85,209 research outputs found

    Solving ordinary differential equations with range conditions. Applications

    Get PDF
    This paper introduces the problem of solving ordinary differential equations with extra linear conditions written in terms of ranges, and deals with the corresponding existence and uniqueness problems. Some methods for analyzing the existence of solutions and obtaining the set of all solutions, based on the theory of cones and polyhedra, are given. These solutions are found by first converting the problem to a system of linear algebraic equations and then applying the corresponding well-known theory for solving and discussing the existence and uniqueness of solutions of these systems. Finally, the methods are illustrated by their application to some practical examples of the beam problem

    Status of the differential transformation method

    Full text link
    Further to a recent controversy on whether the differential transformation method (DTM) for solving a differential equation is purely and solely the traditional Taylor series method, it is emphasized that the DTM is currently used, often only, as a technique for (analytically) calculating the power series of the solution (in terms of the initial value parameters). Sometimes, a piecewise analytic continuation process is implemented either in a numerical routine (e.g., within a shooting method) or in a semi-analytical procedure (e.g., to solve a boundary value problem). Emphasized also is the fact that, at the time of its invention, the currently-used basic ingredients of the DTM (that transform a differential equation into a difference equation of same order that is iteratively solvable) were already known for a long time by the "traditional"-Taylor-method users (notably in the elaboration of software packages --numerical routines-- for automatically solving ordinary differential equations). At now, the defenders of the DTM still ignore the, though much better developed, studies of the "traditional"-Taylor-method users who, in turn, seem to ignore similarly the existence of the DTM. The DTM has been given an apparent strong formalization (set on the same footing as the Fourier, Laplace or Mellin transformations). Though often used trivially, it is easily attainable and easily adaptable to different kinds of differentiation procedures. That has made it very attractive. Hence applications to various problems of the Taylor method, and more generally of the power series method (including noninteger powers) has been sketched. It seems that its potential has not been exploited as it could be. After a discussion on the reasons of the "misunderstandings" which have caused the controversy, the preceding topics are concretely illustrated.Comment: To appear in Applied Mathematics and Computation, 29 pages, references and further considerations adde

    Optimal stopping problems in mathematical finance

    Get PDF
    This thesis is concerned with the pricing of American-type contingent claims. First, the explicit solutions to the perpetual American compound option pricing problems in the Black-Merton-Scholes model for financial markets are presented. Compound options are financial contracts which give their holders the right (but not the obligation) to buy or sell some other options at certain times in the future by the strike prices given. The method of proof is based on the reduction of the initial two-step optimal stopping problems for the underlying geometric Brownian motion to appropriate sequences of ordinary one-step problems. The latter are solved through their associated one-sided free-boundary problems and the subsequent martingale verification for ordinary differential operators. The closed form solution to the perpetual American chooser option pricing problem is also obtained, by means of the analysis of the equivalent two-sided free-boundary problem. Second, an extension of the Black-Merton-Scholes model with piecewise-constant dividend and volatility rates is considered. The optimal stopping problems related to the pricing of the perpetual American standard put and call options are solved in closed form. The method of proof is based on the reduction of the initial optimal stopping problems to the associated free-boundary problems and the subsequent martingale verification using a local time-space formula. As a result, the explicit algorithms determining the constant hitting thresholds for the underlying asset price process, which provide the optimal exercise boundaries for the options, are presented. Third, the optimal stopping games associated with perpetual convertible bonds in an extension of the Black-Merton-Scholes model with random dividends under different information flows are studied. In this type of contracts, the writers have a right to withdraw the bonds before the holders can exercise them, by converting the bonds into assets. The value functions and the stopping boundaries' expressions are derived in closed-form in the case of observable dividend rate policy, which is modelled by a continuous-time Markov chain. The analysis of the associated parabolic-type free-boundary problem, in the case of unobservable dividend rate policy, is also presented and the optimal exercise times are proved to be the first times at which the asset price process hits boundaries depending on the running state of the filtering dividend rate estimate. Moreover, the explicit estimates for the value function and the optimal exercise boundaries, in the case in which the dividend rate is observable by the writers but unobservable by the holders of the bonds, are presented. Finally, the optimal stopping problems related to the pricing of perpetual American options in an extension of the Black-Merton-Scholes model, in which the dividend and volatility rates of the underlying risky asset depend on the running values of its maximum and its maximum drawdown, are studied. The latter process represents the difference between the running maximum and the current asset value. The optimal stopping times for exercising are shown to be the first times, at which the price of the underlying asset exits some regions restricted by certain boundaries depending on the running values of the associated maximum and maximum drawdown processes. The closed-form solutions to the equivalent free-boundary problems for the value functions are obtained with smooth fit at the optimal stopping boundaries and normal reflection at the edges of the state space of the resulting three-dimensional Markov process. The optimal exercise boundaries of the perpetual American call, put and strangle options are obtained as solutions of arithmetic equations and first-order nonlinear ordinary differential equations

    On an explicit finite difference method for fractional diffusion equations

    Full text link
    A numerical method to solve the fractional diffusion equation, which could also be easily extended to many other fractional dynamics equations, is considered. These fractional equations have been proposed in order to describe anomalous transport characterized by non-Markovian kinetics and the breakdown of Fick's law. In this paper we combine the forward time centered space (FTCS) method, well known for the numerical integration of ordinary diffusion equations, with the Grunwald-Letnikov definition of the fractional derivative operator to obtain an explicit fractional FTCS scheme for solving the fractional diffusion equation. The resulting method is amenable to a stability analysis a la von Neumann. We show that the analytical stability bounds are in excellent agreement with numerical tests. Comparison between exact analytical solutions and numerical predictions are made.Comment: 22 pages, 6 figure
    • …
    corecore