

MODULE REALLOCATION PROBLEM IN THE CONTEXT

OF MULTI-CAMPUS UNIVERSITY COURSE

TIMETABLING

WANG JIA

NATIONAL UNIVERSITY OF SINGAPORE

2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48809288?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MODULE REALLOCATION PROBLEM IN THE CONTEXT

OF MULTI-CAMPUS UNIVERSITY COURSE

TIMETABLING

WANG JIA

(M. Mngt., Nanjing Univ.)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF INDUSTRIAL & SYSTEMS ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2014

Declaration

I hereby declare that the thesis is my original work and it has been written by
me in its entirety. I have duly acknowledged all the sources of information

which have been used in the thesis.

This thesis has also not been submitted for any degree in any university
previously.

Wang Jia

29 August, 2014

i

Name : WANG Jia

Student No. : HT080222W

Degree : Doctor of Philosophy

Supervisor(s) : CHEW Ek Peng, LEE Loo Hay

Departments : Department of Industrial & Systems Engineering

Thesis Title : Module Reallocation Problem in the Context of Multi-
Campus University Course Timetabling

Abstract

We propose a new type of problems, namely module reallocation problem

given timing, which arises from the field of university course timetabling. A

new campus is planned and some modules originally allocated on the original

campus were to be reallocated to the new campus. Due to practical reasons,

the timing was considered as given. The decisions include the module

reallocation decision and the room assignment decision. Optimizing the inter-

campus traffic is the main objective. We transform stakeholders’ requirements

into a mathematical model by conducting data analysis on the real data. We

propose an iterative two-stage heuristic to solve this problem. This heuristic

combines various methods, such as constructive heuristic, clustering analysis,

branch and bound framework, Lagrangian relaxation method, etc., to exploit

the problem structure and maintain computational efficiency. We also provide

a way to fine-tune the timetable to further improve the inter-campus traffic as

an extension.

ii

Keywords: University course timetabling, multiple campuses, inter-campus

traffic, module reallocation, room assignment, heuristics

iii

Acknowledgements

First of all I would like to express my sincere gratitude to my supervisors

A/Professor CHEW Ek Peng and A/Professor LEE Loo Hay for their

tremendous help and patience. Their continuous guidance helped me through

all the time of the research and the writing of this thesis.

 I also wish to thank the Registrar’s Office for offering me the precious

opportunity to participate in the timetabling project for the University Town of

National University of Singapore. In addition, I would like to thank

A/Professor NG Kien Ming, Dr. HUNG Hui-Chih, Dr. HE Yaohua, Dr. XIAO

Hui, and Dr. WANG Qiang for their collaborations during the aforementioned

project.

 I am particularly grateful for the assistance given by Dr. LI Haobin.

 Last but not the least, I thank my parents for all the endless love and

spiritually support they gave me. I also thank FANG Rong and our daughter

WANG Suyin for the eternal happiness that they produce.

iv

Table of Contents

Declaration ... i

Abstract .. i

Acknowledgements ... iii

Table of Contents .. iv

Summary .. vi

List of Tables.. ix

List of Figures ... x

List of Abbreviations ... xi

Chapter 1 Introduction .. 1

Chapter 2 Literature Review ... 11

2.1 Overview of Studies on UCTP .. 11

2.2 Solution Techniques for UCTP ... 26

2.2.1 General Exact Approaches ... 27

2.2.2 Genetic Algorithm and Other Heuristic Approaches ... 33

Chapter 3 Data Analysis and Problem Modeling for MRPT ... 50

3.1 Overview ... 50

3.2 Data Analysis ... 53

3.3 Problem Modelling .. 65

3.4 Numerical Experiments ... 78

3.5 Discussion.. 83

Chapter 4 An Iterative Two-Phase Approach to MRPT .. 86

4.1 Overview ... 86

4.2 Phase 1: Module Selection Problem (MSP)... 91

v

4.2.1 Approach 1: Greedy constructive procedure .. 93

4.2.2 Approach 2: Bi-objective MIP model solved by NBI method 96

4.2.3 Reparation Mechanism and Local Improvement ... 102

4.3 Phase 2: Room Assignment Problem... 104

4.3.1 Overall Framework .. 106

4.3.2 Dual Bound: Lagrangian Relaxation Method .. 109

4.3.3 Primal Bound: Constraint Programming-Based Heuristic 116

4.4 Numerical Experiments ... 118

4.4.1 Numerical experiments related to Phase 1 ... 119

4.4.2 Numerical experiments related to Phase 2 ... 126

4.4.3 Results of the Proposed Heuristic .. 127

Chapter 5 Fine-tuning on Timing Given the Module Reallocation Decision 134

5.1 Introduction ... 134

5.2 Methods of time-tuning ... 136

5.3 Numerical Experiment ... 141

Chapter 6 Conclusion ... 145

Bibliography ... 153

Appendices .. 166

A.1 Test Case Generation for Numerical Experiment ... 166

A.2:Details on the Surrogate Objective Function .. 176

A.3 Test Case Generation for Numerical Experiment ... 178

vi

Summary

In this thesis, a new type of problems arising from the university course

timetabling is proposed in the presence of the university expansion. The

reallocation of modules to the new campus and the incurred impact on inter-

campus traffic, rather than the timing, are our main concerns.

 In this problem, a new campus is located near the existing campus, and

the two campuses are linked by a shuttle bus service. This new campus

consists of facilities that are expected to be enjoyed by all students from

different disciplines. Optimizing the inter-campus traffic, which measures the

level of students’ movements for taking courses by travelling from one

campus to another, is the main objective. Several considerations for the new

campus are addressed by stakeholders, including a good distribution of

students for various faculties, a high proportion of the junior students and high

resource utilization. The timetable, however, is given by stakeholders who

collect corresponding information from individual school/department. Given

their timetable, the university would like to know which modules are to be

reallocated and which rooms are those modules assigned to. We call this

problem Module Reallocation Problem given Timing (MRPT). We modelled

MRPT and later solved it by developing an iterative two-stage approach. This

approach combines various methods, including constructive heuristic,

clustering analysis, branch and bound framework, Lagrangian relaxation

method, etc., to exploit the problem structure and maintain the computational

vii

efficiency. We also conducted fine-tuning on the timetable to see whether

there is any room for further improvement in the inter-campus traffic.

The main contributions of this thesis contain four parts. First, we

propose a new type of problems which arises from the field of university

course timetabling. We consider the module reallocation decision and the

room assignment decision given a course-timing. The objective function,

namely inter-campus traffic, has not been studied before in this area. To

understand this objective, we learned from the data that characterize the

students’ movement behavior. By using similar ways, various requirements

from the stakeholders were also finalized and modeled.

Second, from our understanding of the requirements set by the

stakeholders, we formulated the problem as a Mixed Integer Programming

(MIP) model (The original measurement of inter-campus traffic is non-linear,

so we linearized it in the MIP Model). Parameters of objective and constraints

were also determined based on the data.

Third, when the problem size becomes large, the commercial solver is

unable to solve it. Hence, we propose a heuristics that exploits the good

structure of the problem. A decomposition method is used to transform the

original problem into a two-stage problem. The first stage determines which

modules are allocated to the new campus and the second stage decides which

rooms those modules are assigned to.

viii

Fourth, we extend the MRPT by considering that slight modifications

to the given timetable are allowed. Based on the selection of reallocated

modules, we conduct a local search to find new solutions such that the inter-

campus traffic measurement can be improved.

ix

List of Tables

Table 1-1 Examples of different cases that the distance between the old campus and the new
campus .. 4

Table 2-1 Constraints setting in PETP and CBTP .. 20

Table 2-2 Common select methods in the improvement approach... 45

Table 2-3 Common acceptance criteria in the improvement approach 46

Table 2-4 Comparison of commonly used graph heuristics in solving UETP 47

Table 3-1 Number of modules and % of offering faculties grouped by module size range 57

Table 3-2 Distribution of student-module count w.r.t origin of faculties 57

Table 3-3 Distribution of student-module count w.r.t student grade .. 57

Table 3-4 Five scenarios and their parameter settings .. 79

Table 3-5 Result summary for 5 scenarios ... 80

Table 3-6 Result summary for 5 scenarios with other evaluations ... 81

Table 4-1 Groupings on constraints and decision variables ... 86

Table 4-2 The count of wins for four scenarios given 1-hour computational budget 121

Table 4-3 The count of wins for four scenarios given 10-hour computational budget 122

Table 4-4 Frequency of approach 1 and 2 being called when solving overall problem 123

Table 4-5 Average Pearson’s Correlation Coefficient (PCC) between F(x) and F’(x) with
different numbers of modules ... 125

Table 4-6 The rate comparison in solving phase 2 problem between our heuristic and CPLEX
 .. 127

Table 4-7 Results of the count of the success by our heuristic and solver by the grouping of
time. .. 133

Table 6-1 Rules used to generate features of modules ... 168

Table 6-2 Configuration of modules .. 170

Table 6-3 The mapping of the non-linear function and its replacement 179

x

List of Figures

Figure 3-1 Results of sub-clusters in the biggest cluster when λ=50 64

Figure 4-1 The overall framework of the proposed heuristic ... 88

Figure 4-2 Obtaining solutions to a typical bi-objective problem using NBI 102

Figure 4-3 Flow chart of the branch-and-bound framework in Phase 2 108

Figure 4-4 Plot of the set of (F(x), F'(x)) from a 10-module example 124

Figure 4-5 % improvement from enabling local improvement .. 126

Figure 4-6 Example: performance comparison over time on a 800-medium test case 128

Figure 4-7 The traffic measurement comparison.. 130

Figure 4-8 The trend of N+/N- for |I|=400 case across 24 hrs .. 132

Figure 4-9 The trend of N+/N- for |I|=800 case across 24 hrs .. 132

Figure 5-1 The detailed inter-campus traffic rate from campus A to campus B 141

Figure 5-2 The detailed inter-campus traffic rate from campus B to campus A 142

Figure 5-3 Changes on traffic rate (A to B) when rescheduling α from FRI to THU............. 143

Figure 5-4 Changes on traffic rate (B to A) when rescheduling α from FRI to THU............. 144

xi

List of Abbreviations

CBTP curriculum based timetabling problem

CP constraint programming

GRASP greedy randomized adaptive search procedure

MRPT module reallocation problem given timing

MIP mixed integer programming

MKP multidimensional knapsack problem

MSP module selection problem

NBI normal boundary intersection

PETP post enrollment timetabling problem

UCTP university course timetabling problem

Chapter 1 Introduction

1

Chapter 1 Introduction

The University Course Timetabling Problem (UCTP) is one of the momentous

issues faced by the university administrators. Usually, many resources and

stakeholders are involved in the timetabling tasks, including students, teachers,

rooms and time slots. Typically, many of these resources are subject to various

constraints, e.g., limited room capacity, unavailable teachers’ timings. At the

same time, university course timetabling heavily affects day-to-day campus

life for almost everyone in the university. For students and teachers, the

timetable greatly determines their study/work schedules every day. For

university administrators, a well-balanced timetable which satisfies most

requirements improves their management effectiveness. As such, the

construction of the university timetable is certainly a very important work.

University course timetabling problem is widely considered as a

challenge due to two principal reasons. First, most university timetabling

problems are NP-complete problems (Michael and David 1979). Furthermore,

this kind of problem is usually of large scale in reality, because a great number

of modules are involved in most cases. 1 An automatic timetabling process

must be developed to cope with this tedious work. Second, due to the variance

among universities, different universities may face different objectives and

1 In this study, ‘module’ and ‘course’ have the same meaning: a series of lessons/classes in a

particular subject.

Chapter 1 Introduction

2

constraints. Even for the same constraint, some universities treat it as a “hard

constraint”, while others treat it as a “soft constraint”. Hence, although there

are sufficient studies in this field, different works share few common features

and may require very different solution techniques when applying to reality.

As far as we know, the first study in this field was by Gotlieb (1962).

Since then and during the last fifty years, automatic university course

timetabling has been widely studied and numerous papers and articles have

been published. In addition, working groups and series of conferences, such as

European Association of Operational Research Society on Automated

Timetabling and Practice and Theory on Automated Timetabling, have been

organized. 2 Many practical applications have been developed, such as

UniTime and WiseTable.3

In recent years, several new requirements have been added in the field

of UCTP. The first one is the continuity of the timetable, which means that the

revised timetable may not change too much from the previous ones. The main

reason for this requirement is that there is no significant demand to produce a

brand new timetable as many universities have incorporated the automatic

course timetabling systems or systems having similar functions already.

Instead, the timetables are revised year after year to meet new needs. If the

2 Information can be found via http://watt.cs.kuleuven.be and http://www.patatconference.org.

3 More information on both solutions can be found via http://www.unitime.org/ and

http://wisetimetable.com/ respectively.

http://watt.cs.kuleuven.be/
http://www.patatconference.org/
http://www.unitime.org/
http://wisetimetable.com/

Chapter 1 Introduction

3

enrollment is not heavily changed, and if the educational curriculum is stable,

the timetables generated from year to year may not change too much. In this

case, it is possible that teachers are used to their timings and classrooms.4 As a

result, if a new timetable is to be designed, a dramatically different one may

not be appropriate and could not be accepted by some stakeholders.

The second requirement is to consider the context of multi-campus.

Many universities are planning to build new campuses as an important

movement in the university development and the response to expanding

missions of teaching and researching. Due to various reasons such as visions,

accessibility of land, funding, etc., different universities may plan the new

campuses in different locations (either remotely or nearby). Table 1-1 shows

several examples in terms of the distance between the old campus and the new

one. It should be noted that, typically, when the new campus is far away from

the old one (a shuttle bus service is usually arranged accordingly), it usually

facilitate brand new departments and research agencies. It rarely opens courses

for the students from the old campus in a large scale. For this reason, the

massive students’ movements for taking classes among campuses can be

resolved in a trivial way. Unfortunately, these settings are not available in our

study.

4 We define the compulsory module as a required course for a big group of students according

to the curriculum. Hence, the number of takers should be relatively stable from year to year.

Chapter 1 Introduction

4

Table 1-1 Examples of different cases that the distance between the old campus and the
new campus5

University Old Campus and New
campus

Distance

Cornell University Campus in Ithaca and
Campus in NYC

1 hour of flight

Binghamton University Main Campus and University
Downtown Center

4 miles

University of Nottingham University Park Campus and
Jubilee Campus

1 miles

Swansea University Singleton Park Campus and
Bay Campus

0.2 miles

New university campus is conventionally designed to host a new

department/faculty. However, new ideas about the role of the new campus

have been proposed nowadays. One of them states that the new campus should

engage all students and researchers together in an integrated way. The main

advantage of this new design is that the exchange of knowledge among

different disciplines is much easier.

Our study considers a UCTP with aforementioned new requirements

based on a university project. In this project, University Town of National

University of Singapore has implemented such an idea into practice. It is

linked with the main campus, known as Kent Ridge Campus, via a vehicle and

5 The information about the four listed new campuses can be found via http://nyc.cornell.edu/,

http://www.binghamton.edu/visiting-campus/campus-facilities.html,

http://www.nottingham.ac.uk/about/visitorinformation/mapsanddirections/mapsanddirections.

aspx and http://www.swansea.ac.uk/campus-development/.

http://nyc.cornell.edu/
http://www.binghamton.edu/visiting-campus/campus-facilities.html
http://www.nottingham.ac.uk/about/visitorinformation/mapsanddirections/mapsanddirections.aspx
http://www.nottingham.ac.uk/about/visitorinformation/mapsanddirections/mapsanddirections.aspx
http://www.swansea.ac.uk/campus-development/

Chapter 1 Introduction

5

pedestrian bridge. An educational complex with residential hostels, teaching

facilities and study clusters are provided, which creates an intellectual, cultural

and social environment. This design of the new campus promotes an open

exchange of ideas and multidisciplinary engagements. Therefore, the new

campus is not dedicated to any departments or groups of people. Instead, it is

designed to attract and facilitate all students from the main campus to enjoy

those wonderful resources. This requirement is very different from the ones

discussed in previous studies, because now we need to relocate some of the

modules that are previously offered in the main campus to the new campus.

On the other hand, National University of Singapore has deployed an

automatic timetabling system for several years already. In fact, during our

interviews with related personnel, we find that many constraints which are

input into the system are decided by individual school/department directly. On

one hand, variant curriculums exist at different schools/departments, so there

are many intangible and unquantifiable constraints that we cannot easily

capture; on the other hand, the schools/departments have built their preferred

timetable for flexibility, and these timetables have been used for several years.

Any changes to the timing may hugely disrupt this current timetable, and

every faculty would be affected.6 Many negotiations are expected through the

way of finding a solution. Eventually, stakeholders strongly wish that the

6 In this thesis, unless mentioned explicitly, “faculty” refers to a group of related departments

in a university, e.g., faculty of arts, faculty of engineering, faculty of laws. On the other hand,

we use “faculty members” to refer to the lecturers explicitly.

Chapter 1 Introduction

6

changes on the existing timetable should be as little as possible. The

requirements of open-to-all-students and stable timetable bring challenges and

are discussed in the study.

The main problem that this thesis studies, namely MRPT, is

summarized in the following: Given a timetable, we decide which modules

should be reallocated to the new campus and which types of rooms should

they be assigned to. At the same time, we want to improve the inter-campus

traffic. 7 In this problem, we study a university which plans the campus

expansion. A new campus is built as a new environment attracting students

from all schools/departments. A certain number of modules from nearly all

schools/departments need to change the venues from the main campus to the

facilities on the new campus. Due to practical reasons, the timetable is

required to remain the same as given by stakeholders.

In MRPT, our decision mainly considers the objective of optimizing

the traffic-flow affected by the students for taking classes for the following

reasons: (1) The new campus has an innovative vision as there is no

department/schools there. Instead, resources and facilities are shared by all

students and faculties. (2) The courses opened on the new campus may attract

a large number of students from possibly all schools/departments. They may

need to travel across the campus from their last class/for their next class on the

main campus. A poorly designed timetable may require too much travelling

7 Inter-campus traffic means the traffic related to moving from one campus to another.

Chapter 1 Introduction

7

time for students and cause the late-for-class. (3) The distance between the

two campuses is usually not long, and shuttle buses are commonly used as an

important transportation mode. The traffic issue also affects the management

of the shuttle bus system so that the overload situation may occur.

On the other hand, our decision is also restricted by the requirements

by stakeholders. As the new campus is designed to attract nearly all students,

certain way of fairness should be implemented when planning module

reallocation. As a result, various constraints are set to fulfill such requirements,

e.g., faculty fairness, student preference. In addition, reallocated modules

should also ensure a utilization level for facilities on the new campus,

especially for those large rooms.

Several challenges are found in this study. We find that the original

measurement of inter-campus traffic is non-linear so we need to linearize it.

We also learn that the correlation between modules in terms of common

students taking both modules is strongly related to the objective value.

However, the aforementioned constraints prevent us finding trivial solutions

accordingly. In addition, the module reallocation problem can be solved by a

commercial solver in small scale. However, when the problem scale gets

bigger, the solver cannot handle it. As a result, we propose a decomposition

method to transform the original problem into a two-stage problem.

After we solve this module reallocation problem, we extend it by

conducting fine-tuning on the timetable to see whether there is any room for

further improvement in the inter-campus traffic.

Chapter 1 Introduction

8

 In this thesis, the following contributions are achieved:

• We conduct data analysis to understand the problem better. First we

help the stakeholders to find a connection between the students’

movement behavior and the inter-campus traffic. Assuming that the

students’ movement behavior will not be affected by the reallocation of

modules, we can use the results from the data analysis to evaluate the

inter-campus traffic to make a better decision. In addition, using cluster

analysis on these data also provides insights on how to prevent bad

solutions, which are later used to build a surrogate measure of traffic.

Second, with the understanding of students’ enrollment grouped by

faculties and academic year, we help the stakeholders to determine the

target level of “fairness” for their requirement as well as identify the

associated parameters. More importantly, we find that these

requirements prevent us from easily generating trivial solutions, such

as assigning those courses from the same faculty to the new campus.

Hence, it makes the problem more challenging.

• By considering the stakeholders’ requirements and analyzing related

data, we formulate this real world problem as a Mixed Integer

Programming (MIP) model. The original measurement of inter-campus

traffic is non-linear, so we need to linearize it. Parameters of objective

and constraints are also determined by data mining. As a result, we can

develop a model that represents their needs including controlling the

traffic while maintaining a set of constraints in terms of fairness.

Chapter 1 Introduction

9

• We propose a two-stage heuristic approach to solve this problem as it

may become intractable when the problem scale becomes bigger. The

two stages, namely the module selection stage and room assignment

stage, are derived by exploiting the problem structures. In the first

stage, we introduce a multi-objective framework to tackle the problem,

as the selection of modules is affected by not only the traffic but also

stakeholders’ requirements. Under the multi-objective framework, we

propose two methods to generate a solution. The first heuristic is a

greedy constructive method based on balancing between the objective

value and the violations of constraints. The second heuristic constructs

a bi-objective model, which uses a surrogate measure of traffic based

on clustering analysis on the student-module registration data. This

model is solved by the Normal Boundary Intersection (NBI) method.

In the second stage, we use a branch and bound framework to solve the

problem. Within this framework, we use the Lagrangian relaxation

method to solve the sub-problem, in which we can identify a knapsack-

type structure and thus the sub-problem can be solved efficiently. We

also use constraint programming techniques to help find the incumbent

solution.

• We further extend the module reallocation problem by considering that

the timetable is allowed to be modified slightly from the given one. By

keeping the selection of reallocated modules unchanged, we conduct a

Chapter 1 Introduction

10

local search to find new solutions such that the inter-campus traffic

measurement can be improved.

In the subsequent part of this thesis, we firstly review the studies in the

mostly-related field, i.e., UCTP in Chapter 2. The key elements, concepts, and

various solution techniques related to UCTP are summarized. In Chapter 3, we

describe the data analysis works to understand the stakeholders’ requirements

in MRPT followed by our mathematical model. In Chapter 4, we propose an

iterative two-phase approach to solve MRPT and demonstrate the related

numerical experiments to compare the performance between our proposed

approach and the commercial solver. In Chapter 5, we extend the problem by

conducting a fine-tuning process on the timetable given the solution to MRPT.

In Chapter 6, we address the conclusion of this study as well as providing

possible directions for future studies.

Chapter 2 Literature Review

11

Chapter 2 Literature Review

As we believe that our problem is still in the context of university course

timetabling problem, we focus our review on studies of UCTP, and discuss on

several interesting topics which show connections to our study. In this chapter,

we give an overview on the scope of UCTP and various objectives/constraints

from different problem instances in previous studies. This overview helps to

understand the mathematical challenge of this problem and the importance of

capturing the correct requirements in modelling UCTP-type problems. We

then discuss the solution techniques for UCTP by grouping them into the exact

approaches and the heuristic approaches.

 Although our study has not been completely tackled in previous studies,

ideas from literatures still provide insights. Some hard constraints, soft

constraints and problem modelling ideas are related to our study in Chapter 3.

Topics such as decomposition from the timetabling problem to room

assignment and timing problem, branch-and-bound framework and genetic

algorithm applied to timetabling problem are also related to our study in

Chapter 4. The concept of conflict in timing is closely related to our study in

Chapter 5.

2.1 Overview of Studies on UCTP

In this section, we present an overview of the university course timetabling

problem. We explain the key elements in the problem. We list the common

constraints discussed in previous literatures. We then describe two important

Chapter 2 Literature Review

12

tracks in recent years and show the difference in terms of objectives and

constraints. Both tracks share an important topic, namely graph coloring,

which is one of the most important sub-problems. For this reason, we then

show its definition and various algorithms to solve this problem. With key

elements of UCTP described, we briefly introduce a recent trend of modeling

UCTP as a multi-objective problem.

A UCTP is defined as a problem which assigns , a set of events of

courses, into T and R , which are a set of timeslots and a set of resources

respectively. A solution { }, , : , ,∈ = ∈ ∈ ∈i i i i i ix X c t r c t T r R has to satisfy a

set of constraints, i.e., ,∈ ∀ ∈x x X . The constraint set can be even

categorized into hard constraints H and soft constraints S . Hard

constraints are those requirements that a solution must satisfy, while soft

constraints serve the similar role as objective functions in an optimization

problem. In the following, we describe the three elements: , T , R .

Key elements

An event8 is the session of some course taken place in one room and typically

in one or two timeslot. An event may have the following features: a name to

identify itself from other sessions if applicable, a piece of information about

the takers (e.g., the size of the event, the department/school offering this

event), and the lecturers. One course may have more than one event, including

8 In this thesis, event and class has the same meaning as a period of time during which
someone teaches a group of people.

Chapter 2 Literature Review

13

lectures, tutorials or laboratories. Events belonging to the same course may be

connected by some requirements in the UCTP. For instance, the lecture

sessions are preferred to be taken place in the same room across a week.

A timeslot is a period to contain one event. Unlike the concept in the

scheduling problem, time in UCTP is discrete and grouped into slots.

Common timeslot could be 1-hour slot, 50-minute slot, 45-minute slot, etc.

Moreover, timeslots recur from week to week in UCTP. The number of

timeslots per week is limited (e.g., 45 one-hour-long slots per week providing

nine working hours in 5 working days) and normally indexed in chronological

order. In an individual timeslot, at most R events are assignable. Note that

there are many real-world cases when each event requires different length of

timeslots. For instance, one event requires two consecutive9 timeslots. In this

case, one common way (See, e.g., Schaerf 1999; Lewis 2008; Qu et al. 2009;

MirHassani and Habibi 2011) to handle is to split the long events into two

shorter events and enforce a requirement on consecutiveness.

A room is a resource that facilitates an event. Rooms have different

sizes and possibly different purposes (i.e., only a subset of is eligible to be

assigned to a specific room). In the literature, rooms are usually individually

indexed even when some of them are similar or identical. In an individual

room, at most T events are assignable.

9To clarify, the two timeslots are consecutive only when they are on the same day.

Chapter 2 Literature Review

14

In some circumstances, lecturer is also considered as an element.

However, note that in many cases of UCTP a lecturer has already been

assigned into the course(s). Therefore, constraints related to lecturers can then

be converted into the other forms (for instance, lecturers’ preferred timeslots

and/or preferred rooms). This essentially defines some eligible set of

“feasible” assignments of the three key elements. As a result, in this thesis

lecturer issue is not explicitly described.

Constraints commonly considered

Obviously, ≤ × T R is a necessary condition for the existence of a

timetable solution. However, this inequality is very loose comparing to the

constraint set . In previous literature on UCTP, a large number of

constraints have been addressed arising from different problem instances. At

this stage, we only summarize those commonly cited ones:

Hard constraints

HC1: (time conflict constraint) Two events should not be held in one timeslot

once there are common takers, i.e., no student should attend two events

at the same time. It is sometimes referred to as stable set constraint

(White and Pak-Wah 1979, Tripathy 1984).

HC2: (room occupancy constraint) A room cannot hold more than one event

in one timeslot (Carter, Laporte, and Chinneck 1994, De Causmaecker,

Demeester, and Berghe 2009).

Chapter 2 Literature Review

15

HC3: (room capacity constraint) Events should be assigned to rooms of

sufficient sizes. If this constraint is considered as a soft constraint, it

means the number of students left without a seat for all the events is to

be minimized (Di Gaspero and Schaerf 2001, Burke, Marecek, et al.

2010).

HC4: (room compatibility constraint) Events should be assigned to rooms

providing appropriate features. For instance, a class which requires

special equipment should be assigned to those rooms that are able to

provide it (Ceschia, Di Gaspero, and Schaerf 2011).

HC5: (time availability constraint) Events should be assigned to timeslots that

are available. The availability may mostly depend on the corresponding

lecture’s availability (Stallaert 1997).

HC6: (time precedence constraint) Events should be allocated according to the

event precedence relationship, i.e., one event should be scheduled earlier

than the other (Drexl and Salewski 1997).

HC7: (event completeness constraint) Every event should be assigned into a

room and a timeslot. Notice that this constraint is tread as a soft

constraint in some circumstances (Lewis, Paechter, and McCollum

2007).

Chapter 2 Literature Review

16

Soft constraints

SC1: (late event constraint) Students should not be assigned to the last

timeslot of the day, i.e., those last timeslots of a day should be scheduled

with the lowest priority (Ceschia, Di Gaspero, and Schaerf 2011).

SC2: (dispersed event constraint) The consecutive events that a student

attends may not exceed a specific number, normally 2 (Perzina 2007).

SC3: (isolated event constraint) The case that a student only takes one module

in a day should be prevented (Schaerf and Di Gaspero 2007).

SC4: (inter-site travel constraint) As a large university may be split into

several campuses, the occasion of that two events, which are held on

different campuses, are scheduled consecutively shall be avoided. This

constraint was first proposed in studies by Lewis, Paechter, and

McCollum (2007) in the discussion section. However, as far as we know

there are no other related literatures studying on this specific constraint.

SC5: (minimum lecture working days) The timeslots assigned to all lecture

sessions of one course should be spread into a number of working days

specified by a lower bound, e.g., three days. In other words, the overall

number of the positive difference between the number of actual days

assigned for each course and the corresponding bound should be

minimized (Burke, Kendall, and Soubeiga 2003; Daskalaki, Birbas, and

Housos 2004).

Chapter 2 Literature Review

17

SC6: (curricular compactness) If two events belong to the same curriculum,

they should be assigned to consecutive timeslots. In other words, the

sum of all occurrences of isolated events which belong to the same

curricular should be minimized (White and Zhang 1998; Di Gaspero,

McCollum, and Schaerf 2007a).

SC7: (lecture room stability) For all the lecture sessions of one course, the

allocated room should be the same. In other words, the number of

distinct course-room allocation minus the number of courses should be

minimized (Burke, Marecek, et al. 2010).

All these hard and soft constraints mentioned have no direct

connection with either the objective or the main constraints proposed in our

study. However, some studies share connections with our study to some extent.

For instance, when enforcing SC4, it may help resolve the inter-campus traffic.

In this case, the back-to-back modules that involve same students are preferred

to be allocated into the same campus. However, this soft constraint is a special

case that has been considered by our proposed objective function. Apart from

back-to-back modules, our objective function also considers those module

pairs which have more in-between time and may also contribute significantly

(for instance, two highly-related modules which have more than 100 students

in common and the in-between time is roughly 1 hour) to the traffic. These

module pairs cannot be considered by simply enforcing SC4.

Two tracks in UCTP

Chapter 2 Literature Review

18

There are two important tracks in UCTP field, namely Post Enrollment

Timetabling Problem10 (PETP) and Curriculum Based Timetabling Problem

(CBTP). The grouping into two tracks was first introduced in International

Timetabling Competition. It should be noted that in many real world situations,

the construction of a departmental/institutional course timetable involve a

combination of curricular-based and post-enrolment features, as well as

iterative negotiations with teaching and administrative staff.

In PETP, the timetable is produced after student enrolment on courses

is over, so the space for error is little. Maximum student satisfaction and good

utilization of resources are to be achieved.

 In CBTP, the weekly timetable of the lectures for various courses

within a given number of rooms and periods is generated, where conflicts

between courses are defined according to the curricula.11 Therefore, lectures in

the same curricular must be allocated into different timeslots.

It should be noted that the major difference between PETP and CBTP

does not come from the process of collecting ‘conflict’ data between two

10 The definition of PETP can be found from studies by Lewis, Paechter, and McCollum (2007)

and http://www.cs.qub.ac.uk/itc2007/postenrolcourse/course_post_index.htm, while the

definition of CBTP were given by Di Gaspero, McCollum, and Schaerf (2007b).

11 Note that the definition of curriculum in the CBTP (denoted here as curriculum1) is different
from the ordinary definition. Generally, a curriculum refers to a set of courses a student needs
to take in order to get a degree throughout his study. However, the concept of curriculum in
CBTP requires that the student following the same curriculum all take the same courses in any
time, while in general students may be given more flexibility to choose the order of taking
courses.

http://www.cs.qub.ac.uk/itc2007/postenrolcourse/course_post_index.htm

Chapter 2 Literature Review

19

tracks. In fact, the conflict matrix can be obtained with no significant

difference in both cases. The major differences, however, come from two

other factors. First, PETP deals with individual lecture, as the conflict between

lectures can be obtained from enrolment data. CBTP, however, deals the

conflict from the grouping of courses.12 In fact, a course in CBTP is possibly

composed by multiple lectures (each is taken by the same group of students

and all should be assigned to different timeslots). Second, the hard constraints

and soft constraints are defined very differently. In Table 2-1, we summarize

typical hard constraints and soft constraints with their presences in PETP and

CBTP.

12 It should be noted that some studies even state that in PETP the confliction is more severe
than in CBTP (Burke et al. 2012).

Chapter 2 Literature Review

20

Table 2-1 Constraints setting in PETP and CBTP

As a comment, we discuss the conflict-information collection process

of these two tracks. For PETP, it comes from the students’ choices collected

before the timetabling and CBTP from the curriculum. The conflicting

information involves different levels of students’ choices for both problems:

The one from the curriculum can be viewed as choices of compulsory courses

for the students associated, and CBTP should capture most of it, as the degree

requirements should be stable from year to year. In addition, students also

want to choose selective courses in the university, which may not affect their

acquiring the degree, but could enrich their knowledge and experiences.

13 These constraints have not been considered yet by Lewis, Paechter, and McCollum (2007)
but is highlighted to attract attention in the future study.

Constraints PETP CBTP

HC1: time conflict constraint HC HC

HC2: room occupancy constraint HC HC

HC3: room capacity constraint HC SC

HC4: room compatibility constraint HC

HC5: time availability constraint HC HC

HC6: time precedence constraint HC

HC7: event completeness constraint HC

SC1: late event constraint SC

SC2: dispersed event constraint SC

SC3: isolated event constraint SC

SC4: inter-site travel constraint *13

SC5: minimum lecture working days SC

SC6: curricular compactness SC

SC7: lecture room stability SC

Chapter 2 Literature Review

21

Confliction may also arise from these selective courses and the “post-

enrollment” process may be able to capture them. However, the way that

students make their choices on selective courses should be flexible: We

believe that, apart from the pure preferences on the course itself, many other

factors may play important roles as well. The timing of courses, for example,

should be one of them, as the students may wish to choose those selective

courses without violating their week plans. Nevertheless, since the timing is

not given when the students provide the choice-of-the-course information, the

corresponding choices of selective courses in PETP may not precisely reflect

the students’ real choices, and the later generated timetables may not satisfy

students due to the data inaccuracy. In fact, it could be expected that some

students may simply choose all the preferred courses, ignoring the timing

preference, to increase the potential satisfactory. As a result, the conflict could

become worse, and the overall timetable becomes harder to plan. In addition,

the difference between the two collection processes also explains why some

constraints are considered in one track but are not in the other. For instance, as

CBTP mainly considers lectures, the incompatible module issue should be

naturally resolved as most rooms in the university can cater lectures. Another

example is that HC3 is considered as soft constraint in CBTP. We believe that

the main reason is that if the constraint is violated, it can be resolved by

splitting the module (remind that in CBTP a module may involve a series of

lectures) and rearranging the rooms if possible (additional room may be used).

Graph Coloring

Chapter 2 Literature Review

22

To be clear, graph coloring is not closely related to our study as the timing is

pre-fixed and the conflict issue does not exist in our study. However, this topic

is so important in the field UCTP that we have to summarize it in the

following.

To group the events into timeslots without any conflict is a (vertex)

graph coloring problem. Since the property of timing-conflict-free is

considered as one of the most vital requirements a timetable solution must

have, graph coloring is one of the key topics in UCTP.

In the derived graph, a vertex represents the event, and an edge exists

when two events are in conflict. A “valid” coloring is an assignment of

vertexes with colors such that every two adjacent vertexes are colored

differently. The graph coloring problem is defined to find the coloring with the

least number of colors. One can define other types of graph coloring problem

such as k-coloring which at most k colors can be used. In this case, weights

could be set as the number of students in conflict. The objective function is

minimizing the accumulated weights of violated edges. Solving graph coloring

using exact approach currently needs exponential time (Byskov 2004). In

practice, greedy coloring is usually used to speed up the computation. A

greedy algorithm considers the vertexes of the graph one by one and assigns

each vertex a first-fit color. The sequence usually reflects the “difficulties” of

vertex coloring. This idea has been used to develop various graph-based

heuristics in timetabling field.

Chapter 2 Literature Review

23

Note that graph coloring is only a sub-problem of the complete

timetabling problem, as the solution merely “groups” the events. Besides the

room assignment, the timeslot assignment additionally requires a mapping

from colors to the timeslots. In other circumstances, extra constraints are

addressed, and it makes the complete problem more difficult.

Multi-objective UCTP

In many practical problems, more than one objective is involved, and these

objectives are usually conflicting with each other. This issue exists in UCTP

as well. More than one soft constraint tends to be considered in recent studies.

For instance, the violation of SC5 and SC6 cannot be resolved simultaneously

since the former constraint requires a dispersed time assignment of lecture

sessions of the course, while the latter constraint requires a compact one. In

our study, we also face a multi-objective optimization sub-problem which is

addressed as the module selection problem in Chapter 4. Therefore we

summarize the common solution techniques for solving multi-objective

problems in the following.

The first group of methods is transforming the multi-objective problem

into a single-objective problem by using scalarization (Ismayilova, Sağir, and

Gasimov 2007; Geiger 2009). A well-known example is weighted sum

approach, in which the weights are usually positive. By varying different

weights, this approach performs well for problems having convex objective

space. A critical issue is that this approach may lead to a single solution that

may not be particularly useful when decision makers want to examine

Chapter 2 Literature Review

24

tradeoffs of different objectives among multiple solutions. In addition, when

the objective space is not convex, scalarization method may not explore some

regions of pareto frontier and the “sampling” by using different weights/scales

is not generally evenly distributed (Hwang and Masud 1979).

The second group of methods utilizes the “preference” information on

individual criterion. Specifically, methods which can be categorized in this

group requires some “rank” information which means one is strictly more

important than the other. Typical methods include utility function method,

goal programming and lexicographic method (Ulungu and Teghem 1994).

The third group of methods uses modified meta-heuristics which are

able to consider multiple criteria. We use two examples to show how meta-

heuristics can be adopted. The first example is Generic Algorithm (GA). GA is

a popular meta-heuristic approach in solving UCTP and it has the ability of

generating multiple solutions simultaneously. According to the survey by

Konak, Coit, and Smith (2006), the main change to traditional GA is on the

fitness computation, i.e., how to select the solution into the parent

population.14 A Pareto-based ranking scheme on population selection stage is

14 In most methods in the multi-objective GA context, the ranking, fitness assignment

and selection are applied before the GA operations. With the parent population generated, the

GA operators such as crossover and mutation generate the offspring population, which has

enough number of solutions for the population of the next generation. Usually no extra

selection procedure is applied to this offspring population.

Chapter 2 Literature Review

25

commonly used, such as Non-dominated Sorting Genetic Algorithm-II

(NSGA-II) (Deb et al. 2002) and Strength Pareto Evolutionary Algorithm 2

(SPEA2) (Zitzler et al. 2001). In addition, a good selection design has to

maintain both the diversity and the elitism in the population (Carrasco and

Pato 2001). The weakness of this approach is that the computational speed is

too low. On the contrary, modified Greedy Randomized Adaptive Search

Procedure (GRASP), proposed by Martí et al. (2011), can achieve higher

computational speed. In this construction method, various criteria are selected

in each construction step by given chances. Since the GRASP is widely

acknowledged for its simplicity, efficiency and the ability to escape from local

area, the modified GRASP is also light-weighted and fast to generate a

solution.

 The forth group of methods tries to explore the Pareto optimal

solutions by using mathematical programming. These methods have the ability

to generate (weak, in many cases) pareto-optimal solutions, but typically

consume more time comparing to the first three groups. Several methods have

been proposed, including Normal Boundary Intersection (NBI) (Das and

Dennis 1996), Modified Normal Boundary Intersection (Shukla 2007) and

Normal Constraint (NC) (Messac, Ismail-Yahaya, and Mattson 2003).

Specifically, modified NBI improves NBI in proving pareto-optimality and

was reported to achieve better computational efficiency when comparing with

NC (Motta, Afonso, and Lyra 2012).

Chapter 2 Literature Review

26

In our study, we try to solve a multi-objective sub-problem in two

different approaches and use an intelligent selection method to call each

approach adaptively. The first approach is a simple and quick method, while

the second one is complex but can generate better solutions. As for the first

approach, we use the modified GRASP due to its simplicity and high

efficiency. We do not choose modified GA due to its low computational time.

Also, we do not choose scalarization method because the objective space in

our study is typically discrete. In addition, in our case the stakeholders literally

give the same preference to each constraint (and some of them are considered

as objectives in Chapter 4), the second group of approach is not adopted in our

study either. For the second approach, we use modified NBI for the reasons

highlighted above.

2.2 Solution Techniques for UCTP

We categorize the solution techniques for UCTP into two groups: One is exact

approaches, and the other is heuristics. In the first group, UCTP is treated as a

MIP problem, so the solution techniques naturally include those based on

branch-and-bound methods and various decomposition approaches. In the

second group, we discuss the genetic algorithm, which is primarily used as a

single meta-heuristic in this field. We then discuss hyper-heuristics, which

intelligently combines various heuristics together.

Chapter 2 Literature Review

27

2.2.1 General Exact Approaches

Exact approaches to UCTP mainly refer to the ways that build and solve the

mathematical model. There are various mathematical models built for many

problem instances described in the previous section, and most of them fall into

the range of Integer Programming (IP). Branch-and-bound framework is

dominantly used. However, due to the large number of variables/constraints in

UCTP, the branching tree cannot be fully explored due to the big problem size.

Therefore, branch-and-bound is usually combined with other techniques.

In general, the key to the good performance in using branch-and-

bound-based approach is a “good” formulation 15 of the problem, i.e. the

formulation is preferred to be close to the convex hull of the feasible set so

that the duality gap is decreased, and the fewer rounds of branching is needed.

The cost of generating a good formulation is that much more constraints are

needed to approximate the convex hull (Wolsey 1998). Nevertheless, by

following such an idea, there are generally two groups of approaches in related

studies: (1) Outer approximation approach approximates the convex hull by

intersecting half-space. One example is cutting plane method. It generates

valid inequalities determined by a separation algorithm to improve the

formulation. Branch-and-cut method, which integrates cutting plane method

into branch-and-bound, generates tighter dual bounds at the node in the

15 A formulation for a IP max{ , , }∈ ⊂ ×n pcx x X X Z R , a polyhedron +⊆ n pP R , which
is described by a finite set of linear constraints, is a formulation for the set X in the IP iff

()= ∩ ×n pX P Z R

Chapter 2 Literature Review

28

branching tree. (2) Inner approximation approach approximates the convex

hull by supplementing partial description. Examples include column

generation and Lagrangian method. Column generation dynamically

introduces new columns, which is determined by solving a pricing problem.

Branch-and-price, which integrates column generation into branch-and-bound,

is used for those problems with huge amount of variables. Lagrangian method,

on the other hand, mainly deals with structured IP with complicating

constraints and transfers the problem into a series of Lagrangian relaxation

problems with dual parameter. It solves the duals using a sub-gradient search

rather than solving the restricted master problem in column generation.16 In

addition, it can also be integrated into a branch-and-bound framework by

developing primal heuristic, and this idea is adopted in our study. For more

detailed technical description, see the literature by Galati (2010).

In the studies on UCTP, the aforementioned approaches have been

frequently applied in recent studies. The main motivation is that the

natural/monolithic formulation, even for those problems with only a few set of

hard/soft constraints, has been reported to be weak and requires excessive

iterations to find optimal. 17 For those studies using cutting plane method,

various parts of “natural” formulation have been reformulated. In the

16 Since no efforts to solve a primal sub-problem and no primal solution information explored,
Lagrangian method is usually quicker than column generation.

17 A formulation merely represents the problem requirements and in most cases also a
“compact” formulation with a polynomial number of variables and constraints

Chapter 2 Literature Review

29

following two paragraphs, we give details on studies using branch-and-cut and

branch-and-price in the following.

For branch-and-cut approach in UCTP, except for HC4-HC6, nearly all

other hard constraints can be used to imply better cuts or bounds. For instance,

HC1 essentially describes a conflicting graph, and the properties in the graph

could be used to develop cuts known as cuts from graph coloring (Campêlo,

Corrêa, and Frota 2004). Among them, clique inequality has been reported to

best strengthen the formulation. This inequality ensures that every event in a

clique must be assigned with different timeslots. Another example is the lifted

odd-hole cut (Avella and Vasil'Ev 2005). In addition, various cuts can be

derived from soft-constraints. For instance, “natural” formulation of SC7 (See

constraint (14-15) in Lach and Lübbecke 2012) has been replaced with a new

set of constraints with less decision auxiliary variables and enumerated

possible patterns. Hence, it becomes a strengthened formulation (See

constraint (16) in Burke et al. 2012).

For branch-and-price approach in UCTP, comparably fewer studies

have adopted this method. An early study by Papoutsis, Valouxis, and Housos

(2003) were on a school timetabling problem. Later, a study by Qualizza and

Serafini (2005) was on solving UCTP. 18 In these studies, a column was

defined as the course-timeslot-room pattern, which is an assignment of all the

18 However many hard/soft constraints are not considered such as HC3 and most of the soft
constraints. The objective is merely overall preference on the assignments.

Chapter 2 Literature Review

30

required hours for the course to definite timeslots and definite classroom types.

Common approach of branch-and-price procedure is used.

In our study, we use the method of branch and bound as the general

framework to solve an IP problem in Chapter 4, and combine the Lagrangian

method by using it to obtain the dual bound. The main reason that we use this

combination is that we can exploit a good structure once we relax certain

constraints. In addition, as the numbers of rows and columns in that IP

problem are generally similar, the beneficial of using either branch and bound

and branch and price is questionable.

Decompositions Techniques

Even by employing various techniques, exact approaches may still be unable

to tackle many problem instances of UCTP. In general three main difficulties

have been reported. First, the IP solver is unable to handle the very large scale

(e.g., hundreds to thousands of events, thousands of students and lecturers)

and complex constraints (e.g., a large number of different hard constraints/soft

constraints) in practice (Murray and Müller 2007). Second, the performance is

not robust considering that the requirements in reality may change from time

to time (Burke, Marecek, et al. 2010). Third, a good feasible solution is

sometimes too difficult to obtain, even after tweaking the parameters of the

solver, e.g., node/variable selection strategy, call frequency of a primal

heuristic at node (Burke, Marecek, et al. 2010).

Chapter 2 Literature Review

31

 As a result, decomposition is needed to decrease the dimension of the

problem by solving a series of sub-problems so that the solver can handle. In

fact, several problem instances of UCTP often offer a good structure for

decomposition. For the objective functions, they are usually in the form of the

weighted sum of penalties associated to the soft constraints. With carefully

defined decision variables, the objective is separable.19 To demonstrate this

idea, we show two decomposition directions in CBTP. The first one ignores

the room assignment decision first and considers it later, while the second one

generates some room assignments first and later determines the valid timing

assignment.

In Burke, Marecek, et al. 2010, the original problem was decomposed

into two parts. The former part was called “surface”, and the latter part was

called “dive”. In surface stage, a relaxed-problem was considered, in which

HC2 and SC7 were ignored. The room assignment decision was hence not

considered.20 However, to guarantee a time assignment yield a feasible room

assignment, a validity constraint was added. The surface problem was solved

by solver much quicker. Then with those solutions to the surface problem

sorted by objective value increasingly, a number of divers were applied on to

each. The diver was constructed as IP with different “solution” constraints (in

19 Specifically, different soft constraints depend on different decisions: S1-S3, S5-S6 rely only
on timing assignment, S7 only rely on room assignment.

20 The author suggests that one can enumerate all possible scheme of ignoring terms in
objectives by doing some numerical experiments beforehand to get prior information. An
automatic approach of generating surface could be a future direction.

Chapter 2 Literature Review

32

terms of the solution to the surface). Once a better dive problem was solved,

the upper bound was updated to cut off later diver instances. The final solution

was, of course, not a global optimal, but not that the lower bound was also

provided. This approach is different from those heuristic approaches which

iteratively improve the solution, but from numerical experiments the

performance is very promising.

On the other hand, the only constraint related to room allocation of

lectures is HC2. Moreover, it is possible to determine a time allocation of

lectures first (the first stage problem) in such a way that the feasible room

allocation satisfying HC2 can be always generated by enforcing constraints.

After that, one only needs to determine the perfect match from each lecture to

a room for every timeslot (the second stage problem). The constraints enforced

to implicitly satisfying HC2 during the first stage problem is related to the

Hall’s theorem which restricts the number of lectures can be assigned to each

timeslot according to the given lecture-room fitting relationships, e.g., lectures

may only fit a subset of rooms (Jiang and Nipkow 2013). The advantage of

this decomposition is that the number of constraints derived by Hall’s theorem

in reality can be restricted to a reasonably scale. Therefore, the first stage

problem as a IP is not hard to solve (Lach and Lübbecke 2008), and the second

stage problem (a series of perfect matching problems) is very easy to solve in

polynomial time without considering SC7. Notice that SC7 encourages that

the same room is preferred to be assigned to multiple lectures belonging to one

course. As a result, the solutions to the perfect match problem in the second

Chapter 2 Literature Review

33

stage problem may not be the global optimal one with the new soft constraint

considered. With respect to the solving methodologies for the second stage

problem, one now has to come back to resort to a general IP model rather than

a simple LP.

In our study, none of the aforementioned decomposition techniques are

directly used. This is because our study has a different set of constraints and

the timing is fixed. However, in an indirect way, the idea of decomposition in

our study shares some similarity with the one of relaxing HC2 in previous

studies. In both ways, constraints which consider a different set of decision

variables are identified and the decomposition is performed on them. In our

studies, we identify a set of constraints which only considers room allocation

while the others consider module reallocation decisions. By relaxing those

constraints first we are able to determine module reallocations first. We then

determine the room allocation by reconsidering these constraints.

2.2.2 Genetic Algorithm and Other Heuristic Approaches

When the problem scale gets bigger, the effectiveness of the exact approach

may deteriorate fast. On the other hand, obtaining the true optimal is not very

important. Instead, a good feasible solution may already meet the requirement

of stakeholders, and sometimes stakeholders prefer to be presented with more

than one option. In these cases, heuristic approach becomes more appropriate

to solve UCTP. In this section, we first discuss Genetic Algorithm (GA),

which is chosen due to its popularity among variant heuristics in this field. We

demonstrate how GA can be adopted to solve traditional UCTP and multi-

Chapter 2 Literature Review

34

objective UCTP. We then discuss the hyper-heuristics that may overcome the

weakness from individual heuristic by incorporating and intelligently selecting

several simple heuristics. Although these heuristics cannot be directly applied

to our study, the ideas such as the constructive approach and local reparation

share similarity with our research.

GA for UCTP

GA is a population-based search algorithm that typically concentrates more on

exploration than on exploitation. GA has been successful applied in solving

UCTP from many literatures. We describe two key topics to show how GA is

adopted to solve UCTP. We first discuss the chromosome encoding method,

because a chromosome encoding which captures the structure of UCTP may

help increase the performance of GA greatly. We then discuss the way that

GA is combined with neighborhood-search techniques in order to improve the

search performance.

 Chromosome encoding is vital to finding a good solution using GA. To

solve timetabling problem, there are three chromosome representations

commonly used in the literatures, namely traditional representation 21 ,

permutation representation and grouping GA representation.

 For traditional representation, chromosome usually stores the

information of the assignment for each event explicitly, and ordinary GA

21 This representation is also called literal encoding by Davis (1991), and straightforward
encoding by Falkenauer (1997).

Chapter 2 Literature Review

35

reproduction operators22 are used, such as one-point/two-point crossover. The

encoding usually uses an array. The array can be single-dimensional or multi-

dimensional. Take the example of a one-dimensional array, the element refers

to the events, and the value of the element refers to the allocated timeslot. If

the room allocation is also to be determined, a two-dimensional array is used

in which the second dimension stores the room allocation decision. Examples

can be found in studies by Corne, Ross, and Fang (1994); Ross, Hart, and

Corne (1998); Deris et al. (1999); Perzina (2007); Yang and Jat (2011). The

main issue with direct representation is that the ordinary crossover and

mutation operators tend to generate illegal solutions. For instance, some

timeslot are assigned with many events but others are assigned none. One

needs to repair the offspring before it forms the next population, e.g., collect

the illegal events, form them into a list with some order, assign them to

available timeslots so far.

For permutation representation, no direct information of the

assignments is encoded in the chromosome. Instead, it includes a permutation

of events as the input for a decoder to transform into an actual solution. The

decoder is often a greedy “scheduler”, which sequentially assign events into

timeslots (and rooms if required) based on some rules. For instance, the first

element (e.g., event) in the chromosome would be the first one to be processed

by the decoder to generate a corresponding assignment. As a result, the search

22 In this thesis the reproduction operators refer to the genetic operators such as crossover,
mutations, etc. It does not refer to the process to copy/survive individuals from generation to
generation (Falkenauer 1997).

Chapter 2 Literature Review

36

space highly depends on the decoder and may not reflect the whole actual

search space. Using this indirect representation requires different reproduction

operators to keep the order information to the offspring. As for the crossover

operator, several different methods are used, and we describe two of them:

The first one is partially mapped crossover (PMX) (Falkenauer 1997). Two cut

points are randomly selected and the strings in between for two parents forms

the mapping section. This substring is exchanged in the offspring, and the rest

of elements are filled up with an element from its parent according to the

mapping. The second one is uniform order-based crossover (Davis 1991). In

this modified operator, two parents are filtered by a generated bit string

template (0/1 mix rate is fixed) with the same length, i.e., positions from

first/second parents. Meanwhile, the template that shows 1/0 are kept into the

offspring. The remaining spaces in the first offspring are filled by the ones

from the second parent. Second offspring is generated similarly. As for the

mutation operator, scramble sub-list mutation is commonly used (Davis 1991).

It selects a random-length sub-string in the parent chromosome and permutes

it into a child. The number of infeasible solutions generated in the

reproduction phase may be reduced, as the decoder specifically handles the

infeasibility now. The solution quality may also be improved as the decoder

can at least greedily consider the objective function. Besides the

aforementioned incompleteness of search space, another main issue related to

the permutation representation is the encoding redundancy. For instance,

altering the order of the first three of four elements in the chromosome may

not yield a different solution as the decoder will still assign them into the most

Chapter 2 Literature Review

37

prioritized timeslot. In the extreme case when we only focus on the graph

coloring problem, the redundancy is high as we are only interest in the

grouping rather than the exact assignment from the group to the timeslot. In

addition, reproduction operators may not yield different offspring either. For

instance, mutation operators in the reproduction phase may need to generate a

long and very different sub-string to keep diverse.

For grouping GA representation, the encoding is “group” oriented,

which is different from previous two ways of representation. Every element in

the chromosome stores the information in terms of grouping of events rather

than a single event. It can be implemented by a variable-length array, which

was introduced in Grouping Genetic Algorithm (GGA) by Falkenauer (1997).

This implementation provides original encoding structure which merely

considers the timing assignment (Eiben, van der Hauw, and van Hemert 1998;

Erben 2001; Agustín-Blas et al. 2009). Another very popular form is by using

a matrix (Lewis and Paechter 2005; Lewis and Paechter 2007). A row

represents one room, and a column represents one timeslot. In this case,

reproduction only works on groups, i.e., columns. It should be noted that the

major difference between the previous two representations is not only in the

encoding itself but also in the design of the reproduction operators. In GGA,

both crossover and mutation operate on groups rather than events. On the

other hand, one can always use the direct encoded chromosome to derive the

grouping information first, and then apply the grouping GA operators in order

to adapt the traditional encoding to a GGA. Various GGA crossover designs

Chapter 2 Literature Review

38

have been proposed and most of them follow the scheme stated by Falkenauer

(1997): Random crossing sections are firstly selected for both parents, where a

crossing section reflects some of the groups in one parent. To generate the first

offspring, we inject the crossing section of parent 2 before the position of

crossing section of parent 1. We then eliminate the duplicated events in the

original parent 1. As a result, some groups from parent 1 may be completely

eliminated or left with only a few events. Depending on the objective function

(e.g., minimizing the number of timeslots), such timeslots with too few events

may be of poor quality, so an “adapting” process can be called which simply

considers these events as unplaced (Falkenauer 1999). Adaption is usually

implemented by some heuristic which assigns them back into existing groups

or creates a new group with a better objective evaluation (Lewis and Paechter

2007). In this sense, adapt is similar to the heuristics used in permutation

encoding. Mutation operator also works on groups/timeslots. Some randomly

selected timeslots can be eliminated and the events associated could be

assigned into some existing timeslots to create a diverse new solution. In

addition, the group positions can be altered by invention, which reverses the

groups within two randomly selected positions in the chromosome

(Falkenauer 1999; Lewis and Paechter 2005).

Moreover, GA may overlook the exploitation of the search and may

not dive deep enough to find a good solution. We describe two methods that

GA can combine with to resolve such limitations, namely guided search and

Variable Neighborhood Search (VNS).

Chapter 2 Literature Review

39

Guided search is an obvious choice for GA because one can enforce

the good parts of the population to survive in the next offspring, which is

discussed by Yang and Jat (2011). The authors kept extracted information

from the population on those events with zero penalties23 associated and the

corresponding timing and room assignments. A child was produced by either a

normal crossover operator or a special constructive process which used the

extracted information.

 VNS can be incorporated with GA to increase the generality of the

method. In studies by Burke, Eckersley, et al. (2010), GA was used to search

the order of the neighborhoods in one run of VNS (i.e., try all the

neighborhoods). Therefore, the chromosome was defined as a permutation of

neighbors. 24 An initial generation of populations was generated with either

greedy or random methods, and the corresponding solutions can be found after

applying local search on each neighborhood according to the permutation

within the VNS. The fitness of a chromosome was defined as the

improvements between the solution after applying the current chromosome

ordering and best solution in the initial generation. With the fitness evaluation,

GA used the proportional selection and ordinary reproduction operators to

generate a new permutation of neighborhoods.

23 The penalties are in terms of both hard constraints and soft constraints.

24 In that study duplication of neighborhoods is allowed in the chromosome but is essentially
ignored when calculating the fitness value (and applying within the VNS).

Chapter 2 Literature Review

40

From our observations and experiments, we find that it is hard to

directly use the GA to solve our overall problem, which is still a MIP.

Specifically, we find that the set of constraints make GA generate too many

infeasible solutions from steps of population generation. In addition,

reparation method seems difficult to be effective as there are usually too many

violations presented. A preliminary test showed that GA is not suitable to

solve our overall problem. In other words, GA is still not good enough to

provide good feasible solutions for our overall problem. On the other hand,

GA shows some potential to solve small scaled MIP problem (i.e., the number

of constraints are relatively small) and the problem structure can be exploited.

In our study, we use GA to solve a sub-problem of the overall problem,

namely the core of the multi-dimensional knapsack problem. In that problem,

the number of constraints is reduced very much. Also, the “matric” of each

“item” is non-negative, which means the chrome representation of GA can be

designed as a permutation of items while the solution can be constructed by

simply packing items as long as no violation is incurred in every dimension.

Moreover, we use the dual values (of each item) of the LP relaxation to

provide additional evaluation on the population as the guidance of search.

Hyper-heuristics

Hyper-heuristics have attracted much attention in the field of timetabling in

recent years. The motivation of using hyper-heuristics is that the “simple”

meta-heuristics tend to require some level of detailed problem-specific

knowledge in order to achieve promising results for some special kind of

Chapter 2 Literature Review

41

problems. As a result, hyper-heuristics improves the generality for solving a

range of timetabling problems. A hyper-heuristic utilizes more than one low-

level heuristic during the search process to cope with different problem

settings. From one iteration to another, a high level heuristic manages the calls

for either one low-level heuristic from the heuristics pool or a combination of

several low-level heuristics, and the management rules are usually based on

the historical performances of the low-level heuristics. In some studies , once a

good solution is found in some iteration, a local search was performed in order

to find an even better one (See, e.g., Burke et al. 2007; Ersoy, Özcan, and

Uyar 2007). The stopping criteria are usually the computational time or the

number of runs. The main feature in hyper-heuristics is that the search space is

based on the performance of low-level heuristics rather than the actual

solutions. In our study, we use this idea of the hyper-heuristics by employing a

two-approach method to generate a module selection in Chapter 4.

Specifically, we develop a mechanism to intelligently select one of the two

approaches in each iteration. Nonetheless, in the following, we summarize the

application of hyper-heuristics in UCTP field and the two different main

designs from the literatures.

Hyper-heuristics have been applied to several general and relatively

easy timetable problems to raise the generality of the search methodologies.

For instance, many studies on hyper-heuristics have considered Uncapacitated

Exam Timetabling Problem (UETP) (Pillay and Banzhaf 2009; Qu, Burke, and

McCollum 2009). In UETP, The hard constraints include HC1 and HC7, and

Chapter 2 Literature Review

42

the soft constraints may vary slightly from one instance to another, but

commonly include constraints like SC2. The word “incapacitated” means that

there are no hard constraints such as HC2, HC3 or HC4. In such case, both

hard constraints and soft constraints become less complex. For this reason the

low-level heuristics could be easily developed and coded.

 Typically, the low-level heuristics are usually those light and simple

ones. The way that how the high-level heuristic calls low-level heuristics in

the candidate solution generation phase can be divided into two approaches.

The first one is called improvement approach. 25 This approach iteratively

improves candidate solution, and in each iteration it generates a complete

solution using only one low-level heuristic by selecting from a solution pool in

one iteration. The second one is called constructive approach25. It interactively

constructs candidate solutions, and in each iteration it uses a permutation of

heuristics from the pool rather than one specific heuristic, and each heuristic

derived by a specific element in the permutation only generates a partial

solution. In either case, if the generated solution is infeasible, a reparation

method is called, e.g., back track techniques, heuristic to penalize the rank of

the problematic (Qu, Burke, and McCollum 2009), tabu heuristic (Burke et al.

2007).

25 The naming follows that by Burke et al. (2007). For the improvement approach, it is also
named by researchers as moving approach or perturbative approach by Qu, Burke, and
McCollum (2009).

Chapter 2 Literature Review

43

In the improvement approach, a low-level heuristic is firstly selected

by a select method, and the candidate solution in the last iteration is applied by

this selected heuristic. Then the new solution is generated by applying an

acceptance criteria. In the following, we summarize related studies in the field

of exam timetabling which is in general very similar to course timetabling. We

describe (1) the low-level heuristics; (2) the select method; (3) the acceptance

criteria.

The low-level heuristics is often based on two types of neighborhoods:

The first type is a simple move or exchange operation. An exam is randomly

chosen and moved to a random26 timeslot, or two exams are randomly chosen

and their assigned timeslots are exchange, or two exams are randomly chosen

and moved to a new timeslot independently. The second type is an improving

move or swap operation: The move or swap has an aim to improve the fitness

function based on the violation improvement of one set of hard/soft constraints.

Move operation can change grouping of exams while swap operation

additionally change the “consecutiveness” between groups (Burke, Eckersley,

et al. 2010). Besides, there are other types of neighborhoods with special

purpose. One of them is a Kempe chain swap, which specifically ensures that

the swaps are feasible and can find a new move after applying previous two

types of heuristics alone. As more exams can be swapped at the same time, the

neighborhood could be further explored (the trade-off is the computation time).

26 As usual the randomness here can refer to a pure uniformly random or randomness based on
a tournament strategy.

Chapter 2 Literature Review

44

See studies by Thompson and Dowsland (1996); Burke, Eckersley, et al.

(2010).

There are plenty of select methods and acceptance criteria used in the

literatures. Table 2-2 summarizes the select methods which are commonly

used in the literatures and Table 2-3 summarizes the acceptance criteria.27

With respect to the performance of improving approach, tabu search and

choice function as well as improving and equal criteria are reported to have

the best performance (Burke, Kendall, and Soubeiga 2003; Bilgin, Özcan, and

Korkmaz 2007).

27 Besides the listed ones in the table, some other select methods are sometimes used in the
literatures, including: Case-based selector (Burke, Petrovic, and Qu 2006), Reinforce learning
forced selector (Nareyek 2003), SA (Dowsland, Soubeiga, and Burke 2007) and GA (Han and
Kendall 2003. Note that in this article a chromosome represents a list of low-level heuristics to
call, i.e., it selects a heuristic list rather than a specific one). Other acceptance criteria include:
Great Deluge Algorithm (Kendall and Mohamad 2004).

Chapter 2 Literature Review

45

Table 2-2 Common select methods in the improvement approach

Simple Random Choose randomly at a time (in only one iteration).

Random Descent Choose randomly once but apply it in the following
iteration as long as it improves the solution.

Random Permutation Generates a permutation of heuristics initially, and
apply each heuristic in each iteration.

Random Permutation
Descent

Similar to Random Permutation, but apply a
heuristic repeatedly if the improvement shows.

Greedy Apply all the heuristics in each iteration but choose
the one producing the best solution. For studies on
methods from Simple Random to Greedy (Bilgin,
Özcan, and Korkmaz 2007).

Choice Function Different from previous methods, this method
considers diversity. For each heuristic, its overall
improvements and recent improvements 28 in the
historical calls and the time elapsed since this
heuristic was last called jointly form a weighted sum
function as the choice function. As a result, a
descent search is focused when the improvement is
large 29, and a diverse search is focused when the
improvement is low. Various methods have been
proposed to automatically determine the weights
See, e.g., Cowling, Kendall, and Soubeiga 2001;
Kendall, Soubeiga, and Cowling 2002).

Tabu Search Low-level heuristic is ranked and selected to call.
After the call, its rank will be increased only when a
positive improvement is made in the derived
solution and decreased otherwise. In the latter case,
current selected heuristic is inserted into the tabu
list, and other heuristics already in the tabu list is
released if the improvement is negative. The tabu
list plays a role to prevent a heuristics that performs
bad recently to be applied again too soon (Burke,
Kendall, and Soubeiga 2003).

28 The idea of considering both historical performance as well as recent performance is very
similar to the idea of exponential smoothing, and it can be deducted that this part of evaluation
is literately predict the future performance of the low-level heuristic.

29 A large improvement means a large positive improvement value of the new solution derived
by the low-level heuristic. A low improvement means a small positive or even negative
improvement value.

Chapter 2 Literature Review

46

Table 2-3 Common acceptance criteria in the improvement approach

All Move (AI) All new solutions are accepted (Cowling, Kendall, and
Soubeiga 2001).

Only Improving
(OI)

Only the one which improves candidate solution is
accepted (Cowling, Kendall, and Soubeiga 2001).

Improving and
Equal (IE)

Only the one which does not worsen the candidate
solution is accepted (Bilgin, Özcan, and Korkmaz
2007).

Monte Carlo (MC) OI + also randomly accept the non-improving new
solution (Ayob and Kendall 2003).

Different from the improvement approach, a solution is built

incrementally in the constructive approach. an initial solution is generated first

followed by a local search. This approach can also be used when a partial

solution is given and it constructs the undetermined part. In many cases,

constructive approach determines an order of the decision points during the

construction and then applies some allocation rules in each decision point.

Constructive hyper-heuristic approach utilizes several constructive

heuristics as the low-level heuristics. It combines them by executing

sequentially with a specific call sequence. Each call considers those decision

variables not determined yet and determines one or several of them before

passing the newly constructed partial solution to the next call. This method

iteratively explores the search space of call sequences. Therefore, two slightly

different call sequences could generate two very different solutions. In the

following, we describe three key elements in this approach: (1) the low-level

heuristics; (2) the neighborhood of call sequence; (3) the local search methods.

Chapter 2 Literature Review

47

Among those constructive low-level heuristics, graph heuristics is

commonly used especially when to solve exam timetabling problem. This is

because this type of problems can be reduced into a graph vertex coloring

problem where the vertex refers to the exam and the edge to the confliction.

The graph heuristics determines an order of exams according to specific rules.

After the solution is generated, a local search is sometimes implemented.

Typical variants of graph heuristics are listed in Table 2-4. Specifically, the

third column of the table indicates whether the ordering for the unscheduled

exams is updated every time an exam is constructed into the solution. Among

these methods, it is reported by Burke et al. (2007); Pillay and Banzhaf (2009)

that LSD was able to generate comparably better feasible solutions. Therefore,

a sequence concentrating on LSD is often used as the initial call sequence. To

break a tie, these methods, except RO, need to introduce some randomness

(Burke, Qu, and Soghier 2012).

Table 2-4 Comparison of commonly used graph heuristics in solving UETP

Heuristics Sorted by Update on
order

LD: Largest degree Conflict Static

LCD: Largest color degree Conflict with
unscheduled

Dynamic

LSD: Least saturation degree Feasible Timeslot Dynamic

LWD: Largest weighted
degree

Conflict /w Enrolment Static

LE: Largest enrolment Enrolment Static

RO: Random ordering / Dynamic

The initial call sequence can be generated randomly or based on some

prior knowledge. For instance, in studies by Pillay and Banzhaf (2009), exams

Chapter 2 Literature Review

48

were ordered according to the Pareto comparison on the scores derived from

different hybrid graph heuristics. The neighborhoods of call sequence varied

from literature to literature: exchange position of two randomly chosen

heuristics (Burke et al. 2007); change the heuristics to a random one in n

randomly chosen positions (Qu, Burke, and McCollum 2009) or n randomly

chosen consecutive positions (Qu and Burke 2005). Besides these simple

moves, one can also embed with a VNS framework with different strategies,

e.g., descent-ascent, biased one which focuses on exams with highest penalties

(Qu and Burke 2005), or tabu search (Burke et al. 2007; Burke, Qu, and

Soghier 2012). The occurrence of a low-level heuristic in the call sequence

may be used to assign only one exam (Qu, Burke, and McCollum 2009) or

several ones (Burke et al. 2007) to the timeslots. In addition, even the same

sequence may yield different timetables in different runs, since there may exist

multiple feasible timeslot assignments.

As for the local search, it tends to help reach those solutions that

cannot be found by hyper-heuristics. The most popular local search method

implemented in a constructive approach is deepest descend search that moves

events to other timeslots as long as an improvement can be obtained (Burke et

al. 2005; Burke et al. 2007).

With respect to the performance of the constructive method, a mixture

of results is reported. It is found that the performance depends on many factors

including the number and the composition of the low-level heuristics, the

usage of RO or similar randomness ordering scheme, the usage of local search,

Chapter 2 Literature Review

49

the conflict density30 in the dataset, etc. In general, the constructive method is

able to obtain sound results for many problems, including those hard problems

(comparing to the results obtained by specifically developed algorithms).

In our study, it is challenging to use the hyper-heuristic approach to

solve the overall problem directly. The main reason is that it is challenging to

develop a simple heuristic to solve the overall problem by computing

sufficient feasible solution of good quality. Therefore, combing multiple

heuristics are even more challenging because it is also required to understand

the strength and weakness of each individual heuristic. However, we adopt

this idea by combining different approaches to solve a sub-problem in Chapter

4. We develop two sub-approaches to solve the module selection problem. The

two approaches (both solve a multi-criterion problem. One focuses on

computational efficiency and the other on solution quality) are combined in

such a way that different iterations in the overall framework may call one

approach or the other. The way of selection is similar to the aforementioned

choice function and tabu search. Particularly, diversity is maintained by giving

more chances for the approach which focuses on efficiency. The current sub-

approach may be repeatedly executed until the assessment of solution quality

shows a deterioration to some extent.

30 It is defined as the ratio of the number of exams in conflict to the total number of exams.

Chapter 3 Data Analysis and Problem Modeling for MRPT

50

Chapter 3 Data Analysis and Problem Modeling for

MRPT

3.1 Overview

We first describe the problem overview of MRPT. A new campus is planned

and built. Unlike the usual practice that some faculties are moved to the new

campus, stakeholders define the intention of the new campus in this study as to

create an environment which can nurture creativity, innovation and enterprise.

The courses offered on the new campus is planned to be chosen from existing

ones (that are offered in the original campus), which means a reallocation of

modules is needed. One of the key requirements for the new campus is to

involve students with diverse backgrounds so that different ideas can be

openly exchanged. Hence, the stakeholders set a target to assign courses such

that a good distribution of students from different disciplines can attend

classes there. Moreover, the stakeholders would like students to enjoy the

facilities on this new campus as early as possible. Therefore, it is preferred

that the first-year and second-year students (i.e., junior students) become the

majority of students who take courses on the new campus. To ensure a vibrant

environment, the stakeholders also set a minimum requirement on resource-

utilization on the new campus.

 On the other hand, the stakeholders do not want to change the

timetable from the current one for the practical reasons. These reasons are

summarized in the following. Typically, variant curriculums exist at different

Chapter 3 Data Analysis and Problem Modeling for MRPT

51

schools/departments in the medium and large university. As a result, there

exist many intangible and unquantifiable constraints that we cannot capture;

on the other hand, the schools/departments usually have built and deployed

their preferred timetable for the sake of flexibility. Any changes to the existing

timing may hugely disrupt the current educational activities and every faculty

may be affected. As a result, the stakeholders collect the corresponding

information on the current timetable from individual school/department and

provide us one complete piece of timetable for all related modules. This

timetable is then strictly followed in our study on MRPT.

 The aforementioned considerations by stakeholders add a new

dimension of complexity in the university timetabling problems. This is

because that frequent commuting between two campuses by students who are

heading for their classes is expected. We call the corresponding traffic (flow)

between campuses the inter-campus traffic (flow). As the main commuting

way to transport students between campuses is the shuttle bus service, if the

module reallocation is not done properly, the potential inter-campus traffic

flow can be so high that the shuttle service might not be able to handle the

load.31 Moreover, the students might be late for classes. As a result, in MRPT,

the stakeholders hope to identify the modules to be assigned to the new

campus which can handle the high traffic flow while ensuring a good

31 Timetable can also affect the traffic flow. However, as mentioned already the timing is

fixed in MRPT.

Chapter 3 Data Analysis and Problem Modeling for MRPT

52

distribution of students across faculties, a high proportion of the first-year and

second-year students and meeting a minimum resource utilization requirement.

 To model MRPT, we first study the data given by stakeholders.

Specifically, the key information we investigate include that how students

register for modules, which school/department every student comes from and

which admit term every student belongs to. We use historical student records

to obtain the aforementioned data. These records also help us to predict the

potential student registration for each module, as well as the relationship

between two modules (i.e., the number of common students who register for

both modules. This relationship can help us to estimate the potential student

movement between the two courses when the timetabling schedules are given.

With such information we learned, the traffic flow can be predicted under

some assumptions, and the requirements set by the stakeholders can be

specified into constraints with parameters.

In the next section, we discuss how we analyze the data and show the

useful information we learned from his data analysis. In Section 3.3, based on

the results from the data analysis, we introduce the mathematical

programming formulation for MRPT. In Section 3.4, we conduct a series of

numerical experiments to solve the mathematical model by commercial solver.

The problem instances used are from the real data. In Section 3.5, we discuss

the computational perforamcen of the results from numerical experiments

conducted in previous, and highlight the limitation from solving MRPT by

using the commercial solver. This motivates our further study in Chapter 4.

Chapter 3 Data Analysis and Problem Modeling for MRPT

53

3.2 Data Analysis

Before we model MRPT, we first need to look at the data and obtain an

overview of this problem. In addition, we need to determine the corresponding

parameters that are used to do the problem modeling, such as student

enrolment for each module and the student movement between modules.

However, in the actual practice, the schedule and the venue need to be fixed

before the student registration, so it is impossible to have the actual parameters

before we solve the model. As a result, we propose to use the historical student

registration records to estimate these parameters. We believe that this

historical data will provide sufficient accuracy, and the main reason is that

many of these modules are compulsory modules, especially for the first-year

and second-year modules. Students have to select a fixed set of modules from

semester to semester following the requirement set by their department and

faculty. Since the student intake of the department on each year does not vary

a lot, the enrollments for these compulsory modules are expected to be stable.

For those non-compulsory modules where students can freely choose, even

though their enrollment number might not be as stable as the compulsory

modules, we expect that they will not impact negatively on traffic movement

in our study. This is because most of the students are rational, and they will

not choose back to back modules (modules consecutive conducted) to

inconvenient themselves if these two modules are located on different

campuses.

Chapter 3 Data Analysis and Problem Modeling for MRPT

54

By using certain data analyzing techniques, we can obtain the module

information from the data: the timing of each class for all modules, the venue

where each class is held and the faculty which each module is offered by.

Moreover, we can also obtain the student information: the faculty and admit

term that a student belongs to and the modules that a student takes. From these

pieces of information, we can compute some statistics (parameters) such as the

number of students registered for a module and the proportion of students

across faculties as well as first-year and second-year students taking each

module. In the remaining part of this section, we list some of key statistics for

one specific semester in our data as an example. The means to obtain such

statistics and the insights that these statistics may provide are also discussed.

Numerical experiment in Section 4 will also use this piece of data. In the

following, we first show an overview on this piece of data. By conducting the

data analysis, we then discuss how we help the stakeholders to determine the

parameters with regard to their three main requirements, followed by our

method to understand the nature of the inter-campus traffic by looking at the

correlation among modules.

There were a total of 10173 undergraduate students, 402 modules

offered by six main faculties after we have performed some preprocessing on

the data.32 Table 3-1 shows the distribution of modules in terms of the module

32 Only undergraduate students are considered in this study, which is treated as a pilot study.

Other students, such as graduate students, are planned to be considered in the future.

Chapter 3 Data Analysis and Problem Modeling for MRPT

55

size (the student enrolment for each module). It shows that about 43% of

modules had a class size less than 50 students, and only about 13% of modules

had more than 250 student enrolments. Many small modules were either

elective modules or modules of higher levels which were usually taken by

senior students when they wanted to be specialized in a certain area. For those

big modules, there were either general education modules or compulsory

(fundamental) modules which are mainly taken by lower year students. Note

that the class size (the number of students attending one lecture/tutorial) may

be smaller than module size. This is because the capacity of the classroom was

limited. For example, the student enrolment for first-year compulsory

engineering modules can be as high as 1500 students, while the largest lecture

room can only occupy 600 students. In this case, the attending students were

divided into several classes, and they can be held at different times or in

different rooms.

To help the stakeholders decide the parameters with regard to their

requirements (e.g., faculty fairness, junior student priority and room utilization)

about the new campus, we conduct various detailed analysis. First, we

investigate the distribution of module size by the offering faculties. This

information is also presented in Table 3-1. We find that the three major

faculties, which are the faculty of engineering, the faculty of science and the

faculty of arts and social sciences, contributed about 80% of the total modules

offered in the university. Among these three faculties, faculty of engineering

offered relatively fewer big modules. However, from Table 3-2, the

Chapter 3 Data Analysis and Problem Modeling for MRPT

56

distribution on the student-module count shows that engineering students

contributed the most. 33 It is because engineering curriculum required the

students to take basic science and mathematics modules as compulsory

modules. On the other hand, although the faculty of arts and social sciences

offered many modules, a lot of these modules were also taken by other

students because the university adopts a broad-based education. As a result,

the student module proportion on the faculty of arts and social science was

relatively smaller.

Based on these findings (and attitudes by the three main faculties), the

stakeholders decide to set a guidance distribution as (30%, 30%, 30%, 10%)

for faculty of engineering, faculty of science, faculty of arts and social

sciences and other faculties.

33 The student module count counts every student-module pair which representing students’

module selections. For instance, a student attends three modules per week. For each of the

three modules, his attendance contributes one student-module count.

Chapter 3 Data Analysis and Problem Modeling for MRPT

57

Table 3-1 Number of modules and % of offering faculties grouped by module size range

Module
Size Range

Number of
modules

% from
Engineering

% from
Science

% from
Arts and
Social
Sciences

% from
Other
faculties

0-50 171 30% 24% 28% 18%

51-100 92 30% 22% 29% 19%

101-250 87 17% 32% 28% 23%

251-600 43 20% 31% 32% 17%

> 600 9 20% 33% 31% 16%

Total 402 26% 26% 29% 19%

Table 3-2 Distribution of student-module count w.r.t origin of faculties

Table 3-3 Distribution of student-module count w.r.t student grade

1st year student 2nd year student 3rd year student 4th year student

33% 30% 23% 14%

Similarly, we analyze the distribution of student-module count by

analyzing the admit terms of students and grouping them by grades (e.g., first-

year student, second-year student). The portion of junior students was

currently 63%, partially because the university we study increases the

enrollment of new students from year to year. As stakeholders specifically

want to specifically attract junior students to enjoy the facilities on the new

campus, they decide to set a guidance ratio as high as 80%.

The level of the minimum requirement for room utilization on the new

campus is determined in a more complex way. A range of classrooms is

offered on the new campus from small tutorial room to large lecture theatre.

Engineering Science Arts and Social Sciences Other faculties

33% 29% 28% 10%

Chapter 3 Data Analysis and Problem Modeling for MRPT

58

On one hand, high utilization is preferred by stakeholders especially for those

large rooms because the expensive facility and equipment can be properly

utilized. On the other hand, setting a very high utilization level results in a

large number of modules to be allocated, and its large module size typically

leads to a high inter-campus traffic flow. In other words, the determination of

this parameter partially depends on the solution to MRPT. To help

stakeholders to set a promising level, we first define the measure of utilization

of rooms as the weekly occupational hours. Then, we use part of the

mathematical model developed in the next section to conduct scenario analysis.

The model does not consider the inter-campus traffic, but considers the criteria

related to resource utilization of different levels. With results generated from

different scenarios, we are able to present the stakeholders with the potential

of highest room utilization that can be achieved and the corresponding inter-

campus traffic (The computation method is described later.). By carefully

evaluating these results, the stakeholders decide that large classrooms should

be highly utilized, although the resulting impact on inter-campus flow could

be high. The small classrooms, however, is not needed to be highly utilized.

This is because from the results we show that the small rooms are relatively

excessive. Stakeholders then realize that these rooms can also be the venues

for students’ activities to help increase the low utilization from ordinary

educational usage. The detailed decision on the utilization requirement is

described in Section 3.4.

Chapter 3 Data Analysis and Problem Modeling for MRPT

59

Aside from helping the stakeholders to set the parameters, we also try

to understand the inter-campus traffic. Intuitively the inter-campus traffic is

contributed by students who move for their next classes. As the timing is given,

the students’ movement behaviors primarily depend on their module

registration. In other words, to understand the traffic across campuses, we first

need to understand the relationship between different modules. With such

considerations, we first investigate the “overlap” between modules. We then

use the overlap to address the relationship of modules by grouping them into

clusters. We find that these clusters provide insights on understanding the

inter-campus traffic. We describe these three steps in the remaining of this

section.

The module pair overlap, or simply overlap, is computed by analyzing

the enrollment data. The overlap
1 2i io for every module pair 1 2,< >i i is

obtained by counting the number of students taking both modules 1i and 2i .

When the course pair has high overlap, it means that these two courses are

highly related, and hence can be a potential high contributor for traffic: Those

students specified by
1 2i io may all need to travel between campuses if their

time schedules fall in the same day but they are held on different campuses.

From our analysis, the data show that there are significant module pair

overlaps, i.e., many modules are related regarding student registration. Among

these highly related modules, we can further categorize the overlaps into three

groups in terms of the nature of relationship, i.e., strong structure overlap, soft

structure overlap and preference overlap. Strong structure overlap is for those

Chapter 3 Data Analysis and Problem Modeling for MRPT

60

module pairs where both modules need to be taken together by students as

compulsory modules, which are required according to the curriculum. Soft

structure overlap refers to those registrations that can be counted toward their

major requirements such as modules related to department’s specialization or

technical modules. Preference overlap refers to those module pairs, where at

least one of them is an elective module which satisfies the general university

requirement. Typically they are the modules other than their major

requirement, e.g., general education modules, broad-based modules. Even by

knowing this grouping, the overlaps in each group still vary significantly.

Therefore, we also group the modules in terms of overlaps by using the

following clustering method, and show the result by combining the overlap

type information.

We use a method based on the idea of clustering to identify the

modules which are highly related, i.e., groups of modules such that modules

inside the group have high overlap values while modules between groups have

low overlap values. Overlap now plays the role of distance, i.e., high overlap

indicates short distance. Specifically, our method uses the idea of the

hierarchical clustering method (Hastie et al. 2013), which is a typical variant

of connectivity-based clustering methods. We adopt the ideas of connectivity-

based clustering because the traffic is contributed by the actual number of

students who take classes on different campuses, or simply by the value of

overlap. For the same reason, we do not consider the distribution, density or

centroid of the module groups, which are other major topics in the field of

Chapter 3 Data Analysis and Problem Modeling for MRPT

61

cluster analysis. Our method is essentially a single-linkage clustering method,

or closest-neighbor clustering. In other words, the distance between two

clusters 1C and 2C is defined as ()
1 2

1 1 2 2
1 2 ,
, max i ii C i C

d C C o
∈ ∈

= . Given the initial

clusters such that each module is a single cluster, the method iteratively

generates merged cluster by picking two clusters to merge so long as their

distance is no less than a given threshold value, λ , until no more clusters can

be merged. The main difference from the original hierarchical clustering

method is that λ in our case has a practical meaning to determine whether the

‘connection’ between modules is significantly high or not and is pre-

determined by stakeholders. This helps us to do the merging in one run rather

than to merge one by one. This method is summarized in Algorithm 3-1.

Chapter 3 Data Analysis and Problem Modeling for MRPT

62

Algorithm 3-1: Module-clustering method

input Set S I= (:I the set of modules), module pair overlaps
 { }1 2 1 2| ,s so s s S∈ ,the threshold λ and count 1n = .

1 repeat

2 select s from S to construct a new module cluster nC , i.e., { }nC s= , set
 \{ }S S s= .

3 for all module pairs 1 2,s s such that 1 ns C∈ , 2s S∈

4 if
1 2s so λ≥ then

5 { }, \{ }n nC C i I I i= ∪ = . { } { }2 2, \n nC C s S S s= ∪ = .

6 end if
7 end for

8 1n n= + .

9 until S =∅

output all obtained nC .

As an example, we apply this algorithm to our data, and the results

show that we can obtain around 22 clusters when stakeholders set λ =50 (i.e.,

any overlap between two modules which belong to different clusters is less

than 49.). We find that those big clusters usually contain modules from more

than one faculty, and those smaller clusters usually consist those modules from

individual faculty. Inside these clusters, we can further identify the type of

overlaps so as to draw some insights on why they are highly related. Figure

3-1 shows the largest cluster among the 22 clusters obtained by running

Algorithm 3-1. For this cluster, it can be further divided into six sub-clusters

using the Iterative Conductance Cutting algorithm (Kannan, Vempala, and

Veta 2000). This algorithm hierarchically splits one cluster into two by finding

the minimum conductance cut. The key idea of this algorithm is to make sure

Chapter 3 Data Analysis and Problem Modeling for MRPT

63

that there are more inner-connections within a sub-cluster compared to the

inter-connection between sub-clusters. From the result after running this

algorithm, the formation of these sub-clusters reflects the actual situation in

the University. Most of the sub-clusters have modules come from the same

faculty. For example, modules in the sub-cluster 5 are all from school of

business, and they are strongly linked because most of the modules are

compulsory courses within the faculty and their overlaps all belong to the

group of “strong structure overlap”. The sub-cluster 1 contains modules

coming from faculty of science, faculty of engineering and school of business.

The reason for this large sub-cluster is that there are many first-year

engineering students need to take sciences and mathematics modules as their

compulsory subjects. Moreover, a lot of science students taking some popular

business modules. Hence, the three types of the overlap can all be found in this

largest cluster.

Chapter 3 Data Analysis and Problem Modeling for MRPT

64

LSM1103

LSM1102

LSM1101

LSM1201

CM1121

ST1238 LSM2102

LSM2103LSM2104

LSM2101

LSM2201

ST1232

Sub-cluster 3

ME2103

ME2113

MA1301

EE2004
EE2006

EE2012

PC1221

ME2134

EE2009

Sub-cluster 2

ME2121

PC1222

ME2114

CS2102C

EE2005

EE2011

CM1101

MLE2101

MLE2102 CM1111

MA1421

Sub-cluster 6

Sub-cluster 5

Sub-cluster 4

EG2401

Other 10
modules

Sub-cluster 1

IE2110 ST2131

ST1131
RE1802

RE1801

PF1101

MA1101R

MA1100
CZ1102

MA1102R

IT1004EC1301

MA1505

SSA2211

GEK1527

GEK1517

EC1109

CS1105
ACC1002X

CS1101CCM1502

PC1142

PC1141

PF1102

EC1108

PC1431

LSM1301

MLE1101

PC1432

SSA2214

Module Type:

Major with curricular required

Major without curricular required

Elective

Overlap Type:

Strong structure

Soft Structure

Preference

DSC2003

MNO1101

ACC1002 ST1131A

DSC2006

BSP1005

BSP1004 MKT1003

Figure 3-1 Results of sub-clusters34 in the biggest cluster when λ=50

The results from clustering analysis indicate that there exist some

groups of modules that within the clusters the correlations among modules are

high. In addition, these groups share some common features, such as the

similar offering faculties for the majority of the modules within the group. To

optimize the inter-campus traffic, there may exist trivial solution such that

assigning clusters to different campuses accordingly. However, the

aforementioned requirements set by stakeholders prevent adopting these trivial

solutions directly, as there are too many restrictions for a “cut” of clusters to

34 Note that the tag of modules in this figure does not refer to any real ones.

Chapter 3 Data Analysis and Problem Modeling for MRPT

65

satisfy. This finding indicates that MRPT is challenging. On the other hand,

the clustering analysis provides us a way to find good solution indirectly with

the following insight: The correlations of modules are primarily contributed by

typically a subset of modules. Later, we are able to develop a surrogate

measure of the inter-campus traffic. Details are discussed in Section 4.2.2.

3.3 Problem Modelling

With the preparation described in the last section, we formulate the MRPT as

an MIP model in this section. We start from a brief description of MRPT.

 We consider two campuses. Campus A is the existing campus, and

campus B is the new extension. The aim is to identify modules to be taught at

the campus B such that the traffic movement between the two campuses is

minimized. We do not consider the traffic movement within the same campus

as it has been taken care in the existing shuttle bus services. For the constraints,

we consider the student proportion across different faculties has to follow

certain target proportion, and also the first-year and second-year student

proportion has to be at least greater than a certain target value. Note that for

the target proportion values, we use the student-module count instead of using

the individual student count because it is easier to implement in the model. On

the new campus, there are different sizes of lecture rooms available. Since the

student numbers for different modules are different, when we select modules

to be assigned to the campus B, we will also determine which type of lecture

rooms they should be allocated to. Note that although it is not possible to

assign a big module to a small room, we will also want to ensure that no small

Chapter 3 Data Analysis and Problem Modeling for MRPT

66

modules are assigned to big rooms so as the lecture rooms can be better

utilized.

 The following assumptions are made:

1. The students’ movement behavior will not be affected by the

module reallocation decisions.

2. We assume the length of each interval is 15 minute since we are

measuring the student movement per 15-minute interval. We call it

the student movement rate.

3. We do not consider the student movement for students attending

the first lecture and students leaving after the last lecture in a day.

4. If a student needs to attend another lecture at the other campus, we

assume that he will choose a time to travel to the other campus

based on uniform distribution.

5. All lectures start at the hour and end at 15 minute before the next

hour, e.g., 8AM to 9:45AM.

6. The class time can be from 8am to 8pm, Monday to Friday.

Notations

 We list the parameters first, followed by decision variables. Among the

parameters, we highlight two, namely traffic parameters, as both (each

represents one direction) are important components to model the inter-campus

traffic.

Chapter 3 Data Analysis and Problem Modeling for MRPT

67

General parameters:

T : the set of one-hour timeslots in a week for timetabling. We only

consider those timeslots in which inter-campus traffic will occur. For instance,

suppose in every one of the five working days the first module in a day ends at

9AM and the last module in a day starts at 8PM, then 60 timeslots are needed

and { } {1,...,60}=t . For example, 13=t refers to the 8AM-9AM slot on

Tuesday in this case. In addition, we also use the index t to tag the last 15-

minute period in its one-hour-long period, which is used to compute the traffic

contribution.35 For example, 13=t also refers to the 8:45AM to 9AM period.

Lectures and tutorials are all categorized as classes. A class may be short and

occupy only one timeslot (such as a tutorial) or be long and occupy multiple

continuous timeslots (such as a lecture).

I : the set of modules. Each module i may have several lectures and

maybe even several tutorials associated.

J : the set of room types on the new campus. Each room type j has

several rooms with the same or similar capacity and function. In general,

lectures or tutorials of a lecture will be created in a similar size, making

allocating all lectures or tutorials from one lecture to one single room type

possible.

35 The traffic contributions in other three 15-minute periods are no more than the last period,
so we only need to focus on the last 15-minute period.

Chapter 3 Data Analysis and Problem Modeling for MRPT

68

jk : the number of rooms of room type j .

U : the set of faculties, e.g., Faculty of engineering, Faculty of science,

Faculty of laws.

ip : the number of students taking module i .

u
ip : the number of students taking module i who are from faculty u .

iq : the number of year 1 and year 2 students taking module i .

1 2,it itd d : the number of lectures/tutorials of module i that are conducted

in timeslot t . Note that we allow multiple lectures/tutorials for the same

module, which means for some ′∈

i I , there exists more than one ′∈t T such

that 0′ ′ ≠i td .

1 2,Ω Ωj j : the set of modules whose lectures/tutorials are all compatible

with the room type j , i.e., 1∈Ω ji / 2∈Ω ji implies all the lectures/tutorials of i

have the proper sizes that will not exceed the room capacity and not waste

spaces of type j . For instance, a module with 80 attenders is compatible with

room types of 90 and 120 attenders, but not compatible with 150 attenders

because the occupation ratio is considered too low.

1 2,i ie e : the number of timeslots that lectures/tutorials of module i use

per week. We assume 1 2,i ie e are all positive integers for all module. Therefore,

1 1 2 2, ,= = ∀ ∈∑ ∑i it i it
t t

e d e d i I .

Chapter 3 Data Analysis and Problem Modeling for MRPT

69

1 2,Ξ Ξi i : the set of matched room types for lectures/tutorials of module

i .

ug : the preference target ratio of faculty u in terms of fairness. For

each faculty u , there is a preference of the ratio of the student module count

from u on the new campus to the one from all the faculties. This ratio

represents the level of involvement from a faculty, thus a large faculty may

prefer for a higher ratio.

χ : the required minimum proportion of year 1 and year 2 student

module count on the new campus to the overall one on the new campus.

ξu : the threshold used in the faculty fairness constraint. With it, we

allow some mismatch between the target ratio of involvement from u and its

actual involvement.

jl : the number of timeslots per week that is required to be utilized for

room type j . Normally the higher the capacity of the rooms is, the higher jl

is.

1 2i iv : Auxiliary 0-1 variable. It is supposed to be 1 if module 1i is

reallocated, while 2i is not.

Traffic parameters:

1 2

1
i i tr : the traffic contribution (direction: from the new campus to the old

campus) in the 15-min timeslot specified by t if module 1i is reallocated (to

Chapter 3 Data Analysis and Problem Modeling for MRPT

70

the new campus) but 2i is not. It is computed through (1) computing the

average student-movements at t in that direction caused by every possible

class pair with respect to the module pair ()1 2,i i , (2) Summing up all these

averages. For instance, assuming, on Tuesday, module 1i and 2i has only one

lecture and no tutorials respectively, although they may have classes on other

days. The lecture of 1i ends at 1PM and the lecture of 2i starts at 3PM. 30

students take both lectures. Let t in this case representing the 1:45PM to 2PM

period on Tuesday. Consider the case that 1i is reallocated but 2i is not. The

average movement contributing
1 2

1
i i tr at t from pair ()1 2,i i is hence 30/9 as

there are nine 15-minute periods between the two lectures.

1 2

2
i i tr : the traffic contribution (from the old campus to the new campus)

at timeslot t if module 1i is reallocated but 2i is not. According to this

definition, we have
1 2 2 1

1 2
1 2, , ,= ∀i i t i i tr r i i t .

Decision variables:

ijx : the 0-1 decision variables representing whether the lectures of

module i are assigned to room type j on the new campus. Denote set

{ : , }= ∀ ∈ ∈ijX x i I j J . Note that lectures or tutorials from one module are

allowed to be allocated to at most one room type.

ijy : the 0-1 decision variables representing whether the tutorial of

module i is assigned to room type j . Denote set { : , }= ∀ ∈ ∈ijY y i I j J .

Chapter 3 Data Analysis and Problem Modeling for MRPT

71

Module selection decisions: The decision that which modules are

reallocated

iv : the 0-1 variable representing whether module i is reallocated to the

new campus. This variable is defined only for simplicity. Denote set

, : 1 iif 1

= ∈ = =

∑i i ij
j

V v i I v x .

As a quick comment, { }ijx and { }ijy are called module reallocation

decisions. They decide which modules are reallocated and which room type

the corresponding lectures and tutorials are assigned to. { }iv are called

module selection decisions. They decide which modules are selected to be

reallocated.

Note that we need both
1 2

1
i i tr and

1 2

2
i i tr to capture inter-campus traffic of

two directions. One may argue that many of them may be zeroes so that the

complexity of the objective function is greatly reduced. This is partially

correct. In reality there do exist several modules such that at most one class is

held per day. For such module pairs, it is not possible to have traffic flow of

two directions, and so for the corresponding
1 2

1
i i tr and

1 2

2
i i tr , at least one is 0.

However, in reality there are also many modules which may have multiple

classes on the same day. For instance, one module is so large that students

have to be split into two groups. The big scale of the school, the teachers’

preference and the scarcity of the resources are possible reasons. Two of such

modules may incur a traffic flow at some timeslots from both directions if they

Chapter 3 Data Analysis and Problem Modeling for MRPT

72

are assigned to different campuses. In this case, both corresponding
1 2

1
i i tr and

1 2

2
i i tr are non-zero.

Also note that, if for any module there is at most one class held on each

day, at least one from
1 2

1
i i tr and

1 2

2
i i tr is 0. However, this assumption is not true

in reality especially for large university. It is possible that both
1 2

1
i i tr and

1 2

2
i i tr

for specific 1 2, ,i i t are positive. For instance, both 1i and 2i can have multiple

classes on the same day of t , e.g., two lectures of 1i are held to cater two

groups of students, as well as for 2i . Given the location of modules (but

assuming they are on different campuses), it is possible that some of students

from 1i need to travel to attend class of 2i , and vice versa. Therefore we can

have traffic from both directions with respect to only one module pair. For this

reason, we need both
1 2

1
i i tr and

1 2

2
i i tr to model inter-campus traffic.

 With parameters in MRPT described, we discuss the objective function.

This function is to minimize an inter-campus traffic measurement, which is the

worst-case scenario of traffic rates across different time slots and directions.

We denote this inter-campus traffic measurement as:

() () ()1 2 1 2 1 2 1 2

1 2 1 2

1 2

, ,
max max ,0 , max ,0
∈

∈ ∈

= − −

∑ ∑i i t i i i i t i it T i i I i i I

F V r v v r v v (3.1)

In this measurement, ()1 2 1 2

1 2

1

,
max ,0

∈

−

∑ i i t i i

i i I
r v v represents the traffic

rate derived from new campus to old campus at timeslot t , and

Chapter 3 Data Analysis and Problem Modeling for MRPT

73

()1 2 1 2

1 2

2

,
max ,0i i t i i

i i I
r v v

∈

−

∑ represents the one of the other direction. (Note that

()1 2 1 2max ,0 1 is relocated and is not− = ⇔i iv v i i .) Both depend on the

decisions of all modules, i.e., not only on those which are selected to be

reallocated, but also on those which are not.

It should be noted that our traffic modeling has a limitation. The traffic

measured in (3.1) might be higher than the actual traffic movement. This is

because when we compute the student movement, we only use the first order

information, i.e., the course pair overlap. However, it might be possible that

there are higher order effects which can bring down the student movement.

For example, a student is taking three modules in the same day, the first

module is at campus A and the remaining modules are at campus B. After

taking the first module, the student will move to campus B and spend his

remaining time there to take the second and the third modules. In our model,

by only considering the overlap, we will double count by considering both

overlaps between module 1 and module 2, and between module 1 and module

3. Fortunately in the next section we can show that this higher order effect is

small.

Because (3.1) is not in linear form, we linearize it with the following

formulas by introducing real variable z and aforementioned auxiliary

variables { }1 2i iv (detailed proof is shown in A.3):

min z (3.2)

Chapter 3 Data Analysis and Problem Modeling for MRPT

74

Subject to

{ }
1 2 1 2

1 2,
, 1, 2 ,

∈

≥ ∀ ∈∑ n
i i t i i

i i I
z r v n t (3.3)

()1 2 1 2 1 2, ,− ≤ ∀ ∈∑ i j i j i i
j

x x v i i I (3.4)

()1 2 1 2 1 2
1 1 , ,
2

≤ + − ∀ ∈

∑i i i j i j
j

v x x i i I (3.5)

{ }
1 2 1 2; 0,1 , ,∈ℜ ∈ ∀ ∈i iz v i i I (3.6)

With a linear objective function, the MRPT can be modeled as a MIP

problem P1:

[P1] min z

Subject to

(3.3)-(3.6)

() (),

,

1 1 ,

u
i ij

i j
u u u u

i ij
i j

p x
g g u

p x
ξ ξ− ≤ ≤ + ∀

∑
∑

 (3.7)

,

,

χ≥
∑
∑

i ij
i j

i ij
i j

q x

p x
 (3.8)

() 0,− = ∀ ∈∑ ij ij
j

x y i I (3.9)

1,≤ ∀ ∈∑ ij
j

x i I (3.10)

Chapter 3 Data Analysis and Problem Modeling for MRPT

75

1 2 , ,+ ≤ ∀ ∈ ∈∑ it ij it ij j
i

d x d y k t T j J (3.11)

1 2 ,+ ≥ ∀ ∈∑ i ij i ij j
i

e x e y l j J (3.12)

1 20, ; 0,= ∀ ∉Ω = ∀ ∉Ωij j ij jx i y i (3.13)

, {0,1}, ,∈ ∀ ∈ ∈ij ijx y i I j J (3.14)

In P1, The decisions we make include (i) modules reallocation:

whether or not to relocate the module i to the new campus

(1 Relocated= ⇔∑ ij
j

x and 0 Not relocated= ⇔∑ ij
j

x); (ii) room

assignments : for reallocated module i , which room types should its lecture(s)

and tutorial(s) (if any) be assigned

(1 lecture(s) of module assigned to room type = ⇔ijx i j and

1 tutorial(s) of module assigned to room type = ⇔ijy i j). Decision variables

{ }1 2i iv and z are then implied by these two decisions.

The constraints to satisfy include the followings:

(1) Faculty fairness: constraints (3.7) ensure that the distribution of

students-module count from a specific faculty on the new campus is consistent

with the desired distribution. The reason for this restriction is because in this

problem all faculties have equal utilizing opportunity. The student-module

count is one way to measure the contribution of faculties’ involvements.

Therefore, the distribution based on this measurement represents the fairness

Chapter 3 Data Analysis and Problem Modeling for MRPT

76

of involvement among faculties. If the actual ratio for faculty u equals the

desired ratio ug , then ,

,

u
i ij

i j
u

i ij
i j

p x
g

p x
=

∑
∑

. As an equality constraint would be too

strong in practice which can easily lead to infeasibility, we allow a range

centered at ur which is specified by ξu . As a result, these constraints can also

apply to those situations such that there is a preference on faculty utilization

distribution.

(2) Student preference: constraints (3.8) ensure that the first-year

and second-year student proportion on the new campus is no less than the

required level. To see this,
,
∑ i ij
i j

q x represents the actual 1st and 2nd student-

module count, and
,

i ij
i j

p x∑ represents the overall student-module count given

the actual module reallocation. The main reason of setting this restraint is to

promote future student enrollment. In general, it can refer to any constraints

which prioritize a specific module group.

(3) Room assignment: It includes several parts. Firstly, it is not

allowed to have lectures and tutorials to be on different campus, as typically

the tutorial is scheduled right after the lecture. In addition, because of the

similarity in size, all the lectures/tutorials of a module must be allocated to

only one room type on the new campus if this module is reallocated. These

requirements are illustrated jointly by constraints (3.9) and (3.10). Secondly,

each room type has a limited number of rooms which restraint the number of

Chapter 3 Data Analysis and Problem Modeling for MRPT

77

classes can be assigned per week, which is illustrated in constraints (3.11), and

we call them capacity constraints. Thirdly, each room type should be utilized

well, which is measured by its weekly occupied hour. The occupation hour in

each room type shall be larger than the desired level, which is illustrated in

constraints (3.12) and we call them demand constraints. Fourthly, the classes

assigned should be compatible with the room types. Constraints (3.13) ensure

this requirement.

We can conduct some redundancy check on the problem instance. We

start from room assignment constraints. All coefficients in type 2 constraints

are positive so that some variable fixing or elimination of constraints is

possible. First we can reform (3.11) and (3.12) to the following inequalities:

, ,ρ′ ≤ ∀ ∈ ∈∑ it ij j
i

d k t T j J and ,ρ′ ≥ ∀ ∈∑ i ij j
i

e l j J where ρij refers to any

decision variables that is not fixed to zero due to (3.13) and ′itd and ′ie are its

corresponding coefficients in (3.11) and (3.12). Then we check the validity of

the following conditions: (1) ,′ > ∀ ∈∑ i j
i

e l j J , (2)
,

max ,′ ≤ ∀ ∈it ji t
d k j J (3)

min ,′ ≤ ∀ ∈i ji
e l j J . If some is violated, either the corresponding decision

variable can be fixed to zero, or the whole constraint is redundant. In the

remaining part of this paper, we assume these conditions are all met. We then

check type 1 constraints. Note that it is possible that some coefficient is

negative, reflecting that selecting the corresponding module will move away

from the target ratio. Similar redundancy check is hence not effective.

Chapter 3 Data Analysis and Problem Modeling for MRPT

78

We briefly analyze the scale of P1. In total, there are

() ()2 22Ο + ≈ ΟI I J I columns and () ()2 2Ο + + + = ΟT J U I I I

rows, as normally ()max , ,>I T U J . In practice, I can easily go up to

hundreds, thus the scale of this MIP problem could be enormously large.

3.4 Numerical Experiments

We conducted several numerical experiments based on the data that is used in

Section 3.2. Experiments were grouped by different constraint requirement,

ranging from slack to strict. In addition, we examined the higher order effect

mentioned in the ending of the last section is not severe.

In Table 3-4 we show five sets of scenarios based on different

parameter settings. Scenario A was the reference case which was used in our

real-world project. In this scenario, we controlled the faculty fairness

parameters by setting three largest faculties to have roughly equal number of

student-module counts in campus B, i.e., between 30% and 36%. We also

controlled the first-year and second-year student-module count proportion to

be at least 80%. For the room utilization requirement, we required at least 8

hours usage per day per room for big rooms; at least 6 hours for medium

rooms; and no requirement for small rooms. In order to study the impact of the

faculty fairness, in Scenario B, we relaxed the constraint (4). Similarly, we

investigated the impact on the student preference constraint by relaxing

constraint (5) in Scenario C. Scenario D and E referred to the impact on the

Chapter 3 Data Analysis and Problem Modeling for MRPT

79

room utilization requirement by varying RHS of constraint (6). In particular,

we looked into a medium and a low utilization requirement.

Table 3-4 Five scenarios and their parameter settings

Parameter
settings

Scenario
A

Scenario
B

Scenario
C

Scenario
D

Scenario
E

Faculty
fairness

1 1 1, ,
3 3 3

 -
1 1 1, ,
3 3 3

 1 1 1, ,
3 3 3

 1 1 1, ,
3 3 3

Junior
student
preference

80%≥ 80%≥ 50%≥ 80%≥ 80%≥

Room
utilization (8,6,0) (8,6,0) (8,6,0) (6,3,0) (4,1,0)

Table 3-5 summarizes the solutions given by the solver for all five

scenarios. They were obtained by running CPLEX 11 on an Intel Core 2

2.6GHz desktop. The code was programmed in C# by calling .NET

CONCERT interface. We chose C# and API because it is also a convenient

way to design and implement a user interface which the user should be more

familiar with. In fact, the way of using CPLEX was identical throughout this

work. The computational budget given to every scenario was about 1 hour. It

should be highlighted that the solver in no scenario can obtain optimal solution

within 1 hour. In fact, the actual performance (including solution quality, the

number of feasible solutions obtained) was very poor. The details are shown in

the next section.

Chapter 3 Data Analysis and Problem Modeling for MRPT

80

Table 3-5 Result summary for 5 scenarios

Evaluation Scenario
A

Scenario
B

Scenario
C

Scenario
D

Scenario
E

OBJ: Objective
value in P1

246.9 128.4 178.3 89.4 76.5

No. of modules
reallocated

146 186 208 98 137

Scenarios B and C are relaxed problems of scenario A where we

observe lower traffic movement and more modules are being assigned to

campus B. For scenario B, it is found that modules from school of business,

which was a relative small faculty, were mostly assigned to campus B. In fact,

all modules from sub-cluster 5 in Figure 3-1 were assigned. Further analysis

suggested that the assigning of these business modules to campus B would not

affect too much on the traffic because these modules were mainly taken by

their own students. For scenario C, the improvement in the objective value

was not as significant as scenario B. We can explain this in multiple ways.

First, many of the large modules were primarily first-year and second-year

modules, and since we needed to have high utilization on the larger room,

most likely these first-year and second-year modules would still need to be

assigned to campus B even though we are able to relax the constraints.

Moreover, in order to maintain the faculty fairness, many small modules

which were taken by the higher year students would be forced to assign to

campus B. Hence, in scenario C, the traffic movement was more than scenario

B and more modules were assigned to campus B.

Chapter 3 Data Analysis and Problem Modeling for MRPT

81

Another interesting observation is that more number of modules

assigned to campus B did not always imply higher traffic. For scenario B and

C, even though we had more modules assigned to campus B, the traffic was

smaller. This can be explained by the fact that we can always assign the

modules which have high overlap to the new campus together.

For scenario D and E, lower traffic was observed because we had

lower room utilization requirement on large lecture room. In general, large

modules can potentially contribute more traffic. In addition, since scenario E

had the lowest utilization requirements on large rooms, it essentially had more

options to select those big modules with lower movement rate contribution.

However, it may violate other constraints such as the faculty fairness and

student preference constraints. This can be resolved by selecting more small

modules which we observed by comparing scenario E and scenario D.

Table 3-6 Result summary for 5 scenarios with other evaluations

Evaluation Scenario
A

Scenario
B

Scenario
C

Scenario
D

Scenario
E

OBJ: Obj value in
P1

246.9 128.4 178.3 89.4 76.5

OBJ1: Traffic
impact without
using overlap

224.1 126.7 162.9 86.3 74.4

OBJ2: Traffic
impact only
considering back-
to-back

219 124 156 85 74

In the end of this section, we show that effect of higher order effect.

Table 3-6 compares our model objective (OBJ) with the actual traffic (OBJ1)

Chapter 3 Data Analysis and Problem Modeling for MRPT

82

which was computed by the student movement based on every student’s

timetable after the course assignment plan was given (which is the solution for

OBJ). It shows that the difference between them was very small. A brief

explanation of why the higher order effect was insignificant is that the

condition to form a significant high-order overlap is typically strong. For

instance, to form an overlap with order of 3, three modules which are strongly

related are needed to be scheduled to the same day. Since a group of modules

which are highly related are commonly offered by the same department, it is

unlikely that the department arrange three such modules on the same day. The

higher the order of overlap is, the lower the chance of scheduling on the same

day is. It is hence expected that the actual traffic (OBJ1) is not over-estimated

a lot. Furthermore, we also compared the model objective with the back-to-

back traffic movement (OBJ2) for the assignment plan. The back-to-back

traffic movement is defined as the number of students who need to travel to

the other campus immediately after the end of the lecture because they are

taking consecutive courses that are located on different campuses. The

difference between OBJ and OBJ2 was very small, which indicates that the

back-to-back traffic movement contributes to the high proportion of the worst

traffic. The main reason for this insignificant effect is that, for every student,

the average number of modules taken within a day is typically relatively small.

In general, our results influenced the stakeholders’ decisions in real life

in several ways. First, they used our results in planning the modules of the first

year on the new campus. Although the results were not directly adopted as

Chapter 3 Data Analysis and Problem Modeling for MRPT

83

there are some other considerations that the stakeholders must take in the end

(which is beyond our territory) but most of the modules and room allocation

are from our results. In fact, the final model we solved was very simplified in

which only about 100 modules were to be selected. This was due to the fair

amount of constraints addressed from various departments since they

concerned that their own students may suffer from problematic traffic.

However, this situation was resolved in the following years due to the success

from the first year’s running. Second, the traffic evaluation from our results

also suggested that the current shuttle bus system could not handle the students

unless investing more buses based on the computed traffic values(it also

means that our model cannot decrease the traffic for ever in the presence of the

set of constraints). As a result, more buses were later deployed to help ease the

traffic pressure. Third, the best we could do at that time is using the historical

data. Consequently the results shown by our model at that stage should be

worse than the results from the real data, which were captured in the planning

process of the second year on the new campus. It is reported that the results

from the following year is more consistent with the real traffic.

3.5 Discussion

Several issues related to using solver to solve MRPT are observed and

discussed in the following.

(1) The unpromising performance of the solver on our test case:

Chapter 3 Data Analysis and Problem Modeling for MRPT

84

The results of numerical runs show that CPLEX cannot find the

optimal solution for any test case before it runs out of memory.36 Numerical

results also show that obtaining a relatively good solution (gap%<=15%) is

not possible in 20 hours for all scenarios To conduct further investigation, we

create two new sets of experiments, and both have no limit in computation

time. We first conduct experiments on all five scenarios in the default setting

of CPLEX. On average, 8.2 feasible solutions are found and within which,

there are only 1.1 solutions that are within 30% optimality gap. We then

change parameters of the solver to focus feasibility, and the number of feasible

solutions is increased by 240% on average. However, the number of good

solutions rarely changed as only 2.2 solutions are obtained on average.

(2) The impact from the scale of the problem:

In the test case of our study, we use a scale of a moderate scale of

university, and I is several hundred and T is 40. In a typical large

university, the number of variables can be even more, e.g., I goes up to

thousands. In addition, the number of indicator variables introduced in P1 is

2I T , bringing much more variables. Such a large number of variables has a

significant impact on performance of conventional solution techniques, e.g.,

each LP relaxation problem requires a large amount of time to solve to

optimality during the branch and bound.

36 The way of test case generation is described in the appendix.

Chapter 3 Data Analysis and Problem Modeling for MRPT

85

(3) Possible reasons for the aforementioned issues.

We investigate the problem structure. By analyzing the constraints part,

we expect that finding a feasible solution of P1 is rather difficult. For instance,

even if we fix the module selection, the leftover problem is a room assignment

problem which tries to find a feasible room assignment for all selected

modules. This assignment-type problem is a hard problem, because we show

in 4.3.2 that it can be transformed into several knapsack-type problems, e.g., a

constrained multiple multidimensional knapsack problem, or a multiple multi-

dimension knapsack problem after relaxing several constraints. All such

problems are well-known difficult ones.

Chapter 4 An Iterative Two-Phase Approach to MRPT

86

Chapter 4 An Iterative Two-Phase Approach to MRPT

4.1 Overview

In Chapter 3, we find two main difficulties in solving P1 (described in 3.5).

The first issue is that the solver cannot find good solutions for our test cases.

The second issue is that when the problem scale becomes larger, the solver

may not even find a feasible solution. As a result, we develop a heuristic that

overcomes the aforementioned difficulties.

We investigate the problem structure of P1 and finds out that it is

possible to categorize the decision variables and constraints into two groups,

which are shown in Table 4-1:

Table 4-1 Groupings on constraints and decision variables

Constraint Categorization Decision

Type 1 Constraints

faculty fairness and student preference
constraints (3.7-3.8)

Module selection

iv : Whether module i is selected
to reallocate

Type 2 Constraints

room constraints (3.9-3.13)
Room assignment (depending on
the module selection)

ijx and ijy : the room types
assigned to the lecture/tutorial of
module i

Under this grouping, we find that type 1 constraints only depend on

module selection variables, while type 2 constraints only depend on the room

assignment given by the module selection. We cannot determine the room

assignment decision without determining the module selection decision first.

In addition, the objective value only depends on the module selection decision.

Chapter 4 An Iterative Two-Phase Approach to MRPT

87

As a result, we first ignore the room assignment decision by searching for a

module selection that has a good objective value. After we obtain a set of

modules that are to be reallocated, we can further determine their room

assignment.

Motivated by this idea, we develop a sequential two-stage approach.

The first phase is to find the modules that are to be allocated to the new

campus and also satisfy type 1 constraints. Even though we do not consider

the room assignment decision in this phase, we do consider type 2 constraints

(which are related to the room assignment) implicitly. By doing so, we hope

that the results from phase 1 can help us to find a feasible room assignment in

the phase 2 easily. When a feasible module selection is found in phase 1, we

proceed to phase 2 which is to find the feasible room assignment for these

modules that satisfy type 2 constraints. If we can find such an assignment, the

overall solution becomes a solution candidate for P1. Otherwise, we restart the

algorithm. When a feasible module selection is not found in phase 1, we also

restart the algorithm. Through this way, we iteratively repeat these two phases

until the stopping criteria (time budget) is reached. The suggested solution is

the best solution among those that are found so far. In addition, in every

iteration, we learn useful information from the result of previous runs to adjust

certain parameters for the future iteration. The process is shown in Figure 4-1,

and the details on the two phases are described in the following.

Chapter 4 An Iterative Two-Phase Approach to MRPT

88

Figure 4-1 The overall framework of the proposed heuristic

In the first phase, we use multi-objective optimization framework to

solve the module selection problem for two reasons. First, many type 1

constraints have negative coefficient (e.g., for in (3.8)). By

treating them as hard constraints, the constructive method may stop too soon

Chapter 4 An Iterative Two-Phase Approach to MRPT

89

to find a feasible solution. Second, the violations of type 2 constraints have to

be also monitored, and the typical way is to minimize their aggregated

violation. Therefore, the multiple objectives consider the original objective,

the violations of type 1 constraints and the violations of the aggregated

measure of the type 2 constraints.37 Under this framework, we propose two

approaches to tackling the problem. In each iteration, we choose one approach

from the two based on the results from the previous iteration.

In approach 1, we use a greedy constructive approach to select

modules one by one. In each construction step, we first randomly select one

objective from the multi-objectives discussed before. Based on the selected

objective, we rank those unselected modules accordingly. We then randomly

select one module among those good candidates according to their

performances. The construction process is stopped when either a solution

satisfying type 1 constraints is found or the solution shows no improvements

in redusing violations after a number of consecutive steps. If we cannot find a

solution satisfying type 1 constraints, we use a reparation method to repair the

infeasible solution. After the feasible solution is found, a local improvement

process is executed in order to further improve the objective value while

37 As for simplicity, we say “aggregate type 2 constraints” by aggregating room capacity

constraints (3.11) and room utilization constraints (3.12) respectively. For the former

constraints, constraints of different room types and time slots are aggregated. For the latter

constraints, constraints of different room types are aggregated.

Chapter 4 An Iterative Two-Phase Approach to MRPT

90

maintaining the feasibility in terms of type 1 constraints. The details of the

approach 1 are discussed in Section 4.2.1.

In approach 2, instead of using the constructive approach which selects

module one by one, we explicitly build an MIP-based multi-objective model to

select the modules. In the proposed MIP model, we specifically set two

objectives. The first objective considers the inter-campus traffic by

introducing a surrogate measurement based on the results from cluster analysis

mentioned in chapter 3. The second objective considers the violations of a

subset of type 2 constraints in an aggregated way. The type 1 constrains

remain as hard constraints, while the rest of type 2 constraints are considered

in such a way that the violation of the aggregated measure cannot exceed a

certain threshold. We solve this MIP model by using the idea of NBI method

which are summarized in Chapter 2. Similar to approach 1, if we can find one

feasible solution, local improvement will be applied accordingly. The details

of the approach 2 are discussed in Section 4.2.2.

In the second phase, based on the module selection obtained in the first

phase, we try to find a feasible room assignment. We first formulate it as a

MIP model and then use the branch and bound framework to solve this

problem. We branch on the possible room assignments for a selected module.

We use Lagrangian relaxation method to solve the sub-problem in the branch

and bound framework, and use a primal heuristic to find a solution in case that

the result from solving by Lagrangian relaxation method is not integral.

Specifically, the dual bound and primal bound obtained help us to prune the

Chapter 4 An Iterative Two-Phase Approach to MRPT

91

branch. When using the Lagrangian method to solve the sub-problem in the

branch, we show that it can be decomposed into a collection of multi-

dimensional knapsack-type problems, which give us an efficient way to solve

the problem. The Lagrangian dual is solved by the sub-gradient search method.

On the other hand, the primal heuristic is based on Constraint Programming

(CP) technique. The details of phase 2 are discussed in Section 4.3.

4.2 Phase 1: Module Selection Problem (MSP)

The goal of the first phase is to identify a set of modules such that reallocating

these modules satisfies type 1 constraints while having a good objective value.

Type 2 constraints, however, are not ignored completely. This is because if so,

there would be no control on the room assignment and it can be very difficult

to find a room assignment for the resulting reallocation solution. Instead, we

consider type 2 constraints indirectly by using aggregating method. We now

define a module selection { }{ }0,1 ,= ∈ ∈iV v i I , indicating whether module i

is selected or not, which is a solution to MSP modeled by P2:

[P2] () ()1 2 1 2 1 2 1 2

1 2 1 2

1 2

, ,
min max max ,0 , max ,0

∈
∈ ∈

− −

∑ ∑i i t i i i i t i it T i i I i i I

r v v r v v

 Subject to

() ()1 1 ,ξ ξ− ≤ ≤ + ∀
∑
∑

u
i i

i
u u u u

i i
i

p v
g g u

p v
 (4.1)

Chapter 4 An Iterative Two-Phase Approach to MRPT

92

χ≥
∑
∑

i i
i

i i
i

q v

p v
 (4.2)

ˆ≤∑ i i
i

D v K , where ()1 2

,∈ ∈

= +∑i it it
j J t T

D d d , ˆ *= ∑ j
j

K T k (4.3)

ˆ≥∑ i i
i

E v L , where ()1 2= + ×i i iE e e J , ˆ
∈

=∑ j
j J

L l (4.4)

P2 shares the same objective function as P1. The decision variables in

P2 are only { }= iV v . Individual decisions for lectures or tutorials are not

needed, because when we aggregate type 2 constraints, both decisions for

module i refers to the same iv due to the constrain (3.9) that requires that the

lectures and tutorials should be reallocated at the same time for one module. In

terms of the constraints of P2, (4.1) and (4.2) are essentially (3.7) and (3.8)

(the faculty fairness and student preference constraints) on variables { }iv .

Constraint (4.3) and (4.4) can be considered as an aggregated constraints for

(3.11) and (3.12). They relax original capacity restraint and room utilization

requirement by aggregating corresponding constraints (()1+T J constraints

are now aggregated into 2 constraints). They can be interpreted as the lower

and upper bound of the number of modules selected. A solution to P2 fully

satisfies type 1 constraints but may not satisfy all those type 2 constraints.

As P2 is still not easy to solve, we introduce the multi-objective

framework by relaxing certain hard constraints and transform them into soft-

constraints. Hence, the multiple objectives may include the original objective,

Chapter 4 An Iterative Two-Phase Approach to MRPT

93

the violations of type 1 constraints and the violations of the aggregated type 2

constraints. Under this framework, we propose two approaches to tackling the

problem, which are discussed in detailed in the following two sections.

In the initial of the algorithm with regard to phase 1, we run approach

2 for several iteration which is followed by approach 1 for another few

iteration. After obtaining enough performance information of both approaches,

we decide which approach to choose for subsequent iterations. The criteria

that we use to evaluate the performance are similar to the four criteria which

are used in approach 1. We compute the actual objective value according to

(3.1) for results obtained from approach 2 as approach 2 uses the surrogate

measure of traffic. We give higher chance to the approach that gives better

overall performance.

4.2.1 Approach 1: Greedy constructive procedure

This method is based on the construction phase from the study by Martí et al.

(2011) in the field of Greedy Randomized Adaptive Search Procedure

(GRASP). For the current constructed module selection V , the following

multiple objectives ()1Λ V to ()4Λ V are considered:

()1Λ V = () ()1 2 1 2 1 2 1 2

1 2 1 2

1 2

, ,
max max ,0 , max ,0
∈

∈ ∈

− −

∑ ∑i i t i i i i t i it T i i I i i I

r v v r v v

()2Λ V =

Chapter 4 An Iterative Two-Phase Approach to MRPT

94

() (), ,

, ,

max max 1 g ,0 ,max 1 g ,0ξ ξ

 − + − −

∑ ∑
∑ ∑ ∑

u u
i ij i ij

i j i j
u u u u

u i ij i ij
i j i j

p x p x

p x p x

()3Λ V = ,

,

max ,0χ

 −

∑
∑

i ij
i j

i ij
i j

q x

p x

()4Λ V = ˆ ˆmax ,0 max ,0 − + −

∑ ∑i i i i

i i
D v K L E v

Specifically, ()1Λ V considers the original objective function. ()2Λ V

and ()3Λ V consider the violation of type 1 constraints, while the former

accounts for faculty fairness and the latter accounts for student preference.

()4Λ V considers the overall violation of type 2 constraints indirectly by

aggregating (4.3) and aggregating (4.4). ˆmax ,0 −

∑ i i

i
D v K represents the

violation of the room capacity constraint. If it is positive, it means that even if

we can find a room assignment such that each room in every timeslot is

occupied by one module, we still have some modules that cannot be assigned

to. Similarly, ˆmax ,0 −

∑ i i
i

L E v represents the violation of the utilization

constraint, i.e., the unfulfilled overall utilization according to the target

utilization level.

In every step of the construction of approach 1, we first randomly

select one objective as the ranking criteria according to the probability

Chapter 4 An Iterative Two-Phase Approach to MRPT

95

{ }, 1,..., 4=np n . After a criterion n is selected, similar to the idea of the

value-based restricted candidate list in GRASP (Delmaire et al. 1999), we

compute the performance (known as κ) under that criterion n for all the

unselected modules. We then find the maxκ and minκ which are the maximum

and minimum performance values for all the unselected modules. Later, we

randomly select a candidate of which the performance is between minκ and

min max min()κ a κ κ+ −n , where ()0,1a ∈n . This candidate can be viewed as a

good candidate for the criterion n , and is added to the selected modules.

Note that np represents the preference of criterion n . Initially, np is

set to 1/ 4, 1,..., 4=n . an determines whether the randomness (an near 1) or

greediness (an near 0) is preferred when selecting the next candidate with

regard to criterion n . Initially, na is set to 0.6, 1,..., 4n = . We may change np

and an from iteration to iteration. First, we compute the performance in term

of all four criteria for all the solutions generated so far. Then we identify the

criterion n′ which is the worst among all four criteria and increase our

preference on it, i.e., increase np ′ (and decrease preferences on others

accordingly). Similarly we increase na ′′ when we find that the historical

solutions evaluated under criteria n′′ have smaller variability. Hence, we can

explore more solutions under that criterion.

The stopping criteria for the construction are: (1) a solution satisfying

type 1 constraints is found; (2) the performance of the solution so far does not

Chapter 4 An Iterative Two-Phase Approach to MRPT

96

improve in consecutively several steps. In the first case, we obtain a feasible

solution for approach 1, while in the second case the reparation is required

which is described in Section 4.2.3.

4.2.2 Approach 2: Bi-objective MIP model solved by NBI method

Instead of using the constructive approach which selects module one by one,

we build a bi-objective MIP model to find a solution to MSP directly. In this

model, the first objective considers the violation of aggregated type 2

constraints. The second objective is a surrogate measure of the inter-campus

traffic measure in (3.1). We use this measurement to decrease the complexity

of (3.1) when we solve this problem. It uses the information that we learn from

the cluster analysis in Chapter 3 to simplify the original objective function by

only considering those significant contributors of traffic. All the remaining

constraints from P2 are explicitly considered. This bi-objective model is then

solved by using the idea of NBI method by Das and Dennis (1996) with

modifications by Shukla (2007) which effectively explores the Pareto front.

By changing the parameters in NBI method from iteration to iteration when

approach 2 is chosen, we can generate various feasible module selections.

 The bi-objective MIP model B-P2 is displayed in the following:

[B-P2]
21,..., 1 1 2

ˆmin ,
= − ∈

 −

∑ ∑ ∑

k

k
kl i ik k

k I il I

w F L E v
I I

 (4.5)

 Subject to

Chapter 4 An Iterative Two-Phase Approach to MRPT

97

()1 1

1 1

*
2, 1,..., 1;

∈

≥ ± − ∀ = − ∈∑
k

k
kl i l i l

i I

F r v v k I l I (4.6)

2, 1,..., 1;∈ ∀ = − ∈

k
klF k I l I (4.7)

 (4.1), (4.2), (4.3)

 In this model, the first objective on klF represents the surrogate inter-

campus traffic measurement, in which the set { }1 2, ,∀k kI I k represents the

information we obtain from cluster analysis. The details will be shown later.

The second objective on V is the aggregated measurement about the room

capacity constraint (4.4). In general, the smaller this measurement is the higher

the possibility that more modules are selected to well utilize the rooms.

 The constraints considered in this bi-objective model are type 1

constraints (4.1), (4.2) and the aggregated room capacity constraint (4.3)

which is the remaining part of the type 2 constraints. In addition, (4.6) and (4.7)

are the auxiliary constraints needed when we linearize the surrogate measure

of traffic. Nevertheless, any solution to this model satisfies type 1 constraints,

which is different from approach 1 in which violations may occur.

In the following, we first describe how we develop the surrogate

measure of traffic. We then describe how to solve this bi-objective problem by

using NBI approach.

Surrogate objective function

Chapter 4 An Iterative Two-Phase Approach to MRPT

98

The motivation of developing the surrogate measure of inter-campus traffic is

to reduce the complexity of B-P2 by decreasing the number of auxiliary

variables in the model, which are introduced through the linearization of the

objective function on traffic. If we use original function (3.1), the cardinality

of the auxiliary variables is { } ()1 2

2
1 2, ,∀ ∈ = Οi iv i i I I . By using the surrogate

function, we can show that (in A.2) the cardinality is reduced to ()logΟ I I .

The reason can be summarized in the following:

 Unlike the original function (3.1) which considers the traffic

contribution from all possible campus assignments across all timeslots and

directions, our surrogate function only captures those significant ones. By

estimating the upper bounds of these captured ones, we penalize the

corresponding campus assignments. The significant traffic contributions are

identified by using hierarchical clustering method which is linked back to the

data analysis work in Chapter 3. In this method, every module is initially

considered as an individual group. Then we iteratively identify two groups

with significant traffic contribution. The group pair is then used to construct

part of the surrogate function. We then combine them into a new group and

proceed to the next iteration until no combination can be found, making the

surrogate function completely generated.

 Specifically, in iteration k , we first obtain the derived traffic

contribution

m nI IF for any group-pair ,m nI I by computing

Chapter 4 An Iterative Two-Phase Approach to MRPT

99

1 2 1 2

1 2 1 2
1 2 1 2

1 2

, ,
max ,
∈

∈ ∈ ∈ ∈
< <

 =

∑ ∑

m n
m n m n

I I i i t i i tt T i I i I i I i I
i i i i

F r r , i.e., an upper bound of traffic

contribution across any timeslots and directions. Second, among all group-

pairs we identify the pair * *,m nI I with highest derived traffic contribution

such that <m n . These two identified groups becomes 1
kI and 2

kI for iteration

k . Third, we combine these two groups into a new group to replace the

original mI and proceed to the next iteration. As exactly two groups are

combined in one iteration, the process ends in I -1 iterations. The details of

this method are also described in A.2.

The surrogate function is then constructed given { }1 2, |∀k kI I k . We use

()1 2 1 2

2 2 1 1

*

2 1

1 1()
∈ ∈

= −∑ ∑
k k

k i i i ik k
i i i I

F V r v v
I I

 where
1 2 1 2

*

{1,2},
max
∈ ∈

= d
i i i i td t T

r r to measure the

traffic contribution of the identified group pair 1
kI and 2

kI . In the worst case

scenario when all modules from 1
kI are reallocated, while all modules from 2

kI

are not reallocated (or vice versa), the traffic contribution by these modules at

any timeslot and in any direction is bounded by ()1 2 1 2

2 2 1 1

*

∈ ∈

−∑ ∑
k k

i i i i
i i i I

r v v . By

normalizing this measurement and summarizing them with some positive

weight to specify the associated penalty, we formulate the surrogate objective

function as () ()
1,..., 1

'
= −

= ∑ k k
k I

F V w F V . To linearize this surrogate function we

introduce (4.6) and (4.7).

Chapter 4 An Iterative Two-Phase Approach to MRPT

100

Solving using the idea of NBI

A common way to solve bi-objective optimization problem is to use

scalarization technique to explore the Pareto front. The scalarization typically

transforms the multi-objective problem into a single-objective problem by

introducing additional parameters. This single objective problem is then

solved repeatedly by adjusting the value of the parameters so that different

subsets of efficient solutions are found (Ehrgott 2006). Considering that the

two objectives in our model are in different scales, we choose modified NBI

approach, which is thoroughly described by Das and Dennis (1996) and

Shukla (2007), as it uses a scalarization scheme and is also independent of the

different scales of objective functions.

We briefly describe the process of the method in the following. We

also use Figure 4-2 to illustrate. Assuming our bi-objective problem is a

minimization problem on S , which is the domain of the decision variable X .

The bi-objective vector is denoted as () () ()()1 2,=
T

F X f X f X . Here we

assume that ()1f X and ()2f X are non-negative38, and the individual optimal

values for both are *
1f and *

2f which are attained at *
1X and *

2X . In the

objective space, the two individual optimals are represented by ()*
1F X (point

M) and ()*
2F X (point N). We find the convex hull (the line segment MN in

38 If not, we can shift the objective function to achieve non-negativity.

Chapter 4 An Iterative Two-Phase Approach to MRPT

101

our illustrated case) of the individual optimals in the objective space as

() ()()* *
1 2, =conv F X F X () (){ }* *

1 1 2 2 1 2 1 2| 1, , 0β β β β β β+ + = ≥F X F X . We

denote the 2x2 matrix () ()()* *
1 2,F X F X as Φ and vector ()1 2,β β β= T .

Given a fixed β , we can select a point β β= ΦX on MN (as illustrated in

Figure 4-2). The corresponding efficient solution *X β can be found by

searching for a point within ()F S along the direction (normal to MN and

towards the origin, as we solve a minimization problem) such that it is no

worse than other points in terms of the two objectives. In other words, we

solve the following sub-problem βNBI :

[βNBI] ,min ∈ ∈X S t t (4.8)

 Subject to

()ˆβΦ + ≤tn F X (4.9)

where ˆ (1,1)= −Φ Tn is the normal vector pointing from βX towards the

origin of the objective space. By searching for the a larger t , we can find the

solution that has better performance in terms of the two objectives. Any

optimal solution of βNBI can be proved to be weakly efficient (Shukla 2007).

Chapter 4 An Iterative Two-Phase Approach to MRPT

102

Figure 4-2 Obtaining solutions to a typical bi-objective problem using NBI

The parameter is typically set as , where

is the step size and is the largest integer no larger than .

 We use CPLEX to solve (the way of calling CPLEX is

described in 3.4). To avoid consuming too much computational time, we set a

time limit. If the solver can find an integral solution in time, it becomes the

output of approach 2. We then proceed to local-improvement stage. Otherwise,

we stop and restart the overall algorithm.

4.2.3 Reparation Mechanism and Local Improvement

In case that the output from approach 1 does not completely satisfy type 1

constraints, we try to repair the infeasibility. We use local search method to

explore the neighborhood of the input solution . The neighborhood is

defined by 1-exchange, i.e., replace a selected module which contributes to the

infeasibility with a module currently unselected. We use beam search method

Chapter 4 An Iterative Two-Phase Approach to MRPT

103

(Norvig 1992; Zhou and Hansen 2005) to explore the search tree specified by

the neighborhood.

 Specifically, we initially generates the neighbors of ◊V accordingly as

the successor nodes of ◊V in the search tree. From then on, beam search

explores one layer of the search tree in one iteration. It first sorts nodes in the

current layer according to a ranking criterion which evaluates the violations of

type 1 constraints. Only the best L nodes are chosen to be expanded for the

next layer. The stopping criteria are: (1) a feasible solution to MSP is found. (2)

no solutions which reduce the violations of type 1 constraints can be found in

consecutively several iterations. (3) the objective value is worse than the one

of ◊V by %ι for all the L nodes chosen in one layer, where ι is a threshold.

 If we can find a feasible solution to MSP through reparation, the local-

improvement method is then applied. Otherwise, the overall algorithm stops

and we restart to the next iteration of phase 1. On the other hand, we also

apply the local improvement method on the output from approach 2.

The local improvement method tries to find a solution to MSP with a

better objective value among those neighboring module selections to the

current solution †V . The neighborhood is defined by 1-move (add/remove one

module) followed by 2-move (add/remove two modules). Specifically, we first

identify the timeslot and direction such that the traffic component is the

highest for †V . Only applying changes on the module selection related to the

identified timeslot and direction can help improve the objective value. We try

Chapter 4 An Iterative Two-Phase Approach to MRPT

104

to add/remove modules accordingly to reduce the objective value. If a feasible

solution can be found, it becomes the output of the local improvement phase.

Otherwise, we additionally check all possible 2-moves. Similarly, the best

feasible neighbor improving the traffic value becomes the output if it exists.

Otherwise, we check those infeasible ones such that they can improve the

objective value while the violations to type 1 constraints are not severe. If any

of these infeasible solutions can be repaired using the reparation process we

just described, it also becomes the output of the local improvement phase. If

not, the local improvement cannot find any better solution.

4.3 Phase 2: Room Assignment Problem

The goal of the second phase is to generate a feasible room assignment

solution based on the output of phase 1. The main task is to search for a

feasible room assignment for those modules selected. If we can find at least

one, the assembled complete solution is also feasible to P1. In the case of

failure, we restart to the next iteration.

 For the room assignment problem, we do not need to use two sets of

variables { }ijx and { }ijy to separately model room-assignment-decisions for

lectures and tutorials. This is because constraint (3.9) in P1 requires that if a

module is reallocated, its lectures and tutorials are reallocated. As a result, we

introduce a set

I which contains the indices of the lectures and tutorials of all

selected modules. For convenience we still call each element in

I “module”

(although it can be either lecture or tutorial) in phase 2, and the decision

Chapter 4 An Iterative Two-Phase Approach to MRPT

105

variable in room assignment problem can be denoted by { }, ,∀ ∈ ∈

ijx i I j J .

The room assignment problem, which is to search for a feasible room

assignment given the corresponding module selection, is modelled by the

following satisfaction problem P3 on { }ijx :

[P3] Find a { }{ }0,1 , ,= ∈ ∀ ∈ ∈

ijX x i I j J

 Subject to

, ,≤ ∀ ∈ ∈∑

it ij j
i

d x k t T j J (4.10)

,− ≤ − ∀ ∈∑

i ij j
i

e x l j J (4.11)

1,= ∀ ∈∑

ij
j

x i I (4.12)

Constraints (4.10) and (4.11) are modified type 2 constraints (3.11) and

(3.12), and we introduce itd and ie to replace original parameters 1
itd , 2

itd , 1
ie

and 2
ie . Constraints (4.12) ensure that all of the reallocated modules must be

assigned to some room type. If we can find a feasible solution to P3, we obtain

the complete feasible solution by mapping from

I back to I .

Solving a feasibility integer programming problem, or proving the

infeasibility, is very complicating. One way to solve feasibility problem is to

transform it into an optimization problem. Therefore, we transfer P3 to the

following optimization problem P4 by relaxing (4.12):

Chapter 4 An Iterative Two-Phase Approach to MRPT

106

[P4]
{ }ˆ 0,1 ,

max a
∈
∑

ij
i ijx i j
x (4.13)

Subject to

(4.10), (4.11)

1,≤ ∀ ∈∑

ij
j

x i I (4.14)

In P4, (4.12) is replaced with (4.14). We call (4.14) the disjointing

constraints. It relaxes (4.12) as it allows that a module can be assigned to no

rooms at all. In the objective function, we introduce a weight coefficient ai

which measures the importance of a module.

If there is an optimal solution to P4 and the objective value equals

a∑ i
i

, the solution is also a feasible solution to P3. It is because this solution

satisfies (4.10), (4.11), while 1=∑

ij
j

x for any ijx . In this way, instead of

solving P3, we solve the equivalent MIP model P4.

4.3.1 Overall Framework

We use branch-and-bound approach to solve P4 progressively. We branch on

the possible room assignments for the selected module. We use Lagrangian

relaxation method to decompose the sub-problem into a collection of

Multidimensional Knapsack Problems (MKPs) in order to find the dual bound,

and use a primal heuristic to find a feasible solution in case that the result from

the Lagrangian relaxation method is not integral. Various studies have

Chapter 4 An Iterative Two-Phase Approach to MRPT

107

reported to incorporate Lagrangian relaxation into the branch-and-bound

framework (Fisher 1981; Holmberg and Yuan 2000).

We branch on all possible room assignments for module ′∈i I . For

instance, if module i◊ is the next branching module, and it can be assigned to

room types 1j and 2j , we generate two branches. One branch is
1

1
i j

x ◊ = with

1'
0, '

i j
x j j◊ = ∀ ≠ , and the other branch is

2
1

i j
x ◊ = with 2'

0, '
i j

x j j◊ = ∀ ≠ .

We use the typical cut-off criteria in branch-and-bound framework to

help either prune sub-tree or serve as the stopping criteria. Specifically, the

sub-tree is cut (1) if the feasible solution newly found assigns all items; (2) or

if no feasible solution is found by executing the primal heuristic; (3) or if dual

bound is worse than the best primal bound.

To select the next branching module, we use the information learned

from the result of solving the sub-problem in the branch and bound framework.

The module that has the highest number of room types to be assigned becomes

the next branching module (This is because the relaxation made in the sub-

problem allows that one module can be assigned to more than one room type).

The generated branches are sorted by the room utilization. Specifically, we

compute the ratio of the current utilization level to the target level set in

utilization constraint (4.11) for the room types associated to all branches. The

branch that has the lowest ratio is sorted to the first place.

In general, we use depth-first-strategy to explore all the branches to the

leaf layer. The general flowchart of this branch-and-bound framework is

Chapter 4 An Iterative Two-Phase Approach to MRPT

108

shown in Figure 4-3. We then describe how to obtain dual and primal bound

for each node in the branching tree.

Figure 4-3 Flow chart of the branch-and-bound framework in Phase 2

Chapter 4 An Iterative Two-Phase Approach to MRPT

109

4.3.2 Dual Bound: Lagrangian Relaxation Method

Solving P4 directly seems to be challenging, especially when

I is large. The

complication includes not only the huge scale of decision variables, but also a

variety of complicating constraints that restrict us to making use of several

potential problem structures. In our proposed method, we use Lagrangian

method to relax constraints (4.11) and (4.14), i.e., both demand and disjointing

constraints. The relaxed problem LR is shown in the following:

[LR]
,

max m υ+ −∑ ∑ ∑

ij ij i j j
i j i j

c x l

Subject to

, ,
∈

≤ ∀ ∈ ∈∑

it ij j
i I

d x k t T j J

where a m υ= − +ij i i i jc e . The associated dual variables are

{ } { }{ },m υ= i jW .

 To solve the Lagrangian dual of LR, we use sub-gradient method. It is

used to guide the search for better Lagrangian multipliers to improve the

Lagrangian function value iteratively. With initial Lagrangian multipliers

arbitrarily set, we can compute the sub-gradient from the dual variables’

values in any specific iteration. With the sub-gradient computed which

contributes the determination of the search direction, we in turn update the

dual variables for the next iteration. We briefly describe the way to use the

sub-gradient to update the dual variables W in Algorithm 4-1.

Chapter 4 An Iterative Two-Phase Approach to MRPT

110

Specifically, the way that we obtain the step size follows the one

described in various studies (Polyak 1967, Sen and Sherali 1986 and Wolsey

1998). The way that we set the search direction follows the one described by

Gaivoronski (1988). Maximum iteration *k varies according to the current

layer of the sub-problem. We give more allowable iterations when we explore

deeper into the tree.

Chapter 4 An Iterative Two-Phase Approach to MRPT

111

Algorithm 4-1: Sub-gradient method to solve LR

input MIP model LR.

1 Initialize the Lagrangian dual ()0W : Set { }mi to zero. Set { }υ j to the dual

 prices reflected by the solution to the following LP:
{ }ˆ 0,1 ,

max a
∈
∑

ij
i ijx i j
x s.t. (4.11)

 . Set count k=0.

2 repeat

3 Solve LR given ()kW . Denote the solution as { }*()k
ijx and objective value

 as ()kz .

4 Set ()k∆ by () ()*1k k
i ij

j
x∆ = −∑ for each mi and () ()*k k

j i ij j
i I

e x l
∈

∆ = −∑

 for each

 υ j .

5 Set step size
() ()

()
2()

k k
k

k k

z zs λ −
=

∆
, where ()kz is an upper bound of LR .

6 if 1k = then

7 Set direction ()() kkd = ∆ .

8 else

9 Set direction () ()() () (1) / 1k k kd dθ θ−= ∆ + + , ()0,1θ ∈ .

10 end if

11 Update dual variables ()1 () () ()+ = +k k k kW W s d . 1k k= + .

12 until *k k=
output best feasible solution obtained so far.

We do not solve LR directly. Since this problem is separable, we can

decompose LR into J (the number of room types) multidimensional knapsack

problems. For a specific room type ' J∈j , we solve the following sub-

problem ′jMKP :

[′jMKP]
{ }0,1

max ′ ′
∈
∑

ij
ij ijx i

c x

Chapter 4 An Iterative Two-Phase Approach to MRPT

112

Subject to

,′ ′≤ ∀ ∈∑

it ij j
i

d x k t T (4.15)

The sub-problem is a MKP39 and there are at most T (the number of

timeslots) dimensions. This problem tries to pack a set of items (in our case,

modules) to a special knapsack (in our case, room type 'j), which has more

than one dimension. Accordingly, each item may have different weights for all

dimensions, and a feasible packing of items must not exceed the capacity of all

dimensions. The objective is to gain the most profit from the packing. The

constraints (4.15) are usually referred as knapsack constraints.

Solving a MKP in practice is still non-trivial as it is a strong NP-hard

combinatorial optimization problem (Puchinger, Raidl, and Pferschy 2010).

One can solve it by using the exact approach, approximation approach or

meta-heuristics approach. Exact solution techniques include branch-and-bound

and dynamic programming (Gottlieb 2000). Both approaches need

considerable time to find the optimal of large scale problem. As for the

approximation technique, even when there are only two dimensions, there

exists no Fully Polynomial-Time Approximation Scheme (FPTAS) unless

P=NP. Typical PTAS such as a ε -approximation εH +ext-greedy algorithm

39 As a preprocessing, we can always set those ′ijx to 0 such that 0′ ≤ijc , since

0, ,≥ ∀itd i t .

Chapter 4 An Iterative Two-Phase Approach to MRPT

113

has a running time of ()/ε − d dO n , where n is the number of items and d is

the number of dimensions (Caprara et al. 2000). Apparently when the problem

gets bigger, a PTAS is not good enough. Since the number of items and

dimensions are relatively large in our case, we try to develop a heuristic

algorithm which can yield a good feasible solution given a relatively

reasonable period of time.

To solve each MKPj′ using a heuristic, we first try to reduce the

number of variables. We adopt the idea of the core concept in the context of

knapsack problems (Kellerer, Pferschy, and Pisinger 2004). The idea is that

among all the modules to be assigned, those with very high ‘efficiency’ is

almost certain to be assigned, while those with very low ‘efficiency’ is almost

certain not to be assigned. The remaining ones, known as the ‘core’40, are hard

to decide and hence left for further investigation. Core is usually solved by

heuristics such as GA. General discussion on how to adopt core algorithm in

MKP is described by Puchinger, Raidl, and Pferschy (2010). The following

three paragraphs discuss that (1) what is the definition of ‘efficiency’; (2)

After sorting modules by efficiency, how to conduct the variable fixing; (3)

After the variable fixing, how to solve the reduced problem.

40 Technically the core is defined in slight different way in studies. However, for simplicity we

use the term to describe the main idea.

Chapter 4 An Iterative Two-Phase Approach to MRPT

114

The efficiency of module i is defined as 'ˆ ij
i

it t
t

c
e

d m
=
∑

 where tm is the

dual variables associated with the knapsack constraint of dimension t (Hence,

tm is obtained by solving the Linear Programming (LP) relaxation of MKPj′).

Sorting by îe for all modules helps us to identify three ordered groups of

modules: Groups , ,I I Ia β γ

. They represent the collection of modules of which

the efficiencies are higher than one, equal to one and lower than one

respectively. However, we find that for those modules in Iβ

, the

corresponding solutions to the LP relaxation can be either fractional or integral,

and usually Iβ

 is large. Therefore, we group the modules in Iβ

 into three

sub-groups.
1

Iβ

 contains those modules of which the LP solution equals 1,

2
Iβ

 contains those modules having fractional solution, while
3

Iβ

contains

those modules of which the LP solution equals 0. We introduce another

efficiency to further sort these two sub-groups: '

'

ˆ ij
i

it it j
t i

c
e

d d k
′ =

 −

∑ ∑

.

The core is generated based on the sorted modules obtained in the last

paragraph. Starting from the
2

Iβ

, we obtain the core by expanding toward two

Chapter 4 An Iterative Two-Phase Approach to MRPT

115

directions on the sorted list until the expanded list reaches a limit of size.41

After that, in the sorted list the modules before the core are fixed to be

assigned to room type 'j , while the modules after the core are fixed not to be

assigned to 'j . By using this variable fixing, the original MKPj′ is reduced.

 To solve this reduced problem, we use GA as it has been successfully

applied to MKP in various studies (Gottlieb 2000, Raidl and Gottlieb 2005).

We use the direct representation as the genetic representation, which is

discussed thoroughly by Chu and Beasley (1998). We choose uniform

crossover and bitwise mutation as the genetic operators, which are typical

operators for our genetic representation. We use the objective function of

MKPj′ as the fitness function. The population size is set to { } / 2d . We

choose fitness proportionate selection strategy (i.e., we filter out any explored

solutions) as the selection strategy which prefers those candidates with better

objective value (Back, Fogel, and Michalewicz 1997). To construct the initial

population, we solve the LP relaxation of the reduced problem and compute

the efficiency îe for all modules followed by sorting modules by îe . As the

sorted list can be viewed as a permutation, we pack modules one by one until

any knapsack constraints (4.15) are violated. In case we obtain an infeasible

41 Through experiments we found that any integer between 0.15 i and 0.20 i shows the

best performance when we comparing the result from solving core problem with the result

from solving the original problem using solver.

Chapter 4 An Iterative Two-Phase Approach to MRPT

116

solution during genetic operations, we use a simple reparation way which is to

remove items from the pack based on the sorting by îe until the remaining of

the packing becomes feasible.

4.3.3 Primal Bound: Constraint Programming-Based Heuristic

The primal bound is important in phase 2 because (1) it helps to find more

primal bounds to prune the branching tree; (2) it helps the sub-gradient search

to find better step size and hence improve its convergence. If Lagrangian

method can find a feasible solution, a primal bound is found. However, this

may not happen very often. If the solution, denoted by { }L L
ijX x=

, is not

integral, we use the following method to obtain a primal solution by repairing

infeasibility of LX

. Within the reparation, we solve the following feasibility

problem P5:

[P5] Find a { }{ }0,1 , ,= ∈ ∀ ∈ ∈

ijX x i I j J

 Subject to

, ,≤ ∀ ∈ ∈∑

it ij j
i

d x k t T j J (4.16)

,ij ij j
i

e x l j J≥ ∀ ∈∑

 (4.17)

1,= ∀ ∈∑

ij
j

x i I (4.18)

 , ,L
ij ijx x i j= ∀ ∈

=

Chapter 4 An Iterative Two-Phase Approach to MRPT

117

P5 is similar to P3 except two points. First, decision variables are

additionally fixed based on L
ijx . = contains those module-room type

combinations ,i j such that L
ijx is (1) integral, (2) 0L

ij
j

x ≠∑ (3) 1L
ij

j
x ≤∑ . In

other words, integral variables are fixed as long as they does not instantly

create infeasibility in P5. Second, we replace the original parameter ie with

parameter ije . ij ie e= if ij J∈

 and 0= otherwise. Its usage is described later.

 We use CP technique to solve P5. The variables in the CP model are

{ }| ,ijx i j∉

= (variables not fixed by LX

). The domain of the CP model is

initiated from constraints (4.18) accordingly. The constraints of the CP model

are hence (4.16) (4.17) with the following derived new constraints:

, ' , '

' ' '
' '

' '

, '
j j j j

ij j ij ij j i ij i ij
i i j j j j i I i I

j j j j

e l e x l e x e x j J
a β≠ ≠ ∈ ∈

≠ ≠

− ≥ ≥ + − ∀ ∈∑ ∑ ∑ ∑ ∑ ∑ (4.19)

where { }1 2 2 1, | 0a = = ∧ =j j ij ij iI i e e e and { }1 2 2 1, | 0β = = ∧ =j j ij i ijI i e e e .

Constraint (4.19) uses the fact that for an item '∈

i I , the set { }'i je only

contains two possible values: ′ie if 'i can be assigned to room type j and 0

otherwise.

The CP model is solved by CPLEX CP solver. If we can find a feasible

solution for P5, we obtain a primal solution.

Chapter 4 An Iterative Two-Phase Approach to MRPT

118

4.4 Numerical Experiments

Before we show the numerical experiments and results, we first describe the

test cases we use throughout this section. In reality the parameter settings for

the MRPT may vary significantly from university to university. The data we

used in previous chapter only covers one university and several academic

years, so it could bring bias. In addition, different parameter settings may also

affect the “difficulty” of the problem as well as the performance of the

solution technique. For these reasons, we provide a way to generate test cases

with various parameters based on what we have learned from the stakeholders’

perspective. In A.1, we provide the details on how to generate such test cases.

In general, we first want to represent two typical problem scales which reflect

medium and large-sized universities. Second, we want to use different

constraint settings to represent various resource scarcities, preference on the

fairness in terms of sharing from faculties and student level. For the second

part, the settings are adopted by those scenarios set by the stakeholders.

 Different test cases have different groups of students, module

registration information, different timetables, etc., but they share some

similarities so that we can compare performance on different scenarios.

Particularly, these cases can be first categorized into two groups. One is for

cases such that 400 modules (medium-sized university) are considered and the

other is for cases such that 800 modules (large-sized university) are considered.

Each test groups contain 100 random generated test cases. Each test case is

associated with three different constraint settings to form three different test

Chapter 4 An Iterative Two-Phase Approach to MRPT

119

instances. These three settings represent loose, medium and tight constraints

and we call them low, medium and high settings. They are obtained by

communicating with stakeholders and being carefully selected from many

candidate scenarios as they are believed to be representative. Hence, we use

the combination of the number of modules considered and the constraint

tightness settings to from a test case. For instance, 400 low refers to a test case

such that 400 modules are considered and the constraint is loose.

The test environment is dual-core PCs running Windows 7 64bit OS on

5GB of memory. We use multi-core system so that the commercial solver

should benefit from its parallel computing features. Choosing 64bit OS and

larger-than-4GB-momory should ensure that system memory cannot be a

bottleneck for commercial solver. Once again CPLEX 11 is used as the

commercial MIP solver. We set the ‘MIPEmphasis’ to ‘automatic’, and the

solver stops at exact optimal. All complete feasible solutions which are found

by our heuristics and CPLEX are managed to be recorded.

4.4.1 Numerical experiments related to Phase 1

Three numerical experiments related to the proposed phase 1 were conducted.

First, we want to show the effectiveness of our alternating two approaches

(described in Section 4.2.2). We compare the performance using our proposed

way of combining approach 1 and approach 2 with performances using other

simpler ways. Second, we show the correlation between our proposed

surrogate objective function (described in Section 4.2.24.3.2) and the original

objective function. Third, we show that the local improvement method

Chapter 4 An Iterative Two-Phase Approach to MRPT

120

(described in Section 4.2.3) is effective. We compare the performances

between using local search method in phase 1 and not using it.

Experiments on alternating two approaches

Recall that we propose two approaches to solve the phase 1 problem, i.e., MSP.

We also propose a way to allow both approach 1 and approach 2 to be run for

several iterations in phase 1, and the approach which achieves a better overall

historical performance has a higher chance to be selected. In this experiment,

we show that combining two approaches yield better result than using only

one of them.

 Particularly, we compare the following four different scenarios.

(1) Approach 1 only: we only use approach 1 through phase 1

iteration. Reparation (if necessary) and local improvement are

conducted after approach 1 is finished.

(2) Approach 2 only: we only use approach 2 through phase 1

iteration. Local improvement is conducted after approach 1 is

finished.

(3) Randomly select approach 1 and approach 2: We use both

approaches in phase 1 iteration. However, the selection of

approach is purely random. According to which approach is

selected, reparation (if necessary) and local improvement are

conducted accordingly.

Chapter 4 An Iterative Two-Phase Approach to MRPT

121

(4) Our proposed way.

We run the heuristic on our test cases. For each scenario, we counted

the number of cases in which it can find the strictly best solution among all

scenarios. We used two sets of experiments with different time budget to test

the short-term and long-term performances. For the short-term performance

experiment, the time budget was 1 hour time. For the long-term performance

experiment, the time budget was 10-hour.

Table 4-2 The count of wins for four scenarios given 1-hour computational budget

Scenarios |I|=400 |I|=800

Low Medium High Low Medium High

1 1 2 0 1 0 0

2 8 10 33 20 25 37

3 5 3 6 3 4 2

4 84 80 60 74 65 52

From the results shown in Table 4-2, we find that our proposed method

had comparatively the best results. Scenario 1 yielded the worst result. In

addition, the performance of scenario 2 was much better than scenario 1 and 3.

In some cases, it even achieved relatively good performance comparing to

scenario 4 (For instance, 800-high). These results can be explained by the

following reason: Scenario 4 was based on overall historical results, so it may

need some learning time. Moreover, the more difficult the test case were, the

better results scenario 2 outputed. This can be explained by the fact that the

quality of the output of approach 2 was better than approach 1 in general.

Specifically, the type 1 constraints were explicitly considered in approach 2.

Chapter 4 An Iterative Two-Phase Approach to MRPT

122

In addition, other scenarios were considered by solving a multi-objective

model rather than constructing by randomly selecting criterion. As a result,

using approach 2 can obtain better solutions when compare to using approach

1 only. For scenario 3, as the selection of approach is purely random, the

results from iteration to iteration can be too diverse. If approach 1 was

primarily selected, the performance can be even worse than scenario 2, which

is shown in Table 4-2.

The superiority of scenario 4 was also observed in the long term. From

the results shown in Table 4-3, we observe that the all other scenarios were

only able to outperform scenario 4 in very limited cases.

Table 4-3 The count of wins for four scenarios given 10-hour computational budget

Scenarios |I|=400 |I|=800

Low Medium High Low Medium High

1 0 0 0 0 0 0
2 1 0 0 1 1 0

3 1 1 0 0 1 0

4 96 98 100 95 94 97

The frequency (how many times does one approach is called) of

approach 1 and approach 2 were also examined. In this case, we used the

overall framework to solve individual test cases and record the number of calls

of each approach. We summarized the average frequency of approach 1 in

Table 4-4. It can be found that approach 2 is tend to be selected more

frequently in the more difficult cases, which supports the design intention

mentioned in 4.2.

Chapter 4 An Iterative Two-Phase Approach to MRPT

123

Table 4-4 Frequency of approach 1 and 2 being called when solving overall problem

Scenarios |I|=400 |I|=800

Low Medium High Low Medium High

Approach 1
frequency
(%)

65% 62% 53% 64% 57% 49%

Correlation between surrogate objective function and the original one

Ideally, the surrogate measure of inter-campus traffic should be positively

correlated with the original measure. We used the Person correlation

coefficient for samples of both ()'F V in B-P2 and ()F x in P1 (described in

Section 4.2.2 and 3.3 respectively). In terms of the sample, we needed to

enumerate all the possible objective values to compare the correlation. As a

result, all possible module reallocation decisions were enumerated, no matter

they were feasible to MRPT or not. Due to the limitation of computation

resources, when the scale of the test case became bigger, we could only do this

implicitly, i.e., randomly generated a subset of solutions. Nevertheless, after

we calculated objective values for different test case, we obtained the

corresponding correlation coefficient. Note that to simply the process, we let

1,= ∀kw k in (4.5).

As a simple presentation, we first generated a test case with only 10

modules. As the size of domain in this case could be handled, we sampled all

the 10 12 − solutions. In order to illustrate the correlation of two measurements,

we plotted the values of 'F (surrogate) against F (original) in Figure 4-4. In

Chapter 4 An Iterative Two-Phase Approach to MRPT

124

that figure, X-axis represents all the ()F x values, and the Y-axis represents

the corresponding 'F value. The Pearson’s correlation coefficient for this

specific case was 0.661 so the two are positively linear correlated. In addition,

for those solutions such that 0F = , the corresponding ' 0F = as well, and

vice versa. It should be noted that due to the small amount of modules in this

case, traffic parameters had many zeroes, and so the largest function value of

objective function in this case was much less than the one in larger-scale test

case which can easily go up to hundreds.

Figure 4-4 Plot of the set of (F(x), F'(x)) from a 10-module example

Chapter 4 An Iterative Two-Phase Approach to MRPT

125

Table 4-5 Average Pearson’s Correlation Coefficient (PCC) between F(x) and F’(x) with
different numbers of modules

 |I|=20 |I|=100 |I|=200 |I|=400 |I|=800

Avg. PCC 0.774 0.801 0.839 0.872 0.861

We conducted more experiments by increasing the scale of test cases.

We used five groups of test cases with different domain sizes. Each test group

contained 100 test cases. In the first group, 20 modules were included in each

case, and we still sampled the whole domain (including 192 solutions). In the

other four groups, 100, 200, 400, 800 modules were included respectively. As

the domain became too big in these cases, we randomly generated 202 distinct

solutions for each test case. Table 4-5 shows that all cases show positive

correlations and the average coefficients across groups are all over 0.8.

Moreover, it seems that there was no trend that the correlation coefficient

decreases when the number of modules increases. As 800-module is a

practical representation of the scale of a large university, it can be concluded

that the surrogate measure is positively correlated to the original traffic

measure, i.e., is a representative surrogate measure.

Experiments on local improvement

We conducted experiments to show the percentage of improvement in

performance when comparing between not conducting local improvement and

conducting it. The difference was shown in terms of percentage of

improvement. The computation budget is 24-hour.

Chapter 4 An Iterative Two-Phase Approach to MRPT

126

Figure 4-5 % improvement from enabling local improvement

Figure 4-5 shows that enabling the local improvement is able to bring

promising improvement. Particularly, for |I|=400 cases the improvement was

about 4-6%, or about 10-20 in terms of value; for |I|=800 cases the

improvement was about 4-5%. In terms of inter-campus traffic measurement,

the improvement was about 15-25. In addition, we observed several cases (16

out of 600) that no improvement was made. However, for these cases, the time

of obtaining the best solution had been decreased (9% on average), indicating

that small improvement is still achieved.

4.4.2 Numerical experiments related to Phase 2

We compared the performance of solving P4 between our phase 2 method and

the commercial solver. We first tracked the solution progress of our heuristic.

We then separately used CPLEX to solve P4 by allowing the same amount of

time as our heuristic uses. The way we used CPLEX to solve a satisfaction

Chapter 4 An Iterative Two-Phase Approach to MRPT

127

problem is imposing an empty objective function. We listed the average rate

that CPLEX cannot find a feasible solution quicker than our heuristic over the

total number of phase-2 executions for each category we used so far.

Table 4-6 The rate comparison in solving phase 2 problem between our heuristic and
CPLEX

Rate representing that our heuristic outperforms CPLEX

|I|=400 |I|=800

Low Medium High Low Medium High

94.7% 98.9% 99.9% 99.2% 99.6% 99.9%

 The results showed that our proposed phase 2 approach, which used

the branch-and-bound framework, outperformed the CPLEX in most cases.

Particularly, when the problem becomes difficult, we observed the rate was

nearly 100%. The possible reason may be that our proposed heuristic exploited

the good structure of P4 which cannot be identified by CPLEX.

4.4.3 Results of the Proposed Heuristic

In this section we compared the results between our proposed iterative two-

phase heuristic and CPLEX. The intention is to show the overall performance

gain from our proposed method. We compared the performance by presenting

the objective value of the best-so-far solution by given same computation time.

The time budget was 24 hours for all test cases.

 Before we describe the main findings, we should highlight that the

solver does not stop in any test case during our experiments, which means that

no single optimal solutions can be found given the time budget. The closest-

Chapter 4 An Iterative Two-Phase Approach to MRPT

128

to-optimal solution was obtained with 0.79% gap (best-so-far: 329.74) in a test

case of low-400.

The results of the experiments in this section are described in the

following order: We first show the performance comparison between our

heuristic and the solver on one single test case. The comparison is illustrated

by showing the inter-campus traffic measurement of the best-so-far solutions

obtained by each method over time. After demonstrating the result on only one

test case, we show the results over all test cases. We begin from showing the

improvement of objective value gained by our proposed heuristic from a high

level perspective. We use box chart to show the range of improvements across

different sets of test cases. Then, we present the win/loss result over time by

counting how many times that our heuristic outperforms the solver and vice

versa after some period of time.

Figure 4-6 Example: performance comparison over time on a 800-medium test case

We start from illustrating the example test case. In Figure 4-6, we

present the solution-quality-over-time of our proposed heuristic and the

commercial solver. The test case was an 800 medium one. From this particular

result we can obtain several observations. First, the solver tended to find the

Chapter 4 An Iterative Two-Phase Approach to MRPT

129

feasible solution slowly. In this specific face, it took nearly one hour to obtain

its first feasible solution, while the heuristic almost found a feasible one

instantly. However, the quality of the first feasible solution obtained by the

solver was much better than the first one from the heuristic, while it was still

worse than the best-so-far heuristic solution at the same time. Second, during

the 3rd hour, the solver outperformed our heuristic for about half an hour.

However, after that solution quality was constantly inferior to the one of our

heuristic. The difference between both became bigger and bigger. At the end

the best solution obtained by heuristic was about 40 less than the one obtained

by solver. This amount of a traffic rate equals more than half of the full load of

a typical shuttle bus. Hence, it is a significant difference.

Then, we show the improvement in terms of original inter-campus

traffic measurement gained by our heuristic. Figure 4-7 shows that on average

the heuristic can obtain from 20-40 improvement roughly, although there are

several cases that the solver beats our heuristic. In particular, |I|=800 test cases

gained more improvement than |I|=400 cases. The main reason was that more

modules were included so that the objective value should be larger, and the

space for improvement in finding better solution may be larger as well.

Chapter 4 An Iterative Two-Phase Approach to MRPT

130

Figure 4-7 The traffic measurement comparison

 Lastly, because technically both approaches did not stop during this

time, we counted the number of cases that our heuristic beats solver (means

the best solution is strictly better. It is denoted as +N) and the number of cases

that our heuristic was beaten (denoted as −N) in every 1 hour. Therefore, row

t represents the values of +N and −N given t hours of running both methods

on 600 test cases respectively, including combinations of three constraint

settings and two problem scales. If one approach terminated unexpected (such

as runs out of memory), the best so far solution stays in the remaining hours.

Table 4-7 shows that in general our heuristic beats the solver in all test

settings. The average /+ −N N ratio was 20.8, and average ()100 / N− −− N

ratio was 23.9. This roughly means that, on average, the solve could only beat

our heuristics at most once in every 20 tries. In the worst case, min +N was 63,

while max −N was 17, and both happened in the very early stage of the

Chapter 4 An Iterative Two-Phase Approach to MRPT

131

computation. Comparably, in the end of the process (23 and 24 hours), +N

was at least 84, while −N was at most 8. We analyzed the /+ −N N ratio

across hours, and we found that the ration across the first 4 hours was

relatively low (about 7% on average) but increased very fast in later stage. It

indicates that when the time budget was not extremely limit, our heuristic

outperformed the solver in general.

To give a clearer demonstration, we also provide the line charts for

both |I|=400 and |I|=800 cases to discover trends in Figure 4-8 and Figure 4-9.

Both charts show that in general the +N increased when more computational

hours are allowed, while −N decreased accordingly. Moreover, it seems that

the tighter the constraints were, the smaller +N was. However, similar trend

was not significant for −N . This observation indicates that the more difficult

the problem was, the more difficult a better solution could be found. Another

trend was that when comparing results from |I|=400 and |I|=800 case, the three

counts under low, medium and high settings tended to converge in the latter

case. It indicates that when the problem scale became large, the performances

of both methods became less sensitive to the tightness of the constraint.

Chapter 4 An Iterative Two-Phase Approach to MRPT

132

Figure 4-8 The trend of N+/N- for |I|=400 case across 24 hrs

Figure 4-9 The trend of N+/N- for |I|=800 case across 24 hrs

Chapter 4 An Iterative Two-Phase Approach to MRPT

133

Table 4-7 Results of the count of the success by our heuristic and solver by the grouping
of time.

Hour

/+ −N N

|I|=400 |I|=800

Low Medium High Low Medium High

1 78/10 75/12 63/13 69/15 67/14 56/13

2 76/8 73/13 64/13 66/13 73/17 64/13

3 77/6 72/11 68/10 69/12 72/16 68/10

4 84/5 70/10 72/8 74/9 72/11 72/8

5 79/1 78/11 75/6 77/10 74/10 75/6

6 68/4 71/6 72/7 78/8 75/7 72/7

7 70/1 79/5 70/3 74/11 77/10 70/3

8 73/3 75/4 71/5 72/9 76/10 71/5

9 79/2 75/4 74/5 75/8 77/8 74/5

10 83/2 69/7 74/6 79/8 79/9 74/6

11 81/3 72/3 76/6 78/7 78/8 76/6

12 88/1 81/4 73/6 80/6 82/9 73/6

13 88/1 80/2 72/6 80/6 83/10 72/6

14 88/1 85/2 73/7 83/7 81/6 73/7

15 89/0 86/2 74/5 85/5 84/8 74/5

16 91/0 85/4 78/5 85/5 85/8 78/5

17 91/0 88/2 81/6 84/6 83/9 81/6

18 93/0 89/5 82/7 85/6 84/8 82/7

19 94/1 92/1 86/6 87/7 87/8 86/6

20 94/1 91/3 86/6 87/7 86/8 86/6

21 91/1 93/3 86/6 86/6 87/7 86/6

22 89/3 93/4 85/6 86/7 83/8 85/6

23 85/6 92/5 84/7 86/8 84/7 84/7

24 84/7 92/4 84/7 86/8 84/7 84/7

Chapter 5 Fine-tuning on Timing Given the Module Reallocation Decision

134

Chapter 5 Fine-tuning on Timing Given the Module

Reallocation Decision

5.1 Introduction

In chapter 3 and 4, we try to find a module reallocation solution such that it

satisfies all the requirements from the stakeholders while the inter-campus

traffic measurement is optimized. In terms of timing, we assume that it is

given by the stakeholders. In reality, the solution obtained so far usually needs

to be approved by the stakeholders. Several cases may happen: first, the

objective value obtained so far is still unacceptable by the stakeholders so they

agree to change the timing locally to even improve the inter-campus traffic

measure. Second, as stakeholders may share different point of views and have

different preferences, they may need more options to negotiate from each

other, and solutions having an improved objective value should be a vital

factor among their considerations. Such scenarios motivate the study in this

chapter.

 As this fine-tuning problem is different from our previous study, we

first list some basic assumptions:

• We cannot change the set of modules being reallocated,

• We cannot change the timing of the modules which are not reallocated,

• We can change the timing and the room assignments of the modules.

Chapter 5 Fine-tuning on Timing Given the Module Reallocation Decision

135

 The trivial assumption is that we cannot change the set of modules

being reallocated anymore, as it provides us a vital starting point from which

this chapter extends. On the other hand, the possible changeable decisions are

the timing of modules and, further, the room assignments of the modules. The

reason that we allow changes on room assignment is that changing timing may

incur violations on type 2 constraints in MRPT. Revising the room assignment

accordingly provides a possible way of reparation. Another assumption we set

here is that we do not allow those changes which affect the old campus. The

reason is described in chapter 1: In summary, there may exist too many

intangible and unquantifiable constraints on the timetable from variant

schools/departments. To identify and resolve the incurred issue, there could be

too many human involvements needed for the stakeholders in the decision

process. Intuitively, the fewer modules we consider, the less efforts in

communicating and negotiating between the university management and

individual school/department we need. Therefore, in this section we focus on

only changing the timing of modules which are reallocated.

 Another difference from this chapter to the previous one is that the

decisions are in terms of class rather than module now, as a module may have

different classes which are assigned to different timeslots. We therefore define

the set C as all the classes and use decision variables ctx to represent whether

class c is reallocated and assigned to timeslot t , where ,∈ ∈c C t T .

Chapter 5 Fine-tuning on Timing Given the Module Reallocation Decision

136

 In the following section we describe our proposed fine-tuning method.

Later, we show numerical experiment by illustrating several test cases as

examples.

5.2 Methods of time-tuning

We propose a greedy heuristic method to conduct the fine-tuning on the

timetable of modules which are reallocated according to the given module

reallocation solution. This method iteratively conducts one-timeslot-exchange

for candidate class in order to improve the objective value. As some one-

timeslot-exchanges may violate the capacity constraint (3.11), additional

timeslot-exchange or even room-type-exchange may be needed to ensure the

resulting solution satisfies all aforementioned constraints. We describe the

high level algorithm in Algorithm 5-1.

Algorithm 5-1: Fine-tuning on timing to improve inter-campus traffic

input The module reallocation solution X , the given timetable S

1 Search for the set of classes Ĉ such that (1) they are in the worst moment
 and direction in the current solution and (2) they are reallocated.

2 for all classes c such that ˆ∈c C sorted descending by the corresponding
 traffic component value, do

3 Search for a new timing 't of c such that the new inter-campus traffic is
 strictly improved

4 if 't exists then

5 Apply 't and recalculate the worst moment and direction. Go to step 1.

6 end if
7 end for
output current timing and module reallocation solution

Chapter 5 Fine-tuning on Timing Given the Module Reallocation Decision

137

 In this algorithm, the search space is the set of classes which contribute

the highest inter-campus traffic of a specific direction with regard to a specific

timeslot. Remind that the traffic contribution of timeslot t and direction d is

measured by the overall traffic component
1 2 1 2

1 2,

n
i i t i i

i i I
r v

∈
∑ . As the objective

function is in the mini-max form, we only need to investigate the highest

overall traffic component and identify the target timeslot and direction. We

identify the set of class-pairs which belongs to the chosen component. As

explained before, we intent to change the timing for classes on the new

campus only, so we narrow them down into set Ĉ . We then rank these classes

in a greedy way by sorting them in a descending order by the value of the

corresponding traffic contribution. We investigate these classes one after

another by conducting a neighborhood search. Among those of which the

objective values are strictly better than a defined target z , i.e., 0>z , we

choose the best as our new solution. We also re-identify the highest overall

traffic contribution if the solution changes. The process is repeated until we

cannot find any improving neighboring solution after exploring through Ĉ .

 In the following we describe the process of neighborhood search,

summarized in Algorithm 5-2, in details. The neighborhood { }{ }', 'X S to

{ },X S is defined as:

• 'S is slightly different with S , (5.1),

• No timing conflict incurred by 'S (5.2),

Chapter 5 Fine-tuning on Timing Given the Module Reallocation Decision

138

• 'X is feasible with regard to MRPT (5.3).

 To conduct the neighborhood search, we first try to reassign the timing

according to (5.1) and (5.2). If we are able to find some, the best { }, 'X S

becomes the solution. Otherwise there must be dissatisfaction in (5.3) as we do

not change the room assignment yet. Under this circumstances, we can

temporarily relax (5.3) by applying the reassignment of timing of c . The only

possible violation incurred in MRPT is some capacity constraint, which means

the number of classes assigned to that some timeslot exceeds the number of

rooms available. Assuming the corresponding room type is j and the timeslot

is t . To resolve the violation of capacity constraint, obviously there are two

ways, i.e., change the room type or change the timing of every class which are

assigned to j and t . The former method does not affect the improvement of

objective value as long as the valid reassignment can be found, but the later

may deteriorate the objective value. As a result, we conduct the room type

reassignment first followed by timing reassignment for each target class. All

generated new solutions are recorded as candidates and the best at the end is

the output.

Chapter 5 Fine-tuning on Timing Given the Module Reallocation Decision

139

Algorithm 5-2: Searching for a neighboring solution from a specified class of
a given timetable and module reallocation solution

input The class c , the timetable S , the module reallocation solution X and a
target objective value z .

1 For c , find the set of new timeslots cT which satisfy (5.2), (5.4) and
 0∆ >z .

2 if ≠ ∅cT then

3 Apply the change of timing of c to *t such that *t leads to max∆F .
 Record the new solution.

4 else

5 Find the set of timeslots '
cT which satisfy (5.2) and 0∆ >z but violate

 (5.3)

6 if ' ≠ ∅cT then

7 for all '∈ ct T , denote the violated room type as j , do

8 if we can find another valid room type for c then

9 Call Algorithm 5-1 with input (c , S , X with such room type change
 applied, z)

10 else

11 for all classes 'c such that ' 1=
c jx , do

12 if we can find another valid room type for 'c then

13 Apply this room type change to X and record this new solution.

14 else

15 Call Algorithm 5-1 with input ('c , S with new timing t for c
 applied, X , z) .

16 end if
17 end for
18 end if
19 end for
20 end if
21 end if
output the recorded solution with the best ∆z .

Chapter 5 Fine-tuning on Timing Given the Module Reallocation Decision

140

 For room type reassignment part, we try to find a new room type for

the target class so that we obtain a feasible solution to MRPT. We call this

reassignment as a valid reassignment. No matter whether the target class is

lecture or tutorial, we check every possible one in the set of compatible room

types which is defined in Chapter 3 to see whether it can be reassigned. If

there is a valid room type reassignment, i.e., by applying this reassignment,

the resulting room assignment satisfies all type 2 constraints, we obtain a

neighboring solution.

 If there does not exist a valid reassignment for the target class, we need

to resort to the timing reassignment method. We use the idea of recursion to

conduct the search: we check for every class which is in the corresponding

room type and assigned to the problematic timeslot, and try to reassign it to

another timeslot as long as the final benefit of improvement in objective value

is positive. This timing reassignment is essentially the same to the neighbored

search, with the only difference in terms of the timing decision part of the

starting point.

In addition, we can also apply room type reassignment on c itself. In

this case, the current violation can be avoided as we would not reassign to the

current problematic room types. The search process can also reuse the current

structure by changing the MRPT solution part of the starting point.

Chapter 5 Fine-tuning on Timing Given the Module Reallocation Decision

141

5.3 Numerical Experiment

We show one example on how the time-tuning procedure is conducted in this

section. The purpose of this numerical experiment is to show the basic idea of

the fine-tuning on timetable.

 We used one result from 800-high case as the start point for fine-tuning

on timetable. For this specific solution, we first obtained the inter-traffic

evaluation for all five weekdays and two directions and illustrate them in

Figure 5-1 (Direction A to B, where B is the new campus) and Figure 5-2

(Direction B to A). The worst moment and direction was 4pm on Friday from

campus A to campus B and the corresponding traffic rate was 432.

Figure 5-1 The detailed inter-campus traffic rate from campus A to campus B

Chapter 5 Fine-tuning on Timing Given the Module Reallocation Decision

142

Figure 5-2 The detailed inter-campus traffic rate from campus B to campus A

Following the steps descried in Algorithm 5-1, we sorted the class set

Ĉ , which are the candidates to conduct modification of timing, and checked

each class one by one to see whether it is possible to change the corresponding

timing. The first class in Ĉ was class α. We found that if we rescheduled it to

Thursday, no restrictions were violated.42 As for the impact on traffic rates on

Friday, the traffic rate at 4pm from A to B was reduced by 101. In addition,

other traffic rates on Friday from A to B were also affected with various

reductions. As there was no student who took class α and also took classes

afterwards on Friday, there were no such changes on traffic from B to A. On

the other hand, traffic rate on Thursday was also affected by this rescheduling.

Specifically, traffic rate at 4pm from A to B was increased by 52, totally

42 In fact there are several possible timeslots that we can reschedule and they all lead to the

same reduction of objective value. We choose 4pm THU as the class hour remains the same as

it is originally scheduled, which is preferred by stakeholders.

Chapter 5 Fine-tuning on Timing Given the Module Reallocation Decision

143

contributed by 52 students taking a course on campus A which ended at

3:45PM. No other changes on this direction were applied as there were no

other classes which were correlated to α and ended before 4 PM. However,

several classes, which were scheduled after 5PM, had a correlation with α. As

a result, traffic rates from B to A after 5PM were increased accordingly. As an

illustration, changes on traffic rate from A to B were shown in Figure 5-3, and

the one from B to A is shown in Figure 5-4. In these figures, the blocks with

solid outlines represent the traffic rates which are reduced, and the blocks with

dashed outlines represent the traffic rates which are increased.

Figure 5-3 Changes on traffic rate (A to B) when rescheduling α from FRI to THU

After Algorithm 5-1 was terminated, we were able to reduce the

objective value to 282, i.e., reduced the inter-campus traffic measure by about

35%. Although this significant reduction may not be achieved in every test

case, it shows the potential of further improving inter-campus traffic.

Chapter 5 Fine-tuning on Timing Given the Module Reallocation Decision

144

Figure 5-4 Changes on traffic rate (B to A) when rescheduling α from FRI to THU

Chapter 6 Conclusion

145

Chapter 6 Conclusion

In this thesis, we have proposed the module reallocation problem, namely

MRPT, which arises from the field of UCTP. As far as we know, this problem

has never been studied before as it explicitly focuses on the impact on the

inter-campus traffic. Given a timetable, the worst case scenario of inter-

campus traffic is minimized subject to a set of stakeholders’ requirements in

order to decide which modules should be reallocated and which types of

classrooms on the new campus should be assigned to. We have formulated this

problem as a MIP model after conducting thorough data analysis on historical

enrollment data and deriving all required model parameters. Solutions to the

stakeholder’s problem, which was a special and simplified MRPT, have been

found by using the commercial solver CPLEX. However, we have also found

that commercial solver is not able to obtain a good solution when the problem

scale is large. As in reality the problem scale of MRPT is expected to be large,

we have proposed an iterative two-stage heuristic to improve computational

efficiency when finding good solutions. The two stages account for the

decomposable decisions of the MRPT which were the module selection

decision and the room allocation decision. This heuristic combines various

methods, such as constructive heuristic, clustering analysis, branch and bound

framework, Lagrangian relaxation method, etc., to exploit the problem

structure and maintain the computational efficiency. We have solved various

real-scale test cases of MRPT in which the number of modules are up to 800

and 10,000. Even when comparing with the previous studies on general UCTP,

Chapter 6 Conclusion

146

the problem scale in our study is quite large. The results have shown that our

proposed method outperforms CPLEX overwhelmingly. In addition, we have

considered the case when we are allowed to modify the timing. As an

extension to MRPT, we have provided a way to fine-tune the timetable to

further improve the inter-campus traffic.

In Chapter 3, we have conducted data analysis to understand the

problem better. First we have helped the stakeholders to find the connection

between the students’ movement behavior and the inter-campus traffic. We

have also used cluster analysis to provide insights into how to prevent bad

solutions. Second, we have helped the stakeholders to determine those

parameters such as the target level of “fairness” for their requirement by

exercising several what-if experiments. Through these very experiments, we

have also found that these requirements prevent us from using trivial (good)

solutions, such as assigning courses from the same faculty to the new campus.

Third, we have formulated this real world problem as a MIP model by

considering the stakeholders’ requirements and analyzing related data. This

MIP model was able to represent the stakeholders’ needs including controlling

the traffic while maintaining a set of constraints in terms of fairness. The

solution to the problem that the stakeholders addressed was applied in reality

after the aforementioned processes were completed. In terms of the

consequences in reality, it is widely acknowledged by the stakeholders that our

solution contributes a lot in terms of controlling the inter-campus traffic

(jointly contributed by investing more shuttle buses as our solution cannot

Chapter 6 Conclusion

147

reduce the traffic arbitrarily). On the other hand, by using commercial solver

to solve this model, the commercial solver showed severe limitations when the

problem scale is big, including not only low computational performance, but

also difficulties in finding feasible solutions.

 In Chapter 4, we have proposed a two-stage heuristic approach to solve

this problem to handle the big problem scale. The two stages, namely the

module selection stage and room assignment stage, are derived by exploiting

the problem structures. In the first stage, we have introduced a multi-objective

framework to tackle the problem. Under the multi-objective framework, we

have proposed two methods to generate the solution. The first heuristic is a

greedy constructive method based on the balancing between the objective

value and the violations of constraints. The second heuristic constructs a bi-

objective model, which uses a surrogate measure of traffic based on clustering

analysis on the student-module registration data. This model is solved by the

Normal Boundary Intersection (NBI) method. In the second stage, we have

used a branch and bound framework to solve the problem. Within this

framework, Lagrangian relaxation method is used to solve the sub-problem, in

which a type of knapsack structure is identified and thus the sub-problem can

be solved efficiently. We have also used constraint programming techniques to

help obtain the incumbent solution. Comparing to the performance of CPLEX,

the results show that the proposed method is able to provide solutions of good

quality comparatively quicker.

Chapter 6 Conclusion

148

 In Chapter 5, we have further extended the MRPT by considering that

the timetable is allowed to be modified slightly from any given one. We have

conducted a local search from the existing solution to MRPT to a new solution

with a modified timetable such that the inter-campus traffic measurement can

be improved.

There are mainly two sets of results of this study. The first result set

was obtained by solving a MRPT problem in a real life project, which was

described in Chapter 3 and 5, by using commercial solver. The problem is a

small-scale problem due to a lot of practical restraints encountered through the

project. Solutions for two semesters of one academic year were provided to

the stakeholders for the first year running of the new campus. The

stakeholders appreciated them. In addition, important decisions such as

investing more shuttle bus were made based on the results. It is also expected

that the results can be more accurate as more recent data will be available in

the future (comparing to the historical data which was used in our study). The

second result set was generated by using the method we proposed in Chapter 4

on a variant set of large-scale generated input data based on the knowledge

and experiences through the project. The results show that our proposed

heuristic can improve the computational efficiency on large-scale problem

which has not been addressed in our real life project.

Overall, we have studied a real-world problem closely related to UCTP.

As far as we know, this problem has not been studied before. The problem is

challenging in several aspects, including a very different objective function

Chapter 6 Conclusion

149

namely inter-campus traffic, an innovative “facility-sharing” idea for the new

campus and the large scale. We believe this study present a new direction of

study related to UCTP and other university resource planning problems. We

hope that our study provide guidance and insights for the related studies.

For the future studies, we propose several possible directions:

(1) Our study considers the case when there are only two campuses of

which one campus is in existence while the other is new. In reality,

there are similar multi-campus module reallocation problem but may

require very different ways to consider. For instance, some universities

may have many campuses while more than two of them are required to

be shared by students from all departments. 43 In this case, the MRPT

is extended to three campuses and more. Another possibility is that no

campus is new, i.e., all campuses are already in existence for several

years.44 In this case, the module reallocation problem may become a

module exchange problem, as modules from each campus may be

reallocated to other campus.

43 For instance, the University of the Aegean

(http://www.aegean.gr/aegean2/index.html), and the university of the Highlands and Islands

(http://www.uhi.ac.uk/en/#campuses).

44 For instance, University of Manchester with University of Manchester Institute of

Science and Technology (http://www.manchester.ac.uk/discover/history-heritage/history/).

Chapter 6 Conclusion

150

(2) The concept of inter-campus traffic under campus extension can be

applied in other circumstances. For instance, it may help to make

decisions for the case of hospital extension. In china, it becomes

critical that the medical resources, especially those major hospitals,

cannot satisfy the dramatically increasing demand of the patients. As a

result, some of the major hospitals are now upgrading by building a

new complex next to the original one. As for the location of the new

complex, it is usually not possible to build very nearby since the major

hospitals are typically built years ago and the surroundings are already

taken by others. However, it is also not possible to be located remotely,

as many diseases are correlated and the common facilities (e.g.,

laboratories, imaging centers, the emergency) are most likely to be

remained in the original complex due to limited resources. The

common way in china for the hospital extension project is to buy some

land over the street and build the new one which is linked by an

underground passageway. The doctors, however, usually serve both

complexes under a schedule. For example, on Monday a doctor of

hematology may need to be at his office from 9AM to 10AM, and

visits the ward for patients of the clinic of cardiology after that till

1PM, then works back at his office till 5PM, and stays at his station of

surgery in the night. However, the travelling times for him at different

times of the day are usually dramatically different. The main reason is

that the average number of patient-visitings per day is huge in china. It

is common to even have congestion in the underground passageway,

Chapter 6 Conclusion

151

and the queue for a lift is usually extremely long. The other minor

reasons include misleading guidance system, rush hours (e.g., children

are tend to visit the hospital in the noon as that is the only time

available for the escorting parents) and so forth. As a result, the

different location arrangements of a doctor’s office and the other

stations he is responsible can affect their travelling time a lot, and

hence affect their work performance (e.g., late for their next station).

Different offices and stations are also correlated in such a way that

they are used by doctors travelling from different locations. In this case,

a smooth traffic for doctors between the two complexes is obviously

favored. This problem is very similar to our campus extension case.

The obvious difference is that the facilities of a same clinic/department

should be at the same complex. However, the wards, for example, for

different patients are allowed to be placed into different complexes.

One may even consider the case for the patients and can also consider

whether the schedule for the doctors should be fixed in the first place.

(3) One of the extensions to this study can be the shuttle bus dispatching

system. In this case, the relatively stable demand from students is

presented by a fixed module selection and timetabling. An intelligent

dispatching system can be connected directly and produce a more

efficient dispatch plan.

(4) As we mentioned in Chapter 3, our model relies on historical data

when it was developed. Therefore the results from our model may be

Chapter 6 Conclusion

152

different from the real traffic. We believe this can be resolved by

running this model for several years, as the new input data, which

reflects the students’ responding to the actual inter-campus traffic

system, are used. Certain parameters, such as the overlap value, can be

fine-tuned by considering both the enrollment data and the real traffic

data. It is also good if some survey can be conducted in the end of a

semester to collect student’s opinion on the traffic impact from the

module reallocation decision. Moreover, when more data are available,

we could even build stochastic model to capture students’ behavior

under multiple scenarios. For instance, certain modules are constantly

popular from year to year, and students may tend to avoid selecting

such modules if possible as he expect a high traffic when attending this

module.

(5) Our fine-tuning study in Chapter 5 serves as an extension to the main

study which proposes a simple greedy approach. One may consider a

more complete approach by considering more constraints such as SC3

mentioned in Chapter 2. In that case, one can add corresponding search

rules to Algorithm 5-2.

Appendices

153

Bibliography

Agustín-Blas, L.E., S. Salcedo-Sanz, E.G. Ortiz-García, A. Portilla-Figueras,

and Á.M. Pérez-Bellido. 2009. "A hybrid grouping genetic algorithm for

assigning students to preferred laboratory groups." Expert Systems with

Applications no. 36 (3):7234-7241.

Avella, Pasquale, and Igor Vasil'Ev. 2005. "A Computational Study of a

Cutting Plane Algorithm for University Course Timetabling." Journal of

Scheduling no. 8 (6):497-514. doi: 10.1007/s10951-005-4780-1.

Ayob, M., and G. Kendall. 2003. A monte carlo hyper-heuristic to optimise

component placement sequencing for multi head placement machine.

Back, Thomas, David B Fogel, and Zbigniew Michalewicz. 1997. Handbook

of evolutionary computation: IOP Publishing Ltd.

Bilgin, B., E. Özcan, and E. Korkmaz. 2007. "An experimental study on

hyper-heuristics and exam timetabling." Practice and Theory of Automated

Timetabling VI:394-412.

Burke, E., M. Dror, S. Petrovic, and R. Qu. 2005. "Hybrid graph heuristics

within a hyper-heuristic approach to exam timetabling problems." The next

wave in computing, optimization, and decision technologies:79-91.

Burke, E. K., G. Kendall, and E. Soubeiga. 2003. "A Tabu-Search

Hyperheuristic for Timetabling and Rostering." Journal of Heuristics no. 9

(6):451-470. doi: 10.1023/B:HEUR.0000012446.94732.b6.

Burke, E. K., J. Marecek, A. J. Parkes, and H. Rudová. 2010. "Decomposition,

reformulation, and diving in university course timetabling." Computers &

Appendices

154

Operations Research no. 37 (3):582-597. doi: DOI:

10.1016/j.cor.2009.02.023.

Burke, E., R. Qu, and A. Soghier. 2012. "An Adaptive Tie Breaking and

Hybridisation Hyper-Heuristic for Exam Timetabling Problems." Nature

Inspired Cooperative Strategies for Optimization (NICSO 2011):205-223.

Burke, E.K., S. Petrovic, and R. Qu. 2006. "Case-based heuristic selection for

timetabling problems." Journal of Scheduling no. 9 (2):115-132.

Burke, Edmund K, Adam J Eckersley, Barry McCollum, Sanja Petrovic, and

Rong Qu. 2010. "Hybrid variable neighbourhood approaches to university

exam timetabling." European Journal of Operational Research no. 206

(1):46-53.

Burke, Edmund K., Barry McCollum, Amnon Meisels, Sanja Petrovic, and

Rong Qu. 2007. "A graph-based hyper-heuristic for educational timetabling

problems." European Journal of Operational Research no. 176 (1):177-192.

doi: DOI: 10.1016/j.ejor.2005.08.012.

Burke, Edmund, Jakub Mareček, Andrew Parkes, and Hana Rudová. 2012. "A

branch-and-cut procedure for the Udine Course Timetabling problem."

Annals of Operations Research no. 194 (1):71-87. doi: 10.1007/s10479-010-

0828-5.

Byskov, J.M. 2004. "Enumerating maximal independent sets with applications

to graph colouring." Operations Research Letters no. 32 (6):547-556.

Campêlo, M., R. Corrêa, and Y. Frota. 2004. "Cliques, holes and the vertex

coloring polytope." Information Processing Letters no. 89 (4):159-164.

Appendices

155

Caprara, Alberto, Hans Kellerer, Ulrich Pferschy, and David Pisinger. 2000.

"Approximation algorithms for knapsack problems with cardinality

constraints." European Journal of Operational Research no. 123 (2):333-345.

Carrasco, Marco, and Margarida Pato. 2001. "A Multiobjective Genetic

Algorithm for the Class/Teacher Timetabling Problem

Practice and Theory of Automated Timetabling III." In, edited by Edmund

Burke and Wilhelm Erben, 3-17. Springer Berlin / Heidelberg.

Carter, Michael W, Gilbert Laporte, and John W Chinneck. 1994. "A general

examination scheduling system." Interfaces no. 24 (3):109-120.

Ceschia, S., L. Di Gaspero, and A. Schaerf. 2011. "Design, engineering, and

experimental analysis of a simulated annealing approach to the post-

enrolment course timetabling problem." Computers & Operations Research.

Chu, Paul C, and John E Beasley. 1998. "A genetic algorithm for the

multidimensional knapsack problem." Journal of heuristics no. 4 (1):63-86.

Corne, D., P. Ross, and H.L. Fang. 1994. Evolutionary timetabling: Practice,

prospects and work in progress.

Cowling, P., G. Kendall, and E. Soubeiga. 2001. A parameter-free

hyperheuristic for scheduling a sales summit.

Das, Indraneel, and John Dennis. 1996. Normal-Boundary Intersection: An

Alternate Method for Generating Pareto Optimal Points in Multicriteria

Optimization Problems. DTIC Document.

Daskalaki, S., T. Birbas, and E. Housos. 2004. "An integer programming

formulation for a case study in university timetabling." European Journal of

Appendices

156

Operational Research no. 153 (1):117-135. doi: 10.1016/s0377-

2217(03)00103-6.

Davis, Lawrence. 1991. "Order-Based Genetic Algorithms and the Graph

Coloring Problem." In Handbook of genetic algorithms, 72-90. New York:

Van Nostrand Reinhold.

De Causmaecker, Patrick, Peter Demeester, and Greet Vanden Berghe. 2009.

"A decomposed metaheuristic approach for a real-world university

timetabling problem." European Journal of Operational Research no. 195

(1):307-318.

Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan. 2002. "A fast and elitist

multiobjective genetic algorithm: NSGA-II." Evolutionary Computation,

IEEE Transactions on no. 6 (2):182-197. doi: 10.1109/4235.996017.

Delmaire, Hugues, JUAN A Diaz, ELENA Fernandez, and MARUJA Ortega.

1999. "Reactive GRASP and tabu search based heuristics for the single

source capacitated plant location problem." Infor-Information Systems and

Operational Research no. 37 (3):194-225.

Deris, Safaai, Sigeru Omatu, Hiroshi Ohta, and Puteh Saad. 1999.

"Incorporating constraint propagation in genetic algorithm for university

timetable planning." Engineering Applications of Artificial Intelligence no.

12 (3):241-253. doi: Doi: 10.1016/s0952-1976(99)00007-x.

Di Gaspero, L., B. McCollum, and A. Schaerf. 2007a. The second

international timetabling competition (ITC-2007): Curriculum-based course

timetabling (track 3).

Appendices

157

Di Gaspero, Luca, Barry McCollum, and Andrea Schaerf. 2007b. The second

international timetabling competition (ITC-2007): Curriculum-based course

timetabling (track 3). Paper read at Proceedings of the 14th RCRA workshop

on Experimental Evaluation of Algorithms for Solving Problems with

Combinatorial Explosion, Rome, Italy.

Di Gaspero, Luca, and Andrea Schaerf. 2001. "Tabu Search Techniques for

Examination Timetabling." In Practice and Theory of Automated

Timetabling III, edited by Edmund Burke and Wilhelm Erben, 104-117.

Springer Berlin / Heidelberg.

Dowsland, K.A., E. Soubeiga, and E. Burke. 2007. "A simulated annealing

based hyperheuristic for determining shipper sizes for storage and

transportation." European Journal of Operational Research no. 179 (3):759-

774.

Ehrgott, Matthias. 2006. "A discussion of scalarization techniques for multiple

objective integer programming." Annals of Operations Research no. 147

(1):343-360.

Eiben, A. E., J. K. van der Hauw, and J. I. van Hemert. 1998. "Graph Coloring

with Adaptive Evolutionary Algorithms." Journal of Heuristics no. 4 (1):25-

46. doi: 10.1023/a:1009638304510.

Erben, W. 2001. "A grouping genetic algorithm for graph colouring and exam

timetabling." Practice and Theory of Automated Timetabling III:132-156.

Ersoy, E., E. Özcan, and Ş. Uyar. 2007. Memetic algorithms and hyperhill-

climbers.

Appendices

158

Falkenauer, E. 1999. "Applying genetic algorithms to real-world problems."

IMA Volumes In Mathematics And Its Applications no. 111:65-88.

Falkenauer, Emanuel. 1997. Genetic algorithms and grouping problems. New

York :: Wiley.

Fisher, Marshall L. 1981. "The Lagrangian Relaxation Method for Solving

Integer Programming Problems." MANAGEMENT SCIENCE no. 27 (1):1-18.

Gaivoronski, A. 1988. Stochastic quasigradient methods and their

implementation. Springer-Verlag Berlin, Germany.

Galati, M. 2010. Decomposition methods for integer linear programming.

3389951, Lehigh University, United States -- Pennsylvania.

Geiger, Martin. 2009. "Multi-criteria Curriculum-Based Course Timetabling—

A Comparison of a Weighted Sum and a Reference Point Based Approach

Evolutionary Multi-Criterion Optimization." In, edited by Matthias Ehrgott,

Carlos Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux, 290-304.

Springer Berlin / Heidelberg.

Gotlieb, CC. 1962. The construction of class-teacher time-tables. Paper read at

COMMUNICATIONS OF THE ACM.

Gottlieb, Jens. 2000. On the effectivity of evolutionary algorithms for the

multidimensional knapsack problem. Paper read at Artificial Evolution.

Han, L., and G. Kendall. 2003. An investigation of a Tabu assisted hyper-

heuristic genetic algorithm.

Appendices

159

Hastie, Trevor, Robert Tibshirani, Jerome Friedman, T Hastie, J Friedman,

and R Tibshirani. 2013. The elements of statistical learning. 2 ed. Vol. 2:

Springer.

Holmberg, Kaj, and Di Yuan. 2000. "A Lagrangian heuristic based branch-

and-bound approach for the capacitated network design problem."

Operations Research no. 48 (3):461-481.

Hwang, Ching-Lai, and Abu Syed Md Masud. 1979. Multiple objective

decision making—methods and applications.

Ismayilova, Nergiz A., Mujgan Sağir, and Rafail N. Gasimov. 2007. "A

multiobjective faculty–course–time slot assignment problem with

preferences." Mathematical and Computer Modelling no. 46 (7–8):1017-

1029. doi: 10.1016/j.mcm.2007.03.012.

Jiang, Dongchen, and Tobias Nipkow. 2013. "Hall’s marriage theorem." The

Archive of Formal Proofs (December 2010), http://afp. sf.

net/entries/Marriage. shtml.

Kannan, R., S. Vempala, and A. Veta. 2000. On clusterings-good, bad and

spectral. Paper read at Foundations of Computer Science, 2000. Proceedings.

41st Annual Symposium on, 2000.

Kellerer, Hans, Ulrich Pferschy, and David Pisinger. 2004. Knapsack

problems: Springer.

Kendall, G., and M. Mohamad. 2004. Channel assignment in cellular

communication using a great deluge hyper-heuristic.

Kendall, G., E. Soubeiga, and P. Cowling. 2002. Choice function and random

hyperheuristics.

http://afp/

Appendices

160

Konak, A., D.W. Coit, and A.E. Smith. 2006. "Multi-objective optimization

using genetic algorithms: A tutorial." Reliability Engineering & System

Safety no. 91 (9):992-1007.

Lach, Gerald, and Marco Lübbecke. 2008. "Optimal University Course

Timetables and the Partial Transversal Polytope

Experimental Algorithms." In, edited by Catherine McGeoch, 235-248.

Springer Berlin / Heidelberg.

Lach, Gerald, and Marco Lübbecke. 2012. "Curriculum based course

timetabling: new solutions to Udine benchmark instances." Annals of

Operations Research no. 194 (1):255-272. doi: 10.1007/s10479-010-0700-7.

Lewis, R. 2008. "A survey of metaheuristic-based techniques for university

timetabling problems." OR Spectrum no. 30 (1):167-190.

Lewis, R., and B. Paechter. 2007. "Finding Feasible Timetables Using Group-

Based Operators." Evolutionary Computation, IEEE Transactions on no. 11

(3):397-413.

Lewis, R., B. Paechter, and B. McCollum. 2007. "Post enrolment based course

timetabling: A description of the problem model used for track two of the

second international timetabling competition." Accounting and Finance

Section.

Lewis, Rhydian, and Ben Paechter. 2005. "Application of the Grouping

Genetic Algorithm to University Course Timetabling

Evolutionary Computation in Combinatorial Optimization." In, edited by

Günther Raidl and Jens Gottlieb, 144-153. Springer Berlin / Heidelberg.

Appendices

161

Martí, Rafael, Vicente Campos, MAURICIO GC Resende, and ABRAHAM

Duarte. 2011. "Multi-objective grasp with path-relinking." AT&T Labs

Research Technical Report.

Messac, Achille, Amir Ismail-Yahaya, and Christopher A Mattson. 2003. "The

normalized normal constraint method for generating the Pareto frontier."

Structural and multidisciplinary optimization no. 25 (2):86-98.

Michael, R Garey, and S Johnson David. 1979. "Computers and intractability:

a guide to the theory of NP-completeness." WH Freeman & Co., San

Francisco.

MirHassani, S., and F. Habibi. 2011. "Solution approaches to the course

timetabling problem." Artificial Intelligence Review:1-17. doi:

10.1007/s10462-011-9262-6.

Motta, Renato de S, Silvana MB Afonso, and Paulo RM Lyra. 2012. "A

modified NBI and NC method for the solution of N-multiobjective

optimization problems." Structural and Multidisciplinary Optimization no.

46 (2):239-259.

Murray, K., and T. Müller. 2007. Real-time student sectioning.

Nareyek, A. 2003. "Choosing search heuristics by non-stationary

reinforcement learning." Applied Optimization no. 86:523-544.

Norvig, Peter. 1992. Paradigms of artificial intelligence programming: case

studies in Common LISP: Morgan Kaufmann.

Papoutsis, K., C. Valouxis, and E. Housos. 2003. "A Column Generation

Approach for the Timetabling Problem of Greek High Schools." The Journal

of the Operational Research Society no. 54 (3):230-238.

Appendices

162

Perzina, Radomír. 2007. "Solving the University Timetabling Problem with

Optimized Enrollment of Students by a Self-adaptive Genetic Algorithm

Practice and Theory of Automated Timetabling VI." In, edited by Edmund

Burke and Hana Rudová, 248-263. Springer Berlin / Heidelberg.

Pillay, N., and W. Banzhaf. 2009. "A study of heuristic combinations for

hyper-heuristic systems for the uncapacitated examination timetabling

problem." European Journal of Operational Research no. 197 (2):482-491.

doi: DOI: 10.1016/j.ejor.2008.07.023.

Polyak, Boris T. 1967. "A general method of solving extremum problems."

Doklady Akademii Nauk SSSR no. 174 (1):33-&.

Puchinger, Jakob, Günther R Raidl, and Ulrich Pferschy. 2010. "The

multidimensional knapsack problem: Structure and algorithms." INFORMS

Journal on Computing no. 22 (2):250-265.

Qu, R., and E. Burke. 2005. "Hybrid variable neighborhood hyperheuristics

for exam timetabling problems."

Qu, R., E. Burke, B. McCollum, L. Merlot, and S. Lee. 2009. "A survey of

search methodologies and automated system development for examination

timetabling." Journal of Scheduling no. 12 (1):55-89. doi: 10.1007/s10951-

008-0077-5.

Qu, Rong, Edmund K. Burke, and Barry McCollum. 2009. "Adaptive

automated construction of hybrid heuristics for exam timetabling and graph

colouring problems." European Journal of Operational Research no. 198

(2):392-404. doi: DOI: 10.1016/j.ejor.2008.10.001.

Appendices

163

Qualizza, A., and P. Serafini. 2005. "A column generation scheme for faculty

timetabling." Practice and Theory of Automated Timetabling V:161-173.

Raidl, Günther R, and Jens Gottlieb. 2005. "Empirical analysis of locality,

heritability and heuristic bias in evolutionary algorithms: A case study for the

multidimensional knapsack problem." Evolutionary Computation no. 13

(4):441-475.

Ross, Peter, Emma Hart, and Dave Corne. 1998. "Some observations about

GA-based exam timetabling

Practice and Theory of Automated Timetabling II." In, edited by Edmund

Burke and Michael Carter, 115-129. Springer Berlin / Heidelberg.

Schaerf, A. 1999. "A survey of automated timetabling." Artificial Intelligence

Review no. 13 (2):87-127. doi: 10.1023/a:1006576209967.

Schaerf, Andrea, and Luca Di Gaspero. 2007. "Measurability and

Reproducibility in University Timetabling Research: Discussion and

Proposals

Practice and Theory of Automated Timetabling VI." In, edited by Edmund

Burke and Hana Rudová, 40-49. Springer Berlin / Heidelberg.

Sen, S, and Hanif D Sherali. 1986. "A class of convergent primal-dual

subgradient algorithms for decomposable convex programs." Mathematical

Programming no. 35 (3):279-297.

Shukla, Pradyumn Kumar. 2007. "On the normal boundary intersection

method for generation of efficient front." In Computational Science–ICCS

2007, 310-317. Springer.

Appendices

164

Stallaert, Jan. 1997. "Automated Timetabling Improves Course Scheduling at

UCLA." Interfaces no. 27 (4):67-81.

Thompson, Jonathan, and Kathryn Dowsland. 1996. "Variants of simulated

annealing for the examination timetabling problem." Annals of Operations

Research no. 63 (1):105-128. doi: 10.1007/bf02601641.

Tripathy, Arabinda. 1984. "School Timetabling--A Case in Large Binary

Integer Linear Programming." MANAGEMENT SCIENCE no. 30 (12):1473-

1489. doi: 10.1287/mnsc.30.12.1473.

Ulungu, EL, and J Teghem. 1994. "Multi ‐ objective combinatorial

optimization problems: A survey." Journal of Multi‐Criteria Decision

Analysis no. 3 (2):83-104.

White, George M., and Chan Pak-Wah. 1979. "TOWARDS THE

CONSTRUCTION OF OPTIMAL EXAMINATION SCHEDULES."

INFOR no. 17 (3):219-229.

White, George M., and Junhan Zhang. 1998. "Generating Complete University

Timetables by Combining Tabu Search with Constraint Logic." In Practice

and Theory of Automated Timetabling II, edited by Edmund Burke and

Michael Carter, 187. Springer Berlin / Heidelberg.

Wolsey, Laurence A. 1998. Integer programming. New York :: Wiley.

Yang, S., and S.N. Jat. 2011. "Genetic algorithms with guided and local search

strategies for university course timetabling." Systems, Man, and Cybernetics,

Part C: Applications and Reviews, IEEE Transactions on no. 41 (1):93-106.

Zhou, Rong, and Eric A Hansen. 2005. Beam-Stack Search: Integrating

Backtracking with Beam Search. Paper read at ICAPS.

Appendices

165

Zitzler, Eckart, Marco Laumanns, Lothar Thiele, Eckart Zitzler, Eckart Zitzler,

Lothar Thiele, and Lothar Thiele. 2001. SPEA2: Improving the strength

Pareto evolutionary algorithm. Eidgenössische Technische Hochschule

Zürich (ETH), Institut für Technische Informatik und Kommunikationsnetze

(TIK).

Appendices

166

Appendices

A.1 Test Case Generation for Numerical Experiment

A test case reflects a randomly generated timetabling environment of a

university. For instance, how many modules are offered, how many students

are involved, how many rooms are allocable, etc. A test case can be used to

evaluate the quality of a module reallocation solution, such as traffic level.

The whole test case generation process includes four steps. First, we generate

the modules and associated classes (lectures and tutorials). Second, we

generate the classrooms on the new campus. Third, we generate a timetable for

all classes which will be used in the process of the module reallocation. Forth,

we generate students according to the scale of the modules and assign them to

classes. This process is designed based on the actual module selection

operations of an Asian leading university which we study at.

Step I: Module generation

 In the first step, we mainly generate the set of modules and other

relevant information., such as the features related to modules, including

module size, group of students eligible to select this module, etc., and the

configuration of modules including associated lectures and tutorials, the

number of lectures/tutorials per week of a module, etc. The set of modules (I)

we consider are the candidates to relocate to the new campus and are initially

generated. Then the set faculties (U) are generated based on I . For instance,

500 modules and three faculties are generated for a medium-sized university

Appendices

167

test case. Given I , we then generate the features of each module in order to

build a realistic test case. These features include: (1) the capacity of the

module; (2) the faculty that offers the module; (3) the group of students

eligible to select the module. Generation of these features is guided by several

pre-defined patterns that are commonly seen in universities. We list the rules

that we use as an example in Table 6-1.

Appendices

168

Table 6-1 Rules used to generate features of modules

Category Rules of feature generation Example

Capacity of
module

As the range of capacity of modules
is usually large, it is split into a
groups. First, we use a discrete
random variable Y from 1 to a to
randomly determine which group the
capacity of the module would fall in.
The probability mass function of the
random variable is decreasing from 1
to a . Then the actual capacity of a
module is randomly selected within
the selected group.

Module capacity is in
the range of [20,500] ,
which is further
categorized into four
(i.e., 4a =) groups: 20-
50,51-100,101-250,251-
500. ()ρY y are 40%,
30%, 20%, 10% 45
respectively when

1,2,3,4=y .

The faculty
offering the
module

Randomly assigned to one faculty
following a pre-defined distribution
which represents the involvements
among different faculties.

1
3

 for each faculty,

assuming 3=U .

Eligible
faculties
where the
students
come from)

Compulsory module: Only the faculty
that opens this module.

40% chance

Selective module: All faculties. 60% chance

Eligible
students’
level46

Compulsory modules: Randomly be
assigned to one of the groups of
students following a pre-defined
distribution which represents the
involvements among student’s level.

Four groups: level 1,
level 2, level 3 and level
4. The probability of
each group is equal.

Selective modules: Students from all
faculties.

Eligible for all students.

45 Most university provides more selective modules than compulsory modules, and most of the
selective modules are naturally small ones.

46 Assuming all undergraduate students have four years of study. In this case, level 1 refers to
a first-year student and “level 4” refers to a fourth year student.

Appendices

169

After the features of modules being generated, we construct the

configuration of the modules. For every module, we randomly generate its

lectures and tutorials based on the module size. In reality, lectures are usually

relatively few (1-2 lectures of a module per week) but large sized and tutorials

are most likely many but small sized. The number of lectures and tutorials of a

module per week vary mainly due to different module sizes. Although there is

no tutorial for small modules, the number of tutorials of other modules is

generally only determined by the module size, as the size of a tutorial is

basically fixed to a small one, for instance, 20-30 students. However, the

number of lectures of a module is also determined by other factors, such as

teaching plans and teachers’ preferences, and such factors are too complicated

to capture. Instead, we introduce some simplified rules learned from historical

data to generate realistic data. Each class taker may either take two lectures in

a week, or take one of the two classes which split the whole takers into two

groups. Length of each tutorial is one hour. Length of lecture may be either

one hour or two hours. We show such patterns in table 3.

Appendices

170

Table 6-2 Configuration of modules

Category Scenario Number of class(es)
per week

Length of class
periods

Lecture
configuration

For small-sized
module

1 lecture 2 hours47

For medium-
sized module

2 lectures. Each with all
takers

1-1 48 (50%
chance) or 1-2
(50%).

For large-sized
module

(1) (50% chance) 2
lectures. Each with half
takers

1-1 or 2-2

(2) (50% chance) 2
lectures. Each with all
takers

1-1 or 1-2

Tutorial
configuration

For small sized
modules

No tutorial n/a

For medium
and large-sized
modules

As long as that one
tutorial session contains
20 to 30 students.

1 hour long.

Step II: Room generation

 We then generate information related to classrooms of the new campus.

We first generate J based on the classes generated previously, as in reality the

design of the classrooms of a new campus should consider information of

previous timetabling system. The number of room types depends on the range

of class sizes in the test case, as well as the percentage of capacity to facilitate

the students of the whole university (in our case we use 30%). The wider the

range of class size is the more room types are generated. The room size of one

47 There is a ten to fifteen minutes break in the middle of the class.

48 Format in A-B, where A means the length of the first class and B means the length of the
second class (in hours).

Appendices

171

type is an increasing nonlinear function of room type index. In addition, the

number of rooms is generated similarly as a decreasing nonlinear function.

(For instance, assuming 10=J , 25 10ϑ = + j j ,

20.2 4 22 = − + jk j j where ϑ j and jk is the room size and the number of

rooms of type j respectively) These settings reflect the fact from reality that

small rooms are generally plenty for the usage of all tutorials and many small

modules, whereas large rooms are rare but necessary for the usage of several

large lectures.

Step III: Timing generation

 Recall that we do not change the original timing of modules when we

do the module selection, so we need to generate the timing for all modules

first. We do not generate the rooms for the original campus. Instead, we use a

set of rules to assign classes into timeslots assuming the rooms are always

sufficient. These rules intend to balance the utilization of timeslots as well as

rooms. Classes are first divided into three groups: Large classes, medium

classes and small classes. Due to our settings, all tutorials are treated as small

classes. We assign classes to timeslots in the following order: large lecture

pairs, large single lecture, medium lecture pairs, medium single lecture, small

lecture, tutorials. Orders of classes in each sub group are random. In addition,

each timeslot has three counters recording the number of large/medium/small

classes. When a class is assigned to a timeslot, we update the corresponding

counter. Each timeslot also has U counters to record the number of classes

Appendices

172

assigned from each faculty. We use 60 timeslots covering five working days.

To generate the timetable, every class is randomly assigned into the timeslots

(or some subset of timeslots, which is explained in the following section)

which have the lowest corresponding counter value (As for a class pair, such

as two lectures of a module, two timeslots satisfying the pre-defined

preference are assigned.) and the lowest corresponding faculty counter value.

As a result, classes in each timeslot should have similar class scales, and

classes from the same faculty should be spread out in the whole week. This is

often crucial for a good timetable as it brings fewer difficulties for students to

register their preferred modules.

As many modules have a lot of tutorials associated, it is highly not

possible that a student cannot select two modules because of timing

confliction of lectures but of tutorials. Therefore, it is also preferred to assign

lectures and tutorials to two different sets of timeslots. One possible way is

that assign lectures to odd timeslots (assuming the first timeslot of a day is

timeslot 1) but tutorials to even timeslots. To further refine this method, those

2-hour lectures are assigned to some specific time period such that no tutorials

are allowed to be assigned to.

Timings for the lectures and tutorials are mainly assigned randomly.

However, those modules having two lectures per week will be mostly assigned

to two distinct days by randomly choosing one of the some patterns, e.g.,

Monday and Wednesday, Tuesday and Thursday, etc. We then use 60

timeslots covering five working days to construct T . Timing for lectures may

Appendices

173

follow repetitive patterns like Monday and Wednesday or Tuesday and

Thursday if there are two lectures per week. Timing for tutorials are chosen

right after or one or two hours after the lectures. Each module has the equal

opportunity to be tagged as one of the three faculties.

Step IV: Students generation

 With timing of each class confirmed, we generate students and assign

them to those classes. As every student must register a certain amount of

compulsory modules according to his student’s level and the faculty he

belongs to, we consider compulsory module assignment first. Then we can

have more freedom to assign them into selective modules. In the compulsory

module assignment phase, all students are generated. Once a student is

generated, he is immediately assigned to several compulsory modules. In the

selective module assignment phase, every student is randomly assigned to

several selective modules. This sequence reflects the priority usually used

when students are selecting modules, as compulsory modules are much more

important, and the pattern of selective module selection is often random.

We describe the process of compulsory module selection in more

details. Note that any compulsory modules are assumed to eligible to only one

faculty and one student’s level. The generation process is described in the

following:

Step 1: A new student will be generated if there exists a module (called

active module) in which the number of assigned takers so far has not reached

Appendices

174

the module size and not tagged. Denote the newly generated student as student

n . If no new student is needed the process stops.

Step 2: n is randomly assigned to one of the student levels that have at

least one active module. n is also randomly assigned to one of the faculties

opening those active modules of his level. Therefore, his student level and

origin of faculty is determined.

Step 3: n is randomly assigned to one of his eligible modules

repeatedly which bring no timing conflict, and the probability of choosing

each module is proportional to the module size, as long as he selects enough

modules according to his required amount (Denoted as a). If no more

modules can be assigned and the number of selected modules has not met the

requirement, go to step 4; otherwise, go to step 1.

Step 4: Choose the largest module (denoted as module A) among

those assigned to n so far (Denoted as set of module ∏). Try to find a

module (denoted as module B) not in ∏ in which there exists a student

(denoted as student x) who does not select module A . Let student x choose

module A and therefore allow n select module B. Repeat this process until n

can select enough modules. If success, go to step1; If fails, go to step 5.

Step 5: Tag those modules which have not enough takers so far.

Decrease a according to a predefined amount (e.g. 60%). Then keep

generating students of the same student’s level of n , and try to assign them to

the remaining modules using the exact order of modules with more empty

Appendices

175

seats first. If there are still seats left for some modules, update the associated

module size. Go to step 1.

This aforementioned process tries to generate students so that every

compulsory module has no empty seat and the number of students generated is

not too big. The probability settings used in step 3 and the process in step 4

prevent the case when the larger modules have many seats not assigned. As

the number of modules which has not enough takers is bounded by the sum of

the requirement number of modules across different faculties and student

levels, the number of students may not select enough modules should be

controlled. On the other hand, the case students cannot select enough modules

happens frequently in reality.

The process of selective module assignment is similar in some extend.

Note that there is no origin of faculty restriction now, but there is still

restriction on student’s level. We reuse the process when we assign

compulsory modules, except that (1) in step 2 there is no minimum required

number of selections; (2) step 4 and 5 are no longer needed. We still use the

probability settings in step 2 because usually large selective modules are more

popular than smaller ones.

With the information generated, we can compute many other related

parameters such as student overlap, and we are able to compute exactly how a

student will travel once some of his selected module is reallocated to the new

campus.

Appendices

176

A.2:Details on the Surrogate Objective Function

This section describes the algorithm to generate the surrogate objective

function and the analysis on the number of variables for this function. These

information are tracked back to Section 4.2.2. We first describe the algorithm

to generate { }1 2, |∀k kI I k which is used to construct the surrogate function:

 let { }1,...,∈k I be the index of iterations and { }1,..., −=k I kS I I be the

set of module-groups in iteration k .

Step 1. 0k = . Initialize 0S = { } { }{ }1 ,..., I . Construct 2 T matrixes

{ }, {1,2},Γ ∀ ∈ ∈d
t d t T in the following way:

() { }, , {1,..., } , 1, 2 , Γ = Γ ∀ ∈ ∈ ∈
d d
t mn t m n I d t T where ()Γd

mn t is the element in

row m and column n of matrix Γd
t . If <m n , its value equals to

m n

d
I I tr ;

Otherwise, it is 0.

Step 2. Among the 2 T matrixes, find element ()
*

* * *Γd
m n t such that

() ()
* '

* * * ' ' '', ', ', '
maxΓ = Γd d

m n t m n td t m n
. Denote () ()1 2max *, * , min *, *k ki m n i m n= = . Set

1 *
k

mI I= and 2 *
k

nI I= Then combine module-set *mI and *nI and thus

updating kS . At the same time, update the 2 T matrixes by (1) setting

() () () { }' * ' * ' * ' *or *, , 1, 2Γ = Γ +Γ ∀ ≠ ∈ ∈d d d
m m t m m t m n t m m n t T d and (2) deleting row

and column *n in all 2 T matrixes.

Appendices

177

Step 3. If k I< , then 1= +k k and go to step 2, otherwise ends.

In addition, we analyze the scale of variables related to the surrogate

measure of traffic.

 Theorem 1. The number of auxiliary variables { }klF is ()logΟ I I .

Proof:

In iteration k of the aforementioned algorithm, two groups are

combined and a group pair 1 2,k kI I such that 1 2≥k kI I is found. This group

pair is later used to generate
1

1 1

2
1 2

1 ,
k

k
kl i j ljk k

j J j Ji I

F x x l I
I I ∈ ∈∈

= − ∀ ∈

∑ ∑ ∑ .

Therefore, the total number of auxiliary variables is 2∑ k

k
I .

Define a function () : 2π >=n n as the maximum number of 2∑ k

k
I

given =I n . For instance, ()1 0π = , ()2 1π = as the only combination way is

to combine two elements together and 1
2 2 1= =∑ k

k
I I ; ()3 2π = as the only

combination way is to combine two of three elements first and then combined

with the one left behind. 1 2
2 2 2 1 1 2= + = + =∑ k

k
I I I . In fact, we

have () () () (){ }
'

max ' ' min ', '
n n

n n n n n n nπ π π
≤

= + − + −

() (){ }
'

2

max ' ' '
Nn

n n n nπ π
 ≤

= + − + . We use induction to prove () 2log
2

π ≤
nn n .

Appendices

178

It is obvious that () 2log
2

π ≤
nn n when n=2 and 3. For any 3 ≤ <n N ,

assuming as the induction hypothesis that () 2log
2

π ≤
nn n . Now look at

() () (){ }
'

2

max ' ' 'π π π
 ≤

= + − +
Nn

N n N n n . For a given 'n , denote '=a n and

= −b N a , then () 2log
2

π ≤
aa a and () 2log

2
π ≤

bb b . according to Jensen’s

inequality,
2 2

2 2 2
2 2log log log +

+ + ≤ +
+ + + + +
a b a a b aa b

a b a b a b a b a b
. Note that

()2 2

2 2 2 2

21 2 +
+

= + ≥
+ +

a
a b

a b ab
a b a b

 as 1≤ ⇒ ≤a b RHS , we have

() ()
2 2

2 2 2 22 2 2 2

2log log 2 log log+
+ +

≥ ⇒ + ≥ +
+ + +

a
a b

a b a b aa b
a b a b a b

. Hence,

()2 2 2
2log log log+ + ≤ +

+ + +
a b aa b a b

a b a b a b
 and we have proven

()2 2 2log log log
2 2 2

+
+ + ≤ +

a b a ba b a a b for any valid (),a b .49 Therefore, we

have () 2 2 2
',

2

max log log log
2 2 2

π
 + = ≤

 ≤ + + ≤
 Na b N a

a b NN a b a N .

A.3 Test Case Generation for Numerical Experiment

We show that (3.2) to (3.6) linearizes (3.1). We first show that linear function

1 2

A
i i tι with constraints (3.3) to (3.6) and non-linear

1 2

B
i i tι are equivalent:

49 The equality condition is a=b which means 2log n needs to be integral.

Appendices

179

1 2 1 2 1 2 1 2 1 2

1 2A
i i t i i t i i i i t i ir v r vι = + ,

 () ()()1 2 1 2 1 21 2 1 2

1 2max max ,0 , max ,0
i i t i i t

B
i i t i i i ir v v r v vι = − −

 We enumerate the domain of variable pair ()1 2
,i iv v and show the

function values of both in Table 6-3.

Table 6-3 The mapping of the non-linear function and its replacement

Domain Function value of
1 2

A
i i tι Function value of

1 2

B
i i tι

(0, 0)
0 (()

1 2

10 1
2i iv≤ ≤ ⇒

1 2
0i iv =)

0

(0, 1)
0 (()

1 2

11 0
2i iv− ≤ ≤ ⇒

1 2
0i iv =)

0

(1, 0)
1 2 1 2

1 2
i i t i i t

r r+ (()
1 2

11 2
2i iv≤ ≤ ⇒

1 2
1i iv =) ()

1 2 1 2

1 2max ,
i i t i i t

r r

(1, 1)
0 (()

1 2

10 1
2i iv≤ ≤ ⇒

1 2
0i iv =)

0

 Specifically, we use the fact that variable
1 2i iv is required to be binary

in (3.6) when we derive the function value of
1 2

A
i i tι . Also, as for a given module

pair ()1 2,i i and t , at most one of
1 2

1
i i t

r and
1 2

2
i i t

r can be positive because the

traffic contribution can only occur in at most one direction. As such,

()
1 2 1 2 1 2 1 2

1 2 1 2max ,
i i t i i t i i t i i t

r r r r+ = . So
1 2

A
i i tι is equivalent to

1 2

B
i i tι .

Appendices

180

 Then, since (3.2) is essentially min z while
1 2

,A
i i tz tι≥ ∀ and (3.1) is

essentially ()1 2
min B

i i tt
ι , it concludes that our linearization is correct.

	Declaration
	Abstract
	Acknowledgements
	Table of Contents
	Summary
	List of Tables
	List of Figures
	List of Abbreviations
	Chapter 1 Introduction
	Chapter 2 Literature Review
	2.1 Overview of Studies on UCTP
	2.2 Solution Techniques for UCTP
	2.2.1 General Exact Approaches
	2.2.2 Genetic Algorithm and Other Heuristic Approaches

	Chapter 3 Data Analysis and Problem Modeling for MRPT
	3.1 Overview
	3.2 Data Analysis
	3.3 Problem Modelling
	3.4 Numerical Experiments
	3.5 Discussion

	Chapter 4 An Iterative Two-Phase Approach to MRPT
	4.1 Overview
	4.2 Phase 1: Module Selection Problem (MSP)
	4.2.1 Approach 1: Greedy constructive procedure
	4.2.2 Approach 2: Bi-objective MIP model solved by NBI method
	4.2.3 Reparation Mechanism and Local Improvement

	4.3 Phase 2: Room Assignment Problem
	4.3.1 Overall Framework
	4.3.2 Dual Bound: Lagrangian Relaxation Method
	4.3.3 Primal Bound: Constraint Programming-Based Heuristic

	4.4 Numerical Experiments
	4.4.1 Numerical experiments related to Phase 1
	Experiments on alternating two approaches
	Correlation between surrogate objective function and the original one
	Experiments on local improvement

	4.4.2 Numerical experiments related to Phase 2
	4.4.3 Results of the Proposed Heuristic

	Chapter 5 Fine-tuning on Timing Given the Module Reallocation Decision
	5.1 Introduction
	5.2 Methods of time-tuning
	5.3 Numerical Experiment

	Chapter 6 Conclusion
	Bibliography
	Appendices
	A.1 Test Case Generation for Numerical Experiment
	A.2:Details on the Surrogate Objective Function
	A.3 Test Case Generation for Numerical Experiment

