46,657 research outputs found

    Status of the differential transformation method

    Full text link
    Further to a recent controversy on whether the differential transformation method (DTM) for solving a differential equation is purely and solely the traditional Taylor series method, it is emphasized that the DTM is currently used, often only, as a technique for (analytically) calculating the power series of the solution (in terms of the initial value parameters). Sometimes, a piecewise analytic continuation process is implemented either in a numerical routine (e.g., within a shooting method) or in a semi-analytical procedure (e.g., to solve a boundary value problem). Emphasized also is the fact that, at the time of its invention, the currently-used basic ingredients of the DTM (that transform a differential equation into a difference equation of same order that is iteratively solvable) were already known for a long time by the "traditional"-Taylor-method users (notably in the elaboration of software packages --numerical routines-- for automatically solving ordinary differential equations). At now, the defenders of the DTM still ignore the, though much better developed, studies of the "traditional"-Taylor-method users who, in turn, seem to ignore similarly the existence of the DTM. The DTM has been given an apparent strong formalization (set on the same footing as the Fourier, Laplace or Mellin transformations). Though often used trivially, it is easily attainable and easily adaptable to different kinds of differentiation procedures. That has made it very attractive. Hence applications to various problems of the Taylor method, and more generally of the power series method (including noninteger powers) has been sketched. It seems that its potential has not been exploited as it could be. After a discussion on the reasons of the "misunderstandings" which have caused the controversy, the preceding topics are concretely illustrated.Comment: To appear in Applied Mathematics and Computation, 29 pages, references and further considerations adde

    Converting DAE models to ODE models: application to reactive Rayleigh distillation

    Get PDF
    This paper illustrates the application of an index reduction method to some differential algebraic equations (DAE) modelling the reactive Rayleigh distillation. After two deflation steps, this DAE is converted to an equivalent first-order explicit ordinary differential equation (ODE). This ODE involves a reduced number of dependent variables, and some evaluations of implicit functions defined, either from the original algebraic constraints, or from the hidden ones. Consistent initial conditions are no longer to be computed; at the opposite of some other index reduction methods, which generate a drift-off effect, the algebraic constraints remain satisfied at any time; and, finally, the computational effort to solve the ODE may be less than the one associated to the original DAE

    A Characterization of Reduced Forms of Linear Differential Systems

    Full text link
    A differential system [A]:  Y′=AY[A] : \; Y'=AY, with A∈Mat(n,kˉ)A\in \mathrm{Mat}(n, \bar{k}) is said to be in reduced form if A∈g(kˉ)A\in \mathfrak{g}(\bar{k}) where g\mathfrak{g} is the Lie algebra of the differential Galois group GG of [A][A]. In this article, we give a constructive criterion for a system to be in reduced form. When GG is reductive and unimodular, the system [A][A] is in reduced form if and only if all of its invariants (rational solutions of appropriate symmetric powers) have constant coefficients (instead of rational functions). When GG is non-reductive, we give a similar characterization via the semi-invariants of GG. In the reductive case, we propose a decision procedure for putting the system into reduced form which, in turn, gives a constructive proof of the classical Kolchin-Kovacic reduction theorem.Comment: To appear in : Journal of Pure and Applied Algebr

    Can Computer Algebra be Liberated from its Algebraic Yoke ?

    Full text link
    So far, the scope of computer algebra has been needlessly restricted to exact algebraic methods. Its possible extension to approximate analytical methods is discussed. The entangled roles of functional analysis and symbolic programming, especially the functional and transformational paradigms, are put forward. In the future, algebraic algorithms could constitute the core of extended symbolic manipulation systems including primitives for symbolic approximations.Comment: 8 pages, 2-column presentation, 2 figure
    • …
    corecore