators’ 

using a mixture of experiments, our ranking scheme relies on sorting the low 

level heuristics in descending order based on the highest ranking among the 

other heuristics. Our ranking scheme is simple and flexible and enables us to 

incorporate any number of low level heuristics.  

 

 9.1.2 Three Multi-objective Choice Function Based Hyper-

heuristics.  

 
There is strong empirical evidence showing that different combinations 

of heuristic selection and acceptance methods in a selection hyper-heuristic 

framework yield different performances in single-objective optimisation 

(Burke et al., 2012). In this thesis, we investigated the influence of combining 

different acceptance methods under our online learning multi-objective choice 

function based hyper-heuristic framework that presented in Chapter 4.  Three 

multi-objective choice function based hyper-heuristic combined with different 

move acceptance strategies including All-Moves as a deterministic move 

acceptance and Great Deluge Algorithm (GDA) and Late Acceptance (LA) as a 

non-deterministic move acceptance are presented in Chapters 5, 6 and 7 

respectively. 
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 The first multi-objective hyper-heuristic is utilised the choice function as 

a heuristic selection method and All-Moves as a deterministic move 

acceptance strategy (HHMO_CF_AM) (see Chapter 5).  The choice function 

based hyper-heuristic was initially reported to perform well when combined 

with All-Moves acceptance for solving a single-objective optimisation problem 

(Cowling et al., 2002c).  Thus, we chose All-Moves as a move acceptance 

strategy in our multi-objective hyper-heuristic framework, meaning that we 

accept the output of each low level heuristic whether it improves the quality 

of the solution or not.  

A number of experiments are conducted to examine the performance of 

HHMO_CF_AM comparing to the low level heuristics (NSGAII, SPEA2 and 

MOGA), when used in isolation. It was shown that HHMO_CF_AM can benefit 

from the strengths of the low level heuristics. Unfortunately, it cannot avoid 

the weaknesses of them fully, as the poor performance of MOGA affects the 

performance of HHMO_CF_AM badly with respect to the ratio of non-

dominated individual (RNI) by producing low number of non-dominated 

solutions. Another reason is that our multi-objective hyper-heuristic 

framework does not employ any archive mechanisms to maintain the number 

of individual in the population. To overcome this issue, we had two options: 

(i) employing an archive mechanism or (ii) employing a different move 

acceptance strategy that allows worsening moves to a limited degree. As we 

aim to keep our multi-objective hyper-heuristic framework in the same level 

of abstraction and not to break the domain barrier by incorporating an archive 

mechanism along the low level heuristics, the first option is ignored.  So, we 

employed another acceptance strategy instead of All-Moves to avoid 

acceptance of all worsening moves.  

In Chapters 6 and 7, we investigated the behaviour of great deluge 

algorithm (GDA) and late acceptance (LA) as non-deterministic move 

acceptance strategies under the choice function based hyper-heuristic 

framework designed for solving multi-objective optimisation problems. To the 

best of our knowledge, for the first time, this study investigated the influence 

of move acceptance component of selection hyper-heuristics for multi-

objective optimisation. The motivation for choosing GDA and LA as acceptance 

criteria is that both are simple and do not depend on many parameters, 

requiring less effort for parameter tuning. More importantly, encouraging 

results have been reported in the literature for single-objective optimisation, 
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but there are a few studies on their application to multi-objective optimisation 

(e.g. Petrovic and Bykov, 2003). The GDA and LA as move acceptance 

strategies require computation of the change in the value of a single-objective 

at each step and so the use of D performance metric (Zitzler, 1999) is 

proposed in order to be able to utilise those move acceptance methods under 

the proposed multi-objective framework. D metric is usually used in the 

literature as a performance metric to compare the final solutions obtained 

from multi-objective optimisers. In this thesis, we used D metric integrating 

into move acceptance criterion in order to covert the multi-objective 

optimisation to the single-objective optimisation without definition of criteria 

values' weights. D metric is used as a way of comparing two non-dominated 

sets of solutions in the objective space. The goal is set to as optimising 

(maximising) the D metric instead of a set of objectives simultaneously (see 

Sections 6.2 and 7.2). The choice function great deluge based hyper-heuristic 

(HHMO_CF_GDA) and choice function late acceptance based hyper-heuristic 

(HHMO_CF_LA) outperforms the choice function all-moves based hyper-

heuristic (HHMO_CF_AM), indicating that the non-deterministic move 

acceptance strategies (GDA and LA) improve the performance of the multi-

objective choice function based hyper-heuristic. Moreover, the multi-objective 

choice function based hyper-heuristics using non-deterministic move 

acceptance can successfully avoid accepting worse moves which result in the 

production of a low number of non-dominated individuals, as in the case of 

the original approach (HHMO_CF_AM). The main drawback of our selection 

multi-objective hyper-heuristic is not exhibiting the feature of multi-objective 

evolutionary algorithms, which act as low level heuristics.  They are stochastic 

and the decision of the acceptance move is made after a single run only. To 

overcome this, we can execute each low level heuristic for many runs then 

make the acceptance move decision, but this is could be computationally 

expensive.  

 

9.1.3 Application of Proposed Hyper-heuristics to 

Benchmark Test Problems and Real-world Problems 

 

  In this thesis, our multi-objective choice function based hyper-

heuristics are evaluated over two problems; the Walking Fish Group (WFG)  

test problems (Huband et al., 2006) as our multi-objective benchmark test 

dataset and the multi-objective vehicle crashworthiness design problem (Liao 

et al., 2008) as a real-world problem. 
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The WFG test suite includes different test problems which consist of a 

wide range of characteristics and features (see Section 3.3.3). The WFG test 

suite has a number of instances that have features that are not included in 

other test suites, such as ZDT and DTLZ.  Moreover, the WFG test suite is an 

excellent tool for comparing the performance of EAs, and they are the 

common choice for most MOEA researchers (Huband et al., 2006).  

Our multi-objective choice function based hyper-heuristics presented in 

this thesis produced good results with acceptable quality over the nine WFG 

test problems including bi-objective and tri-objective. These results are 

reported in Chapters 5 and 7. We evaluated our approaches using two 

objective and three objective problems. In Chapter 4, the choice function 

heuristic selection combined with All-moves acceptance method 

(HHMO_CF_AM) are compared to the low level heuristics on their own. It was 

shown that HHMO_CF_AM performs better than MOGA over the bi-objective 

WFG test functions in terms of the distribution of non-dominated individuals 

along the POF., HHMO_CF_AM obtains competitive results performing better 

than NSGAII in terms of convergence towards the POF. However, 

HHMO_CF_AM fails to deliver a better performance as compared to NSGAII 

and SPEA2 in terms of number of non-dominated solutions. HHMO_CF_AM 

cannot avoid the weakness of MOGA with respect to this quality measure. 

Still, HHMO_CF_AM outperforms the adaptive multi-method search 

(AMALGAM) (Vrugt and Robinson, 2007) over the same test instances. The 

superiority of HHMO_CF_AM is due to online learning heuristic selection 

mechanism and the effective ranking scheme. The ranking scheme maintains 

the past performance of low level heuristics using a set of performance 

indicators that measure different aspects of the solutions. During the search 

process, the ranking scheme creates a balance between choosing the low 

level heuristics and their performance according to a particular quality metric. 

This balance enhances the algorithm performance to yield better solutions 

that converge toward the POF as well as distribute uniformly along the POF. 

In Chapter 7, it was shown that the two multi-objective choice function 

hyper-heuristics that combined with great deluge and late acceptance as non-

deterministic move acceptance criteria (HHMO_CF_GDA and HHMO_CF_LA) 

superior to the multi-objective choice functions based hyper-heuristic that 

combined with All-Moves as deterministic move acceptance criterion 

(HHMO_CF_AM) over both bi-objective and tri- objective WFG test functions. 
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The non-deterministic move acceptance methods in particularly GDA and LA 

improve the overall performance of the hyper-heuristic with respect to the 

number of the solutions, convergence and diversity. However, All-Moves still 

performs the best and produces better solutions in terms of the uniform 

distribution of non-dominated solutions. The success of HHMO_CF_AM with 

respect the uniform distribution of non-dominated solutions might be due to 

the use of the D metric into acceptance procedure for multi-objective non-

deterministic acceptance based hyper-heuristics. Since D metric is a binary 

hypervolume measure that is designed to compare two sets of non-dominated 

solutions with respect of their convergence towards the POF, there is no 

consideration regarding how uniformly these solutions are distributed along 

the POF. This might also be a reason for why non-deterministic move 

acceptance procedures obtain high quality solutions in terms of the 

convergence towards the POF. In general, multi-objective choice function 

great deluge based hyper-heuristic (HHMO_CF_GDA) performs the best over 

WFG instances. The results in Chapter 7 provide an empirical evidence of 

mixing different combination of meta-heuristics under a selection hyper-

heuristic framework yields with an improved performance. The use of the 

combination of the choice function as selection method and great deluge 

algorithm as acceptance strategy positively affect the performance of the 

multi-objective hyper-heuristics. The superiority of multi-objective choice 

function great deluge based hyper-heuristic is due to the acceptance 

procedure employed. Analysis of GDA behaviour as acceptance move strategy 

within the multi-objective choice function based hyper-heuristics framework is 

provided in Chapter 6.      

Moreover, this observation is supported further by empirical evidence 

obtained from evaluating our multi-objective choice-function based hyper-

heuristics against NSGAII over the vehicle crashworthiness design problems 

(See Chapter 8). The multi-objective choice function grate deluge based 

hyper-heuristic (HHMO_CF_GDA) beats others methods for solving both the 

original vehicle crashworthiness problem with three objectives and its bi-

objective additional instances. HHMO_CF_GDA excels NSGAII over all 

instances of the problem. Although other multi-objective choice function 

based hyper-heuristics still produce solutions with acceptable quality, they 

could not perform better as well as NSGAII.  The reason of this relies on the 

move acceptance strategy they are employed.   
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  The results of both benchmark test problems (WFG) and the real-world 

problems (vehicle crashworthiness design) demonstrate the capability and 

potential of the multi-objective hyper-heuristic approaches in solving 

continuous multi-objective optimisation problems. The choice function great 

deluge based hyper-heuristic (HHMO_CF_GDA) mixing and managing 

population based multi-objective meta-heuristic algorithms turns out to be the 

best choice for multi-objective optimisation rather than running each meta-

heuristic algorithm on its own. 

9.2 Future Work  
 

Our multi-objective choice function based hyper-heuristic framework 

which is used for managing a set of multi-objective meta-heuristics offers 

interesting potential research directions in multi-objective optimisation. We 

recommend three directions for future work as follows: 

9.2.1 From the High Level Strategy Perspective 

 

The empirical experiments demonstrate that combining different 

(meta)heuristic selection and move acceptance methods as components 

within a selection hyper-heuristic framework yield different performances in 

single-objective optimisation (Burke et al., 2012). In this thesis, we have 

adapted choice function as selection methods combined with three different 

acceptance methods, which are all-moves, great deluge algorithm and late 

acceptance, for multi-objective optimisation. More heuristic selection methods 

and can be adapted from previous research in single-objective optimisation 

and used for multi-objective optimisation. This process is not a trivial process 

requiring elaboration of existing methods and their usefulness in a multi-

objective setting.  Also other acceptance criteria such as simulated annealing 

(SA) and tabu search (TS) could be employed as a move acceptance 

component within our hyper-heuristic framework for multi-objective 

optimisation. As those criteria involve many parameters, this methodology 

would require initial experiments to tune the parameters for multi-objective 

settings such defining a cooling schedule and an initial temperature for SA 

and aspiration criterion and tabu tenure for TS. 
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In the context of multi-objective choice function great deluge based 

hyper-heuristic, it is suggested to tuning the rain speed (UP) parameter 

automatically based on the number of total moves in the search process in 

order to investigate great deluge algorithm as a move acceptance with re-

levelling mechanism. This process requires resetting a water level (LEVEL) 

and setting a new rain speed rate (UP).  This suggestion could improve the 

quality of results obtained from the original multi-objective choice function 

great deluge based hyper-heuristic that presented in this thesis (see Chapter 

6). And make it applicable for wide range of problems. This may require 

further implementation of the high level strategy and more experiments could 

be done over the WFG test suite and other test problems. 

9.2.2 From the Low Level Heuristics Perspective 

 

Our multi-objective choice function based hyper-heuristic framework is 

designed to be highly flexible and its components can be reusable and easily 

replaceable. In this thesis, we employed and combined the strengths of three 

well-known multi-objective evolutionary algorithms (NSGAII, SPEA2, and 

MOGA) within our multi-objective selection hyper-heuristic framework (see 

Chapter 4). It would be interesting to employ other MOEA optimisers and 

other population-based methods to act as low level heuristics within the same 

framework. We anticipate that different low level heuristics could yield 

different performances. It would be so beneficial if replace MOGA with other 

more advance methods such as MOEA/D (Li and Zhang, 2009).  There is huge 

numbers of low level heuristics choices possible and therefore great scope for 

research. Recent multi-objective hyper-heuristics studies obtain promising 

results. This is the case in MCHH (McClymont and Keedwell, 2011) using 

Evolution Strategies, and in AMALGAM (Vrugt and Robinson, 2007) using 

Particle Swarm Optimisation (Kennedy, 2001), Adaptive Metropolis Search 

(Haario et al., 2001) and Differential Evolution (Storn and Price, 1997). 

 

9.2.3 From the Problem Domain 

 
 

In this thesis, we evaluate our multi-objective choice function based 

hyper-heuristics over both problems: the WFG test suite (Huband et al., 

2006) as our multi-objective benchmark test dataset and multi-objective 

vehicle crashworthiness design (Liao et al., 2008) as real-world problem. It 

would be interesting to test the level of generality of our multi-objective 
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hyper-heuristics framework further on some other problems and domains 

including the continuous real-valued constrained, combinatorial, discrete and 

dynamic problems. The real-world water distribution networks design 

problems are applied to recent multi-objective hyper-heuristics studies in 

Raad et al. (2010) and McClymont et al. (2013) and produce encouraging 

results. In addition, extending our selection hyper-heuristics for many 

objectives optimisation would be an interesting direction research. This 

process might require adaptation of diversity management procedures and 

modification of Pareto-dominance.  
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