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Abstract 
 

The primary aim of this thesis is to present an investigation on the application of 

multi-objective evolutionary algorithms (MOEAs) to solve a few real-world 

scheduling problems with vastly different characteristics. Real-world scheduling 

problems are generally complex, large scale, constrained, and multi-objective in 

nature that classical operational research techniques are inadequate at solving them 

effectively. Optimal solutions to these problems in today’s productivity-oriented 

world would have significant economic and social consequences. In this thesis, a 

generic MOEA framework is devised and problem-specific operators are then 

designed to adapt the MOEA to solve the different scheduling problems. The research 

documented in this thesis represents one of the pioneering works on multi-objective 

optimization of each of the scheduling problems investigated. 

One of the scheduling problems considered in this thesis is a two-objective exam 

timetabling problem (ETTP), which involves the scheduling of exams for a set of 

university courses into a timetable such that there are as few occurrences of students 

having to take exams in consecutive periods as possible but at the same time 

minimizing the timetable length and satisfying hard constraints such as limited 

seating capacity and no overlapping exams. While existing approaches require prior 
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knowledge of the timetable length in order to be effective, the MOEA proposed in 

this thesis provides a more general solver to the ETTP by including the timetable 

length as an optimization objective. 

A berth allocation problem (BAP), which requires the determination of exact 

berthing times and positions of incoming ships in a container port, is also studied in 

this thesis. The BAP considers three objectives of minimizing makespan, waiting 

time, and degree of deviation from a predetermined priority schedule, which represent 

the interests of both port and ship operators. The experimental results reveal several 

interesting relationships between the objectives, justifying the multi-objective 

approach to the problem, which has never been explored for this problem. 

This thesis also considers a three-objective vehicle routing problem with 

stochastic demand (VRPSD), which involves the routing of a set of identical vehicles 

with limited capacity from a central depot to a set of geographically dispersed 

customers to satisfy their demands. Unlike the ETTP and the BAP, where all aspects 

of the problem are known at the point of solving the problem, the VRPSD is a 

stochastic optimization problem and some problem parameters are uncertain during 

the solution-searching process. In the VRPSD, the actual demand of each customer is 

unknown during the routing process but is revealed only when the vehicle reaches the 

customer. The experimental results show that the solutions obtained by the MOEA 

are robust to the stochastic nature of the problem. 
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Chapter 1  

Introduction 
 

1.1 Background 

In everyday life, we are often confronted with a variety of optimization problems 

which require decisions to be made so as to obtain the best attainable results out of 

limited available resources. Some examples include deciding what type of transport 

to take, what household chore to be done next, and what groceries to buy. For these 

routine tasks, the decision to be made for, say, the cheapest form of transportation to 

get to our destination can be very obvious. Consider now the situation where we are 

running late for a meeting due to some unforeseen circumstances. Since the need for 

expedition is conflicting to the first consideration of minimizing cost, the selection of 

the right form of transportation is no longer as straightforward as before and the final 

solution will represent a compromise between the two objectives. This type of 

problems, which involves the simultaneous consideration of multiple conflicting 

objectives, is commonly termed as multi-objective problems. 
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In a single-objective optimization problem, the notion of optimality is 

straightforward. The best solution is the one that realizes the minimum or the 

maximum of the objective function. However, in a multi-objective optimization 

problem, the notion of optimality is not that obvious. Since no one solution can be 

termed as optimal in the face of multiple conflicting objectives, the goal of multi-

objective optimization lies in finding the set of tradeoff solutions that is better than 

the other solutions in the entire search space when considering all the objectives. To 

be specific, within this set of tradeoff solutions, known in the literature as the Pareto-

optimal set, no one solution is better than any other solution in terms of the multiple 

objectives. For any solution in the search space not in the Pareto-optimal set, there is 

at least one solution in the Pareto-optimal set that is better than the former in terms of 

all the objectives. Based on the Pareto-optimal set, the decision maker can then make 

an informed decision on which of the tradeoff solutions to pick for actual 

implementation. This sums up the whole solution process for multi-objective 

optimization. 

 

1.2 Motivation 

Multi-objective optimization problems can be found in various fields, including 

engineering, bioinformatics, logistics, economics, finance, or wherever optimal 

decisions need to be made in the presence of tradeoffs between two or more 

conflicting objectives. This research investigates multi-objective optimization in 

scheduling problems. 
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1.2.1 Multi-Objective Optimization in Scheduling Problems 

Scheduling can be regarded as a decision making process which involves the 

allocation of limited resources to tasks over time. One of the more popular definitions 

of scheduling was given by Wren (1996), who stated that “Scheduling may be seen as 

the arrangement of objects into a pattern in time or space in such a way that some 

goals are achieved, or nearly achieved, and that constraints on the way the objects 

may be arranged are satisfied, or nearly satisfied”. From the definition of Wren 

(1996), it is clear that scheduling problems are typically characterized by a number of 

goals (or objectives) and constraints. It can also be seen from the definition that it 

may not always be possible for all the constraints in scheduling problems to be 

completely satisfied. This leads to the classification of scheduling problem 

constraints into hard and soft constraints based on their criticality. Hard constraints 

are those that must be satisfied at all cost in order for the schedule to be feasible. 

Failure to completely satisfy this class of constraints would render the schedule 

useless. On the other hand, the satisfaction of soft constraints is considered desirable 

but it is not absolutely essential for the complete satisfaction of this class of 

constraints. In fact, the satisfaction of soft constraints is typically modeled as the 

objectives of scheduling problems such that the number of soft constraint violations is 

required to be minimized. As such, given that the objectives of scheduling problems 

include their original objectives as well as the minimization of soft constraint 

violations, they are naturally multi-objective optimization problems. 
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1.2.2 Multi-Objective Evolutionary Algorithms 

In this research, evolutionary algorithms (EAs) are applied for multi-objective 

optimization in scheduling problems. EAs are a class of stochastic optimization 

techniques introduced in the 1960s by Fogel et al. (1966) and in the 1970s by 

Rechenberg (1973) and Holland (1975). EAs work by simulating biological evolution. 

They operate on a population of candidate solutions that increasingly adapts to the 

problem domain through an iterative process of biologically inspired operators, 

including selection, crossover, and mutation. They have the capability to produce 

near-optimal, if not exact-optimal, solutions for multi-dimensional problems and thus 

have been successfully applied to a wide variety of problems (Ross and Corne, 1994). 

An EA that is employed in the multi-objective optimization context is known in the 

literature as a multi-objective evolutionary algorithm (MOEA). 

 

1.2.3 Why are Evolutionary Algorithms Suitable for Multi-Objective Problems 

The classical approach to a multi-objective optimization problem involves forming an 

aggregate objective function based on the weighted sum of the objectives, where the 

weight associated with an objective is proportional to the preference assigned to that 

particular objective. This method effectively converts the multi-objective problem 

into a single-objective one. The optimization based on this aggregate objective 

function may then lead the search to one of the tradeoff solutions in the Pareto-

optimal set. The solution obtained using this approach is highly dependent on the 

weight vector used in forming the aggregate objective function. Changing the weight 
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vector may (or may not) yield another solution in the Pareto-optimal set. Another 

problem with this approach is that the process of finding an appropriate weight vector 

is highly subjective. It requires an analysis of non-technical, qualitative, and 

experience-driven information to find a quantitative weight vector representing the 

preferences of the decision maker (Deb, 2001). Moreover, the process has to be 

carried out without any knowledge of the likely set of tradeoff solutions or how the 

multiple objectives are related to one another. 

Although the classical multi-objective optimization approach described above 

has a number of deficiencies, it is not difficult to understand that its development was 

motivated by the fact that classical optimization techniques are designed to find a 

single solution in each simulation run. Such techniques use a point-to-point approach, 

which involves searching iteratively from an incumbent solution to its neighborhood, 

and are capable of generating only one solution per simulation run. As such, there 

was a need to convert the task of finding multiple tradeoff solutions of a multi-

objective problem to one of finding a single solution of a transformed single-

objective problem. However, with the advent of EAs in recent years, the landscape of 

the field of optimization has changed drastically. The most prominent difference 

between EAs and classical optimization techniques is that EAs operate on a 

population of candidate solutions and their end product is also a population of 

solutions. If an EA is applied to a single-objective problem, one can expect the 

population of solutions to converge to the optimal solution. On the other hand, if the 

problem has more than one optimal solution, the EA can capture the multiple 

solutions in its final population. This ability of EAs to find multiple optimal solutions 



 

6 

in a single simulation run makes them natural solvers of multi-objective optimization 

problems. 

 

1.2.4 Why are Evolutionary Algorithms Suitable for Scheduling Problems 

Scheduling problems are well-known to be NP-complete (Garey and Johnson, 1979; 

Karp, 1972). This means that there is no known algorithm that is capable of finding 

optimal solutions to scheduling problems in polynomial time. Even though there are 

exact algorithms that guarantee finding optimal solutions to some simplified forms of 

scheduling problems, these approaches generally take too long to generate 

meaningful solutions when the problem size gets larger or when additional 

constraints are added. 

Solving scheduling problems is not a new research topic. Many solution methods 

have been proposed and implemented. Early approaches solved simplified versions of 

the problem exactly. However, it soon became apparent that real-world scheduling 

problems are so large and complex that it is simply impossible to consider every 

single solution in the search space to find exact solutions. As a result, focus was 

shifted to designing heuristic methods to find good, near-optimal, solutions or to 

simply find feasible solutions for the really difficult problems. Most research now 

involves designing better heuristics for specific instances of scheduling problems. 

However, such heuristic methods are typically limited to a specific set of constraints 

or problem formulation. The complex and combinatorial nature of scheduling 

problems then led many researchers to experiment with EAs as a solution method. 
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EAs are well-known for their ability to solve non-linear and combinatorial problems. 

They are also often noted for searching large, multi-modal spaces effectively since 

they operate on a population of solutions, which allows them to sample multiple 

candidate solutions simultaneously. Unlike exact algorithms, EAs do not promise 

optimal solutions but they focus their search on more promising areas in the search 

space, allowing them to find near-optimal solutions within acceptable time. EAs also 

do not require any gradient or problem-specific information, making them a more 

general solver of scheduling problems compared to heuristic methods.  

 

1.3 Organization of this Thesis 

The suitability of EAs to solve multi-objective scheduling problems presented in this 

chapter provided the main motivation for the research documented in this thesis. The 

primary aim of this thesis is to present an investigation on the application of MOEAs 

to solve a few scheduling problems with vastly different characteristics. A generic 

MOEA framework will first be devised. Problem-specific operators are then designed 

to adapt the MOEA to solve the different scheduling problems considered in this 

thesis. 

The organization of the remaining portion of this thesis is as follows. Chapter 2 

provides a brief review of multi-objective optimization and MOEAs. Basic concepts 

of multi-objective optimization, including Pareto dominance and Pareto optimality, 

are introduced. Some MOEA design issues are also highlighted. The chapter also 

describes several state-of-the-art MOEAs and their features for handling multi-
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objective optimization. Chapter 3 presents the framework of the generic MOEA that 

will be applied to solve three very different scheduling problems in this thesis. The 

program flow and several problem-independent components of the MOEA are 

described in detail. 

Chapter 4 considers the application of the MOEA on a two-objective exam 

timetabling problem (ETTP). The ETTP involves the scheduling of exams for a set of 

university courses into a timetable such that there are as few occurrences of students 

having to take exams in consecutive periods as possible but at the same time 

minimizing the timetable length and satisfying hard constraints such as limited 

seating capacity and no overlapping exams. 

Chapter 5 studies a berth allocation problem (BAP) which requires the 

determination of exact berthing times and positions of incoming ships in a container 

port. Unlike the two-objective ETTP, the BAP considers three objectives of 

minimizing makespan, waiting time, and degree of deviation from a predetermined 

priority schedule. These objectives represent the interests of both port and ship 

operators. 

A multi-objective vehicle routing problem with stochastic demand (VRPSD) is 

considered in Chapter 6. The VRPSD involves the routing of a set of identical 

vehicles with limited capacity from a central depot to a set of geographically 

dispersed customers to satisfy their demands. Unlike the ETTP and the BAP, where 

all aspects of the problem are known at the point of solving the problem, the VRPSD 

is a stochastic optimization problem and some problem parameters are uncertain 

during the solution-searching process. In the VRPSD, the actual demand of each 
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customer is unknown during the routing process but is revealed only when the vehicle 

reaches the customer.  

Finally, the contributions of this thesis and some directions for future work are 

discussed in Chapter 7. 
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Chapter 2  

A Review of Multi-Objective 

Evolutionary Algorithms 
 

2.1 Basic Concepts of Multi-Objective Optimization 

In real-world problems, the quality of a solution can rarely be measured by a single 

criterion. In fact, several criteria are usually used to gauge the quality of a solution 

and these criteria have different nature and importance and are usually conflicting 

with one another, i.e. an improvement in one of the criteria can only be achieved at 

the expense of worsening another. In many cases, the criteria are also 

incommensurable, i.e. there is no common standard of comparison for the criteria. 

This gives rise to the need for effective multi-objective optimization techniques that 

are able to generate solutions that respect the various criteria of a problem. 

There are generally three approaches to multi-objective optimization in the 

literature (Goicoechea et al., 1982; Steuer, 1986). 
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1) Combining the objectives: As mentioned in the introduction, this is one of 

the classical approaches to multi-objective optimization. It involves forming an 

aggregate objective function based on the weighted sum of the objectives and 

converts the multi-objective problem into a single-objective one. Although the 

approach is simple and allows existing single-objective algorithms to be directly 

applied to solve the problem, the optimization outcome is highly susceptible to the 

choice of weights used in aggregating the various objectives. 

2) Optimizing one objective at a time: This approach involves optimizing with 

respect to one objective at a time while imposing constraints on the other objectives. 

The problem with this approach is that the optimization outcome is highly dependent 

on the order in which the objectives are considered for optimization. 

3) Optimizing all objectives simultaneously: This approach, also known as 

Pareto optimization, uses the concept of Pareto dominance, which was formulated by 

the French economist Vilfredo Pareto (1848 – 1923), to compare the optimality of 

solutions. 

The first two approaches require preference information from the decision maker 

before they perform the search process and are known as a priori approaches. On the 

other hand, Pareto optimization, which is the main approach studied in this thesis, is 

an a posteriori approach that does not depend on the decision maker’s preferences. It 

aims to find the set of Pareto-optimal solutions from which the decision maker can 

choose the most preferable one. The strategies that a decision maker uses to pick a 

solution from the Pareto-optimal set is studied in another field known as multi-

attribute decision making (Vincke, 1992), which is out of the scope of this thesis.  
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2.1.1 Pareto Dominance and Optimality 

The concepts of Pareto dominance and Pareto optimality are fundamental in the 

Pareto optimization approach to multi-objective problems, with Pareto dominance 

forming the basis for solution quality comparison. 

Consider two distinct vectors U = (u1, u2, u3, …, uk) and V = (v1, v2, v3, …, vk) 

representing the objective values of two solutions for a k-objective minimization 

problem. There are three possible relationships between the two solutions, which are 

defined by Pareto dominance (Dasgupta et al., 1999; Van Veldhuizen and Lamont, 

2000; Zitzler, 1999): 

 Strong dominance: U strongly dominates V (denoted by U ≺  V) if ui < vi, 

for i = 1, 2, 3, …, k. 

 Weak dominance: U weakly dominates V (denoted by U ≺  V) if ui ≤ vi, for i 

= 1, 2, 3, …, k and ui < vi, for at least one i. 

 Incomparable: U and V are incomparable (denoted by U ~ V) if neither U 

(strongly or weakly) dominates V nor V (strongly or weakly) dominates U. 

Fig. 2.1 provides an illustration of the three Pareto dominance relationships 

highlighted above for a two-objective example. With solution A as the point of 

reference, the regions highlighted in different shades of grey in the figure represent 

the three different dominance relations. Solutions located in the dark grey region are 

strongly dominated by solution A because A is better in both objectives. For the same 

reason, solutions located in the white region strongly dominate solution A. Although 

A has a smaller objective value as compared to the solutions located at the boundaries 
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between the dark and light grey regions, it only weakly dominates these solutions by 

virtue of the fact that they share a similar objective value along either one dimension. 

Solutions located in the light grey regions are incomparable to solution A because it 

is not possible to establish any superiority of one solution over the other since the 

solutions in the left light grey region are better only in the second objective while the 

solutions in the right light grey region are better only in the first objective. 

In this thesis, weak dominance is used to distinguish the quality of two solutions, 

i.e. as long as a solution weakly dominates another solution, it is considered to be the 

better solution (out of the two). For convenience, weak dominance will be referred to 

as dominance in the rest of this thesis. 

 

Strongly Dominates

Incomparable Strongly Dominated

Incomparable

Objective 1

Objective 2

A

 

Fig. 2.1 Illustration of Pareto dominance relationship 
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With the definition of Pareto dominance, the set of solutions desirable for multi-

objective optimization can now be more formally defined. A solution x is said to be 

non-dominated with respect to a set of solutions S if there is no other solution in S 

that dominates x, although it is likely that there are solutions in S that are 

incomparable to x. Based on this concept of non-dominance, it is clear that the aim of 

multi-objective optimization is to find the set of all non-dominated solutions in the 

entire search space. As mentioned in the introduction, this set of solutions is known 

as the Pareto-optimal set. All the solutions in the Pareto-optimal set are incomparable 

with one another and for any solution in the search space not in the Pareto-optimal set, 

there is at least one solution in the Pareto-optimal set that dominates the former. The 

solutions in the Pareto-optimal set compose a boundary between the space which 

contains the dominated solutions and the infeasible region where no solution exists. 

This boundary is known as the tradeoff surface or the Pareto-optimal front. It can be 

depicted as a hyperplane in the k-dimensional space, where k is the number of 

objectives. For a two-objective example, shown in Fig. 2.2, the Pareto-optimal front 

is presented as a curve. It can also be seen from Fig. 2.2 that each objective 

component of any solution in the Pareto-optimal set can only be improved by 

degrading at least one of its other objective components (Srinivas and Deb, 1994). 
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Objective 1

Objective 2

Infeasible Region

Pareto-Optimal Front

Pareto-Optimal Solutions

 

Fig. 2.2 Illustration of Pareto-optimal front 

 

2.1.2 Quality of an Obtained Pareto Front 

The Pareto-optimal set and Pareto-optimal front introduced in the previous section 

represent an ideal solution that a multi-objective optimization algorithm should aspire 

to achieve. However, due to the complexity of real-world problems, one can only 

hope to obtain a Pareto set of solutions (also referred to as Pareto solutions) that can 

approximate the Pareto-optimal set as much as possible, i.e. the corresponding Pareto 

front obtained should be as close as possible to the Pareto-optimal front. Furthermore, 

in many real-world problems, there is no knowledge of the localization of the Pareto-

optimal set or the shape of the Pareto-optimal front. As such, there is a need to define 
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some criteria to determine how good an obtained Pareto set of solutions is. These 

criteria are listed below (Deb, 2001; Zitzler, 1999): 

 The closeness between the obtained Pareto front and the Pareto-optimal front 

(assuming the Pareto-optimal front is known). 

 A good distribution of solutions along the obtained Pareto front. 

 A wide spread of solutions along the obtained Pareto front. 

 Maximize the number of Pareto solutions obtained. 

While the first criteria of getting solutions that are as close as possible to the 

optimal solutions is the primary consideration of all optimization problems, the 

remaining criteria are unique to multi-objective optimization and they sought to 

obtain a diverse set of solutions. The rationale of finding a diverse and uniformly 

distributed set of solutions is to provide the decision maker with sufficient 

information about the tradeoffs between the different solutions before the final 

decision is made. It should also be noted that some of the criteria listed above are 

conflicting in nature, which further explains why multi-objective optimization is 

much more challenging than single-objective optimization. 

 

2.2 Multi-Objective Evolutionary Algorithms 

The EA is one of the first meta-heuristics to be adapted for multi-objective 

optimization (Van Veldhuizen and Lamont, 2000) due to its population-based nature, 

which makes EAs well-suited for finding multiple tradeoff solutions in a multi-

objective problem. In this section, the functions of the different components of an EA 
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are discussed and a brief review of some of the more representative MOEAs in the 

literature is provided. 

 

2.2.1 Evolutionary Algorithms 

The EA is a general purpose optimization tool inspired by Darwin’s theory of 

evolution (Goldberg, 1989; Michalewicz, 1999). The basic idea in EAs is to generate 

a population of individuals (representing a population of candidate solutions) and 

evolve this population, by means of selection, recombination, and mutation, over a 

number of generations. Fig. 2.3 shows the pseudo-code of a typical EA. Evolution is 

driven by a selection mechanism, which is based on the principle of survival-of-the-

fittest (Dawkins, 1976) and marks fitter individuals (higher quality candidate 

solutions) as parents. Recombination is implemented by a crossover operator, which 

combines two or more parents to form one or more offspring (new candidate 

solution). On the other hand, self-adaptation is implemented by a mutation operator, 

which makes small random perturbations to offspring. The selection mechanism 

serves to ensure that better candidate solutions participate to generate the next 

generation of (hopefully even better) solutions. The purpose of crossover is to 

propagate good solution components from parent solutions to their offspring, while 

the purpose of mutation is to add diversity to the population of candidate solutions. 

The three operators of selection, crossover, and mutation are fundamental to any EA 

and each operation of the trio represents the passing of a generation. After a series of 

improvement in every generation, at the termination of the EA when the stopping 
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criterion is satisfied, it is expected that the population of candidate solutions converge 

to a set of high quality solutions. 

 

Generate initial population; 
REPEAT 
 Evaluate each individual in the population; 
 Select individuals to act as parents; 
 Apply Crossover to parents to create offspring; 
 Apply Mutation to offspring; 
 Select parents and offspring to form the new population; 
UNTIL stopping criterion is satisfied; 

Fig. 2.3 Pseudo-code of a typical EA 

 

Designing an effective EA involves the careful selection of the following 

components. 

1) Solution representation: The representation of solutions as individuals (or 

chromosomes due to the evolutionary operators of crossover and mutation having 

roots in the field of biology) is one of the most important issues in designing an EA. 

The choice of representation fundamentally influences the design of the other 

components in the EA. A good representation helps to ensure that the entire search 

space can be explored as much as possible. There are generally three types of 

representation. Direct representation, such as permutation-based representation 

(Carretero et al., 2007; Middendorf et al., 2002; Prins, 2000) and table/matrix 

representation (Hu and Di Paolo, 2009; Kacem et al., 2002; Miwa et al., 2002), 

encodes solutions in a straightforward way. Indirect representation (Aickelin and 

Dowsland, 2004; Cowling et al., 2002; Hindi et al., 2002) requires additional steps to 

generate the final solutions from the chromosomes. Rule-based representation 
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(Jahangirian and Conroy, 2000; Su and Shiue, 2003; Tay and Ho, 2008) involves 

using the EA to evolve the rules for constructing the actual solutions. 

2) Selection mechanism: Unlike solution representation, choosing an 

appropriate selection mechanism is less problem-dependent since its main purpose is 

to distinguish the better solutions from a population of solutions. As such, most EAs 

use one of the several prescribed selection mechanisms available in the literature 

(Coley, 1999). One of these methods is the fitness-proportionate selection scheme, 

where the probability of an individual being selected to be a parent is proportional to 

its fitness. Another common selection mechanism is the tournament selection scheme, 

where the population is divided into groups and the individuals within each group 

compete to be selected as parents. One of the main design considerations of a 

selection mechanism is its selection intensity (Vajda et al., 2008). While it is usually 

acceptable for a selection scheme to always pick the best solutions as parents, one has 

to be careful of it driving the EA towards premature convergence. Furthermore, some 

inferior individuals may have useful solution components which may lead the search 

towards the optimal solutions. As such, it is recommended that a selection scheme 

offers a small non-zero chance that inferior solutions get selected as parents as well. 

3) Crossover: The idea of crossover operation is similar to mating behavior in 

nature. In most EAs, two parents are selected from the population and new 

individuals are created by taking information from both of the parents. This 

interaction can be perceived as an information exchange session among different 

individuals in a society. The crossover operator has evolved from the traditional 

single-point crossover into a variety of interesting procedures today.  Some of the 
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more popular crossover operators that have been applied in scheduling problems 

include order crossover (Goldberg, 1989; Wang and Zheng, 2003), cycle crossover 

(Hussain et al., 2002; Michalewicz, 1999; Moraglio et al., 2006), partial mapping 

crossover (Goh et al., 2003; Sahu and Tapadar, 2007; Wang and Zheng, 2003), and 

edge crossover (Hussain et al., 2002; Ponnambalam et al., 2002; Sokolov et al., 

2005). Choosing a suitable crossover operator is one of the key factors that will 

determine the quality of optimization results (Deb and Beyer, 2001; Deb et al., 

2002a). 

4) Mutation: In contrast to crossover, mutation is a unary operator that involves 

only a single individual. The initial aspiration of using mutation is to prevent the EA 

from converging onto a local optimum in the search space. The rate at which 

mutation is applied to offspring is usually set to a small number as high mutation 

activity would destroy the convergence behavior of the optimization process. As such, 

the mutation rate is an important design parameter that has to be chosen carefully. 

Some popular mutation operators that have been applied in scheduling problems are 

swap mutation (Shaw and Fleming, 2000; Shrivastava and Dhingra, 2002; Zhang et 

al., 2006), swift mutation (Burdett and Kozan, 2000; Puljic and Manger, 2005), 

insertion mutation (Basseur et al., 2002; Ishibuchi et al., 2003; Oĝuz and Ercan, 

2005), and order mutation (Hart et al., 1999; Varela et al., 2003). 

5) Constraint handling: In constrained problems, such as scheduling problems, 

it is very likely that the application of the evolutionary operators of crossover and 

mutation would generate infeasible solutions. Although a careful selection of the 

solution representation or a creative design of the evolutionary operators may allow 
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the EA to operate within feasible regions of the search space, this is not possible in 

most problems. The choice then is either to allow constraint violations but penalize 

them in the objective function or to reject the infeasible solution and apply the 

evolutionary operators repeatedly until a feasible solution is achieved or to design 

repair heuristics to search for a feasible alternative to the infeasible solution. Each of 

these approaches has its pitfalls. The first approach does not force the search to 

feasible regions of the search space and it is likely that the algorithm would waste 

computation effort searching within the infeasible regions, while the other two 

approaches may excessively increase the computation time of the algorithm due to 

the need to find a feasible solution each time an infeasible solution is encountered. An 

effective design of the constraint handling features in an EA is pertinent to the 

success of the algorithm. 

6) Elitism: The way in which the offspring and parents combine to form the new 

population for the next generation is another design consideration that has a direct 

effect on the optimization performance of an EA. A non-elitist strategy replaces all 

individuals in the current population while an elitist one always keeps the best 

solutions found to date in the population. The former approach may result in a slow 

convergence while the latter may cause the search to be trapped in a local optimum. 

From the various EA design considerations discussed above, it can be seen that 

there are many challenges involved in designing an effective EA. Some of these 

challenges involve solving multi-objective problems themselves. After deciding on 

the design of the various components of an EA, there is also a need to fine-tune the 
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various parameters, such as crossover rate, mutation rate, and population size, 

associated with the EA. 

 

2.2.2 State-of-the-Art Multi-Objective Evolutionary Algorithms 

In this section, six popular MOEAs, with various features for handling multi-

objective optimization problems and maintaining population distribution on the 

tradeoff surface, are briefly described and discussed in chronological order. 

1) Vector evaluated genetic algorithm (VEGA): The VEGA, proposed by 

Schaffer in 1985 (Schaffer, 1985), is widely recognized as the first MOEA to be 

developed. VEGA basically consists of a simple genetic algorithm with a modified 

selection mechanism. In each generation, a number of sub-populations are generated 

by performing selection based on each objective function in turn. As such, for a k-

objective problem and a population of size P, k sub-populations of size P/k each are 

generated. These sub-populations are then shuffled together to obtain a new 

population of size P, on which the evolutionary operators of crossover and mutation 

are applied in the conventional manner. VEGA has several problems, of which the 

most serious is that its selection scheme is opposed to the concept of Pareto 

dominance. Based on the operations of VEGA, it is likely that a Pareto-optimal 

solution, which is a good compromise of all the objectives but not the best in any of 

them, will be discarded. 

2) Multi-objective genetic algorithm (MOGA): Fonseca and Fleming (1993) 

proposed the MOGA with a Pareto ranking scheme that assigns the same smallest 
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rank value for all non-dominated individuals, while the dominated ones are ranked 

according to how many individuals in the population are dominating them. MOGA 

also uses a niche-formation method, which involves computing a similarity threshold 

σshare for determining the radius of each niche and fitness sharing of solutions within a 

niche, for diversifying the population. Fonseca and Fleming (1998) extended the 

domination scheme in MOGA to include goal and priority information for multi-

objective optimization. This allows the algorithm to make use of user knowledge, 

such as preference on certain objective components, optimization constraints, and 

approximated attainable regions of the Pareto front. 

3) Niched Pareto genetic algorithm (NPGA): The salient feature of the NPGA 

(Horn and Nafpliotis, 1993; Horn et al., 1994) is a special tournament selection 

scheme based on the concepts of Pareto dominance and fitness sharing. Two 

individuals are chosen at random from the population and they are each compared 

with a subset of the population. If one is non-dominated and the other is not, the non-

dominated one is selected. In the event of a tie, i.e. both are either dominated or non-

dominated with respect to the chosen set of individuals, fitness sharing is used to 

determine the outcome of the tournament. 

4) Non-dominated sorting genetic algorithm (NSGA): The basic idea behind 

NSGA (Srinivas and Deb, 1994) is the ranking process executed before the selection 

operation. In the ranking procedure, the non-dominated individuals in the population 

are first identified. These individuals are assumed to constitute the first non-

dominated front with a large dummy fitness value. The same fitness value is assigned 

to all of them. In order to maintain diversity in the population, a sharing method is 
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then applied. Subsequently, the individuals in the first front are ignored temporarily 

and the rest of the population is processed in the same way to identify individuals for 

the second non-dominated front. A dummy fitness value that is kept smaller than the 

minimum shared dummy fitness of the previous front is assigned to all the individuals 

belonging to the new front. This process continues until the whole population is 

classified into non-dominated fronts. A stochastic remainder proportionate selection 

scheme is then applied to ensure that individuals in the first front have a higher 

chance of being selected for reproduction than the rest of the population. NSGA has 

been criticized for its high computational complexity, non-elitist approach, and the 

need to specify a sharing parameter. These criticisms led to the development of 

NSGA-II (Deb et al., 2002b), which has become one of the most popular Pareto 

optimization techniques in the multi-objective optimization community. 

5) Strength Pareto evolutionary algorithm (SPEA): In SPEA (Zitzler and 

Thiele, 1999), an archive population is maintained on top of the evolving population. 

At each generation, the non-dominated individuals in the evolving population are 

copied to the archive population and any dominated individual in the archive 

population is removed. If the number of individuals in the archive population exceeds 

a predefined threshold, the archive population is pruned by means of clustering. 

Individuals in the archive population are ranked with reference to the members of the 

evolving population, while individuals in the evolving population are evaluated with 

reference to the members of the archive population. Fitness sharing is also included in 

SPEA, where niches are not defined in terms of distance but are based on Pareto 
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dominance. An improved version of SPEA, named SPEA2, was later developed by 

Zitzler et al. (2001). 

6) Pareto archived evolution strategy (PAES): The PAES was proposed as a 

local search approach for multi-objective optimization of an offline routing problem 

(Knowles and Corne, 1999) and was later applied to solve a broad range of problems 

(Knowles and Corne, 2000). The algorithm uses a (1 + 1) evolution strategy, where 

each parent generates one offspring through mutation. Like SPEA, an archive 

population is maintained to collect non-dominated solutions. For diversity, the 

algorithm generates a grid overlaid on the search space and counts the number of 

solutions in each grid to evaluate how crowded the region that each solution lies in is. 

A candidate solution is discarded if it is dominated by the incumbent solution or any 

solution in the archive population. On the other hand, the candidate solution is added 

to the archive population and replaces the incumbent solution if it dominates the 

incumbent solution. In the final case, where the candidate and incumbent solutions 

are incomparable, the decisions of which solution to be the next incumbent solution 

and whether to include the candidate solution in the archive population are made 

based on the crowding mechanism. The (1 + 1)-PAES was later generalized to the (μ 

+ λ)-PAES with μ incumbent solutions and λ offspring (Knowles and Corne, 2000). 

The algorithms described above are just some of the more representative MOEAs 

in the literature. Other MOEA-based approaches available in the literature include 

non-generational evolutionary algorithm (Valenzuela-Rendón and Uresti-Charre, 

1997), multi-objective messy genetic algorithm (MOMGA) I and II (Van Veldhuizen 
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and Lamont, 2000), Pareto envelope-based selection algorithm (PESA) (Corne et al., 

2000), incrementing multi-objective evolutionary algorithm (IMOEA) (Tan et al., 

2001c), micro-genetic algorithm for multi-objective optimization (Coello Coello and 

Pulido, 2001; Pulido and Coello Coello, 2003), Pareto converging genetic algorithm 

(PCGA) (Kumar and Rockett, 2002), general multi-objective parallel genetic 

algorithm (GENMOP) (Keller and Lamont, 2004; Knarr et al., 2003), multi-objective 

hierarchical Bayesian optimization algorithm (mohBOA) (Pelikan et al., 2005), ε-

multi-objective evolutionary algorithm (ε-MOEA) (Deb et al., 2005), fast Pareto 

genetic algorithm (FastPGA) (Eskandari et al., 2007), and omni-optimizer (OmniOpt) 

(Deb and Tiwari, 2008). 

 

2.3 Summary 

Despite the state-of-the-art MOEAs that have been reviewed in this chapter, the 

application of MOEAs to scheduling problems is not that straightforward. Many of 

these algorithms cannot operate directly on combinatorial problems. The exhaustive 

analysis of these algorithms accomplished in the literature mostly concentrates on 

benchmark test problems, whose optimal solutions are known or can be computed 

exactly. These problems usually come with relatively well-structured solution spaces 

that have friendly neighborhood compared to combinatorial problems. Many existing 

evolutionary operators are designed for conventional representations that are geared 

towards solving the benchmark test problems and are not suitable for scheduling 

problems. As such, there is a need to investigate the frameworks of these state-of-the-
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art MOEAs and make necessary modifications to them before they can be applied to 

solve scheduling problems. 
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Chapter 3  

The Multi-Objective Evolutionary 

Algorithm Framework 
 

This chapter details the framework of the multi-objective evolutionary algorithm 

(MOEA) designed to solve the scheduling problems studied in this thesis. The 

algorithmic flow of the MOEA is shown in Fig. 3.1. The discussions in this chapter 

will place emphasis on the problem-independent components of the algorithm, while 

problem-specific features will be highlighted in the respective chapters. 
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Fig. 3.1 Flowchart of MOEA 

 

3.1 Solution Representation 

As defined in the introduction, scheduling is a decision making process which 

involves the allocation of limited resources to tasks over time. As such, resource and 

task are two entitles that have to be represented in the chosen solution representation. 

Unlike conventional EAs, which use a string representation, the MOEA uses a two-

dimensional representation (Fig. 3.2), where the columns represent the resources and 

the rows represent the tasks allocated to each resource. If the number of resources is 



 

30 

fixed, it is referred to as a fixed-length chromosome, otherwise it is referred to as a 

variable-length chromosome. Both representations are used in the MOEA depending 

on the problem to be solved. It is also to be noted that the number of tasks allocated 

to every resource does not need to be the same. 
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Task 4
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Fig. 3.2 Two-dimensional representation used in MOEA 

 

3.2 Initialization 

At the start of the program in Fig. 3.1, problem-specific data is loaded. After which, a 

population of chromosomes is initialized. The population initialization process 

involves the use of some problem-specific heuristics, coupled with a stochastic 

element, to ensure that the initial population covers the more promising areas of the 

search space evenly. 
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3.3 Evaluation and Archiving 

After the initial evolving population is formed, all the chromosomes are evaluated 

based on the objective functions and ranked using the Pareto ranking scheme 

(Fonseca and Fleming, 1993), which assigns the same smallest rank value for all non-

dominated chromosomes, while the dominated ones are ranked according to how 

many chromosomes in the population are dominating them. In Fig. 3.3, a population 

of seven hypothetical solutions, obtained for a two-objective minimization problem, 

is plotted in the objective domain. Each solution defines a rectangular box 

encompassing the origin as shown in the figure. Based on the principle of Pareto 

dominance defined in Section 2.1.1, for each solution, another solution will dominate 

the solution if and only if it is within or on the box defined by the first solution but 

not equal to the first solution in terms of the two objectives. The rank of each of the 

solutions is also shown in the figure. The rank of a solution is given by (1 + q), where 

q is the number of solutions in the population dominating the solution. For a three-

objective problem, the above explanation still applies, except that each solution will 

now define a three-dimensional box encompassing the origin instead of a two-

dimensional rectangle. 
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Fig. 3.3 Example to demonstrate Pareto ranking scheme 

 

Following the ranking process, an archive population is updated. The archive 

population has the same size as the evolving population and is used to store all the 

best solutions found during the search.  The archive population updating process 

consists of a few steps. The evolving population is first appended to the archive 

population. All repeated chromosomes, in terms of the objective domain, are deleted. 

Pareto ranking is then performed on the remaining chromosomes in the population. 

The higher ranked (weaker) chromosomes are then deleted such that the size of the 

archive population remains the same as before the updating process. The evolving 

population remains intact throughout the updating process.  
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3.4 Genetic Operations 

The binary tournament selection scheme is utilized in the MOEA. All the 

chromosomes in the evolving population are randomly grouped into pairs and from 

each pair, the chromosome with the lower rank is selected for reproduction. This 

procedure is performed twice to preserve the original population size. The genetic 

operators of crossover and mutation are then applied. To further improve the quality 

of solutions, problem-specific local search operators are applied to the evolving and 

archive populations at regular intervals for better local exploitation in the 

evolutionary search. 

 

3.5 Elitism 

A simple elitism mechanism is employed in the MOEA for faster convergence. The 

elitism strategy involves randomly picking a number of non-dominated solutions (5% 

of the population size) from the archive population. The chosen solutions then replace 

the worst ranked solutions in the evolving population. 

 

3.6 Stopping Criterion 

The operations described in Sections 3.3, 3.4, and 3.5 represent one complete 

generation of the MOEA and the evolution process iterates until the stopping criterion 
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is satisfied. Unless otherwise stated, the stopping criterion dictates that the evolution 

process terminates after a predefined number of generations. 

 

3.7 Summary 

This chapter presented the framework of the multi-objective evolutionary algorithm 

(MOEA) designed to solve the scheduling problems that will be studied in the 

subsequent chapters. A description of the problem-independent components of the 

algorithm has been given. Problem-specific operators are designed to adapt this 

general framework to solve the different scheduling problems. 
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Chapter 4  

Multi-Objective Optimization in 

Examination Timetabling – A 

More General Approach 
 

This chapter considers the application of the multi-objective evolutionary algorithm 

(MOEA) described in the previous chapter on a two-objective exam timetabling 

problem (ETTP). The ETTP involves the scheduling of exams for a set of university 

courses into a timetable such that there are as few occurrences of students having to 

take exams in consecutive periods as possible but at the same time minimizing the 

timetable length and satisfying hard constraints such as limited seating capacity and 

no overlapping exams. While existing approaches require prior knowledge of the 

timetable length in order to be effective, the MOEA proposed in this chapter provides 

a more general solver to the ETTP by including the timetable length as an 

optimization objective. 
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4.1 Introduction 

The exam timetabling problem (ETTP) is a widely studied combinatorial 

optimization problem that commonly arises in universities. In recent years, the 

problem has been getting increasingly difficult as universities are enrolling more 

students into a wider variety of courses including an increasing number of combined 

degree courses (Merlot et al., 2003). The basic problem involves the allocation of a 

set of exams to a number of periods (or time slots) so as to satisfy a set of constraints. 

It follows that different universities have differing views on what constitutes a good 

exam timetable. This has led to many different formulations of the problem 

considering different sets of constraints (Burke et al., 1996b; Carter and Laporte, 

1996; Qu et al., 2009; Schaerf, 1999). However, there are two constraints that are 

universal to all timetabling problems (Burke et al., 1996a; Chan et al., 2002): 

 No student is to be scheduled to take more than one exam at any one time. 

(Violation of this constraint is referred to as a conflict.) 

 For each period, there must be sufficient seats for all the exams that are 

scheduled for that period. 

Due to the criticality of these two constraints, they are usually taken as hard 

constraints which a timetable must satisfy (at all costs) in order to be feasible. On the 

other hand, the other constraints are usually taken as soft constraints which are 

regarded as desirable but not absolutely essential to satisfy all of them. These 

constraints (Burke et al., 1996b) include: 

 No student should have to take more than one exam in consecutive periods.  
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 No student should have to take more than one exam on the same day. 

 Large exams should be held earlier during the exam period to allow enough 

time for grading of the scripts. 

 Some exams can only be held in a limited number of periods. 

 All exams should be scheduled in less than a particular number of periods. 

Quality measures (or objectives) of an exam timetable are usually derived from 

these soft constraints. 

This chapter considers an instance of the ETTP that was first formulated by 

Burke et al. (1996a) but has since received much attention from researchers 

(Abdullah et al., 2007a, 2007b; Caramia et al., 2001; Di Gaspero and Schaerf, 2001; 

Merlot et al., 2003; Wong et al., 2004). On top of considering the two mentioned 

universal hard constraints, the problem involves the minimization of the violation of a 

soft constraint that if a student is scheduled to take two exams in any one day, there 

should be a free period between the two exams. Violation of this constraint will be 

referred to as a clash. This constraint is considered with the aim of spreading out the 

exams for students and allowing them enough time to recover between exams. More 

details of the problem will be given in the problem formulation in Section 4.2.1. 

In minimizing the number of clashes in an exam timetable, Burke and Newall 

(1999) commented that if a large number of periods were allocated, it would most 

likely be the case that the clashes can be eliminated. Burke et al. (1995) also 

mentioned that longer timetables are usually required to reduce the number of clashes 

and that a cap has to be imposed on the number of periods that can be used, otherwise 

every other period would be empty. From these two observations, it is clear that the 



 

38 

ETTP is inherently a multi-objective optimization problem. In minimizing the 

number of clashes in an exam timetable, an algorithm for the ETTP must also ensure 

that the number of periods used is not exceedingly large. Therefore, it is required to 

minimize multiple conflicting cost functions, such as the number of clashes and the 

timetable length, concurrently, which is best solved by means of multi-objective 

optimization. Most of the existing literature, however, use single-objective-based 

heuristic methods that fix the number of periods that a timetable can use (Abdullah et 

al., 2007a, 2007b; Burke et al., 1996a; Caramia et al., 2001; Di Gaspero and Schaerf, 

2001; Merlot et al., 2003). To the authors’ knowledge, only Wong et al. (2004) has 

attempted a multi-objective approach to the ETTP instance that is being considered in 

this chapter. Even then, their approach, which is based on a hybrid multi-objective 

evolutionary algorithm, utilizes a population that is divided into partitions, each of 

which contains timetables of a particular length. During the evolutionary process, the 

lengths of the timetables remain constant. The approach is equivalent to multiple 

executions of the optimization process, each time using a population with a different 

timetable length. The approach and many others also require prior knowledge of the 

timetable length (Abdullah et al., 2007a, 2007b; Burke et al., 1996a; Caramia et al., 

2001; Di Gaspero and Schaerf, 2001; Merlot et al., 2003). While it has to be 

acknowledged that universities traditionally know the approximate duration over 

which the whole examination procedure spans, resulting in most of the existing ETTP 

research to focus on fixed-length timetables, this approach is hardly optimal from an 

operational research point of view. Given that the number of students and their course 

preferences vary for each intake, it is unacceptable that the same timetable length be 
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used for scheduling exams every year. As such, it is believed that a general algorithm 

for the ETTP should be able to generate feasible timetables even without presetting 

the timetable length, especially when a new instance of the problem is first 

encountered and probably only a range of desired timetable lengths is provided by the 

timetable planner. 

In solving the ETTP, the multi-objective evolutionary algorithm (MOEA) 

framework described in Chapter 3 is used. The MOEA incorporates two local search 

operators, namely a micro-genetic algorithm (MGA) and a hill-climber, for local 

exploitation in the evolutionary search. The algorithm also employs an intuitive 

variable-length chromosome representation that allows the timetable length to be 

manipulated during the evolutionary process. In contrast to existing single-objective-

based approaches, the MOEA utilizes a goal-based Pareto ranking scheme to solve 

the multi-objective ETTP. In addition, the algorithm imports several features from the 

research on the graph coloring problem.  

The developed MOEA is tested against a few influential and recent optimization 

techniques on the Toronto benchmarks (Carter et al., 1996) and on the Nottingham 

instance (Burke et al., 1996a), which are the most widely studied datasets in the exam 

timetabling community. The participating algorithms include Burke et al. (1996a), 

Caramia et al. (2001), Di Gaspero and Schaerf (2001), Merlot et al. (2003), Wong et 

al. (2004), and Abdullah et al. (2007a, 2007b).  

This chapter is organized as follows: Section 4.2 gives a brief description of the 

current state of research on the ETTP as well as the problem formulation of the ETTP 

instance that is being considered in this chapter. Section 4.3 presents the problem-
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specific features of the MOEA designed for solving the ETTP. Section 4.4 presents 

extensive simulation results and analysis of the proposed algorithm. Conclusions are 

drawn in Section 4.5. 

 

4.2 Background Information 

4.2.1 Problem Formulation 

As mentioned in the previous section, this chapter considers an instance of the ETTP 

that was first formulated by Burke et al. (1996a). In this problem, a set of exams 

{ }1 2, ,...,e e eΕΕ =  is to be scheduled into a set of periods { }1,2,...,Ρ = Ρ , with each 

period having a seating capacity S. There are three periods per weekday and a 

Saturday morning period. No exam is held on Sundays. It is assumed that the exam 

period starts on a Monday. 

The problem can be formally specified by first defining the following: 

 aip is one if exam ie  is allocated to period p, zero otherwise. 

 cij is the number of students registered for exams ie  and je . 

 si is the number of students registered for exam ie . 

The corresponding mathematical formulation is as follows: 
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(4.1) and (4.2) are the two objectives of minimizing the number of clashes and 

timetable length, respectively. (4.3) is the constraint that no student is to be scheduled 

to take two exams at any one time, while (4.4) states a capacity constraint that for 

each period, there must be sufficient seats for all the exams that are scheduled for that 

period. These two hard constraints define a feasible timetable. (4.5) indicates that 

every exam can only be scheduled once in any timetable. 

 



 

42 

4.2.2 Existing State of Research 

The ETTP is an annual or semiannual problem for universities and is widely studied 

by many operational research and computational intelligence researchers due to its 

complexity and practicality. A wide range of approaches for solving the problem have 

been proposed and discussed in the existing literature. These approaches can be 

divided into the following broad categories (Carter, 1986; Petrovic and Burke, 2004; 

Qu et al., 2009): graph-based sequential techniques, clustering-based techniques, 

constraint-based techniques, meta-heuristics, multi-criteria techniques, hyper-

heuristics, and case-based reasoning techniques. 

The ETTP, or timetabling problems in general, without any soft constraint, can 

be modeled as graph coloring problems (Burke et al., 2004a; Carter, 1986). In this 

model, exams are represented as vertices and conflicts between exams are represented 

as edges between the vertices (Burke et al., 2004a; Carter and Johnson, 2001; de 

Werra, 1985). By taking each color to represent a period in the timetable, the task is 

then to color the vertices so that no two adjacent vertices have the same color. Several 

graph coloring heuristics (Brelaz, 1979; Broder, 1964; Carter et al., 1996; Wood, 

1968) have been proposed in the literature. These heuristics order the exams in some 

way, e.g. exams with the largest conflict potential first, and then each exam is 

assigned to a period in that order. Although these heuristics have been widely 

employed in exam timetabling, they are seldom used alone but hybridized with other 

search methods (Asmuni et al., 2005; Burke et al., 1995, 1998a; Burke and Newall, 

1999, 2004; Caramia et al., 2001; Carter et al., 1996; Di Gaspero and Schaerf, 2001). 
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This is primarily due to their limitation where early assignments may lead to 

unavailability of feasible periods for exams left later in the construction process. 

Clustering-based techniques divide exams into groups such that the exams within 

each group satisfy all hard constraints. The groups are then assigned to periods with 

the aim of minimizing the violation of soft constraints (Balakrishnan et al., 1992; 

Lotfi and Cerveny, 1991; White and Chan, 1979). 

In constraint-based techniques, such as constraint logic programming 

(Hentenryck, 1989) and constraint satisfaction techniques (Brailsford et al., 1999), 

exams are represented as finite-domain variables while periods to which an exam can 

be assigned to without violating any constraint are represented by the values within 

the domain of the variable representing the exam. Values (periods) are then 

sequentially assigned to variables (exams) and when no value can be assigned to a 

particular variable later in the assignment process, a backtracking procedure enables 

the reassignment of values until a feasible timetable is constructed. Like graph-based 

sequential techniques, constraint-based techniques are seldom used on their own since 

they usually cannot provide high quality solutions (Brailsford et al., 1999). They are 

often employed in hybrid algorithms to find an initial feasible solution whose quality 

is then improved by other intensive search methods (David, 1998; Duong and Lam, 

2004; Merlot et al., 2003). 

Meta-heuristics form the bulk of some of the most successful techniques that 

have been applied to the ETTP in the past decade. The MOEA proposed in this 

chapter as well as the few state-of-the-art approaches used to benchmark the 

performance of the MOEA belong to this category of exam timetabling solvers. Meta-
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heuristics can be further divided into two sub-categories – local search-based and 

population-based. Local search-based meta-heuristics, which include tabu search 

(Paquete and Stützle, 2003; White and Xie, 2001; White et al., 2004), simulated 

annealing (Bullnheimer, 1998; Burke et al., 2004b; Dowsland, 1996; Duong and 

Lam, 2004; Thompson and Dowsland, 1996a, 1996b, 1998), variable neighborhood 

search (Burke et al., 2006a; Hansen and Mladenovic, 2001; Mladenovic and Hansen, 

1997), great deluge algorithms (Burke and Newall, 2003; Burke et al., 2004b; Yang 

and Petrovic, 2005), and greedy randomized adaptive search procedures (GRASP) 

(Casey and Thompson, 2003), involve searching from an incumbent solution to its 

neighborhood and are distinguished by their neighborhood structures and moving 

strategies. Caramia et al. (2001), Di Gaspero and Schaerf (2001), Merlot et al. (2003), 

and Abdullah et al. (2007a, 2007b) all fall under this sub-category. Caramia et al. 

(2001) developed a local search method based on a set of heuristics. After 

constructing an initial solution, their algorithm uses a spreading heuristic to reduce 

the number of clashes while not extending the timetable length. Another heuristic, 

which extends the timetable by a period and then tries to reduce the number of 

clashes in the extended timetable, is used if the first one fails to register any 

improvement. The process is repeated until no further improvement can be found. Di 

Gaspero and Schaerf (2001) experimented with tabu search. Their tabu search uses a 

short-term tabu list with random tabu tenure. In the tabu search, two solutions are 

neighbors if they differ for the period assigned to a single exam. The neighborhood is 

further reduced by considering only the subset of exams that are involved in 

constraint violation. To improve the quality of solutions, the algorithm uses the 
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shifting penalty mechanism of Gendreau et al. (1994). Merlot et al. (2003) proposed a 

hybrid algorithm consisting of three phases. In the first phase, an initial solution is 

built using constraint programming. The quality of the solution is then improved 

using simulated annealing based on the Kempe chain neighborhood. The last phase 

involves using a hill-climber to further improve the timetable. Abdullah et al. (2007a) 

adopted a large neighborhood approach based on an improvement graph search 

methodology originally developed by Ahuja et al. (2001) for solving a capacitated 

minimum cost spanning tree problem. They designed a cyclic-exchange 

neighborhood that is substantially larger than the traditional two-exchange 

neighborhood structure. In order to improve computational time, they further 

developed their algorithm in a later work to store improvement moves in a tabu list 

(Abdullah et al., 2007b). In contrast to local search-based meta-heuristics where a 

single solution is improved through an iterative process, population-based meta-

heuristics, including genetic algorithms (Erben, 2001; Erben and Song, 2005; Ross et 

al., 1996, 1998, 2003; Sheibani, 2003; Terashima-Marin et al., 1999a, 1999b), 

memetic algorithms (Burke et al., 1998b; Burke and Newall, 1999; Burke and Landa 

Silva, 2004; Côté et al., 2005), evolution strategies (Gani et al., 2004), and ant 

algorithms (Dowsland and Thompson, 2005; Eley, 2007; Naji Azimi, 2004, 2005), 

involve the manipulation of a population of solutions in the search space to solve 

problems. Burke et al. (1996a) and Wong et al. (2004) belong to this sub-category. 

Burke et al. (1996a) developed a memetic algorithm (Moscato and Norman, 1991; 

Radcliffe and Surry, 1994) which interleaves the evolutionary operator of mutation 

with a hill-climber so that the space of possible solutions is reduced to the subspace 
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of local optima. Wong et al. (2004) proposed a hybrid multi-objective evolutionary 

algorithm. In the algorithm, crossover is replaced by two local search operators. The 

first operator is designed to repair infeasible timetables produced by the initialization 

process and the mutation operator. The other local search operator implements a 

simplified variable neighborhood search meta-heuristic to improve the quality of 

timetables. An imperfection often associated with meta-heuristics is that they are 

dependent on parameter tuning and do not work consistently across different ETTP 

instances. This problem is aggravated by the fact that meta-heuristics are reliant on 

domain knowledge, i.e. they use a fixed set of heuristics, and are usually tailor made 

to solve a particular problem. 

Multi-criteria or multi-objective techniques are another category of exam 

timetabling solvers that is very much related to the MOEA proposed in this chapter. 

As mentioned in Section 4.1, any practical ETTP is usually characterized by a 

number of soft constraints which define the objectives of the problem. Most existing 

approaches treat the multi-objective problem as a single-objective one by combining 

all the objectives via a weighting function. Multi-criteria optimization presents a 

more general and flexible approach by considering a vector of objectives, which 

enables all the objectives to be optimized concurrently. Furthermore, it allows a better 

assessment and understanding of the problem by studying the relationship between 

the different objectives which are usually conflicting in nature since they are 

considered from different points of view by different parties involved in the 

timetabling process (Carter and Laporte, 1996). Despite the suitability of multi-

criteria techniques for exam timetabling, there are very few works in the existing 



 

47 

literature that belong to this category (Asmuni et al., 2007; Burke et al., 2001; Côté et 

al., 2005; Paquete and Fonseca, 2001; Paquete and Stützle, 2003; Petrovic and 

Bykov, 2003) and only Wong et al. (2004) has attempted a multi-criteria approach to 

the ETTP instance that is being considered in this chapter. 

In contrast to the above techniques, hyper-heuristics represent a completely 

different approach to exam timetabling. Instead of working in a search space of 

solutions, hyper-heuristics work in a search space of heuristics to select the best set of 

heuristics for solving the current instance of the problem. This category of exam 

timetabling solvers (Ahmadi et al., 2003; Asmuni et al., 2005; Bilgin et al., 2007; 

Burke et al., 2005, 2006b, 2007; Hussin, 2005; Kendall and Hussin, 2003, 2005; Qu 

and Burke, 2005, in press; Ross et al., 2004; Terashima-Marin et al., 1999c; Yang 

and Petrovic, 2005) are motivated by the imperfection of meta-heuristics mentioned 

earlier and are aimed at achieving a higher level of generality. 

Case-based reasoning techniques are a relatively recent approach inspired by the 

human learning process where past experience with a problem is used to solve a 

newly encountered and similar problem. In terms of exam timetabling, the solutions 

of previously solved ETTPs are utilized to aid the search of solutions to new problem 

instances. Such an approach has been employed by Burke et al. (2002, 2005, 2006b) 

and Yang and Petrovic (2005) for exam timetabling. 

For the interested readers, there are also a number of comprehensive survey 

papers on the exam timetabling research in the literature. These include de Werra 

(1985), Carter (1986), Carter and Laporte (1996), Bardadym (1996), Burke et al. 
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(1996b, 1997), Schaerf (1999), Burke and Petrovic (2002), Petrovic and Burke 

(2004), and Qu et al. (2009). 

 

4.3 Multi-Objective Evolutionary Algorithm 

Having seen the framework of the multi-objective evolutionary algorithm (MOEA) in 

Chapter 3, this section presents several problem-specific features of the MOEA 

proposed to solve the ETTP by minimizing concurrently the objectives of number of 

clashes and timetable length. 

 

4.3.1 Variable-Length Chromosome 

Most of the existing approaches in the literature use fixed-length timetables. It was 

mentioned in Section 4.1 that fixed-length timetables inevitably convert the ETTP to 

a single-objective problem even though it is inherently a multi-objective one. Another 

problem with fixed-length timetables is that feasibility cannot be guaranteed since it 

is not always possible to schedule all exams into a fixed-length timetable without 

violating any of the hard constraints. Special fixing operators have to be designed to 

ensure that a feasible timetable can be found (Di Gaspero and Schaerf, 2001; Merlot 

et al., 2003; Wong et al., 2004). 
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Fig. 4.1 Variable-length chromosome representation 

 

In the MOEA, a variable-length chromosome representation (Tan et al., 2003a, 

2003b), shown in Fig. 4.1, is applied such that each chromosome encodes a complete 

and feasible timetable, including the number of periods and the exams scheduled in 

each of the periods. Such a representation is efficient and allows the number of 

periods to be manipulated and minimized directly for multi-objective optimization in 

the ETTP, avoiding the two problems encountered by fixed-length timetables. 

 

4.3.2 Population Initialization 

The population initialization process assumes that a desired range of timetable 

lengths, in the form of maximum and minimum lengths, is provided by the timetable 

planner. For each chromosome, a timetable with a random number of empty periods 

within the desired range is created. Exams are then inserted into randomly selected 

periods of the timetable. The order in which exams are inserted into the timetable is 

determined by heuristics adopted from the research on the graph coloring problem. It 
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is widely known that the basic ETTP is a variant of the graph coloring problem. As 

such, many ETTP researchers have made use of graph coloring heuristics to improve 

the quality of their timetables (Asmuni et al., 2005; Burke et al., 1995, 1998a; Burke 

and Newall, 1999, 2004; Caramia et al., 2001; Carter et al., 1996; Di Gaspero and 

Schaerf, 2001). The heuristics used here are based on the belief that if the insertion 

process concentrates on scheduling those more difficult exams first, it is likely that it 

would have fewer problems at the end scheduling the easier exams. Five versions of 

the MOEA based on five different heuristics are tested in this chapter. The heuristics 

are described below. 

1) Largest degree (LD): Exams with the largest number of conflicts with other 

exams are inserted first. 

2) Color degree (CD): Exams with the largest number of conflicts with other 

exams that have already been scheduled are inserted first. 

3) Saturation degree (SD): Exams with the fewest valid periods, in terms of 

satisfying the hard constraints, remaining in the timetable are inserted first. 

4) Extended saturation degree (ESD): Exams with the fewest valid periods, in 

terms of satisfying both hard and soft constraints, remaining in the timetable are 

inserted first. 

5) Random (RD): Exams are randomly selected for insertion. This is used as a 

benchmark to check whether the other heuristics are having any effect.  

When inserting exams into a timetable, it is very likely that it will come to a 

point when it is not possible to schedule an exam without violating any of the hard 
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constraints. In this case, a new period will be created at the end of the timetable to 

accommodate the exam. 

 

4.3.3 Day-Exchange Crossover 

Crossover operators are the way that evolutionary algorithms allow good 

combinations of genes to be passed between different members of the population. 

However, most of the existing evolutionary algorithms that have been applied to the 

ETTP do not use any crossover operator (Burke et al., 1996a; Burke and Newall, 

1999; Wong et al., 2004). Burke and Newall (1999) commented that their 

experiments with crossover operators for their algorithm have been unfruitful. One 

criticism that has been leveled against the use of standard crossover operators is that 

they ignore the notion that “what is good about any timetable is the temporal 

relationship between exams, rather than their absolute times” (Burke et al., 1995). In 

contrast to standard crossover operators, the day-exchange crossover operator 

adopted by the MOEA is able to perpetuate favorable temporal relationship between 

exams. The operation of this crossover is shown in Fig. 4.2. 

In day-exchange crossover, only the best days (excluding Saturdays since exams 

scheduled on Saturdays are always clash-free) of chromosomes, selected based on the 

crossover rate, are eligible for exchange. The best day consists of three periods and is 

the day with the lowest number of clashes per student. To ensure the feasibility of 

chromosomes after the crossover, duplicated exams are deleted. These exams are 

removed from the original periods while the newly inserted periods are left intact. 
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Fig. 4.2 Illustration of day-exchange crossover 

 

From Fig. 4.2, it can be seen that the timetable lengths for the two chromosomes 

have increased after the crossover operation. In order to control the lengths of 

timetables after crossover, a period control operator is applied. Chromosomes with 

timetable lengths within the desired range, which is provided by the timetable planner 

as mentioned in Section 4.3.2, remain intact, while chromosomes with lengths below 

the minimum length will undergo a period expansion operation and those with 
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lengths above the maximum length will undergo a period packing operation. These 

two operations are described below. 

1) Period expansion: The operation first adds empty periods to the end of the 

timetable such that the timetable length is equal to a random number within the 

desired range. A clash list, consisting of all exams that are involved in at least one 

clash, is also maintained. An exam is randomly selected from the clash list and the 

operation searches in a random order for a period which the selected exam can be 

rescheduled without causing any clashes while maintaining feasibility. The exam 

remains intact if no such period exists. The operation ends after one cycle through all 

exams in the clash list. 

2) Period packing: Starting from the period with the smallest number of 

students, the operation searches in order of available period capacity, starting from 

the smallest, for a period which can accommodate exams from the former without 

causing any clashes while maintaining feasibility. The operation stops when it goes 

one cycle through all periods without rescheduling any exam or when the timetable 

length is reduced to a random number within the desired range. 

 

4.3.4 Mutation 

Mutation operators complement crossover operators in allowing a larger search space 

to be explored. The MOEA implements a mutation operator that is similar to the light 

mutation operator of Burke et al. (1996a). For each chromosome selected for 

mutation based on the mutation rate, the operator removes a number of exams, 
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selected based on the reinsertion rate, from the chromosome. These exams are then 

reinserted into randomly selected periods while maintaining feasibility. Unlike Burke 

et al. (1996a), the reinsertion process is more elaborate and is based on the graph 

coloring heuristics used for population initialization as introduced in Section 4.3.2. 

The order in which exams are reinserted into the timetable is determined by the graph 

coloring heuristic, depending on the version of the MOEA. Like the population 

initialization process, when it is not possible to schedule an exam without violating 

any of the hard constraints, a new period will be created at the end of the timetable to 

accommodate the exam. 

 

4.3.5 Goal-Based Pareto Ranking 

A goal-based Pareto fitness ranking scheme is used in the MOEA to assign the 

relative strength of solutions. The ranking scheme consists of two phases. The first 

phase is similar to the Pareto fitness ranking scheme (Fonseca and Fleming, 1993) 

described in Section 3.3. The second phase of the ranking scheme makes use of the 

desired range of timetable lengths provided by the timetable planner. The desired 

range is used as a goal and solutions not meeting the goal are penalized based on the 

following pseudo-code: 
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IF timetable length > max length THEN 

 rank2 = rank1 + (timetable length – max length) 

ELSE IF timetable length < min length THEN 

 rank2 = rank1 + (min length – timetable length) 

 

rank1 is the rank of a solution after the first phase, whereas rank2 is the adjusted 

rank after the second phase. The goal-based Pareto ranking scheme allows the MOEA 

to focus its search on the desired range of timetable lengths and is similar in principle 

to the goal-sequence domination scheme of Tan et al. (2003c). 

 

4.3.6 Local Exploitation 

It is widely believed that incorporating local search within evolutionary algorithms is 

an effective approach for finding high quality exam timetables (Burke et al., 1996a; 

Burke and Newall, 1999; Di Gaspero and Schaerf, 2001; Gani et al., 2004; Merlot et 

al., 2003; Wong et al., 2004). Local exploitation can contribute to the intensification 

of the optimization results and is usually regarded as a complement to the 

evolutionary operators that mainly focus on global exploration. As such, the MOEA 

utilizes two local search operators, namely a micro-genetic algorithm (MGA) and a 

hill-climber, which are applied to the evolving and archive populations every 20 

generations (setting was chosen after some preliminary experiments). These two 

operators are applied in turn to chromosomes selected based on a tournament 

selection scheme, where all the chromosomes in the respective populations are 
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randomly grouped into fours and from each group, the chromosome with the smallest 

rank is selected. Only a quarter of each of the populations will undergo local 

exploitation. Applying local search to a larger proportion of the population has been 

experimented but no improvement in the results was obtained. A description of the 

two local search operators is given below. 

1) Micro-genetic algorithm: Micro-genetic algorithm (MGA) is a genetic 

algorithm with small population and short evolution (Coello Coello and Pulido, 2001; 

Dozier et al., 1994; Kazarlis et al., 2001; Pulido and Coello Coello, 2003). For each 

solution produced by the main algorithm that is selected for local search, the 

operation solves a smaller, single-objective problem by treating each period as an 

entity and seeks to minimize (4.1) by searching for the optimal order in which the 

periods are placed in the timetable. The chromosome representation used in MGA is 

as shown in Fig. 4.3. 
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2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
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Period 
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MGA Chromosome

 
Fig. 4.3 MGA chromosome representation 

 

The main components of MGA are highlighted below: 

 Initialization: The initial population of MGA is generated by randomly 

shuffling the order of the periods of the solution provided by the main 

algorithm. 
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 Crossover: MGA uses an adapted version of the well-known order crossover 

(Goldberg, 1989; Wang and Zheng, 2003). For each pair of parents, a random 

fragment of the chromosome from one of them is copied onto the offspring. 

The empty positions of the offspring are then sequentially filled according to 

the chromosome of the other parent, following the sequence of periods. The 

roles of the parents are then reversed to produce the second offspring. The 

operation is detailed in Fig. 4.4. 

 

  Parent A   7 3 1 8 2 4 6 5 Parent B   4 3 2 8 6 7 1 5 

1 8 2 7, 3, 4, 6, 5 
Order

4, 3, 6, 7, 5 
 Offspring 7 5 1 8 2 4 3 6 

 
Fig. 4.4 Operation of order crossover 

 

 Mutation: Each period will swap position with a randomly chosen period with 

a probability equal to the swap rate. 

 Selection: A binary tournament selection scheme is used. All the 

chromosomes in the MGA population are randomly grouped into pairs and 

from each pair, the chromosome with the smaller rank is selected for 

reproduction. This procedure is performed twice to preserve the original 

population size. 

 Stopping criterion: MGA stops after a predefined number of generations. 

2) Hill-climber: This operation will be applied on the best solution from MGA 

or the original solution provided by the main algorithm depending on which has a 
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lower number of clashes. In order to identify the most promising moves, a clash list, 

like the one used in the period expansion operator, is maintained. Hill-climber 

operates on a neighborhood defined by randomly selecting an exam from the clash 

list and rescheduling it in another randomly chosen period or swapping periods with 

an exam in the chosen period. To avoid the time consuming process of an exhaustive 

search, only a quarter of the periods will be tested. Hill-climber uses delta evaluation 

(Burke and Newall, 1999; Ross et al., 1994) to avoid performing a full evaluation of 

each move. The move which leads to the greatest decrease in the number of clashes is 

selected and the exam is removed from the clash list. If the exam is still not clash-

free, it will re-enter the clash list after hill-climber has cycled through all the exams in 

the clash list. The operation stops when it has cycled through the clash list five times 

without any improvement in the number of clashes. 

 

4.3.7 Comments on the Desired Range of Timetable Lengths 

Although some of the operations of the MOEA require the timetable planner to 

provide his desired range of timetable lengths, this is not mandatory. Even without 

the information, the MOEA would still be able to generate feasible timetables by 

using an arbitrarily large range. It is believed that this is an important feature which a 

general algorithm for the ETTP should have. In this aspect, the MOEA is superior to 

most existing single-objective-based approaches which require prior knowledge of 

the exact timetable length and only produce single-length timetables (Abdullah et al., 

2007a, 2007b; Burke et al., 1996a; Caramia et al., 2001; Di Gaspero and Schaerf, 
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2001; Merlot et al., 2003). However, providing the MOEA with the desired range of 

timetable lengths would allow the algorithm to focus its efforts on the desired range 

and produce higher quality timetables. 

 

4.4 Simulation Results and Analysis 

The MOEA was programmed in C++ and simulations were performed on an Intel 

Pentium 4 3.2 GHz computer. Table 4.1 shows the parameter settings chosen after 

some preliminary experiments. 

 

Table 4.1 Parameter settings for simulation study 

Parameter Value 

Population size 100 

Generation number 200 

Crossover rate 0.7 

Mutation rate 0.3 

Reinsertion rate 0.02 

MGA population size 20 

MGA generation number 40 

MGA crossover rate 0.7 

MGA mutation rate 0.3 

MGA swap rate 0.3 
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Carter et al. (1996) and Burke et al. (1996a) have made several real enrollment 

datasets for exam timetabling publicly available. Table 4.2 lists the datasets used in 

this chapter together with the characteristics of each dataset. As all the datasets 

indicated their desired timetable lengths instead of the desired range of timetable 

lengths that the MOEA takes as input, a desired range, which includes three periods 

above and below the indicated desired timetable length, is set for each of the datasets. 

For example, the desired range for CAR-F-92 is from 37 to 43 periods. It is to be 

noted that NOT-F-94 indicated two desired timetable lengths. While most single-

objective-based approaches would require two separate runs to obtain two timetables 

with the two desired lengths, the problem can be solved by the MOEA in one run by 

setting the desired range to be from 23 to 29 periods. It is also important to note that 

no fine-tuning of the MOEA was performed and the same parameters as shown in 

Table 4.1 were used in all simulations unless otherwise stated. 

 

Table 4.2 Characteristics of datasets 

Dataset code Number of 
exams 

Number of 
students Enrolment Seating 

capacity 
Number of 

periods 

CAR-F-92 543 18419 55522 2000 40 

CAR-S-91 682 16925 56877 1550 51 

KFU-S-93 461 5349 25113 1995 20 

NOT-F-94 800 7896 33997 1550 23/26 

TRE-S-92 261 4360 14901 655 35 

UTA-S-92 622 21266 58979 2800 38 
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The subsequent sections present the extensive simulation results and analysis of 

the proposed MOEA. Section 4.4.1 studies the performance of the MOEA based on 

the different graph coloring heuristics. Sections 4.4.2 and 4.4.3 present, respectively, 

the contribution of day-exchange crossover and the two local search operators of 

MGA and hill-climber to the performance of the MOEA. Section 4.4.4 demonstrates 

the advantages of multi-objective optimization and at the same time validates the 

relationship between the two objectives of number of clashes and number of periods 

required in a timetable. Section 4.4.5 shows why the MOEA is a more general ETTP 

solver compared to existing single-objective-based approaches. Lastly, Section 4.4.6 

presents the comparison results of the MOEA with a few influential and recent 

optimization techniques. 

 

4.4.1 Performance of Graph Coloring Heuristics 

Several graph coloring heuristics are incorporated in the MOEA during the solution 

initialization process as well as in the mutation operator. These heuristics affect the 

order in which exams are scheduled into the timetable for the two operations and 

have significant impact on the search trajectory of the MOEA. This section studies 

the performance of the MOEA based on the different graph coloring heuristics. 

The five versions of the MOEA, namely LD, CD, SD, ESD, and RD, using the 

different graph coloring heuristics described in Section 4.3.2 were applied to the 

datasets shown in Table 4.2. Ten independent runs of each of the settings on each of 

the datasets were conducted. The results obtained are represented in box plots and are 
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shown in Fig. 4.5. Each box plot represents the distribution of the number of clashes 

for Pareto solutions with the desired number of periods for the 10 runs where the 

horizontal line within the box encodes the median, and the upper and lower ends of 

the box are the upper and lower quartiles, respectively. The two horizontal lines 

beyond the box give an indication of the spread of the data. A plus sign outside the 

box represents an outlier.  
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Fig. 4.5 Performance comparison for different graph coloring heuristics 

 

From Fig. 4.5, considering the medians and the variances of the results, it is clear 

that SD gives the best performance for CAR-F-92, CAR-S-91, and UTA-S-92, while 

ESD works best on NOT-F-94 (for both desired number of periods) and TRE-S-92. 

The results for KFU-S-93 are less conclusive since the MOEA, regardless of version, 

is not able to find solutions with the desired number of periods for some of the runs. 
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Table 4.3 shows the number of runs that the respective versions of the MOEA are not 

able to find solutions having the desired number of periods for the various datasets. 

 

Table 4.3 Comparison of number of runs that a solution with the desired timetable length could not be 
found 

 RD LD CD SD ESD 

CAR-F-92 0 0 0 0 0 

CAR-S-91 0 0 0 0 0 

KFU-S-93 9 8 7 3 9 

NOT-F-94 (23) 9 6 3 0 0 

NOT-F-94 (26) 0 0 0 0 0 

TRE-S-92 0 0 0 0 0 

UTA-S-92 8 0 0 0 0 

 

The results in Table 4.3 show that SD is able to find solutions with the desired 

timetable length for seven out of the 10 runs conducted on KFU-S-93, the most out of 

the five graph coloring heuristics. It is also obvious that KFU-S-93 is the bane of 

ESD since the heuristic is only able to produce one timetable with the desired length 

although its performance is comparable to SD on the other datasets. In general, KFU-

S-93 seems to pose some problems to the MOEA, regardless of version. One 

probable reason for the MOEA’s inability to find feasible timetables with the desired 

length for KFU-S-93 on all the runs could be that the desired number of periods for 

the dataset is set too low and the number of feasible timetables having the desired 

length is very small. Another reason could be that since the MOEA is designed to 
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produce a Pareto set of timetables, its search space is significantly larger than that 

handled by existing single-objective-based approaches. The MOEA has to spread out 

its efforts to find timetables with lengths within the desired range instead of focusing 

only on the desired length. Nonetheless, the MOEA is designed to produce feasible 

timetables even if it is not able to achieve timetables of the desired length. The five 

versions of the MOEA are able to schedule all the exams of KFU-S-93 in 21 periods 

(one period more than desired) for all the simulation runs conducted. This result is a 

consequence of the use of the variable-length chromosome representation in the 

MOEA. The representation is flexible as the length of the timetable is not fixed but is 

allowed to be manipulated during the evolution process. This is unlike most of the 

existing approaches (Abdullah et al., 2007a, 2007b; Burke et al., 1996a; Caramia et 

al., 2001; Di Gaspero and Schaerf, 2001; Merlot et al., 2003) which fix the timetable 

length at the desired length and any exam that cannot be inserted into the timetable 

are left unscheduled. For these approaches, certain operators have to be designed to 

ensure that all exams are scheduled at the end of the optimization process. Merlot et 

al. (2003) designed a greedy heuristic and relaxed a hard constraint by allowing 

students to have two exams scheduled at the same time to tackle the case where not 

all exams are scheduled at the end of the main optimization process. Burke et al. 

(1996a) included in their evaluation function a term to penalize solutions with 

unscheduled exams. Even with these measures, it is not guaranteed that they will be 

able to come up with feasible timetables. This problem becomes even more 

significant when the desired length of timetables is set too low. The MOEA, on the 

other hand, does not face such a problem. The solutions are kept feasible and all 
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exams are scheduled throughout the optimization process since the representation 

allows for the flexibility of increasing the number of periods when the timetable is 

deemed too short to accommodate all the exams. 

Table 4.4 compares the best solutions with the desired timetable lengths obtained 

by the five graph coloring heuristics for all the datasets. Each grid shows the number 

of clashes in the solution and the average computation time over the 10 runs 

performed in brackets. The best solutions for each of the datasets are highlighted in 

boldface. 

 

Table 4.4 Comparison of best solutions and average computation times (in seconds) 

 RD LD CD SD ESD 

CAR-F-92 
427 

(194.5) 

319 

(136.7) 

347 

(142.2) 

240 

(172.2) 

270 

(251.3) 

CAR-S-91 
156 

(141.7) 

91 

(123.3) 

104 

(119.7) 

0 

(183.3) 

0 

(372.3) 

KFU-S-93 
591 

(213.1) 

513 

(206.2) 

665 

(206.9) 

513 

(211) 

698 

(273.6) 

NOT-F-94 (23) 
230 

(217.4) 

211 

(209) 

135 

(199.6) 

18 

(282.8) 

21 

(404.5) 

NOT-F-94 (26) 
52 

(193) 

34 

(184.1) 

17 

(180.2) 

0 

(272.2) 

0 

(419.4) 

TRE-S-92 
6 

(30.8) 

2 

(30) 

0 

(30.1) 

0 

(36.1) 

0 

(50.8) 

UTA-S-92 
701 

(454.4) 

524 

(294.9) 

498 

(284.5) 

439 

(377.7) 

475 

(527.1) 
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From Table 4.4, it is clear that SD dominates over all the other versions of the 

MOEA in terms of generating the best solutions. The results in this section have 

shown that the effectiveness of a graph coloring heuristic depends on the structure of 

the dataset. A heuristic may perform well on some datasets but poorly on others. The 

results have also shown that graph coloring heuristics can significantly improve the 

quality of solutions over the random setting. As such, it is beneficial to incorporate 

some graph coloring heuristics when solving the ETTP but the choice of heuristic is 

crucial to the success of the algorithm. From the above results, it seems that the 

saturation degree heuristic is able to perform well in general. On top of being able to 

find timetables with lower number of clashes, the heuristic is also superior in terms of 

packing exams into a smaller number of periods. Carter et al. (1996), Burke and 

Newall (1999), and Merlot et al. (2003) have also made similar conclusions that the 

saturation degree heuristic gives the best performance. As such, SD is selected as the 

default setting for any further analysis of the MOEA unless otherwise stated. 

 

4.4.2 Contribution of Day-Exchange Crossover to the Performance of MOEA 

It was mentioned in Section 4.3.3 that most of the existing evolutionary algorithms 

that have been applied to the ETTP do not use any crossover operator (Burke et al., 

1996a; Burke and Newall, 1999; Wong et al., 2004). The reason is that many 

researchers find that the inclusion of crossover operators does not bring about any 

improvement in performance. This section presents the performance improvement 

that day-exchange crossover brings to the MOEA. 
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In order to see the effect of day-exchange crossover on the performance of the 

MOEA, the MOEA was applied to the six datasets without using the operator. The 

results of this setting based on 10 independent runs are shown in Fig. 4.6. The results 

of the SD version of the MOEA in Fig. 4.5 have also been included in the plots for 

comparison. A comparison of the number of runs that the two settings are not able to 

find solutions having the desired number of periods for the various datasets is shown 

in Table 4.5. The average computation times over the 10 runs performed are also 

shown in brackets in Table 4.5. 
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Fig. 4.6 Performance comparison for MOEA with and without day-exchange crossover 
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Table 4.5 Comparison of number of runs that a solution with the desired timetable length could not be 
found and average computation times (in seconds) 

 MOEA MOEA without crossover 

CAR-F-92 
0 

(172.2) 

0 

(126.7) 

CAR-S-91 
0 

(183.3) 

0 

(180.7) 

KFU-S-93 
3 

(211) 

2 

(105.4) 

NOT-F-94 (23) 
0 

(282.8) 

2 

(262.9) 

NOT-F-94 (26) 
0 

(272.2) 

2 

(267.4) 

TRE-S-92 
0 

(36.1) 

0 

(37.1) 

UTA-S-92 
0 

(377.7) 

5 

(171.2) 

 

The performance comparison in Fig. 4.6 shows that the MOEA definitely 

performs better with the crossover operator. With the exception of KFU-S-93 and 

NOT-F-94 (23 periods), the MOEA, with day-exchange crossover, is able to produce 

timetables with distinctly lower number of clashes. For NOT-F-94 (23 periods), 

although the results in Fig. 4.6(d) suggest that the MOEA performs slightly better 

without the crossover operator, it has to be noted that the setting is not able to find a 

timetable with the desired number of periods for two of the runs as can be seen in 

Table 4.5. KFU-S-93 continues to pose a problem for the MOEA. As mentioned, it 

seems that the relatively poorer performance of the MOEA on the dataset is due to the 
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dataset’s desired number of periods being set too low such that the number of feasible 

timetables having the desired length is very small. This explanation probably also 

applies for the slightly poorer performance of the MOEA on NOT-F-94 (23 periods) 

in Fig. 4.6(d) since the performance of the MOEA is significantly better with day-

exchange crossover for NOT-F-94 (26 periods) in Fig. 4.6(e). Table 4.5 shows that 

with day-exchange crossover, the MOEA is generally more geared towards finding 

timetables with the desired number of periods. 

 

4.4.3 Contribution of Local Exploitation to the Performance of MOEA 

The MOEA incorporates two local search operators, an MGA and a hill-climber, to 

complement the evolutionary operators of day-exchange crossover and mutation. 

Like the previous section, this section shows the performance of the MOEA with and 

without the local search operators. 

Simulations were conducted using three other settings. MOHC and MOMGA are 

the settings which use solely hill-climber and MGA, respectively, for local 

exploitation. MONLS is the setting that does not use local search at all. Ten 

independent runs of the three settings are again conducted to obtain statistical results 

which are shown in Fig. 4.7. The results of the SD version of the MOEA in Fig. 4.5 

have again been included in the plots for comparison. The average computation times 

over the 10 simulation runs performed are shown in Table 4.6. 
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Fig. 4.7 Performance comparison for MOEA with different local search settings 

 

Table 4.6 Comparison of average computation times (in seconds) 

 MOEA MOHC MOMGA MONLS 

CAR-F-92 172.2 135.3 147.1 111.8 

CAR-S-91 183.3 139.1 160.7 116.7 

KFU-S-93 211 168.3 162.7 118.8 

NOT-F-94 (23) 282.8 178.7 261.8 157.3 

NOT-F-94 (26) 272.2 169.1 251.1 147.6 

TRE-S-92 36.1 22.7 33.7 20.4 

UTA-S-92 377.7 331.1 312.6 273.2 

 

From Fig. 4.7, the contribution of hill-climber to the performance of the MOEA 

is obvious since the two settings which use the operator are able to generate solutions 

with significantly lower number of clashes. In contrast, the effectiveness of MGA is 

relatively more subtle. It is observed that the inclusion of MGA in the MOEA allows 
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a slight performance improvement over MOHC for CAR-F-92, CAR-S-91, KFU-S-

93, NOT-F-94 (23 periods), and UTA-S-92. It was commented that the desired 

number of periods for KFU-S-93 and NOT-F-94 (23 periods) have been set too low. 

The performance improvement attributed to MGA for these two datasets seems to 

agree well with this comment. For these two datasets, due to the low desired 

timetable lengths, the timetable would be very tight and the hill-climber will not be 

able to function to its full potential since the operator requires some allowance to 

move exams between periods. On the other hand, the operations of MGA, which 

sought to find the optimal order in which periods are arranged in a timetable, are not 

affected by how packed the timetable is. Comparing the number of clashes in the best 

solutions obtained by the MOEA and MOHC in Table 4.7, it is obvious that the 

inclusion of MGA in the MOEA is vital to the success of the algorithm. 

 

Table 4.7 Comparison of best solutions 

 MOEA MOHC 

CAR-F-92 240 287 

CAR-S-91 0 0 

KFU-S-93 513 594 

NOT-F-94 (23) 18 28 

NOT-F-94 (26) 0 0 

TRE-S-92 0 0 

UTA-S-92 439 508 
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4.4.4 Performance of Multi-Objective Optimization 

This section presents the multi-objective optimization performance of the MOEA. On 

top of showing the advantages of multi-objective optimization, the relationship 

between the two objectives of number of clashes and number of periods required in a 

timetable will also be validated. 

The main role of the MOEA is to generate a Pareto set of timetables from which 

the timetable planner can make an informed decision. Having seen the results for the 

desired timetable length in the previous sections, the results for the desired range of 

timetable lengths for each of the datasets are plotted in Fig. 4.8. The figures show the 

Pareto set of timetables for a randomly chosen run of each of the five versions of the 

MOEA on each of the datasets. 
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Fig. 4.8 Pareto solutions for the datasets 
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The results in Fig. 4.8 again show that the saturation degree heuristic generally 

produces lower-clash timetables for all the datasets in comparison to the other graph 

coloring heuristics.  

In addition, the relationship between the two objectives of number of clashes and 

timetable length can also be observed from Fig. 4.8. It can be seen that the two 

objectives are conflicting with each other, i.e. any attempt to minimize either of the 

objectives will cause the other objective to increase. This result shows the importance 

of taking a multi-objective approach in solving the ETTP. The MOEA is able to 

minimize concurrently the two conflicting objectives and generate a Pareto set of 

timetables from which the timetable planner can select a solution to implement based 

on whether the priority is to have a smaller number of clashes or to conduct the 

exams in as few periods as possible.  

From Fig. 4.8(b), Fig. 4.8(d), and Fig. 4.8(e), it can be observed that clash-free 

timetables shorter than the desired lengths actually exist. For CAR-S-91, NOT-F-94, 

and TRE-S-92, the MOEA is able to generate clash-free timetables with 49, 25, and 

33 periods, respectively. This is a reduction of up to two periods from the respective 

desired lengths indicated in Table 4.2. These clash-free results would never have 

surfaced for existing single-objective-based approaches that only produce single-

length timetables. 

Experiments were conducted to further examine the multi-objective optimization 

performance of the MOEA. Two additional types of simulations, with settings similar 

to the MOEA but have different optimization criteria (for evolutionary selection 

operation), were performed. The two simulation types are concerned with the single 
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objectives of minimizing the number of clashes (SOC) and the number of periods 

(SOP), respectively. Ten independent runs of each of the simulation types were 

conducted on each of the datasets. The results of this experiment are tabulated in 

Table 4.8. The table shows the values for the two considered objectives averaged over 

all the Pareto solutions. It has to be emphasized that, due to their optimization 

criteria, SOC and SOP produce only one solution each per run. The desired timetable 

length for each of the datasets is also shown in the table under the respective dataset 

codes.  

 

Table 4.8 Performance comparison of different optimization criteria 

  CAR-F-92 
(40) 

CAR-S-91 
(51) 

KFU-S-93 
(20) 

NOT-F-94 
(23/26) 

TRE-S-92 
(35) 

UTA-S-92 
(38) 

Avg. number 
of periods 40.03 49.96 21.37 25.14 33.76 38.70 

MOEA 
Avg. number 

of clashes 359.59 59.70 467.56 52.67 25.07 496.52 

Avg. number 
of periods 48.30 51.90 29.20 27.40 35.56 50.44 

SOC 
Avg. number 

of clashes 118.80 0.00 26.00 0.00 0.00 122.78 

Avg. number 
of periods 35.30 41.10 19.70 22.40 25.90 36.20 

SOP 
Avg. number 

of clashes 1774.90 2297.10 719.40 992.80 945.30 780.50 

 

In Table 4.8, SOC and SOP provide two extreme results. The average number of 

periods of the solutions obtained by SOC for each of the datasets is usually much 

larger than the corresponding desired number of periods. From the relationship 
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between the two objectives, it is therefore expected that SOC generates timetables 

with the lowest number of clashes, which can be seen in Table 4.8. On the other hand, 

the timetables obtained by SOP are usually much shorter than the corresponding 

desired number of periods, resulting in them having the largest number of clashes. 

The MOEA typically produces timetables with lengths around the desired timetable 

length since the average number of periods of its solutions is relatively closer to the 

desired timetable length. This leads to its timetables having more moderate number of 

clashes. To give a visual description of these results, the search spaces in the 

objective domain explored by a random run of each of the three simulation types on 

CAR-F-92, which has a desired timetable length of 40, are plotted in Fig. 4.9. Each 

point in the plots is a point in the objective domain that has been found by the 

respective simulation types during the operation of the algorithm. The scales of the 

plots have been kept the same to allow direct comparison of the search spaces. 
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Fig. 4.9 Comparison of search spaces for different optimization criteria 

 

The plots in Fig. 4.9 show that the three simulation types focus their search 

efforts on different areas of the search space. As can also be seen from the results in 

Table 4.8, SOC is able to find lower-clash timetables but its search is mainly focused 

on longer timetables. From the voids in the search space in Fig. 4.9(a), it is clear that 

very little effort is spent on timetables with lengths around the desired length. From 

Fig. 4.9(b), SOP concentrates on finding shorter timetables and it is the only 

simulation type that is able to find feasible timetables with lengths shorter than 36 

periods. However, the long and low-clash as well as the short but high-clash 
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timetables obtained by these two simulation types are definitely sub-optimal as far as 

the desired timetable length is concerned in this multi-objective optimization 

problem. Furthermore, they tend to focus their search efforts on a few timetable 

lengths while neglecting the rest. On the other hand, it can be seen that the MOEA is 

able to distribute its search efforts to a wider range of periods, focusing particularly 

on the desired range of periods, which includes three periods above and below the 

desired timetable length. As such, it can be observed from Fig. 4.9 that, within the 

desired range of timetable lengths, the solutions obtained by the MOEA are more 

competitive compared to those obtained by the other two single-objective-based 

simulation types. 

 

4.4.5 A General Exam Timetabling Problem Solver 

The previous section has shown how the MOEA, when provided with information of 

the desired range of timetable lengths, can focus its search efforts to the desired areas 

of the search space. This section displays the performance of the MOEA in the 

absence of period information, i.e. the timetable planner does not provide the desired 

timetable length or the desired range of timetable lengths. 

One of the main drawbacks with most of the existing single-objective-based 

approaches (Abdullah et al., 2007a, 2007b; Burke et al., 1996a; Caramia et al., 2001; 

Di Gaspero and Schaerf, 2001; Merlot et al., 2003) is that they rely strongly on a 

desired timetable length input from the timetable planner. Even the multi-objective 

approach taken by Wong et al. (2004) required the period information to be effective 
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in solving the problem. It has been stressed throughout this chapter that a general 

ETTP solver should be able to generate feasible timetables even without presetting 

the timetable length. There are a few features of the MOEA that require the timetable 

planner to provide his desired range of timetable lengths. On top of the goal-based 

Pareto ranking scheme, the period information is utilized in the population 

initialization process as well as the period control operator during crossover. 

Although requiring the timetable planner to provide a desired range of timetable 

lengths is less demanding compared to requiring a desired timetable length input, it 

will definitely be more flexible if the MOEA can still perform its task effectively 

without all these inputs. It has been mentioned in Section 4.3.7 that the MOEA would 

still be able to generate feasible timetables by using an arbitrarily large range as the 

desired range. As such, an experiment was conducted using this version of the 

MOEA, which will be referred to as MONDR, by setting the desired range to be from 

1 to 100 periods. MONDR was applied to the datasets and a comparison between the 

two versions is shown in Fig. 4.10. The plots provide a period-wise comparison of the 

number of clashes of the Pareto timetables found by the two versions. The normal 

Pareto ranking scheme (Fonseca and Fleming, 1993) has been used to post-process 

the timetables found by the two versions to determine the non-dominated timetables 

so as to include timetables that fall outside the desired range of timetable lengths in 

the comparison. For simplicity of comparison, the timetables of a run of the MOEA 

are only compared with their counterparts of the matching MONDR run, i.e. run 1 of 

MOEA is only compared with run 1 of MONDR. As such, a run-wise, period-wise 

comparison is made and a point is awarded to the version with the lower number of 
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clashes. In the case that both timetables have the same number of clashes, the point 

goes to ‘equal’. If any of the versions is not represented by a Pareto timetable for any 

period, i.e. there is a gap in the Pareto front, the timetable with one period shorter is 

used for the comparison. This is equivalent to adding an imaginary period to that 

timetable. However, if there is no shorter timetable, an imaginary timetable with an 

infinitely large number of clashes is used instead. In the case that both versions are 

represented by this imaginary timetable, no point is awarded. The points obtained by 

the two versions for each period is accumulated over the 10 runs. From the above 

description of the comparison system, it can be seen that the total number of points 

obtained by the two versions and ‘equal’ for a particular period is at most 10. If the 

total is less than 10, this implies that both versions are not represented by a timetable 

for that period and they do not have shorter timetables for some of the runs. 
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Fig. 4.10 Performance comparison of MOEA with and without prior period information 

 

In Fig. 4.10, the black portions of the stacked column charts indicate the points 

achieved by the MOEA, while the gray areas indicate the points obtained by 

MONDR in the comparison. The desired timetable lengths for the respective datasets 

have been highlighted in boldface. The MOEA uses the three periods below and 

above the desired timetable length as the desired range of timetable lengths for each 

of the datasets. From the comparison results in Fig. 4.10, it can be observed that the 

MOEA typically generates lower-clash timetables around the desired range of 

timetable lengths. Away from the desired range of timetable lengths, MONDR is 

comparable, if not superior, to the MOEA. The results again show that the three 

features of the MOEA, which make use of the period information, mentioned at the 

beginning of this section, can contribute to the intensification of search efforts to the 

desired range of periods. However, more importantly, the results also show MONDR 

occasionally coming up with comparable or even better solutions within the desired 

range of timetable lengths, as well as its emergence for periods away from the desired 
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range. These results were achieved without prior knowledge of the timetable 

planner’s desired timetable lengths. 

To illustrate the scale of the performance difference between the two versions, 

the Pareto timetables obtained by a random run of MONDR on each of the datasets 

are shown in Fig. 4.11. The Pareto timetables obtained by the SD version of the 

MOEA in Fig. 4.8 have also been included in the plots for comparison. The lowest-

clash timetables having lengths outside the desired range of timetable lengths have 

also been included. Although these timetables are not non-dominated under the 

definition of the goal-based Pareto ranking scheme, they give an indication of the 

performance of the MOEA outside the desired range of timetable lengths. 
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Fig. 4.11 Comparison of Pareto solutions for MOEA and MONDR 

 

From Fig. 4.11, it can be observed that MONDR generally explores a wider 

range of periods. Due to the lack of period information, MONDR does not 
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concentrate its search efforts to any range of periods but distribute the efforts to a 

wider range. The plots in Fig. 4.11 also show that given the understanding that 

MONDR operates without any guidance of priori information, the quality of the 

solutions obtained is generally acceptable when benchmarked against those of the 

MOEA. In contrast, it can be seen from Fig. 4.11(a), Fig. 4.11(b), and Fig. 4.11(e) 

that the timetables outside the respective desired ranges of periods obtained by the 

MOEA are definitely inferior to their counterparts generated by MONDR. The results 

in Fig. 4.10 and Fig. 4.11 are consistent with the ‘No free lunch’ theorem (Wolpert 

and Macready, 1995, 1997). While the MOEA outperforms MONDR within the 

desired range of periods, the opposite occurs outside the range. 

To summarize, the results in this section have shown that given prior period 

information, the MOEA is able to produce lower-clash timetables within the desired 

range of timetable lengths. The requirement of supplying the MOEA with the desired 

range of periods to improve the quality of solutions is definitely less demanding than 

most existing approaches (Abdullah et al., 2007a, 2007b; Burke et al., 1996a; 

Caramia et al., 2001; Di Gaspero and Schaerf, 2001; Merlot et al., 2003), which 

require the availability of the desired timetable length information since they operate 

on single-length timetables. While some may argue that these approaches are still 

able to generate timetables over a desired range of periods through multiple 

executions of the optimization process, each time setting a different timetable length, 

this approach is hardly effective. The main problem comes when a timetable planner 

is not even certain about his desired range of timetable lengths for a newly 

encountered timetabling problem. Although the timetable planner may face the same 
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set of courses every year and experience may tell him the desired timetable length or 

the desired range of timetable lengths to set for the optimization process, the problem 

evolves over time as the course preference of students change and this can greatly 

modify the structure of the problem. The fact that the length of a timetable is itself an 

optimization process further emphasizes the point that the length of a timetable 

should not be set based on experience. The timetable planner might set his desired 

range of timetable lengths but a clash-free timetable could actually exist below that 

range. As such, the importance of a general ETTP solver, which can generate feasible 

timetables even without any period information, has been emphasized throughout this 

chapter. In this aspect, this section has shown that the MOEA is still able to produce 

competitive results by setting it to operate on a large period interval. Of course, the 

timetable planner could then make use of the results obtained by this setting to decide 

on his desired range of timetable lengths and then rerun the MOEA based on this 

range.  

 

4.4.6 Performance Comparison with Established Approaches 

To assess the effectiveness of the MOEA, a comparison with a few influential and 

recent optimization techniques was conducted. Since most of these techniques are 

based on the single-objective approach, the comparison was carried out using the 

desired timetable lengths indicated in Table 4.2. The results of the comparison are 

shown in Table 4.9. In each grid of Table 4.9, there are two numbers representing the 

number of clashes in the best solution (upper) and the average number of clashes in 
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solutions (lower). The best solutions for each of the datasets are highlighted in 

boldface. It has to be noted that there has been some confusion in the literature due to 

the existence of different datasets having the same name (Qu et al., 2009). Efforts 

have been made to ensure that the results in Table 4.9 were all obtained for the 

datasets listed in Table 4.2. This is done so that the results obtained by the various 

optimization techniques can be fairly compared. 

 

Table 4.9 Comparison with other optimization techniques 

 MOEA 
Burke et 

al. 
(1996a) 

Caramia et 
al. (2001)

Di Gaspero 
and Schaerf 

(2001) 

Merlot et 
al. (2003)

Wong et 
al. (2004) 

Abdullah 
et al. 

(2007a) 

Abdullah 
et al. 

(2007b) 

CAR-F-92 
240 

337.1 

331 

- 

268 

- 

424 

443 

158 

212.8 

204 

267.4 

525 

- 

278 

- 

CAR-S-91 
0 

21.2 

81 

- 

74 

- 

88 

98 

31 

47 

70 

78.8 

47 

- 

37 

- 

KFU-S-93 
513 

679.1 

974 

- 

912 

- 

512 

597 

247 

282.8 

292 

322.9 

206 

- 

548 

- 

NOT-F-94 
(23) 

18 

132.1 

269 

- 

- 

- 

123 

134 

88 

104.8 

156 

182.4 

- 

- 

- 

- 

NOT-F-94 
(26) 

0 

7.7 

53 

- 

44 

- 

11 

13 

2 

15.6 

- 

- 

- 

- 

18 

- 

TRE-S-92 
0 

5.5 

3 

- 

2 

- 

4 

5 

0 

0.4 

0 

2.4 

4 

- 

0 

- 

UTA-S-92 
439 

561 

772 

- 

680 

- 

554 

625 

334 

393.4 

245 

338.4 

310 

- 

300 

- 
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It can be seen from Table 4.9 that the MOEA produces timetables with the 

lowest number of clashes for four (CAR-S-91, NOT-F-94 (23 periods), NOT-F-94 

(26 periods), and TRE-S-92) out of the seven datasets. The MOEA is ranked third for 

CAR-F-92 and is ranked fifth for UTA-S-92 and KFU-S-93 albeit falling behind Di 

Gaspero and Schaerf (2001) in this dataset by only one clash. While some probable 

reasons explaining why the MOEA is not able to perform as well on some of the 

datasets have been discussed in Section 4.4.1, it is also widely known that 

evolutionary algorithms, on which the MOEA is based, produce better results the 

longer it is allowed to run. In order to test this theory, the MOEA was set to run for 

1000 generations, five times longer than it was allowed to run previously, on the three 

datasets that it could not achieve the best ranking. The results of this experiment are 

shown in Table 4.10. The average computation times over the 10 runs performed are 

shown in brackets in Table 4.10. 

 

Table 4.10 Comparison results for long run MOEA and average computation times (in seconds) 

 200 Generations 1000 Generations 

CAR-F-92 

240 

337.1 

(172.2) 

218 

286.9 

(592.3) 

KFU-S-93 

513 

679.1 

(211) 

408 

617.9 

(835.6) 

UTA-S-92 

439 

561 

(377.7) 

397 

514.5 

(1391) 
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From Table 4.10, it is clear that the results get better the longer the MOEA is 

allowed to run. This characteristic of the MOEA is particularly useful for the ETTP 

where the time it takes to produce a timetable manually may, in practice, often be 

measured in months (Burke et al., 1996b; Qu et al., 2009). While it appears plausible 

that the MOEA may be able to catch up, in terms of ranking, if it is allowed to 

perform an even longer run, it is undeniable that the MOEA is not as effective on the 

three datasets. In spite of this, the MOEA is still proven to be a worthwhile and more 

general algorithm, among the best that have been applied to the ETTP. 

 

4.5 Summary 

This chapter presented an exam timetabling problem (ETTP) which involves the 

scheduling of exams for a set of university courses. The solution to the ETTP 

involves the optimization of complete timetables such that there are as few 

occurrences of students having to take exams in consecutive periods as possible but at 

the same time minimizing the timetable length and satisfying hard constraints such as 

limited seating capacity and no overlapping exams. To solve such a multi-objective 

combinatorial optimization problem, this chapter proposed a multi-objective 

evolutionary algorithm (MOEA) that uses a variable-length chromosome 

representation and incorporates a micro-genetic algorithm and a hill-climber for local 

exploitation and a goal-based Pareto ranking scheme for assigning the relative 

strength of solutions. It also imports several features from the research on the graph 

coloring problem. The proposed MOEA has been shown to be a more general exam 
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timetabling problem solver in that it does not require any prior information of the 

timetable length to be effective. It has also been tested against a few influential and 

recent optimization techniques and has been found to be superior on four out of seven 

publicly available datasets. 
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Chapter 5  

Multi-Objective and Prioritized 

Berth Allocation in Container 

Ports 
 

This chapter studies a berth allocation problem (BAP) which requires the 

determination of exact berthing times and positions of incoming ships in a container 

port. Unlike the two-objective exam timetabling problem (ETTP) studied in the 

previous chapter, the BAP considers three objectives of minimizing makespan, 

waiting time, and degree of deviation from a predetermined priority schedule. These 

objectives represent the interests of both port and ship operators. The BAP can be 

considered as an extension to the ETTP in that on top of allocating incoming ships to 

berths (analogous to allocating exams to periods), the problem requires that the 

berthing times and positions (within the allocated berth) of the ships to be determined 

as well. As such, it is essential that the multi-objective evolutionary algorithm 

(MOEA) is well-adapted to handle this aspect of the BAP. 
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5.1 Introduction 

In many container ports in the US and Japan, berths are leased directly to ship 

operators where they have exclusive use of the berths. These ports are known as 

dedicated terminals. The ship operators themselves are in charge of running the 

operations of the berths. For a ship operator handling large volume of containers and 

ship calls, the productivity will be high due to economies of scale. However, 

overcapitalization of the port might result if the handled volume is small as 

operations will be costly (Imai et al., 2001). Multi-user terminals, commonly found in 

Europe and East Asia, on the other hand are completely run by port operators who 

will assign incoming ships to any berth, not necessarily the same berth, whenever 

they call at the port. This type of ports is especially popular in land-scarce countries, 

such as Singapore and Hong Kong, as they have limited land that can be set aside for 

berths. The productivity of these ports depends largely on the efficient berth 

allocation of calling vessels. From the point of view of ship operators, punctuality is 

an important factor as delays at one port often result in a cascading effect of late port 

calls at subsequent ports of call for the ship. This can result in heavy losses for 

shipping companies. Thus, the effective allocation of berths to ships is indeed a very 

complex and challenging issue that is of concern to both port operators and shipping 

companies. 

This chapter considers the berth allocation problem (BAP) in multi-user 

terminals. Given a collection of ships that are to arrive at the port within a planning 

horizon, the BAP involves determining the berthing time and location of each of the 
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ships, while satisfying a number of spatial and temporal constraints, to optimize 

operations. More details of the problem are given in Section 5.2. 

A number of objectives for optimizing port throughput have been considered in 

the literature. Imai et al. (2001, 2003, 2005, 2007) considered the BAP by minimizing 

the total service time of ships. The service time of each ship includes the waiting time 

between the arrival time of the ship at the port and the time the ship berths as well as 

the handling time for loading or unloading of containers. Guan et al. (2002) 

developed a heuristic for the BAP with the objective of minimizing the total weighted 

completion time of ship services. Kim and Moon (2003) solved their version of the 

BAP by minimizing the penalty cost resulting from delays in the departure of ships 

and additional handling costs resulting from non-optimal locations of ships in the 

port. According to their formulation, each ship has an optimal berthing location in the 

port. Park and Kim (2003) solved the same problem by using a sub-gradient method. 

In their formulation, additional cost is incurred from early or late start of ship 

handling against their estimated time of arrivals. Li et al. (1998) solved the BAP by 

minimizing the makespan of the schedule. Imai et al. (2003) tackled the BAP with 

service priority, where some ships are given priority, in terms of being serviced 

earlier, over others. In their work, they provided several examples and arguments for 

differentiating the service treatment of ships. Lim (1998) took a different approach to 

the BAP by minimizing the maximum amount of space used for berthing ships. Lai 

and Shih (1992) proposed some heuristic algorithms for a BAP which is motivated by 

the need for more efficient berth usage at the HIT terminal of Hong Kong. Their 

problem assumes the first-come-first-serve (FCFS) allocation strategy which in most 
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cases does not lead to optimal schedules. Imai et al. (1997) considered a BAP for 

commercial ports. Most service queues are traditionally processed on a FCFS basis. 

They concluded that for high port throughput, optimal ship-to-berth assignments 

should be found without considering the FCFS heuristic. However, they also noted 

that this may result in some dissatisfaction among ship operators regarding the order 

of the service sequence. 

Given the many objectives that have been used to formulate the BAP, it is rather 

surprising that very little work has been done in the area of multi-objective 

optimization in BAPs. From the studies of Imai et al. (1997), it is apparent that the 

BAP is inherently a multi-objective optimization problem. An ideal berthing plan for 

ship operators is one where ships do not have to wait to be berthed and be serviced in 

the shortest possible time. However, an ideal berthing plan for port operators is one 

where the makespan, i.e. the time between the first ship that berths at the port and the 

last ship that leaves, is minimal to achieve full use of their resources at all times. 

Thus, as port operators try to achieve high throughput in their ports, the satisfaction 

of ship operators should be considered concurrently. Despite this, most of the existing 

literature uses single-objective-based heuristic methods that incorporate penalty 

functions or combine the different objectives by a weighting function (Imai et al., 

1997, 2003). The drawback of such an objective function approach, as has been 

discussed in Chapter 1, is that the weights are difficult to be determined precisely, 

especially when there is insufficient information or knowledge concerning the large 

real-world BAP. Clearly, these issues can be easily addressed by taking a multi-
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objective approach that optimizes all objectives concurrently and effectively without 

the need of calibrating weighting coefficients. 

In this chapter, the multi-objective evolutionary algorithm (MOEA) is applied to 

solve the BAP by optimizing multiple conflicting objectives from the points of view 

of port and ship operators. It utilizes the concepts of Pareto optimality to minimize 

concurrently the makespan of the port and the dissatisfaction of ship operators by 

reducing the waiting times of their ships. In addition, the MOEA is designed to 

handle service priority by including the degree of adherence to a predetermined 

priority schedule as the third objective. This is to allow the port flexibility in giving 

service priority to ships. Reasons for maintaining a priority system could include 

terms laid down in shipping contracts, affluence of shipping companies, preference of 

handling ships with larger or smaller container volume first, or simply the preference 

of the port management to adopt a FCFS policy to avoid complaints from shipping 

companies of unfair treatment. To solve this multi-objective optimization problem, 

the MOEA is equipped with three primary features which are specifically designed to 

target the optimization of the three objectives. The features include a local search 

heuristic, a hybrid solution decoding scheme, and an optimal berth insertion 

procedure. The effects that each of these features has on the quality of berth schedules 

will be studied. 

This chapter is organized as follows: Section 5.2 provides the problem 

formulation of the BAP. Section 5.3 describes the problem-specific features of the 

MOEA proposed for solving the multi-objective BAP. Section 5.4 presents extensive 
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simulation results and analysis of the proposed algorithm. Some concluding remarks 

are provided in Section 5.5. 

 

5.2 Problem Formulation 

The BAP involves allocating a fixed number of berths to a number of ships arriving 

at the port within the planning horizon for container handling by determining the 

berthing time and location of each ship. In essence, the BAP bears some resemblance 

to machine scheduling problems (Guan et al., 2002; Li et al., 1998), with berths 

analogous to machines and ships analogous to tasks. However, there are also a 

number of constraints that are exclusive to the BAP and set it apart from machine 

scheduling problems. 

There are generally two types of berth allocation schemes in the literature. 

Discrete BAP (Brown et al., 1994, 1997; Imai et al., 1997, 2001, 2003; Lai and Shih, 

1992) considers the berthing space to be a collection of discrete berthing sections 

where each ship, in terms of length, must fit within the perimeter of its allocated 

section and only one ship can be serviced in each section at any time. Such a scheme 

simplifies the problem since it only requires the solver to allocate ships to the finite 

number of discrete sections. On the other hand, continuous BAP (Guan et al., 2002; 

Kim and Moon, 2003; Li et al., 1998; Lim, 1998; Park and Kim, 2002, 2003) 

considers the berthing space to be a continuous stretch and multiple ships can be 

berthed simultaneously along the stretch as long as the ships are within the perimeter 

of the space. This scheme is more complex as it requires the solver to determine the 
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exact berthing location of each ship along the continuous stretch but it allows the 

berthing space to be utilized more efficiently. Most of the existing literature that 

adopted the continuous berth allocation scheme limited their studies to a single 

continuous berthing stretch where all ships are scheduled within the stretch (Guan et 

al., 2002; Kim and Moon, 2003; Li et al., 1998; Lim, 1998; Park and Kim, 2002, 

2003). This chapter adopts a more general scheme where the entire berthing space 

consists of a number of discrete sections and the space is continuous within each 

section. Each of these discrete sections represents a berth. This scheme is a 

hybridization of the discrete and continuous BAPs in that the problem involves the 

allocation of incoming ships to berths and the determination of the exact berthing 

location of each ship within its allocated berth. Such a scheme is closer to real-world 

settings where a port consists of a number of berths which are separated 

geographically. This hybrid scheme has been adopted by Nishimura et al. (2001) but 

their formulation does not require the determination of the exact berthing location of 

each ship within its allocated berth. In their work, ships are allowed to be serviced 

simultaneously as long as the sum of their lengths does not exceed the berth length. In 

reality, this is often not the case. If a ship occupies the centre of a berth leaving empty 

berth space at the sides, the succeeding ship may not be able to berth within the 

perimeter of the berth even if the berth length condition is satisfied. Therefore, a more 

relevant BAP is one where the exact berthing positions of ships are determined. On 

top of the physical constraint that a ship must be berthed within the perimeter of its 

allocated berth, each berth also has a water depth and ships with drafts larger than the 

depth are not allowed to be allocated to the berth. 
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Regardless of berth allocation scheme, the sequence of events that takes place for 

each ship calling at the port is the same. Each of the ships will come into the port, 

wait for the scheduled berthing time, berth at the designated position within the 

allocated berth, load or unload containers, and leave the port. Fig. 5.1 shows the berth 

operation timeline for each ship. In Fig. 5.1, the service time of a ship at the port 

includes the waiting time between the arrival time of the ship and the time the ship 

berths as well as the handling time for loading or unloading containers. 

 

Arrival time 
of ship i, ai

Scheduled berthing 
time of ship i, bi

Waiting time

Departure time 
of ship i, di

Handling time

Service time  
Fig. 5.1 Berth operation timeline 

 

The handling time for each ship is different at different berths. This is to take into 

account the transportation time for moving the containers to be loaded onto the ship 

from the original storage area to the allocated berth (Imai et al., 2001, 2003, 2005; 

Nishimura et al., 2001). This handling time is also assumed to be deterministic. 

The BAP studied in this chapter is then formulated as follows: 
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      ib i V+∈ ∀ ∈  (5.14)

 

where B is the set of berths, V is the set of ships, ai is the arrival time of ship i, bi is 

the berthing time of ship i, di is the departure time of ship i, hij is the handling time of 

ship i at berth j, poi is the priority order of ship i, boi is the berthing order of ship i, 

DBj is the water depth of berth j, DSi is the draft of ship i including the safety vertical 

distance for berthing, LBj is the length of berth j, LSi is the length of ship i including 

the safety horizontal length, and pij is the position of ship i in berth j. xij = 1 if ship i is 

serviced at berth j, xij = 0 otherwise. yii' = 1 if ship i begins its service when ship i' is 

being serviced at the same berth, yii' = 0 otherwise. '
p

ii jδ  = 1 if the non-overlapping 

restriction of berth space in berth j is applied for ships i and i', '
p

ii jδ  = 0 otherwise. 

'
t
ii jδ  = 1 if the non-overlapping restriction of time in berth j is applied for ships i and 

i', '
t
ii jδ  = 0 otherwise. 

In the problem formulation above, function (5.1) represents the objective of 

minimizing the makespan of the port. The makespan is defined as the amount of time 

between the first ship that berths and the last ship that leaves the port. The second 

objective is represented by function (5.2), which minimizes the total waiting time 

incurred by ships. Function (5.3) represents the third objective of adhering as closely 

as possible to a predetermined priority schedule by minimizing the total number of 

crossings between ships. The berthing order is derived by arranging the scheduled 

ships, regardless of berth, in order of increasing berthing times. The first ship that 
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berths is given a berthing order value of 1, while the second ship is given a value of 2 

and so on. Similarly, the ship that is given the highest berthing priority is assigned a 

priority order value of 1, while the next ship is given a value of 2 and so on. The 

number of crossings contributed by a particular ship is then defined as the difference 

between its berthing order and priority order when its berthing order is greater than its 

priority order (boi > poi). These three objectives constitute the multi-objective nature 

of the BAP considered in this chapter. Constraint (5.4) ensures that every ship can 

only be serviced at one berth without disruption. Constraint (5.5) ensures that ships 

are serviced only after their arrivals. Constraints (5.6) and (5.7) guarantee that the 

berths that ships are allocated satisfy the physical properties in terms of berth length 

and water depth. Constraint (5.8) ensures that the sum of the lengths of ships being 

serviced simultaneously at a berth does not exceed the length of the berth. Constraints 

(5.9) and (5.10) are the non-overlapping restrictions. Constraint (5.11) requires that 

for ships berthed at the same berth, either non-overlapping in berth space or time 

should be satisfied at all times, i.e. ships allocated to the same berth are not allowed 

to overlap in terms of both space and time as that would signify a collision. 

Constraints (5.12), (5.13), and (5.14) show the domains of the three decision 

variables of the BAP. 

 

5.3 Multi-Objective Evolutionary Algorithm 

From the discussions in Section 5.1, it is clear that the BAP is inherently a multi-

objective problem. This section presents the multi-objective evolutionary algorithm 
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(MOEA), focusing on the problem-specific features, designed to solve the BAP by 

minimizing concurrently the three objectives of makespan of the port, waiting times 

of ships, and number of crossings. 

 

5.3.1 Fixed-Length Chromosome 

A fixed-length chromosome representation (Fig. 5.2) is used in the MOEA. Each 

chromosome encodes a complete and feasible berth schedule and consists of a fixed 

number of berths. Each berth consists of a number of ships that are allocated to the 

berth. The order of ships within each berth indicates the order in which the ships are 

assigned berthing space and time. This assignment is carried out using two different 

solution decoding schemes which will be described in the next section. In the figure, 

ships 2 and 5 are allocated to berth 1 and ship 2 is assigned berthing space and time 

before ship 5. 

 

Ship 2

Ship 5

Berth 1 Berth 2 Berth 3 Berth 4 Berth 5

Ship 4

Ship 1

Ship 12

Ship 6

Ship 3

Ship 0

Ship 14

Ship 7

Ship 9

Ship 11

Ship 8Ship 13

Ship 10
 

Fig. 5.2 Fixed-length chromosome representation 
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5.3.2 Solution Decoding 

Given the order of ships in each of the berths in a chromosome, the MOEA has to 

decode the candidate solution by assigning the exact berthing positions and times of 

the ships (Fig. 5.3). In this way, the departure, waiting, and service times of the ships 

can be determined, leading to the fitness or objective values of the chromosome. 

 

Ship 6

Ship 13

Ship 3

Ship 10

A6
A3

A13
A10

Time

Berth space

Solution
Decoding
Solution

Decoding

Berth 3

Ship 6

Ship 3

Ship 13

Ship 10
 

Fig. 5.3 Illustration of solution decoding 

 

From Fig. 5.3, it can be seen that the schedule of a particular berth in the port can 

be represented by a two-dimensional plane. The horizontal axis represents the 

position in the berth, while the vertical axis is the time axis. Each ship is represented 

by a rectangle such that the length of the rectangle is the length of the ship and the 

height of the rectangle is the handling time of the ship at the berth. The bottom-left 

corner of the rectangle represents the berthing time of the ship while the top-left 

corner represents its departure time. A6, A3, A13, and A10 in the figure represent the 

arrival times of the respective ships. 
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A simple solution decoding scheme to obtain the berth schedule is to treat the 

order of ships within each berth of a chromosome as the berthing order, i.e. a ship can 

only berth at the same time or later than its preceding ship. This scheme will be 

referred to as the berthing order decoding scheme. An example of how this decoding 

scheme works is illustrated in Fig. 5.4(a). The order of ships for the particular berth in 

the chromosome is ship 4 →  ship 1 →  ship 2 →  ship 3 →  ship 5. In Fig. 5.4(a), 

ship 4 is first assigned the leftmost position of the berth as soon as it arrives at A4. 

Next, due to the solution decoding scheme, ship 1 cannot berth at A1 even though 

berth space is available. It can only berth at the same time or later than ship 4. Since 

the berth is long enough to accommodate the simultaneous servicing of ships 1 and 4, 

ship 1 berths at A4 next to ship 4. On the other hand, ship 2 cannot berth at A4 as the 

berth is not long enough to accommodate the simultaneous servicing of the three 

ships. The departure of ship 4 also does not release enough berth space to 

accommodate ship 2. As such, ship 2 is assigned the leftmost position of the berth 

after ship 1 has departed from the berth. At the same time, ship 3 berths alongside 

ship 2 since it has already arrived at A3. Lastly, ship 5 has to wait until ship 3 has left 

the berth before it gets to berth due to insufficient berth space. 
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Berth space  
(a) Berthing order 4 1 2 3 5 (b) Assignment order 4 1 2 3 5 

Fig. 5.4 Illustration of different solution decoding schemes 

 

Other than the berthing order decoding scheme, this chapter proposes another 

decoding scheme which treats the order of ships within each berth of a chromosome 

as the assignment order, assigning a ship a feasible berth space with the earliest 

possible berthing time starting from the left. In this scheme, a ship may berth earlier 

than its preceding ships as long as it has arrived at the port and berth space is 

available. This scheme will be referred to as the assignment order decoding scheme. 

An example to show how this decoding scheme works is illustrated in Fig. 5.4(b). 

The order of ships in the chromosome is the same as that used in the berthing order 

decoding scheme example. Like the berthing order decoding scheme, ship 4 is 

assigned the leftmost position of the berth as soon as it arrives at A4. A characteristic 

of this decoding scheme is that the assignment of berth space to a particular ship 

renders the berth space unavailable to succeeding ships until the ship has left the 

berth, i.e. in this case the berth space occupied by ship 4 is made unavailable to ships 



 

106 

1, 2, 3, and 5 until ship 4 has departed from the berth. Unlike the berthing order 

decoding scheme, ship 1 is allowed to berth at A1. However, the scheme dictates that 

ships are always assigned the leftmost position of the berth whenever it is available. 

Since the space to be occupied by ship 4 has already been rendered unavailable, ship 

1 berths at the earliest leftmost available berth space, which is the space next to ship 

4. Another characteristic of this scheme is that it has two main criteria for 

determining the berthing location of each ship – earliest possible berthing time and 

leftmost position, with the former taking precedence over the latter. It is for this 

reason that ship 1 is not berthed at a position where it has to wait for ship 4 to 

complete servicing even though that position is to the left of its assigned berthing 

position. Next, ship 2 is unable to berth beside ship 1 at A2 since the available berth 

space is not long enough to accommodate the ship. As such, it takes over the berth 

space from ship 1 after ship 1 has departed from the berth. The same reason explains 

the assignment of berth space and time to ship 3. With the inclusion of ship 3 in the 

schedule, the available berth space includes the space previously occupied by ship 4 

and the space next to ship 3. However, both spaces are not long enough to 

accommodate ship 5. As such, ship 5 can only berth after ship 3 has left the berth and 

it berths at the leftmost position of the berth. 

From Fig. 5.4, it can be seen that the berth schedules obtained using the two 

decoding schemes are very different even though they originated from the same 

chromosome. This implies that a chromosome may have two different sets of 

objective values based on the two decoding schemes. The effects of the two solution 
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decoding schemes on berth schedule quality will be studied and discussed in Section 

5.4.2. 

As a sidenote, one can observe that the berth schedules in Fig. 5.4 are not 

favorable as there are voids in the berth schedules resulting in inefficient usage of the 

berth space. Fig. 5.5 shows the berth schedule decoded from the sequence ship 1 →  

ship 2 →  ship 3 →  ship 4 →  ship 5. In this case, both solution decoding schemes 

lead to the same berth schedule. It is obvious that the schedule in Fig. 5.5 has a lower 

makespan and waiting time than the two schedules in Fig. 5.4. From Fig. 5.4 and Fig. 

5.5, it is clear that the order of ships in a chromosome is an important consideration 

as it will affect how the berth schedule turns out. Inefficient berth schedules will 

result in unsatisfactory objective values of makespan, waiting time, and number of 

crossings. 
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Assignment / berthing order 1 2 3 4 5 

Fig. 5.5 A more favorable berth schedule 

 



 

108 

5.3.3 Population Initialization 

In the population initialization process, each chromosome is formed with the 

predefined number of berths. Ships are then inserted into the berths such that the 

probability that a ship is inserted into a particular berth is inversely proportional to 

the handling time of the ship at the berth. The ship is inserted at a random position in 

the selected berth provided the insertion does not violate the physical constraints (5.6) 

and (5.7), otherwise another berth will be selected. This insertion process, where a 

ship has a higher chance of being inserted into a berth where it has a lower handling 

time, will be referred to as optimal berth insertion. 

 

5.3.4 Berth-Exchange Crossover 

Berth-exchange crossover involves the exchange of berths between pairs of parent 

chromosomes, chosen based on the crossover rate, to produce offspring 

chromosomes. The operation of berth-exchange crossover is shown in Fig. 5.6. The 

berth to be exchanged is selected at random and applies to both the parent 

chromosomes. As the two identically indexed berths from each pair of parents have 

the same berth length and water depth, the exchange of the list of ships at the berth 

will not result in ships being allocated to a berth where they do not satisfy the 

physical constraints (5.6) and (5.7). Despite this, some repair work to the offspring is 

still required to maintain solution feasibility. Firstly, duplicated ships after crossover 

are removed from the offspring. These ships are removed from the original berths, 

while the newly acquired berth remains intact. This is followed by identifying 
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missing ships in each of the offspring and reinserting them back into the chromosome 

based on the optimal berth insertion procedure described in the previous section. The 

newly acquired berth is excluded from this reinsertion process unless it is the only 

berth that can accommodate the ship considering the physical constraints (5.6) and 

(5.7). 
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(a) Randomly select a berth for exchange 
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(b) Exchange selected berths and remove duplicates 
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(c) Reinsertion of missing ships to form offspring 

Fig. 5.6 Illustration of berth-exchange crossover 

 

One of the advantages of berth-exchange crossover is that feasibility, in terms of 

the physical constraints (5.6) and (5.7), is easily maintained. Duplicated ships in each 

offspring are easily tracked by going through the ships in the newly acquired berth 
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since only these ships can cause duplications. Each offspring inherits from both 

parents the relative order of ships within each berth since the removal of duplicated 

ships does not alter the order of ships. The reinsertion of missing ships provides some 

genetic variation. 

 

5.3.5 Mutation 

In the MOEA, chromosomes are chosen to undergo mutation with a probability equal 

to the mutation rate. Mutation involves removing a number of ships, randomly 

selected based on the reinsertion rate, from the chromosome. These ships are then 

reinserted back into the chromosome based on the optimal berth insertion procedure.  

 

5.3.6 Local Search Exploitation 

The MOEA utilizes a local search operator aimed at reducing the number of crossings 

in solutions. The operator simply involves sorting the ships assigned to a berth in 

accordance to their priority orders. The operator is applied to all the berths in a 

chromosome and the order in which the berths are being operated by the heuristic is 

random. The solution is stored each time a berth is sorted. At the end of the entire 

operation on a particular chromosome, the number of solutions stored is equal to the 

number of berths in the chromosome. The pool of solutions is then decoded, 

evaluated and ranked based on the Pareto ranking scheme. The non-dominated 

solutions of the pool are inserted into the original population of chromosomes before 
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the local search operator advances to operate on the next chromosome. After the 

entire original population has undergone local search, Pareto ranking is applied to the 

new population and the poorly ranked solutions will be removed from the population 

until the size of the population remains the same as before local search. 

The local search operator designed is non-iterative in nature and does not 

compound to the computational intensity of the MOEA, which is a population-based 

search procedure and whose fitness evaluations are expensive due to the need to 

compute the values of the three considered objectives for each chromosome 

evaluated.  

 

5.4 Simulation Results and Analysis 

The MOEA was programmed in C++ and simulations were performed on an Intel 

Pentium 4 3.2 GHz computer. Table 5.1 shows the parameter settings chosen after 

some preliminary experiments. 

 

Table 5.1 Parameter settings for simulation study 

Parameter Value 

Population size 200 

Generation number 400 

Crossover rate 0.8 

Mutation rate 0.3 

Reinsertion rate 0.1 
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Since there is no commonly used benchmark for the BAP in the literature, many 

researchers have generated their own test problems, with a few of them using 

information from their ports of study. The test problems in this chapter are generated 

randomly but systematically. Ship arrivals are generated using an exponential 

distribution while ship handling times are based on a 2–Erlangian distribution. Imai et 

al. (2001) obtained these distributions from their survey on the port of Kobe. Based 

on the parameter settings in Table 5.2, eight test problems are generated. The 

characteristics of these problems are given in Table 5.3. Two extreme priority 

policies are experimented. First-come-first-serve (FCFS) is where ships are given 

priority in order of increasing arrival time, while last-come-first-serve (LCFS) is 

where the last ship that arrives at the port is given top priority. Although the LCFS 

priority order represents an impossible hypothetical port management policy, it 

provides a contrasting situation to the FCFS policy and is able to reveal certain 

characteristics of the MOEA. BAP5x100F and BAP5x100L are used for developing 

the algorithm, while the rest of the test problems are used to validate the performance 

of the proposed MOEA. 
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Table 5.2 Test problem parameter settings 

Parameter Characteristic 

Berth length Uniformly between 350 to 700 

Berth depth Uniformly between 40 to 60 

Ship length Uniformly between 100 and 350 

Ship draft Uniformly between 30 and 60 

Ship arrival Exponential interval with mean 12 

Ship handling time 2-Erlangian distribution 

 

Table 5.3 Characteristics of test problems 

Test problem Number of berths Number of ships Priority order 

BAP5x100F 5 100 First-come-first-serve 

BAP5x100L 5 100 Last-come-first serve 

BAP5x200F 5 200 First-come-first-serve 

BAP5x200L 5 200 Last-come-first serve 

BAP10x100F 10 100 First-come-first-serve 

BAP10x100L 10 100 Last-come-first serve 

BAP10x200F 10 200 First-come-first-serve 

BAP10x200L 10 200 Last-come-first serve 

 

The subsequent sections present extensive simulation results and analysis of the 

proposed MOEA. Sections 5.4.1, 5.4.2, and 5.4.3, respectively, study the effects that 

the three primary features of local search exploitation, solution decoding scheme, and 

optimal berth insertion have on the quality of the generated berth schedules. The 
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optimization performance of the developed MOEA is then validated against a simple 

MOEA in Section 5.4.4. 

 

5.4.1 Effects of Local Exploitation on Quality of Berth Schedules 

The MOEA incorporates local search exploitation to complement the evolutionary 

operators of berth-exchange crossover and mutation, which focus on global 

evolutionary optimization. As described in Section 5.3.6, although the local search 

operator targets at reducing the number of crossings in solutions, the addition of the 

Pareto ranking scheme in the operator ensures that it accounts for the multi-objective 

nature of the problem. This section studies how the frequency of local search can 

affect the performance of the MOEA. At the same time, it demonstrates the 

effectiveness of local search in reducing the number of crossings in solutions, as well 

as its other implications on the quality of solutions. 

Simulations were conducted by varying the frequency at which local search is 

performed. LS25, LS50, LS100, and LS200 are the MOEA settings where local 

search is applied to the evolving and archive populations every 25, 50, 100, and 200 

generations, respectively. NLS is the setting which does not make use of local search 

at all. Ten independent runs of each of the settings were conducted on BAP5x100F to 

obtain statistical results. 
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(c) 

Fig. 5.7 (a) Average makespan, (b) average waiting time, and (c) average number of crossings of non-
dominated solutions for different local search settings on BAP5x100F 

 

The convergence traces of the three objectives of makespan, waiting time, and 

number of crossings for the five local search settings are plotted in Fig. 5.7. The 

convergence traces show the change in the respective objective values, averaged over 

all the non-dominated solutions in the archive population, over the generations. The 

values are further averaged over the 10 simulation runs performed. Fig. 5.7(c) shows 

the effectiveness of local exploitation in the MOEA in reducing the number of 

crossings in solutions. The local search operator causes dips in the number of 
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crossings whenever it is applied to solutions. Comparing the convergence traces for 

the different local search settings, the dips in the number of crossings get more 

prominent with the increase in frequency of application of the local search heuristic. 

Another observation is that the dips in number of crossings coincide with the 

dips in waiting time in Fig. 5.7(b) and the rises in makespan in Fig. 5.7(a). As the 

local search operator tries to reduce the number of crossings in each solution, it 

indirectly reduces the waiting time but increases the makespan of the solution. This 

seems to suggest that the three objectives are related to one another. It appears that 

the objectives of makespan and waiting time are conflicting with each other, i.e. any 

attempt to minimize either of the objectives will cause the other objective to increase.  
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(c) 

Fig. 5.8 (a) Average makespan, (b) average waiting time, and (c) average number of crossings of non-
dominated solutions for different local search settings on BAP5x100L 

 

The same simulations were also conducted on BAP5x100L and the 

corresponding convergence traces are plotted in Fig. 5.8. Like in Fig. 5.7(c), in Fig. 

5.8(c), the local search operator causes dips in the number of crossings whenever it is 

applied to solutions. While this observation is expected since the operator is 

specifically designed to reduce the number of crossings in solutions, Fig. 5.8 does 

provide an interesting result. In contrast to the observation in Fig. 5.7 that a reduction 

in the number of crossings in a solution causes an increase in makespan and a 
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decrease in waiting time, Fig. 5.8 shows the exact opposite result, i.e. the reduction in 

the number of crossings in a solution leads to a decrease in makespan and an increase 

in waiting time. While the results again show that the objectives of makespan and 

waiting time are conflicting with each other, their relationships with the third 

objective have changed.  

To further confirm the relationships between the three objectives in the BAP, the 

Pareto fronts, each of which being made up of all the non-dominated solutions in the 

archive population, for a random run of LS50 on BAP5x100F and BAP5x100L are 

plotted in Fig. 5.9(a) and Fig. 5.10(a), respectively. Separate two-dimensional graphs 

are also plotted for clarity in analyzing the relationships between the objectives. The 

plots in Fig. 5.9(c) and Fig. 5.10(c) confirm that regardless of the priority policy 

adopted by the port, the objectives of makespan and waiting time are conflicting with 

each other. On hindsight, this relation between the two objectives can be explained. 

In minimizing makespan, the port should delay berthing ships even when they have 

arrived at the port to reduce the berth idle time in between berthing of ships. In this 

way, ships would be waiting in the port and can berth as soon as their preceding ships 

have been serviced. This practice will, of course, incur the dissatisfaction of ship 

operators since their ships have to spend a longer time waiting at the port. The plots 

in Fig. 5.9(b), Fig. 5.9(d), Fig. 5.10(b), and Fig. 5.10(d) show that there is generally 

no fixed relation between the number of crossings in a solution and the other two 

objectives. However, Fig. 5.9(d) shows that the FCFS service policy leads to a 

proportional relationship between number of crossings and waiting time, i.e. a 

decrease in the number of crossings in a solution leads to a decrease in waiting time, 
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while Fig. 5.10(d) demonstrates that the LCFS policy leads to a conflicting 

relationship between the two objectives. Given the conflicting relation between 

makespan and waiting time, the relation between makespan and number of crossings 

for the LCFS policy is proportional, which can be vaguely observed in Fig. 5.10(b) 

since most of the solutions are situated at the bottom left and top right of the plot. 

This relation between makespan and number of crossings suggests that a port 

targeting to reduce its makespan should adopt a LCFS service policy, while the FCFS 

service policy benefits ship operators more in terms of lower waiting times for their 

ships. 
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Fig. 5.9 Pareto front for a random run of LS50 on BAP5x100F 
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Fig. 5.10 Pareto front for a random run of LS50 on BAP5x100L 

 

The previous results have established the relationships between the three 

objectives of makespan, waiting time, and number of crossings. Judging from the 

intricate relationships between the three objectives, it can be concluded that the BAP 

is inherently a multi-objective problem which needs to be solved from the 

perspectives of both port and ship operators. In this aspect, the MOEA, which is able 

to generate a Pareto set of berth schedules from which a solution that can satisfy both 

port and ship operators to acceptable degrees can be selected for implementation, can 

perform satisfactorily.  
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Unlike single-objective optimization, which produces a single optimal solution 

such that solution quality can be easily compared based on the considered objective, 

the solution to multi-objective optimization exists in the form of the Pareto-optimal 

set. As such, in comparing the performance of the different local search settings in 

this section, it is required to compare the optimality of their respective Pareto fronts. 

The optimality of Pareto fronts are usually compared based on the proximity and 

diversity with respect to the Pareto-optimal front (Bosman and Thierens, 2003; Deb, 

2001). Proximity indicates how close a Pareto front is from the Pareto-optimal front, 

while diversity indicates how well-distributed and diverse the space along the Pareto 

front is covered with solutions. There are many multi-objective performance 

indicators in the literature measuring the proximity and diversity of a Pareto front. 

While some performance indicators require the knowledge of the Pareto-optimal 

front, some do not. The former are a better indication of multi-objective performance 

since the Pareto-optimal front provides a basis for comparison. However, it is often 

the case that the Pareto-optimal front is unknown and it is simply intractable to 

compute it, especially in large real-world combinatorial problems such as the BAP. 

As such, four performance indicators that do not require the knowledge of the Pareto-

optimal front have been chosen in this chapter to compare multi-objective 

optimization performance. 

The first performance indicator is the coverage function (C) (Zitzler and Thiele, 

1999) which measures the proximity of a Pareto front. It is a binary quality measure 

which compares the dominance relationship between pairs of solution sets or Pareto 

fronts (Zitzler et al., 2003). Given a pair of solution sets (A, B), the coverage function 
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C(A, B) returns the fraction of solutions in B that are dominated by at least one 

solution in A. As such, if C(A, B) returns a value of 1, it means that all the solutions 

in B are dominated by or equal to the solutions in A. The other extreme case, where 

C(A, B) returns a value of 0, implies that none of the solutions in B is dominated by 

any of the solutions in A. It should be highlighted that both C(A, B) and C(B, A) have 

to be considered for a complete performance assessment. If C(A, B) returns a high 

value and C(B, A) returns a low value, it can be implied that the Pareto front made up 

of the solutions in A is closer to the Pareto-optimal front than that made up of the 

solutions in B.  

In comparing the performance of the local search settings, due to the binary 

nature of the coverage function, LS50 is chosen as the basis for comparison. Since 10 

independent runs of each of the settings were conducted, the comparisons are based 

on corresponding runs of each pair of settings, i.e. the Pareto front obtained by run 

number 1 of a setting is compared only with the Pareto front obtained by run number 

1 of the other setting, as they share the same random number seed. The results of 

these comparisons are then represented in box plots and are shown in Fig. 5.11 and 

Fig. 5.12. Each box plot represents the distribution of the values returned by the 

coverage function for the 10 comparisons made for each pair of settings. 
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Fig. 5.11 Coverage results for different local search settings on BAP5x100F 
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Fig. 5.12 Coverage results for different local search settings on BAP5x100L 

 

Comparing the coverage results in Fig. 5.11, on BAP5x100F, the MOEA 

performs better with the increase in frequency of application of the local search 

heuristic. In Fig. 5.11(b), Fig. 5.11(c), and Fig. 5.11(d), the difference between the 

medians of the coverage results gets smaller as the frequency of local search is 

increased with LS25 slightly surpassing the performance of LS50 in Fig. 5.11(a). In 

Fig. 5.12, LS50 generally performs better than the other local search settings on 

BAP5x100L. 

Three performance indicators are used to measure the diversity of a Pareto front. 

The first is an adaptation of the popular maximum spread measure (Zitzler et al., 

2000) which indicates the maximum range of the Pareto-optimal front that is being 

covered by the generated solutions. Since the measure assumes the knowledge of the 

Pareto-optimal front, an alternative measure, which computes the volume in the 
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objective domain covered by the generated solutions, is used. The measure, referred 

to as spread, is defined in (5.15). A larger spread value implies that the solutions in 

the Pareto front cover a wider range of values of each of the objectives, indicating a 

more diverse solution set. 

 

( )
( )
( )

max min

max min

max min

Spread = Makespan Makespan

               Waiting time Waiting time

               Number of crossings Number of crossings

−

−

−

i

i  (5.15)

 

The next performance indicator is spacing which measures the variance of the 

distance of each of the solutions in the Pareto front from its nearest neighbor. 

Distance is measured with respect to the Euclidean distance in the three-dimensional 

objective space. A low spacing value implies that the solutions are more evenly 

distributed over the entire Pareto front. The last indicator for measuring the diversity 

of a Pareto front is simply the number of solutions that form the Pareto front. It gives 

an idea of how effective the algorithm is in generating desired solutions. In order to 

conclude that a Pareto front is diverse, it has to score well in all the three performance 

indicators. If an algorithm performs well in terms of spread and number of solutions 

in the Pareto front but does badly in spacing, it only means that there are many huge 

gaps in the Pareto front which the algorithm has failed to explore.  

The performance of the five local search settings for the three diversity 

performance indicators are again represented in box plots in Fig. 5.13 and Fig. 5.14, 
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which show the distributions of the respective indicator values over the 10 

independent simulation runs. 
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Fig. 5.13 (a) Spread, (b) spacing, and (c) number of Pareto solutions for different local search settings 
on BAP5x100F 
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Fig. 5.14 (a) Spread, (b) spacing, and (c) number of Pareto solutions for different local search settings 
on BAP5x100L 

 

From the results in Fig. 5.13 and Fig. 5.14, it is clear that local search is 

beneficial to the MOEA. NLS gives poor diversity performance as the generated 

Pareto front has a significantly lower spread, larger spacing, and lower number of 

solutions compared to those generated by the other settings which make use of local 

search. LS50 generally performed well for the three diversity performance indicators. 

Coupled with its favorable proximity performance as seen in Fig. 5.11 and Fig. 5.12, 
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LS50 is selected as the default local search setting for any further analysis of the 

MOEA. 

 

5.4.2 Effects of Solution Decoding Schemes on Quality of Berth Schedules 

Two solution decoding schemes have been introduced in Section 5.3.2 to decode 

chromosomes into berth schedules for fitness evaluation. It has been highlighted that 

a chromosome may have two different sets of objective values depending on the 

decoding scheme applied. This section proposes a hybrid solution decoding scheme 

which makes use of both decoding schemes, as well as studies the effects that the two 

decoding schemes have on the quality of berth schedules. 

Simulations were conducted using five different MOEA settings. BOD is the 

setting which uses solely the berthing order decoding scheme for decoding solutions, 

while AOD is the setting that uses only the assignment order decoding scheme. A 

hybrid solution decoding scheme, where each solution has a certain chance to be 

decoded by either of the decoding schemes, is also tested. Hybrid25, Hybrid50, and 

Hybrid75, respectively, are the settings where each solution has a 25%, 50%, and 

75% chance of being operated by the assignment order decoding scheme, otherwise it 

will be operated by the berthing order decoding scheme. Like in the previous section, 

10 simulation runs of each of the five settings were performed on BAP5x100F and 

BAP5x100L. 
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(c) 

Fig. 5.15 (a) Average makespan, (b) average waiting time, and (c) average number of crossings of non-
dominated solutions for different solution decoding settings on BAP5x100F 
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(c) 

Fig. 5.16 (a) Average makespan, (b) average waiting time, and (c) average number of crossings of non-
dominated solutions for different solution decoding settings on BAP5x100L 

 

The convergence traces of the three objectives, averaged over the non-dominated 

solutions and over the 10 simulation runs, for the five settings on BAP5x100F and 

BAP5x100L are plotted in Fig. 5.15 and Fig. 5.16, respectively. It can be seen in Fig. 

5.15 that AOD and BOD provide two extreme results. While AOD has a tendency of 

generating solutions with high makespans and low waiting times, BOD tends to 

concentrate on solutions with low makespans and high waiting times. The same 

results are also observed in Fig. 5.16 for the simulations on BAP5x100L. In terms of 
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number of crossings, AOD achieves better results than BOD in Fig. 5.15(c) but 

performs worse in Fig. 5.16(c). Given the mixed effects that the two settings have on 

the number of crossings in solutions, it can be inferred that the type of solution 

decoding scheme does not have any direct effect on the objective. Rather, the type of 

decoding scheme has a direct impact on the other two objectives of makespan and 

waiting time with the assignment order decoding scheme churning berth schedules 

with high makespans and low waiting times and the berthing order decoding scheme 

decoding solutions into schedules with low makespans and high waiting times. Any 

observable effect on the number of crossings in solutions is due to the underlying 

relationships between the three objectives for FCFS and LCFS problems that have 

been identified in the previous section. The effect would not be obvious if a different 

priority policy were adopted. One probable explanation for the berthing order 

decoding scheme generating berth schedules with lower makespans and higher 

waiting times can be made with reference to Fig. 5.4. In Fig. 5.4(a), the berth 

schedule generated by the berthing order decoding scheme has a lower makespan 

compared to that generated by the assignment order decoding scheme in Fig. 5.4(b). 

The berthing order decoding scheme states that succeeding ships cannot be berthed 

earlier than ship 4 even though they arrive at the port earlier than ship 4. This results 

in the berthing times of ships 1, 2, 3, and 5 to be pushed back, leading to a lower 

makespan. However, these ships would incur longer waiting times compared to their 

counterparts in Fig. 5.4(b). 

Having seen the contrasting effects that the two solution decoding schemes have 

on the quality of berth schedules, it makes sense to use a hybrid decoding scheme that 
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makes use of both decoding schemes. From Fig. 5.15 and Fig. 5.16, it can be seen 

that the three settings which make use of the hybrid decoding scheme provide 

intermediate results within the limits set by the extreme settings of AOD and BOD. 

In order to compare the performance of the five settings, the four performance 

indicators introduced in the previous section are used. Hybrid50 is used as the basis 

of comparison for computing the coverage results. The performance comparison 

results are shown in Fig. 5.17, Fig. 5.18, Fig. 5.19, and Fig. 5.20. 
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Fig. 5.17 Coverage results for different decoding scheme settings on BAP5x100F 
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Fig. 5.18 Coverage results for different decoding scheme settings on BAP5x100L 
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Fig. 5.19 (a) Spread, (b) spacing, and (c) number of Pareto solutions for different decoding scheme 
settings on BAP5x100F 
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Fig. 5.20 (a) Spread, (b) spacing, and (c) number of Pareto solutions for different decoding scheme 
settings on BAP5x100L 

 

In general, the hybrid settings show better proximity and diversity results 

compared to AOD and BOD. There exists an abnormality though in Fig. 5.17(a), 

where AOD obtained a better coverage result over Hybrid50. In order to investigate 

the abnormality, the Pareto fronts for a random run of the two settings on 

BAP5x100F are plotted in Fig. 5.21. 
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Fig. 5.21 Pareto fronts for a random run of Hybrid50 and AOD on BAP5x100F 

 

A comparison of the Pareto fronts of Hybrid50 and AOD in Fig. 5.21 reveals a 

glaring deficiency in AOD. The setting is unable to locate any solution with a 

makespan lower than 600. It is obvious that the set of solutions generated by AOD is 

not as complete as that generated by Hybrid50. This explains the setting’s poor 

performance in terms of the diversity performance indicators of spread and number of 

generated Pareto solutions in Fig. 5.19(a) and Fig. 5.19(c), respectively. A likely 

reason explaining AOD’s superior proximity performance over Hybrid50 can be 

observed in Fig. 5.21(c). Most of the solutions generated by AOD are able to 
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dominate and at the same time, not being dominated by solutions generated by 

Hybrid50 in terms of the two objectives of makespan and waiting time. It is likely 

that AOD has been spending its search efforts on other areas of the search space 

instead of locating low makespan solutions. In order to confirm this hypothesis, the 

search spaces in the objective domain explored by Hybrid50, AOD, and BOD are 

plotted in Fig. 5.22. Each point in the plots is a point in the objective domain that has 

been found by the respective settings during the simulation run. For clarity in 

analyzing the sizes of the search spaces explored by the three settings, separate two-

dimensional graphs are also plotted and the range of each of the axes is kept 

consistent throughout the plots. 
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(a) AOD (b) BOD 
  

  

(c) Hybrid50 

Fig. 5.22 Comparison of search spaces for different decoding scheme settings on BAP5x100F 

 

Comparing the search spaces of AOD and BOD in Fig. 5.22(a) and Fig. 5.22(b), 

it can be observed that certain parts of the search space that AOD has explored have 

been left out by BOD and vice versa. To allow a better visual comparison, the 

corresponding two-dimensional search space plots are superimposed onto each other 

in Fig. 5.23. Judging from the search spaces that both settings have left unexplored, it 

is quite clear that the search space explored by Hybrid50 in Fig. 5.22(c) is a union of 

the search spaces covered by AOD and BOD. The hybrid setting is able to benefit 

from the complementary behavior of the two solution decoding schemes, which 
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allows a larger search space to be explored. This advantage translates into better 

proximity and diversity results as have been observed in Fig. 5.17, Fig. 5.18, Fig. 

5.19, and Fig. 5.20. Since the proximity and diversity results for the three hybrid 

settings are relatively comparable, Hybrid50 is chosen as the default setting for any 

subsequent analysis of the MOEA. 

 

(a) 

(b) 

Fig. 5.23 Superimposing search space plots of (a) BOD onto AOD and (b) AOD onto BOD 

 

5.4.3 Effects of Optimal Berth Insertion on Quality of Berth Schedules 

Optimal berth insertion is utilized during population initialization, berth-exchange 

crossover, and mutation to insert ships into chromosomes. The insertion procedure 

gives each ship a higher chance of being inserted into a berth where it has a lower 

handling time. This section presents the performance of the MOEA with and without 
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the insertion procedure. In the case where optimal berth insertion is not used, each 

ship has equal chance of being inserted into any of the berths. This setting will be 

known as RAND. Ten independent simulation runs of the MOEA and RAND were 

performed on BAP5x100F and BAP5x100L. Since the optimal berth insertion 

procedure targets to minimize the handling times of ships, the convergence traces of 

the total handling time incurred by the entire fleet of ships, averaged over the non-

dominated solutions and over the 10 simulation runs, for the two settings on 

BAP5x100F and BAP5x100L are plotted in Fig. 5.24. 
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Fig. 5.24 Average handling time of non-dominated solutions for MOEA and RAND on (a) BAP5x100F 
and (b) BAP5x100L 

 

It is obvious from Fig. 5.24 that the optimal berth insertion procedure has 

achieved its aim of reducing the handling times of ships. In most situations, the 

reduction in handling time translates directly to a reduction in makespan and waiting 

time since handling time is a component of the two objectives. The lower average 

handling time for the MOEA at generation 0 shows the positive effect that optimal 
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berth insertion has in population initialization. The steeper decline in average 

handling time for the MOEA in the initial stages of evolution is due to the 

incorporation of optimal berth insertion in berth-exchange crossover and mutation. To 

compare the multi-objective optimization performance of the two settings, the four 

proximity and diversity performance indicators are computed for the Pareto fronts 

generated by the two settings. The comparison results are plotted in Fig. 5.25 and Fig. 

5.26. 
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Fig. 5.25 (a) Coverage, (b) spread, (c) spacing, and (d) number of Pareto solutions for MOEA and 
RAND on BAP5x100F 
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Fig. 5.26 (a) Coverage, (b) spread, (c) spacing, and (d) number of Pareto solutions for MOEA and 
RAND on BAP5x100L 

 

From Fig. 5.25(a) and Fig. 5.26(a), it can be seen that the MOEA is superior to 

RAND in terms of the proximity performance measure. However, the three 

performance metrics of spread, spacing, and number of generated Pareto solutions 
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indicate that the two settings have comparable diversity performance. This finding 

implies that the optimal berth insertion procedure focuses more on improving the 

proximity of the generated Pareto front. Unlike local search and the hybrid solution 

decoding scheme, it has little effect on the diversity of the obtained Pareto front. 

 

5.4.4 Performance of MOEA on other Test Problems 

The previous sections have studied how the three primary features of the MOEA 

affect the quality of berth schedules. While local search reduces the number of 

crossings in solutions, the hybrid solution decoding scheme is able to exploit on the 

advantages of the berthing and assignment order decoding schemes to allow a larger 

search space to be explored, leading to a Pareto front that is superior in terms of 

proximity and diversity. Lastly, optimal berth insertion reduces the handling times of 

ships which in turn reduces their waiting times and the makespan of the port, further 

improving the proximity of the Pareto front. This section validates the optimization 

performance of the proposed MOEA against a simple MOEA (SMOEA) on the test 

problems listed in Table 5.3. SMOEA has the same functions as the MOEA except 

that it does not make use of the three proposed features. To decode solutions for 

fitness evaluation, SMOEA uses the berthing order decoding scheme. 

The performance comparison results of the MOEA and SMOEA are shown in 

Fig. 5.27 and Fig. 5.28. 
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Fig. 5.27 Performance comparison between MOEA and SMOEA on FCFS test problems 
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Fig. 5.28 Performance comparison between MOEA and SMOEA on LCFS test problems 

 

The comparison results show that the MOEA consistently outperforms SMOEA 

in terms of coverage and spread. While the MOEA is generally comparable to 

SMOEA in terms of spacing and superior in terms of number of Pareto solutions 

generated, there are a few minor exceptions. For BAP5x100F, some of the simulation 

runs of SMOEA are able to generate more solutions than those of the MOEA. 

SMOEA also performs better in terms of spacing for that test problem. A closer 

examination of the Pareto fronts for a random run of the MOEA and SMOEA on 
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BAP5x100F in Fig. 5.29 reveals the superiority of the MOEA despite the slightly 

negative results in spacing and number of Pareto solutions generated. Although the 

Pareto front obtained by SMOEA consists of more solutions (78 solutions for 

SMOEA compared to 67 for the MOEA), most of the solutions are inferior and 

dominated by the solutions in the Pareto front generated by the MOEA. From the 

comparison results in Fig. 5.27 and Fig. 5.28, it is evident that the three features of 

local search, hybrid solution decoding scheme, and optimal berth insertion play an 

important role in the optimization performance of the proposed MOEA. 
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Fig. 5.29 Pareto fronts for a random run of the MOEA and SMOEA on BAP5x100F 

 

5.5 Summary 

A berth allocation problem (BAP), which requires the determination of exact berthing 

times and positions of incoming ships in a container port, has been studied in this 

chapter. The problem involves the optimization of berth schedules so as to minimize 

concurrently the three objectives of makespan, waiting time, and degree of deviation 

from a predetermined priority schedule. These objectives represent the interests of 

both port and ship operators. Unlike most existing approaches in the literature, which 
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are single-objective-based, a multi-objective evolutionary algorithm (MOEA), which 

incorporates the concept of Pareto optimality, has been proposed in this chapter to 

solve the multi-objective BAP. The MOEA is equipped with three primary features 

which have been specifically designed to target the optimization of the three 

objectives. The features include a local search heuristic, a hybrid solution decoding 

scheme, and an optimal berth insertion procedure. The effects that each of these 

features has on the quality of berth schedules have also been studied in this chapter. 
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Chapter 6  

Multi-Objective Optimization in 

Vehicle Routing Problem with 

Stochastic Demand 
 

A multi-objective vehicle routing problem with stochastic demand (VRPSD) is 

considered in this chapter. The VRPSD involves the routing of a set of identical 

vehicles with limited capacity from a central depot to a set of geographically 

dispersed customers to satisfy their demands. Unlike the exam timetabling problem 

(ETTP) and the berth allocation problem (BAP) studied in the previous chapters, 

where all aspects of the problem are known at the point of solving the problem, the 

VRPSD is a stochastic optimization problem and some problem parameters are 

uncertain during the solution-searching process. In the VRPSD, the actual demand of 

each customer is unknown during the routing process but is revealed only when the 

vehicle actually reaches the customer. The absence of information about the actual 

customer demands poses a problem to the fitness evaluation component of the multi-
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objective evolutionary algorithm (MOEA) since it is not possible to tell exactly when 

a vehicle needs to be restocked. The fitness evaluation component of the MOEA 

needs to be modified to adapt the MOEA to solve the stochastic optimization problem. 

 

6.1 Introduction 

The vehicle routing problem (VRP) is a generic name referring to a class of 

combinatorial optimization problems in which customers are to be served by a 

number of vehicles. The vehicles leave the depot, serve customers in the network and 

on completion of their routes, return to the depot. Each customer is described by a 

certain demand. Other information includes the co-ordinates of the depot and 

customers, the distance between them, and the capacity of the vehicles providing the 

service. All these information are known in advance for the purpose of planning a set 

of routes which minimizes transportation cost while satisfying capacity constraints 

(Prins, 2004), time constraints (Hwang, 2002; Thangiah et al., 1996), and time 

window constraints (Lee et al., 2003; Potvin and Bengio, 1996; Tan et al., 2001a, 

2001b, 2003b). However, in many real-world applications, one or more parameters of 

the VRP tend to be random or stochastic in nature, giving rise to the stochastic 

vehicle routing problem (SVRP).  

There are three basic classes of SVRP (Gendreau et al., 1996a; Laporte and 

Louveaux, 1998; Yang et al., 2000): stochastic customers (Bertsimas et al., 1990; 

Jaillet, 1987; Jaillet and Odoni, 1988), stochastic demands, and stochastic travel and 

service times. This chapter considers the capacity and time constrained vehicle 
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routing problem with stochastic demand (VRPSD), where only the customer demand 

is stochastic and all other parameters are known a priori. This problem appears in the 

delivery of home heating oil (Dror et al., 1985), trash collection, sludge disposal 

(Larson, 1988), beer and soft drinks distribution, the provision of bank automates 

with cash, and the collection of cash from bank branches (Lambert et al., 1993).  

The VRPSD differs from its deterministic counterparts in that when some data 

are random, it is no longer possible to require that all constraints be satisfied for all 

realizations of the random variables (Laporte and Louveaux, 1998). The basic 

characteristic of the VRPSD is that the actual demand of each customer is revealed 

only when the vehicle reaches the customer. As such, on one hand, the vehicle routes 

are designed in advance by applying a particular algorithm but on the other hand, due 

to the uncertainty of demands at the customers, at some point along a route the 

capacity of the vehicle may be depleted before all demands on the route have been 

satisfied. Dror and Trudeau (1986) and Teodorović and Lucić (2000) referred to such 

a situation as “route failure”. In the capacity constrained VRPSD, recourse or 

corrective actions, e.g. making a return trip to the depot to restock, have to be 

designed to ensure feasibility of solutions in case of route failure.  

In the time constrained VRPSD, one possible corrective action is to apply a 

penalty when the duration of a route exceeds a given bound. This penalty would 

correspond to the overtime pay that a driver receives. As such, the situation of route 

failure, together with all its associated recourse policies, would definitely generate 

additional transportation cost, in terms of the travel distance for the to and fro trips to 

the depot and the overtime pay for drivers, which are stochastic in nature. This means 



 

149 

that the actual cost of a particular solution to the VRPSD cannot be known with 

certainty before the actual implementation of the solution. One of the main obstacles 

to solving the VRPSD is in finding an objective function which takes into 

consideration all these costs. It is for this reason that Dror (1993), Gendreau et al. 

(1996a), and Laporte and Louveaux (1998) agree that the VRPSD and the SVRP in 

general are inherently much more difficult to solve than their deterministic 

counterparts. 

From the studies of Yang et al. (2000), it is clear that the VRPSD is inherently a 

multi-objective optimization problem. In minimizing the expected transportation cost, 

in terms of travel distance, of a particular solution, an algorithm for the VRPSD must 

also account for the feasibility of implementation of the solution in terms of the 

duration of the routes, i.e. both capacity and time constraints must be considered. 

According to Yang et al. (2000), a single, long route has the lowest expected travel 

distance but it may not be feasible to implement in the context of the real-world. 

Therefore, it is required to minimize multiple conflicting cost functions, such as the 

travel distance, the remuneration for drivers including overtime pay, and the number 

of vehicles required, concurrently, which is best solved by means of multi-objective 

optimization. Most of the existing literature, however, either do not consider time 

constraints or use single-objective-based heuristic methods that incorporate penalty 

functions or combine the different objectives by a weighting function. Furthermore, 

as mentioned earlier, one of the main difficulties of solving the VRPSD is finding an 

objective function that is able to define properly the expected transportation cost of a 

solution, which includes the initial cost of travel before route failures occur as well as 
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the additional cost generated by recourse policies in case of route failures. These 

characteristics of the VRPSD must definitely be addressed when solving the problem. 

Like in the previous two chapters, the multi-objective evolutionary algorithm 

(MOEA) is applied to solve the multi-objective VRPSD optimization problem. The 

algorithm is featured with two VRPSD-specific heuristics, which are based on two 

route structures of a solution to the VRPSD identified by Dror and Trudeau (1986), 

for local exploitation in the evolutionary search. In addition, an intuitive route 

simulation method (RSM) is proposed to address the issue of evaluating the expected 

costs of solutions. A procedure based on the RSM is also proposed to assess the 

quality of solutions on top of comparing their expected transportation costs, which 

has been used as the main performance measure hitherto. 

This chapter is organized as follows: Section 6.2 gives an overview of existing 

works as well as the problem formulation of the VRPSD. Section 6.3 presents the 

problem-specific features that adapt the MOEA for solving the VRPSD. Section 6.4 

presents the extensive simulation results and analysis of the proposed algorithm. 

Conclusions are drawn in Section 6.5. 

 

6.2 Background Information 

6.2.1 Overview of Existing Works 

Many researchers have studied the VRPSD in two frameworks, namely as a chance 

constrained program (CCP) (Charnes and Cooper, 1959, 1963) or as a stochastic 
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program with recourse (SPR). In a CCP, the problem consists of designing a set of 

vehicle routes for which the probability of route failure is constrained to be below a 

certain threshold. It was shown by Steward and Golden (1983) that, under some 

restrictive assumptions, the problem can be reduced to a deterministic VRP and then 

solved using existing deterministic algorithms. Although the CCP tries to control the 

probability of route failure, the cost of such failures is ignored. In contrast, the SPR 

tries to minimize the expected transportation cost, which includes the travel cost as 

well as the additional cost generated by recourse policies. Gendreau et al. (1996a) 

commented that SPRs are typically more difficult to solve than CCPs but their 

objective functions are more meaningful. As such, most of the recent researches 

revolve around SPRs and results obtained are compared and assessed based on the 

expected transportation costs of solutions. In using the SPR, various recourse policies 

have been explored and there are three common recourse policies (Gendreau et al., 

1996a; Laporte and Louveaux, 1998). In the first approach, also known as the simple 

recourse policy (Gendreau et al., 1995, 1996b; Laporte and Louveaux, 1993, 1998; 

Teodorović and Pavković, 1996; Teodorović and Lucić, 2000), a vehicle returns to 

the depot to restock when its capacity becomes attained or exceeded. The vehicle will 

then resume service at the customer on the planned route where route failure had 

occurred. In the second approach (Bertsimas et al., 1995; Bianchi et al., 2004, 2006; 

Yang et al., 2000), preventive restocking is planned at strategic points, preferably 

when the vehicle is near to the depot and its capacity is almost empty, along the 

scheduled route instead of waiting for route failures to occur. The third approach 
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sought to optimize the remaining portion of a route after each failure or knowledge of 

the actual demand of each customer (Secomandi, 2000; 2001). 

Yang et al. (2000) proposed a dynamic programming recursive objective 

function for the VRPSD. The Or-opt operator is adapted to the stochastic case using a 

fast approximation computation for the change in the objective function when 

performing a local search move where the objective function needs to be repeatedly 

computed. Yang et al. (2000) also showed that the optimal route, in terms of travel 

distance, is always a single route, if only capacity constraints are considered.  

Bianchi et al. (2004, 2006) also employed the recursive objective function and its 

approximation in Or-opt operations in the analysis of various meta-heuristics such as 

iterated local search, tabu search, simulated annealing, ant colony optimization, and 

evolutionary algorithm. However, it should be noted that the dynamic programming 

recursive objective function (Bianchi et al., 2004, 2006; Yang et al., 2000) is 

applicable only if demands take on integer values, i.e. the stochastic demands follow 

discrete distributions. 

Dror and Trudeau (1986) showed that given that the customers’ demands are 

independent random variables with non-negative means, route failures are more likely 

to occur at the end of a route. They also showed that the expected transportation cost 

of a route is dependent on the direction in which the route is traversed. 
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6.2.2 Problem Formulation 

This section presents the mathematical model of the VRPSD. The time and capacity 

constrained problem, as well as the recourse policy used, will also be explained. Fig. 

6.1 shows a complete graph representing a model of a simple VRPSD and its 

solution. The solution consists of two routes, R1 and R2, connecting the depot to a set 

of customers which are each identified by a number. For a particular route, the arrows 

show the sequence in which the customers will be visited by the vehicle and the route 

must start and end at the depot. 

 

 
Fig. 6.1 Graphical representation of a simple vehicle routing problem 

 

Definitions of some of the frequently used notations for the VRPSD, leading to 

the formulation of the mathematical model of the problem, are given as follows. 

1) Customers and depot: The customer set { }0,1, 2,..., CV N=  represents the 

CN  customers to be visited. For simplicity, the depot is denoted as customer 0, or 0v . 

The depot is treated as the source of service demanded by the customers. Every 
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vehicle must start and end its route at the depot. With the exception of the depot, each 

customer iv  has a demand distribution iD . iD  is a normal random variable and is 

described by two parameters, the mean iμ  and the variance 2
iσ . The actual demand 

of each customer id  is revealed when the vehicle first arrives at the customer. There 

is also a service time is  associated with each customer and the depot, which will be 

incurred each time the vehicle arrives at the customer or returns to the depot for 

restocking. 

2) Node: A node is denoted by ( )in r , which represents the ith customer that is 

served in a particular route r. It must be an element in the customer set, i.e. ( )in r V∈ . 

3) Vehicles and capacity constraint: All vehicles are identical and each one has 

a capacity limit C. This capacity limit acts as a constraint and a route failure occurs 

when this constraint is compromised. 

4) Routes: A vehicle starts its route at the depot, visits a number of customers, 

and returns to the depot. A route r is represented as 

0 1 2 0( ) , ( ), ( ),..., ( ),kr v n r n r n r vΩ = , where k is the size of the route. Since all vehicles 

must depart and return to the depot 0v , to simplify the representation, the depot will 

be omitted, i.e. 1 2( ) ( ), ( ),..., ( )kr n r n r n rΩ = . 

5) Euclidean costs: The travel distance between any two points i and j, where 

each point can be a customer or the depot, is equal to the travel time and is denoted 

by ijc , which is calculated using the following equation: 
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2 2( ) ( )ij x x y yc i j i j= − + −  (6.1)

 

where xi  and yi  are the x and y coordinates of the point i, respectively. ijc  is 

symmetrical, i.e. ij jic c= , and satisfies the triangular inequality, where ij jk ikc c c+ ≥ . 

6) Route failure and recourse policy: For a route 

1( ) ( ),..., ( ),..., ( )f kr n r n r n rΩ = , route failure is said to occur at the fth customer of 

the route if ( )
1

i

f

n r
i

d C
=

≥∑  and the simple recourse policy (Gendreau et al., 1995, 

1996b; Laporte and Louveaux, 1993, 1998; Teodorović and Pavković, 1996; 

Teodorović and Lucić, 2000) is employed to maintain the feasibility of solutions. For 

the case where ( )
1

i

f

n r
i

d C
=

>∑ , the recourse policy is such that the vehicle will unload 

all remaining goods (equivalent to 
1

( )
1

i

f

n r
i

C d
−

=

−∑ units) at the fth customer, return to the 

depot to restock, then turn back to the fth customer to complete the service, and finally 

continue with the originally planned route. For the case where ( )
1

i

f

n r
i

d C
=

=∑  and f < k, 

the recourse policy is such that the vehicle will return to the depot to restock and 

continue with the planned route at the (f + 1)th customer. These recourse actions will 

of course incur additional transportation cost, in terms of the travel distance ( )dQ r  

and time ( )tQ r  for the to and fro trips to the depot. ( )tQ r  also includes the additional 
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service times incurred when a vehicle visits a customer more than once or returns to 

the depot for restocking due to route failures. 

7) Time constraint and driver remuneration: The total duration ( )tc r  of a 

route 1 2( ) ( ), ( ),..., ( )kr n r n r n rΩ =  is calculated as in the following equation: 

 

( ) ( ) ( )( ) ( ) 01 0 1

1

( ),, ,
1 1

( )
ki i

k k

t n r v j tn r n r v n r
i j

c r c c c s Q r
+

−

= =

= + + + +∑ ∑  (6.2)

 

The time constraint is such that ( )tc r  should not exceed a given bound B. This is a 

soft constraint and B is calculated as the time for a vehicle to travel diagonally across 

the map from one corner to the other and back. This time is assumed to be 8 hours, 

equivalent to a driver’s workday. Remuneration is such that drivers are paid $10 for 

each of the first 8 hours of work and $20 for every additional hour of work 

subsequently. This is done to penalize exceedingly long routes which may not be 

feasible to implement in the context of the real-world. 

8) Transportation costs: The transportation costs include travel distance and 

driver remuneration. The travel distance ( )dc r  for a route 

1 2( ) ( ), ( ),..., ( )kr n r n r n rΩ =  is given in the following equation: 

 

( ) ( ) ( )( ) ( ) 01 0 1

1

( ),, ,
1

( )
ki i

k

d n r v dn r n r v n r
i

c r c c c Q r
+

−

=

= + + +∑  (6.3)
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The driver remuneration ( )rc r  is calculated as in the following equation: 

 

( ) ( )
( ) 10     / 8
( )     otherwise80 20

/ 8

t

t
r

t

c r
c r BBc r

c r B
B

⎧ ×⎪ ≤⎪= ⎨ −⎪ + ×
⎪⎩

 (6.4)

 

9) Routing plan: The routing plan G consists of a set of routes 

{ }1( ), , ( )mr rΩ … Ω . The number of routes m is equal to the number of vehicles used in 

the plan. The condition ( )
1

m

i
i

r V
=

Ω =∪ , i.e. all customers must be routed, must be 

satisfied. 

10) Other assumptions: It is also assumed that each customer can only be 

serviced by one vehicle but the vehicle is allowed to service the same customer more 

than once. Multiple service times will be incurred if a vehicle visits a customer 

multiple times. 

The VRPSD, therefore, involves finding a solution { }1( ), , ( )mG r r= Ω … Ω  that 

minimizes the three objectives of travel distance ( )
1

m

d i
i

c r
=
∑ , driver remuneration 

( )
1

m

r i
i

c r
=
∑ , and number of vehicles required m. 
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6.3 Multi-Objective Evolutionary Algorithm 

From the discussions in the previous sections, it is clear that the VRPSD is inherently 

a multi-objective problem. This section presents the multi-objective evolutionary 

algorithm (MOEA) specifically designed to solve the VRPSD by minimizing 

concurrently the three objectives of travel distance, driver remuneration, and number 

of vehicles required.  

 

6.3.1 Variable-Length Chromosome 

Similar to the MOEA designed to solve the exam timetabling problem in Chapter 4, a 

variable-length chromosome representation (Tan et al., 2003a, 2003b), shown in Fig. 

6.2, is utilized. Each chromosome encodes a complete solution, including the number 

of vehicles and the customers served by these vehicles. A chromosome may consist 

of several routes and each route or gene is not a constant but a sequence of customers 

to be served. The representation allows the number of vehicles to be manipulated and 

minimized directly for multi-objective optimization in the VRPSD. 
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Fig. 6.2 Variable-length chromosome representation 

 

6.3.2 Population Initialization 

In the population initialization process, the first chromosome is built such that the 

sum of the mean values of the customer demands on each route does not exceed the 

vehicle capacity. Furthermore, the sum of the travel and service times on each route 

must not exceed the vehicle time window. The number of vehicles required in this 

first chromosome is then taken as the maximum number of vehicles that each of the 

remaining chromosomes can use. For each subsequent chromosome, the number of 

vehicles is randomly picked from this feasible range. The routes are then built such 

that each route has approximately the same number of customers. This procedure is 

done so that the initial population has a wide range of chromosomes with different 

number of vehicles to start with. 
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6.3.3 Route-Exchange Crossover 

In the route-exchange crossover, whose operation is shown in Fig. 6.3, only the best 

routes of the selected chromosomes are eligible for exchange. In the case where one 

of the selected chromosomes has only one route, a segment of the route is randomly 

selected to exchange with the other chromosome’s best route which will be inserted 

as a new route in the first chromosome. To ensure the feasibility of chromosomes 

after the crossover, duplicated customers are deleted. These customers are deleted 

from the original routes while the newly inserted route is left intact. A random 

shuffling operator is then applied to increase the diversity of chromosomes. In the 

random shuffling operation, with the exception of the newly inserted route, the order 

of customers in each of the remaining routes is shuffled with a probability equal to 

the shuffle rate. 
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Fig. 6.3 Illustration of route-exchange crossover 

 

6.3.4 Multi-Mode Mutation 

The multi-mode mutation essentially consists of three different modes of operation 

and only one of the modes is applied to each chromosome selected to undergo 

mutation based on the mutation rate. There are three parameters associated with the 

mutation operator, namely elastic rate, squeeze rate, and shuffle rate. Fig. 6.4 shows 

the operation of the multi-mode mutation.  

1) Partial swap: The partial swap operator involves a number of swap moves 

and for each move, two routes will be randomly chosen. A segment is then randomly 
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selected from each route and swapped to the other route. This new segment takes the 

place of the previous segment that has been swapped out. In the situation where either 

one of the routes has only a customer in it, a random segment is still selected from the 

route with more than one customer. This segment is then swapped with the solitary 

customer in the other route. In addition, a mechanism is in place such that the same 

two routes will not be selected twice in a particular partial swap operation. 

2) Merge shortest route: This operation searches for the two routes of the 

chromosome with the smallest sum of travel distance and driver remuneration, and 

appends one route to the other. The merge shortest route will not operate on any 

chromosome with only one route.  

3) Split longest route: This operation searches for the route with the largest sum 

of travel distance and driver remuneration, and breaks the route into two at a random 

point. 

Like the route-exchange crossover, at the end of the multi-mode mutation, the 

random shuffling operation is applied on every route of each chromosome with a 

probability equal to the shuffle rate. 
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Fig. 6.4 Operation of multi-mode mutation 

 

6.3.5 Local Search Exploitation 

Two local search operators are employed in the MOEA. They are inspired by the 

underlying structures of a VRPSD solution identified by Dror and Trudeau (1986). 

1) Shortest path search:  The shortest path search (SPS) is designed to exploit 

the fact that route failures are more likely to occur at the end of a route. The SPS 

attempts to rearrange the order of customers in a particular route. For example, given 

a route that contains five customers, a new route is built by choosing the customer 

that is furthest from the depot as the first customer in the route, while the customer 

that is nearest to the depot is chosen as the last customer of the route. Next, the 

customer that is nearest to the first customer is chosen as the second customer, while 

the customer that is nearest to the last customer is chosen as the second last customer 
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of the new route. This step continues until all the customers in the original route are 

re-routed. The new route will be compared against the original one and the better 

route will be retained. By re-routing customers in such a manner, customers that are 

further from the depot will be at the beginning of the route whereas those that are 

nearer to the depot will be at the end of the route. The rationale is to reduce the 

additional transportation cost that will be incurred by the recourse policy. 

2) Which directional search: The which directional search (WDS) is designed 

to exploit the fact that the expected transportation cost of a route is dependent on the 

traversed direction. In contrast, for the deterministic VRP, the transportation cost of a 

route is the same regardless of the direction in which the route is traversed. To be 

specific, given a route, the WDS builds a new route that runs in the opposite 

direction. Similarly, the new route will replace the original one if it is better. 

 

6.3.6 Route Simulation Method 

As mentioned earlier, one of the main difficulties of solving the VRPSD is in finding 

an objective function that is able to define properly the expected transportation cost of 

a solution. In this section, the route simulation method (RSM) is proposed to evaluate 

the expected costs of solutions. The fundamental idea behind the RSM is based on the 

sampling method of Lee and Chew (2003), who applied the method for numerical 

optimization. Fig. 6.5 will be used to illustrate the operation of the RSM.  

Fig. 6.5 shows a route sequence, Depot → 2 → 3 → 5 → 4 → 1 → 6 → Depot. 

The solid arrows indicate the route that the vehicle will take if this were a 
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deterministic VRP. In the VRPSD, due to the recourse policies in the event of a route 

failure, the actual route taken by the vehicle cannot be known with certainty before 

the route is actually implemented. However, the implementation of the route can be 

simulated by generating a set of demands of all the customers based on their demand 

distributions and treating these demands as if they were the real demands revealed 

when a vehicle first arrives at the customer. The set of demands generated is tabulated 

in Fig. 6.5. For this particular example, it is assumed that the vehicle capacity is 15 

and each arrow indicates a unit of distance. 

The vehicle first leaves the depot and arrives at customer 2. It is able to satisfy its 

demand with a remaining capacity of 9. The vehicle then travels to customer 3 and 

satisfies its demand. The capacity of the vehicle is 7 when it reaches customer 5. The 

vehicle then finds that it is unable to satisfy the demand of customer 5, so it unloads 

all remaining goods and makes a return trip to the depot to restock. This recourse is 

indicated by the dashed arrows between the depot and customer 5. The vehicle then 

unloads two units of goods and leaves customer 5 for customer 4 with a capacity of 

13. After serving customer 4, the vehicle is empty and returns to the depot to restock. 

Since the demand of customer 4 has been satisfied, the vehicle travels to customer 1 

from the depot. The vehicle then satisfies the demands of customers 1 and 6 and 

returns to the depot. From this simulation, the total distance traveled by the vehicle 

(10 units for this example) and the remuneration for the driver for a particular 

realization of the set of customer demands can be obtained. 

Due to the stochastic nature of the cost considered, there is a need to repeat the 

above operation N times for every route of a particular solution, using a different set 
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of demands randomly generated based on the demand distributions of the customers 

each time and then taking the average to obtain the expected transportation cost of the 

solution. In this chapter, three different RSM settings are studied. Generate every 

generation (GEG) refers to the setting where the N demand sets, which are used by 

the RSM, are refreshed every generation. Generate every M (GEM) refers to the 

setting where the N demand sets are only refreshed at the end of every M generations. 

Lastly, alternate every M (AEM) refers to the setting where for M generations, the 

RSM uses the N randomly generated demand sets and for the next M generations, the 

RSM uses the mean values of the customers’ demand distributions to simulate the 

implementations of the routes. The N demand sets are then refreshed for use over the 

next M generations and the process repeats. 

 

Depot

1

2
3

4

5

6

Customer Real
demand

1 5
2 6

3 2

4 13

5 9

6 5

 
Fig. 6.5 Example to show the operation of the RSM 
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6.3.7 Computing Budget 

The computing budget (Chen et al., 1997; Lee and Chew, 2003) represents a fixed 

amount of computational work. As can be observed from the previous section, the 

RSM requires intensive computations and can be regarded as the bottleneck of the 

whole algorithm. As such, it makes sense to define one unit of the computing budget 

as one run of the RSM on a particular solution using a particular demand set. Thus, 

the computing budget puts a cap on the total number of times the RSM is run on 

solutions in the MOEA and can be regarded as the stopping criterion of the 

evolutionary algorithm. For GEG and GEM, the computing budget set is actually 

approximately equal to the product of the size of the search population, the number of 

generations used in the MOEA, and N, the number of times the RSM is repeated to 

obtain the expected transportation cost of a solution. This product gives only an 

approximate value due to the additional runs of the RSM during local search. As for 

AEM, the following equation applies: 

 

( ) ( ) 0.5 1Computing Budget GEN POPSIZE N≈ ⋅ ⋅ ⋅ +  (6.5)

 

where GEN is the number of generations and POPSIZE is the population size. 

This equation takes into account the fact that AEM alternates between using N 

randomly generated demand sets and the mean demand set for the RSM every M 

generations. As such, the RSM needs to run N times when using the N randomly 

generated demand sets but only runs one time when using the mean demand set. The 
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equation only gives an approximation, again due to the additional runs of the RSM 

during local search. 

 

6.4 Simulation Results and Analysis 

The MOEA was programmed in C++ and simulations were performed on an Intel 

Pentium 4 2.8 GHz computer. Table 6.1 shows the parameter settings chosen after 

some preliminary experiments. 

 

Table 6.1 Parameter settings for simulation study 

Parameter Value 

Population size 500 

Crossover rate 0.7 

Mutation rate 0.4 

Elastic rate 0.5 

Squeeze rate 0.5 

Shuffle rate 0.3 

Computing budget 2,000,000 

 

Bianchi et al. (2004) highlighted that there is no commonly used benchmark for 

the VRPSD in the literature. As such, many authors generated their own test 

problems. Teodorović and Lucić (2000) and Yang et al. (2000) randomly generated 

the locations of the depot and the customers. The characteristics of each customer’s 

demand, mean and variance, are also randomly generated. Dror and Trudeau (1986) 
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adapted a deterministic VRP test problem for the VRPSD. The test problem is 

constructed by adding a demand standard deviation to each customer. The original 

demand quantity is used as the mean demand of each customer. The standard 

deviation of the demand of each customer is generated using a uniform random 

number generator so that it falls between zero and one-third of the mean demand of 

the customer. On the other hand, Bianchi et al. (2004, 2006) did not choose the 

locations of the customers uniformly at random, but randomly with normal 

distributions around two centers so that the customers are grouped into two clusters. 

As Dror and Trudeau (1986) are the only one that provided the actual test problem 

used, in developing the MOEA, all simulations, unless otherwise stated, were 

performed using that test problem. The test problem will be referred to as DT86. It is 

to be noted that all the customers’ demands in DT86 are normally distributed. Since 

the time constrained problem was not considered by Dror and Trudeau (1986), the 

service time st  of each customer is filled in by subtracting 10 from the mean demand 

or one unit, whichever is larger. This is done so that a customer with a higher mean 

demand would require a longer service time. A fixed service time of 10 is also set for 

the depot. Since DT86 uses a 70 ×  80 map, the vehicle time window is calculated to 

be 212 units. This time window is equivalent to 8 hours. As such, each hour 

corresponds to 26.5 units, which is used to compute the remuneration for drivers 

according to the rates given in Section 6.2.2. 

The subsequent sections present the extensive simulation results and analysis of 

the proposed MOEA. Section 6.4.1 demonstrates the effectiveness of the proposed 
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hybrid local search, as well as analyzes how the various settings in which the local 

search heuristics are incorporated with the MOEA will affect the performance of the 

algorithm. Section 6.4.2 demonstrates the advantages of multi-objective optimization 

and at the same time shows the relationships between the three objectives of travel 

distance, driver remuneration, and number of vehicles required. Section 6.4.3 presents 

a new way of assessing the quality of solutions to the VRPSD on top of comparing 

their expected transportation costs and shows that the MOEA, equipped with the 

RSM, is able to produce solutions that are robust to the stochastic nature of the 

problem. Section 6.4.4 shows how the value of the parameter N affects the 

performance of GEG, whereas Section 6.4.5 attempts to study how the value of the 

parameter M affects the performance of GEM. Section 6.4.6 tests the performance of 

the MOEA on three VRPSD instances adapted from Solomon’s vehicle routing 

problem with time windows (VRPTW) benchmark problems (Solomon, 1987). 

Section 6.4.7 discusses how the RSM can actually be implemented in practice. 

 

6.4.1 Performance of Hybrid Local Search 

The MOEA incorporates the local search heuristics in order to exploit local routing 

solutions in parallel with global evolutionary optimization. The local search heuristics 

are specially designed to exploit the route structures of a solution to the VRPSD. This 

section demonstrates the effectiveness of local exploitation in the MOEA and also 

analyzes the effectiveness of various settings in which the local search heuristics are 

incorporated with the MOEA.  
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Simulations were conducted using six different settings. Three of the settings 

include the MOEA with no local search (NLS), with only the WDS (WD), and with 

only the SPS (SP). The local search operators are applied to the evolving and archive 

populations every 50 generations. WD/SP is a setting which involves the application 

of the WDS for the first two local exploitations in the MOEA, i.e. on the 50th and the 

100th generation, and alternates between the two local search heuristics every 100 

generations, while applying local search every 50 generations. On the other hand, 

SP/WD starts with the SPS on the 50th and the 100th generation, and alternates 

between the two local search heuristics every 100 generations. The final setting is 

RAN, where during the application of local search every 50 generations of the 

MOEA, each chromosome will have equal chance of being applied by either the SPS 

or the WDS on all of its routes. Each of the six settings underwent 10 simulation runs. 

The simulations were conducted using the GEG setting with N, the number of times 

the RSM is repeated to obtain the expected transportation cost of a solution, set to 10.  

The convergence traces of the travel distance and the driver remuneration for the 

six settings are plotted in Fig. 6.6(a)-(b) and Fig. 6.7(a)-(b). Fig. 6.6(a)-(b) shows the 

convergence of the respective costs, averaged over all the solutions in the archive 

population, over the generations. Fig. 6.7(a)-(b) shows the same costs averaged over 

all the non-dominated solutions in the archive population. The costs are further 

averaged over the 10 simulation runs performed. The plots show the effectiveness of 

local exploitation in the MOEA as the five settings which use local search perform 

better than NLS. The effectiveness of the SPS is evident since the four settings, 

namely WD/SP, SP/WD, SP, and RAN, which make use of the local search operator, 
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are able to find solutions with travel distance and driver remuneration significantly 

lower than those found by WD and NLS. The SPS is able to speed up convergence as 

it causes sharp dips in the respective costs of the solutions found whenever it is 

performed. The performances of WD/SP, SP/WD, SP, and RAN are comparable and 

the setting WD/SP is selected as the default setting for any further analysis unless 

otherwise stated. 

In Fig. 6.6(a)-(b), it is observed that there are distinctive spikes in the 

convergence traces which coincide with the occurrences of local search. This is 

despite the fact that during local search, a new route is constructed and compared 

with the original one and the better route is retained. This happens because in 

comparing the new and original routes during local search, the solutions in the 

archive population are re-evaluated by the RSM. This re-evaluation acts to 

complement the RSM and is important in the stochastic problem where the costs of 

solutions are sensitive to the demand sets that are used by the RSM. For a particular 

solution, the fitness evaluated using the RSM can be very different depending on the 

demand sets used. As such, it is essential that a solution to the VRPSD be robust to 

the stochastic nature of the problem and its fitness should not differ too much with 

each evaluation by the RSM. The re-evaluation of all the solutions in the archive 

population during local search ensures that only robust solutions stay non-dominated. 

The effect of this can be seen in Fig. 6.7(a)-(b) which considers only non-dominated 

solutions in the archive population. The spikes in these convergence traces during 

local search are significantly smaller, if not negligible. 
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Fig. 6.6 (a) Average travel distance and (b) average driver remuneration of archive populations for 
different local search settings 
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Fig. 6.7 (a) Average travel distance and (b) average driver remuneration of non-dominated solutions for 
different local search settings 

 

Another test was conducted to study if the frequency at which local search is 

performed has any effect on the performance of the MOEA. On top of the setting of 

applying local search every 50 generations, four other settings where local search is 

applied every 30, 40, 60, and 70 generations, respectively, were used in the test. Ten 

simulation runs of each of the five settings were performed.  
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The convergence traces of the travel distance and the driver remuneration, 

averaged over the non-dominated solutions in the archive population and over the 10 

simulation runs, for the five settings are plotted in Fig. 6.8(a)-(b), respectively. The 

plots show that the performances of the five settings are comparable. It is to be noted 

that with more frequent application of local search, the number of generations used in 

the MOEA is reduced. This is because additional runs of the RSM are required during 

local search to evaluate the new routes constructed by the local search heuristics. 

With a fixed computing budget, the additional RSM runs translate to a smaller 

number of generations used in the MOEA. All further simulation runs are conducted 

using the setting where local search is applied every 50 generations. 
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Fig. 6.8 (a) Average travel distance and (b) average driver remuneration of non-dominated solutions for 
different local search generations 
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6.4.2 Multi-Objective Optimization Performance 

This section presents the routing performance of the MOEA, particularly on its multi-

objective optimization that offers the advantages of improved routing solutions and 

the exploration of a larger search space. The relationships between the three 

objectives of travel distance, driver remuneration, and number of vehicles required 

will also be shown. 

To illustrate the multi-objective optimization performance of the MOEA, seven 

types of simulations, with similar settings but different sets of optimization criteria 

(for evolutionary selection operation), were performed. Three of the simulation types 

are concerned with minimizing the single objectives of travel distance (SOD), driver 

remuneration (SOR), and number of vehicles (SOV), respectively, while another 

three are concerned with minimizing two objectives concurrently, namely, travel 

distance and driver remuneration (DODR), travel distance and number of vehicles 

(DODV), and driver remuneration and number of vehicles (DORV). The final 

simulation type optimizes the three objectives concurrently (MO). Ten simulation 

runs of each of the simulation types were performed. 

Fig. 6.9 shows the comparison results for the evolutionary optimization of the 

seven simulation types. The comparisons were performed using the multiplicative 

aggregation method (Van Veldhuizen and Lamont, 1998) of travel distance and driver 

remuneration averaged over all solutions and all non-dominated solutions, 

respectively, in the archive population found at the termination of the algorithm. The 

results are further averaged over the 10 simulation runs of each simulation type that 
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were performed. As can be seen from Fig. 6.9, MO produces the best performance 

with the smallest product of travel distance and driver remuneration. 
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Fig. 6.9 Performance comparison for different optimization criteria 

 

The search spaces in the objective domain explored by the seven simulation 

types are also plotted in Fig. 6.10(a)-(g). Each point in the plots is a point in the 

objective domain that has been found by the respective simulation types during the 

algorithm. Separate two-dimensional graphs are also plotted for clarity in analyzing 

the size of the search spaces explored by the seven simulation types. As can be seen 

from the plots, with the exception of DORV, the search space explored by MO is 

considerably larger than those explored by the remaining five simulation types. Most 

of these five simulation types are trapped in some local optima. For example, from 

Fig. 6.10(d)-(f), DODR, SOD, and SOR, respectively, are unable to find any solution 
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with travel distance below 1500, whereas from Fig. 6.10(g), SOV is unable to find 

any solution with driver remuneration below 1000. All these show that there is a need 

to use MO to minimize the three objectives concurrently in the multi-objective 

VRPSD. By using MO, the diversity of points found is increased, allowing it to 

escape from local optima and explore a larger search space. These advantages 

translate to better routing solutions. 

 

  
(a) MO (b) DORV 

  
(c) DODV (d) DODR 
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(e) SOD (f) SOR 

 
(g) SOV 

Fig. 6.10 Comparison of search spaces for different optimization criteria 

 

It has been shown that there is a need to use MO to minimize concurrently the 

three objectives of travel distance, driver remuneration, and number of vehicles 

required. Although the three objectives are quantitatively measurable, the 

relationships between them in a routing problem are unknown until the problem has 

been solved. The objectives may be positively correlated to each other, or they may 

be conflicting with each other. To see how the objectives are related to one another, 

Fig. 6.10(a), the search space of MO, is magnified to show the essential information 

and plotted in Fig. 6.11. 
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From the graph of travel distance against driver remuneration in Fig. 6.11, it can 

be observed that the two objectives are conflicting with each other, i.e. any attempt to 

minimize either of the objectives will cause the other objective to increase. This is 

also the case for the number of vehicles required and driver remuneration. On the 

other hand, from the graph of travel distance against number of vehicles, it is 

observed that the two objectives are correlated to each other, i.e. it is possible to 

minimize both concurrently.  

The above observations are consistent with the studies of Yang et al. (2000) who 

showed that if time constraints are not considered, the optimal route, in terms of 

travel distance, is always a single route. The results also show that the single route 

solution, which has the lowest travel distance, may not be feasible to implement in 

the context of the real-world as a low travel distance corresponds to a high driver 

remuneration which translates into the driver working deep into overtime. 
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Fig. 6.11 Magnified search space of MO 

 

6.4.3 Comparison with a Deterministic Approach 

In the absence of a stochastic procedure to deal with stochastic demands, one can 

generate the routes using a deterministic vehicle routing algorithm by treating the 

expected demand at each customer as its deterministic demand (Yang et al., 2000). 

The attraction of this deterministic approach is its relative simplicity and familiarity 

to practitioners. The MOEA can in fact be modified into a deterministic vehicle 

routing algorithm by solely using the mean demand set in the RSM. However, what 

makes the MOEA different from a deterministic vehicle routing algorithm is the 

RSM’s ability to operate on demand sets which are randomly generated based on the 

demand distributions. This section will show that the RSM’s ability to operate on 

randomly generated demand sets can lead to solutions which are more robust to the 

stochastic nature of the problem compared to the deterministic approach and that the 
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expected transportation costs of such solutions are good estimates of the true 

performance of the solutions. In addition, a RSM-based procedure is proposed to 

assess the quality of solutions on top of comparing their expected costs. 

For comparison purposes, simulations were conducted on the three RSM settings, 

GEG, GEM, and AEM, which were introduced in Section 6.3.6, with N and M both 

set to 10. The results of these settings are compared with the deterministic approach 

(DET) mentioned in the previous paragraph. These four settings provide a spectrum, 

from pure stochastic to pure deterministic, of approaches to the VRPSD. Ten 

simulation runs of each of the four settings were performed. 

The convergence traces of the travel distance and the driver remuneration, 

averaged over the non-dominated solutions and over the 10 simulation runs, for the 

four settings are plotted in Fig. 6.12(a)-(b). Due to the nature with which the RSM is 

run in AEM and DET, i.e. the RSM is run only once, instead of N times, when 

evaluating solutions using the mean demand set, the MOEA for these two settings 

took more than 500 generations to complete. However, by the 500th generation, these 

two settings have converged and the plots in Fig. 6.12(a)-(b) show only the 

convergence traces up to the 500th generation. By comparing the convergence traces 

of the four settings, it appears that DET is able to churn out the best solutions since 

both the average travel distance and the average driver remuneration are the lowest 

among the four settings at the termination of the algorithm. 
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Fig. 6.12 (a) Average travel distance and (b) average driver remuneration of non-dominated solutions of 
GEG, GEM, AEM, and DET 

 

It was highlighted in Section 6.1 that due to the stochastic nature of the problem, 

the actual cost of a particular solution to the VRPSD cannot be known with certainty 

before the actual implementation of the solution. During the decision making process, 

the logistic manager will look at the expected transportation costs of all the candidate 

solutions and choose the solution that best suits the company’s logistic condition, in 

terms of the available vehicle fleet size, and the company’s priorities of whether to 

take the solution with a shorter travel distance but is likely to incur greater cost in the 

form of the remuneration for the drivers. In view of this, for the logistic manager to 

make correct decisions, it is important for the expected cost of each solution to give a 

good estimate of the true performance of the solution, i.e. the actual cost of 

implementing the solution should not deviate too much from the expected cost. As 

such, it is necessary to compare the results to the VRPSD based on this aspect on top 

of comparing their expected costs. 



 

183 

To perform such a comparison, a test demand set is randomly generated based on 

the customers’ demand distributions. This test demand set will represent the real 

demands that the vehicles of a particular solution would experience when the solution 

is implemented. The RSM is then operated, using that test demand set, on all the 

Pareto solutions found at the termination of each of the four settings, GEG, GEM, 

AEM, and DET, to simulate the actual costs of implementing the solutions. The 

deviation between the actual and expected costs of each solution is then calculated 

using the following equation: 

 

( ) ( )2 2
Ex Act Ex ActDev Dist Dist Rem Rem= − + −  (6.6)

 

This deviation is essentially the Euclidean distance in the objective domain between 

the actual and expected costs of each solution. To ensure that the results are not 

biased towards any test demand set, the same process is repeated for three other 

randomly generated test demand sets. The above procedures are repeated for the 

Pareto solutions found by the 10 simulation runs of each setting that were performed. 

The results of these comparisons are represented in box plots and are shown in Fig. 

6.13. Each box plot represents the distribution of the deviations between the actual 

and expected results. 

 



 

184 

GEG GEM AEM DET
0

100

200

300

400

500

600
Test Demand Set 1

D
ev

ia
tio

n 
in

 re
su

lts

GEG GEM AEM DET
0

100

200

300

400

500

600
Test Demand Set 2

D
ev

ia
tio

n 
in

 re
su

lts

GEG GEM AEM DET
0

100

200

300

400

500

600
Test Demand Set 3

D
ev

ia
tio

n 
in

 re
su

lts

GEG GEM AEM DET
0

100

200

300

400

500

600
Test Demand Set 4

D
ev

ia
tio

n 
in

 re
su

lts

Fig. 6.13 Deviation between actual and expected costs of Pareto solutions of GEG, GEM, AEM, and 
DET for four test demand sets 

 

It can be seen from Fig. 6.13 that the expected costs of solutions obtained by 

GEG and GEM deviate less from the corresponding actual costs for all the test 

demand sets compared to the other two settings. AEM and DET produce solutions 

that have expected costs that are poor estimates of the actual costs. The spreads of 

their deviations are also larger compared to those of GEG and GEM, which will result 

in poorer predictability in the deviations. It is noted that test demand sets 2 and 4 

resulted in greater deviations for all the four settings but the order of performances of 

the four settings remains the same. 

Although the above results show the magnitudes of deviations between the actual 

and expected costs of solutions, they do not show the direction of these deviations. 

The actual cost of a particular solution can be better than the expected cost of the 

solution even though the deviation between the two costs is large. To compare the 

performances of the four settings based on this aspect, two separate comparisons were 

made. The first involves comparing the increase in travel distance, from the expected 

value, after implementing a particular solution, whereas the other compares the 

increase in driver remuneration. The results of these two comparisons are shown in 

Fig. 6.14(a)-(b). The figures again show the same pattern where GEG and GEM 
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produced the most robust solutions which have expected costs that are good 

approximations of the actual costs.  

 

GEG GEM AEM DET

-100

0

100

200

300

400

Test Demand Set 1

In
cr

ea
se

 in
 tr

av
el

 d
is

ta
nc

e

GEG GEM AEM DET

-100

0

100

200

300

400

Test Demand Set 2

In
cr

ea
se

 in
 tr

av
el

 d
is

ta
nc

e

GEG GEM AEM DET

-100

0

100

200

300

400

Test Demand Set 3

In
cr

ea
se

 in
 tr

av
el

 d
is

ta
nc

e

GEG GEM AEM DET

-100

0

100

200

300

400

Test Demand Set 4

In
cr

ea
se

 in
 tr

av
el

 d
is

ta
nc

e

(a) 

GEG GEM AEM DET

-100

0

100

200

300

400

Test Demand Set 1

In
cr

ea
se

 in
 d

riv
er

 re
m

un
er

at
io

n

GEG GEM AEM DET

-100

0

100

200

300

400

Test Demand Set 2

In
cr

ea
se

 in
 d

riv
er

 re
m

un
er

at
io

n

GEG GEM AEM DET

-100

0

100

200

300

400

Test Demand Set 3

In
cr

ea
se

 in
 d

riv
er

 re
m

un
er

at
io

n

GEG GEM AEM DET

-100

0

100

200

300

400

500

Test Demand Set 4

In
cr

ea
se

 in
 d

riv
er

 re
m

un
er

at
io

n

(b) 

Fig. 6.14 Increase in (a) travel distance and (b) driver remuneration after implementing Pareto solutions 
of GEG, GEM, AEM, and DET 

 

A test was also conducted to compare the robustness of the solution found by 

Dror and Trudeau (1986) with those found by the four settings. The solution of Dror 

and Trudeau (1986) was implemented using the simple recourse policy described in 

Section 6.2.2. The increases in travel distances for the four test demand sets are 

obtained and plotted as four horizontal lines in the respective box plots in Fig. 6.14(a) 

since Dror and Trudeau (1986) only considered the single objective of travel distance. 

From Fig. 6.14(a), it can be seen that the solution of Dror and Trudeau (1986) is not 

as robust as those found by GEG and GEM. For test demand sets 2 and 4, the 

increases in distances after implementing the solution are comparable with those 

found by DET. This is despite the fact that Dror and Trudeau (1986) used a worst 



 

186 

case recourse policy where in case of a route failure, all the remaining customers in 

the route are served through individual deliveries. 

Table 6.2 and Table 6.3 summarize the importance of this analysis. In Table 6.2, 

expected travel distance and expected driver remuneration are the respective costs 

averaged over the Pareto solutions in the archive population at the termination of the 

algorithm of the four different settings and over the 10 simulation runs as plotted in 

Fig. 6.12(a)-(b). Increase in travel distance and increase in driver remuneration are 

the median values of the increase in the respective costs after implementation using 

test demand set 1 as plotted in Fig. 6.14(a)-(b). Actual travel distance and actual 

driver remuneration are the sum of the respective expected costs and increase in costs 

for each setting. Multiplicative aggregate (Van Veldhuizen and Lamont, 1998) shows 

the product of actual travel distance and actual driver remuneration.  

It was previously commented that DET produces the “best” solutions among the 

four settings. This is reflected in Table 6.2 as DET produces solutions with the lowest 

expected travel distance and expected driver remuneration. However, DET also 

produces solutions with the largest increase in travel distance and driver remuneration 

after implementation using test demand set 1. Taking all these factors into 

consideration, Table 6.2 shows that GEG has the lowest multiplicative aggregate of 

1.142, distinctly lower than the values for AEM and DET. The same analysis is also 

performed on the other three test demand sets (td) and the results are summarized in 

Table 6.3. Expected multiplicative aggregate is the product of expected travel 

distance and expected driver remuneration in Table 6.2 and is the same value for a 

particular setting regardless of the test demand set. Actual multiplicative aggregate is 
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equivalent to the multiplicative aggregate field in Table 6.2, except that it shows the 

values of the aggregate obtained considering all the four test demand sets. Average 

actual multiplicative aggregate is the average value of the four actual multiplicative 

aggregates and will be taken as the overall performance indicator as it takes into 

account the contributions from the four test demand sets. Like Table 6.2, Table 6.3 

shows that although DET has the lowest expected multiplicative aggregate, if one 

were to take into account the increases in the transportation costs after implementing 

the solutions, the performance of DET is the worst among the four settings since it 

has the highest average actual multiplicative aggregate.  

From this analysis, it is evident that DET is prone to giving the logistics manager 

inaccurate information in terms of the expected transportation cost. In order for the 

logistic manager to correctly select a solution to implement, it is important that the 

expected costs of solutions should give good approximations of the actual costs. This 

analysis shows that in assessing the quality of solutions, comparing their expected 

costs is not enough. This study also shows that the stochastic nature of the VRPSD 

cannot be neglected and that the RSM using demand sets randomly generated based 

on the customers’ demand distributions is a robust technique to evaluate the expected 

cost of a solution, which was previously considered in the literature as one of the 

main difficulties to solving the VRPSD.  
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Table 6.2 Comparison with a deterministic approach considering test demand set 1 

 Expected 
travel 

distance 

Increase in 
travel 

distance 

Actual 
travel 

distance 

Expected 
driver 

remuneration

Increase in 
driver 

remuneration

Actual driver 
remuneration 

Multiplicative 
aggregate 
(×106)  

GEG 1086.59 33.85 1120.44 985.953 32.874 1018.83 1.142 

GEM 1120.52 16.535 1137.06 990.334 18.639 1008.97 1.147 

AEM 1002.08 122.35 1124.43 947.039 125.044 1072.08 1.205 

DET 970.174 213.3955 1183.57 909.587 217.347 1126.93 1.334 

 

Table 6.3 Comparison with a deterministic approach considering all four test demand sets 

Actual multiplicative aggregate (×106)  Expected 
multiplicative 

aggregate (×106) td1 td2 td3 td4 

Average actual 
multiplicative 

aggregate (×106) 

GEG 1.071 1.142 1.292 1.097 1.307 1.210 

GEM 1.110 1.147 1.316 1.087 1.320 1.217 

AEM 0.949 1.205 1.376 1.136 1.365 1.271 

DET 0.882 1.334 1.475 1.216 1.460 1.371 

 

6.4.4 Choice of N 

N, the number of times the RSM is repeated to obtain the expected transportation cost 

of a solution, was set to 10 in the previous section. This section analyzes the effect of 

the value of N on the performance of the MOEA using the GEG setting in terms of 

the expected costs of solutions found and how well these expected costs approximate 

the actual costs of implementation. 

Ten simulation runs of seven settings with N set to 1, 3, 5, 10, 30, 50, and 70, 

respectively, were performed. The RAN local search setting described in Section 
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6.4.1 is used in all the simulations here to allow a fair comparison since the N settings 

of 30, 50, and 70 run for less than 150 generations and would not be operated by the 

SPS if the default local search setting of WD/SP were used. The convergence traces 

of the travel distance and the driver remuneration, averaged over the non-dominated 

solutions in the archive population and over the 10 simulation runs, for the seven 

settings are plotted in Fig. 6.15(a)-(b). Due to space constraints, the convergence 

traces for the N settings of 1, 3, and 5 are shown only up to the 400th generation. 

From Fig. 6.15(a)-(b), it can be observed that as the value of N increases, the 

number of generations used in the MOEA decreases (A portion of the convergence 

traces has been enlarged to highlight this point). This is because as N increases, more 

runs of the RSM is applied each time the fitness of a chromosome is evaluated and 

since the total number of times the RSM is applied throughout the algorithm for the 

seven settings is fixed at the computing budget, the number of generations used in the 

MOEA is reduced accordingly. This reduction in the number of generations used in 

the MOEA results in poorer routing solutions as the MOEA does not have sufficient 

time to explore the search space. 
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Fig. 6.15 (a) Average travel distance and (b) average driver remuneration of non-dominated solutions 
of GEG using different N values 

 

The box plots that were used in the previous section to analyze how well the 

expected cost of a solution approximate the actual cost of implementing the solution 

are also plotted for the seven settings in Fig. 6.16(a)-(b). From Fig. 6.16(a)-(b), it can 

be observed that as the value of N increases, the solutions found are more robust to 

the stochastic nature of the problem in that the expected costs of the solutions are 

better estimates of the actual costs. 
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Fig. 6.16 Increase in (a) travel distance and (b) driver remuneration after implementing Pareto solutions 
of GEG using different N values 

 

From the above results, it can be seen that while setting a larger value of N for 

GEG will produce more robust solutions whose expected costs are better 

approximations of the actual costs of implementation, due to the fixed computing 

budget, the corresponding smaller number of generations used in the MOEA will 

result in poorer routing solutions as there is insufficient time to explore the search 

space. As such, there is a tradeoff between the number of generations used in the 

MOEA and N, the number of repetitions of the RSM to obtain the expected cost of a 

chromosome. Table 6.4 sought to find the tradeoff value of N for DT86. The fields in 

Table 6.4 are the same as those of Table 6.3. It can be seen from Table 6.4 that N = 

10 has the lowest average actual multiplicative aggregate of 1.177 and thus can be 

taken as the tradeoff value for DT86. 

 

 



 

192 

Table 6.4 Finding the tradeoff value of N for DT86 

Actual multiplicative aggregate (×106) N Expected 
multiplicative 

aggregate (×106) td1 td2 td3 td4 

Average actual 
multiplicative 

aggregate (×106) 

1 0.897 1.166 1.283 1.089 1.350 1.222 

3 1.007 1.136 1.267 1.059 1.279 1.185 

5 1.031 1.153 1.259 1.067 1.275 1.189 

10 1.038 1.113 1.261 1.061 1.272 1.177 

30 1.229 1.272 1.431 1.223 1.431 1.339 

50 1.493 1.537 1.705 1.490 1.715 1.612 

70 1.796 1.826 1.981 1.754 2.000 1.890 

 

The tradeoff value of N for DT86 has been found to be 10 but this value is 

problem specific and depends on problem parameters such as the number of 

customers and the stochastic level of their demands. In order to show how these 

problem parameters affect the tradeoff value of N, six instances of the VRPSD were 

created from DT86. The six new test problems differ in the number of customers and 

the size of the variances of the customer demand distributions. Table 6.5 lists the six 

test problems. As shown in Table 6.5, the test problems are divided into three groups 

with 10, 30, and 75 customers. The customer set of the 30-customer test problem is a 

subset of the set for DT86, while the customer set of the 10-customer test problem is 

a subset of the set for the 30-customer test problem. Customers are selected such that 

the size of the maps remains 70 ×  80. Within each group, the test problems are 

further divided into two sub-groups, one with all customer distributions having a low 
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variance of 0.002 and the other with a high variance of 76.070. These variance values 

are the smallest and largest variances of the customer demand distributions of DT86.  

 

Table 6.5 Test problems adapted from DT86 

Test problem Number of 
customers 

Variance of customer demand 
distributions 

vLc10 0.002 

vHc10 
10 

76.070 

vLc30 0.002 

vHc30 
30 

76.070 

vLc75 0.002 

vHc75 
75 

76.070 

 

The average actual multiplicative aggregates for GEG using the seven N settings 

for the six test problems were found and shown in Table 6.6. As most of the median 

values of the increase in travel distance and the increase in driver remuneration after 

implementation using the test demand sets for the low variance problems are zero, the 

mean values are considered instead for vLc10, vLc30, and vLc75. The lowest average 

actual multiplicative aggregate for each of the test problems is shown in bold and the 

corresponding N value is the tradeoff value. By comparing the N tradeoff values of 

vLc10 with vHc10, vLc30 with vHc30, and vLc75 with vHc75, it is obvious that 

given two same-sized problems, i.e. they involve the same number of customers, the 

decision would be to use a larger value of N for the problem where the customers’ 

demands are highly unpredictable, i.e. the variances of the demand distributions are 
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high, to obtain robust solutions. Similarly, by comparing the N tradeoff values of 

vLc10 with vLc30 or vLc75, and vHc10 with vHc30 or vHc75, it can be concluded 

that given two problems with equal stochastic level of customer demands, the 

decision would be to use a smaller value of N for the problem with a larger search 

space, i.e. the problem which involves more customers, to allow a more extensive 

exploration of the search space since a smaller N value corresponds to a larger 

number of generations used by the MOEA. 

 

Table 6.6 Finding the tradeoff values of N for test problems adapted from DT86 

Average actual multiplicative aggregate (×106) 
N 

vLc10 vHc10 vLc30 vHc30 vLc75 vHc75 

DET 0.0560  0.1927  0.8649  

1 0.0560 0.1392 0.1922 0.6603 0.7859 2.3425 

3 0.0545 0.1303 0.1916 0.6046 0.8463 2.2450 

5 0.0542 0.1269 0.2008 0.6001 0.8442 2.1756 

10 0.0581 0.1280 0.2096 0.6108 0.9174 2.2353 

30 0.0588 0.1224 0.2354 0.6498 1.1241 2.5852 

50 0.0568 0.1237 0.2558 0.6805 1.3497 2.9273 

70 0.0609 0.1216 0.2754 0.6985 1.5122 3.2273 

 

When an instance of the VRPSD involves customer demand distributions with 

very low variances, the problem will approach the deterministic VRP which, 

intuitively, deterministic methods should be sufficient to handle. As such, it would be 

interesting to compare the performance of DET as described in Section 6.4.3, which 
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uses the mean demand set to evaluate the fitness of chromosomes, with that of GEG 

with N set to 1, which was concluded in the previous paragraph to be effective in 

handling test problems with small variances. The performance of DET on the three 

test problems with low variance is also shown in Table 6.6. From Table 6.6, it can be 

observed that for vLc10, the performances of the two settings are comparable but as 

the problem size increases in vLc30, the performance of DET lags behind that of 

GEG with N set to 1. The performance of DET lags further behind for vLc75. From 

these observations, it can be concluded that deterministic approaches to the VRPSD 

are sufficient to handle instances with very low stochastic levels and small number of 

customers but as the problem size gets bigger, their performances deteriorate. This 

study again shows that for practical problems where the number of customers is more 

than 10, even though the variances of the customer demand distributions are very low, 

the stochastic nature of the VRPSD cannot be neglected and it is necessary to design 

stochastic procedures to handle the stochastic problem. 

 

6.4.5 Choice of M 

Having analyzed how the value of N affects the performance of GEG, this section 

attempts to study if the parameter M, the number of generations of the MOEA before 

the N demand sets used by the RSM are refreshed, has any effect on the performance 

of GEM. It is to be noted that if M = 1, GEM becomes GEG since the N demand sets 

used by the RSM will be refreshed every generation of the MOEA, and if M is equal 

to the maximum number of generations of the MOEA, i.e. the N demand sets remain 
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unchanged throughout the algorithm, and N = 1, then GEM becomes DET except that 

the mean demand set is replaced by a demand set that is randomly generated from the 

demand distributions of the customers. 

Ten simulation runs of three settings with M set to 100, 200, and 300, 

respectively, were performed on DT86. N was set to 10 for all the three settings. The 

convergence traces and box plots for the three settings are plotted in Fig. 6.17(a)-(b) 

and Fig. 6.18(a)-(b), respectively. The plots for GEG (M = 1), M = 10 (the GEM 

setting in Section 6.4.3), and DET are also plotted for comparison. From the figures, 

it can be seen that the performance of GEM is the same regardless of the value of M. 

The average travel distance and the average driver remuneration of the Pareto 

solutions found are almost the same. The robustness of the solutions is also 

comparable. The large disparity between M = 300 and DET in terms of how well the 

expected costs of solutions estimate the actual costs also highlights the contribution 

of the RSM to finding robust solutions to the VRPSD since the major difference 

between the two settings is the RSM’s ability to use N randomly generated demand 

sets to evaluate the fitness of chromosomes. 
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Fig. 6.17 (a) Average travel distance and (b) average driver remuneration of non-dominated solutions of 
GEM using different M values 
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Fig. 6.18 Increase in (a) travel distance and (b) driver remuneration after implementing Pareto solutions 
of GEM using different M values 

 

6.4.6 Performance of MOEA on Other Test Problems 

As mentioned at the beginning of Section 6.4, it was highlighted by Bianchi et al. 

(2004) that there is no commonly used benchmark for the VRPSD in the literature. 

As such, most of the performance analysis of the MOEA up till now has been 
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conducted on DT86. It would be important that the performance of the MOEA is not 

compromised over a wide range of problems. Therefore, it is the goal of this section 

to show that the performance of the MOEA, as shown in the earlier results, is 

reproducible on a few test problems adapted from the well-established VRPTW 

benchmark problems designed by Solomon (1987). 

The original design of Solomon’s VRPTW benchmark problems (Solomon, 1987) 

highlights several factors, which can affect the behavior of routing and scheduling 

algorithms, of which the topology of customers is the concern of this section. The 

benchmark problems consist of 56 data sets which can be categorized into three main 

classes based on the spatial distribution of customers. For the Type-R problems, all 

the customers are remotely located, whereas for the Type-C problems, the customers 

are grouped into a few clusters. The Type-RC problems consist of a mixture of 

remote and clustered customers. Customer information, such as the number of 

customers (each instance consists of 100 customers), their locations, demands, and 

service times, within each category is identical. Using these three sets of customer 

information, three test problems are created. Like Dror and Trudeau (1986), to adapt 

the customer information to the VRPSD, the original demand quantity is used as the 

mean demand of each customer. The standard deviation of the demand distribution of 

each customer is generated using a uniform random number generator so that it falls 

between zero and one-third of the mean demand of the customer. The stochastic 

versions of the Type-R, Type-C, and Type-RC problems of Solomon (1987) will be 

referred to as Type-RS, Type-CS, and Type-RCS, respectively. 
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In order to show that the effectiveness of the local search operators and the 

ability of the RSM to produce robust solutions are reproducible on Type-RS, Type-

CS, and Type-RCS, the performance of the MOEA is compared with two other 

settings. The settings are described in Table 6.7.  

 

Table 6.7 Description of settings for performance testing 

Setting Local search Fitness evaluation 

MOEA RAN RSM (GEG with N = 10) 

NLSRSM NLS RSM (GEG with N = 10) 

LSDET RAN DET 

 

Ten simulation runs of each of the three settings were conducted on Type-RS, 

Type-CS, and Type-RCS. The results are tabulated in Table 6.8. The fields in Table 

6.8 are the same as those of Table 6.3, except for increase in multiplicative aggregate, 

which is the difference between average actual multiplicative aggregate and expected 

multiplicative aggregate. It is used as a measure of the robustness of the solutions, 

with a smaller value indicating solutions having expected costs that are good 

estimates of the actual costs of implementation on the randomly generated test 

demand sets. 
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Table 6.8 Performance of MOEA on Type-RS, Type-CS, and Type-RCS 

Actual multiplicative aggregate 
(×106) Test 

problem Setting 

Expected 
multiplicative 

aggregate 
(×106) td1 td2 td3 td4 

Average actual 
multiplicative 

aggregate 
(×106) 

Increase in 
multiplicative 

aggregate 
(×106) 

MOEA 1.432 1.598 1.650 1.512 1.537 1.574 0.142 

NLSRSM 4.015 4.262 4.352 4.133 4.138 4.222 0.207 Type-RS 

LSDET 1.103 1.622 1.605 1.461 1.477 1.541 0.438 

MOEA 1.027 0.942 1.095 1.223 0.833 1.023 -0.004 

NLSRSM 3.933 3.782 4.023 4.378 3.726 3.978 0.045 Type-CS 

LSDET 0.658 1.061 1.229 1.344 0.962 1.149 0.491 

MOEA 1.433 1.855 1.754 1.747 1.868 1.806 0.373 

NLSRSM 4.902 5.593 5.332 5.515 5.556 5.499 0.597 Type-
RCS 

LSDET 0.991 2.080 1.967 1.878 2.206 2.032 1.041 

 

Comparing the average actual multiplicative aggregates for the three settings on 

the three test problems, it can be seen that for Type-CS and Type-RCS, the MOEA 

performed the best among the three settings but for Type-RS, its performance is 

marginally poorer than LSDET. One probable explanation could be that the N value 

of 10 used in the simulations on Type-RS is not the tradeoff value. However, the fact 

that the MOEA performed favorably on Type-CS and Type-RCS could also imply 

that the tradeoff value of N for a particular problem, on top of being dependent on 

problem parameters such as the number of customers and the stochastic level of their 

demands, may also be affected by the spatial distribution of the customers. Putting 

this aside, comparing the increases in multiplicative aggregates, it is obvious that for 
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all the three problems, the solutions produced by the MOEA are more robust than 

those obtained by the other two settings.  

Having discussed the performance of the MOEA on the three test problems, the 

effectiveness of the local search operators and the ability of the RSM to produce 

robust solutions are also evident from Table 6.8. It can be seen from Table 6.8 that 

the settings which utilize local search, namely the MOEA and LSDET, achieved 

lower average actual multiplicative aggregates than NLSRSM. Comparing the 

increases in multiplicative aggregates, it can also be seen from Table 6.8 that the 

settings which utilize the RSM, namely the MOEA and NLSRSM, were able to 

produce solutions that are more robust than those obtained by LSDET.  These 

observations highlight that the effectiveness of the local search operators and the 

ability of the RSM to produce robust solutions as achieved earlier on DT86 are 

reproducible on the three VRPSD instances adapted from Solomon’s VRPTW 

benchmark problems (Solomon, 1987). 

 

6.4.7 Significance of the RSM 

In this chapter, the RSM is implemented by using demand sets randomly generated 

based on the customers’ demand distributions. In the actual implementation of the 

algorithm, there may not be a need to randomly generate the demand sets if the 

company keeps past demand records of their customers. These past records can be 

used to provide the demand sets for the RSM to operate on. This approach can be 

particularly useful if the customers’ demand distributions are not known or if the 
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customers’ demands change for different days of the week. Take for example the 

delivery of beer, the customers’ demands for beer are usually higher on the weekends 

when people get together for happy hour. As such, instead of having a separate 

demand distribution for a particular customer for each day of the week, using the 

customer’s past demand records for the appropriate day would allow us to easily 

come up with demand sets for the operations of the RSM. 

 

6.5 Summary 

This chapter studied the routing of vehicles with limited capacity from a central depot 

to a set of geographically dispersed customers, whose actual demands are revealed 

only when the vehicles arrive at their locations. The solution to this vehicle routing 

problem with stochastic demand (VRPSD) involves the optimization of routing 

schedules with minimum travel distance, driver remuneration, and number of 

vehicles, subject to a number of constraints such as time windows and vehicle 

capacity. A multi-objective evolutionary algorithm (MOEA), which incorporates two 

VRPSD-specific heuristics for local exploitation and a route simulation method to 

evaluate the fitness of solutions, has been proposed in this chapter to solve the multi-

objective optimization problem. A new way of assessing the quality of solutions to 

the VRPSD on top of comparing their expected costs has also been presented. It has 

been shown that the algorithm is capable of finding useful tradeoff solutions for the 

VRPSD and the solutions are robust to the stochastic nature of the problem. The 

developed algorithm has been further validated on a few VRPSD instances adapted 
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from Solomon’s vehicle routing problem with time windows (VRPTW) benchmark 

problems. 
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Chapter 7  

Conclusions 
 

Multi-objective evolutionary algorithms (MOEAs) are a class of stochastic 

optimization techniques that have been proving to be very efficient and effective in 

solving sophisticated multi-objective optimization problems where conventional 

optimization tools have been found to be inadequate. MOEAs operate on a population 

of solutions, which allows them to sample multiple candidate solutions 

simultaneously and find multiple optimal solutions in a single simulation run. 

MOEAs are well-known for their ability to solve non-linear and combinatorial 

problems. They are also often noted for searching large, multi-modal spaces 

effectively, without requiring any gradient or problem-specific information. These 

aspects of MOEAs have made them natural solvers for multi-objective scheduling 

problems, which provided the main motivation for the research documented in this 

thesis. 
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7.1 Contributions 

The primary aim of this thesis is to present an investigation on the application of 

MOEAs to solve a few scheduling problems with vastly different characteristics. A 

generic MOEA framework has been devised in Chapter 3. Problem-specific operators 

are then designed to adapt the MOEA to solve the different scheduling problems 

considered in this thesis. 

In Chapter 4, the exam timetabling problem (ETTP) has been considered as a 

multi-objective optimization problem that involves the minimization of the two 

objectives of number of clashes and number of periods in a timetable. The MOEA, 

featured with variable-length chromosome representation, graph coloring heuristics, 

goal-based Pareto ranking scheme, and two local search operators of micro-genetic 

algorithm and hill-climber, has been presented. The proposed MOEA differs from 

existing approaches in that it considers timetable length as an objective to be 

optimized rather than expecting an input from the timetable planner. It generates a 

Pareto set of solutions within the desired range of timetable lengths instead of 

producing single-length timetables. It has been demonstrated that such an approach is 

more general and would still be able to function effectively even without any prior 

timetable length information. The results have also shown that the MOEA is able to 

generate shorter clash-free timetables which can never be found by existing 

approaches. On top of these, the MOEA has also performed well in comparison with 

seven other recent and established optimization techniques. The MOEA is able to 

produce the best results for four out of the seven publicly available datasets tested. 
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In Chapter 5, the berth allocation problem (BAP), which involves the 

minimization of the three objectives of makespan, waiting time, and degree of 

deviation from a predetermined priority schedule, has been studied. These objectives 

are considered with the interests of both port and ship operators in mind. Three 

primary features, including a local search heuristic, a hybrid solution decoding 

scheme, and an optimal berth insertion procedure, have been designed to adapt the 

MOEA to solve the BAP. The proposed MOEA differs from most existing single-

objective-based approaches in that it optimizes all objectives concurrently without the 

need of aggregating them into a compromise function. Given the intricate 

relationships between the three objectives that have been uncovered in this work, the 

multi-objective approach appears to be the natural choice for tackling the BAP. It 

generates a Pareto set of berth schedules from which the port management can select 

a desirable solution for implementation. In addition, the effects that the three 

proposed features have on the quality of berth schedules have been studied. It has 

been shown and validated that the features play a pivotal role in the optimization 

performance of the MOEA. 

A capacity and time constrained vehicle routing problem with stochastic demand 

(VRPSD) has been considered in Chapter 6. The problem is inherently a multi-

objective optimization problem that involves the optimization of routes for multiple 

vehicles to minimize the three objectives of travel distance, driver remuneration, and 

number of vehicles required. The MOEA, featured with two VRPSD-specific local 

search heuristics, has been presented. To evaluate the cost of a VRPSD solution, 

which is stochastic, a route simulation method (RSM) has also been proposed and 
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incorporated with the MOEA. Without the need of aggregating the multiple 

objectives of the VRPSD into a compromise function, the MOEA optimizes all the 

objectives concurrently, providing advantages such as improved routing solutions and 

the exploration of a larger search space. The effectiveness of the two VRPSD-specific 

local search heuristics and the various settings in which local exploitation is 

incorporated with the MOEA have been studied. A new way of assessing the quality 

of solutions to the VRPSD on top of comparing their expected costs has also been 

proposed. Extensive simulations have been performed to show that the solutions 

obtained by the MOEA, equipped with the RSM, are robust to the stochastic nature of 

the problem. The expected costs of such solutions are good approximations of the 

actual costs of implementing the solutions, thus providing the logistic manager with 

accurate information based on which decision will be made. 

 

7.2 Future Works 

Although this thesis has provided a detailed study of the application of MOEAs to 

solve multi-objective scheduling problems, there is much room for expansion in 

future works. One direction of investigation pertaining to the BAP involves the 

design of an encompassing multi-objective optimization framework that is capable of 

solving the BAP and the quay crane assignment problem simultaneously. In the 

current BAP model, it is assumed that the time required to load or unload containers 

for each ship is known and fixed. However, it is intuitive that the time for container 

handling depends on the number of quay cranes, which are responsible for moving 
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containers between a ship and a berth, assigned to the ship. Although existing 

methods approach these two problems independently, the two problems are very 

closely related in that the solution of one directly affects the other problem. A co-

evolutionary algorithm could be developed to exploit the interaction between the two 

problems for better optimization performance. 

The framework suggested above could also be applied to solve the ETTP with 

the course timetabling problem (CTTP). The CTTP involves scheduling university 

courses into a weekly timetable. Since the two problems share the same set of 

enrolment data, the solution obtained for either one of the problems could be 

exploited to assist in solving the other problem. Another research direction 

concerning the ETTP involves the problem of assigning exams to rooms. The work in 

Chapter 4 has focused on the temporal aspect of the ETTP, i.e. the allocation of 

exams to periods. It has to be acknowledged that for a more complete treatment of the 

timetabling problem, the spatial aspect of the problem, i.e. the assignment of exams 

to rooms, has to be considered as well. This opens up another dimension of the multi-

objective optimization problem. 

The performance validation of the MOEA proposed for solving the VRPSD in 

Section 6.4.6 also opens up the prospects for future work. In that section, the MOEA 

was tested on three test problems adapted from the vehicle routing problem with time 

windows (VRPTW) benchmark problems of Solomon (1987). More test problems 

can actually be created by varying some of the problem parameters such as the 

geographical location of the depot, the customer to vehicle ratio, and the stochastic 

level of the customer demands. Larger test problems can also be adapted from the 
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extended Solomon VRPTW benchmark problems of Homberger and Gehring (1999). 

This would create a complete set of benchmark problems for the VRPSD, which can 

be used for further simulation studies to understand more behaviors of the problem 

and also acts as a basis for comparison of algorithm performance, which has been 

lacking hitherto. It can also be seen from the studies in Section 6.4.4 that the 

performance of the MOEA for solving the VRPSD is affected by how close the value 

of N is to the tradeoff value of the problem. It would be computationally intensive to 

find the tradeoff value of N for a given problem to ensure that the performance of the 

MOEA is not compromised. Therefore, it would be useful if a rule of thumb can be 

developed such that it would be possible to select the value of N to be set in the 

MOEA by inspecting just a few parameters of the problem. 
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