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Abstract—Semiarid regions are especially vulnerable to climate
change and human-induced land-use changes and are of major
importance in the context of necessary carbon sequestration and
ongoing land degradation. Topsoil properties, such as soil carbon
content, provide valuable indicators to these processes, and can be
mapped using imaging spectroscopy (IS). In semiarid regions, this
poses difficulties because models are needed that can cope with
varying land surface and soil conditions, consider a partial vegeta-
tion coverage, and deal with usually low soil organic carbon (SOC)
contents. We present an approach that aims at addressing these
difficulties by using a combination of field and IS to map SOC in
an extensively used semiarid ecosystem. In hyperspectral imagery
of the HyMap sensor, the influence of nonsoil materials, i.e., veg-
etation, on the spectral signature of soil dominated image pixels
was reduced and a residual soil signature was calculated. The pro-
posed approach allowed this procedure up to a vegetation coverage
of 40% clearly extending the mapping capability. SOC quantities
are predicted by applying a spectral feature-based SOC prediction
model to image data of residual soil spectra. With this approach,
we could significantly increase the spatial extent for which SOC
could be predicted with a minimal influence of a vegetation signal
compared to previous approaches where the considered area was
limited to a maximum of, e.g., 10% vegetation coverage. As a re-
gional example, the approach was applied to a 320 km2 area in the
Albany Thicket Biome, South Africa, where land cover and land-
use changes have occurred due to decades of unsustainable land
management. In the generated maps, spatial SOC patterns were
interpreted and linked to geomorphic features and land surface
processes, i.e., areas of soil erosion. It was found that the chosen
approach supported the extraction of soil-related spectral image
information in the semiarid region with highly varying land cover.
However, the quantitative prediction of SOC contents revealed a
lack in absolute accuracy.

Index Terms—Imaging spectroscopy (IS), land degradation,
linear spectral unmixing, multiple linear regression analysis, soil
organic carbon.
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I. INTRODUCTION

S EMIARID regions are especially vulnerable to climate
change and human-induced land-use changes as these pro-

cesses often lead to a significant decrease in available water re-
sources that can destabilize these regions. This is accompanied
by a decrease in the ecosystem carbon reservoirs in vegetation
and soil (e.g., [1], [2]). Optical remote sensing and in particu-
lar imaging spectroscopy (IS) has shown the potential to assess
several soil properties, among others soil organic carbon (SOC),
over large areas, taking advantage of diagnostic absorption char-
acteristics inherent in the reflectance spectrum of a soil (e.g.,
[3]–[5]). In this regard, the Intergovernmental Panel on Climate
Change (IPCC) [6] identified “improved remote sensing tech-
nologies for analysis of soil carbon sequestration potential and
land-use change” as one of the key methods underpinning sec-
toral mitigation technologies for the coming decades. However,
large-area analyses of soil constituents and carbon stocks in ex-
tensively used semiarid areas using IS poses difficulties because
models are needed that can cope with varying land surface and
soil conditions, that consider partial vegetation coverage, and
that are able to predict SOC concentrations that may be sig-
nificantly lower than in agricultural regions. Consequently, soil
constituents and soil carbon stocks are assessed at small plots
in cost- and time-consuming field campaigns.

Nevertheless, reflectance spectroscopy was shown to be a
promising approach. This technique is increasingly used in
laboratory and field environments to predict various soil con-
stituents based on their diagnostic spectral features and statis-
tical regression approaches (e.g., [3], [7]–[9], and references
in [10]). A special interest was given to SOC due to its im-
portance for soil stability and fertility, together with its contri-
bution to the global carbon cycle (e.g., [11], [12]). The most
frequently used technique to establish soil prediction models
is partial least squares regression analysis (PLS, e.g., [4], [5],
[13]–[15]), which proved particularly useful when the number
of independent variables exceeds the experimental observations.
However, the technique faces drawbacks in terms of significance
and transferability resulting from the high degree of adaptation
to the applied data making it sensitive to dataset-inherent prop-
erties such as noise. Attempts to predict samples from another
study site or dataset with a PLS model have shown relatively low
validation results (e.g., [16]–[18]), which limits the application
of PLS models derived from local observations to a regional
scale with variant conditions, as they are present in semiarid
regions.

Another possibility to establish soil prediction models is the
direct application of known spectral absorption features provid-
ing an immediate physical basis or empirical approaches such as



band indices that are based on such features. This is often seen
as more robust, hence, allowing for a better transferability to
regions of similar environmental conditions [19]. The direct ap-
plication and parameterization of spectral features in general is
limited due to the influence of the overlapping of many spectral
features, and additional effects of nonsignificant factors (e.g.,
surface condition, sensor noise). Nonetheless, there remain di-
agnostic spectral features which can be used for a quantification
of soil constituents, amongst others SOC (see, e.g., [11], [20]).
Regression models built on one or a few spectral features are
often not sufficiently robust for a practical application to a wide
variety of soils [5].

With increasing frequency in recent years, airborne imaging
spectrometer data have been used for predictions of soil con-
stituents (e.g., [3], [4], [13], [21]–[23]). Besides the IS technique
necessitating atmospheric and geometric correction of the data,
the raster-like recording of spectral information introduced the
mixing of spectral signatures of the surface materials present
in a pixel’s area which disturbed the relationship between soil
constituents and reflectance by the contribution of other materi-
als, mostly vegetation, to image pixel spectra [19]. A traditional
approach to deal with this influence was to limit the image
information before the analysis to soil-dominated pixels that
comprise only a small amount of vegetation, often determined
using vegetation indices or spectral mixture analysis (e.g. [3],
[24]). An influence of the remaining vegetation on soil analysis
was accepted. This is especially significant for SOC predictions
because a number of spectral features of soil carbon occur in
similar spectral ranges as those of vegetation components, es-
pecially found in dry vegetation [25]. Soil constituents for the
excluded areas were eventually interpolated afterward from the
nonvegetated areas.

As an alternative, methods that decompose spectral mixtures
within image pixels are used to extract the spectral signal of
the soil before an analysis of soil constituents. For instance,
[26] used unmixing ground cover fractions to remove the in-
fluence of maize from the spectra of partly vegetated agri-
cultural fields in Belgium before a prediction of SOC from
AHS-160 data using PLS regression techniques. With this tech-
nique, they obtained a validated ratio of performance to devia-
tion (RPD), RPDVal , of 1.50 in SOC predictions and showed
that the error in prediction rose with vegetation coverage and
that this could partly be overcome by the application of what
they called residual spectral unmixing. With the objective of
clay content estimations, [27] applied blind source separation
to resolve spectral mixtures in southern France. The approach
has the advantage that spectral signatures can be resolved with-
out any prior knowledge. They found, same as [26], that using
PLS regression analysis no accurate predictions from mixed
HyMap pixels could be achieved beyond a vegetation cover of
10%. Using blind source separation, this could be improved
to a vegetation proportion of 30%. More recently, Frances-
chini et al. [28] explored the selection of optimal spectral
datasets for the prediction of several soil properties and in-
vestigated the effect of decreasing bare soil fraction. All three
applications were focused on agricultural areas where spectral

mixtures comprised of mostly two endmembers and could be
well described and modeled. So far, this has not been tested in
natural areas, where spectral mixtures are more complex due to
many spatially variant surface materials.

In the given context, this research study aims at quantifying
SOC in a semiarid area using field and IS. Difficulties arising
with SOC predictions in extensively used semiarid areas are
addressed in a multistep methodology:

1) In the hyperspectral imagery, pixel spectral signatures that
contain a mixture of soil and vegetation are deconvolved
into their constituent components using spectral mixture
analysis.

2) For soil dominated pixels, the residual soil signature is
calculated.

3) SOC quantities are predicted from the processed hyper-
spectral imagery using a spectral feature-based SOC-
prediction model (the development of the SOC-prediction
model was published in [29]).

Thematic maps of SOC distribution are evaluated for their
potential to detect erosion affected areas as effects of land-use
changes. With these aspects, the main focus of this study lies in
the extension of existing approaches leading toward the map-
ping of SOC contents to facilitate their application in semiarid
environments. The methodology is tested in an area of 320 km2

within the Albany Thicket Biome in the Eastern Cape Province
of South Africa. It provides a regional example for an exten-
sively used semiarid ecosystem that currently undergoes land-
use changes due to unadapted management practices, and that is
likely to face climate change induced land-use changes in the fu-
ture [30]. The accuracy of achieved SOC predictions is assessed
and discussed in the given context along with the achievements
of all processing steps.

II. STUDY AREA AND DATA COLLECTION

A. Land-Use Changes in the Albany Thicket Biome

The study area is located in the Albany Thicket vegetation
type covering the semiarid valleys of the Eastern Cape Province
of South Africa [31]. In more than 70% of the area, the origi-
nally dense vegetation is “moderately” to “severely” degraded
[32] as a result of intensive goat farming since the early 1900s.
The ecosystem transformed to an open savannah-like system
under the loss of biodiversity and ecosystem carbon stocks [31].
Current land cover ranges from bare surfaces to dense shrub
vegetation (average height 2–3 m). The region has been iden-
tified as highly important for carbon sequestration projects due
to the unique characteristics of the local vegetation type in its
original state to sequester comparably high amounts of carbon
in biomass and soils [33]. Within the Albany Thicket region,
an area of approximately 320 km2 consisting of two parts is se-
lected as study area. The area is representative on regional scale
and serves as an example for larger scales (e.g., biome-wide
assessments). A detailed description of the study area, its cli-
mate, terrain elevation, geology, soils, and a map can be found
in [29].



B. Field Sampling and Chemical Analysis

We use the data from two field surveys conducted in the
study area in June and September/October 2009 where in total
163 natural, nonagricultural sites on sandy and loamy soils with
generally low organic carbon contents ([29, Fig. 3(a)]) were
sampled for ground truth. We use the SOC contents determined
for 163 sampled sites and field spectra of bare soils (125 sites)
resampled to HyMap’s spectral resolution as they are soils were
described in [29]. Details on the collection of field data, includ-
ing soil field spectra and soil samples can be accessed there.

C. Airborne Hyperspectral Imagery

Airborne HyMap imaging spectrometer data were acquired
for the 320 km2 study area on 14th October 2009. HyMap scans
the 440–2500 nm spectral region with 126 bands, resulting in av-
erage spectral resolutions between 13 and 17 nm depending on
the wavelength range (see [34]). Northern and southern sections
were recorded separately in three flight lines each with a length
of 57.2 km for the northern and 22.4 km for the southern section.
Ground resolution of the imagery is 3.3 m. Orthorectification
is performed using the PARGE procedure for geocorrection of
airborne data [35], with the additional usage of ground control
points selected based on Google Earth and a digital elevation
model available from the SRTM mission. Typical accuracy of
this procedure is better than ±3 pixels (approximately 10 m).
At-sensor radiance data are corrected for atmospheric and ter-
rain illumination effects using the ATCOR-4 procedure [36].
This includes inflight calibration, where, due to the lack of large
invariant artificial targets in both parts of the study area, a large
homogenous bare soil area is used for the correlation of ground
and airborne measurements. Eleven HyMap bands are classi-
fied as reduced quality and removed (427–442 nm, 889 nm
1956–2050 nm, 2471–2486 nm), resulting in 115 bands. Small
remaining spectral artifacts are locally smoothed using a low
pass filter with a filter width of three bands. The three individual
flight lines of each section are leveled to each other correcting
for brightness and radiometric differences across the flight lines
following an approach described by [37]. Mosaicked hyper-
spectral imagery is spatially filtered with an iterative adaptive
spatial filtering approach [38], which minimizes random noise
and local intraclass spectral variability on a pixel-to-pixel basis.
Spectral contrasts between different materials and, therefore,
regional differences are retained. This supports the identifica-
tion of endmembers and the unmixing process. Artificial objects
and rural settlements are masked to limit subsequent analysis to
natural surface materials.

III. METHODS

A. Extraction of Soil Signatures From Mixed Pixels

The hyperspectral imagery of the HyMap sensor reflects a
large spatial heterogeneity of the study area that is caused by
the patchiness of natural vegetation inherent to most semiarid
landscapes. Pixel spectral mixtures are resolved and per-pixel
soil signatures are approximated in three steps: 1) derivation of
spectra of pure surface materials (endmembers, EM); 2) linear

spectral mixture analysis; and, 3) calculation of residual soil
spectra (see Fig. 1).

Potential endmember spectra are derived directly from the
image data using the Spatial–Spectral Endmember Extraction
tool (SSEE) described by [43]. In addition to detecting end-
members based on spectral characteristics alone, the algorithm
includes spatial information by analyzing a scene in parts, which
allows for an identification of endmembers that have a low spec-
tral contrast with each other, but occur spatially independent.
From the pool of SSEE endmembers, a representative number
of endmembers is manually selected depending on the present
variance of the endmembers, and they are assigned to the land
cover classes photosynthetic active (PV) and nonphotosynthetic
active vegetation (NPV) and bare soil (BS). One endmember set
is prepared for the northern (235 km2) and one for the southern
section of the study area (92 km2) since the two areas differ in
their characteristics.

Spectral mixture analysis is used to deconvolve image pixel
spectra into fractional abundances of the endmembers [44], [45].
Recent algorithms apply a linear approach, in which the re-
flectance of an image pixel (ρS ) is assumed to be a linear com-
bination of each endmember’s reflectance spectrum (ρEM ) and
the fraction of it within the mixture (fEM). The following equa-
tion is solved by a least squares approach, minimizing the error
term (E):

ρS =
n∑

1

ρEMn · fEMn + E. (1)

The unmixing root mean square error (RMSE) is a measure
of the goodness of fit of pixel spectrum and modeled spectrum.
Unmixing is performed using the Iterative Spectral Mixture Ap-
proach (ISMA, see [46]). ISMA applies an iterative procedure
to determine which endmembers are best suited to resolve the
mixture of a given pixel and to solve the linear mixture problem
in unmixing. A uniform reflectance shade endmember is also
included. The maximum number of endmembers to be used for
each pixel is set to 5.

Spectral unmixing results are assessed using ground cover
fractions assessed in the field. This comparison is flawed by a
number of factors, e.g., the subjective nature of personal assess-
ments, the time difference between field assessments and image
data acquisition, inaccuracies in sample plot locations, and the
dependency of unscaled cover fractions on endmember bright-
ness. As the accuracy in georeferencing is about 3 pixel RMSE,
the validation based on matching single pixels with ground ref-
erences will likely be unsuccessful. To reduce the influence of
the geolocation error on the ground cover validation, for every
ground cover measurement taken in the field, a neighborhood
of 3 × 3 pixels around this coordinate is selected in the image
and the closest match between the image-derived ground cover
fractions within this window and the ground reference is cho-
sen for validation. This is done because for areas with highly
heterogeneous vegetation cover, already small discrepancies in
geolocation might cause a big difference in cover which could
hinder a reasonable comparison.



Fig. 1. Processing workflow for the prediction of SOC from image data.

In a last step, the estimates of ground cover fractions retained
by spectral unmixing are used to remove the spectral influence
of vegetation on a nonpure soil spectrum. Thereby, the soil
signature contained in a mixed pixel is approximated. In the
following, this is referred to as residual soil spectrum (RSS), a
term that was first used by [26]. RSS is described by the inversion
of the linear mixture model by applying the endmember spectra
of the classes PV and NPV contributing to the spectral mixture
of the pixel and their cover fractions

ρRSS = ρS − ρEM1 · fEM1 − ... − ρEMn · fEMn (2)

with the reflectance ρRSS of the RSS, the mixed pixel spectrum
ρS recorded by the HyMap sensor, the spectrum ρEM of the
n individual endmembers of PV and NPV used to unmix the
specific pixel and their unscaled cover fractions fEM . RSS is
supposed to include the spectral signal originating from the
soil fraction and any signals which are not explained within
spectral mixture analysis, e.g., noise [as part of E in (1)]. The
extracted RSS is scaled by the summed fractions of the nonsoil
endmembers (n) identified in the pixel to approximate a full
“endmember” spectrum

ρRSSscl = ρRSS ·
(

1 −
n∑

1

fEM n

)
. (3)

The spectral mixture characteristics in natural environments
hundreds of square kilometers in size can be locally very com-
plex due to land cover changes coupled with topography, land-
use, etc. This results in a global endmember set which is not
necessarily suitable for the unmixing of every pixel. Thus, addi-
tional criteria are needed to filter out pixels where RSS might be
prone to errors owing to the predominance of a land cover class

that is not BS or because of insufficient unmixing. Those pixels
are masked for further analysis. The following quality require-
ments are set up: 1) minimal soil fractional cover, 2) maximal
fractional cover of PV and NPV, 3) maximum unmixing RMSE,
4) range for the sum of the cover fractions around 1, and 5)
minimum mean reflectance of the RSS to filter out dark pixels
where unexplained signal such as noise highly influences RSS.
It is assumed that the soil signature included in the spectral mix-
ture of a pixel can be approximated with a high accuracy if these
requirements are fulfilled. This procedure results in a reflectance
image of the BS surface. To evaluate the accuracy of residual
soil spectra, they are compared to corresponding field reference
spectra. In order to highlight the differences in spectral shape,
spectra are normalized to mean reflectance.

B. Feature-Based SOC Prediction Model

For the prediction of SOC contents from spectra, we use
a feature-based MLR model that applies the parameters (e.g.,
absorption band depth, width, slope in a given wavelength
range) of diagnostic spectral absorption features and charac-
teristic changes in reflectance in the VIS and the NIR to SWIR
range. The set-up of the SOC calibration model and its test set
validation is described in detail as “Approach A: multiple linear
regression of spectral feature parameters” in [29]. The approach
benefits from the collinearity of several diagnostic spectral fea-
tures and their unique parameters, which in practice is weakened
by subtle variations in the makeup of the material (e.g., influence
of other substances or compositional variations) and potentially
variability related to image acquisition (e.g., sensor-dependent
noise, illumination conditions) that impact these variables indi-
vidually and in a nonlinear fashion. Therefore, spectral variables



TABLE I
CORRELATION MATRIX (R2 ) OF SPECTRAL VARIABLES OF 125 SPECTRA

show a loosened connection between each other (see Table I)
and can be used for regression analysis. The model developed
for field spectra of BSs in HyMap’s spectral resolution is used.
Note that only 115 HyMap bands are used in this study com-
pared to 116 in [29]. This did not affect model calibration or
validation accuracies.

BS field spectra are used so as to exclude the spectral vari-
ability introduced by small stones (see [39]). HyMap spectra
recorded at the sample locations are not used, because due to
the small scale heterogeneity of the South African study area,
nearly every HyMap pixel is comprised of a mixture of several
surface materials. Even though a method is proposed in this
study to derive the soil signature of image pixels by the use of
spectral unmixing, it is decided not to include the large influ-
ence of spectral unmixing in the calibration procedure. Several
processing steps are taken to minimize the spectral differences
between field and HyMap acquisitions to allow the transfer of
the calibration model built based on extensive field information
to HyMap scanner data (see [40]). This includes radiometric vi-
carious calibration of image data using field reference spectra to
minimize the difference in ground reflectance after atmospheric
correction, spectral resampling of field spectra, and extraction
of soil signatures from HyMap spectra before SOC prediction
taking into account most effects of increased spatial averaging.
The transfer of soil prediction models calibrated based on field
spectra to airborne scanner data has been demonstrated before,
considering that appropriate corrections applied that support this
transfer (e.g., [41]). For the HyMap sensor, field and laboratory
spectra calibrated PLS models were applied with satisfactory
accuracy by, e.g., [24] and [42].

C. Prediction and Validation of Soil Constituents From
Hyperspectral Imagery

SOC contents are predicted by applying the SOC predic-
tion relationship to the hyperspectral image data of residual
soil signatures. Image spectra are parameterized and spectral
variables are standardized in the same way as for the field

spectra during calibration (see [29]). SOC contents are calcu-
lated from the spectral variables according to the regression
relationship, which is done for each pixel, a RSS is calculated
for. Pixel values exceeding the calibration range are detected and
masked.

The performance of the prediction models is evaluated based
on coefficient of determination (R2) for predicted versus mea-
sured compositions, root mean squared error (RMSE), and RPD
grouped to three classes according to [16]. To validate model
derived SOC with in situ field measurements, all sample points
are used, for which an SOC content is predicted for the specific
pixel in the imagery comprising the GPS sample location. This
results in 51 samples. Although this is a low number compared
to the 163 originally sampled sites (see Fig. 1), these samples
still provide a suitable basis for validation of the multistage
methodology. For the remaining 112 sites, a sample was col-
lected in the field, however, an RSS could not be adequately
derived from hyperspectral imagery, e.g., because of a too high
vegetation coverage within the pixel (see Section 3.2). Measured
reference SOC contents are compared to predicted values. For
this, in a 3 × 3 neighborhood around the specific pixel com-
prising the Universal Transverse Mercator (UTM) coordinates
of the sampled site (center pixel) all available predictions were
averaged to account for geometric location errors and allow for
a SOC content that is representative for the area.

IV. RESULTS

A. Extraction of Soil Signatures From Mixed Pixels

The endmember sets prepared for the northern and south-
ern section of the study area comprise 31 and 21 endmem-
bers, respectively. According to the spectral variability of each
class, each set includes more endmembers for green than dry
vegetation. With the determination and application of the opti-
mal set of endmembers to be used for the unmixing of each
pixel, ISMA ensures a realistic unmixing resulting in low
RMSE (average of 2.2%), non-negative abundances, and the
sum of the abundances close to one (average sum of 0.69



Fig. 2. Application of the multistage methodology in the 320 km2 South African study area (see [29] for location). True color of HyMap image data (a),
results of spectral unmixing as RGB composite (b), true color image of residual soil spectra (c), and predicted SOC contents (d). White areas are pixels where
artificial objects are excluded within preprocessing and where no residual soil spectrum is calculated. Coordinates are given in UTM system (zone 35 South, datum
WGS-84).



(a) (b)

(c) (d) (e)

(f) (g)

Fig. 3. Prediction of SOC for a selected subset of about 4 km2 in the Albany Thicket Biome, South Africa (see Fig. 2 for location). The area shows typical
vegetation patterns, with drainage systems dividing it in a bare plain in the center (b, location B in c) and surrounding lowlands. The terrain rises to the south up to
a fence line showing the contrast between pristine and degraded vegetation (a, location A in c). True color of HyMap image data (c), results of spectral unmixing
as RGB composite (d), pixel exclusion code (e) in the calculation of residual soil spectra (see Table II), true color image of residual soil spectra (f), and predicted
SOC contents (g). White areas are pixels where artificial objects are excluded within preprocessing and where no residual soil spectrum is calculated. Coordinates
are given in UTM system (zone 35 South, datum WGS-84).



Fig. 4. Comparison of cover fractions of green (PV) and dry vegetation (NPV) and bare soil (BS) from field assessments and calculated with ISMA unmixing
(scaled sum-to-one).

TABLE II
CALIBRATION AND TEST SET VALIDATION ACCURACIES OF THE FEATURE-BASED SOC PREDICTION MODEL DEVELOPED BASED ON BARE

SOIL FIELD SPECTRA IN HYMAP’S SPECTRAL RESOLUTION

Calibration (94 samples) R2
C a l 0.81 RMSEC a l 0.43 RPDC a l 2.28 p-value 2.2 ∗ 10−1 6

Validation (31 samples) R2
Va l 0.62 RMSEVa l 0.43 RPDVa l 1.57 -

Regression Influence on Partial correlation Significance
coefficient regression [%] coefficients (R2 ) (p-value)

Constant factor 1.17

rS W IR 1 1.51 30.42 0.10 4.18 ∗ 10−1 2

sV IS −0.92 −18.57 −0.15 4.04 ∗ 10−1 2

rV IS −0.59 −12.01 −0.28 4.63 ∗ 10−6

dm a x 1730 0.46 9.25 0.62 0.12
AS2 3 3 0 0.37 7.42 0.49 3.77 ∗ 10−5

sS W I R 1 −0.34 −6.82 0.002 1.27 ∗ 10−4

A 1 7 3 0 −0.21 −4.29 0.55 0.43
dm a x 2330 −0.21 −4.15 −0.30 6.25 ∗ 10−4

λd m a x 2 3 3 0 −0.20 −4.01 0.24 1.57 ∗ 10−2

λd m a x 1 7 3 0 −0.06 −1.21 −0.06 0.42
w 1 7 3 0 −0.06 −1.20 0.40 0.61
w 2 3 3 0 −0.03 −0.66 0.12 0.58
Sum of absolute influences 100.00

Abbreviations of spectral feature properties: A: area (A l e f t +A r ig h t ), dm a x : maximum depth, λd m a x : wavelength of dm a x , w: width; AS: asymmetry factor (A l e f t /A r ig h t ), r:
mean reflectance in interval, s: slope in interval (see, [29], for details). The influence (i) of each spectral variable in the regression relation is given in % of the summed absolute
values of all regression coefficients. Negative signed influences indicate negative regression coefficients.

±0.17). Fig. 2 gives an overview over the entire study area
while Fig. 3 shows a subset of the typical landscape in larger
detail.

A good correlation between cover fractions calculated by
ISMA and field assessments is supported by a number of
points (see Fig. 4). However, a substantial amount of points
lie apart from the 1:1-line and, therefore, the correlations of
the ground cover fractions achieved here do not reach the
quality of previous studies where the absolute accuracy of
unmixing was determined (e.g., R2 of 0.74 by [48]). The
most likely reason for the deviations is the inaccuracy in geo-
correction that, in this heterogeneous area with a high variabil-
ity on a pixel-to-pixel basis, can lead to huge differences in
cover fractions and spectral mixtures as recorded in the image
pixels.

When using suitable pixels only, an RSS can be calculated
for 26.8% of the image pixels, where the spatial distribution
is limited owing to the occurrence of vegetation, shadow, etc.
[see Fig. 2(b) and (c)]. The thresholds applied to provide a sep-
aration of pixels which are suitable for this procedure based
on their spectral unmixing parameters are scene dependent and
vary for the northern and southern section of the study area (see
Table III, [39]). Residual soil spectra are calculated nearly spa-
tially continuously for soil-dominated areas, whereas they only
cover local patches, where vegetation occurs in different inten-
sity such as the southern slopes. Residual soil spectra are calcu-
lated up to vegetation coverage of about 40% (combined PV and
NPV).

Residual soil spectra are equal to the original pixel spectra if
no influence of vegetation is determined in spectral unmixing.



TABLE III
THRESHOLDS AND STATISTICS OF THE CALCULATION OF RESIDUAL SOIL SPECTRA

12% PV, 23% NPV, 51% BS 4% PV, 28% NPV, 47% BS 0% PV, 29% NPV, 61% BS
20

15

10

5

0

20

15

10

5

0
500 1000 1500 2000 2500 500 1000 1500 2000 2500 500 1000 1500 2000 2500

25

20

15

10

5

0

25

Wavelength [nm] Wavelength [nm] Wavelength [nm]

R
ef

le
ct

an
ce

 [%
]

R
ef

le
ct

an
ce

 [%
]

R
ef

le
ct

an
ce

 [%
]

Fig. 5. Examples for pixel residual soil spectra calculated based on the hyperspectral imagery and derived ground cover information (red lines) compared to
original HyMap pixel spectra (black lines). Major water bands are masked. Estimated cover fractions of green (PV) and dry vegetation (NPV) and bare soil (BS)
are given for each location.

Fig. 6. Examples for residual soil spectra (red lines) compared to field reference spectra (black lines). For the pixel shown in (a), 1% NPV and 99% BS were
calculated in spectral unmixing and the RMSE of the fit between the spectra is 0.029. (b) has 4% NPV and 96% BS with RMSE of 0.015, and (c) has 19% NPV
and 81% BS with RMSE of 0.041. Major water bands are masked.

In areas where a mixture of the three land cover classes occurs,
the vegetation signal was reduced well by the approach, and in
particular in the VIS range, a significant reduction of the red
edge was apparent [see Fig. 5(a) and (b)]. Only where the un-
mixing does not identify the green vegetation present in a pixel,
the red edge remained as artifact in the spectra [see Fig. 5(c)].
Signatures of residual soil spectra show high correlation in

spectral shape with corresponding field reference spectra (see
Fig. 6 for examples). RMSE is 0.048 for all plots where an RSS
was calculated.

B. Performance of Feature-Based SOC Prediction Model

The method of feature-based regression is evaluated upon
significance and consistency for three soil constituents,



TABLE IV
OVERVIEW OF STATISTICS OF PREDICTED SOC CONTENTS FOR THE ENTIRE

STUDY AREA

% of SOC

Calibration range [% SOC] (cm in , cm a x ) 0.21–5.85

Statistics of predicted SOC contents [% SOC] Mean: 1.22
Stdev: 0.61
Min: 0.21
Max: 5.84

% of pixels

Negative values calculated (cc a lc < 0) 1.1
Calculated contents below calibration range (0 < cc a lc < cm in ) 3.1
Calculated contents within calibration range (cm in ≤ cc a lc ≥ cm a x ) 95.8
Calculated contents exceed calibration range (cc a lc > cm a x ) 0.00001

different measurement set-ups, and spectral resolutions in [29].
It was shown that the performance of this method lies within
the range PLS regression techniques can provide, though the
models are stronger linked to spectral features, which generally
presents advantages in terms of significance and transferability
(e.g., [19]).

Table II gives details of the applied SOC prediction model
and of the spectral variables that dominate this model. The
model applies 12 out of 16 spectral variables and variables
describing the spectral hull in the VIS and SWIR range are of
great importance (see Table II). The information given in Table II
demonstrates the weak correlation between spectral variables as
related variables (e.g., depth and area of an absorption feature)
do not show similar influence in the regression relationship. The
model provides good calibration accuracies with R2

Cal/R2
Val of

0.81/0.62 with RMSECal/RMSEVal about 0.43%. Accuracy in
test set validation is slightly lower than calibration accuracy but
still within the accuracy of medium class models [16]. With
this, the accuracy of the SOC-prediction model used here is in
the same range or slightly lower compared to studies in mainly
agricultural environments (e.g., [4], [15]).

C. SOC Contents Predicted for the Albany Thicket Biome

The map of predicted SOC for the Albany Thicket Biome,
South Africa, provides a snapshot for the spatial distribution in
2009 [see Fig. 2(d)]. For 96% of the pixels within the study
area, for which residual soil spectra are calculated and SOC is
predicted, the estimated SOC is within the calibration range of
the regression model (see Table IV). This shows that the field
sampling represented well the variability of the investigated
parameters in areas for which soil constituents can be predicted
based on hyperspectral imagery and that the prediction model
is well adapted to the present conditions.

The average of predicted SOC contents for the entire image
area, with 1.14% SOC is very close to the chemical reference
of the 163 collected samples (see [29], Table IV). Only very
low contents seem overestimated and very high contents seem
underestimated, which is likely an effect of the spatial resolution
of the HyMap sensor smoothing local extremes of limited spatial
extent, or of the spatial distribution of collected samples.

Scatter plots of measured versus calculated SOC contents
and the coefficient of determination (R2) show no significant
relationship for the regional validation of the multistage method-
ology in the South African study area [see Fig. 7(a)]. Modeling
residues indicate a slight overestimation of actual SOC contents,
with predicted SOC contents being on average 0.28% higher for
the available samples [see Fig. 7(b)].

V. DISCUSSION

A. Spatial Extension of SOC Predictions

The percentage of pixels that are extracted as being suitable
for a prediction of SOC with our methodology are compared to
two previously applied approaches for this purpose (see Fig. 8
for local example). Fig. 8(a) is limited to BS surfaces (abundance
of PV and NPV in spectral unmixing are 0) while Fig. 8(b) com-
prises pixels with up to 10% vegetation coverage (PV+NPV)
(e.g., used in [24]). They include only 2.3 and 5.8% of the
image pixels of the sample area, respectively. Consequently,
no spatially continuous information can be provided, and SOC
predictions from these data cover only local regions such as the
prominent BS areas. In addition, SOC predictions from pixel
spectra including any amounts of vegetation are biased by this,
as prediction errors are expected to increase with the permitted
amount of vegetation included in the analyzed spectral signature
(compare, e.g., [26], [27]).

When applying the proposed methodology of resolving
spectral mixtures and calculating residual soil spectra, the
amount of pixels within the sample area is increased to 45.4%
[see Fig. 8(c)]. These percentages of pixels are similar for
the entire northern part of the study area, though less for the
southern part due to the generally higher vegetation coverage.
This shows that the presented calculation of residual soil spectra
significantly increases the number of image pixels for which
SOC contents subsequently can be predicted. Predicted soil
constituents are further expected to be more accurate because
the influence of vegetation on analyzed soil signatures is
minimized.

B. Interpretation of Derived Spatial SOC Patterns

The spatial patterns of SOC in derived maps can be linked to
geomorphic features and processes within the ecosystem which
are supported by a number of field observations. SOC patterns
(see Fig. 2(d) for overview and Fig. 3(g) for local example) are
a result of the interdependence of the duration and intensity of
the enrichment in SOC by the accumulation of plant litter and
the reduction of SOC by soil erosion. This relationship is af-
fected by topography (see, e.g., [20], [24]) and in the Albany
Thicket Biome is significantly modified by the nonhomogenous
occurrence of dense pristine vegetation and open-degraded veg-
etation. Scatter plots reveal an existing, however, not particularly
strong correlation between SOC contents and the two vegetation
types (see [39] for details).

Based on the relation between carbon input and erosion, the
ecosystem can be divided in two zones (after [49]). Soil develop-
ment is progressive under relative stability, where soils become



Fig. 7. Regional validation of the multistage methodology. Scatter plots for in situ measured versus predicted SOC (a) and histograms of modeling residues as
the deviation between modeled and in-situ measured contents constituent (b). In (a) the deviation of 0.5% as the assumed accuracy of the laboratory method is
highlighted.

Fig. 8. True color images of data sets that can be used for the prediction of SOC for a sample area of about 4 km2 in the Albany Thicket Biome, South Africa:
(a) includes only image pixels comprising bare soil surfaces, (b) image pixels with up to 10% vegetation cover, and (c) residual soil spectra calculated using the
proposed methodology. See Fig. 3(c) for true-color image of this subset.

more developed and the topsoil layer is enriched in organic
carbon. In the study area, this occurs on partly vegetated flat
areas or gently dipping slopes. In addition to being the provider
of organic material, the vegetation prevents the organic rich
topsoil layer from being eroded [50]. This is reflected in deeper
soil profiles observed in the field (not shown here). A local
example is shown in location A in Fig. 3 on the flat areas
surrounding the bare plain in the center and the slopes gently
rising to the south (SOC about 1.5%). It is expected that SOC
contents are even higher in densely vegetated areas [33], though
this information cannot be derived from the soil maps because
of the masking effect of vegetation. The positive effects of high
concentrations of organic carbon on soils making these soils
more resistant to soil erosion is especially important in semiarid
areas to sustain soil fertility and mitigate droughts [51].

Despite this, soil development is regressive and SOC contents
are low where active erosion reduces the amount of newly built
soil material more than it was accumulated. This applies for three
distinctive regions within the study area: 1) Bare areas where al-
most no vegetation is present, 2) Elevated ridges and slopes with
medium to high gradients, where a reduced vegetation cover
is unable to prevent the erosion of the organic topsoil layer, 3)
Larger runoff trenches that are not overgrown by vegetation. A
typical example is found on the flat bare plain in the center of
Fig. 3 (location B, SOC mostly below 0.6%). Low SOC contents
account for limited plant growth and make soils prone to erosion
due to a lowered structure stability. In the field, the lower vege-
tation cover was found and gullies were observed in such areas
(data not shown). Soil profile depth was often found reduced and
the exposure of sandy bedrocks was observed frequently, indi-



cating long-term soil erosion. The bare plain in Fig. 3 is an exam-
ple for a degradation hot spot that is identified upon reduced veg-
etation coverage and low carbon contents based on image data
which is supported by indicators for active soil erosion visible in
the field.

SOC contents in the southern section on average are 0.8%
SOC higher than in the northern section of the study area [see
Fig. 2(d)]. The reason for this is found in the generally high
vegetation coverage due to higher precipitation amounts and
low relief in the southern section. This is corroborated by soil
profiles consistently being deeper in the southern transect which
suggests a higher stage of soil development (data taken in 2011,
see [39]).

C. Limitations of SOC Predictions in the Semiarid Study Area

The lower accuracy of the SOC-prediction model in compar-
ison to other studies done in agricultural environments and the
poor validation performance of the regional validation of the
entire methodology are likely a result of the large size and the
highly variant characteristics of the South African study area.
Two main reasons are identified.

First, the spectral mixtures of surface materials, which in this
nonagricultural environment occur on a very small scale and
are complex due to numerous surface materials (variability in
vegetation, geology, soil types, etc.). Already previous studies
reported that the accuracy of soil constituents’ predictions de-
clines with the intensity of spectral mixture within pixels. For
instance, this was found by [26] who predicted SOC contents
for agricultural maize fields by applying a similar technique of
removing vegetation spectral influence and by [27], who used
blind source separation to resolve spectral mixtures and to pre-
dict clay contents in vineyard regions. Yet, the importance of
resolving spectral mixtures was apparent in both agricultural
environments, where spectral mixture between soil and vegeta-
tion for maize fields and vineyards was limited to one vegetation
type, and thus, was well identifiable and resolvable. Also, [14],
who used Hyperion satellite data for SOC predictions in Aus-
tralian soils, attributed low validation correlations besides to the
high noise present in Hyperion spectra to the intense spectral
mixing within pixels (30-m spatial resolution). Improvements
made by our approach are shown by the qualitative analysis of
the residual soil spectra and their comparison to field spectra.
Further improvements could be implemented by applying higher
spatial resolution sensors, and thereby decreasing the amount of
spectral mixtures in pixel spectra and improving their resolu-
tion by spectral unmixing, or by enhancing the accuracy in
geo-correction, which would allow for a better correlation of
field control and airborne measurements.

A second reason limiting the accuracy of soil constituents
predictions are the generally low values and the small variabil-
ity in measured SOC contents (see Fig. 3(a) in [29]) in com-
parison to the assumed accuracy of the laboratory method of
0.5% SOC (e.g., [15], [47]). This is especially a factor lowering
prediction RPD of the SOC model, corresponding to findings re-
ported in, e.g., [15] and [47]. This issue could only be addressed
by improved wet chemical analysis reducing measurement er-

rors, and thereby, allowing for a possibly more accurate model
calibration.

In addition, the geometric accuracy of the data with typi-
cal unsystematic errors in position of about two to three pixels
also has an influence on the validation with ground data, which
is increasingly important in patchy landscapes. This could be
improved wherever high-quality ground reference data and dig-
ital elevation models are available, however, this might not be
the case for wide landscapes that are for instance hot spots for
degradation or carbon sequestration. Differences in soil–water
content between field samples and image data acquisition can
be neglected as a reason for the poor validation performance.
In 2009, stable dry weather conditions have caused minimal
changes in vegetation coverage and soil moisture, with weeks
of no rain before the field sampling and hyperspectral image
acquisition (data by [52]). Prediction residues also seem not to
be linked with the fractional cover of the two vegetation types
(see [39], for details).

VI. CONCLUSION

In semiarid regions, which are especially vulnerable to cli-
mate change and human-induced land-use changes, large-area
SOC mapping using IS is complex due to locally varying land
surface and soil conditions, the partial vegetation coverage,
and usually low soil carbon contents. So far no consistent re-
mote sensing method is available that accounts for all distur-
bances and influences introduced by this natural environment.
This study addressed these difficulties by extending existing
approaches leading towards the mapping of SOC contents to
facilitate their application in semiarid environments and tested
the multistage methodology in the Albany Thicket Biome in
South Africa.

Results showed that the proposed methodology supported the
prediction of SOC in such areas in several ways. A calculation of
residual soil spectra from mixed HyMap pixels before large-area
SOC prediction allowed to significantly reduce the influence of
other materials such as vegetation on spectral signatures of the
hyperspectral imagery. Thereby, SOC could be predicted for
a much larger area compared to previously used approaches,
where analyzed pixels were limited to ones with no or a very
low vegetation coverage (increase from <6 to 45% of the study
area). This allowed the provision of soil information nearly
spatially continuously for soil dominated areas, including infor-
mation from smaller patches with a reduced vegetation cover
(up to 40% green and dry vegetation combined) in areas dom-
inated by vegetation. Using knowledge from field campaigns,
derived spatial patterns of SOC were interpreted and linked to
geomorphic features and long-term processes within the study
area, such as ongoing erosion. It, thus, permitted a temporal per-
spective that goes beyond the sole analysis of current vegetation
coverage at one point in time.

On the other hand, when applying accepted validation stan-
dards, a quantitative prediction of SOC contents could not be
achieved for the entire study area of 320 km2 . The accumu-
lated uncertainties of the multistage method (including spec-
tral unmixing and soil signature reconstruction, wet chemistry



analysis for low SOC contents, regression modeling with a lim-
ited sample variety) were too large in relation to the gener-
ally low SOC content in this nonagricultural semiarid environ-
ment. This shows that factors remain above the level that is
accounted for in this study that disturb the accurate prediction
of SOC.

Additional processing steps have to be included to provide a
methodology that facilitates a quantitative prediction of SOC in
areas aside of agricultural regions including the complex con-
ditions in semiarid areas. This could, e.g., include the region-
alization of the prediction models, or improvements within the
spectral unmixing model. The focus of further research should
be drawn to this matter, considering the vulnerability of semi-
arid areas to climatic and land-use changes. Its importance rises
in particular when envisioning the application of future hyper-
spectral satellite sensor systems such as EnMAP, HISUI, and
HyspIRI for the mapping of key soil constituents in extensively
used semiarid ecosystems. These sensors provide the capacity
and technical requirements for determining the spatial distribu-
tion of various ecosystem parameters over large areas and in
multitemporal surveys, but need accurately calibrated models
in combination with adequate approaches to resolve spectral
mixtures.
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