893 research outputs found

    Combining Field and Imaging Spectroscopy to Map Soil Organic Carbon in a Semiarid Environment

    Get PDF
    Semiarid regions are especially vulnerable to climate change and human-induced land-use changes and are of major importance in the context of necessary carbon sequestration and ongoing land degradation. Topsoil properties, such as soil carbon content, provide valuable indicators to these processes, and can be mapped using imaging spectroscopy (IS). In semiarid regions, this poses difficulties because models are needed that can cope with varying land surface and soil conditions, consider a partial vegetation coverage, and deal with usually low soil organic carbon (SOC) contents. We present an approach that aims at addressing these difficulties by using a combination of field and IS to map SOC in an extensively used semiarid ecosystem. In hyperspectral imagery of the HyMap sensor, the influence of nonsoil materials, i.e., vegetation, on the spectral signature of soil dominated image pixels was reduced and a residual soil signature was calculated. The proposed approach allowed this procedure up to a vegetation coverage of 40% clearly extending the mapping capability. SOC quantities are predicted by applying a spectral feature-based SOC prediction model to image data of residual soil spectra. With this approach, we could significantly increase the spatial extent for which SOC could be predicted with a minimal influence of a vegetation signal compared to previous approaches where the considered area was limited to a maximum of, e.g., 10% vegetation coverage. As a regional example, the approach was applied to a 320 km2 area in the Albany Thicket Biome, South Africa, where land cover and landuse changes have occurred due to decades of unsustainable land management. In the generated maps, spatial SOC patterns were interpreted and linked to geomorphic features and land surface processes, i.e., areas of soil erosion. It was found that the chosen approach supported the extraction of soil-related spectral image information in the semiarid region with highly varying land cover. However, the quantitative prediction of SOC contents revealed a lack in absolute accuracy

    Prediction of topsoil organic carbon using airborne and satellite hyperspectral imagery

    Get PDF
    The Airborne Hyperspectral Scanner (AHS) and the Hyperion satellite hyperspectral sensors were evaluated for their ability to predict topsoil organic carbon (C) in burned mountain areas of northwestern Spain slightly covered by heather vegetation. Predictive models that estimated total organic C (TOC) and oxidizable organic C (OC) content were calibrated using two datasets: a ground observation dataset with 39 topsoil samples collected in the field (for models built using AHS data), and a dataset with 200 TOC/OC observations predicted by AHS (for models built using Hyperion data). For both datasets, the prediction was performed by stepwise multiple linear regression (SMLR) using reflectances and spectral indices (SI) obtained from the images, and by the widely-used partial least squares regression (PLSR) method. SMLR provided a performance comparable to or even better than PLSR, while using a lower number of channels. SMLR models for the AHS were based on a maximum of eight indices, and showed a coefficient of determination in the leave-one-out cross-validation R2 = 0.60–0.62, while models for the Hyperion sensor showed R2 = 0.49–0.61, using a maximum of 20 indices. Although slightly worse models were obtained for the Hyperion sensor, which was attributed to its lower signal-to-noise ratio (SNR), the prediction of TOC/OC was consistent across both sensors. The relevant wavelengths for TOC/OC predictions were the red region of the spectrum (600–700 nm), and the short wave infrared region between ~2000–2250 nm. The use of SMLR and spectral indices based on reference channels at ~1000 nm was suitable to quantify topsoil C, and provided an alternative to the more complex PLSR method

    Combining Field and Imaging Spectroscopy to Map Soil Organic Carbon in a Semiarid Environment

    Get PDF
    Semiarid regions are especially vulnerable to climate change and human-induced land-use changes and are of major importance in the context of necessary carbon sequestration and ongoing land degradation. Topsoil properties, such as soil carbon content, provide valuable indicators to these processes, and can be mapped using imaging spectroscopy (IS). In semiarid regions, this poses difficulties because models are needed that can cope with varying land surface and soil conditions, consider a partial vegetation coverage, and deal with usually low soil organic carbon (SOC) contents. We present an approach that aims at addressing these difficulties by using a combination of field and IS to map SOC in an extensively used semiarid ecosystem. In hyperspectral imagery of the HyMap sensor, the influence of nonsoil materials, i.e., vegetation, on the spectral signature of soil dominated image pixels was reduced and a residual soil signature was calculated. The proposed approach allowed this procedure up to a vegetation coverage of 40% clearly extending the mapping capability. SOC quantities are predicted by applying a spectral feature-based SOC prediction model to image data of residual soil spectra. With this approach, we could significantly increase the spatial extent for which SOC could be predicted with a minimal influence of a vegetation signal compared to previous approaches where the considered area was limited to a maximum of, e.g., 10% vegetation coverage. As a regional example, the approach was applied to a 320 km2 area in the Albany Thicket Biome, South Africa, where land cover and landuse changes have occurred due to decades of unsustainable land management. In the generated maps, spatial SOC patterns were interpreted and linked to geomorphic features and land surface processes, i.e., areas of soil erosion. It was found that the chosen approach supported the extraction of soil-related spectral image information in the semiarid region with highly varying land cover. However, the quantitative prediction of SOC contents revealed a lack in absolute accuracy

    Identify the opportunities provided by developments in earth observation and remote sensing for national scale monitoring of soil quality

    Get PDF
    Defra wish to establish to what extent national-scale soil monitoring (both state and change) of a series of soil indicators might be undertaken by the application of remote sensing methods. Current soil monitoring activities rely on the field-based collection and laboratory analysis of soil samples from across the landscape according to different sampling designs. The use of remote sensing offers the potential to encompass a larger proportion of the landscape, but the signal detected by the remote sensor has to be converted into a meaningful soil measurement which may have considerable uncertainty associated with it. The eleven soil indicators which were considered in this report are pH, organic carbon, bulk density, phosphorus (Olsen P), nitrogen (total N), magnesium (extractable), potassium (extractable), copper (aqua regia extractable), cadmium (aqua regia extractable), zinc (aqua regia extractable) and nickel (aqua regia extractable). However, we also comment on the potential use of remote sensing for monitoring of soil depth and (in particular) peat depth, plus soil erosion and compaction. In assessing the potential of remote sensing methods for soil monitoring of state and change, we addressed the following questions: 1. When will these be ready for use and what level of further development is required? 2. Could remote sensing of any of these indicators replace and/or complement traditional field based national scale soil monitoring? 3. Can meaningful measures of change be derived? 4. How could remote soil monitoring of individual indicators be incorporated into national scale soil monitoring schemes? To address these questions, we undertook a comprehensive literature and internet search and also wrote to a range of international experts in remote sensing. It is important to note that the monitoring of the status of soil indicators, and the monitoring of their change, are two quite different challenges; they are different variables and their variability is likely to differ. There are particular challenges to the application of remote sensing of soil in northern temperate regions (such as England and Wales), including the presence of year-round vegetation cover which means that soil spectral reflectance cannot be captured by airborne or satellite observations, and long-periods of cloud cover which limits the application of satellite-based spectroscopy. We summarise the potential for each of the indicators, grouped where appropriate. Unless otherwise stated, the remote sensing methods would need to be combined with ground-based sampling and analysis to make a contribution to detection of state or change in soil indicators. Soil metals (copper (Cu), cadmium (Cd), zinc (Zn), nickel (Ni)): there is no technical basis for applying current remote sensing approaches to monitor either state or change of these indicators and there are no published studies which have shown how this might be achieved. Soil nutrients: the most promising remote sensing technique to improve estimates of the status of extractable potassium (K) is the collection and application of airborne radiometric survey (detection of gamma radiation by low-flying aircraft) but this should be investigated further. This is unlikely to assist in monitoring change. Based on published literature, it may be possible to enhance mapping the state of extractable magnesium (Mg), but not to monitor change, using hyperspectral (satellite or airborne) remote sensing in cultivated areas. This needs to be investigated further. There are no current remote sensing methods for detecting state or change of Olsen (extractable) phosphorus (P). Organic carbon and total nitrogen: Based on published literature, it may be possible to enhance mapping the state of organic carbon and total nitrogen (but not to monitor change), using hyperspectral (satellite or airborne) remote sensing in cultivated areas only. In applying this approach the satellite data are applied using a statistical model which is trained using ground-based sampling and analysis of soil

    Digital mapping of soil properties using multivariate statistical analysis and ASTER data in an Arid Region

    Get PDF
    Modeling and mapping of soil properties has been identified as key for effective land degradation management and mitigation. The ability to model and map soil properties at sufficient accuracy for a large agriculture area is demonstrated using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery. Soil samples were collected in the El-Tina Plain, Sinai, Egypt, concurrently with the acquisition of ASTER imagery, and measured for soil electrical conductivity (EC_e), clay content and soil organic matter (OM). An ASTER image covering the study area was preprocessed, and two predictive models, multivariate adaptive regression splines (MARS) and the partial least squares regression (PLSR), were constructed based on the ASTER spectra. For all three soil properties, the results of MARS models were better than those of the respective PLSR models, with cross-validation estimated R^2 of 0.85 and 0.80 for EC_e, 0.94 and 0.90 for clay content and 0.79 and 0.73 for OM. Independent validation of EC_e, clay content and OM maps with 32 soil samples showed the better performance of the MARS models, with R^2 = 0.81, 0.89 and 0.73, respectively, compared to R^2 = 0.78, 0.87 and 0.71 for the PLSR models. The results indicated that MARS is a more suitable and superior modeling technique than PLSR for the estimation and mapping of soil salinity (EC_e), clay content and OM. The method developed in this paper was found to be reliable and accurate for digital soil mapping in arid and semi-arid environments

    Spatially Explicit Estimation of Clay and Organic Carbon Content in Agricultural Soils Using Multi-Annual Imaging Spectroscopy Data

    Get PDF
    Information on soil clay and organic carbon content on a regional to local scale is vital for a multitude of reasons such as soil conservation, precision agriculture, and possibly also in the context of global environmental change. The objective of this study was to evaluate the potential of multi-annual hyperspectral images acquired with the HyMap sensor (450–2480 nm) during three flight campaigns in 2004, 2005, and 2008 for the prediction of clay and organic carbon content on croplands by means of partial least squares regression (PLSR). Supplementary, laboratory reflectance measurements were acquired under standardized conditions. Laboratory spectroscopy yielded prediction errors between 19.48 and 35.55 g kg−1 for clay and 1.92 and 2.46 g kg−1 for organic carbon. Estimation errors with HyMap image spectra ranged from 15.99 to 23.39 g kg−1 for clay and 1.61 to 2.13 g kg−1 for organic carbon. A comparison of parameter predictions from different years confirmed the predictive ability of the models. BRDF effects increased model errors in the overlap of neighboring flight strips up to 3 times, but an appropriated preprocessing method can mitigate these negative influences. Using multi-annual image data, soil parameter maps could be successively complemented. They are exemplarily shown providing field specific information on prediction accuracy and image data source

    Heterogeneity of soil properties at the field-scale and spatial patterns of soil-borne pests and weeds

    Get PDF
    Soil heterogeneity at the field-scale not only affects crop growth and yield, but also spatial patterns of soil-borne pests and weeds. Therefore, site-specific management in due consideration of soil variability is required within the scope of precision crop protection. The focus of this study was the use of minimal- and non-invasive sensor technologies at the field-scale to improve (i) the assessment of soil organic carbon (SOC), (ii) management strategies for the beet cyst nematode Heterodera schachtii and (iii) the appreciation for complex interrelations of soil properties and weeds. A detailed knowledge on high-resolution SOC heterogeneity in agricultural soils is required, because SOC affects other soil properties such as aggregate stability or soil respiration. The small-scale spatial variability of SOC was determined using imaging spectroscopy in the visible and near-infrared region on long-term uniformly cultivated test fields with varying soil surface conditions (roughness, vegetation). Soil reflectance was recorded by the aircraft-mounted hyperspectral sensor HyMap (450 – 2500 nm). Site-specific characteristics affected the calibration models; highest prediction accuracy was performed over a bare, fine soil (R2 = 0.80). A generated pixel-wise map (8 × 8 m) on the basis of hyperspectral data visualise the SOC heterogeneity more realistic than an interpolated map based on conventional soil sampling. In addition, the prediction of SOC over a time period of three years was possible. Soil texture is often referred to be the dominant soil property affecting the population density of the beet cyst nematode H. schachtii. The apparent electrical conductivity (ECa), which is known to be strongly related to soil texture and porosity, was measured with the non-invasive EM38 sensor. On fields heterogeneous in texture and porosity, moderate (R2 = 0.47) and strong (R2 = 0.74) correlations were observed between ECa and nematode population density. ECa values and soil taxation maps reveal that H. schachtii prefers deep soils with medium to light texture, a high proportion of wide pores and non-stagnic water conditions. Management maps on the basis of ECa and soil taxation maps indicate areas with different soil-related living conditions for H. schachtii. The spatial distribution and density of four weed species was observed within a long-term survey over nine years on an arable field and related to soil properties. The dominance of the weed species varied between the years, but the spatial patterns remained stable during the whole study period. Soil properties were analysed conventionally in the laboratory and via mid-infrared spectroscopy-partial least squares regression (MIRS-PLSR) or EM38 measurements. Multivariate statistics were used to describe the effect of soil properties, indicating that soil texture, available water capacity and SOC explained 28.2% of the weed species variability. The spatial distribution of soil properties can be used to create maps for site-specific weed management. The study provide evidence that minimal- and non-invasive sensor technologies such as MIRS-PLSR, airborne hyperspectral imaging or EM38 measurements are practical methods to detect soil heterogeneity at the field-scale. SOC and soil texture, both important parameters for the occurrence of soil-borne pests and weeds, can be characterised with high spatial resolution. Management maps on the basis of soil properties permit several benefits for precision crop protection, such as improved site-specific management strategies of pests and weeds

    Monitoring carbon stocks in the sub-tropical thicket biome using remote sensing and GIS techniques : the case of the Great Fish River Nature Reserve and its environs, Eastern Cape province, South Africa

    Get PDF
    The subtropical thicket biome in the Eastern Cape Province of South Africa has been heavily degraded and transformed due overutilization during the last century. The highly degraded and transformed areas exhibit a significant loss of above ground carbon stocks (AGC) and loss of SOC content. Information about land use /cover change and fragmentation dynamics is a prerequisite for measuring carbon stock changes. The main aim of this study is to assess the trends of land use/cover change, fragmentation dynamics, model the temporal changes of AGC stocks in the Great Fish River Nature Reserve and its environs from 1972 to 2010, quantify and map the spatial distribution of SOC concentrations in the partial subtropical thicket cover in the Great Fish River Nature Reserve and environs (communal rangelands). Multi-temporal analyses based on 1972 Landsat MSS, 1982 and 1992 Landsat TM, 2002 Landsat ETM and 2010 SPOT 5 High Resolution images were used for land use/cover change detection and fragmentation analysis. Object oriented post-classification comparison was applied for land use/cover change detection analysis. Fragmentation dynamics analysis was carried out by computing and analyzing landscape metrics in land use/cover classes. Landscape fragmentation analyses revealed that thicket vegetation has increasingly become fragmented, characterized by smaller less linked patches of intact thicket cover. Landscape metrics for intact thicket and degraded thicket classes reflected fragmentation, as illustrated by the increase in the Number of Patches (NP), Patch Density (PD), Landscape Shape Index (LSI), and a decrease in Mean Patch Size (MPS). The use of remote sensing techniques and landscape metrics was vital for the understanding of the dynamics of land use/cover change and fragmentation. Baseline land use/cover maps produced for 1972, 1982, 1992 2002 and 2010 and fragmentation analyses were then used for analyzing carbon stock changes in the study area. To model the temporal changes of AGC stocks in the Great Fish River Nature Reserve and its environs from 1972 to 2010, a method based on the integration of RS and GIS was employed for the estimation of AGC stocks in a time series. A non-linear regression model was developed using NDVI values generated from SPOT 5 HRG satellite imagery of 2010 as the independent variable and AGC stock estimates from field plots as the dependent variable. The regression model was used to estimate AGC stocks for the entire study area on the 2010 SPOT 5 HRG and also extrapolated to the 1972 Landsat MSS, 1982 and 1992 Landsat TM, and 2002 Landsat ETM. The AGC stocks for the period 1972 -1982, 1982-1992, 1992-200) and 2002-2010 were compared by means of change detection analysis. The comparison of AGC stocks was carried out at subtropical thicket class level. The results showed a decline of AGC stocks in all the classes from 1972 to 2010. Degraded and transformed thicket classes had the highest AGC stock losses. The decline of AGC stocks was attributed to thicket transformation and degradation which were caused by anthropogenic activities. To map and quantify SOC concentration in partial (fractional) thicket vegetation cover, the spectral reflectance of both thicket vegetation and bare-soils was measured in situ. Soil samples were collected from the sampling sites and transported to the laboratory for spectral reflectance and SOC measurements. Thicket vegetation and bare soil reflectance were measured using spectroscopy both in situ and under laboratory conditions. Their respective endmembers were extracted from ASTER imagery using the Pixel Purity Index (PPI). The endmembers were validated with in situ and laboratory thicket and bare-soil reflectance signatures. The spectral unmixing technique was applied to ASTER imagery to discriminate pure pixels of thicket vegetation and bare-soils; a residual spectral image was produced. The Residual Spectral Unmixing (RSU) procedure was applied to the residual spectral image to produce an RSU soil spectrum image. Partial Least Squares Regression (PSLR) model was developed using spectral signatures of a residual soil spectrum image as the independent variable and SOC concentration measured from soil samples as the dependent variable. The PSLR prediction model was used to predict SOC concentration on the RSU soil spectral image. The predicted SOC concentration was then validated with SOC concentration measured from the field plots. A Strong correlation (R2 = 0.82) was obtained between the predicted SOC concentration and the SOC concentration measured from field samples. The PSLR was then used to generate a map of SOC concentration for the Great Fish River Nature Reserve and its environs. Areas with very low SOC concentrations were found in the degraded communal villages, as opposed to the higher SOC values in the protected area. The results confirmed that RS techniques are key to estimating and mapping the spatial distribution of SOC concentration in partial subtropical thicket vegetation. Partial thicket vegetation has a huge influence on the soil spectra; it can influence the prediction of SOC concentration. The use of the RSU approach eliminates partial thicket vegetation cover from bare soil spectra. The residual soil spectrum image contains enough information for the mapping of SOC concentration. The technique has the potential to augment the applicability of airborne imaging spectroscopy for soil studies in the sub-tropical thicket biome and similar environments
    corecore