
 

 

 

 

MODULE REALLOCATION PROBLEM IN THE CONTEXT 

OF MULTI-CAMPUS UNIVERSITY COURSE 

TIMETABLING  

 

 

 

WANG JIA 

NATIONAL UNIVERSITY OF SINGAPORE 

2014 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48809288?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

 

MODULE REALLOCATION PROBLEM IN THE CONTEXT 

OF MULTI-CAMPUS UNIVERSITY COURSE 

TIMETABLING  

 

WANG JIA 

(M. Mngt., Nanjing Univ.) 

A THESIS SUBMITTED  

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY 

DEPARTMENT OF INDUSTRIAL & SYSTEMS ENGINEERING 

NATIONAL UNIVERSITY OF SINGAPORE 

2014 



 

 

Declaration 

 

I hereby declare that the thesis is my original work and it has been written by 
me in its entirety. I have duly acknowledged all the sources of information 

which have been used in the thesis. 

This thesis has also not been submitted for any degree in any university 
previously. 

 

 ___________ 

Wang Jia 

29 August, 2014 

 



i 

 

Name  : WANG Jia 

Student No. : HT080222W 

Degree  : Doctor of Philosophy 

Supervisor(s) : CHEW Ek Peng, LEE Loo Hay 

Departments : Department of Industrial & Systems Engineering 

Thesis Title : Module Reallocation Problem in the Context of Multi-
Campus University Course Timetabling 

 

Abstract 

We propose a new type of problems, namely module reallocation problem 

given timing, which arises from the field of university course timetabling. A 

new campus is planned and some modules originally allocated on the original 

campus were to be reallocated to the new campus. Due to practical reasons, 

the timing was considered as given. The decisions include the module 

reallocation decision and the room assignment decision. Optimizing the inter-

campus traffic is the main objective. We transform stakeholders’ requirements 

into a mathematical model by conducting data analysis on the real data. We 

propose an iterative two-stage heuristic to solve this problem. This heuristic 

combines various methods, such as constructive heuristic, clustering analysis, 

branch and bound framework, Lagrangian relaxation method, etc., to exploit 

the problem structure and maintain computational efficiency. We also provide 

a way to fine-tune the timetable to further improve the inter-campus traffic as 

an extension. 
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Summary 

In this thesis, a new type of problems arising from the university course 

timetabling is proposed in the presence of the university expansion. The 

reallocation of modules to the new campus and the incurred impact on inter-

campus traffic, rather than the timing, are our main concerns. 

 In this problem, a new campus is located near the existing campus, and 

the two campuses are linked by a shuttle bus service. This new campus 

consists of facilities that are expected to be enjoyed by all students from 

different disciplines. Optimizing the inter-campus traffic, which measures the 

level of students’ movements for taking courses by travelling from one 

campus to another, is the main objective. Several considerations for the new 

campus are addressed by stakeholders, including a good distribution of 

students for various faculties, a high proportion of the junior students and high 

resource utilization. The timetable, however, is given by stakeholders who 

collect corresponding information from individual school/department. Given 

their timetable, the university would like to know which modules are to be 

reallocated and which rooms are those modules assigned to. We call this 

problem Module Reallocation Problem given Timing (MRPT). We modelled 

MRPT and later solved it by developing an iterative two-stage approach. This 

approach combines various methods, including constructive heuristic, 

clustering analysis, branch and bound framework, Lagrangian relaxation 

method, etc., to exploit the problem structure and maintain the computational 
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efficiency. We also conducted fine-tuning on the timetable to see whether 

there is any room for further improvement in the inter-campus traffic. 

The main contributions of this thesis contain four parts. First, we 

propose a new type of problems which arises from the field of university 

course timetabling. We consider the module reallocation decision and the 

room assignment decision given a course-timing. The objective function, 

namely inter-campus traffic, has not been studied before in this area. To 

understand this objective, we learned from the data that characterize the 

students’ movement behavior. By using similar ways, various requirements 

from the stakeholders were also finalized and modeled.  

Second, from our understanding of the requirements set by the 

stakeholders, we formulated the problem as a Mixed Integer Programming 

(MIP) model (The original measurement of inter-campus traffic is non-linear, 

so we linearized it in the MIP Model). Parameters of objective and constraints 

were also determined based on the data. 

Third, when the problem size becomes large, the commercial solver is 

unable to solve it. Hence, we propose a heuristics that exploits the good 

structure of the problem. A decomposition method is used to transform the 

original problem into a two-stage problem. The first stage determines which 

modules are allocated to the new campus and the second stage decides which 

rooms those modules are assigned to.  
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Fourth, we extend the MRPT by considering that slight modifications 

to the given timetable are allowed. Based on the selection of reallocated 

modules, we conduct a local search to find new solutions such that the inter-

campus traffic measurement can be improved.  
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Chapter 1 Introduction 

The University Course Timetabling Problem (UCTP) is one of the momentous 

issues faced by the university administrators. Usually, many resources and 

stakeholders are involved in the timetabling tasks, including students, teachers, 

rooms and time slots. Typically, many of these resources are subject to various 

constraints, e.g., limited room capacity, unavailable teachers’ timings. At the 

same time, university course timetabling heavily affects day-to-day campus 

life for almost everyone in the university. For students and teachers, the 

timetable greatly determines their study/work schedules every day. For 

university administrators, a well-balanced timetable which satisfies most 

requirements improves their management effectiveness. As such, the 

construction of the university timetable is certainly a very important work.  

University course timetabling problem is widely considered as a 

challenge due to two principal reasons. First, most university timetabling 

problems are NP-complete problems (Michael and David 1979). Furthermore, 

this kind of problem is usually of large scale in reality, because a great number 

of modules are involved in most cases. 1 An automatic timetabling process 

must be developed to cope with this tedious work. Second, due to the variance 

among universities, different universities may face different objectives and 

                                                                                                 

1 In this study, ‘module’ and ‘course’ have the same meaning: a series of lessons/classes in a 

particular subject. 
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constraints. Even for the same constraint, some universities treat it as a “hard 

constraint”, while others treat it as a “soft constraint”. Hence, although there 

are sufficient studies in this field, different works share few common features 

and may require very different solution techniques when applying to reality.  

As far as we know, the first study in this field was by Gotlieb (1962). 

Since then and during the last fifty years, automatic university course 

timetabling has been widely studied and numerous papers and articles have 

been published. In addition, working groups and series of conferences, such as 

European Association of Operational Research Society on Automated 

Timetabling and Practice and Theory on Automated Timetabling, have been 

organized. 2  Many practical applications have been developed, such as 

UniTime and WiseTable.3 

In recent years, several new requirements have been added in the field 

of UCTP. The first one is the continuity of the timetable, which means that the 

revised timetable may not change too much from the previous ones. The main 

reason for this requirement is that there is no significant demand to produce a 

brand new timetable as many universities have incorporated the automatic 

course timetabling systems or systems having similar functions already. 

Instead, the timetables are revised year after year to meet new needs.  If the 
                                                                                                 

2 Information can be found via http://watt.cs.kuleuven.be and http://www.patatconference.org. 

3 More information on both solutions can be found via http://www.unitime.org/ and 

http://wisetimetable.com/ respectively. 

http://watt.cs.kuleuven.be/
http://www.patatconference.org/
http://www.unitime.org/
http://wisetimetable.com/


Chapter 1 Introduction 

3 

 

enrollment is not heavily changed, and if the educational curriculum is stable, 

the timetables generated from year to year may not change too much. In this 

case, it is possible that teachers are used to their timings and classrooms.4 As a 

result, if a new timetable is to be designed, a dramatically different one may 

not be appropriate and could not be accepted by some stakeholders. 

The second requirement is to consider the context of multi-campus. 

Many universities are planning to build new campuses as an important 

movement in the university development and the response to expanding 

missions of teaching and researching.  Due to various reasons such as visions, 

accessibility of land, funding, etc., different universities may plan the new 

campuses in different locations (either remotely or nearby). Table 1-1 shows 

several examples in terms of the distance between the old campus and the new 

one. It should be noted that, typically, when the new campus is far away from 

the old one (a shuttle bus service is usually arranged accordingly), it usually 

facilitate brand new departments and research agencies. It rarely opens courses 

for the students from the old campus in a large scale. For this reason, the 

massive students’ movements for taking classes among campuses can be 

resolved in a trivial way. Unfortunately, these settings are not available in our 

study. 

                                                                                                 

4 We define the compulsory module as a required course for a big group of students according 

to the curriculum. Hence, the number of takers should be relatively stable from year to year. 
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Table 1-1 Examples of different cases that the distance between the old campus and the 
new campus5 

University Old Campus and New 
campus 

Distance 

Cornell University Campus in Ithaca and 
Campus in NYC 

1 hour of flight 

Binghamton University Main Campus and University 
Downtown Center 

4 miles 

University of Nottingham University Park Campus and 
Jubilee Campus 

1 miles 

Swansea University Singleton Park Campus and 
Bay Campus 

0.2 miles 

New university campus is conventionally designed to host a new 

department/faculty. However, new ideas about the role of the new campus 

have been proposed nowadays. One of them states that the new campus should 

engage all students and researchers together in an integrated way. The main 

advantage of this new design is that the exchange of knowledge among 

different disciplines is much easier. 

Our study considers a UCTP with aforementioned new requirements 

based on a university project. In this project, University Town of National 

University of Singapore has implemented such an idea into practice. It is 

linked with the main campus, known as Kent Ridge Campus, via a vehicle and 

                                                                                                 

5 The information about the four listed new campuses can be found via http://nyc.cornell.edu/, 

http://www.binghamton.edu/visiting-campus/campus-facilities.html, 

http://www.nottingham.ac.uk/about/visitorinformation/mapsanddirections/mapsanddirections.

aspx and http://www.swansea.ac.uk/campus-development/.  

http://nyc.cornell.edu/
http://www.binghamton.edu/visiting-campus/campus-facilities.html
http://www.nottingham.ac.uk/about/visitorinformation/mapsanddirections/mapsanddirections.aspx
http://www.nottingham.ac.uk/about/visitorinformation/mapsanddirections/mapsanddirections.aspx
http://www.swansea.ac.uk/campus-development/


Chapter 1 Introduction 

5 

 

pedestrian bridge. An educational complex with residential hostels, teaching 

facilities and study clusters are provided, which creates an intellectual, cultural 

and social environment. This design of the new campus promotes an open 

exchange of ideas and multidisciplinary engagements. Therefore, the new 

campus is not dedicated to any departments or groups of people. Instead, it is 

designed to attract and facilitate all students from the main campus to enjoy 

those wonderful resources. This requirement is very different from the ones 

discussed in previous studies, because now we need to relocate some of the 

modules that are previously offered in the main campus to the new campus. 

On the other hand, National University of Singapore has deployed an 

automatic timetabling system for several years already. In fact, during our 

interviews with related personnel, we find that many constraints which are 

input into the system are decided by individual school/department directly. On 

one hand, variant curriculums exist at different schools/departments, so there 

are many intangible and unquantifiable constraints that we cannot easily 

capture; on the other hand, the schools/departments have built their preferred 

timetable for flexibility, and these timetables have been used for several years. 

Any changes to the timing may hugely disrupt this current timetable, and 

every faculty would be affected.6 Many negotiations are expected through the 

way of finding a solution. Eventually, stakeholders strongly wish that the 
                                                                                                 

6 In this thesis, unless mentioned explicitly, “faculty” refers to a group of related departments 

in a university, e.g., faculty of arts, faculty of engineering, faculty of laws. On the other hand, 

we use “faculty members” to refer to the lecturers explicitly. 
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changes on the existing timetable should be as little as possible. The 

requirements of open-to-all-students and stable timetable bring challenges and 

are discussed in the study. 

The main problem that this thesis studies, namely MRPT, is 

summarized in the following: Given a timetable, we decide which modules 

should be reallocated to the new campus and which types of rooms should 

they be assigned to. At the same time, we want to improve the inter-campus 

traffic. 7  In this problem, we study a university which plans the campus 

expansion. A new campus is built as a new environment attracting students 

from all schools/departments. A certain number of modules from nearly all 

schools/departments need to change the venues from the main campus to the 

facilities on the new campus. Due to practical reasons, the timetable is 

required to remain the same as given by stakeholders.  

In MRPT, our decision mainly considers the objective of optimizing 

the traffic-flow affected by the students for taking classes for the following 

reasons: (1) The new campus has an innovative vision as there is no 

department/schools there. Instead, resources and facilities are shared by all 

students and faculties. (2) The courses opened on the new campus may attract 

a large number of students from possibly all schools/departments. They may 

need to travel across the campus from their last class/for their next class on the 

main campus. A poorly designed timetable may require too much travelling 
                                                                                                 

7 Inter-campus traffic means the traffic related to moving from one campus to another. 
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time for students and cause the late-for-class. (3) The distance between the 

two campuses is usually not long, and shuttle buses are commonly used as an 

important transportation mode. The traffic issue also affects the management 

of the shuttle bus system so that the overload situation may occur.  

On the other hand, our decision is also restricted by the requirements 

by stakeholders. As the new campus is designed to attract nearly all students, 

certain way of fairness should be implemented when planning module 

reallocation. As a result, various constraints are set to fulfill such requirements, 

e.g., faculty fairness, student preference. In addition, reallocated modules 

should also ensure a utilization level for facilities on the new campus, 

especially for those large rooms. 

Several challenges are found in this study. We find that the original 

measurement of inter-campus traffic is non-linear so we need to linearize it. 

We also learn that the correlation between modules in terms of common 

students taking both modules is strongly related to the objective value. 

However, the aforementioned constraints prevent us finding trivial solutions 

accordingly. In addition, the module reallocation problem can be solved by a 

commercial solver in small scale. However, when the problem scale gets 

bigger, the solver cannot handle it. As a result, we propose a decomposition 

method to transform the original problem into a two-stage problem. 

After we solve this module reallocation problem, we extend it by 

conducting fine-tuning on the timetable to see whether there is any room for 

further improvement in the inter-campus traffic. 
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 In this thesis, the following contributions are achieved: 

• We conduct data analysis to understand the problem better. First we 

help the stakeholders to find a connection between the students’ 

movement behavior and the inter-campus traffic. Assuming that the 

students’ movement behavior will not be affected by the reallocation of 

modules, we can use the results from the data analysis to evaluate the 

inter-campus traffic to make a better decision. In addition, using cluster 

analysis on these data also provides insights on how to prevent bad 

solutions, which are later used to build a surrogate measure of traffic. 

Second, with the understanding of students’ enrollment grouped by 

faculties and academic year, we help the stakeholders to determine the 

target level of “fairness” for their requirement as well as identify the 

associated parameters. More importantly, we find that these 

requirements prevent us from easily generating trivial solutions, such 

as assigning those courses from the same faculty to the new campus.  

Hence, it makes the problem more challenging.  

• By considering the stakeholders’ requirements and analyzing related 

data, we formulate this real world problem as a Mixed Integer 

Programming (MIP) model. The original measurement of inter-campus 

traffic is non-linear, so we need to linearize it. Parameters of objective 

and constraints are also determined by data mining. As a result, we can 

develop a model that represents their needs including controlling the 

traffic while maintaining a set of constraints in terms of fairness. 
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• We propose a two-stage heuristic approach to solve this problem as it 

may become intractable when the problem scale becomes bigger. The 

two stages, namely the module selection stage and room assignment 

stage, are derived by exploiting the problem structures. In the first 

stage, we introduce a multi-objective framework to tackle the problem, 

as the selection of modules is affected by not only the traffic but also 

stakeholders’ requirements. Under the multi-objective framework, we 

propose two methods to generate a solution. The first heuristic is a 

greedy constructive method based on balancing between the objective 

value and the violations of constraints. The second heuristic constructs 

a bi-objective model, which uses a surrogate measure of traffic based 

on clustering analysis on the student-module registration data. This 

model is solved by the Normal Boundary Intersection (NBI) method. 

In the second stage, we use a branch and bound framework to solve the 

problem. Within this framework, we use the Lagrangian relaxation 

method to solve the sub-problem, in which we can identify a knapsack-

type structure and thus the sub-problem can be solved efficiently. We 

also use constraint programming techniques to help find the incumbent 

solution. 

• We further extend the module reallocation problem by considering that 

the timetable is allowed to be modified slightly from the given one. By 

keeping the selection of reallocated modules unchanged, we conduct a 
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local search to find new solutions such that the inter-campus traffic 

measurement can be improved.  

In the subsequent part of this thesis, we firstly review the studies in the 

mostly-related field, i.e., UCTP in Chapter 2. The key elements, concepts, and 

various solution techniques related to UCTP are summarized. In Chapter 3, we 

describe the data analysis works to understand the stakeholders’ requirements 

in MRPT followed by our mathematical model.  In Chapter 4, we propose an 

iterative two-phase approach to solve MRPT and demonstrate the related 

numerical experiments to compare the performance between our proposed 

approach and the commercial solver. In Chapter 5, we extend the problem by 

conducting a fine-tuning process on the timetable given the solution to MRPT. 

In Chapter 6, we address the conclusion of this study as well as providing 

possible directions for future studies. 
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Chapter 2 Literature Review 

As we believe that our problem is still in the context of university course 

timetabling problem, we focus our review on studies of UCTP, and discuss on 

several interesting topics which show connections to our study. In this chapter, 

we give an overview on the scope of UCTP and various objectives/constraints 

from different problem instances in previous studies. This overview helps to 

understand the mathematical challenge of this problem and the importance of 

capturing the correct requirements in modelling UCTP-type problems. We 

then discuss the solution techniques for UCTP by grouping them into the exact 

approaches and the heuristic approaches.  

 Although our study has not been completely tackled in previous studies, 

ideas from literatures still provide insights. Some hard constraints, soft 

constraints and problem modelling ideas are related to our study in Chapter 3. 

Topics such as decomposition from the timetabling problem to room 

assignment and timing problem, branch-and-bound framework and genetic 

algorithm applied to timetabling problem are also related to our study in 

Chapter 4. The concept of conflict in timing is closely related to our study in 

Chapter 5. 

2.1 Overview of Studies on UCTP 

In this section, we present an overview of the university course timetabling 

problem. We explain the key elements in the problem. We list the common 

constraints discussed in previous literatures. We then describe two important 
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tracks in recent years and show the difference in terms of objectives and 

constraints. Both tracks share an important topic, namely graph coloring, 

which is one of the most important sub-problems. For this reason, we then 

show its definition and various algorithms to solve this problem. With key 

elements of UCTP described, we briefly introduce a recent trend of modeling 

UCTP as a multi-objective problem. 

A UCTP is defined as a problem which assigns  , a set of events of 

courses, into T  and R , which are a set of timeslots and a set of resources 

respectively. A solution { }, , : , ,∈ = ∈ ∈ ∈i i i i i ix X c t r c t T r R  has to satisfy a 

set of constraints, i.e., ,∈ ∀ ∈x x X . The constraint set   can be even 

categorized into hard constraints H  and soft constraints S . Hard 

constraints are those requirements that a solution must satisfy, while soft 

constraints serve the similar role as objective functions in an optimization 

problem. In the following, we describe the three elements:  , T , R . 

Key elements 

An event8 is the session of some course taken place in one room and typically 

in one or two timeslot. An event may have the following features: a name to 

identify itself from other sessions if applicable, a piece of information about 

the takers (e.g., the size of the event, the department/school offering this 

event), and the lecturers. One course may have more than one event, including 

                                                                                                 

8 In this thesis, event and class has the same meaning as a period of time during which 
someone teaches a group of people. 
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lectures, tutorials or laboratories. Events belonging to the same course may be 

connected by some requirements in the UCTP. For instance, the lecture 

sessions are preferred to be taken place in the same room across a week. 

A timeslot is a period to contain one event. Unlike the concept in the 

scheduling problem, time in UCTP is discrete and grouped into slots. 

Common timeslot could be 1-hour slot, 50-minute slot, 45-minute slot, etc. 

Moreover, timeslots recur from week to week in UCTP. The number of 

timeslots per week is limited (e.g., 45 one-hour-long slots per week providing 

nine working hours in 5 working days) and normally indexed in chronological 

order. In an individual timeslot, at most R  events are assignable. Note that 

there are many real-world cases when each event requires different length of 

timeslots. For instance, one event requires two consecutive9 timeslots. In this 

case, one common way (See, e.g., Schaerf 1999; Lewis 2008; Qu et al. 2009; 

MirHassani and Habibi 2011) to handle is to split the long events into two 

shorter events and enforce a requirement on consecutiveness.  

A room is a resource that facilitates an event. Rooms have different 

sizes and possibly different purposes (i.e., only a subset of   is eligible to be 

assigned to a specific room). In the literature, rooms are usually individually 

indexed even when some of them are similar or identical. In an individual 

room, at most T  events are assignable. 

                                                                                                 

9To clarify, the two timeslots are consecutive only when they are on the same day. 
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In some circumstances, lecturer is also considered as an element. 

However, note that in many cases of UCTP a lecturer has already been 

assigned into the course(s). Therefore, constraints related to lecturers can then 

be converted into the other forms (for instance, lecturers’ preferred timeslots 

and/or preferred rooms). This essentially defines some eligible set of 

“feasible” assignments of the three key elements. As a result, in this thesis 

lecturer issue is not explicitly described. 

Constraints commonly considered 

Obviously, ≤ × T R  is a necessary condition for the existence of a 

timetable solution. However, this inequality is very loose comparing to the 

constraint set  . In previous literature on UCTP, a large number of 

constraints have been addressed arising from different problem instances. At 

this stage, we only summarize those commonly cited ones: 

Hard constraints 

HC1: (time conflict constraint) Two events should not be held in one timeslot 

once there are common takers, i.e., no student should attend two events 

at the same time. It is sometimes referred to as stable set constraint 

(White and Pak-Wah 1979, Tripathy 1984). 

HC2: (room occupancy constraint) A room cannot hold more than one event 

in one timeslot (Carter, Laporte, and Chinneck 1994, De Causmaecker, 

Demeester, and Berghe 2009). 
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HC3: (room capacity constraint) Events should be assigned to rooms of 

sufficient sizes. If this constraint is considered as a soft constraint, it 

means the number of students left without a seat for all the events is to 

be minimized (Di Gaspero and Schaerf 2001, Burke, Marecek, et al. 

2010). 

HC4: (room compatibility constraint) Events should be assigned to rooms 

providing appropriate features. For instance, a class which requires 

special equipment should be assigned to those rooms that are able to 

provide it (Ceschia, Di Gaspero, and Schaerf 2011). 

HC5: (time availability constraint) Events should be assigned to timeslots that 

are available. The availability may mostly depend on the corresponding 

lecture’s availability (Stallaert 1997). 

HC6: (time precedence constraint) Events should be allocated according to the 

event precedence relationship, i.e., one event should be scheduled earlier 

than the other (Drexl and Salewski 1997). 

HC7: (event completeness constraint) Every event should be assigned into a 

room and a timeslot. Notice that this constraint is tread as a soft 

constraint in some circumstances (Lewis, Paechter, and McCollum 

2007). 
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Soft constraints 

SC1: (late event constraint) Students should not be assigned to the last 

timeslot of the day, i.e., those last timeslots of a day should be scheduled 

with the lowest priority (Ceschia, Di Gaspero, and Schaerf 2011). 

SC2: (dispersed event constraint) The consecutive events that a student 

attends may not exceed a specific number, normally 2 (Perzina 2007). 

SC3: (isolated event constraint) The case that a student only takes one module 

in a day should be prevented (Schaerf and Di Gaspero 2007). 

SC4: (inter-site travel constraint) As a large university may be split into 

several campuses, the occasion of that two events, which are held on 

different campuses, are scheduled consecutively shall be avoided. This 

constraint was first proposed in studies by Lewis, Paechter, and 

McCollum (2007) in the discussion section. However, as far as we know 

there are no other related literatures studying on this specific constraint. 

SC5: (minimum lecture working days) The timeslots assigned to all lecture 

sessions of one course should be spread into a number of working days 

specified by a lower bound, e.g., three days. In other words, the overall 

number of the positive difference between the number of actual days 

assigned for each course and the corresponding bound should be 

minimized (Burke, Kendall, and Soubeiga 2003; Daskalaki, Birbas, and 

Housos 2004). 
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SC6: (curricular compactness) If two events belong to the same curriculum, 

they should be assigned to consecutive timeslots. In other words, the 

sum of all occurrences of isolated events which belong to the same 

curricular should be minimized (White and Zhang 1998; Di Gaspero, 

McCollum, and Schaerf 2007a). 

SC7: (lecture room stability) For all the lecture sessions of one course, the 

allocated room should be the same. In other words, the number of 

distinct course-room allocation minus the number of courses should be 

minimized (Burke, Marecek, et al. 2010). 

All these hard and soft constraints mentioned have no direct 

connection with either the objective or the main constraints proposed in our 

study. However, some studies share connections with our study to some extent. 

For instance, when enforcing SC4, it may help resolve the inter-campus traffic. 

In this case, the back-to-back modules that involve same students are preferred 

to be allocated into the same campus. However, this soft constraint is a special 

case that has been considered by our proposed objective function. Apart from 

back-to-back modules, our objective function also considers those module 

pairs which have more in-between time and may also contribute significantly 

(for instance, two highly-related modules which have more than 100 students 

in common and the in-between time is roughly 1 hour) to the traffic. These 

module pairs cannot be considered by simply enforcing SC4. 

Two tracks in UCTP 
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There are two important tracks in UCTP field, namely Post Enrollment 

Timetabling Problem10 (PETP) and Curriculum Based Timetabling Problem 

(CBTP). The grouping into two tracks was first introduced in International 

Timetabling Competition. It should be noted that in many real world situations, 

the construction of a departmental/institutional course timetable involve a 

combination of curricular-based and post-enrolment features, as well as 

iterative negotiations with teaching and administrative staff. 

In PETP, the timetable is produced after student enrolment on courses 

is over, so the space for error is little. Maximum student satisfaction and good 

utilization of resources are to be achieved. 

 In CBTP, the weekly timetable of the lectures for various courses 

within a given number of rooms and periods is generated, where conflicts 

between courses are defined according to the curricula.11 Therefore, lectures in 

the same curricular must be allocated into different timeslots. 

It should be noted that the major difference between PETP and CBTP 

does not come from the process of collecting ‘conflict’ data between two 
                                                                                                 

10 The definition of PETP can be found from studies by Lewis, Paechter, and McCollum (2007) 

and http://www.cs.qub.ac.uk/itc2007/postenrolcourse/course_post_index.htm, while the 

definition of CBTP were given by Di Gaspero, McCollum, and Schaerf (2007b). 

11 Note that the definition of curriculum in the CBTP (denoted here as curriculum1) is different 
from the ordinary definition. Generally, a curriculum refers to a set of courses a student needs 
to take in order to get a degree throughout his study. However, the concept of curriculum in 
CBTP requires that the student following the same curriculum all take the same courses in any 
time, while in general students may be given more flexibility to choose the order of taking 
courses. 

http://www.cs.qub.ac.uk/itc2007/postenrolcourse/course_post_index.htm
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tracks. In fact, the conflict matrix can be obtained with no significant 

difference in both cases. The major differences, however, come from two 

other factors. First, PETP deals with individual lecture, as the conflict between 

lectures can be obtained from enrolment data. CBTP, however, deals the 

conflict from the grouping of courses.12 In fact, a course in CBTP is possibly 

composed by multiple lectures (each is taken by the same group of students 

and all should be assigned to different timeslots). Second, the hard constraints 

and soft constraints are defined very differently. In Table 2-1, we summarize 

typical hard constraints and soft constraints with their presences in PETP and 

CBTP.  

                                                                                                 

12 It should be noted that some studies even state that in PETP the confliction is more severe 
than in CBTP (Burke et al. 2012). 
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Table 2-1 Constraints setting in PETP and CBTP 

 

As a comment, we discuss the conflict-information collection process 

of these two tracks. For PETP, it comes from the students’ choices collected 

before the timetabling and CBTP from the curriculum. The conflicting 

information involves different levels of students’ choices for both problems: 

The one from the curriculum can be viewed as choices of compulsory courses 

for the students associated, and CBTP should capture most of it, as the degree 

requirements should be stable from year to year. In addition, students also 

want to choose selective courses in the university, which may not affect their 

acquiring the degree, but could enrich their knowledge and experiences. 

                                                                                                 

13 These constraints have not been considered yet by Lewis, Paechter, and McCollum (2007) 
but is highlighted to attract attention in the future study. 

Constraints PETP CBTP 

HC1: time conflict constraint HC HC 

HC2: room occupancy constraint HC HC 

HC3: room capacity constraint HC SC 

HC4: room compatibility constraint HC  

HC5: time availability constraint HC HC 

HC6: time precedence constraint HC  

HC7: event completeness constraint  HC 

SC1: late event constraint SC  

SC2: dispersed event constraint SC  

SC3: isolated event constraint SC  

SC4: inter-site travel constraint *13  

SC5: minimum lecture working days  SC 

SC6: curricular compactness  SC 

SC7: lecture room stability  SC 
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Confliction may also arise from these selective courses and the “post-

enrollment” process may be able to capture them. However, the way that 

students make their choices on selective courses should be flexible: We 

believe that, apart from the pure preferences on the course itself, many other 

factors may play important roles as well. The timing of courses, for example, 

should be one of them, as the students may wish to choose those selective 

courses without violating their week plans. Nevertheless, since the timing is 

not given when the students provide the choice-of-the-course information, the 

corresponding choices of selective courses in PETP may not precisely reflect 

the students’ real choices, and the later generated timetables may not satisfy 

students due to the data inaccuracy. In fact, it could be expected that some 

students may simply choose all the preferred courses, ignoring the timing 

preference, to increase the potential satisfactory. As a result, the conflict could 

become worse, and the overall timetable becomes harder to plan. In addition, 

the difference between the two collection processes also explains why some 

constraints are considered in one track but are not in the other. For instance, as 

CBTP mainly considers lectures, the incompatible module issue should be 

naturally resolved as most rooms in the university can cater lectures. Another 

example is that HC3 is considered as soft constraint in CBTP. We believe that 

the main reason is that if the constraint is violated, it can be resolved by 

splitting the module (remind that in CBTP a module may involve a series of 

lectures) and rearranging the rooms if possible (additional room may be used). 

Graph Coloring 
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To be clear, graph coloring is not closely related to our study as the timing is 

pre-fixed and the conflict issue does not exist in our study. However, this topic 

is so important in the field UCTP that we have to summarize it in the 

following. 

To group the events into timeslots without any conflict is a (vertex) 

graph coloring problem. Since the property of timing-conflict-free is 

considered as one of the most vital requirements a timetable solution must 

have, graph coloring is one of the key topics in UCTP. 

In the derived graph, a vertex represents the event, and an edge exists 

when two events are in conflict. A “valid” coloring is an assignment of 

vertexes with colors such that every two adjacent vertexes are colored 

differently. The graph coloring problem is defined to find the coloring with the 

least number of colors. One can define other types of graph coloring problem 

such as k-coloring which at most k colors can be used. In this case, weights 

could be set as the number of students in conflict. The objective function is 

minimizing the accumulated weights of violated edges. Solving graph coloring 

using exact approach currently needs exponential time (Byskov 2004). In 

practice, greedy coloring is usually used to speed up the computation. A 

greedy algorithm considers the vertexes of the graph one by one and assigns 

each vertex a first-fit color. The sequence usually reflects the “difficulties” of 

vertex coloring. This idea has been used to develop various graph-based 

heuristics in timetabling field. 
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Note that graph coloring is only a sub-problem of the complete 

timetabling problem, as the solution merely “groups” the events. Besides the 

room assignment, the timeslot assignment additionally requires a mapping 

from colors to the timeslots. In other circumstances, extra constraints are 

addressed, and it makes the complete problem more difficult.  

Multi-objective UCTP 

In many practical problems, more than one objective is involved, and these 

objectives are usually conflicting with each other. This issue exists in UCTP 

as well. More than one soft constraint tends to be considered in recent studies. 

For instance, the violation of SC5 and SC6 cannot be resolved simultaneously 

since the former constraint requires a dispersed time assignment of lecture 

sessions of the course, while the latter constraint requires a compact one. In 

our study, we also face a multi-objective optimization sub-problem which is 

addressed as the module selection problem in Chapter 4. Therefore we 

summarize the common solution techniques for solving multi-objective 

problems in the following.  

The first group of methods is transforming the multi-objective problem 

into a single-objective problem by using scalarization (Ismayilova, Sağir, and 

Gasimov 2007; Geiger 2009). A well-known example is weighted sum 

approach, in which the weights are usually positive.  By varying different 

weights, this approach performs well for problems having convex objective 

space. A critical issue is that this approach may lead to a single solution that 

may not be particularly useful when decision makers want to examine 
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tradeoffs of different objectives among multiple solutions. In addition, when 

the objective space is not convex, scalarization method may not explore some 

regions of pareto frontier and the “sampling” by using different weights/scales 

is not generally evenly distributed (Hwang and Masud 1979).  

The second group of methods utilizes the “preference” information on 

individual criterion. Specifically, methods which can be categorized in this 

group requires some “rank” information which means one is strictly more 

important than the other. Typical methods include utility function method, 

goal programming and lexicographic method (Ulungu and Teghem 1994).  

The third group of methods uses modified meta-heuristics which are 

able to consider multiple criteria. We use two examples to show how meta-

heuristics can be adopted. The first example is Generic Algorithm (GA). GA is 

a popular meta-heuristic approach in solving UCTP and it has the ability of 

generating multiple solutions simultaneously. According to the survey by 

Konak, Coit, and Smith (2006), the main change to traditional GA is on the 

fitness computation, i.e., how to select the solution into the parent 

population.14 A Pareto-based ranking scheme on population selection stage is 

                                                                                                 

14 In most methods in the multi-objective GA context, the ranking, fitness assignment 

and selection are applied before the GA operations. With the parent population generated, the 

GA operators such as crossover and mutation generate the offspring population, which has 

enough number of solutions for the population of the next generation. Usually no extra 

selection procedure is applied to this offspring population.  
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commonly used, such as Non-dominated Sorting Genetic Algorithm-II 

(NSGA-II) (Deb et al. 2002) and Strength Pareto Evolutionary Algorithm 2 

(SPEA2) (Zitzler et al. 2001). In addition, a good selection design has to 

maintain both the diversity and the elitism in the population (Carrasco and 

Pato 2001). The weakness of this approach is that the computational speed is 

too low. On the contrary, modified Greedy Randomized Adaptive Search 

Procedure (GRASP), proposed by Martí et al. (2011), can achieve higher 

computational speed. In this construction method, various criteria are selected 

in each construction step by given chances. Since the GRASP is widely 

acknowledged for its simplicity, efficiency and the ability to escape from local 

area, the modified GRASP is also light-weighted and fast to generate a 

solution.  

 The forth group of methods tries to explore the Pareto optimal 

solutions by using mathematical programming. These methods have the ability 

to generate (weak, in many cases) pareto-optimal solutions, but typically 

consume more time comparing to the first three groups. Several methods have 

been proposed, including Normal Boundary Intersection (NBI) (Das and 

Dennis 1996), Modified Normal Boundary Intersection (Shukla 2007) and 

Normal Constraint (NC) (Messac, Ismail-Yahaya, and Mattson 2003). 

Specifically, modified NBI improves NBI in proving pareto-optimality and 

was reported to achieve better computational efficiency when comparing with 

NC (Motta, Afonso, and Lyra 2012). 
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In our study, we try to solve a multi-objective sub-problem in two 

different approaches and use an intelligent selection method to call each 

approach adaptively. The first approach is a simple and quick method, while 

the second one is complex but can generate better solutions. As for the first 

approach, we use the modified GRASP due to its simplicity and high 

efficiency. We do not choose modified GA due to its low computational time. 

Also, we do not choose scalarization method because the objective space in 

our study is typically discrete. In addition, in our case the stakeholders literally 

give the same preference to each constraint (and some of them are considered 

as objectives in Chapter 4), the second group of approach is not adopted in our 

study either. For the second approach, we use modified NBI for the reasons 

highlighted above.  

2.2 Solution Techniques for UCTP 

We categorize the solution techniques for UCTP into two groups: One is exact 

approaches, and the other is heuristics. In the first group, UCTP is treated as a 

MIP problem, so the solution techniques naturally include those based on 

branch-and-bound methods and various decomposition approaches. In the 

second group, we discuss the genetic algorithm, which is primarily used as a 

single meta-heuristic in this field. We then discuss hyper-heuristics, which 

intelligently combines various heuristics together. 
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2.2.1 General Exact Approaches 

Exact approaches to UCTP mainly refer to the ways that build and solve the 

mathematical model. There are various mathematical models built for many 

problem instances described in the previous section, and most of them fall into 

the range of Integer Programming (IP). Branch-and-bound framework is 

dominantly used. However, due to the large number of variables/constraints in 

UCTP, the branching tree cannot be fully explored due to the big problem size. 

Therefore, branch-and-bound is usually combined with other techniques. 

In general, the key to the good performance in using branch-and-

bound-based approach is a “good” formulation 15  of the problem, i.e. the 

formulation is preferred to be close to the convex hull of the feasible set so 

that the duality gap is decreased, and the fewer rounds of branching is needed. 

The cost of generating a good formulation is that much more constraints are 

needed to approximate the convex hull (Wolsey 1998). Nevertheless, by 

following such an idea, there are generally two groups of approaches in related 

studies: (1) Outer approximation approach approximates the convex hull by 

intersecting half-space. One example is cutting plane method. It generates 

valid inequalities determined by a separation algorithm to improve the 

formulation. Branch-and-cut method, which integrates cutting plane method 

into branch-and-bound, generates tighter dual bounds at the node in the 
                                                                                                 

15 A formulation for a IP max{ , , }∈ ⊂ ×n pcx x X X Z R , a polyhedron +⊆ n pP R , which 
is described by a finite set of linear constraints, is a formulation for the set X in the IP iff 

( )= ∩ ×n pX P Z R   



Chapter 2 Literature Review 

28 

 

branching tree. (2) Inner approximation approach approximates the convex 

hull by supplementing partial description. Examples include column 

generation and Lagrangian method. Column generation dynamically 

introduces new columns, which is determined by solving a pricing problem. 

Branch-and-price, which integrates column generation into branch-and-bound, 

is used for those problems with huge amount of variables. Lagrangian method, 

on the other hand, mainly deals with structured IP with complicating 

constraints and transfers the problem into a series of Lagrangian relaxation 

problems with dual parameter. It solves the duals using a sub-gradient search 

rather than solving the restricted master problem in column generation.16 In 

addition, it can also be integrated into a branch-and-bound framework by 

developing primal heuristic, and this idea is adopted in our study. For more 

detailed technical description, see the literature by Galati (2010).  

In the studies on UCTP, the aforementioned approaches have been 

frequently applied in recent studies. The main motivation is that the 

natural/monolithic formulation, even for those problems with only a few set of 

hard/soft constraints, has been reported to be weak and requires excessive 

iterations to find optimal. 17  For those studies using cutting plane method, 

various parts of “natural” formulation have been reformulated. In the 

                                                                                                 

16 Since no efforts to solve a primal sub-problem and no primal solution information explored, 
Lagrangian method is usually quicker than column generation. 

17  A formulation merely represents the problem requirements and in most cases also a 
“compact” formulation with a polynomial number of variables and constraints 
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following two paragraphs, we give details on studies using branch-and-cut and 

branch-and-price in the following. 

For branch-and-cut approach in UCTP, except for HC4-HC6, nearly all 

other hard constraints can be used to imply better cuts or bounds. For instance, 

HC1 essentially describes a conflicting graph, and the properties in the graph 

could be used to develop cuts known as cuts from graph coloring (Campêlo, 

Corrêa, and Frota 2004). Among them, clique inequality has been reported to 

best strengthen the formulation. This inequality ensures that every event in a 

clique must be assigned with different timeslots. Another example is the lifted 

odd-hole cut (Avella and Vasil'Ev 2005). In addition, various cuts can be 

derived from soft-constraints. For instance, “natural” formulation of SC7 (See 

constraint (14-15) in Lach and Lübbecke 2012) has been replaced with a new 

set of constraints with less decision auxiliary variables and enumerated 

possible patterns. Hence, it becomes a strengthened formulation (See 

constraint (16) in Burke et al. 2012). 

For branch-and-price approach in UCTP, comparably fewer studies 

have adopted this method. An early study by Papoutsis, Valouxis, and Housos 

(2003) were on a school timetabling problem. Later, a study by Qualizza and 

Serafini (2005) was on solving UCTP. 18  In these studies, a column was 

defined as the course-timeslot-room pattern, which is an assignment of all the 

                                                                                                 

18 However many hard/soft constraints are not considered such as HC3 and most of the soft 
constraints. The objective is merely overall preference on the assignments. 
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required hours for the course to definite timeslots and definite classroom types. 

Common approach of branch-and-price procedure is used. 

In our study, we use the method of branch and bound as the general 

framework to solve an IP problem in Chapter 4, and combine the Lagrangian 

method by using it to obtain the dual bound. The main reason that we use this 

combination is that we can exploit a good structure once we relax certain 

constraints. In addition, as the numbers of rows and columns in that IP 

problem are generally similar, the beneficial of using either branch and bound 

and branch and price is questionable. 

Decompositions Techniques 

Even by employing various techniques, exact approaches may still be unable 

to tackle many problem instances of UCTP. In general three main difficulties 

have been reported. First, the IP solver is unable to handle the very large scale 

(e.g., hundreds to thousands of events, thousands of students and lecturers) 

and complex constraints (e.g., a large number of different hard constraints/soft 

constraints) in practice (Murray and Müller 2007). Second, the performance is 

not robust considering that the requirements in reality may change from time 

to time (Burke, Marecek, et al. 2010). Third, a good feasible solution is 

sometimes too difficult to obtain, even after tweaking the parameters of the 

solver, e.g., node/variable selection strategy, call frequency of a primal 

heuristic at node (Burke, Marecek, et al. 2010). 
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 As a result, decomposition is needed to decrease the dimension of the 

problem by solving a series of sub-problems so that the solver can handle. In 

fact, several problem instances of UCTP often offer a good structure for 

decomposition. For the objective functions, they are usually in the form of the 

weighted sum of penalties associated to the soft constraints. With carefully 

defined decision variables, the objective is separable.19 To demonstrate this 

idea, we show two decomposition directions in CBTP. The first one ignores 

the room assignment decision first and considers it later, while the second one 

generates some room assignments first and later determines the valid timing 

assignment. 

In Burke, Marecek, et al. 2010, the original problem was decomposed 

into two parts. The former part was called “surface”, and the latter part was 

called “dive”. In surface stage, a relaxed-problem was considered, in which 

HC2 and SC7 were ignored. The room assignment decision was hence not 

considered.20 However, to guarantee a time assignment yield a feasible room 

assignment, a validity constraint was added. The surface problem was solved 

by solver much quicker. Then with those solutions to the surface problem 

sorted by objective value increasingly, a number of divers were applied on to 

each. The diver was constructed as IP with different “solution” constraints (in 

                                                                                                 

19 Specifically, different soft constraints depend on different decisions: S1-S3, S5-S6 rely only 
on timing assignment, S7 only rely on room assignment. 

20  The author suggests that one can enumerate all possible scheme of ignoring terms in 
objectives by doing some numerical experiments beforehand to get prior information. An 
automatic approach of generating surface could be a future direction. 
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terms of the solution to the surface). Once a better dive problem was solved, 

the upper bound was updated to cut off later diver instances. The final solution 

was, of course, not a global optimal, but not that the lower bound was also 

provided. This approach is different from those heuristic approaches which 

iteratively improve the solution, but from numerical experiments the 

performance is very promising. 

On the other hand, the only constraint related to room allocation of 

lectures is HC2. Moreover, it is possible to determine a time allocation of 

lectures first (the first stage problem) in such a way that the feasible room 

allocation satisfying HC2 can be always generated by enforcing constraints. 

After that, one only needs to determine the perfect match from each lecture to 

a room for every timeslot (the second stage problem). The constraints enforced 

to implicitly satisfying HC2 during the first stage problem is related to the 

Hall’s theorem which restricts the number of lectures can be assigned to each 

timeslot according to the given lecture-room fitting relationships, e.g., lectures 

may only fit a subset of rooms (Jiang and Nipkow 2013). The advantage of 

this decomposition is that the number of constraints derived by Hall’s theorem 

in reality can be restricted to a reasonably scale. Therefore, the first stage 

problem as a IP is not hard to solve (Lach and Lübbecke 2008), and the second 

stage problem (a series of perfect matching problems) is very easy to solve in 

polynomial time without considering SC7. Notice that SC7 encourages that 

the same room is preferred to be assigned to multiple lectures belonging to one 

course. As a result, the solutions to the perfect match problem in the second 
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stage problem may not be the global optimal one with the new soft constraint 

considered. With respect to the solving methodologies for the second stage 

problem, one now has to come back to resort to a general IP model rather than 

a simple LP. 

In our study, none of the aforementioned decomposition techniques are 

directly used. This is because our study has a different set of constraints and 

the timing is fixed. However, in an indirect way, the idea of decomposition in 

our study shares some similarity with the one of relaxing HC2 in previous 

studies. In both ways, constraints which consider a different set of decision 

variables are identified and the decomposition is performed on them. In our 

studies, we identify a set of constraints which only considers room allocation 

while the others consider module reallocation decisions. By relaxing those 

constraints first we are able to determine module reallocations first. We then 

determine the room allocation by reconsidering these constraints. 

2.2.2 Genetic Algorithm and Other Heuristic Approaches 

When the problem scale gets bigger, the effectiveness of the exact approach 

may deteriorate fast. On the other hand, obtaining the true optimal is not very 

important. Instead, a good feasible solution may already meet the requirement 

of stakeholders, and sometimes stakeholders prefer to be presented with more 

than one option. In these cases, heuristic approach becomes more appropriate 

to solve UCTP. In this section, we first discuss Genetic Algorithm (GA), 

which is chosen due to its popularity among variant heuristics in this field. We 

demonstrate how GA can be adopted to solve traditional UCTP and multi-
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objective UCTP. We then discuss the hyper-heuristics that may overcome the 

weakness from individual heuristic by incorporating and intelligently selecting 

several simple heuristics. Although these heuristics cannot be directly applied 

to our study, the ideas such as the constructive approach and local reparation 

share similarity with our research. 

GA for UCTP 

GA is a population-based search algorithm that typically concentrates more on 

exploration than on exploitation. GA has been successful applied in solving 

UCTP from many literatures. We describe two key topics to show how GA is 

adopted to solve UCTP. We first discuss the chromosome encoding method, 

because a chromosome encoding which captures the structure of UCTP may 

help increase the performance of GA greatly. We then discuss the way that 

GA is combined with neighborhood-search techniques in order to improve the 

search performance. 

 Chromosome encoding is vital to finding a good solution using GA. To 

solve timetabling problem, there are three chromosome representations 

commonly used in the literatures, namely traditional representation 21 , 

permutation representation and grouping GA representation. 

 For traditional representation, chromosome usually stores the 

information of the assignment for each event explicitly, and ordinary GA 

                                                                                                 

21 This representation is also called literal encoding by Davis (1991), and straightforward 
encoding by Falkenauer (1997). 
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reproduction operators22 are used, such as one-point/two-point crossover. The 

encoding usually uses an array. The array can be single-dimensional or multi-

dimensional. Take the example of a one-dimensional array, the element refers 

to the events, and the value of the element refers to the allocated timeslot. If 

the room allocation is also to be determined, a two-dimensional array is used 

in which the second dimension stores the room allocation decision. Examples 

can be found in studies by Corne, Ross, and Fang (1994); Ross, Hart, and 

Corne (1998); Deris et al. (1999); Perzina (2007); Yang and Jat (2011).  The 

main issue with direct representation is that the ordinary crossover and 

mutation operators tend to generate illegal solutions. For instance, some 

timeslot are assigned with many events but others are assigned none. One 

needs to repair the offspring before it forms the next population, e.g., collect 

the illegal events, form them into a list with some order, assign them to 

available timeslots so far. 

For permutation representation, no direct information of the 

assignments is encoded in the chromosome. Instead, it includes a permutation 

of events as the input for a decoder to transform into an actual solution. The 

decoder is often a greedy “scheduler”, which sequentially assign events into 

timeslots (and rooms if required) based on some rules. For instance, the first 

element (e.g., event) in the chromosome would be the first one to be processed 

by the decoder to generate a corresponding assignment. As a result, the search 
                                                                                                 

22 In this thesis the reproduction operators refer to the genetic operators such as crossover, 
mutations, etc. It does not refer to the process to copy/survive individuals from generation to 
generation (Falkenauer 1997). 
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space highly depends on the decoder and may not reflect the whole actual 

search space. Using this indirect representation requires different reproduction 

operators to keep the order information to the offspring. As for the crossover 

operator, several different methods are used, and we describe two of them: 

The first one is partially mapped crossover (PMX) (Falkenauer 1997). Two cut 

points are randomly selected and the strings in between for two parents forms 

the mapping section. This substring is exchanged in the offspring, and the rest 

of elements are filled up with an element from its parent according to the 

mapping. The second one is uniform order-based crossover (Davis 1991). In 

this modified operator, two parents are filtered by a generated bit string 

template (0/1 mix rate is fixed) with the same length, i.e., positions from 

first/second parents. Meanwhile, the template that shows 1/0 are kept into the 

offspring. The remaining spaces in the first offspring are filled by the ones 

from the second parent. Second offspring is generated similarly. As for the 

mutation operator, scramble sub-list mutation is commonly used (Davis 1991). 

It selects a random-length sub-string in the parent chromosome and permutes 

it into a child. The number of infeasible solutions generated in the 

reproduction phase may be reduced, as the decoder specifically handles the 

infeasibility now. The solution quality may also be improved as the decoder 

can at least greedily consider the objective function. Besides the 

aforementioned incompleteness of search space, another main issue related to 

the permutation representation is the encoding redundancy. For instance, 

altering the order of the first three of four elements in the chromosome may 

not yield a different solution as the decoder will still assign them into the most 
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prioritized timeslot. In the extreme case when we only focus on the graph 

coloring problem, the redundancy is high as we are only interest in the 

grouping rather than the exact assignment from the group to the timeslot. In 

addition, reproduction operators may not yield different offspring either. For 

instance, mutation operators in the reproduction phase may need to generate a 

long and very different sub-string to keep diverse.  

For grouping GA representation, the encoding is “group” oriented, 

which is different from previous two ways of representation. Every element in 

the chromosome stores the information in terms of grouping of events rather 

than a single event. It can be implemented by a variable-length array, which 

was introduced in Grouping Genetic Algorithm (GGA) by Falkenauer (1997). 

This implementation provides original encoding structure which merely 

considers the timing assignment (Eiben, van der Hauw, and van Hemert 1998; 

Erben 2001; Agustín-Blas et al. 2009). Another very popular form is by using 

a matrix (Lewis and Paechter 2005; Lewis and Paechter 2007). A row 

represents one room, and a column represents one timeslot. In this case, 

reproduction only works on groups, i.e., columns. It should be noted that the 

major difference between the previous two representations is not only in the 

encoding itself but also in the design of the reproduction operators. In GGA, 

both crossover and mutation operate on groups rather than events. On the 

other hand, one can always use the direct encoded chromosome to derive the 

grouping information first, and then apply the grouping GA operators in order 

to adapt the traditional encoding to a GGA. Various GGA crossover designs 
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have been proposed and most of them follow the scheme stated by Falkenauer 

(1997): Random crossing sections are firstly selected for both parents, where a 

crossing section reflects some of the groups in one parent. To generate the first 

offspring, we inject the crossing section of parent 2 before the position of 

crossing section of parent 1. We then eliminate the duplicated events in the 

original parent 1. As a result, some groups from parent 1 may be completely 

eliminated or left with only a few events. Depending on the objective function 

(e.g., minimizing the number of timeslots), such timeslots with too few events 

may be of poor quality, so an “adapting” process can be called which simply 

considers these events as unplaced (Falkenauer 1999). Adaption is usually 

implemented by some heuristic which assigns them back into existing groups 

or creates a new group with a better objective evaluation (Lewis and Paechter 

2007). In this sense, adapt is similar to the heuristics used in permutation 

encoding. Mutation operator also works on groups/timeslots. Some randomly 

selected timeslots can be eliminated and the events associated could be 

assigned into some existing timeslots to create a diverse new solution. In 

addition, the group positions can be altered by invention, which reverses the 

groups within two randomly selected positions in the chromosome 

(Falkenauer 1999; Lewis and Paechter 2005).  

Moreover, GA may overlook the exploitation of the search and may 

not dive deep enough to find a good solution. We describe two methods that 

GA can combine with to resolve such limitations, namely guided search and 

Variable Neighborhood Search (VNS). 
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Guided search is an obvious choice for GA because one can enforce 

the good parts of the population to survive in the next offspring, which is 

discussed by Yang and Jat (2011). The authors kept extracted information 

from the population on those events with zero penalties23 associated and the 

corresponding timing and room assignments. A child was produced by either a 

normal crossover operator or a special constructive process which used the 

extracted information. 

 VNS can be incorporated with GA to increase the generality of the 

method. In studies by Burke, Eckersley, et al. (2010), GA was used to search 

the order of the neighborhoods in one run of VNS (i.e., try all the 

neighborhoods). Therefore, the chromosome was defined as a permutation of 

neighbors. 24 An initial generation of populations was generated with either 

greedy or random methods, and the corresponding solutions can be found after 

applying local search on each neighborhood according to the permutation 

within the VNS. The fitness of a chromosome was defined as the 

improvements between the solution after applying the current chromosome 

ordering and best solution in the initial generation. With the fitness evaluation, 

GA used the proportional selection and ordinary reproduction operators to 

generate a new permutation of neighborhoods. 

                                                                                                 

23 The penalties are in terms of both hard constraints and soft constraints. 

24 In that study duplication of neighborhoods is allowed in the chromosome but is essentially 
ignored when calculating the fitness value (and applying within the VNS). 
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From our observations and experiments, we find that it is hard to 

directly use the GA to solve our overall problem, which is still a MIP. 

Specifically, we find that the set of constraints make GA generate too many 

infeasible solutions from steps of population generation. In addition, 

reparation method seems difficult to be effective as there are usually too many 

violations presented. A preliminary test showed that GA is not suitable to 

solve our overall problem. In other words, GA is still not good enough to 

provide good feasible solutions for our overall problem. On the other hand, 

GA shows some potential to solve small scaled MIP problem (i.e., the number 

of constraints are relatively small) and the problem structure can be exploited. 

In our study, we use GA to solve a sub-problem of the overall problem, 

namely the core of the multi-dimensional knapsack problem. In that problem, 

the number of constraints is reduced very much. Also, the “matric” of each 

“item” is non-negative, which means the chrome representation of GA can be 

designed as a permutation of items while the solution can be constructed by 

simply packing items as long as no violation is incurred in every dimension. 

Moreover, we use the dual values (of each item) of the LP relaxation to 

provide additional evaluation on the population as the guidance of search. 

Hyper-heuristics 

Hyper-heuristics have attracted much attention in the field of timetabling in 

recent years. The motivation of using hyper-heuristics is that the “simple” 

meta-heuristics tend to require some level of detailed problem-specific 

knowledge in order to achieve promising results for some special kind of 
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problems. As a result, hyper-heuristics improves the generality for solving a 

range of timetabling problems. A hyper-heuristic utilizes more than one low-

level heuristic during the search process to cope with different problem 

settings. From one iteration to another, a high level heuristic manages the calls 

for either one low-level heuristic from the heuristics pool or a combination of 

several low-level heuristics, and the management rules are usually based on 

the historical performances of the low-level heuristics. In some studies , once a 

good solution is found in some iteration, a local search was performed in order 

to find an even better one (See, e.g., Burke et al. 2007; Ersoy, Özcan, and 

Uyar 2007). The stopping criteria are usually the computational time or the 

number of runs. The main feature in hyper-heuristics is that the search space is 

based on the performance of low-level heuristics rather than the actual 

solutions. In our study, we use this idea of the hyper-heuristics by employing a 

two-approach method to generate a module selection in Chapter 4. 

Specifically, we develop a mechanism to intelligently select one of the two 

approaches in each iteration. Nonetheless, in the following, we summarize the 

application of hyper-heuristics in UCTP field and the two different main 

designs from the literatures. 

Hyper-heuristics have been applied to several general and relatively 

easy timetable problems to raise the generality of the search methodologies. 

For instance, many studies on hyper-heuristics have considered Uncapacitated 

Exam Timetabling Problem (UETP) (Pillay and Banzhaf 2009; Qu, Burke, and 

McCollum 2009). In UETP, The hard constraints include HC1 and HC7, and 
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the soft constraints may vary slightly from one instance to another, but 

commonly include constraints like SC2. The word “incapacitated” means that 

there are no hard constraints such as HC2, HC3 or HC4. In such case, both 

hard constraints and soft constraints become less complex. For this reason the 

low-level heuristics could be easily developed and coded. 

 Typically, the low-level heuristics are usually those light and simple 

ones. The way that how the high-level heuristic calls low-level heuristics in 

the candidate solution generation phase can be divided into two approaches. 

The first one is called improvement approach. 25  This approach iteratively 

improves candidate solution, and in each iteration it generates a complete 

solution using only one low-level heuristic by selecting from a solution pool in 

one iteration. The second one is called constructive approach25. It interactively 

constructs candidate solutions, and in each iteration it uses a permutation of 

heuristics from the pool rather than one specific heuristic, and each heuristic 

derived by a specific element in the permutation only generates a partial 

solution. In either case, if the generated solution is infeasible, a reparation 

method is called, e.g., back track techniques, heuristic to penalize the rank of 

the problematic (Qu, Burke, and McCollum 2009), tabu heuristic (Burke et al. 

2007). 

                                                                                                 

25 The naming follows that by Burke et al. (2007). For the improvement approach, it is also 
named by researchers as moving approach or perturbative approach by Qu, Burke, and 
McCollum (2009). 
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In the improvement approach, a low-level heuristic is firstly selected 

by a select method, and the candidate solution in the last iteration is applied by 

this selected heuristic. Then the new solution is generated by applying an 

acceptance criteria. In the following, we summarize related studies in the field 

of exam timetabling which is in general very similar to course timetabling. We 

describe (1) the low-level heuristics; (2) the select method; (3) the acceptance 

criteria. 

The low-level heuristics is often based on two types of neighborhoods: 

The first type is a simple move or exchange operation. An exam is randomly 

chosen and moved to a random26 timeslot, or two exams are randomly chosen 

and their assigned timeslots are exchange, or two exams are randomly chosen 

and moved to a new timeslot independently. The second type is an improving 

move or swap operation: The move or swap has an aim to improve the fitness 

function based on the violation improvement of one set of hard/soft constraints. 

Move operation can change grouping of exams while swap operation 

additionally change the “consecutiveness” between groups (Burke, Eckersley, 

et al. 2010). Besides, there are other types of neighborhoods with special 

purpose. One of them is a Kempe chain swap, which specifically ensures that 

the swaps are feasible and can find a new move after applying previous two 

types of heuristics alone. As more exams can be swapped at the same time, the 

neighborhood could be further explored (the trade-off is the computation time). 

                                                                                                 

26 As usual the randomness here can refer to a pure uniformly random or randomness based on 
a tournament strategy. 
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See studies by Thompson and Dowsland (1996); Burke, Eckersley, et al. 

(2010). 

There are plenty of select methods and acceptance criteria used in the 

literatures. Table 2-2 summarizes the select methods which are commonly 

used in the literatures and Table 2-3 summarizes the acceptance criteria.27 

With respect to the performance of improving approach, tabu search and 

choice function as well as improving and equal criteria are reported to have 

the best performance (Burke, Kendall, and Soubeiga 2003; Bilgin, Özcan, and 

Korkmaz 2007). 

 

                                                                                                 

27 Besides the listed ones in the table, some other select methods are sometimes used in the 
literatures, including: Case-based selector (Burke, Petrovic, and Qu 2006), Reinforce learning 
forced selector (Nareyek 2003), SA (Dowsland, Soubeiga, and Burke 2007) and GA (Han and 
Kendall 2003. Note that in this article a chromosome represents a list of low-level heuristics to 
call, i.e., it selects a heuristic list rather than a specific one). Other acceptance criteria include: 
Great Deluge Algorithm (Kendall and Mohamad 2004). 
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Table 2-2 Common select methods in the improvement approach 

Simple Random Choose randomly at a time (in only one iteration). 

Random Descent Choose randomly once but apply it in the following 
iteration as long as it improves the solution. 

Random Permutation Generates a permutation of heuristics initially, and 
apply each heuristic in each iteration. 

Random Permutation 
Descent 

Similar to Random Permutation, but apply a 
heuristic repeatedly if the improvement shows. 

Greedy Apply all the heuristics in each iteration but choose 
the one producing the best solution. For studies on 
methods from Simple Random to Greedy (Bilgin, 
Özcan, and Korkmaz 2007). 

Choice Function Different from previous methods, this method 
considers diversity. For each heuristic, its overall 
improvements and recent improvements 28  in the 
historical calls and the time elapsed since this 
heuristic was last called jointly form a weighted sum 
function as the choice function. As a result, a 
descent search is focused when the improvement is 
large 29, and a diverse search is focused when the 
improvement is low. Various methods have been 
proposed to automatically determine the weights 
See, e.g.,  Cowling, Kendall, and Soubeiga 2001; 
Kendall, Soubeiga, and Cowling 2002). 

Tabu Search Low-level heuristic is ranked and selected to call. 
After the call, its rank will be increased only when a 
positive improvement is made in the derived 
solution and decreased otherwise. In the latter case, 
current selected heuristic is inserted into the tabu 
list, and other heuristics already in the tabu list is 
released if the improvement is negative. The tabu 
list plays a role to prevent a heuristics that performs 
bad recently to be applied again too soon (Burke, 
Kendall, and Soubeiga 2003). 

                                                                                                 

28 The idea of considering both historical performance as well as recent performance is very 
similar to the idea of exponential smoothing, and it can be deducted that this part of evaluation 
is literately predict the future performance of the low-level heuristic. 

29 A large improvement means a large positive improvement value of the new solution derived 
by the low-level heuristic. A low improvement means a small positive or even negative 
improvement value. 
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Table 2-3 Common acceptance criteria in the improvement approach 

All Move (AI) All new solutions are accepted (Cowling, Kendall, and 
Soubeiga 2001). 

Only Improving 
(OI) 

Only the one which improves candidate solution is 
accepted (Cowling, Kendall, and Soubeiga 2001). 

Improving and 
Equal (IE) 

Only the one which does not worsen the candidate 
solution is accepted (Bilgin, Özcan, and Korkmaz 
2007). 

Monte Carlo (MC) OI + also randomly accept the non-improving new 
solution (Ayob and Kendall 2003). 

Different from the improvement approach, a solution is built 

incrementally in the constructive approach. an initial solution is generated first 

followed by a local search. This approach can also be used when a partial 

solution is given and it constructs the undetermined part. In many cases, 

constructive approach determines an order of the decision points during the 

construction and then applies some allocation rules in each decision point. 

Constructive hyper-heuristic approach utilizes several constructive 

heuristics as the low-level heuristics. It combines them by executing 

sequentially with a specific call sequence. Each call considers those decision 

variables not determined yet and determines one or several of them before 

passing the newly constructed partial solution to the next call. This method 

iteratively explores the search space of call sequences. Therefore, two slightly 

different call sequences could generate two very different solutions. In the 

following, we describe three key elements in this approach: (1) the low-level 

heuristics; (2) the neighborhood of call sequence; (3) the local search methods. 
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Among those constructive low-level heuristics, graph heuristics is 

commonly used especially when to solve exam timetabling problem. This is 

because this type of problems can be reduced into a graph vertex coloring 

problem where the vertex refers to the exam and the edge to the confliction. 

The graph heuristics determines an order of exams according to specific rules. 

After the solution is generated, a local search is sometimes implemented. 

Typical variants of graph heuristics are listed in Table 2-4. Specifically, the 

third column of the table indicates whether the ordering for the unscheduled 

exams is updated every time an exam is constructed into the solution. Among 

these methods, it is reported by Burke et al. (2007); Pillay and Banzhaf (2009) 

that LSD was able to generate comparably better feasible solutions. Therefore, 

a sequence concentrating on LSD is often used as the initial call sequence. To 

break a tie, these methods, except RO, need to introduce some randomness 

(Burke, Qu, and Soghier 2012). 

Table 2-4 Comparison of commonly used graph heuristics in solving UETP 

Heuristics Sorted by Update on 
order 

LD: Largest degree Conflict Static 

LCD: Largest color degree Conflict with 
unscheduled 

Dynamic 

LSD: Least saturation degree Feasible Timeslot Dynamic 

LWD: Largest weighted 
degree 

Conflict /w Enrolment Static 

LE: Largest enrolment Enrolment Static 

RO: Random ordering / Dynamic 

The initial call sequence can be generated randomly or based on some 

prior knowledge. For instance, in studies by Pillay and Banzhaf (2009), exams 
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were ordered according to the Pareto comparison on the scores derived from 

different hybrid graph heuristics. The neighborhoods of call sequence varied 

from literature to literature: exchange position of two randomly chosen 

heuristics (Burke et al. 2007); change the heuristics to a random one in n 

randomly chosen positions (Qu, Burke, and McCollum 2009) or n randomly 

chosen consecutive positions (Qu and Burke 2005). Besides these simple 

moves, one can also embed with a VNS framework with different strategies, 

e.g., descent-ascent, biased one which focuses on exams with highest penalties 

(Qu and Burke 2005), or tabu search (Burke et al. 2007; Burke, Qu, and 

Soghier 2012). The occurrence of a low-level heuristic in the call sequence 

may be used to assign only one exam (Qu, Burke, and McCollum 2009) or 

several ones (Burke et al. 2007) to the timeslots. In addition, even the same 

sequence may yield different timetables in different runs, since there may exist 

multiple feasible timeslot assignments. 

As for the local search, it tends to help reach those solutions that 

cannot be found by hyper-heuristics. The most popular local search method 

implemented in a constructive approach is deepest descend search that moves 

events to other timeslots as long as an improvement can be obtained (Burke et 

al. 2005; Burke et al. 2007). 

With respect to the performance of the constructive method, a mixture 

of results is reported. It is found that the performance depends on many factors 

including the number and the composition of the low-level heuristics, the 

usage of RO or similar randomness ordering scheme, the usage of local search, 
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the conflict density30 in the dataset, etc. In general, the constructive method is 

able to obtain sound results for many problems, including those hard problems 

(comparing to the results obtained by specifically developed algorithms). 

In our study, it is challenging to use the hyper-heuristic approach to 

solve the overall problem directly. The main reason is that it is challenging to 

develop a simple heuristic to solve the overall problem by computing 

sufficient feasible solution of good quality. Therefore, combing multiple 

heuristics are even more challenging because it is also required to understand 

the strength and weakness of each individual heuristic. However, we adopt 

this idea by combining different approaches to solve a sub-problem in Chapter 

4. We develop two sub-approaches to solve the module selection problem. The 

two approaches (both solve a multi-criterion problem. One focuses on 

computational efficiency and the other on solution quality) are combined in 

such a way that different iterations in the overall framework may call one 

approach or the other. The way of selection is similar to the aforementioned 

choice function and tabu search. Particularly, diversity is maintained by giving 

more chances for the approach which focuses on efficiency. The current sub-

approach may be repeatedly executed until the assessment of solution quality 

shows a deterioration to some extent.  

 

                                                                                                 

30 It is defined as the ratio of the number of exams in conflict to the total number of exams. 
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Chapter 3  Data Analysis and Problem Modeling for 

MRPT  

3.1 Overview 

We first describe the problem overview of MRPT. A new campus is planned 

and built. Unlike the usual practice that some faculties are moved to the new 

campus, stakeholders define the intention of the new campus in this study as to 

create an environment which can nurture creativity, innovation and enterprise. 

The courses offered on the new campus is planned to be chosen from existing 

ones (that are offered in the original campus), which means a reallocation of 

modules is needed. One of the key requirements for the new campus is to 

involve students with diverse backgrounds so that different ideas can be 

openly exchanged. Hence, the stakeholders set a target to assign courses such 

that a good distribution of students from different disciplines can attend 

classes there. Moreover, the stakeholders would like students to enjoy the 

facilities on this new campus as early as possible. Therefore, it is preferred 

that the first-year and second-year students (i.e., junior students) become the 

majority of students who take courses on the new campus.  To ensure a vibrant 

environment, the stakeholders also set a minimum requirement on resource-

utilization on the new campus. 

 On the other hand, the stakeholders do not want to change the 

timetable from the current one for the practical reasons. These reasons are 

summarized in the following. Typically, variant curriculums exist at different 
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schools/departments in the medium and large university. As a result, there 

exist many intangible and unquantifiable constraints that we cannot capture; 

on the other hand, the schools/departments usually have built and deployed 

their preferred timetable for the sake of flexibility. Any changes to the existing 

timing may hugely disrupt the current educational activities and every faculty 

may be affected. As a result, the stakeholders collect the corresponding 

information on the current timetable from individual school/department and 

provide us one complete piece of timetable for all related modules. This 

timetable is then strictly followed in our study on MRPT.  

 The aforementioned considerations by stakeholders add a new 

dimension of complexity in the university timetabling problems. This is 

because that frequent commuting between two campuses by students who are 

heading for their classes is expected. We call the corresponding traffic (flow) 

between campuses the inter-campus traffic (flow). As the main commuting 

way to transport students between campuses is the shuttle bus service, if the 

module reallocation is not done properly, the potential inter-campus traffic 

flow can be so high that the shuttle service might not be able to handle the 

load.31 Moreover, the students might be late for classes. As a result, in MRPT, 

the stakeholders hope to identify the modules to be assigned to the new 

campus which can handle the high traffic flow while ensuring a good 

                                                                                                 

31 Timetable can also affect the traffic flow. However, as mentioned already the timing is 

fixed in MRPT. 
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distribution of students across faculties, a high proportion of the first-year and 

second-year students and meeting a minimum resource utilization requirement. 

  To model MRPT, we first study the data given by stakeholders. 

Specifically, the key information we investigate include that how students 

register for modules, which school/department every student comes from and 

which admit term every student belongs to. We use historical student records 

to obtain the aforementioned data. These records also help us to predict the 

potential student registration for each module, as well as the relationship 

between two modules (i.e., the number of common students who register for 

both modules. This relationship can help us to estimate the potential student 

movement between the two courses when the timetabling schedules are given. 

With such information we learned, the traffic flow can be predicted under 

some assumptions, and the requirements set by the stakeholders can be 

specified into constraints with parameters. 

In the next section, we discuss how we analyze the data and show the 

useful information we learned from his data analysis. In Section 3.3, based on 

the results from the data analysis, we introduce the mathematical 

programming formulation for MRPT. In Section 3.4, we conduct a series of 

numerical experiments to solve the mathematical model by commercial solver. 

The problem instances used are from the real data. In Section 3.5, we discuss 

the computational perforamcen of the results from numerical experiments 

conducted in previous, and highlight the limitation from solving MRPT by 

using the commercial solver. This motivates our further study in Chapter 4. 
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3.2 Data Analysis 

Before we model MRPT, we first need to look at the data and obtain an 

overview of this problem. In addition, we need to determine the corresponding 

parameters that are used to do the problem modeling, such as student 

enrolment for each module and the student movement between modules. 

However, in the actual practice, the schedule and the venue need to be fixed 

before the student registration, so it is impossible to have the actual parameters 

before we solve the model. As a result, we propose to use the historical student 

registration records to estimate these parameters. We believe that this 

historical data will provide sufficient accuracy, and the main reason is that 

many of these modules are compulsory modules, especially for the first-year 

and second-year modules. Students have to select a fixed set of modules from 

semester to semester following the requirement set by their department and 

faculty. Since the student intake of the department on each year does not vary 

a lot, the enrollments for these compulsory modules are expected to be stable. 

For those non-compulsory modules where students can freely choose, even 

though their enrollment number might not be as stable as the compulsory 

modules, we expect that they will not impact negatively on traffic movement 

in our study. This is because most of the students are rational, and they will 

not choose back to back modules (modules consecutive conducted) to 

inconvenient themselves if these two modules are located on different 

campuses. 
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By using certain data analyzing techniques, we can obtain the module 

information from the data: the timing of each class for all modules, the venue 

where each class is held and the faculty which each module is offered by. 

Moreover, we can also obtain the student information: the faculty and admit 

term that a student belongs to and the modules that a student takes. From these 

pieces of information, we can compute some statistics (parameters) such as the 

number of students registered for a module and the proportion of students 

across faculties as well as first-year and second-year students taking each 

module. In the remaining part of this section, we list some of key statistics for 

one specific semester in our data as an example. The means to obtain such 

statistics and the insights that these statistics may provide are also discussed. 

Numerical experiment in Section 4 will also use this piece of data.  In the 

following, we first show an overview on this piece of data. By conducting the 

data analysis, we then discuss how we help the stakeholders to determine the 

parameters with regard to their three main requirements, followed by our 

method to understand the nature of the inter-campus traffic by looking at the 

correlation among modules.  

There were a total of 10173 undergraduate students, 402 modules 

offered by six main faculties after we have performed some preprocessing on 

the data.32 Table 3-1 shows the distribution of modules in terms of the module 

                                                                                                 

32 Only undergraduate students are considered in this study, which is treated as a pilot study. 

Other students, such as graduate students, are planned to be considered in the future. 
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size (the student enrolment for each module).  It shows that about 43% of 

modules had a class size less than 50 students, and only about 13% of modules 

had more than 250 student enrolments. Many small modules were either 

elective modules or modules of higher levels which were usually taken by 

senior students when they wanted to be specialized in a certain area. For those 

big modules, there were either general education modules or compulsory 

(fundamental) modules which are mainly taken by lower year students. Note 

that the class size (the number of students attending one lecture/tutorial) may 

be smaller than module size. This is because the capacity of the classroom was 

limited. For example, the student enrolment for first-year compulsory 

engineering modules can be as high as 1500 students, while the largest lecture 

room can only occupy 600 students. In this case, the attending students were 

divided into several classes, and they can be held at different times or in 

different rooms.  

To help the stakeholders decide the parameters with regard to their 

requirements (e.g., faculty fairness, junior student priority and room utilization) 

about the new campus, we conduct various detailed analysis. First, we 

investigate the distribution of module size by the offering faculties. This 

information is also presented in Table 3-1. We find that the three major 

faculties, which are the faculty of engineering, the faculty of science and the 

faculty of arts and social sciences, contributed about 80% of the total modules 

offered in the university.  Among these three faculties, faculty of engineering 

offered relatively fewer big modules. However, from Table 3-2, the 
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distribution on the student-module count shows that engineering students 

contributed the most. 33  It is because engineering curriculum required the 

students to take basic science and mathematics modules as compulsory 

modules. On the other hand, although the faculty of arts and social sciences 

offered many modules, a lot of these modules were also taken by other 

students because the university adopts a broad-based education. As a result, 

the student module proportion on the faculty of arts and social science was 

relatively smaller.  

Based on these findings (and attitudes by the three main faculties), the 

stakeholders decide to set a guidance distribution as (30%, 30%, 30%, 10%) 

for faculty of engineering, faculty of science, faculty of arts and social 

sciences and other faculties. 

                                                                                                 

33 The student module count counts every student-module pair which representing students’ 

module selections. For instance, a student attends three modules per week. For each of the 

three modules, his attendance contributes one student-module count. 
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Table 3-1 Number of modules and % of offering faculties grouped by module size range 

Module 
Size Range 

Number of 
modules 

% from 
Engineering 

% from 
Science 

% from 
Arts and 
Social 
Sciences 

% from 
Other 
faculties 

0-50 171  30% 24% 28% 18% 

51-100 92 30% 22% 29% 19% 

101-250 87 17% 32% 28% 23% 

251-600 43 20% 31% 32% 17% 

> 600 9 20% 33% 31% 16% 

Total 402 26% 26% 29% 19% 

Table 3-2 Distribution of student-module count w.r.t origin of faculties 

Table 3-3 Distribution of student-module count w.r.t student grade 

1st year student 2nd year student 3rd year student 4th year student 

33% 30% 23% 14% 

Similarly, we analyze the distribution of student-module count by 

analyzing the admit terms of students and grouping them by grades (e.g., first-

year student, second-year student). The portion of junior students was 

currently 63%, partially because the university we study increases the 

enrollment of new students from year to year. As stakeholders specifically 

want to specifically attract junior students to enjoy the facilities on the new 

campus, they decide to set a guidance ratio as high as 80%. 

The level of the minimum requirement for room utilization on the new 

campus is determined in a more complex way. A range of classrooms is 

offered on the new campus from small tutorial room to large lecture theatre. 

Engineering Science Arts and Social Sciences Other faculties 

33% 29% 28% 10% 
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On one hand, high utilization is preferred by stakeholders especially for those 

large rooms because the expensive facility and equipment can be properly 

utilized. On the other hand, setting a very high utilization level results in a 

large number of modules to be allocated, and its large module size typically 

leads to a high inter-campus traffic flow. In other words, the determination of 

this parameter partially depends on the solution to MRPT. To help 

stakeholders to set a promising level, we first define the measure of utilization 

of rooms as the weekly occupational hours. Then, we use part of the 

mathematical model developed in the next section to conduct scenario analysis. 

The model does not consider the inter-campus traffic, but considers the criteria 

related to resource utilization of different levels. With results generated from 

different scenarios, we are able to present the stakeholders with the potential 

of highest room utilization that can be achieved and the corresponding inter-

campus traffic (The computation method is described later.). By carefully 

evaluating these results, the stakeholders decide that large classrooms should 

be highly utilized, although the resulting impact on inter-campus flow could 

be high. The small classrooms, however, is not needed to be highly utilized. 

This is because from the results we show that the small rooms are relatively 

excessive. Stakeholders then realize that these rooms can also be the venues 

for students’ activities to help increase the low utilization from ordinary 

educational usage. The detailed decision on the utilization requirement is 

described in Section 3.4. 
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Aside from helping the stakeholders to set the parameters, we also try 

to understand the inter-campus traffic. Intuitively the inter-campus traffic is 

contributed by students who move for their next classes. As the timing is given, 

the students’ movement behaviors primarily depend on their module 

registration. In other words, to understand the traffic across campuses, we first 

need to understand the relationship between different modules. With such 

considerations, we first investigate the “overlap” between modules. We then 

use the overlap to address the relationship of modules by grouping them into 

clusters. We find that these clusters provide insights on understanding the 

inter-campus traffic. We describe these three steps in the remaining of this 

section. 

The module pair overlap, or simply overlap, is computed by analyzing 

the enrollment data. The overlap 
1 2i io  for every module pair 1 2,< >i i  is 

obtained by counting the number of students taking both modules 1i  and 2i . 

When the course pair has high overlap, it means that these two courses are 

highly related, and hence can be a potential high contributor for traffic: Those 

students specified by 
1 2i io  may all need to travel between campuses if their 

time schedules fall in the same day but they are held on different campuses. 

From our analysis, the data show that there are significant module pair 

overlaps, i.e., many modules are related regarding student registration. Among 

these highly related modules, we can further categorize the overlaps into three 

groups in terms of the nature of relationship, i.e., strong structure overlap, soft 

structure overlap and preference overlap. Strong structure overlap is for those 
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module pairs where both modules need to be taken together by students as 

compulsory modules, which are required according to the curriculum. Soft 

structure overlap refers to those registrations that can be counted toward their 

major requirements such as modules related to department’s specialization or 

technical modules. Preference overlap refers to those module pairs, where at 

least one of them is an elective module which satisfies the general university 

requirement. Typically they are the modules other than their major 

requirement, e.g., general education modules, broad-based modules. Even by 

knowing this grouping, the overlaps in each group still vary significantly. 

Therefore, we also group the modules in terms of overlaps by using the 

following clustering method, and show the result by combining the overlap 

type information. 

We use a method based on the idea of clustering to identify the 

modules which are highly related, i.e., groups of modules such that modules 

inside the group have high overlap values while modules between groups have 

low overlap values. Overlap now plays the role of distance, i.e., high overlap 

indicates short distance. Specifically, our method uses the idea of  the 

hierarchical clustering method (Hastie et al. 2013), which is a typical variant 

of connectivity-based clustering methods. We adopt the ideas of connectivity-

based clustering because the traffic is contributed by the actual number of 

students who take classes on different campuses, or simply by the value of 

overlap. For the same reason, we do not consider the distribution, density or 

centroid of the module groups, which are other major topics in the field of 
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cluster analysis. Our method is essentially a single-linkage clustering method, 

or closest-neighbor clustering. In other words, the distance between two 

clusters 1C  and 2C  is defined as ( )
1 2

1 1 2 2
1 2 ,
, max i ii C i C

d C C o
∈ ∈

= . Given the initial 

clusters such that each module is a single cluster, the method iteratively 

generates merged cluster by picking two clusters to merge so long as their 

distance is no less than a given threshold value, λ , until no more clusters can 

be merged. The main difference from the original hierarchical clustering 

method is that λ  in our case has a practical meaning to determine whether the 

‘connection’ between modules is significantly high or not and is pre-

determined by stakeholders. This helps us to do the merging in one run rather 

than to merge one by one. This method is summarized in Algorithm 3-1. 
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Algorithm 3-1: Module-clustering method 

input Set S I= ( :I  the set of modules), module pair overlaps   
    { }1 2 1 2| ,s so s s S∈ ,the threshold λ  and count 1n = . 

1  repeat 

2   select s  from S  to construct a new module cluster nC , i.e., { }nC s= , set 
   \{ }S S s= . 

3   for all module pairs 1 2,s s  such that 1 ns C∈ , 2s S∈  

4    if 
1 2s so λ≥  then 

5     { }, \{ }n nC C i I I i= ∪ = . { } { }2 2, \n nC C s S S s= ∪ = . 

6    end if 
7   end for 

8   1n n= + . 

9  until S =∅  

output all obtained nC  . 

As an example, we apply this algorithm to our data, and the results 

show that we can obtain around 22 clusters when stakeholders set λ =50 (i.e., 

any overlap between two modules which belong to different clusters is less 

than 49.). We find that those big clusters usually contain modules from more 

than one faculty, and those smaller clusters usually consist those modules from 

individual faculty. Inside these clusters, we can further identify the type of 

overlaps so as to draw some insights on why they are highly related. Figure 

3-1 shows the largest cluster among the 22 clusters obtained by running 

Algorithm 3-1. For this cluster, it can be further divided into six sub-clusters 

using the Iterative Conductance Cutting algorithm (Kannan, Vempala, and 

Veta 2000). This algorithm hierarchically splits one cluster into two by finding 

the minimum conductance cut. The key idea of this algorithm is to make sure 
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that there are more inner-connections within a sub-cluster compared to the 

inter-connection between sub-clusters. From the result after running this 

algorithm, the formation of these sub-clusters reflects the actual situation in 

the University. Most of the sub-clusters have modules come from the same 

faculty. For example, modules in the sub-cluster 5 are all from school of 

business, and they are strongly linked because most of the modules are 

compulsory courses within the faculty and their overlaps all belong to the 

group of “strong structure overlap”. The sub-cluster 1 contains modules 

coming from faculty of science, faculty of engineering and school of business. 

The reason for this large sub-cluster is that there are many first-year 

engineering students need to take sciences and mathematics modules as their 

compulsory subjects. Moreover, a lot of science students taking some popular 

business modules. Hence, the three types of the overlap can all be found in this 

largest cluster. 
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Figure 3-1 Results of sub-clusters34 in the biggest cluster when λ=50 

The results from clustering analysis indicate that there exist some 

groups of modules that within the clusters the correlations among modules are 

high. In addition, these groups share some common features, such as the 

similar offering faculties for the majority of the modules within the group. To 

optimize the inter-campus traffic, there may exist trivial solution such that 

assigning clusters to different campuses accordingly. However, the 

aforementioned requirements set by stakeholders prevent adopting these trivial 

solutions directly, as there are too many restrictions for a “cut” of clusters to 
                                                                                                 

34 Note that the tag of modules in this figure does not refer to any real ones.  
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satisfy. This finding indicates that MRPT is challenging. On the other hand, 

the clustering analysis provides us a way to find good solution indirectly with 

the following insight: The correlations of modules are primarily contributed by 

typically a subset of modules. Later, we are able to develop a surrogate 

measure of the inter-campus traffic. Details are discussed in Section 4.2.2.  

3.3 Problem Modelling 

With the preparation described in the last section, we formulate the MRPT as 

an MIP model in this section. We start from a brief description of MRPT. 

 We consider two campuses. Campus A is the existing campus, and 

campus B is the new extension. The aim is to identify modules to be taught at 

the campus B such that the traffic movement between the two campuses is 

minimized. We do not consider the traffic movement within the same campus 

as it has been taken care in the existing shuttle bus services. For the constraints, 

we consider the student proportion across different faculties has to follow 

certain target proportion, and also the first-year and second-year student 

proportion has to be at least greater than a certain target value. Note that for 

the target proportion values, we use the student-module count instead of using 

the individual student count because it is easier to implement in the model. On 

the new campus, there are different sizes of lecture rooms available. Since the 

student numbers for different modules are different, when we select modules 

to be assigned to the campus B, we will also determine which type of lecture 

rooms they should be allocated to. Note that although it is not possible to 

assign a big module to a small room, we will also want to ensure that no small 
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modules are assigned to big rooms so as the lecture rooms can be better 

utilized. 

 The following assumptions are made: 

1. The students’ movement behavior will not be affected by the 

module reallocation decisions. 

2. We assume the length of each interval is 15 minute since we are 

measuring the student movement per 15-minute interval. We call it 

the student movement rate. 

3. We do not consider the student movement for students attending 

the first lecture and students leaving after the last lecture in a day. 

4. If a student needs to attend another lecture at the other campus, we 

assume that he will choose a time to travel to the other campus 

based on uniform distribution.  

5. All lectures start at the hour and end at 15 minute before the next 

hour, e.g., 8AM to 9:45AM. 

6. The class time can be from 8am to 8pm, Monday to Friday.  

Notations 

 We list the parameters first, followed by decision variables. Among the 

parameters, we highlight two, namely traffic parameters, as both (each 

represents one direction) are important components to model the inter-campus 

traffic. 
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General parameters: 

T : the set of one-hour timeslots in a week for timetabling. We only 

consider those timeslots in which inter-campus traffic will occur. For instance, 

suppose in every one of the five working days the first module in a day ends at 

9AM and the last module in a day starts at 8PM, then 60 timeslots are needed 

and { } {1,...,60}=t . For example, 13=t  refers to the 8AM-9AM slot on 

Tuesday in this case. In addition, we also use the index t  to tag the last 15-

minute period in its one-hour-long period, which is used to compute the traffic 

contribution.35 For example, 13=t  also refers to the 8:45AM to 9AM period. 

Lectures and tutorials are all categorized as classes. A class may be short and 

occupy only one timeslot (such as a tutorial) or be long and occupy multiple 

continuous timeslots (such as a lecture). 

I : the set of modules. Each module i  may have several lectures and 

maybe even several tutorials associated.  

J : the set of room types on the new campus. Each room type j  has 

several rooms with the same or similar capacity and function. In general, 

lectures or tutorials of a lecture will be created in a similar size, making 

allocating all lectures or tutorials from one lecture to one single room type 

possible. 

                                                                                                 

35 The traffic contributions in other three 15-minute periods are no more than the last period, 
so we only need to focus on the last 15-minute period. 
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jk : the number of rooms of room type j . 

U : the set of faculties, e.g., Faculty of engineering, Faculty of science, 

Faculty of laws.  

ip : the number of students taking module i . 

u
ip : the number of students taking module i  who are from faculty u . 

iq : the number of year 1 and year 2 students taking module i . 

1 2,it itd d : the number of lectures/tutorials of module i  that are conducted 

in timeslot t . Note that we allow multiple lectures/tutorials for the same 

module, which means for some ′∈


i I , there exists more than one ′∈t T  such 

that 0′ ′ ≠i td . 

1 2,Ω Ωj j : the set of modules whose lectures/tutorials are all compatible 

with the room type j , i.e., 1∈Ω ji / 2∈Ω ji  implies all the lectures/tutorials of i  

have the proper sizes that will not exceed the room capacity and not waste 

spaces of type j . For instance, a module with 80 attenders is compatible with 

room types of 90 and 120 attenders, but not compatible with 150 attenders 

because the occupation ratio is considered too low. 

1 2,i ie e : the number of timeslots that lectures/tutorials of module i  use 

per week. We assume 1 2,i ie e  are all positive integers for all module. Therefore, 

1 1 2 2, ,= = ∀ ∈∑ ∑i it i it
t t

e d e d i I . 
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1 2,Ξ Ξi i : the set of matched room types for lectures/tutorials of module 

i . 

ug : the preference target ratio of faculty u in terms of fairness. For 

each faculty u , there is a preference of the ratio of the student module count 

from u  on the new campus to the one from all the faculties. This ratio 

represents the level of involvement from a faculty, thus a large faculty may 

prefer for a higher ratio.  

χ : the required minimum proportion of year 1 and year 2 student 

module count on the new campus to the overall one on the new campus.  

ξu : the threshold used in the faculty fairness constraint. With it, we 

allow some mismatch between the target ratio of involvement from u  and its 

actual involvement. 

jl : the number of timeslots per week that is required to be utilized for 

room type j  . Normally the higher the capacity of the rooms is, the higher jl  

is. 

1 2i iv : Auxiliary 0-1 variable. It is supposed to be 1 if module 1i  is 

reallocated, while 2i  is not. 

Traffic parameters: 

1 2

1
i i tr : the traffic contribution (direction: from the new campus to the old 

campus) in the 15-min timeslot specified by t  if module 1i  is reallocated (to 



Chapter 3  Data Analysis and Problem Modeling for MRPT  

70 

 

the new campus) but 2i  is not. It is computed through (1) computing the 

average student-movements at t  in that direction caused by every possible 

class pair with respect to the module pair ( )1 2,i i , (2) Summing up all these 

averages. For instance, assuming, on Tuesday, module 1i  and 2i  has only one 

lecture and no tutorials respectively, although they may have classes on other 

days. The lecture of 1i  ends at 1PM and the lecture of 2i  starts at 3PM. 30 

students take both lectures. Let t  in this case representing the 1:45PM to 2PM 

period on Tuesday. Consider the case that 1i  is reallocated but 2i  is not. The 

average movement contributing 
1 2

1
i i tr  at t  from pair ( )1 2,i i  is hence 30/9 as 

there are nine 15-minute periods between the two lectures. 

1 2

2
i i tr : the traffic contribution (from the old campus to the new campus) 

at timeslot t  if module 1i  is reallocated but 2i  is not. According to this 

definition, we have 
1 2 2 1

1 2
1 2, , ,= ∀i i t i i tr r i i t .  

Decision variables: 

ijx : the 0-1 decision variables representing whether the lectures of 

module i  are assigned to room type j  on the new campus. Denote set 

{ : , }= ∀ ∈ ∈ijX x i I j J . Note that lectures or tutorials from one module are 

allowed to be allocated to at most one room type. 

ijy : the 0-1 decision variables representing whether the tutorial of 

module i  is assigned to room type j . Denote set { : , }= ∀ ∈ ∈ijY y i I j J .  
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Module selection decisions: The decision that which modules are 

reallocated 

iv : the 0-1 variable representing whether module i  is reallocated to the 

new campus. This variable is defined only for simplicity. Denote set 

, : 1 iif 1
 

= ∈ = = 
 

∑i i ij
j

V v i I v x . 

As a quick comment, { }ijx  and { }ijy  are called module reallocation 

decisions. They decide which modules are reallocated and which room type 

the corresponding lectures and tutorials are assigned to. { }iv  are called 

module selection decisions. They decide which modules are selected to be 

reallocated. 

Note that we need both 
1 2

1
i i tr  and 

1 2

2
i i tr  to capture inter-campus traffic of 

two directions. One may argue that many of them may be zeroes so that the 

complexity of the objective function is greatly reduced. This is partially 

correct. In reality there do exist several modules such that at most one class is 

held per day. For such module pairs, it is not possible to have traffic flow of 

two directions, and so for the corresponding 
1 2

1
i i tr  and 

1 2

2
i i tr , at least one is 0. 

However, in reality there are also many modules which may have multiple 

classes on the same day. For instance, one module is so large that students 

have to be split into two groups. The big scale of the school, the teachers’ 

preference and the scarcity of the resources are possible reasons. Two of such 

modules may incur a traffic flow at some timeslots from both directions if they 
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are assigned to different campuses. In this case, both corresponding 
1 2

1
i i tr  and 

1 2

2
i i tr  are non-zero.  

Also note that, if for any module there is at most one class held on each 

day, at least one from 
1 2

1
i i tr  and 

1 2

2
i i tr  is 0. However, this assumption is not true 

in reality especially for large university. It is possible that both 
1 2

1
i i tr  and 

1 2

2
i i tr  

for specific 1 2, ,i i t  are positive. For instance, both 1i  and 2i  can have multiple 

classes on the same day of t , e.g., two lectures of 1i  are held to cater two 

groups of students, as well as for 2i . Given the location of modules (but 

assuming they are on different campuses), it is possible that some of students 

from 1i  need to travel to attend class of 2i , and vice versa.  Therefore we can 

have traffic from both directions with respect to only one module pair. For this 

reason, we need both 
1 2

1
i i tr  and 

1 2

2
i i tr  to model inter-campus traffic.  

 With parameters in MRPT described, we discuss the objective function. 

This function is to minimize an inter-campus traffic measurement, which is the 

worst-case scenario of traffic rates across different time slots and directions.  

We denote this inter-campus traffic measurement as: 

( ) ( ) ( )1 2 1 2 1 2 1 2

1 2 1 2

1 2

, ,
max max ,0 , max ,0
∈

∈ ∈

 
= − − 

 
∑ ∑i i t i i i i t i it T i i I i i I

F V r v v r v v   (3.1) 

In this measurement, ( )1 2 1 2

1 2

1

,
max ,0

∈

 
− 

 
∑ i i t i i

i i I
r v v  represents the traffic 

rate derived from new campus to old campus at timeslot t , and 
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( )1 2 1 2

1 2

2

,
max ,0i i t i i

i i I
r v v

∈

 
− 

 
∑  represents the one of the other direction. (Note that 

( )1 2 1 2max ,0 1  is relocated and  is not− = ⇔i iv v i i . ) Both depend on the 

decisions of all modules, i.e., not only on those which are selected to be 

reallocated, but also on those which are not. 

It should be noted that our traffic modeling has a limitation. The traffic 

measured in (3.1) might be higher than the actual traffic movement. This is 

because when we compute the student movement, we only use the first order 

information, i.e., the course pair overlap. However, it might be possible that 

there are higher order effects which can bring down the student movement. 

For example, a student is taking three modules in the same day, the first 

module is at campus A and the remaining modules are at campus B. After 

taking the first module, the student will move to campus B and spend his 

remaining time there to take the second and the third modules. In our model, 

by only considering the overlap, we will double count by considering both 

overlaps between module 1 and module 2, and between module 1 and module 

3. Fortunately in the next section we can show that this higher order effect is 

small. 

Because (3.1) is not in linear form, we linearize it with the following 

formulas by introducing real variable z  and aforementioned auxiliary 

variables { }1 2i iv  (detailed proof is shown in A.3): 

min z    (3.2) 
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Subject to 

{ }
1 2 1 2

1 2,
, 1, 2 ,

∈

≥ ∀ ∈∑ n
i i t i i

i i I
z r v n t    (3.3) 

( )1 2 1 2 1 2, ,− ≤ ∀ ∈∑ i j i j i i
j

x x v i i I    (3.4) 

( )1 2 1 2 1 2
1 1 , ,
2
 

≤ + − ∀ ∈ 
 

∑i i i j i j
j

v x x i i I  (3.5) 

{ }
1 2 1 2; 0,1 , ,∈ℜ ∈ ∀ ∈i iz v i i I   (3.6) 

With a linear objective function, the MRPT can be modeled as a MIP 

problem P1: 

[P1] min z   

Subject to 

(3.3)-(3.6) 

( ) ( ),

,

1 1 ,

u
i ij

i j
u u u u

i ij
i j

p x
g g u

p x
ξ ξ− ≤ ≤ + ∀

∑
∑

  (3.7) 

,

,

χ≥
∑
∑

i ij
i j

i ij
i j

q x

p x
   (3.8) 

( ) 0,− = ∀ ∈∑ ij ij
j

x y i I    (3.9) 

1,≤ ∀ ∈∑ ij
j

x i I    (3.10) 
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1 2 , ,+ ≤ ∀ ∈ ∈∑ it ij it ij j
i

d x d y k t T j J   (3.11) 

1 2 ,+ ≥ ∀ ∈∑ i ij i ij j
i

e x e y l j J    (3.12) 

1 20, ; 0,= ∀ ∉Ω = ∀ ∉Ωij j ij jx i y i    (3.13) 

, {0,1}, ,∈ ∀ ∈ ∈ij ijx y i I j J   (3.14) 

In P1, The decisions we make include (i) modules reallocation: 

whether or not to relocate the module i  to the new campus 

( 1 Relocated= ⇔∑ ij
j

x  and 0 Not relocated= ⇔∑ ij
j

x  ); (ii) room 

assignments : for reallocated module i , which room types should its lecture(s) 

and tutorial(s) (if any) be assigned 

( 1 lecture(s) of module  assigned to room type = ⇔ijx i j  and 

1 tutorial(s) of module  assigned to room type = ⇔ijy i j ).  Decision variables 

{ }1 2i iv  and z  are then implied by these two decisions. 

The constraints to satisfy include the followings: 

(1) Faculty fairness: constraints (3.7) ensure that the distribution of 

students-module count from a specific faculty on the new campus is consistent 

with the desired distribution. The reason for this restriction is because in this 

problem all faculties have equal utilizing opportunity. The student-module 

count is one way to measure the contribution of faculties’ involvements. 

Therefore, the distribution based on this measurement represents the fairness 
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of involvement among faculties. If the actual ratio for faculty u  equals the 

desired ratio ug , then ,

,

u
i ij

i j
u

i ij
i j

p x
g

p x
=

∑
∑

. As an equality constraint would be too 

strong in practice which can easily lead to infeasibility, we allow a range 

centered at ur  which is specified by ξu . As a result, these constraints can also 

apply to those situations such that there is a preference on faculty utilization 

distribution. 

(2) Student preference: constraints (3.8) ensure that the first-year 

and second-year student proportion on the new campus is no less than the 

required level. To see this, 
,
∑ i ij
i j

q x  represents the actual 1st and 2nd student-

module count, and 
,

i ij
i j

p x∑  represents the overall student-module count given 

the actual module reallocation. The main reason of setting this restraint is to 

promote future student enrollment. In general, it can refer to any constraints 

which prioritize a specific module group.  

(3) Room assignment: It includes several parts. Firstly, it is not 

allowed to have lectures and tutorials to be on different campus, as typically 

the tutorial is scheduled right after the lecture. In addition, because of the 

similarity in size, all the lectures/tutorials of a module must be allocated to 

only one room type on the new campus if this module is reallocated. These 

requirements are illustrated jointly by constraints (3.9) and (3.10). Secondly, 

each room type has a limited number of rooms which restraint the number of 
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classes can be assigned per week, which is illustrated in constraints (3.11), and 

we call them capacity constraints. Thirdly, each room type should be utilized 

well, which is measured by its weekly occupied hour. The occupation hour in 

each room type shall be larger than the desired level, which is illustrated in 

constraints (3.12) and we call them demand constraints. Fourthly, the classes 

assigned should be compatible with the room types. Constraints (3.13) ensure 

this requirement.  

We can conduct some redundancy check on the problem instance. We 

start from room assignment constraints. All coefficients in type 2 constraints 

are positive so that some variable fixing or elimination of constraints is 

possible. First we can reform (3.11) and (3.12) to the following inequalities: 

, ,ρ′ ≤ ∀ ∈ ∈∑ it ij j
i

d k t T j J  and ,ρ′ ≥ ∀ ∈∑ i ij j
i

e l j J  where ρij  refers to any 

decision variables that is not fixed to zero due to (3.13) and ′itd  and ′ie  are its 

corresponding coefficients in (3.11) and (3.12). Then we check the validity of 

the following conditions: (1) ,′ > ∀ ∈∑ i j
i

e l j J , (2)
,

max ,′ ≤ ∀ ∈it ji t
d k j J  (3) 

min ,′ ≤ ∀ ∈i ji
e l j J . If some is violated, either the corresponding decision 

variable can be fixed to zero, or the whole constraint is redundant. In the 

remaining part of this paper, we assume these conditions are all met. We then 

check type 1 constraints. Note that it is possible that some coefficient is 

negative, reflecting that selecting the corresponding module will move away 

from the target ratio. Similar redundancy check is hence not effective. 
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We briefly analyze the scale of P1. In total, there are 

( ) ( )2 22Ο + ≈ ΟI I J I  columns and ( ) ( )2 2Ο + + + = ΟT J U I I I  

rows, as normally  ( )max , ,>I T U J . In practice, I  can easily go up to 

hundreds, thus the scale of this MIP problem could be enormously large. 

3.4 Numerical Experiments 

We conducted several numerical experiments based on the data that is used in 

Section 3.2. Experiments were grouped by different constraint requirement, 

ranging from slack to strict. In addition, we examined the higher order effect 

mentioned in the ending of the last section is not severe. 

In Table 3-4 we show five sets of scenarios based on different 

parameter settings. Scenario A was the reference case which was used in our 

real-world project. In this scenario, we controlled the faculty fairness 

parameters by setting three largest faculties to have roughly equal number of 

student-module counts in campus B, i.e., between 30% and 36%. We also 

controlled the first-year and second-year student-module count proportion to 

be at least 80%. For the room utilization requirement, we required at least 8 

hours usage per day per room for big rooms; at least 6 hours for medium 

rooms; and no requirement for small rooms. In order to study the impact of the 

faculty fairness, in Scenario B, we relaxed the constraint (4). Similarly, we 

investigated the impact on the student preference constraint by relaxing 

constraint (5) in Scenario C. Scenario D and E referred to the impact on the 
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room utilization requirement by varying RHS of constraint (6). In particular, 

we looked into a medium and a low utilization requirement.  

Table 3-4 Five scenarios and their parameter settings 

Parameter 
settings 

Scenario 
A  

Scenario 
B 

Scenario 
C 

Scenario 
D 

Scenario 
E 

Faculty 
fairness 

1 1 1, ,
3 3 3

 
 
 

 - 
1 1 1, ,
3 3 3

 
 
 

 1 1 1, ,
3 3 3

 
 
 

 1 1 1, ,
3 3 3

 
 
 

 

Junior 
student 
preference 

80%≥  80%≥  50%≥  80%≥  80%≥  

Room 
utilization (8,6,0)  (8,6,0)  (8,6,0)  (6,3,0)  (4,1,0)  

Table 3-5 summarizes the solutions given by the solver for all five 

scenarios. They were obtained by running CPLEX 11 on an Intel Core 2 

2.6GHz desktop. The code was programmed in C# by calling .NET 

CONCERT interface. We chose C# and API because it is also a convenient 

way to design and implement a user interface which the user should be more 

familiar with. In fact, the way of using CPLEX was identical throughout this 

work. The computational budget given to every scenario was about 1 hour. It 

should be highlighted that the solver in no scenario can obtain optimal solution 

within 1 hour. In fact, the actual performance (including solution quality, the 

number of feasible solutions obtained) was very poor. The details are shown in 

the next section. 
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Table 3-5 Result summary for 5 scenarios 

Evaluation Scenario 
A  

Scenario 
B 

Scenario 
C 

Scenario 
D 

Scenario 
E 

OBJ: Objective 
value in P1 

246.9 128.4 178.3 89.4 76.5 

No. of modules 
reallocated 

146 186 208 98 137 

Scenarios B and C are relaxed problems of scenario A where we 

observe lower traffic movement and more modules are being assigned to 

campus B. For scenario B, it is found that modules from school of business, 

which was a relative small faculty, were mostly assigned to campus B. In fact, 

all modules from sub-cluster 5 in Figure 3-1 were assigned. Further analysis 

suggested that the assigning of these business modules to campus B would not 

affect too much on the traffic because these modules were mainly taken by 

their own students. For scenario C, the improvement in the objective value 

was not as significant as scenario B. We can explain this in multiple ways. 

First, many of the large modules were primarily first-year and second-year 

modules, and since we needed to have high utilization on the larger room, 

most likely these first-year and second-year modules would still need to be 

assigned to campus B even though we are able to relax the constraints. 

Moreover, in order to maintain the faculty fairness, many small modules 

which were taken by the higher year students would be forced to assign to 

campus B. Hence, in scenario C, the traffic movement was more than scenario 

B and more modules were assigned to campus B.   
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Another interesting observation is that more number of modules 

assigned to campus B did not always imply higher traffic. For scenario B and 

C, even though we had more modules assigned to campus B, the traffic was 

smaller. This can be explained by the fact that we can always assign the 

modules which have high overlap to the new campus together.  

For scenario D and E, lower traffic was observed because we had 

lower room utilization requirement on large lecture room. In general, large 

modules can potentially contribute more traffic. In addition, since scenario E 

had the lowest utilization requirements on large rooms, it essentially had more 

options to select those big modules with lower movement rate contribution. 

However, it may violate other constraints such as the faculty fairness and 

student preference constraints. This can be resolved by selecting more small 

modules which we observed by comparing scenario E and scenario D.  

Table 3-6 Result summary for 5 scenarios with other evaluations 

Evaluation Scenario 
A  

Scenario 
B 

Scenario 
C 

Scenario 
D 

Scenario 
E 

OBJ: Obj value in 
P1 

246.9 128.4 178.3 89.4 76.5 

OBJ1: Traffic 
impact without 
using overlap 

224.1 126.7 162.9 86.3 74.4 

OBJ2: Traffic 
impact only 
considering back-
to-back  

219 124 156 85 74 

In the end of this section, we show that effect of higher order effect. 

Table 3-6 compares our model objective (OBJ) with the actual traffic (OBJ1) 
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which was computed by the student movement based on every student’s 

timetable after the course assignment plan was given (which is the solution for 

OBJ).  It shows that the difference between them was very small. A brief 

explanation of why the higher order effect was insignificant is that the 

condition to form a significant high-order overlap is typically strong. For 

instance, to form an overlap with order of 3, three modules which are strongly 

related are needed to be scheduled to the same day. Since a group of modules 

which are highly related are commonly offered by the same department, it is 

unlikely that the department arrange three such modules on the same day. The 

higher the order of overlap is, the lower the chance of scheduling on the same 

day is. It is hence expected that the actual traffic (OBJ1) is not over-estimated 

a lot. Furthermore, we also compared the model objective with the back-to-

back traffic movement (OBJ2) for the assignment plan. The back-to-back 

traffic movement is defined as the number of students who need to travel to 

the other campus immediately after the end of the lecture because they are 

taking consecutive courses that are located on different campuses. The 

difference between OBJ and OBJ2 was very small, which indicates that the 

back-to-back traffic movement contributes to the high proportion of the worst 

traffic. The main reason for this insignificant effect is that, for every student, 

the average number of modules taken within a day is typically relatively small. 

In general, our results influenced the stakeholders’ decisions in real life 

in several ways. First, they used our results in planning the modules of the first 

year on the new campus. Although the results were not directly adopted as 
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there are some other considerations that the stakeholders must take in the end 

(which is beyond our territory) but most of the modules and room allocation 

are from our results. In fact, the final model we solved was very simplified in 

which only about 100 modules were to be selected. This was due to the fair 

amount of constraints addressed from various departments since they 

concerned that their own students may suffer from problematic traffic. 

However, this situation was resolved in the following years due to the success 

from the first year’s running. Second, the traffic evaluation from our results 

also suggested that the current shuttle bus system could not handle the students 

unless investing more buses based on the computed traffic values(it also 

means that our model cannot decrease the traffic for ever in the presence of the 

set of constraints). As a result, more buses were later deployed to help ease the 

traffic pressure. Third, the best we could do at that time is using the historical 

data. Consequently the results shown by our model at that stage should be 

worse than the results from the real data, which were captured in the planning 

process of the second year on the new campus. It is reported that the results 

from the following year is more consistent with the real traffic. 

3.5 Discussion 

Several issues related to using solver to solve MRPT are observed and 

discussed in the following. 

(1) The unpromising performance of the solver on our test case: 



Chapter 3  Data Analysis and Problem Modeling for MRPT  

84 

 

The results of numerical runs show that CPLEX cannot find the 

optimal solution for any test case before it runs out of memory.36 Numerical 

results also show that obtaining a relatively good solution (gap%<=15%) is 

not possible in 20 hours for all scenarios To conduct further investigation, we 

create two new sets of experiments, and both have no limit in computation 

time. We first conduct experiments on all five scenarios in the default setting 

of CPLEX. On average, 8.2 feasible solutions are found and within which, 

there are only 1.1 solutions that are within 30% optimality gap. We then 

change parameters of the solver to focus feasibility, and the number of feasible 

solutions is increased by 240% on average. However, the number of good 

solutions rarely changed as only 2.2 solutions are obtained on average.  

(2) The impact from the scale of the problem: 

In the test case of our study, we use a scale of a moderate scale of 

university, and I  is several hundred and T  is 40. In a typical large 

university, the number of variables can be even more, e.g., I  goes up to 

thousands. In addition, the number of indicator variables introduced in P1 is 

2I T ,  bringing much more variables. Such a large number of variables has a 

significant impact on performance of conventional solution techniques, e.g., 

each LP relaxation problem requires a large amount of time to solve to 

optimality during the branch and bound. 

                                                                                                 

36 The way of test case generation is described in the appendix. 
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(3) Possible reasons for the aforementioned issues. 

We investigate the problem structure. By analyzing the constraints part, 

we expect that finding a feasible solution of P1 is rather difficult. For instance, 

even if we fix the module selection, the leftover problem is a room assignment 

problem which tries to find a feasible room assignment for all selected 

modules. This assignment-type problem is a hard problem, because we show 

in 4.3.2 that it can be transformed into several knapsack-type problems, e.g., a 

constrained multiple multidimensional knapsack problem, or a multiple multi-

dimension knapsack problem after relaxing several constraints. All such 

problems are well-known difficult ones. 
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Chapter 4 An Iterative Two-Phase Approach to MRPT  

4.1 Overview 

In Chapter 3, we find two main difficulties in solving P1 (described in 3.5). 

The first issue is that the solver cannot find good solutions for our test cases. 

The second issue is that when the problem scale becomes larger, the solver 

may not even find a feasible solution. As a result, we develop a heuristic that 

overcomes the aforementioned difficulties.  

We investigate the problem structure of P1 and finds out that it is 

possible to categorize the decision variables and constraints into two groups, 

which are shown in Table 4-1: 

Table 4-1 Groupings on constraints and decision variables 

Constraint Categorization Decision 

Type 1 Constraints 

faculty fairness and student preference 
constraints (3.7-3.8) 

Module selection 

iv : Whether module i is selected 
to reallocate 

Type 2 Constraints 

room constraints (3.9-3.13) 
Room assignment (depending on 
the module selection) 

ijx and ijy : the room types 
assigned to the lecture/tutorial of 
module i 

Under this grouping, we find that type 1 constraints only depend on 

module selection variables, while type 2 constraints only depend on the room 

assignment given by the module selection. We cannot determine the room 

assignment decision without determining the module selection decision first. 

In addition, the objective value only depends on the module selection decision. 
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As a result, we first ignore the room assignment decision by searching for a 

module selection that has a good objective value. After we obtain a set of 

modules that are to be reallocated, we can further determine their room 

assignment. 

Motivated by this idea, we develop a sequential two-stage approach. 

The first phase is to find the modules that are to be allocated to the new 

campus and also satisfy type 1 constraints. Even though we do not consider 

the room assignment decision in this phase, we do consider type 2 constraints 

(which are related to the room assignment) implicitly.  By doing so, we hope 

that the results from phase 1 can help us to find a feasible room assignment in 

the phase 2 easily. When a feasible module selection is found in phase 1, we 

proceed to phase 2 which is to find the feasible room assignment for these 

modules that satisfy type 2 constraints. If we can find such an assignment, the 

overall solution becomes a solution candidate for P1. Otherwise, we restart the 

algorithm. When a feasible module selection is not found in phase 1, we also 

restart the algorithm. Through this way, we iteratively repeat these two phases 

until the stopping criteria (time budget) is reached. The suggested solution is 

the best solution among those that are found so far. In addition, in every 

iteration, we learn useful information from the result of previous runs to adjust 

certain parameters for the future iteration. The process is shown in Figure 4-1, 

and the details on the two phases are described in the following. 



Chapter 4 An Iterative Two-Phase Approach to MRPT 

88 

 

 

Figure 4-1 The overall framework of the proposed heuristic 

In the first phase, we use multi-objective optimization framework to 

solve the module selection problem for two reasons. First, many type 1 

constraints have negative coefficient (e.g.,  for  in (3.8)). By 

treating them as hard constraints, the constructive method may stop too soon 
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to find a feasible solution. Second, the violations of type 2 constraints have to 

be also monitored, and the typical way is to minimize their aggregated 

violation. Therefore, the multiple objectives consider the original objective, 

the violations of type 1 constraints and the violations of the aggregated 

measure of the type 2 constraints.37 Under this framework, we propose two 

approaches to tackling the problem. In each iteration, we choose one approach 

from the two based on the results from the previous iteration.  

In approach 1, we use a greedy constructive approach to select 

modules one by one. In each construction step, we first randomly select one 

objective from the multi-objectives discussed before. Based on the selected 

objective, we rank those unselected modules accordingly. We then randomly 

select one module among those good candidates according to their 

performances. The construction process is stopped when either a solution 

satisfying type 1 constraints is found or the solution shows no improvements 

in redusing violations after a number of consecutive steps. If we cannot find a 

solution satisfying type 1 constraints, we use a reparation method to repair the 

infeasible solution. After the feasible solution is found, a local improvement 

process is executed in order to further improve the objective value while 

                                                                                                 

37 As for simplicity, we say “aggregate type 2 constraints” by aggregating room capacity 

constraints (3.11) and room utilization constraints (3.12) respectively. For the former 

constraints, constraints of different room types and time slots are aggregated. For the latter 

constraints, constraints of different room types are aggregated.  
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maintaining the feasibility in terms of type 1 constraints. The details of the 

approach 1 are discussed in Section 4.2.1. 

In approach 2, instead of using the constructive approach which selects 

module one by one, we explicitly build an MIP-based multi-objective model to 

select the modules. In the proposed MIP model, we specifically set two 

objectives. The first objective considers the inter-campus traffic by 

introducing a surrogate measurement based on the results from cluster analysis 

mentioned in chapter 3. The second objective considers the violations of a 

subset of type 2 constraints in an aggregated way. The type 1 constrains 

remain as hard constraints, while the rest of type 2 constraints are considered 

in such a way that the violation of the aggregated measure cannot exceed a 

certain threshold. We solve this MIP model by using the idea of NBI method 

which are summarized in Chapter 2. Similar to approach 1, if we can find one 

feasible solution, local improvement will be applied accordingly. The details 

of the approach 2 are discussed in Section 4.2.2. 

In the second phase, based on the module selection obtained in the first 

phase, we try to find a feasible room assignment. We first formulate it as a 

MIP model and then use the branch and bound framework to solve this 

problem. We branch on the possible room assignments for a selected module. 

We use Lagrangian relaxation method to solve the sub-problem in the branch 

and bound framework, and use a primal heuristic to find a solution in case that 

the result from solving by Lagrangian relaxation method is not integral. 

Specifically, the dual bound and primal bound obtained help us to prune the 
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branch. When using the Lagrangian method to solve the sub-problem in the 

branch, we show that it can be decomposed into a collection of multi-

dimensional knapsack-type problems, which give us an efficient way to solve 

the problem. The Lagrangian dual is solved by the sub-gradient search method. 

On the other hand, the primal heuristic is based on Constraint Programming 

(CP) technique. The details of phase 2 are discussed in Section 4.3. 

4.2 Phase 1: Module Selection Problem (MSP) 

The goal of the first phase is to identify a set of modules such that reallocating 

these modules satisfies type 1 constraints while having a good objective value. 

Type 2 constraints, however, are not ignored completely. This is because if so, 

there would be no control on the room assignment and it can be very difficult 

to find a room assignment for the resulting reallocation solution. Instead, we 

consider type 2 constraints indirectly by using aggregating method. We now 

define a module selection { }{ }0,1 ,= ∈ ∈iV v i I , indicating whether module i  

is selected or not, which is a solution to MSP modeled by P2: 

[P2]  ( ) ( )1 2 1 2 1 2 1 2

1 2 1 2

1 2

, ,
min max max ,0 , max ,0

∈
∈ ∈

 
− − 

 
∑ ∑i i t i i i i t i it T i i I i i I

r v v r v v  

 Subject to 

( ) ( )1 1 ,ξ ξ− ≤ ≤ + ∀
∑
∑

u
i i

i
u u u u

i i
i

p v
g g u

p v
  (4.1) 
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χ≥
∑
∑

i i
i

i i
i

q v

p v
  (4.2)  

ˆ≤∑ i i
i

D v K  , where ( )1 2

,∈ ∈

= +∑i it it
j J t T

D d d , ˆ *= ∑ j
j

K T k   (4.3) 

ˆ≥∑ i i
i

E v L , where ( )1 2= + ×i i iE e e J , ˆ
∈

=∑ j
j J

L l   (4.4) 

P2 shares the same objective function as P1. The decision variables in 

P2 are only { }= iV v . Individual decisions for lectures or tutorials are not 

needed, because when we aggregate type 2 constraints, both decisions for 

module i   refers to the same iv  due to the constrain (3.9) that requires that the 

lectures and tutorials should be reallocated at the same time for one module. In 

terms of the constraints of P2,  (4.1) and (4.2) are essentially (3.7) and (3.8) 

(the faculty fairness and student preference constraints) on variables { }iv . 

Constraint (4.3) and (4.4) can be considered as an aggregated constraints for 

(3.11) and (3.12). They relax original capacity restraint and room utilization 

requirement by aggregating corresponding constraints ( ( )1+T J  constraints 

are now aggregated into 2 constraints). They can be interpreted as the lower 

and upper bound of the number of modules selected. A solution to P2 fully 

satisfies type 1 constraints but may not satisfy all those type 2 constraints.  

As P2 is still not easy to solve, we introduce the multi-objective 

framework by relaxing certain hard constraints and transform them into soft-

constraints. Hence, the multiple objectives may include the original objective, 
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the violations of type 1 constraints and the violations of the aggregated type 2 

constraints. Under this framework, we propose two approaches to tackling the 

problem, which are discussed in detailed in the following two sections. 

In the initial of the algorithm with regard to phase 1, we run approach 

2 for several iteration which is followed by approach 1 for another few 

iteration. After obtaining enough performance information of both approaches, 

we decide which approach to choose for subsequent iterations. The criteria 

that we use to evaluate the performance are similar to the four criteria which 

are used in approach 1. We compute the actual objective value according to 

(3.1) for results obtained from approach 2 as approach 2 uses the surrogate 

measure of traffic. We give higher chance to the approach that gives better 

overall performance. 

4.2.1 Approach 1: Greedy constructive procedure 

This method is based on the construction phase from the study by Martí et al. 

(2011) in the field of Greedy Randomized Adaptive Search Procedure 

(GRASP). For the current constructed module selection V , the following 

multiple objectives ( )1Λ V  to ( )4Λ V  are considered: 

( )1Λ V = ( ) ( )1 2 1 2 1 2 1 2

1 2 1 2

1 2

, ,
max max ,0 , max ,0
∈

∈ ∈

 
− − 

 
∑ ∑i i t i i i i t i it T i i I i i I

r v v r v v  

( )2Λ V = 
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( ) ( ), ,

, ,

max max 1 g ,0 ,max 1 g ,0ξ ξ
    
    − + − −    

        

∑ ∑
∑ ∑ ∑

u u
i ij i ij

i j i j
u u u u

u i ij i ij
i j i j

p x p x

p x p x
  

( )3Λ V = ,

,

max ,0χ
 
 − 
 
 

∑
∑

i ij
i j

i ij
i j

q x

p x
 

( )4Λ V = ˆ ˆmax ,0 max ,0   − + −   
   
∑ ∑i i i i

i i
D v K L E v   

Specifically, ( )1Λ V  considers the original objective function. ( )2Λ V  

and ( )3Λ V  consider the violation of type 1 constraints, while the former 

accounts for faculty fairness and the latter accounts for student preference. 

( )4Λ V  considers the overall violation of type 2 constraints indirectly by 

aggregating (4.3) and aggregating (4.4). ˆmax ,0 − 
 
∑ i i

i
D v K  represents the 

violation of the room capacity constraint. If it is positive, it means that even if 

we can find a room assignment such that each room in every timeslot is 

occupied by one module, we still have some modules that cannot be assigned 

to. Similarly, ˆmax ,0 − 
 

∑ i i
i

L E v  represents the violation of the utilization 

constraint, i.e., the unfulfilled overall utilization according to the target 

utilization level. 

In every step of the construction of approach 1, we first randomly 

select one objective as the ranking criteria according to the probability 
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{ }, 1,..., 4=np n . After a criterion n  is selected, similar to the idea of the 

value-based restricted candidate list in GRASP (Delmaire et al. 1999), we 

compute the performance (known as κ ) under that criterion n  for all the 

unselected modules. We then find the maxκ  and minκ  which are the maximum 

and minimum performance values for all the unselected modules.  Later, we 

randomly select a candidate of which the performance is between minκ  and 

min max min( )κ a κ κ+ −n , where ( )0,1a ∈n . This candidate can be viewed as a 

good candidate for the criterion n , and is added to the selected modules. 

Note that np  represents the preference of criterion n . Initially, np  is 

set to 1/ 4, 1,..., 4=n . an  determines whether the randomness (an  near 1) or 

greediness (an  near 0) is preferred when selecting the next candidate with 

regard to criterion n . Initially, na  is set to 0.6, 1,..., 4n = . We may change np  

and an  from iteration to iteration. First, we compute the performance in term 

of all four criteria for all the solutions generated so far. Then we identify the 

criterion n′  which is the worst among all four criteria and increase our 

preference on it, i.e., increase np ′  (and decrease preferences on others 

accordingly). Similarly we increase na ′′  when we find that the historical 

solutions evaluated under criteria n′′   have smaller variability. Hence, we can 

explore more solutions under that criterion. 

The stopping criteria for the construction are: (1) a solution satisfying 

type 1 constraints is found; (2) the performance of the solution so far does not 
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improve in consecutively several steps. In the first case, we obtain a feasible 

solution for approach 1, while in the second case the reparation is required 

which is described in Section 4.2.3. 

4.2.2 Approach 2: Bi-objective MIP model solved by NBI method 

Instead of using the constructive approach which selects module one by one, 

we build a bi-objective MIP model to find a solution to MSP directly. In this 

model, the first objective considers the violation of aggregated type 2 

constraints. The second objective is a surrogate measure of the inter-campus 

traffic measure in (3.1). We use this measurement to decrease the complexity 

of (3.1) when we solve this problem. It uses the information that we learn from 

the cluster analysis in Chapter 3 to simplify the original objective function by 

only considering those significant contributors of traffic. All the remaining 

constraints from P2 are explicitly considered. This bi-objective model is then 

solved by using the idea of NBI method by Das and Dennis (1996) with 

modifications by Shukla (2007) which effectively explores the Pareto front. 

By changing the parameters in NBI method from iteration to iteration when 

approach 2 is chosen, we can generate various feasible module selections. 

 The bi-objective MIP model B-P2 is displayed in the following: 

[B-P2]
21,..., 1 1 2

ˆmin ,
= − ∈

 
 −
 
 
∑ ∑ ∑

k

k
kl i ik k

k I il I

w F L E v
I I

  (4.5) 

 Subject to 
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( )1 1

1 1

*
2, 1,..., 1;

∈

≥ ± − ∀ = − ∈∑
k

k
kl i l i l

i I

F r v v k I l I  (4.6) 

2, 1,..., 1;∈ ∀ = − ∈

k
klF k I l I   (4.7) 

 (4.1), (4.2), (4.3) 

 In this model, the first objective on klF  represents the surrogate inter-

campus traffic measurement, in which the set { }1 2, ,∀k kI I k  represents the 

information we obtain from cluster analysis. The details will be shown later. 

The second objective on V  is the aggregated measurement about the room 

capacity constraint (4.4). In general, the smaller this measurement is the higher 

the possibility that more modules are selected to well utilize the rooms. 

 The constraints considered in this bi-objective model are type 1 

constraints (4.1), (4.2) and the aggregated room capacity constraint (4.3) 

which is the remaining part of the type 2 constraints. In addition, (4.6) and (4.7)

are the auxiliary constraints needed when we linearize the surrogate measure 

of traffic. Nevertheless, any solution to this model satisfies type 1 constraints, 

which is different from approach 1 in which violations may occur. 

In the following, we first describe how we develop the surrogate 

measure of traffic. We then describe how to solve this bi-objective problem by 

using NBI approach.  

Surrogate objective function 
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The motivation of developing the surrogate measure of inter-campus traffic is 

to reduce the complexity of B-P2 by decreasing the number of auxiliary 

variables in the model, which are introduced through the linearization of the 

objective function on traffic. If we use original function (3.1), the cardinality 

of the auxiliary variables is { } ( )1 2

2
1 2, ,∀ ∈ = Οi iv i i I I . By using the surrogate 

function, we can show that (in A.2) the cardinality is reduced to ( )logΟ I I . 

The reason can be summarized in the following: 

 Unlike the original function (3.1) which considers the traffic 

contribution from all possible campus assignments across all timeslots and 

directions, our surrogate function only captures those significant ones. By 

estimating the upper bounds of these captured ones, we penalize the 

corresponding campus assignments. The significant traffic contributions are 

identified by using hierarchical clustering method which is linked back to the 

data analysis work in Chapter 3. In this method, every module is initially 

considered as an individual group. Then we iteratively identify two groups 

with significant traffic contribution. The group pair is then used to construct 

part of the surrogate function. We then combine them into a new group and 

proceed to the next iteration until no combination can be found, making the 

surrogate function completely generated. 

 Specifically, in iteration k , we first obtain the derived traffic 

contribution 


m nI IF  for any group-pair ,m nI I  by computing 
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1 2 1 2

1 2 1 2
1 2 1 2

1 2

, ,
max ,
∈

∈ ∈ ∈ ∈
< <

 
 =   
 
∑ ∑



m n
m n m n

I I i i t i i tt T i I i I i I i I
i i i i

F r r , i.e., an upper bound of traffic 

contribution across any timeslots and directions. Second, among all group-

pairs we identify the pair * *,m nI I  with highest derived traffic contribution 

such that <m n . These two identified groups becomes 1
kI  and 2

kI  for iteration 

k . Third, we combine these two groups into a new group to replace the 

original mI  and proceed to the next iteration. As exactly two groups are 

combined in one iteration, the process ends in I -1 iterations. The details of 

this method are also described in A.2. 

The surrogate function is then constructed given { }1 2, |∀k kI I k . We use 

( )1 2 1 2

2 2 1 1

*

2 1

1 1( )
∈ ∈

= −∑ ∑
k k

k i i i ik k
i i i I

F V r v v
I I

 where 
1 2 1 2

*

{1,2},
max
∈ ∈

= d
i i i i td t T

r r  to measure the 

traffic contribution of the identified group pair 1
kI  and 2

kI . In the worst case 

scenario when all modules from 1
kI  are reallocated, while all modules from 2

kI  

are not reallocated (or vice versa), the traffic contribution by these modules at 

any timeslot and in any direction is bounded by ( )1 2 1 2

2 2 1 1

*

∈ ∈

−∑ ∑
k k

i i i i
i i i I

r v v . By 

normalizing this measurement and summarizing them with some positive 

weight to specify the associated penalty, we formulate the surrogate objective 

function as ( ) ( )
1,..., 1

'
= −

= ∑ k k
k I

F V w F V .  To linearize this surrogate function we 

introduce (4.6) and (4.7). 
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Solving using the idea of NBI  

A common way to solve bi-objective optimization problem is to use 

scalarization technique to explore the Pareto front. The scalarization typically 

transforms the multi-objective problem into a single-objective problem by 

introducing additional parameters. This single objective problem is then 

solved repeatedly by adjusting the value of the parameters so that different 

subsets of efficient solutions are found (Ehrgott 2006). Considering that the 

two objectives in our model are in different scales, we choose modified NBI 

approach, which is thoroughly described by Das and Dennis (1996) and 

Shukla (2007), as it uses a scalarization scheme and is also independent of the 

different scales of objective functions.  

We briefly describe the process of the method in the following. We 

also use Figure 4-2 to illustrate. Assuming our bi-objective problem is a 

minimization problem on S , which is the domain of the decision variable X . 

The bi-objective vector is denoted as ( ) ( ) ( )( )1 2,=
T

F X f X f X . Here we 

assume that ( )1f X  and ( )2f X  are non-negative38, and the individual optimal 

values for both are *
1f  and *

2f which are attained at *
1X  and *

2X  . In the 

objective space, the two individual optimals are represented by ( )*
1F X (point 

M) and ( )*
2F X (point N). We find the convex hull (the line segment MN in 

                                                                                                 

38 If not, we can shift the objective function to achieve non-negativity. 
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our illustrated case) of the individual optimals in the objective space as 

( ) ( )( )* *
1 2, =conv F X F X  ( ) ( ){ }* *

1 1 2 2 1 2 1 2| 1, , 0β β β β β β+ + = ≥F X F X . We 

denote the 2x2 matrix ( ) ( )( )* *
1 2,F X F X  as Φ  and vector ( )1 2,β β β= T . 

Given a fixed β , we can select a point β β= ΦX  on MN (as illustrated in 

Figure 4-2). The corresponding efficient solution *X β  can be found by 

searching for a point within ( )F S  along the direction (normal to MN and 

towards the origin, as we solve a minimization problem) such that it is no 

worse than other points in terms of the two objectives. In other words, we 

solve the following sub-problem βNBI : 

[ βNBI ] ,min ∈ ∈X S t t    (4.8) 

 Subject to 

( )ˆβΦ + ≤tn F X    (4.9) 

where ˆ (1,1)= −Φ Tn  is the normal vector pointing from βX towards the 

origin of the objective space. By searching for the a larger t , we can find the 

solution that has better performance in terms of the two objectives.  Any 

optimal solution of βNBI  can be proved to be weakly efficient (Shukla 2007).  
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Figure 4-2 Obtaining solutions to a typical bi-objective problem using NBI 

The parameter  is typically set as ,  where  

is the step size and  is the largest integer no larger than .  

 We use CPLEX to solve  (the way of calling CPLEX is 

described in 3.4). To avoid consuming too much computational time, we set a 

time limit. If the solver can find an integral solution in time, it becomes the 

output of approach 2. We then proceed to local-improvement stage. Otherwise, 

we stop and restart the overall algorithm. 

4.2.3 Reparation Mechanism and Local Improvement 

In case that the output from approach 1 does not completely satisfy type 1 

constraints, we try to repair the infeasibility.  We use local search method to 

explore the neighborhood of the input solution . The neighborhood is 

defined by 1-exchange, i.e., replace a selected module which contributes to the 

infeasibility with a module currently unselected. We use beam search method 
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(Norvig 1992; Zhou and Hansen 2005) to explore the search tree specified by 

the neighborhood.  

 Specifically, we initially generates the neighbors of ◊V accordingly as 

the successor nodes of ◊V in the search tree. From then on, beam search 

explores one layer of the search tree in one iteration. It first sorts nodes in the 

current layer according to a ranking criterion which evaluates the violations of 

type 1 constraints. Only the best L nodes are chosen to be expanded for the 

next layer. The stopping criteria are: (1) a feasible solution to MSP is found. (2) 

no solutions which reduce the violations of type 1 constraints can be found in 

consecutively several iterations. (3) the objective value is worse than the one 

of ◊V by %ι  for all the L nodes chosen in one layer, where ι  is a threshold. 

 If we can find a feasible solution to MSP through reparation, the local-

improvement method is then applied. Otherwise, the overall algorithm stops 

and we restart to the next iteration of phase 1. On the other hand, we also 

apply the local improvement method on the output from approach 2. 

The local improvement method tries to find a solution to MSP with a 

better objective value among those neighboring module selections to the 

current solution †V . The neighborhood is defined by 1-move (add/remove one 

module) followed by 2-move (add/remove two modules). Specifically, we first 

identify the timeslot and direction such that the traffic component is the 

highest for †V . Only applying changes on the module selection related to the 

identified timeslot and direction can help improve the objective value. We try 
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to add/remove modules accordingly to reduce the objective value. If a feasible 

solution can be found, it becomes the output of the local improvement phase. 

Otherwise, we additionally check all possible 2-moves. Similarly, the best 

feasible neighbor improving the traffic value becomes the output if it exists. 

Otherwise, we check those infeasible ones such that they can improve the 

objective value while the violations to type 1 constraints are not severe. If any 

of these infeasible solutions can be repaired using the reparation process we 

just described, it also becomes the output of the local improvement phase. If 

not, the local improvement cannot find any better solution.  

4.3 Phase 2: Room Assignment Problem 

The goal of the second phase is to generate a feasible room assignment 

solution based on the output of phase 1. The main task is to search for a 

feasible room assignment for those modules selected. If we can find at least 

one, the assembled complete solution is also feasible to P1. In the case of 

failure, we restart to the next iteration.  

 For the room assignment problem, we do not need to use two sets of 

variables { }ijx  and { }ijy  to separately model room-assignment-decisions for 

lectures and tutorials. This is because constraint (3.9) in P1 requires that if a 

module is reallocated, its lectures and tutorials are reallocated.  As a result, we 

introduce a set 


I  which contains the indices of the lectures and tutorials of all 

selected modules. For convenience we still call each element in 


I  “module” 

(although it can be either lecture or tutorial) in phase 2, and the decision 
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variable in room assignment problem can be denoted by { }, ,∀ ∈ ∈




ijx i I j J . 

The room assignment problem, which is to search for a feasible room 

assignment given the corresponding module selection, is modelled by the 

following satisfaction problem P3 on { }ijx : 

[P3]  Find a { }{ }0,1 , ,= ∈ ∀ ∈ ∈
 



ijX x i I j J   

 Subject to  

, ,≤ ∀ ∈ ∈∑ 

it ij j
i

d x k t T j J    (4.10) 

,− ≤ − ∀ ∈∑ 

i ij j
i

e x l j J    (4.11) 

1,= ∀ ∈∑




ij
j

x i I    (4.12) 

Constraints (4.10) and (4.11) are modified type 2 constraints (3.11) and 

(3.12), and we introduce itd  and ie  to replace original parameters 1
itd , 2

itd , 1
ie  

and 2
ie . Constraints (4.12) ensure that all of the reallocated modules must be 

assigned to some room type. If we can find a feasible solution to P3, we obtain 

the complete feasible solution by mapping from 


I  back to I . 

Solving a feasibility integer programming problem, or proving the 

infeasibility, is very complicating. One way to solve feasibility problem is to 

transform it into an optimization problem. Therefore, we transfer P3 to the 

following optimization problem P4 by relaxing (4.12): 
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[P4] 
{ }ˆ 0,1 ,

max a
∈
∑ 

ij
i ijx i j
x   (4.13) 

Subject to 

(4.10), (4.11) 

1,≤ ∀ ∈∑




ij
j

x i I    (4.14) 

In P4, (4.12) is replaced with (4.14). We call (4.14) the disjointing 

constraints. It relaxes (4.12) as it allows that a module can be assigned to no 

rooms at all. In the objective function, we introduce a weight coefficient ai  

which measures the importance of a module. 

If there is an optimal solution to P4 and the objective value equals 

a∑ i
i

, the solution is also a feasible solution to P3. It is because this solution 

satisfies (4.10), (4.11), while 1=∑ 

ij
j

x  for any ijx . In this way, instead of 

solving P3, we solve the equivalent MIP model P4. 

4.3.1 Overall Framework 

We use branch-and-bound approach to solve P4 progressively. We branch on 

the possible room assignments for the selected module. We use Lagrangian 

relaxation method to decompose the sub-problem into a collection of 

Multidimensional Knapsack Problems (MKPs) in order to find the dual bound, 

and use a primal heuristic to find a feasible solution in case that the result from 

the Lagrangian relaxation method is not integral. Various studies have 
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reported to incorporate Lagrangian relaxation into the branch-and-bound 

framework (Fisher 1981; Holmberg and Yuan 2000). 

We branch on all possible room assignments for module ′∈i I . For 

instance, if module i◊  is the next branching module, and it can be assigned to 

room types 1j  and 2j , we generate two branches. One branch is 
1

1
i j

x ◊ =  with 

1'
0, '

i j
x j j◊ = ∀ ≠ , and the other branch is 

2
1

i j
x ◊ =  with 2'

0, '
i j

x j j◊ = ∀ ≠ . 

We use the typical cut-off criteria in branch-and-bound framework to 

help either prune sub-tree or serve as the stopping criteria. Specifically, the 

sub-tree is cut (1) if the feasible solution newly found assigns all items; (2) or 

if no feasible solution is found by executing the primal heuristic; (3) or if dual 

bound is worse than the best primal bound. 

To select the next branching module, we use the information learned 

from the result of solving the sub-problem in the branch and bound framework. 

The module that has the highest number of room types to be assigned becomes 

the next branching module (This is because the relaxation made in the sub-

problem allows that one module can be assigned to more than one room type). 

The generated branches are sorted by the room utilization. Specifically, we 

compute the ratio of the current utilization level to the target level set in 

utilization constraint (4.11) for the room types associated to all branches. The 

branch that has the lowest ratio is sorted to the first place.  

In general, we use depth-first-strategy to explore all the branches to the 

leaf layer. The general flowchart of this branch-and-bound framework is 
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shown in Figure 4-3. We then describe how to obtain dual and primal bound 

for each node in the branching tree. 

 

Figure 4-3 Flow chart of the branch-and-bound framework in Phase 2  
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4.3.2 Dual Bound: Lagrangian Relaxation Method 

Solving P4 directly seems to be challenging, especially when 


I  is large. The 

complication includes not only the huge scale of decision variables, but also a 

variety of complicating constraints that restrict us to making use of several 

potential problem structures. In our proposed method, we use Lagrangian 

method to relax constraints (4.11) and (4.14), i.e., both demand and disjointing 

constraints. The relaxed problem LR is shown in the following: 

[LR] 
,

max m υ+ −∑ ∑ ∑

ij ij i j j
i j i j

c x l   

Subject to 

, ,
∈

≤ ∀ ∈ ∈∑




it ij j
i I

d x k t T j J  

where a m υ= − +ij i i i jc e . The associated dual variables are 

{ } { }{ },m υ= i jW .  

 To solve the Lagrangian dual of LR, we use sub-gradient method. It is 

used to guide the search for better Lagrangian multipliers to improve the 

Lagrangian function value iteratively. With initial Lagrangian multipliers 

arbitrarily set, we can compute the sub-gradient from the dual variables’ 

values in any specific iteration. With the sub-gradient computed which 

contributes the determination of the search direction, we in turn update the 

dual variables for the next iteration. We briefly describe the way to use the 

sub-gradient to update the dual variables W  in Algorithm 4-1. 
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Specifically, the way that we obtain the step size follows the one 

described in various studies (Polyak 1967, Sen and Sherali 1986 and Wolsey 

1998). The way that we set the search direction follows the one described by 

Gaivoronski (1988). Maximum iteration *k  varies according to the current 

layer of the sub-problem. We give more allowable iterations when we explore 

deeper into the tree.  
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Algorithm 4-1: Sub-gradient method to solve LR 

input MIP model LR. 

1  Initialize the Lagrangian dual ( )0W : Set { }mi to zero. Set { }υ j to the dual 

  prices reflected by the solution to the following LP: 
{ }ˆ 0,1 ,

max a
∈
∑ 

ij
i ijx i j
x s.t. (4.11)

  . Set count k=0. 

2  repeat  

3   Solve LR given ( )kW . Denote the solution as { }*( )k
ijx  and objective value 

   as ( )kz . 

4   Set ( )k∆  by ( ) ( )*1k k
i ij

j
x∆ = −∑  for each mi  and ( ) ( )*k k

j i ij j
i I

e x l
∈

∆ = −∑


 for each 

   υ j . 

5   Set step size 
( ) ( )

( )
2( )

k k
k

k k

z zs λ −
=

∆
, where ( )kz is an upper bound of LR . 

6    if 1k =  then 

7     Set direction ( )( ) kkd = ∆ . 

8    else  

9     Set direction ( ) ( )( ) ( ) ( 1) / 1k k kd dθ θ−= ∆ + + , ( )0,1θ ∈ . 

10   end if   

11  Update dual variables ( )1 ( ) ( ) ( )+ = +k k k kW W s d . 1k k= + . 

12 until *k k=   
output best feasible solution obtained so far. 

We do not solve LR directly. Since this problem is separable, we can 

decompose LR into J (the number of room types) multidimensional knapsack 

problems. For a specific room type ' J∈j , we solve the following sub-

problem ′jMKP : 

[ ′jMKP ]
{ }0,1

max ′ ′
∈
∑







ij
ij ijx i

c x   
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Subject to 

,′ ′≤ ∀ ∈∑ 

it ij j
i

d x k t T   (4.15) 

The sub-problem is a MKP39 and there are at most T  (the number of 

timeslots) dimensions. This problem tries to pack a set of items (in our case, 

modules) to a special knapsack (in our case, room type 'j ), which has more 

than one dimension. Accordingly, each item may have different weights for all 

dimensions, and a feasible packing of items must not exceed the capacity of all 

dimensions. The objective is to gain the most profit from the packing. The 

constraints (4.15) are usually referred as knapsack constraints.  

Solving a MKP in practice is still non-trivial as it is a strong NP-hard 

combinatorial optimization problem (Puchinger, Raidl, and Pferschy 2010). 

One can solve it by using the exact approach, approximation approach or 

meta-heuristics approach. Exact solution techniques include branch-and-bound 

and dynamic programming (Gottlieb 2000). Both approaches need 

considerable time to find the optimal of large scale problem. As for the 

approximation technique, even when there are only two dimensions, there 

exists no Fully Polynomial-Time Approximation Scheme (FPTAS) unless 

P=NP. Typical PTAS such as a ε -approximation εH +ext-greedy algorithm 

                                                                                                 

39  As a preprocessing, we can always set those ′ijx  to 0 such that 0′ ≤ijc , since 

0, ,≥ ∀itd i t . 
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has a running time of ( )/ε −  d dO n , where n  is the number of items and d  is 

the number of dimensions (Caprara et al. 2000). Apparently when the problem 

gets bigger, a PTAS is not good enough. Since the number of items and 

dimensions are relatively large in our case, we try to develop a heuristic 

algorithm which can yield a good feasible solution given a relatively 

reasonable period of time. 

To solve each MKPj′ using a heuristic, we first try to reduce the 

number of variables. We adopt the idea of the core concept in the context of 

knapsack problems (Kellerer, Pferschy, and Pisinger 2004). The idea is that 

among all the modules to be assigned, those with very high ‘efficiency’ is 

almost certain to be assigned, while those with very low ‘efficiency’ is almost 

certain not to be assigned. The remaining ones, known as the ‘core’40, are hard 

to decide and hence left for further investigation. Core is usually solved by 

heuristics such as GA. General discussion on how to adopt core algorithm in 

MKP is described by Puchinger, Raidl, and Pferschy (2010). The following 

three paragraphs discuss that (1) what is the definition of ‘efficiency’; (2) 

After sorting modules by efficiency, how to conduct the variable fixing; (3) 

After the variable fixing, how to solve the reduced problem. 

                                                                                                 

40 Technically the core is defined in slight different way in studies. However, for simplicity we 

use the term to describe the main idea. 
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The efficiency of module i  is defined as 'ˆ ij
i

it t
t

c
e

d m
=
∑


 where tm  is the 

dual variables associated with the knapsack constraint of dimension t  (Hence, 

tm  is obtained by solving the Linear Programming (LP) relaxation of MKPj′ ). 

Sorting by îe  for all modules helps us to identify three ordered groups of 

modules: Groups , ,I I Ia β γ

  

. They represent the collection of modules of which 

the efficiencies are higher than one, equal to one and lower than one 

respectively. However, we find that for those modules in Iβ


, the 

corresponding solutions to the LP relaxation can be either fractional or integral, 

and usually Iβ


 is large. Therefore, we group the modules in Iβ


 into three 

sub-groups. 
1

Iβ


 contains those modules of which the LP solution equals 1, 

2
Iβ


 contains those modules having fractional solution, while 
3

Iβ


contains 

those modules of which the LP solution equals 0. We introduce another 

efficiency to further sort these two sub-groups: '

'

ˆ ij
i

it it j
t i

c
e

d d k
′ =

 − 
 

∑ ∑



.  

The core is generated based on the sorted modules obtained in the last 

paragraph. Starting from the 
2

Iβ


, we obtain the core by expanding toward two 
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directions on the sorted list until the expanded list reaches a limit of size.41 

After that, in the sorted list the modules before the core are fixed to be 

assigned to room type 'j , while the modules after the core are fixed not to be 

assigned to 'j . By using this variable fixing, the original MKPj′  is reduced. 

 To solve this reduced problem, we use GA as it has been successfully 

applied to MKP in various studies (Gottlieb 2000, Raidl and Gottlieb 2005). 

We use the direct representation as the genetic representation, which is 

discussed thoroughly by Chu and Beasley (1998). We choose uniform 

crossover and bitwise mutation as the genetic operators, which are typical 

operators for our genetic representation. We use the objective function of 

MKPj′  as the fitness function. The population size is set to { } / 2d . We 

choose fitness proportionate selection strategy (i.e., we filter out any explored 

solutions) as the selection strategy which prefers those candidates with better 

objective value (Back, Fogel, and Michalewicz 1997).  To construct the initial 

population, we solve the LP relaxation of the reduced problem and compute 

the efficiency îe  for all modules followed by sorting modules by îe . As the 

sorted list can be viewed as a permutation, we pack modules one by one until 

any knapsack constraints (4.15) are violated. In case we obtain an infeasible 

                                                                                                 

41 Through experiments we found that any integer between 0.15 i  and 0.20 i  shows the 

best performance when we comparing the result from solving core problem with the result 

from solving the original problem using solver. 
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solution during genetic operations, we use a simple reparation way which is to 

remove items from the pack based on the sorting by îe  until the remaining of 

the packing becomes feasible. 

4.3.3 Primal Bound: Constraint Programming-Based Heuristic 

The primal bound is important in phase 2 because (1) it helps to find more 

primal bounds to prune the branching tree; (2) it helps the sub-gradient search 

to find better step size and hence improve its convergence. If Lagrangian 

method can find a feasible solution, a primal bound is found. However, this 

may not happen very often. If the solution, denoted by { }L L
ijX x=



, is not 

integral, we use the following method to obtain a primal solution by repairing 

infeasibility of  LX


. Within the reparation, we solve the following feasibility 

problem P5: 

[P5 ] Find a { }{ }0,1 , ,= ∈ ∀ ∈ ∈
 



ijX x i I j J   

 Subject to 

, ,≤ ∀ ∈ ∈∑ 

it ij j
i

d x k t T j J   (4.16) 

,ij ij j
i

e x l j J≥ ∀ ∈∑ 

  (4.17) 

1,= ∀ ∈∑




ij
j

x i I   (4.18) 

 , ,L
ij ijx x i j= ∀ ∈ 

=  
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P5 is similar to P3 except two points. First, decision variables are 

additionally fixed based on L
ijx . =  contains those module-room type 

combinations ,i j  such that L
ijx  is (1) integral, (2) 0L

ij
j

x ≠∑   (3) 1L
ij

j
x ≤∑  . In 

other words, integral variables are fixed as long as they does not instantly 

create infeasibility in P5. Second, we replace the original parameter ie  with 

parameter ije . ij ie e=  if ij J∈


 and 0=  otherwise.  Its usage is described later. 

 We use CP technique to solve P5. The variables in the CP model are 

{ }| ,ijx i j∉

=  (variables not fixed by LX


). The domain of the CP model is 

initiated from constraints (4.18) accordingly. The constraints of the CP model 

are hence (4.16) (4.17) with the following derived new constraints: 

, ' , '

' ' '
' '

' '

, '
j j j j

ij j ij ij j i ij i ij
i i j j j j i I i I

j j j j

e l e x l e x e x j J
a β≠ ≠ ∈ ∈

≠ ≠

− ≥ ≥ + − ∀ ∈∑ ∑ ∑ ∑ ∑ ∑   (4.19) 

where { }1 2 2 1, | 0a = = ∧ =j j ij ij iI i e e e  and { }1 2 2 1, | 0β = = ∧ =j j ij i ijI i e e e .  

Constraint (4.19) uses the fact that for an item '∈


i I , the set { }'i je  only 

contains two possible values: ′ie  if 'i  can be assigned to room type j  and 0 

otherwise. 

The CP model is solved by CPLEX CP solver. If we can find a feasible 

solution for P5, we obtain a primal solution. 
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4.4 Numerical Experiments 

Before we show the numerical experiments and results, we first describe the 

test cases we use throughout this section. In reality the parameter settings for 

the MRPT may vary significantly from university to university. The data we 

used in previous chapter only covers one university and several academic 

years, so it could bring bias. In addition, different parameter settings may also 

affect the “difficulty” of the problem as well as the performance of the 

solution technique. For these reasons, we provide a way to generate test cases 

with various parameters based on what we have learned from the stakeholders’ 

perspective. In A.1, we provide the details on how to generate such test cases. 

In general, we first want to represent two typical problem scales which reflect 

medium and large-sized universities. Second, we want to use different 

constraint settings to represent various resource scarcities, preference on the 

fairness in terms of sharing from faculties and student level. For the second 

part, the settings are adopted by those scenarios set by the stakeholders. 

  Different test cases have different groups of students, module 

registration information, different timetables, etc., but they share some 

similarities so that we can compare performance on different scenarios. 

Particularly, these cases can be first categorized into two groups. One is for 

cases such that 400 modules (medium-sized university) are considered and the 

other is for cases such that 800 modules (large-sized university) are considered. 

Each test groups contain 100 random generated test cases. Each test case is 

associated with three different constraint settings to form three different test 
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instances. These three settings represent loose, medium and tight constraints 

and we call them low, medium and high settings. They are obtained by 

communicating with stakeholders and being carefully selected from many 

candidate scenarios as they are believed to be representative. Hence, we use 

the combination of the number of modules considered and the constraint 

tightness settings to from a test case. For instance, 400 low refers to a test case 

such that 400 modules are considered and the constraint is loose.  

The test environment is dual-core PCs running Windows 7 64bit OS on 

5GB of memory. We use multi-core system so that the commercial solver 

should benefit from its parallel computing features. Choosing 64bit OS and 

larger-than-4GB-momory should ensure that system memory cannot be a 

bottleneck for commercial solver. Once again CPLEX 11 is used as the 

commercial MIP solver. We set the ‘MIPEmphasis’ to ‘automatic’, and the 

solver stops at exact optimal. All complete feasible solutions which are found 

by our heuristics and CPLEX are managed to be recorded. 

4.4.1 Numerical experiments related to Phase 1 

Three numerical experiments related to the proposed phase 1 were conducted. 

First, we want to show the effectiveness of our alternating two approaches 

(described in Section 4.2.2). We compare the performance using our proposed 

way of combining approach 1 and approach 2 with performances using other 

simpler ways. Second, we show the correlation between our proposed 

surrogate objective function (described in Section 4.2.24.3.2) and the original 

objective function. Third, we show that the local improvement method 
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(described in Section 4.2.3) is effective. We compare the performances 

between using local search method in phase 1 and not using it. 

Experiments on alternating two approaches  

Recall that we propose two approaches to solve the phase 1 problem, i.e., MSP. 

We also propose a way to allow both approach 1 and approach 2 to be run for 

several iterations in phase 1, and the approach which achieves a better overall 

historical performance has a higher chance to be selected. In this experiment, 

we show that combining two approaches yield better result than using only 

one of them. 

 Particularly, we compare the following four different scenarios. 

(1) Approach 1 only: we only use approach 1 through phase 1 

iteration. Reparation (if necessary) and local improvement are 

conducted after approach 1 is finished. 

(2) Approach 2 only: we only use approach 2 through phase 1 

iteration. Local improvement is conducted after approach 1 is 

finished. 

(3) Randomly select approach 1 and approach 2: We use both 

approaches in phase 1 iteration. However, the selection of 

approach is purely random. According to which approach is 

selected, reparation (if necessary) and local improvement are 

conducted accordingly. 
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(4) Our proposed way. 

We run the heuristic on our test cases. For each scenario, we counted 

the number of cases in which it can find the strictly best solution among all 

scenarios. We used two sets of experiments with different time budget to test 

the short-term and long-term performances. For the short-term performance 

experiment, the time budget was 1 hour time. For the long-term performance 

experiment, the time budget was 10-hour. 

Table 4-2 The count of wins for four scenarios given 1-hour computational budget 

Scenarios |I|=400 |I|=800 

Low Medium High Low Medium High 

1 1 2 0 1 0 0 

2 8 10 33 20 25 37 

3 5 3 6 3 4 2 

4 84 80 60 74 65 52 

From the results shown in Table 4-2, we find that our proposed method 

had comparatively the best results. Scenario 1 yielded the worst result. In 

addition, the performance of scenario 2 was much better than scenario 1 and 3. 

In some cases, it even achieved relatively good performance comparing to 

scenario 4 (For instance, 800-high). These results can be explained by the 

following reason: Scenario 4 was based on overall historical results, so it may 

need some learning time. Moreover, the more difficult the test case were, the 

better results scenario 2 outputed. This can be explained by the fact that the 

quality of the output of approach 2 was better than approach 1 in general. 

Specifically, the type 1 constraints were explicitly considered in approach 2. 
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In addition, other scenarios were considered by solving a multi-objective 

model rather than constructing by randomly selecting criterion. As a result, 

using approach 2 can obtain better solutions when compare to using approach 

1 only. For scenario 3, as the selection of approach is purely random, the 

results from iteration to iteration can be too diverse. If approach 1 was 

primarily selected, the performance can be even worse than scenario 2, which 

is shown in Table 4-2.  

The superiority of scenario 4 was also observed in the long term. From 

the results shown in Table 4-3, we observe that the all other scenarios were 

only able to outperform scenario 4 in very limited cases. 

Table 4-3 The count of wins for four scenarios given 10-hour computational budget 

Scenarios |I|=400 |I|=800 

Low Medium High Low Medium High 

1 0 0 0 0 0 0 
2 1 0 0 1 1 0 

3 1 1 0 0 1 0 

4 96 98 100 95 94 97 

The frequency (how many times does one approach is called) of 

approach 1 and approach 2 were also examined. In this case, we used the 

overall framework to solve individual test cases and record the number of calls 

of each approach. We summarized the average frequency of approach 1 in 

Table 4-4. It can be found that approach 2 is tend to be selected more 

frequently in the more difficult cases, which supports the design intention 

mentioned in 4.2. 
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Table 4-4 Frequency of approach 1 and 2 being called when solving overall problem 

Scenarios |I|=400 |I|=800 

Low Medium High Low Medium High 

Approach 1 
frequency 
(%) 

65% 62% 53% 64% 57% 49% 

Correlation between surrogate objective function and the original one 

Ideally, the surrogate measure of inter-campus traffic should be positively 

correlated with the original measure. We used the Person correlation 

coefficient for samples of both ( )'F V  in B-P2 and ( )F x  in P1 (described in 

Section 4.2.2 and 3.3 respectively). In terms of the sample, we needed to 

enumerate all the possible objective values to compare the correlation. As a 

result, all possible module reallocation decisions were enumerated, no matter 

they were feasible to MRPT or not. Due to the limitation of computation 

resources, when the scale of the test case became bigger, we could only do this 

implicitly, i.e., randomly generated a subset of solutions. Nevertheless, after 

we calculated objective values for different test case, we obtained the 

corresponding correlation coefficient.  Note that to simply the process, we let 

1,= ∀kw k  in (4.5). 

As a simple presentation, we first generated a test case with only 10 

modules. As the size of domain in this case could be handled, we sampled all 

the 10 12 −  solutions. In order to illustrate the correlation of two measurements, 

we plotted the values of 'F  (surrogate) against F (original) in Figure 4-4. In 
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that figure, X-axis represents all the ( )F x  values, and the Y-axis represents 

the corresponding 'F  value. The Pearson’s correlation coefficient for this 

specific case was 0.661 so the two are positively linear correlated. In addition, 

for those solutions such that 0F = , the corresponding ' 0F =  as well, and 

vice versa. It should be noted that due to the small amount of modules in this 

case, traffic parameters had many zeroes, and so the largest function value of 

objective function in this case was much less than the one in larger-scale test 

case which can easily go up to hundreds. 

 

Figure 4-4 Plot of the set of (F(x), F'(x)) from a 10-module example 
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Table 4-5 Average Pearson’s Correlation Coefficient (PCC) between F(x) and F’(x) with 
different numbers of modules 

 |I|=20 |I|=100 |I|=200 |I|=400 |I|=800 

Avg. PCC 0.774 0.801 0.839 0.872 0.861 

We conducted more experiments by increasing the scale of test cases. 

We used five groups of test cases with different domain sizes. Each test group 

contained 100 test cases. In the first group, 20 modules were included in each 

case, and we still sampled the whole domain (including 192  solutions). In the 

other four groups, 100, 200, 400, 800 modules were included respectively. As 

the domain became too big in these cases, we randomly generated 202  distinct 

solutions for each test case. Table 4-5 shows that all cases show positive 

correlations and the average coefficients across groups are all over 0.8. 

Moreover, it seems that there was no trend that the correlation coefficient 

decreases when the number of modules increases. As 800-module is a 

practical representation of the scale of a large university, it can be concluded 

that the surrogate measure is positively correlated to the original traffic 

measure, i.e., is a representative surrogate measure. 

Experiments on local improvement 

We conducted experiments to show the percentage of improvement in 

performance when comparing between not conducting local improvement and 

conducting it. The difference was shown in terms of percentage of 

improvement. The computation budget is 24-hour.  
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Figure 4-5 % improvement from enabling local improvement 

Figure 4-5 shows that enabling the local improvement is able to bring 

promising improvement. Particularly, for |I|=400 cases the improvement was 

about 4-6%, or about 10-20 in terms of value; for |I|=800 cases the 

improvement was about 4-5%. In terms of inter-campus traffic measurement, 

the improvement was about 15-25. In addition, we observed several cases (16 

out of 600) that no improvement was made. However, for these cases, the time 

of obtaining the best solution had been decreased (9% on average), indicating 

that small improvement is still achieved. 

4.4.2 Numerical experiments related to Phase 2 

We compared the performance of solving P4 between our phase 2 method and 

the commercial solver. We first tracked the solution progress of our heuristic. 

We then separately used CPLEX to solve P4 by allowing the same amount of 

time as our heuristic uses. The way we used CPLEX to solve a satisfaction 
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problem is imposing an empty objective function. We listed the average rate 

that CPLEX cannot find a feasible solution quicker than our heuristic over the 

total number of phase-2 executions for each category we used so far. 

Table 4-6 The rate comparison in solving phase 2 problem between our heuristic and 
CPLEX 

Rate representing that our heuristic outperforms CPLEX  

|I|=400 |I|=800 

Low Medium High Low Medium High 

94.7% 98.9% 99.9% 99.2% 99.6% 99.9% 

 The results showed that our proposed phase 2 approach, which used 

the branch-and-bound framework, outperformed the CPLEX in most cases. 

Particularly, when the problem becomes difficult, we observed the rate was 

nearly 100%. The possible reason may be that our proposed heuristic exploited 

the good structure of P4 which cannot be identified by CPLEX.  

4.4.3 Results of the Proposed Heuristic 

In this section we compared the results between our proposed iterative two-

phase heuristic and CPLEX. The intention is to show the overall performance 

gain from our proposed method. We compared the performance by presenting 

the objective value of the best-so-far solution by given same computation time. 

The time budget was 24 hours for all test cases. 

 Before we describe the main findings, we should highlight that the 

solver does not stop in any test case during our experiments, which means that 

no single optimal solutions can be found given the time budget. The closest-
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to-optimal solution was obtained with 0.79% gap (best-so-far: 329.74) in a test 

case of low-400. 

The results of the experiments in this section are described in the 

following order: We first show the performance comparison between our 

heuristic and the solver on one single test case. The comparison is illustrated 

by showing the inter-campus traffic measurement of the best-so-far solutions 

obtained by each method over time. After demonstrating the result on only one 

test case, we show the results over all test cases. We begin from showing the 

improvement of objective value gained by our proposed heuristic from a high 

level perspective. We use box chart to show the range of improvements across 

different sets of test cases. Then, we present the win/loss result over time by 

counting how many times that our heuristic outperforms the solver and vice 

versa after some period of time.   

 

Figure 4-6 Example: performance comparison over time on a 800-medium test case 

We start from illustrating the example test case. In Figure 4-6, we 

present the solution-quality-over-time of our proposed heuristic and the 

commercial solver. The test case was an 800 medium one. From this particular 

result we can obtain several observations. First, the solver tended to find the 
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feasible solution slowly. In this specific face, it took nearly one hour to obtain 

its first feasible solution, while the heuristic almost found a feasible one 

instantly. However, the quality of the first feasible solution obtained by the 

solver was much better than the first one from the heuristic, while it was still 

worse than the best-so-far heuristic solution at the same time. Second, during 

the 3rd hour, the solver outperformed our heuristic for about half an hour. 

However, after that solution quality was constantly inferior to the one of our 

heuristic. The difference between both became bigger and bigger. At the end 

the best solution obtained by heuristic was about 40 less than the one obtained 

by solver. This amount of a traffic rate equals more than half of the full load of 

a typical shuttle bus. Hence, it is a significant difference.  

Then, we show the improvement in terms of original inter-campus 

traffic measurement gained by our heuristic. Figure 4-7 shows that on average 

the heuristic can obtain from 20-40 improvement roughly, although there are 

several cases that the solver beats our heuristic. In particular, |I|=800 test cases 

gained more improvement than |I|=400 cases. The main reason was that more 

modules were included so that the objective value should be larger, and the 

space for improvement in finding better solution may be larger as well.  
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Figure 4-7 The traffic measurement comparison 

 Lastly, because technically both approaches did not stop during this 

time, we counted the number of cases that our heuristic beats solver (means 

the best solution is strictly better. It is denoted as +N ) and the number of cases 

that our heuristic was beaten (denoted as −N ) in every 1 hour. Therefore, row 

t  represents the values of +N  and −N  given t  hours of running both methods 

on 600 test cases respectively, including combinations of three constraint 

settings and two problem scales. If one approach terminated unexpected (such 

as runs out of memory), the best so far solution stays in the remaining hours. 

Table 4-7 shows that in general our heuristic beats the solver in all test 

settings. The average /+ −N N  ratio was 20.8, and average ( )100 / N− −− N  

ratio was 23.9. This roughly means that, on average, the solve could only beat 

our heuristics at most once in every 20 tries. In the worst case, min +N  was 63, 

while max −N  was 17, and both happened in the very early stage of the 
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computation. Comparably, in the end of the process (23 and 24 hours), +N  

was at least 84, while −N  was at most 8. We analyzed the /+ −N N  ratio 

across hours, and we found that the ration across the first 4 hours was 

relatively low (about 7% on average) but increased very fast in later stage. It 

indicates that when the time budget was not extremely limit, our heuristic 

outperformed the solver in general. 

To give a clearer demonstration, we also provide the line charts for 

both |I|=400 and |I|=800 cases to discover trends in Figure 4-8 and Figure 4-9. 

Both charts show that in general the +N  increased when more computational 

hours are allowed, while −N  decreased accordingly. Moreover, it seems that 

the tighter the constraints were, the smaller +N  was. However, similar trend 

was not significant for −N . This observation indicates that the more difficult 

the problem was, the more difficult a better solution could be found. Another 

trend was that when comparing results from |I|=400 and |I|=800 case, the three 

counts under low, medium and high settings tended to converge in the latter 

case. It indicates that when the problem scale became large, the performances 

of both methods became less sensitive to the tightness of the constraint. 
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Figure 4-8 The trend of N+/N- for |I|=400 case across 24 hrs 

 

 

Figure 4-9 The trend of N+/N- for |I|=800 case across 24 hrs 
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Table 4-7 Results of the count of the success by our heuristic and solver by the grouping 
of time.  

 
 
Hour 

/+ −N N  

|I|=400 |I|=800 

Low Medium High Low Medium High 

1 78/10 75/12 63/13 69/15 67/14 56/13 

2 76/8 73/13 64/13 66/13 73/17 64/13 

3 77/6 72/11 68/10 69/12 72/16 68/10 

4 84/5 70/10 72/8 74/9 72/11 72/8 

5 79/1 78/11 75/6 77/10 74/10 75/6 

6 68/4 71/6 72/7 78/8 75/7 72/7 

7 70/1 79/5 70/3 74/11 77/10 70/3 

8 73/3 75/4 71/5 72/9 76/10 71/5 

9 79/2 75/4 74/5 75/8 77/8 74/5 

10 83/2 69/7 74/6 79/8 79/9 74/6 

11 81/3 72/3 76/6 78/7 78/8 76/6 

12 88/1 81/4 73/6 80/6 82/9 73/6 

13 88/1 80/2 72/6 80/6 83/10 72/6 

14 88/1 85/2 73/7 83/7 81/6 73/7 

15 89/0 86/2 74/5 85/5 84/8 74/5 

16 91/0 85/4 78/5 85/5 85/8 78/5 

17 91/0 88/2 81/6 84/6 83/9 81/6 

18 93/0 89/5 82/7 85/6 84/8 82/7 

19 94/1 92/1 86/6 87/7 87/8 86/6 

20 94/1 91/3 86/6 87/7 86/8 86/6 

21 91/1 93/3 86/6 86/6 87/7 86/6 

22 89/3 93/4 85/6 86/7 83/8 85/6 

23 85/6 92/5 84/7 86/8 84/7 84/7 

24 84/7 92/4 84/7 86/8 84/7 84/7 

  



Chapter 5 Fine-tuning on Timing Given the Module Reallocation Decision 

134 

 

Chapter 5 Fine-tuning on Timing Given the Module 

Reallocation Decision 

5.1 Introduction 

In chapter 3 and 4, we try to find a module reallocation solution such that it 

satisfies all the requirements from the stakeholders while the inter-campus 

traffic measurement is optimized. In terms of timing, we assume that it is 

given by the stakeholders. In reality, the solution obtained so far usually needs 

to be approved by the stakeholders. Several cases may happen: first, the 

objective value obtained so far is still unacceptable by the stakeholders so they 

agree to change the timing locally to even improve the inter-campus traffic 

measure. Second, as stakeholders may share different point of views and have 

different preferences, they may need more options to negotiate from each 

other, and solutions having an improved objective value should be a vital 

factor among their considerations. Such scenarios motivate the study in this 

chapter. 

 As this fine-tuning problem is different from our previous study, we 

first list some basic assumptions: 

• We cannot change the set of modules being reallocated, 

• We cannot change the timing of the modules which are not reallocated, 

• We can change the timing and the room assignments of the modules. 
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 The trivial assumption is that we cannot change the set of modules 

being reallocated anymore, as it provides us a vital starting point from which 

this chapter extends. On the other hand, the possible changeable decisions are 

the timing of modules and, further, the room assignments of the modules. The 

reason that we allow changes on room assignment is that changing timing may 

incur violations on type 2 constraints in MRPT. Revising the room assignment 

accordingly provides a possible way of reparation. Another assumption we set 

here is that we do not allow those changes which affect the old campus. The 

reason is described in chapter 1: In summary, there may exist too many 

intangible and unquantifiable constraints on the timetable from variant 

schools/departments. To identify and resolve the incurred issue, there could be 

too many human involvements needed for the stakeholders in the decision 

process.  Intuitively, the fewer modules we consider, the less efforts in 

communicating and negotiating between the university management and 

individual school/department we need. Therefore, in this section we focus on 

only changing the timing of modules which are reallocated. 

 Another difference from this chapter to the previous one is that the 

decisions are in terms of class rather than module now, as a module may have 

different classes which are assigned to different timeslots. We therefore define 

the set C  as all the classes and use decision variables ctx  to represent whether 

class c  is reallocated and assigned to timeslot t , where ,∈ ∈c C t T . 



Chapter 5 Fine-tuning on Timing Given the Module Reallocation Decision 

136 

 

 In the following section we describe our proposed fine-tuning method. 

Later, we show numerical experiment by illustrating several test cases as 

examples. 

5.2 Methods of time-tuning 

We propose a greedy heuristic method to conduct the fine-tuning on the 

timetable of modules which are reallocated according to the given module 

reallocation solution. This method iteratively conducts one-timeslot-exchange 

for candidate class in order to improve the objective value. As some one-

timeslot-exchanges may violate the capacity constraint (3.11), additional 

timeslot-exchange or even room-type-exchange may be needed to ensure the 

resulting solution satisfies all aforementioned constraints. We describe the 

high level algorithm in Algorithm 5-1. 

Algorithm 5-1: Fine-tuning on timing to improve inter-campus traffic 

input The module reallocation solution X , the given timetable S  

1  Search for the set of classes Ĉ  such that (1) they are in the worst moment 
  and  direction in the current solution and (2) they are reallocated. 

2  for all classes c  such that ˆ∈c C  sorted descending by the corresponding 
  traffic component value, do 

3   Search for a new timing 't  of  c  such that the new inter-campus traffic is 
    strictly improved 

4   if 't exists then 

5    Apply 't  and recalculate the worst moment and direction. Go to step 1. 

6   end if 
7  end for 
output current timing and module reallocation solution 
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 In this algorithm, the search space is the set of classes which contribute 

the highest inter-campus traffic of a specific direction with regard to a specific 

timeslot. Remind that the traffic contribution of timeslot t  and direction d  is 

measured by the overall traffic component 
1 2 1 2

1 2,

n
i i t i i

i i I
r v

∈
∑ . As the objective 

function is in the mini-max form, we only need to investigate the highest 

overall traffic component and identify the target timeslot and direction. We 

identify the set of class-pairs which belongs to the chosen component. As 

explained before, we intent to change the timing for classes on the new 

campus only, so we narrow them down into set Ĉ . We then rank these classes 

in a greedy way by sorting them in a descending order by the value of the 

corresponding traffic contribution. We investigate these classes one after 

another by conducting a neighborhood search. Among those of which the 

objective values are strictly better than a defined target z , i.e., 0>z  , we 

choose the best as our new solution. We also re-identify the highest overall 

traffic contribution if the solution changes. The process is repeated until we 

cannot find any improving neighboring solution after exploring through Ĉ . 

 In the following we describe the process of neighborhood search, 

summarized in Algorithm 5-2, in details. The neighborhood { }{ }', 'X S  to 

{ },X S  is defined as: 

• 'S  is slightly different with S , (5.1), 

• No timing conflict incurred by 'S  (5.2), 
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• 'X  is feasible with regard to MRPT (5.3). 

 To conduct the neighborhood search, we first try to reassign the timing 

according to (5.1) and (5.2). If we are able to find some, the best { }, 'X S  

becomes the solution. Otherwise there must be dissatisfaction in (5.3) as we do 

not change the room assignment yet. Under this circumstances, we can 

temporarily relax (5.3) by applying the reassignment of timing of c . The only 

possible violation incurred in MRPT is some capacity constraint, which means 

the number of classes assigned to that some timeslot exceeds the number of 

rooms available. Assuming the corresponding room type is j  and the timeslot 

is t . To resolve the violation of capacity constraint, obviously there are two 

ways, i.e., change the room type or change the timing of every class which are 

assigned to j  and t . The former method does not affect the improvement of 

objective value as long as the valid reassignment can be found, but the later 

may deteriorate the objective value. As a result, we conduct the room type 

reassignment first followed by timing reassignment for each target class. All 

generated new solutions are recorded as candidates and the best at the end is 

the output. 
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Algorithm 5-2: Searching for a neighboring solution from a specified class of 
a given timetable and module reallocation solution 

input The class c , the timetable S , the module reallocation solution X and a 
target objective value z . 

1  For c , find the set of new timeslots cT  which satisfy (5.2), (5.4) and    
 0∆ >z . 

2  if ≠ ∅cT  then 

3   Apply the change of timing of c  to *t  such that *t  leads to max∆F .  
  Record the new solution. 

4   else 

5    Find the set of timeslots '
cT  which satisfy (5.2) and 0∆ >z  but violate 

    (5.3) 

6    if ' ≠ ∅cT  then 

7     for all '∈ ct T , denote the violated room type as j , do 

8      if we can find another valid room type for c  then 

9       Call Algorithm 5-1 with input ( c , S , X with such room type change 
       applied, z )  

10     else 

11      for all classes 'c  such that ' 1=
c jx , do 

12       if  we can find another valid room type for 'c  then 

13        Apply this room type change to X and record this new solution. 

14       else 

15        Call Algorithm 5-1 with input ( 'c , S with new timing t  for c  
         applied, X , z ) . 

16       end if 
17      end for 
18     end if 
19    end for 
20   end if 
21  end if 
output the recorded solution with the best ∆z . 
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 For room type reassignment part, we try to find a new room type for 

the target class so that we obtain a feasible solution to MRPT. We call this 

reassignment as a valid reassignment. No matter whether the target class is 

lecture or tutorial, we check every possible one in the set of compatible room 

types which is defined in Chapter 3 to see whether it can be reassigned. If 

there is a valid room type reassignment, i.e., by applying this reassignment, 

the resulting room assignment satisfies all type 2 constraints, we obtain a 

neighboring solution.  

 If there does not exist a valid reassignment for the target class, we need 

to resort to the timing reassignment method. We use the idea of recursion to 

conduct the search: we check for every class which is in the corresponding 

room type and assigned to the problematic timeslot, and try to reassign it to 

another timeslot as long as the final benefit of improvement in objective value 

is positive. This timing reassignment is essentially the same to the neighbored 

search, with the only difference in terms of the timing decision part of the 

starting point. 

In addition, we can also apply room type reassignment on c  itself. In 

this case, the current violation can be avoided as we would not reassign to the 

current problematic room types. The search process can also reuse the current 

structure by changing the MRPT solution part of the starting point. 
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5.3 Numerical Experiment 

We show one example on how the time-tuning procedure is conducted in this 

section. The purpose of this numerical experiment is to show the basic idea of 

the fine-tuning on timetable. 

 We used one result from 800-high case as the start point for fine-tuning 

on timetable. For this specific solution, we first obtained the inter-traffic 

evaluation for all five weekdays and two directions and illustrate them in 

Figure 5-1 (Direction A to B, where B is the new campus) and Figure 5-2 

(Direction B to A). The worst moment and direction was 4pm on Friday from 

campus A to campus B and the corresponding traffic rate was 432. 

 

Figure 5-1 The detailed inter-campus traffic rate from campus A to campus B 
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Figure 5-2 The detailed inter-campus traffic rate from campus B to campus A 

Following the steps descried in Algorithm 5-1, we sorted the class set 

Ĉ , which are the candidates to conduct modification of timing, and checked 

each class one by one to see whether it is possible to change the corresponding 

timing. The first class in Ĉ  was class α. We found that if we rescheduled it to 

Thursday, no restrictions were violated.42 As for the impact on traffic rates on 

Friday, the traffic rate at 4pm from A to B was reduced by 101. In addition, 

other traffic rates on Friday from A to B were also affected with various 

reductions. As there was no student who took class α and also took classes 

afterwards on Friday, there were no such changes on traffic from B to A. On 

the other hand, traffic rate on Thursday was also affected by this rescheduling. 

Specifically, traffic rate at 4pm from A to B was increased by 52, totally 

                                                                                                 

42 In fact there are several possible timeslots that we can reschedule and they all lead to the 

same reduction of objective value. We choose 4pm THU as the class hour remains the same as 

it is originally scheduled, which is preferred by stakeholders. 
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contributed by 52 students taking a course on campus A which ended at 

3:45PM. No other changes on this direction were applied as there were no 

other classes which were correlated to α and ended before 4 PM. However, 

several classes, which were scheduled after 5PM, had a correlation with α. As 

a result, traffic rates from B to A after 5PM were increased accordingly. As an 

illustration, changes on traffic rate from A to B were shown in Figure 5-3, and 

the one from B to A is shown in Figure 5-4. In these figures, the blocks with 

solid outlines represent the traffic rates which are reduced, and the blocks with 

dashed outlines represent the traffic rates which are increased.  

 

Figure 5-3 Changes on traffic rate (A to B) when rescheduling α from FRI to THU 

After Algorithm 5-1 was terminated, we were able to reduce the 

objective value to 282, i.e., reduced the inter-campus traffic measure by about 

35%. Although this significant reduction may not be achieved in every test 

case, it shows the potential of further improving inter-campus traffic. 
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Figure 5-4 Changes on traffic rate (B to A) when rescheduling α from FRI to THU 
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Chapter 6 Conclusion 

In this thesis, we have proposed the module reallocation problem, namely 

MRPT, which arises from the field of UCTP. As far as we know, this problem 

has never been studied before as it explicitly focuses on the impact on the 

inter-campus traffic. Given a timetable, the worst case scenario of inter-

campus traffic is minimized subject to a set of stakeholders’ requirements in 

order to decide which modules should be reallocated and which types of 

classrooms on the new campus should be assigned to. We have formulated this 

problem as a MIP model after conducting thorough data analysis on historical 

enrollment data and deriving all required model parameters. Solutions to the 

stakeholder’s problem, which was a special and simplified MRPT, have been 

found by using the commercial solver CPLEX. However, we have also found 

that commercial solver is not able to obtain a good solution when the problem 

scale is large. As in reality the problem scale of MRPT is expected to be large, 

we have proposed an iterative two-stage heuristic to improve computational 

efficiency when finding good solutions. The two stages account for the 

decomposable decisions of the MRPT which were the module selection 

decision and the room allocation decision. This heuristic combines various 

methods, such as constructive heuristic, clustering analysis, branch and bound 

framework, Lagrangian relaxation method, etc., to exploit the problem 

structure and maintain the computational efficiency. We have solved various 

real-scale test cases of MRPT in which the number of modules are up to 800 

and 10,000. Even when comparing with the previous studies on general UCTP, 
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the problem scale in our study is quite large. The results have shown that our 

proposed method outperforms CPLEX overwhelmingly. In addition, we have 

considered the case when we are allowed to modify the timing. As an 

extension to MRPT, we have provided a way to fine-tune the timetable to 

further improve the inter-campus traffic. 

In Chapter 3, we have conducted data analysis to understand the 

problem better. First we have helped the stakeholders to find the connection 

between the students’ movement behavior and the inter-campus traffic. We 

have also used cluster analysis to provide insights into how to prevent bad 

solutions. Second, we have helped the stakeholders to determine those 

parameters such as the target level of “fairness” for their requirement by 

exercising several what-if experiments. Through these very experiments, we 

have also found that these requirements prevent us from using trivial (good) 

solutions, such as assigning courses from the same faculty to the new campus.  

Third, we have formulated this real world problem as a MIP model by 

considering the stakeholders’ requirements and analyzing related data. This 

MIP model was able to represent the stakeholders’ needs including controlling 

the traffic while maintaining a set of constraints in terms of fairness. The 

solution to the problem that the stakeholders addressed was applied in reality 

after the aforementioned processes were completed. In terms of the 

consequences in reality, it is widely acknowledged by the stakeholders that our 

solution contributes a lot in terms of controlling the inter-campus traffic 

(jointly contributed by investing more shuttle buses as our solution cannot 
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reduce the traffic arbitrarily). On the other hand, by using commercial solver 

to solve this model, the commercial solver showed severe limitations when the 

problem scale is big, including not only low computational performance, but 

also difficulties in finding feasible solutions. 

 In Chapter 4, we have proposed a two-stage heuristic approach to solve 

this problem to handle the big problem scale. The two stages, namely the 

module selection stage and room assignment stage, are derived by exploiting 

the problem structures. In the first stage, we have introduced a multi-objective 

framework to tackle the problem. Under the multi-objective framework, we 

have proposed two methods to generate the solution. The first heuristic is a 

greedy constructive method based on the balancing between the objective 

value and the violations of constraints. The second heuristic constructs a bi-

objective model, which uses a surrogate measure of traffic based on clustering 

analysis on the student-module registration data. This model is solved by the 

Normal Boundary Intersection (NBI) method. In the second stage, we have 

used a branch and bound framework to solve the problem. Within this 

framework, Lagrangian relaxation method is used to solve the sub-problem, in 

which a type of knapsack structure is identified and thus the sub-problem can 

be solved efficiently. We have also used constraint programming techniques to 

help obtain the incumbent solution. Comparing to the performance of CPLEX, 

the results show that the proposed method is able to provide solutions of good 

quality comparatively quicker. 
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 In Chapter 5, we have further extended the MRPT by considering that 

the timetable is allowed to be modified slightly from any given one. We have 

conducted a local search from the existing solution to MRPT to a new solution 

with a modified timetable such that the inter-campus traffic measurement can 

be improved. 

There are mainly two sets of results of this study. The first result set 

was obtained by solving a MRPT problem in a real life project, which was 

described in Chapter 3 and 5, by using commercial solver. The problem is a 

small-scale problem due to a lot of practical restraints encountered through the 

project. Solutions for two semesters of one academic year were provided to 

the stakeholders for the first year running of the new campus. The 

stakeholders appreciated them. In addition, important decisions such as 

investing more shuttle bus were made based on the results. It is also expected 

that the results can be more accurate as more recent data will be available in 

the future (comparing to the historical data which was used in our study). The 

second result set was generated by using the method we proposed in Chapter 4 

on a variant set of large-scale generated input data based on the knowledge 

and experiences through the project. The results show that our proposed 

heuristic can improve the computational efficiency on large-scale problem 

which has not been addressed in our real life project.  

Overall, we have studied a real-world problem closely related to UCTP. 

As far as we know, this problem has not been studied before. The problem is 

challenging in several aspects, including a very different objective function 
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namely inter-campus traffic, an innovative “facility-sharing” idea for the new 

campus and the large scale. We believe this study present a new direction of 

study related to UCTP and other university resource planning problems. We 

hope that our study provide guidance and insights for the related studies. 

For the future studies, we propose several possible directions: 

(1) Our study considers the case when there are only two campuses of 

which one campus is in existence while the other is new. In reality, 

there are similar multi-campus module reallocation problem but may 

require very different ways to consider. For instance, some universities 

may have many campuses while more than two of them are required to 

be shared by students from all departments. 43 In this case, the MRPT 

is extended to three campuses and more. Another possibility is that no 

campus is new, i.e., all campuses are already in existence for several 

years.44 In this case, the module reallocation problem may become a 

module exchange problem, as modules from each campus may be 

reallocated to other campus. 

                                                                                                 

43  For instance, the University of the Aegean  

(http://www.aegean.gr/aegean2/index.html), and  the university of the Highlands and Islands 

(http://www.uhi.ac.uk/en/#campuses). 

44 For instance, University of Manchester  with University of Manchester Institute of 

Science and Technology (http://www.manchester.ac.uk/discover/history-heritage/history/). 
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(2) The concept of inter-campus traffic under campus extension can be 

applied in other circumstances. For instance, it may help to make 

decisions for the case of hospital extension. In china, it becomes 

critical that the medical resources, especially those major hospitals, 

cannot satisfy the dramatically increasing demand of the patients. As a 

result, some of the major hospitals are now upgrading by building a 

new complex next to the original one. As for the location of the new 

complex, it is usually not possible to build very nearby since the major 

hospitals are typically built years ago and the surroundings are already 

taken by others. However, it is also not possible to be located remotely, 

as many diseases are correlated and the common facilities (e.g., 

laboratories, imaging centers, the emergency) are most likely to be 

remained in the original complex due to limited resources. The 

common way in china for the hospital extension project is to buy some 

land over the street and build the new one which is linked by an 

underground passageway. The doctors, however, usually serve both 

complexes under a schedule. For example, on Monday a doctor of 

hematology may need to be at his office from 9AM to 10AM, and 

visits the ward for patients of the clinic of cardiology after that till 

1PM, then works back at his office till 5PM, and stays at his station of 

surgery in the night. However, the travelling times for him at different 

times of the day are usually dramatically different. The main reason is 

that the average number of patient-visitings per day is huge in china. It 

is common to even have congestion in the underground passageway, 
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and the queue for a lift is usually extremely long. The other minor 

reasons include misleading guidance system, rush hours (e.g., children 

are tend to visit the hospital in the noon as that is the only time 

available for the escorting parents) and so forth. As a result, the 

different location arrangements of a doctor’s office and the other 

stations he is responsible can affect their travelling time a lot, and 

hence affect their work performance (e.g., late for their next station). 

Different offices and stations are also correlated in such a way that 

they are used by doctors travelling from different locations. In this case, 

a smooth traffic for doctors between the two complexes is obviously 

favored. This problem is very similar to our campus extension case. 

The obvious difference is that the facilities of a same clinic/department 

should be at the same complex. However, the wards, for example, for 

different patients are allowed to be placed into different complexes. 

One may even consider the case for the patients and can also consider 

whether the schedule for the doctors should be fixed in the first place. 

(3) One of the extensions to this study can be the shuttle bus dispatching 

system. In this case, the relatively stable demand from students is 

presented by a fixed module selection and timetabling. An intelligent 

dispatching system can be connected directly and produce a more 

efficient dispatch plan. 

(4) As we mentioned in Chapter 3, our model relies on historical data 

when it was developed. Therefore the results from our model may be 
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different from the real traffic. We believe this can be resolved by 

running this model for several years, as the new input data, which 

reflects the students’ responding to the actual inter-campus traffic 

system, are used. Certain parameters, such as the overlap value, can be 

fine-tuned by considering both the enrollment data and the real traffic 

data. It is also good if some survey can be conducted in the end of a 

semester to collect student’s opinion on the traffic impact from the 

module reallocation decision. Moreover, when more data are available, 

we could even build stochastic model to capture students’ behavior 

under multiple scenarios. For instance, certain modules are constantly 

popular from year to year, and students may tend to avoid selecting 

such modules if possible as he expect a high traffic when attending this 

module. 

(5) Our fine-tuning study in Chapter 5 serves as an extension to the main 

study which proposes a simple greedy approach. One may consider a 

more complete approach by considering more constraints such as SC3 

mentioned in Chapter 2. In that case, one can add corresponding search 

rules to Algorithm 5-2. 
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Appendices 

A.1 Test Case Generation for Numerical Experiment 

A test case reflects a randomly generated timetabling environment of a 

university. For instance, how many modules are offered, how many students 

are involved, how many rooms are allocable, etc. A test case can be used to 

evaluate the quality of a module reallocation solution, such as traffic level. 

The whole test case generation process includes four steps. First, we generate 

the modules and associated classes (lectures and tutorials). Second, we 

generate the classrooms on the new campus. Third, we generate a timetable for 

all classes which will be used in the process of the module reallocation. Forth, 

we generate students according to the scale of the modules and assign them to 

classes. This process is designed based on the actual module selection 

operations of an Asian leading university which we study at.  

Step I: Module generation 

 In the first step, we mainly generate the set of modules and other 

relevant information., such as the features related to modules, including 

module size, group of students eligible to select this module, etc., and the 

configuration of modules including associated lectures and tutorials, the 

number of lectures/tutorials per week of a module, etc. The set of modules ( I ) 

we consider are the candidates to relocate to the new campus and are initially 

generated. Then the set faculties (U ) are generated based on I  . For instance, 

500 modules and three faculties are generated for a medium-sized university 
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test case. Given I , we then generate the features of each module in order to 

build a realistic test case. These features include: (1) the capacity of the 

module; (2) the faculty that offers the module; (3) the group of students 

eligible to select the module. Generation of these features is guided by several 

pre-defined patterns that are commonly seen in universities. We list the rules 

that we use as an example in Table 6-1.  



Appendices   

168 

 

Table 6-1 Rules used to generate features of modules 

Category Rules of feature generation Example  

Capacity of 
module 

As the range of capacity of modules 
is usually large, it is split into a  
groups. First, we use a discrete 
random variable Y   from 1 to a  to 
randomly determine which group the 
capacity of the module would fall in. 
The probability mass function of the 
random variable is decreasing from 1 
to a . Then the actual capacity of a 
module is randomly selected within 
the selected group.  

Module capacity is in 
the range of [20,500] , 
which is further 
categorized into four  
(i.e., 4a = ) groups: 20-
50,51-100,101-250,251-
500. ( )ρY y  are 40%, 
30%, 20%, 10% 45 
respectively when 

1,2,3,4=y . 

The faculty 
offering the 
module 

Randomly assigned to one faculty 
following a pre-defined distribution 
which represents the involvements 
among different faculties. 

1
3

 for each faculty, 

assuming 3=U . 

Eligible  
faculties 
where the 
students 
come from) 

Compulsory module: Only the faculty 
that opens this module. 

40% chance 

Selective module: All faculties. 60% chance 

Eligible 
students’ 
level46 

Compulsory modules: Randomly be 
assigned to one of the groups of 
students following a pre-defined 
distribution which represents the 
involvements among student’s level. 

Four groups: level 1, 
level 2, level 3 and level 
4. The probability of 
each group is equal. 

Selective modules: Students from all 
faculties. 

Eligible for all students. 

                                                                                                 

45 Most university provides more selective modules than compulsory modules, and most of the 
selective modules are naturally small ones.  

46 Assuming all undergraduate students have four years of study. In this case, level 1 refers to 
a first-year student and “level 4” refers to a fourth year student. 
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After the features of modules being generated, we construct the 

configuration of the modules. For every module, we randomly generate its 

lectures and tutorials based on the module size. In reality, lectures are usually 

relatively few (1-2 lectures of a module per week) but large sized and tutorials 

are most likely many but small sized. The number of lectures and tutorials of a 

module per week vary mainly due to different module sizes. Although there is 

no tutorial for small modules, the number of tutorials of other modules is 

generally only determined by the module size, as the size of a tutorial is 

basically fixed to a small one, for instance, 20-30 students. However, the 

number of lectures of a module is also determined by other factors, such as 

teaching plans and teachers’ preferences, and such factors are too complicated 

to capture. Instead, we introduce some simplified rules learned from historical 

data to generate realistic data. Each class taker may either take two lectures in 

a week, or take one of the two classes which split the whole takers into two 

groups. Length of each tutorial is one hour. Length of lecture may be either 

one hour or two hours. We show such patterns in table 3. 
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Table 6-2 Configuration of modules 

Category Scenario Number of class(es) 
per week 

Length of class 
periods 

Lecture 
configuration 

For small-sized 
module 

1 lecture 2 hours47 

For medium-
sized module 

2 lectures. Each with all 
takers 

1-1 48  (50% 
chance) or 1-2 
(50%). 

For large-sized 
module 

(1) (50% chance) 2 
lectures. Each with half 
takers 

1-1 or 2-2 

(2) (50% chance) 2 
lectures. Each with all 
takers 

1-1 or 1-2 

Tutorial 
configuration 

For small sized 
modules 

No tutorial n/a 

For medium 
and large-sized 
modules 

As long as that one 
tutorial session contains 
20 to 30 students.  

1 hour long. 

Step II: Room generation 

 We then generate information related to classrooms of the new campus. 

We first generate J  based on the classes generated previously, as in reality the 

design of the classrooms of a new campus should consider information of 

previous timetabling system. The number of room types depends on the range 

of class sizes in the test case, as well as the percentage of capacity to facilitate 

the students of the whole university (in our case we use 30%). The wider the 

range of class size is the more room types are generated. The room size of one 

                                                                                                 

47 There is a ten to fifteen minutes break in the middle of the class. 

48 Format in A-B, where A means the length of the first class and B means the length of the 
second class (in hours). 
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type is an increasing nonlinear function of room type index. In addition, the 

number of rooms is generated similarly as a decreasing nonlinear function. 

(For instance, assuming 10=J , 25 10ϑ  = + j j , 

20.2 4 22 = − + jk j j where ϑ j  and jk   is the room size and the number of 

rooms of type j  respectively) These settings reflect the fact from reality that 

small rooms are generally plenty for the usage of all tutorials and many small 

modules, whereas large rooms are rare but necessary for the usage of several 

large lectures.  

Step III: Timing generation 

 Recall that we do not change the original timing of modules when we 

do the module selection, so we need to generate the timing for all modules 

first. We do not generate the rooms for the original campus. Instead, we use a 

set of rules to assign classes into timeslots assuming the rooms are always 

sufficient. These rules intend to balance the utilization of timeslots as well as 

rooms. Classes are first divided into three groups: Large classes, medium 

classes and small classes. Due to our settings, all tutorials are treated as small 

classes. We assign classes to timeslots in the following order: large lecture 

pairs, large single lecture, medium lecture pairs, medium single lecture, small 

lecture, tutorials. Orders of classes in each sub group are random. In addition, 

each timeslot has three counters recording the number of large/medium/small 

classes. When a class is assigned to a timeslot, we update the corresponding 

counter. Each timeslot also has U  counters to record the number of classes 
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assigned from each faculty. We use 60 timeslots covering five working days. 

To generate the timetable, every class is randomly assigned into the timeslots 

(or some subset of timeslots, which is explained in the following section) 

which have the lowest corresponding counter value (As for a class pair, such 

as two lectures of a module, two timeslots satisfying the pre-defined 

preference are assigned.) and the lowest corresponding faculty counter value. 

As a result, classes in each timeslot should have similar class scales, and 

classes from the same faculty should be spread out in the whole week. This is 

often crucial for a good timetable as it brings fewer difficulties for students to 

register their preferred modules. 

As many modules have a lot of tutorials associated, it is highly not 

possible that a student cannot select two modules because of timing 

confliction of lectures but of tutorials. Therefore, it is also preferred to assign 

lectures and tutorials to two different sets of timeslots. One possible way is 

that assign lectures to odd timeslots (assuming the first timeslot of a day is 

timeslot 1) but tutorials to even timeslots. To further refine this method, those 

2-hour lectures are assigned to some specific time period such that no tutorials 

are allowed to be assigned to. 

Timings for the lectures and tutorials are mainly assigned randomly. 

However, those modules having two lectures per week will be mostly assigned 

to two distinct days by randomly choosing one of the some patterns, e.g., 

Monday and Wednesday, Tuesday and Thursday, etc. We then use 60 

timeslots covering five working days to construct T . Timing for lectures may 
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follow repetitive patterns like Monday and Wednesday or Tuesday and 

Thursday if there are two lectures per week. Timing for tutorials are chosen 

right after or one or two hours after the lectures. Each module has the equal 

opportunity to be tagged as one of the three faculties.  

Step IV: Students generation 

 With timing of each class confirmed, we generate students and assign 

them to those classes. As every student must register a certain amount of 

compulsory modules according to his student’s level and the faculty he 

belongs to, we consider compulsory module assignment first. Then we can 

have more freedom to assign them into selective modules. In the compulsory 

module assignment phase, all students are generated. Once a student is 

generated, he is immediately assigned to several compulsory modules. In the 

selective module assignment phase, every student is randomly assigned to 

several selective modules. This sequence reflects the priority usually used 

when students are selecting modules, as compulsory modules are much more 

important, and the pattern of selective module selection is often random. 

We describe the process of compulsory module selection in more 

details. Note that any compulsory modules are assumed to eligible to only one 

faculty and one student’s level. The generation process is described in the 

following: 

Step 1: A new student will be generated if there exists a module (called 

active module) in which the number of assigned takers so far has not reached 
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the module size and not tagged. Denote the newly generated student as student 

n . If no new student is needed the process stops. 

Step 2: n  is randomly assigned to one of the student levels that have at 

least one active module. n  is also randomly assigned to one of the faculties 

opening those active modules of his level. Therefore, his student level and 

origin of faculty is determined. 

Step 3: n  is randomly assigned to one of his eligible modules 

repeatedly which bring no timing conflict, and the probability of choosing 

each module is proportional to the module size, as long as he selects enough 

modules according to his required amount (Denoted as a ). If no more 

modules can be assigned and the number of selected modules has not met the 

requirement, go to step 4; otherwise, go to step 1. 

Step 4: Choose the largest module (denoted as module A ) among 

those assigned to n  so far (Denoted as set of module ∏  ). Try to find a 

module (denoted as module B ) not in ∏  in which there exists a student 

(denoted as student x  ) who does not select module A . Let student x  choose 

module A  and therefore allow n  select module B. Repeat this process until n  

can select enough modules. If success, go to step1; If fails, go to step 5. 

Step 5: Tag those modules which have not enough takers so far. 

Decrease a  according to a predefined amount (e.g. 60%). Then keep 

generating students of the same student’s level of n , and try to assign them to 

the remaining modules using the exact order of modules with more empty 
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seats first. If there are still seats left for some modules, update the associated 

module size. Go to step 1. 

This aforementioned process tries to generate students so that every 

compulsory module has no empty seat and the number of students generated is 

not too big. The probability settings used in step 3 and the process in step 4 

prevent the case when the larger modules have many seats not assigned. As 

the number of modules which has not enough takers is bounded by the sum of 

the requirement number of modules across different faculties and student 

levels, the number of students may not select enough modules should be 

controlled. On the other hand, the case students cannot select enough modules 

happens frequently in reality.  

The process of selective module assignment is similar in some extend. 

Note that there is no origin of faculty restriction now, but there is still 

restriction on student’s level. We reuse the process when we assign 

compulsory modules, except that (1) in step 2 there is no minimum required 

number of selections; (2) step 4 and 5 are no longer needed. We still use the 

probability settings in step 2 because usually large selective modules are more 

popular than smaller ones.  

With the information generated, we can compute many other related 

parameters such as student overlap, and we are able to compute exactly how a 

student will travel once some of his selected module is reallocated to the new 

campus. 
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A.2:Details on the Surrogate Objective Function 

This section describes the algorithm to generate the surrogate objective 

function and the analysis on the number of variables for this function. These 

information are tracked back to Section 4.2.2. We first describe the algorithm 

to generate { }1 2, |∀k kI I k  which is used to construct the surrogate function: 

 let { }1,...,∈k I  be the index of iterations and { }1,..., −=k I kS I I  be the 

set of module-groups in iteration k .  

Step 1. 0k = . Initialize 0S = { } { }{ }1 ,..., I . Construct 2 T  matrixes 

{ }, {1,2},Γ ∀ ∈ ∈d
t d t T  in the following way: 

( ) { }, , {1,..., } , 1, 2 , Γ = Γ ∀ ∈ ∈ ∈ 
d d
t mn t m n I d t T  where ( )Γd

mn t  is the element in 

row m and column n of matrix Γd
t . If <m n , its value equals to 

m n

d
I I tr ;  

Otherwise, it is 0. 

Step 2. Among the 2 T  matrixes, find element ( )
*

* * *Γd
m n t such that 

( ) ( )
* '

* * * ' ' '', ', ', '
maxΓ = Γd d

m n t m n td t m n
. Denote ( ) ( )1 2max *, * ,  min *, *k ki m n i m n= = . Set 

1 *
k

mI I=  and 2 *
k

nI I=   Then combine module-set *mI  and *nI  and thus 

updating kS . At the same time, update the 2 T  matrixes by (1) setting 

( ) ( ) ( ) { }' * ' * ' * ' *or *, , 1, 2Γ = Γ +Γ ∀ ≠ ∈ ∈d d d
m m t m m t m n t m m n t T d  and (2) deleting row 

and column *n  in all 2 T  matrixes.  



Appendices   

177 

 

Step 3. If k I< , then 1= +k k  and go to step 2, otherwise ends. 

In addition, we analyze the scale of variables related to the surrogate 

measure of traffic. 

 Theorem 1. The number of auxiliary variables { }klF  is ( )logΟ I I . 

Proof: 

In iteration k  of the aforementioned algorithm, two groups are 

combined and a group pair 1 2,k kI I such that 1 2≥k kI I  is found. This group 

pair is later used to generate 
1

1 1

2
1 2

1 ,
k

k
kl i j ljk k

j J j Ji I

F x x l I
I I ∈ ∈∈

 
= − ∀ ∈ 

 
∑ ∑ ∑ . 

Therefore, the total number of auxiliary variables is 2∑ k

k
I . 

Define a function ( ) : 2π >=n n  as the maximum number of 2∑ k

k
I  

given =I n . For instance, ( )1 0π = , ( )2 1π =  as the only combination way is 

to combine two elements together and 1
2 2 1= =∑ k

k
I I ; ( )3 2π =  as the only 

combination way is to combine two of three elements first and then combined 

with the one left behind. 1 2
2 2 2 1 1 2= + = + =∑ k

k
I I I .  In fact, we 

have ( ) ( ) ( ) ( ){ }
'

max ' ' min ', '
n n

n n n n n n nπ π π
≤

= + − + −

( ) ( ){ }
'

2

max ' ' '
Nn

n n n nπ π
 ≤  

= + − +  . We use induction to prove ( ) 2log
2

π ≤
nn n .  
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It is obvious that ( ) 2log
2

π ≤
nn n  when n=2 and 3. For any 3 ≤ <n N , 

assuming as the induction hypothesis that ( ) 2log
2

π ≤
nn n . Now look at 

( ) ( ) ( ){ }
'

2

max ' ' 'π π π
 ≤  

= + − +
Nn

N n N n n . For a given 'n , denote '=a n  and 

= −b N a , then ( ) 2log
2

π ≤
aa a  and ( ) 2log

2
π ≤

bb b . according to Jensen’s 

inequality, 
2 2

2 2 2
2 2log log log +

+ + ≤ +
+ + + + +
a b a a b aa b

a b a b a b a b a b
. Note that 

( )2 2

2 2 2 2

21 2 +
+

= + ≥
+ +

a
a b

a b ab
a b a b

 as 1≤ ⇒ ≤a b RHS , we have 

( ) ( )
2 2

2 2 2 22 2 2 2

2log log 2 log log+
+ +

≥ ⇒ + ≥ +
+ + +

a
a b

a b a b aa b
a b a b a b

. Hence, 

( )2 2 2
2log log log+ + ≤ +

+ + +
a b aa b a b

a b a b a b
 and we have proven 

( )2 2 2log log log
2 2 2

+
+ + ≤ +

a b a ba b a a b  for any valid ( ),a b .49 Therefore, we 

have ( ) 2 2 2
',

2

max log log log
2 2 2

π
 + = ≤  

 ≤ + + ≤ 
 Na b N a

a b NN a b a N .  

A.3 Test Case Generation for Numerical Experiment 

We show that (3.2) to (3.6) linearizes (3.1). We first show that linear function 

1 2

A
i i tι  with constraints (3.3) to (3.6) and non-linear

1 2

B
i i tι are equivalent: 

                                                                                                 

49 The equality condition is a=b which means 2log n  needs to be integral. 
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1 2 1 2 1 2 1 2 1 2

1 2A
i i t i i t i i i i t i ir v r vι = + ,  

 ( ) ( )( )1 2 1 2 1 21 2 1 2

1 2max max ,0 , max ,0
i i t i i t

B
i i t i i i ir v v r v vι = − −  

 We enumerate the domain of variable pair ( )1 2
,i iv v  and show the 

function values of both in Table 6-3. 

Table 6-3 The mapping of the non-linear function and its replacement 

Domain Function value of 
1 2

A
i i tι   Function value of 

1 2

B
i i tι  

(0, 0) 
0 ( ( )

1 2

10 1
2i iv≤ ≤ ⇒

1 2
0i iv = )    

0 

(0, 1) 
0 ( ( )

1 2

11 0
2i iv− ≤ ≤ ⇒

1 2
0i iv = ) 

0 

(1, 0) 
1 2 1 2

1 2
i i t i i t

r r+  ( ( )
1 2

11 2
2i iv≤ ≤ ⇒

1 2
1i iv = ) ( )

1 2 1 2

1 2max ,
i i t i i t

r r   

(1, 1) 
0 ( ( )

1 2

10 1
2i iv≤ ≤ ⇒

1 2
0i iv = ) 

0 

 

 Specifically, we use the fact that variable 
1 2i iv  is required to be binary 

in (3.6) when we derive the function value of 
1 2

A
i i tι . Also, as for a given module 

pair ( )1 2,i i  and t , at most one of 
1 2

1
i i t

r  and 
1 2

2
i i t

r can be positive because the 

traffic contribution can only occur in at most one direction. As such, 

( )
1 2 1 2 1 2 1 2

1 2 1 2max ,
i i t i i t i i t i i t

r r r r+ = . So 
1 2

A
i i tι  is equivalent to 

1 2

B
i i tι .  
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 Then, since (3.2) is essentially min z while 
1 2

,A
i i tz tι≥ ∀  and (3.1)  is 

essentially ( )1 2
min B

i i tt
ι , it concludes that our linearization is correct. 
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