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Abstract: The Airborne Hyperspectral Scanner (AHS) and the Hyperion satellite hyperspectral
sensors were evaluated for their ability to predict topsoil organic carbon (C) in burned mountain
areas of northwestern Spain slightly covered by heather vegetation. Predictive models that estimated
total organic C (TOC) and oxidizable organic C (OC) content were calibrated using two datasets:
a ground observation dataset with 39 topsoil samples collected in the field (for models built using
AHS data), and a dataset with 200 TOC/OC observations predicted by AHS (for models built
using Hyperion data). For both datasets, the prediction was performed by stepwise multiple linear
regression (SMLR) using reflectances and spectral indices (SI) obtained from the images, and by
the widely-used partial least squares regression (PLSR) method. SMLR provided a performance
comparable to or even better than PLSR, while using a lower number of channels. SMLR models
for the AHS were based on a maximum of eight indices, and showed a coefficient of determination
in the leave-one-out cross-validation R2 = 0.60–0.62, while models for the Hyperion sensor showed
R2 = 0.49–0.61, using a maximum of 20 indices. Although slightly worse models were obtained for
the Hyperion sensor, which was attributed to its lower signal-to-noise ratio (SNR), the prediction of
TOC/OC was consistent across both sensors. The relevant wavelengths for TOC/OC predictions
were the red region of the spectrum (600–700 nm), and the short wave infrared region between
~2000–2250 nm. The use of SMLR and spectral indices based on reference channels at ~1000 nm was
suitable to quantify topsoil C, and provided an alternative to the more complex PLSR method.

Keywords: topsoil organic carbon mapping; imaging spectroscopy; AHS; Hyperion; spectral indices

1. Introduction

Soil organic carbon (SOC) is one of the Earth’s main carbon (C) reservoirs, with a predicted
amount greater than 1500 Pg C to 1-m depth [1,2]. Small changes in the SOC pool could have a
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significant impact on the atmospheric CO2 concentration and affect the climate [3]. The measurement
of these pools at the range of spatial and temporal scales still remains a challenge [4]. Rapid and
accurate methods are needed for improving the inventory, spatial distribution, and temporal dynamics
of SOC [5,6].

Conventional methods for mapping SOC stocks involve the collection and analysis of point soil
samples, calibration of a spatial prediction function, and interpolation of the function over the whole
study area [7]. These methods are expensive and time-consuming because of the large number of
samples required to capture the high spatial variability of SOC [8].

Laboratory-based measurements of soil C using standard methods, such as dry combustion [9]
and the Walkley–Black method [10], also involves intensive and costly procedures. Soil diffuse
reflectance spectroscopy in the visible (VIS, 400–700 nm), near infrared (NIR, 700–1300 nm), and
short-wave infrared (SWIR, 1300–2500 nm) has been demonstrated to be an alternative to traditional
methods for SOC prediction. Currently, lab spectroscopy is well established as an accurate, rapid, and
non-destructive technique to predict a wide range of soil properties [11], including organic C [12–15]
and total C [16–18].

Lab spectroscopy can be extended to a regional scale using airborne and satellite hyperspectral
sensors. However, the use of hyperspectral sensors at a remote sensing scale has several limitations,
such as atmospheric absorptions, illumination variations, the low signal-to-noise ratios of the sensors,
and spectral mixing [19,20]. Due to these limitations, relatively few studies have used data from
airborne and satellite hyperspectral sensors to estimate SOC and organic matter, either at the
within-field scale or at the regional scale. Several hyperspectral airborne sensors were tested to predict
SOC and organic matter over agricultural fields or semi-arid areas, including HyMap [21–26], Airborne
Hyperspectral Scanner (AHS) [8,27–30], Compact Airborne Spectrographic Imager (CASI) [31,32],
Airborne Visible and Near-Infrared (AVNIR) [33], DAIS-7915 [34], and HyperSpecTIR [35]. However,
very few studies used airborne hyperspectral data to estimate SOC and organic matter over areas
partially covered by vegetation, in either agricultural areas [36,37] or burned areas with a partial
vegetation cover resulting from post-fire regeneration [38]. Satellite hyperspectral data was seldom
used to estimate SOC, and only one satellite sensor, Hyperion, was used to predict SOC and organic
matter over agricultural fields and bare soils [39–41]. Hyperion data was also used to estimate SOC
and organic matter over maize crops [42], and over forests, pastures, and agricultural fields with
inaccurate results [43].

The prediction of SOC using spectroscopy is usually based on several multivariate statistical
techniques or data mining algorithms, such as multiple linear regression, stepwise multiple linear
regression [44,45], principal component regression [46,47], regression trees [48], support vector machine
regression [18], and artificial neural networks [49]. Partial least squares regression (PLSR) is one the
most widely-used techniques, mainly because it handles multicollinearity in the reflectance spectra,
and it is robust in terms of data noise [11]. However, an important drawback is that PLSR does not
provide a quantitative explanation for the relationship between predictor variables and response
variables [50], and it is complex to transfer models from one sensor to another [51]. Linear regression
methods using spectral indices are less sophisticated than PLSR, easier to transfer among sensors,
and based on the physical analysis of spectral reflectance, so they are used as an alternative modeling
method to PLSR [50,51].

So far, the estimation of SOC using airborne and satellite hyperspectral sensors was mainly
restricted to small agricultural or bare soil areas, and it still remains in the testing phases. Furthermore,
the calibration technique used for SOC prediction in most of the previous studies was the PLSR method,
which has several drawbacks related to the physical interpretation of the results and the complexity of
transferring the models from one sensor to another.

The aim of this work was to assess the capability of two hyperspectral sensors, the Airborne
Hyperspectral Scanner (AHS) and the Hyperion satellite hyperspectral sensor, to estimate SOC in
burned mountain areas that are slightly covered by vegetation as a result of post-fire regeneration.
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The SOC estimation was carried out using simple and multiple linear regression techniques based on
image reflectance values and spectral indices (SI), which are less sophisticated than the widely-used
PLSR method, and have greater potential to be transferred among sensors. Comparison of prediction
performance with PLSR results allowed us to evaluate whether the proposed regression models
provide an acceptable accuracy.

2. Materials and Methods

2.1. Study Area

The study area is located on the western side of the Cantabrian Range (NW of Spain), and consists
of a NW–SE rectangle of approximately 60 km2, which corresponds to the AHS image extent (Figure 1).
The area corresponds to a mountain region with an altitude range from 400 to 1700 m above sea level,
and an average slope of ~25◦. The climate is Atlantic, with an average annual air temperature of
8 ◦C and an average annual precipitation of 1500 mm. The bedrock is very homogeneous, and is
mainly composed of quartzite, sandstone, and slate. The soils are classified as Lithosols, Histosols, and
Regosols, according to the World Reference Base [52], and are sandy, shallow, and stony. We chose
this region because it has been affected by frequent wildfires [53], and soil in this area contains high
amounts of organic matter [54], which makes it well-suited for the study. As a result of the degradation
caused by the repeated burning of this region, the landscape is dominated by extensive areas of heath
formations, and deciduous forests, to a lesser extent [55]. The abundance of heaths within the burned
slopes located in the study area varies along a N–S gradient, with higher abundance in the northern
areas. The wildfire incidence map obtained with Landsat [56] data showed regions of the study area
affected by up to four wildfires from 1984 to 2011. The last wildfires in the study area were recorded in
2005 (center of the study area), 2006 (south), and 2011 (north and center-south).
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2.2. Airborne Hyperspectral Data

A hyperspectral image was acquired over the study area by an Airborne Hyperspectral Scanner
(AHS) mounted on a CASA 212–200 airplane (Figure 1). The image was collected on 10 October 2011 at
11:05 UTC, in a flight campaign conducted by the Spanish National Institute for Aerospace Technology
(INTA). Weather conditions were favorable during the flight, with clear sky and light wind from the
east. The AHS is a whiskbroom line scanner with a field of view (FOV) of 90◦ and 750 pixels in the
across-track direction. The instantaneous FOV (IFOV) is 2.5 mrad, which results in a spatial resolution
of 5 m for a flight height of ~1860 m above ground level. The AHS sensor has 80 channels from 443 to
12,952 nm. In this paper, only 63 channels in the reflective part of the electromagnetic spectrum were
used: 20 channels between 443–1001 nm (VIS–NIR), with a full width at half maximum (FWHM) of
27–29 nm, and a mean signal-to-noise ratio (SNR) of 473:1, 1 channel at 1590 nm (SWIR) with a FWHM
of 85 nm and a SNR of 207:1, and 42 between 1924–2553 nm (SWIR) with a FWHM of 14–18 nm and a
mean SNR of 18:1.

The AHS image was geometrically and radiometrically corrected by INTA. The geometric
correction was performed using the direct georeferencing code PARGE [57], and a 5-m resolution digital
elevation model (DEM) provided by the Spanish National Geographic Institute (IGN). Data were
projected to Universal Transverse Mercator (UTM), World Geodetic System (WGS) 84 datum and zone
30 N. The image was atmospherically and topographically corrected using ATCOR4 [58] to obtain
the hemispherical-directional reflectance factor (HDRF). Spectral channels with a low SNR (SNR <10)
and those located at wavelengths with strong atmospheric water vapor absorption were removed.
Consequently, work was carried out with 38 AHS channels, 19 in the VIS–NIR and 19 in the SWIR.

A pixel-based supervised classification was performed on the AHS image to distinguish the
burned areas, as well as the other land cover classes in the scene. The following classes were used in
a true-color composite of the AHS image (bands at 650, 560 and 443 nm in the red, green and blue
channels): rock, forest, herbaceous, and burned areas. This study comprises only the burned regions,
which covered an area of ~8 km2. A maximum likelihood classifier [59] was calibrated using a set
of training sites located in the scene. The number of training sites of each class ranged between 13
and 21. A land cover map based on field data (scale 1:25,000) was used to determine the training sites.
The overall accuracy of the classification was 93.5%.

2.3. Satellite Hyperspectral Data

The Hyperion sensor on board the Earth Observing-1 (EO-1) satellite acquired a hyperspectral
image of the study area on 30 September 2014 at 9:51 UTC, in response to a data acquisition request
submitted using the National Aeronautics and Space Administration (NASA) experimental system
SensorWeb. Hyperion has two pushbroom spectrometers, one in the VIS–NIR spectral region, and
another in the SWIR spectral region. It collects 242 contiguous channels in the spectral range from
360 nm to 2580 nm, with a FWHM of 10–12 nm and a spatial resolution of 30 m. The Hyperion SNR
decreases as the wavelength increases: 161:1 at 550 nm, 147:1 at 700 nm, 110:1 at 1125 nm, and 40:1 at
2125 nm [60]. A FOV of 0.63◦ at the EO-1 orbit of 705 km achieves a 7.5-km swath width. The ~100-km
length Hyperion image of the study area (Figure 1) was downloaded at no cost from the United States
Geological Survey (USGS) EarthExplorer platform. It was provided at a processing level 1T (L1T), with
radiometric and geometric correction using ground control points, and georeferenced to the coordinate
system UTM-WGS84-29N. The image was transformed to the coordinate system UTM-WGS84-30N.
Channels that were not calibrated, located in strong atmospheric water vapor absorption regions, or
in the overlapping region between both spectrometers, were removed. Unstable channels with a low
SNR were also discarded. A total of 155 channels, which corresponded to the set of stable channels
selected by Datt et al. [61], remained for further analysis.

Atmospheric/topographic correction and conversion of at-sensor radiance to surface reflectance
was carried out using ATCOR4 [58], which is based on the MODTRAN5 radiative transfer code.
A DEM with a spatial resolution of 5 m provided by IGN was resampled to the Hyperion resolution of



Remote Sens. 2017, 9, 1211 5 of 22

30 m and used for the illumination correction. The rural aerosol model was selected for the atmospheric
correction. Visibility and water vapor maps were derived from the image. The water vapor retrieval
was performed using the water absorption feature at 1130 nm.

The image was also corrected for the bidirectional reflectance distribution function (BRDF) effects,
which can be especially strong in rugged terrain zones similar to the study area. Several configurations
of BRDF correction input parameters were tested in ATCOR4. The reflectance values obtained using the
different configurations were compared with the reference reflectance values provided by a Moderate
Resolution Imaging Spectroradiometer (MODIS) image, which was collected one hour and 20 min after
the Hyperion acquisition time. We selected the MODIS surface reflectance product with the best spatial
resolution, 250 m (MOD09GQ). The comparison between MODIS and Hyperion reflectance values
corrected with the different configurations was carried out in 12 regions of the scene: six in slopes
facing the sun, and six away from the sun. The BRDF corrected image, whose reflectance values were
more similar to the MODIS values in these regions, was chosen as the best correction result. The best
BRDF correction involved a separate treatment for non-vegetation and vegetation areas of the image.

After visual inspection of the corrected image, several channels were found to be affected by
residual noise or light vertical striping. Noise and striping were reduced by using a principal
component transformation [59]. This transformation was applied to convert the corrected image
to a set of 155 linearly uncorrelated bands or principal components. The first principal components
contained the largest amount of image variance, while the last components contained less information
and more noise. An inverse rotation was applied to transform the principal components back into the
original image space, but using only the first four components, which were not affected by noise, and
contained 98.6% of the image variance. As a result, a 155-channel noise-reduced image was obtained
and used for further analysis.

2.4. Field Data

Thirty-nine topsoil (0–5 cm) samples were taken in burned slopes in the summer of 2013 (Figure 1).
In order to represent the N–S gradient in the abundance of heaths, soil samples were taken in three
regions located in the north, center, and south of the study area. The location of the sampling points was
recorded by a handheld global positioning system (GPS) device with an accuracy of 3–5 m (95% typical).
The sampling strategy was designed originally for the 5-m resolution AHS image, and all of the samples
were taken within the limits of this image in burned areas partially covered by heather. However,
only 14 out of the 39 soil samples were located within limits of the Hyperion image, and only six
were available if we consider that several 30-m Hyperion pixels contained more than one soil sample.
Soil samples were air-dried, sieved (<2 mm), and homogenized in the lab. Total organic C (TOC) was
analyzed by dry combustion at 950 ◦C using a Vario C-N Analyzer (Elementar Analysensysteme GmbH,
Langenselbold, Germany). In our study area, TOC is equivalent to total C, as the soil parent material is
non-calcareous [54]. Oxidizable C (OC) was determined using the Walkley–Black method [10].

2.5. Spectral Indices

A wide range of spectral indices has been developed with the aim of estimating several biophysical
parameters using remote sensing data [62]. The normalized difference vegetation index (NDVI) [63]
is one of the most used vegetation indices because of its simplicity and effectiveness in quantifying
green vegetation and discriminating different land covers. The NDVI is based on the reflectance
measured in a red ($red) and a NIR channel ($NIR): NDVI = ($NIR − $red)/($NIR + $red). Due to its
simple structure, it is easy to transfer this index among sensors. An important factor that allows
the transfer of spectral indices between sensors is that these indices are relative values, and thus
the differences in absolute reflectances between sensors are ruled out. After all, the reflectance is
sensitive to the sensors’ characteristics and atmospheric correction. Several biochemical constituents
present in the vegetation and soil, such as chlorophyll, cellulose, and lignin, influence the reflectance
in the VIS–NIR–SWIR regions [51,64]. These constituents are related to SOC [65], and several authors
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have identified wavelengths and spectral indices sensitive to SOC using lab and field VIS–NIR–SWIR
reflectance spectra [51,66].

The most widely-used spectral indices are usually based on band differences, normalized
differences, and band ratios. The normalized difference structure is well suited for vegetation
studies [62] and was selected in this work, considering that the burned regions of the study area
were partially covered by heather. The structure of the selected spectral index (SI) is the same as the
NDVI: SIλ2−λ1 = ($λ2 − $λ1)/($λ2 + $λ1), where $λ1 and $λ2 are the reflectance values at the effective
(λ1) and reference (λ2) wavelengths. The values of this index range from −1 to 1. Indices with this
structure were calculated from the reflectance values of the AHS and Hyperion images, using all
possible two-band combinations (1406 indices for AHS, and 23,870 for Hyperion).

2.6. SOC Modelling Using Airborne Hyperspectral Data

The overall process of SOC estimation (TOC and OC) is shown in the flowchart in Figure 2.
Reflectances and spectral indices from the AHS images were extracted for the location of the 39 soil
samples and related to the TOC and OC values obtained in the chemical analysis. Reflectances
and spectral indices were correlated to TOC and OC values using simple linear regression (SLR).
A correlogram showing the Pearson correlation coefficient (R) versus the wavelengths was generated
for both soil properties in order to identify the best AHS channels for estimating TOC and OC. For the
identification of the best spectral indices, two-dimensional (2-D) correlograms were created.

Remote Sens. 2017, 9, 1211  6 of 23 

 

have identified wavelengths and spectral indices sensitive to SOC using lab and field VIS–NIR–
SWIR reflectance spectra [51,66]. 

The most widely-used spectral indices are usually based on band differences, normalized 
differences, and band ratios. The normalized difference structure is well suited for vegetation 
studies [62] and was selected in this work, considering that the burned regions of the study area 
were partially covered by heather. The structure of the selected spectral index (SI) is the same as the 
NDVI: SIλ2−λ1 = (ρλ2 − ρλ1)/(ρλ2 + ρλ1), where ρλ1 and ρλ2 are the reflectance values at the effective (λ1) 
and reference (λ2) wavelengths. The values of this index range from −1 to 1. Indices with this 
structure were calculated from the reflectance values of the AHS and Hyperion images, using all 
possible two-band combinations (1406 indices for AHS, and 23,870 for Hyperion). 

2.6. SOC Modelling Using Airborne Hyperspectral Data 

The overall process of SOC estimation (TOC and OC) is shown in the flowchart in Figure 2. 
Reflectances and spectral indices from the AHS images were extracted for the location of the 39 soil 
samples and related to the TOC and OC values obtained in the chemical analysis. Reflectances and 
spectral indices were correlated to TOC and OC values using simple linear regression (SLR). A 
correlogram showing the Pearson correlation coefficient (R) versus the wavelengths was generated 
for both soil properties in order to identify the best AHS channels for estimating TOC and OC. For 
the identification of the best spectral indices, two-dimensional (2-D) correlograms were created. 

 

Figure 2. Flowchart of soil organic carbon (SOC) estimations (TOC and OC) using AHS and 
Hyperion hyperspectral data. TOC = total organic carbon; OC = oxidizable organic carbon; SLR = 
simple linear regression; SMLR = stepwise multiple linear regression; PLSR = partial least squares 
regression. 

TOC and OC predictions were also performed using stepwise multiple linear regression 
(SMLR). The optimum set of variables of each model was determined automatically using a 
combined forward and backward selection method [67]. Only variables that remained significant at 

Figure 2. Flowchart of soil organic carbon (SOC) estimations (TOC and OC) using AHS and Hyperion
hyperspectral data. TOC = total organic carbon; OC = oxidizable organic carbon; SLR = simple linear
regression; SMLR = stepwise multiple linear regression; PLSR = partial least squares regression.

TOC and OC predictions were also performed using stepwise multiple linear regression (SMLR).
The optimum set of variables of each model was determined automatically using a combined forward
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and backward selection method [67]. Only variables that remained significant at p-values lower than
0.05 were retained in the models. Two types of SMLR models were performed, using the reflectance of
each AHS channel and spectral indices. As the number of variables (38 AHS channels and 1406 spectral
indices) was similar to or greater than the number of observations (39 soil samples), only the most
reliable channels and indices were selected for the SMLR analysis. The most reliable channels were
those with the highest coefficients of determination (R2) obtained in the SLR models. The identification
of the most reliable indices was performed in two steps to avoid duplicate AHS channels in the list
of indices selected for SMLR. First, the reference wavelength (λ2) of the index with the highest R2 in
the SLR was identified. Then, only the indices based on this reference wavelength were selected, and
those with the highest R2 were included in the SMLR analysis.

In addition, the PLSR method [68,69] was used to establish relationships between the AHS
reflectance values and both soil properties, TOC and OC. AHS reflectance spectra were mean
centered before the PLSR modeling, as this preprocessing technique improved the correlation with
the soil properties. The optimum number of PLSR factors or latent variables was determined by
leave-one-out cross-validation and defined by the Akaike Information Criterion (AIC), which is
based on a compromise between model accuracy and complexity [70,71]. The PLSR coefficients
(b) [69] and the variable importance for projection (VIP) [68] were used to identify the most important
wavelengths in the PLSR models. Wavelengths with higher b and VIP are considered more relevant [68].
The thresholds for b were based on their standard deviations [72], and the thresholds for VIP were set
to 1, following the recommendations by Chong and Jun [73].

The performance of the SLR, SMLR, and PLSR models was assessed using three metrics obtained
in the leave-one-out cross-validation: the coefficient of determination (R2

cv), the root mean square error
(RMSEcv), and the ratio of performance to deviation (RPD), which is the ratio between the standard
deviation of the calibration set against the RMSEcv. The model having the highest RPD is considered
the best model. The prediction ability of the models was classified by Chang and Laird [74] in three
classes: category A (RPD > 2), B (2 > RPD > 1.4), and C (RPD < 1.4), which correspond to models with
good, intermediate, and low prediction abilities, respectively.

TOC and OC SMLR models with the highest RPD were applied pixel by pixel to the AHS image,
in order to generate 5-m resolution maps of the burned regions located in the study area.

2.7. SOC Modelling Using Satellite Hyperspectral Data

The same process used to estimate TOC and OC with AHS data was followed for the estimation
with Hyperion data, but using a different calibration dataset. As only six out of the 39 soil samples were
available for the Hyperion image, the reference TOC and OC values that were required to calibrate
the models were obtained from the maps based on AHS data. The 5-m resolution maps of TOC and
OC obtained using the best SMLR models for AHS, which were those based on spectral indices, were
resampled to the 30-m resolution of the Hyperion image. Data of 36 pixels (6 × 6 pixels) with a
spatial resolution of 5 m were aggregated and averaged to generate data with a spatial resolution of
30 m. Two hundred points were selected in both TOC and OC maps, in burned areas delimited by the
classification of the AHS image. TOC and OC values were extracted for the location of these points and
related to the reflectances and spectral indices obtained from the Hyperion image. Then, SLR, SMLR,
and PLSR models were calibrated following the process described in Section 2.6. The performance
of the models was also assessed using the R2

cv, RMSEcv, and RPD values. In addition, a stochastic
simulation using the Monte Carlo method [75,76] was performed to analyze the error propagation in
the best TOC and OC models for Hyperion. In the simulation, normal distribution of the errors was
assumed using the Shapiro–Wilk test [77], and the number of iterations was set to 10,000 to obtain
reliable results. The TOC and OC SMLR models with the highest RPD values were applied to the
Hyperion image to generate 30-m resolution maps of the burned regions located in the study area.
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3. Results

3.1. Descriptive Statistics of SOC

Summary statistics of SOC are shown in Table 1. The results of the chemical analysis of the
39 soil samples showed that the study area was heterogeneous, with large variations in both TOC and
OC, which is in good agreement with the results obtained in previous studies in this region [54,78].
TOC and OC maximum values were relatively high (greater than 35%) and related to the high amount
of organic matter accumulated in the existing paleo surfaces. The minimum values of TOC (4.3%) and
OC (2.7%) occurred in soils located in burned slopes, which are characterized by very thin organic
horizons as a result of the frequent fires [79]. Higher TOC and OC values were obtained in the north
and center of the study area, and lower values were obtained in the south. A high positive correlation
was found between TOC and OC (R = 0.97). The distribution of TOC and OC values in the dataset
used for Hyperion was similar to the distribution observed in the ground observation dataset.

Table 1. Descriptive statistics of soil organic carbon (SOC).

Ground Observation Dataset
Used for AHS (n = 39)

Dataset Predicted by AHS
Used for Hyperion (n = 200)

TOC (%) OC (%) TOC (%) OC (%)

Minimum 4.3 2.7 5.3 5.6
Maximum 51.7 37.9 51.6 37.4

Mean 33.3 22.5 34.4 22.9
Standard deviation 14.6 10.3 10.6 5.9

AHS = Airborne Hyperspectral Scanner; n = number of samples; TOC = total organic carbon; OC = oxidizable
organic carbon.

3.2. Correlation between SOC and Reflectances/Spectral Indices

The correlation coefficient R was calculated at each wavelength between soil properties, TOC
and OC, and reflectances from the AHS and Hyperion images (Figure 3). A relatively high negative
correlation was observed in several wavelengths of the spectrum, with R between −0.5 and −0.65,
approximately. Darker soils, with lower reflectance, usually have higher organic matter content [80,81],
which explains the negative correlation observed in Figure 3.
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In general, the spectral regions with high correlation in Figure 3 were quite similar. The highest
correlations for both soil properties and both sensors were found in the red region of the spectrum,
with the maximum absolute correlation at the wavelengths at 610 and 679–681 nm. These results are
consistent with those of Stevens et al. [8], who also used AHS data to estimate SOC and found an
absorption feature around 600–750 nm possibly related to SOC. Bartholomeus et al. [51] estimated
SOC using laboratory reflectance spectra in the VIS–NIR–SWIR, and also found the red region to be
important for SOC prediction, with the highest correlation observed at ~600 nm using reflectance
values, and between 640–690 nm using the inverse of the reflectance values. Vinogradov [82] also found
the highest correlation between SOC and radiance in the red region of the spectrum (600–700 nm).

TOC and OC also showed high correlation in the SWIR region. Several wavelengths between
~2100–2500 nm are known to be sensitive to soil organic matter content [83,84], which can explain
the relatively high correlations found in this region. The high correlation in the SWIR region is in
accordance with the results obtained in a previous study in the same area by Fernández et al. [38]
using laboratory reflectance spectra. They found the SWIR, mainly between ~2100–2350 nm, to be
the most significant region for SOC prediction, with the most important wavelength at 2212 nm. The
correlation between SOC and AHS reflectances showed chaotic features in the 2038–2326 nm region
(Figure 3). These features were attributed to noise, considering that the AHS channels located in this
region are characterized by a low SNR (mean SNR = 18). A similar pattern was observed at these
wavelengths in previous studies based on AHS data [8]. In contrast, the correlation for the Hyperion
sensor was smoother at these wavelengths, despite the low SNR of Hyperion in the SWIR (SNR = 40 at
2125 nm). The smoothed correlograms obtained for the Hyperion image could be related to the noise
reduction method based on principal components that was applied to the Hyperion image, which was
more effective than the method used in the AHS image, based on the elimination of the channels with
lower SNR.

In order to identify the most important wavelengths to estimate SOC using spectral indices
SIλ2−λ1, all possible pair combinations of AHS/Hyperion channels in the VIS–NIR–SWIR region were
evaluated. Spectral indices derived from the AHS and Hyperion images were correlated to SOC values
using SLR. The coefficient of determination R2 between TOC/OC and spectral indices is shown in
Figure 4. The results for the spectral indices based on AHS channels were very similar for TOC and
OC. A significant region with R2 & 0.5 was found with combinations of AHS channels in the range
λ1 = 591–679 nm and λ2 = 709–1001 nm. It is noteworthy that λ1 and λ2 can be used interchangeably,
as the R2 values in each graph of Figure 4 are symmetric with respect to the 1:1 line. A maximum R2

of 0.56 was obtained for both TOC and OC, with the AHS spectral index SI1001–679 nm, which is based
on the effective band λ1 = 679 nm (red) related to chlorophyll absorption [85], and the reference band
λ2 = 1001 nm (NIR) that can be associated with organic C [48]. This spectral index corresponds to the
NDVI, which is based on the reflectance at a red and a NIR wavelength.

The analysis of the coefficient of determination R2 between TOC/OC and spectral indices from
Hyperion showed lower or slightly lower R2 values than those obtained for AHS (Figure 4). The lower
R2 values were obtained for TOC, with a maximum value of 0.27 using the spectral index SI1023–973 nm,
which is based on two NIR channels. Higher R2 values were found for OC. Relatively important regions
for OC were λ1 = 539–610 nm and λ2 = 620–671 nm (R2 & 0.40), λ1 = 630–712 nm and λ2 = 732–1336 nm
(R2 & 0.35), λ1 = 732–1336 nm and λ2 = 1477−2355 nm (R2 & 0.30), and λ1 = 1508–1790 nm and
λ2 = 2032–2254 nm (R2 & 0.30). A maximum R2 of 0.45 was obtained for the spectral index SI1033–973 nm.
The Hyperion spectral indices with the highest correlation were consistent for TOC and OC, with
λ1 = 973 nm and λ2 = 1023–1033 nm as the best band combinations. Wavelengths at ~960 nm could
be related to organic pigments, and those at ~1020–1030 nm could be related to organic C [48]. These
wavelengths, which were found to be relevant for SOC estimations using Hyperion indices SIλ2−λ1,
are not covered by the AHS sensor.
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3.3. SOC Predictive Models

Several regression techniques (SLR, SMLR, and PLSR) were used to calibrate models for the
estimation of TOC and OC via AHS/Hyperion reflectances and spectral indices SIλ2−λ1. Summary
statistics of the leave-one-out cross-validation of the models for all soil properties, sensors, and
regression techniques are gathered in Table 2. The best AHS/Hyperion channels and spectral indices for
the estimation of both soil properties were identified and used to calibrate SLR models. The prediction
equations of these models are listed in Table 2. In general, better SLR models were obtained for: the
AHS sensor (mean RPD = 1.34) than for the Hyperion sensor (mean RPD = 1.25), OC (mean RPD = 1.31)
than for TOC (mean RPD = 1.27), and spectral indices (mean RPD = 1.35) than for individual channels
(mean RPD = 1.24). According to the model classification by Chang and Laird [74] based on RPD values,
the SLR models had low prediction ability, except for the SLR models for TOC/OC estimation using
the AHS spectral index SI1001–679 nm, which showed an intermediate prediction ability (R2

cv = 0.52 and
RPD = 1.46).
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Table 2. Leave-one-out cross-validation statistics of the regression models for soil organic C prediction
using AHS and Hyperion data.

Sensor Soil Property Regression
Technique Prediction Equation n R2

cv RMSEcv (%) RPD

AHS TOC (%) SLR-1 channel TOC = 66 − 1008 × $679 nm 39 0.35 11.69 1.25
SLR-1 index TOC = −101 + 186 × SI1001–679 nm 39 0.52 10.02 1.46

SMLR-3 channels 39 0.51 10.13 1.44
SMLR-8 indices See Table 3 39 0.62 9.05 1.62
PLSR-3 factors 39 0.49 10.39 1.41

OC (%) SLR-1 channel OC = 43 – 640 × $679 nm 39 0.27 8.70 1.18
SLR-1 index OC = −72 + 131 × SI1001–679 nm 39 0.52 7.02 1.46

SMLR-3 channels 39 0.52 7.06 1.46
SMLR-2 indices See Table 3 39 0.60 6.44 1.60
PLSR-3 factors 39 0.48 7.34 1.40

Hyperion TOC (%) SLR-1 channel TOC = 58 − 356 × $610 nm 200 0.34 8.55 1.24
SLR-1 index TOC = −46 + 2276 × SI1023–973 nm 200 0.23 9.26 1.14

SMLR-15 channels 200 0.44 7.91 1.33
SMLR-18 indices See Table 3 200 0.49 7.58 1.39
PLSR-4 factors 200 0.32 8.68 1.22

OC (%) SLR-1 channel OC = 33 − 177 × $681 nm 200 0.40 4.59 1.29
SLR-1 index OC = −20 + 1218 × SI1033–973 nm 200 0.43 4.48 1.32

SMLR-10 channels 200 0.54 4.02 1.48
SMLR-20 indices See Table 3 200 0.61 3.74 1.58
PLSR-4 factors 200 0.44 4.45 1.33

RMSEcv = root mean square error of cross-validation; RPD = ratio of performance to deviation; SLR = simple linear
regression; SMLR = stepwise multiple linear regression; PLSR = partial least squares regression; SI = spectral index.

SMLR models were calibrated in order to improve the estimation of TOC and OC based on SLR.
Two types of SMLR models were performed using reflectances of the AHS/Hyperion channels and
spectral indices. The cross-validation statistics of the SMLR models are shown in Table 2. Models
based on SMLR performed better that those based on SLR, for both soil properties and for both sensors.
In all cases, the SMLR models based on spectral indices showed better results than the models based
on reflectances. The most reliable SMLR models were obtained for AHS with spectral indices based
on the reference channel at 1001 nm, using eight indices for TOC (R2

cv = 0.62 and RMSEcv = 9.05%),
and two indices for OC (R2

cv = 0.60 and RMSEcv = 6.44%). Both models showed a relatively good
performance, with the RPD ≥ 1.60, which corresponds to models with an intermediate prediction
ability, according to Chang and Laird [74]. The performance of the SMLR models based on indices
was slightly lower for Hyperion. The model for Hyperion to estimate TOC was based on indices with
the reference channel at 1023 nm, and showed R2

cv = 0.49, RMSEcv = 7.58%, and a low/intermediate
prediction ability, with the RPD = 1.39. A slightly lower RPD value was obtained in the Monte Carlo
simulation performed to analyze the error propagation in this model (mean RPD = 1.23). The SMLR
model for OC, based on indices with the reference channel at 1033 nm, was more reliable, showing
an R2

cv = 0.61, RMSEcv = 3.74%, and RPD = 1.58. A lower RPD value was also obtained in the Monte
Carlo simulation performed for this model (mean RPD = 1.20). The prediction equations of the SMLR
models based on indices are shown in Table 3.

The estimation of TOC and OC was also performed with the PLSR method. AHS/Hyperion
reflectance spectra were mean centered before the PLSR modeling, as this preprocessing technique
improved the RPD. The optimum number of factors—three for AHS and four for Hyperion
models—was determined by leave-one-out cross-validation, using the AIC. The cross-validation
statistics and the number of factors of the PLSR models are shown in Table 2. The validation of the
PLSR models for AHS showed the RPD = 1.40–1.41, which fall within the intermediate class of RPD,
and R2

cv = 0.48–0.49. Slightly lower values were obtained for the PLSR models for Hyperion, with
R2

cv = 0.32–0.44 and RPD = 1.22–1.33.
The accuracy of the regression models was higher using SMLR than PLSR. The SMLR models

based on spectral indices showed higher R2
cv and RPD values than PLSR, and also lower RMSEcv.

This result is unexpected, since it is supposed that PLSR performs better than SMLR, considering that
hyperspectral reflectance spectra are usually affected by multicollinearity, and PLSR is able to handle
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it. The PLSR results might be improved to obtain similar values to SMLR by applying further spectra
preprocessing techniques, which usually increase the RPD. However, the use of more sophisticated
preprocessing techniques was discarded in this work, in which the PLSR models were only included
as a reference. SMLR was also found to perform better than PLSR in previous studies that used
hyperspectral data to estimate soil properties [22]. These authors pointed out that a large calibration
dataset would be required for further research on this issue.

Table 3. Expressions of the best SMLR models for soil organic C estimation using AHS and Hyperion
data. The prediction equation of each model is S = b0 + b1 × SIλ2−λ1,1 + b2 × SIλ2−λ1,2 + . . . + bn ×
SIλ2−λ1,n, where S is the soil property, b0 is the intercept, b1−bn are the regression coefficients, and
SIλ2−λ1 are the spectral indices, with the structure SIλ2−λ1 = ($λ2 − $λ1)/($λ2 + $λ1).

AHS Hyperion

TOC (%) OC (%) TOC (%) OC (%)

b0−n SIλ2−λ1,1−n b0−n SIλ2−λ1,1−n b0−n SIλ2−λ1,1−n b0−n SIλ2-λ1,1−n

−192 −116 −29 −172
1679 SI1001–471 nm 249 SI1001–679 nm −1693 SI1023–844 nm −2128 SI1033–427 nm
−3941 SI1001–500 nm −82 SI1001–2150 nm −24,127 SI1023–1064 nm −4832 SI1033–457 nm
3325 SI1001–530 nm 19,806 SI1023–1094 nm 5509 SI1033–468 nm
−2432 SI1001–591 nm −24,888 SI1023–1104 nm 6087 SI1033–539 nm
1991 SI1001–620 nm 24,104 SI1023–1114 nm −8698 SI1033–569 nm
−494 SI1001–709 nm −31,871 SI1023–1185 nm 4859 SI1033–590 nm
276 SI1001–2102 nm 26,902 SI1023–1245 nm −1368 SI1033–925 nm
−198 SI1001–2150 nm −10,102 SI1023–1316 nm −17,970 SI1033–983 nm

−12,028 SI1023–1498 nm 12772 SI1033–993 nm
−14,115 SI1023–1558 nm 14470 SI1033–1044 nm
18,239 SI1023–1588 nm 8856 SI1033–1266 nm
13,523 SI1023–1790 nm −11,975 SI1033–1276 nm
−9758 SI1023–1982 nm −6386 SI1033–1639 nm
7336 SI1023–1992 nm 9555 SI1033–1679 nm
8275 SI1023–2052 nm 4928 SI1033–2083 nm
9878 SI1023–2103 nm −4845 SI1033–2153 nm
−11,850 SI1023–2163 nm −6318 SI1033–2163 nm
−3555 SI1023–2355 nm −5679 SI1033–2194 nm

4452 SI1033–2214 nm
5356 SI1033–2244 nm

3.4. Relevant Wavelengths for SOC Prediction

The most important wavelengths in the regression models for TOC/OC prediction using AHS
and Hyperion data are shown in Figure 5, in which the AHS and Hyperion channels used in this
work were also included. In the SLR and SMLR models based on indices SIλ2−λ1, both λ1 and λ2

wavelengths were represented in Figure 5. The most important wavelengths in the PLSR models were
those with both PLSR coefficients (b) greater than their standard deviations, and VIP values greater
than 1.
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The AHS channel at 679 nm (red) and the AHS spectral index SI1001–679 nm were relevant for
TOC and OC prediction, according to the results shown in Section 3.2. The most accurate TOC/OC
predictions for AHS were obtained using SMLR models based on indices with the reference wavelength
at 1001 nm, and effective wavelengths mainly in the red (620 and 679 nm) and SWIR regions (2102 and
2150 nm), although other wavelengths in the VIS region were also relevant for TOC. The red and
SWIR regions were also important in the PLSR models for TOC/OC prediction. Several wavelengths
between 2086–2326 nm were relevant in the PLSR models for AHS, but not in the SMLR models
based on indices. However, the results obtained with both techniques were consistent, with the most
important wavelengths in the red and SWIR regions. The red region of the spectrum was also relevant
for the SOC and organic matter estimations in previous studies [8,51,82], and also the SWIR region,
mainly between 2100–2500 nm [83,84]. The AHS channel at 679 nm can be associated with chlorophyll
absorption [85], and channels at 2102 and 2150 nm with lignin and recalcitrant C [38,48,86].

Regarding the Hyperion sensor, channels in the red region of the spectrum (610 nm and 681 nm),
and spectral indices based on channels in the NIR region (SI1023–973 nm and SI1033–973 nm), were found
to be relevant to estimate TOC and OC, as shown in Section 3.2. The most reliable models for
Hyperion were the SMLR models based on indices, with the reference wavelength at 1023/1033 nm
and effective wavelengths distributed across the VIS–NIR–SWIR region, especially from 983 nm
onwards. Hyperion channels in the visible region between 427–712 nm were also important for
TOC/OC prediction, according to the PLSR results. These channels correspond to the region with the
best SNR of the Hyperion sensor [60]. In general, the most significant regions to estimate SOC using
Hyperion are consistent with the results found in previous studies, in which the red [8,51,82] and SWIR
regions [83,84] were also important. Wavelengths at ~960 nm, ~1020–1030 nm, and ~2000–2200 nm
might be related to organic pigments, organic C, and carbon-hydrogen/nitrogen-hydrogen groups,
respectively [48]. Other relevant wavelengths in the regression models could also be associated with
organic compounds such as starch, lignin, and cellulose [64], but the attribution to a single component
is difficult, as many compounds show overlapping bands in the region 700–2500 nm [87].

Although Hyperion has more channels, and narrower channels, than AHS, which are located in
regions not covered by AHS that might be relevant for SOC estimation, the predictions were slightly
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worse for Hyperion than AHS. The larger number of indices involved in the SMLR models for Hyperion
(18–20 indices) compared with AHS (2–8 indices) also reflects the relatively lower performance of the
Hyperion models. These results were attributed to the lower SNR of the Hyperion sensor.

3.5. SOC Mapping

The best regression models for both sensors and both soil properties, which were based on SMLR
and spectral indices (Table 3), were applied pixel by pixel to the geometrically and radiometrically
corrected images. For illustration purposes, maps of TOC and OC content in the upper 5 cm of
soils were obtained for the Combo site (6◦41′43.9”W, 43◦ 4′13.5”N) (Figure 6). This site corresponds
to a ~20 ha burned slope located within the overlap region of the AHS and Hyperion images (see
location in Figure 1). The altitude of Combo site varies along a NW–SE gradient, from ~1230 m in
the northwestern part of the slope to ~900 m in the southeastern part. TOC and OC prediction at
the Combo site was performed at two spatial resolutions, using the 5-m AHS image and the 30-m
Hyperion image. Maps derived from the AHS image were smoothed by applying a mean filter with a
window size of 3 × 3 pixels, to reduce residual noise and clearly show the spatial distribution of both
TOC and OC.
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the SMLR models based on spectral indices at the Combo site. Left: AHS image (airborne, spatial
resolution of 5 m). Right: Hyperion image (satellite, spatial resolution of 30 m). The location of the
Combo site is shown in Figure 1.



Remote Sens. 2017, 9, 1211 15 of 22

The descriptive statistics of the maps in Figure 6 showed values in the same range as the calibration
datasets, with mean TOC = 35.7–38.0% and mean OC = 21.2–22.4%, for the maps based on the AHS and
Hyperion images, respectively. In general, the prediction was consistent for the AHS and Hyperion
images, despite the significant difference in their spatial resolution. The TOC content in the maps were
higher than the OC content, as expected. TOC and OC content were also highly correlated in both
the maps derived from AHS (R = 0.84) and Hyperion (R = 0.90). The spatial distribution of TOC and
OC content within the slope seems to be linked to the altitude and topography, with lower contents
in the upper areas, and higher contents in the lower and depressed areas. This distribution might be
explained by local transfer processes such as the erosion, which led to the accumulation of SOC in
the lower areas. The relief and topography were found to be related to SOC distribution in previous
studies, which focused on agricultural fields [8,21,23,88].

4. Discussion

The performance of the SMLR models based on spectral indices was compared with the results
found in previous studies, in which SOC and organic matter were estimated using airborne and
satellite hyperspectral data. The validation statistics of these studies are shown in Table 4, in which
the results obtained in this study were also included for comparison purposes. The comparison was
performed using the R2 and RPD values, and not the RMSE values, as they are not comparable among
studies that estimate slightly different soil properties, which have different ranges of variation, and are
expressed in different units.

SOC and organic matter were estimated in several studies using airborne hyperspectral imagery,
with a number of channels between 20 and 282 in the VIS–NIR–SWIR region, and spatial resolutions
ranging from 1 m to 8 m. Most of these studies were aimed at estimating SOC over agricultural
or bare soil areas. Only three out of 19 estimated SOC over areas partially covered by vegetation,
all of them using PLSR [36–38]. The results obtained in this study using AHS data (R2 ≥0.60 and
RPD ≥ 1.60) were in the range of those found in the literature. Bartholomeus et al. [37] used AHS data
and the residual spectral unmixing technique to estimate SOC in fields partially covered by maize,
and obtained slightly worse results in the validation (R2 = 0.56 and RPD = 1.50). Fernández et al. [38]
calibrated PLSR models using laboratory reflectance spectra that were subsequently applied to an AHS
image to estimate SOC. They obtained slightly better results (R2 = 0.72–0.73 and RPD = 1.89–1.92) than
those obtained in this study. However, the application of the method proposed in Fernández et al. [38]
is more complicated, as it requires the collection of laboratory reflectance spectra of the soil samples,
as well as the determination of a correction factor to obtain soil maps from lab predictions. The model
for organic matter prediction by Franceschini et al. [36] showed comparable results (R2 = 0.60 and
RPD = 1.60) to those obtained here.

The validation results of previous studies that used airborne hyperspectral data to predict
SOC/organic matter over agricultural or bare soil areas were heterogeneous, with R2 between
0.02–0.96, and RPD values between 0.99 and 3.13. Denis et al. [29] obtained the best results (R2 = 0.96
and RPD = 3.13) by correcting the soil shadow effect on the image reflectance through using a
wavelength-dependent correction factor calculated from soil vertical photographs taken in the field.
Stevens et al. [27] used a large dataset with 400 samples and obtained good results (R2 = 0.79 and
RPD = 2.33) by performing local models for the different regions and soil textures found in the study
area. The SOC prediction models by Hbirkou et al. [21] were calibrated using a relatively large dataset
with 204 samples, and obtained good results in the validation (R2 = 0.83 and RPD = 2.45). These authors
also suggested the use of local calibrations for different surface conditions to improve the accuracy of
the models. Most of the studies for SOC prediction over bare soil areas using airborne imagery were
based on PLSR, and showed an intermediate prediction ability, with RPD values typically between 1.4
and 1.9, and R2 between ~0.6–0.8.
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Table 4. Validation statistics of previous studies for SOC/organic matter estimation using airborne and satellite hyperspectral data in the VIS–NIR–SWIR region.

Sensor a Spectral Range (nm) b, Number of
Bands, and Spatial Resolution (m)

Study Area (Country) c Soil Property d Modeling
Technique e ncal|nval

f RMSE g R2 g RPD g Authors

AHS * 400–1600 (VNS), 21, 2.6 Agric. fields (Belgium) C org. PLSR (2) 110 xval 1.7 g/kg 0.54 1.47 Stevens et al. [30]

AHS * 430–1600 (VNS), 21, 2.6 Agric. fields (Luxembourg) C org. PLSR 267|134 4.3 g/kg 0.72 1.89 Stevens et al. [8]

AHS * 430–1600 (VNS), 21, 2.6 Agric. fields (Luxembourg) C org. PLSR 400 xval 3.9 g/kg 0.79 2.33 Stevens et al. [27]

AHS * 430–2540 (VNS), 63, 2.6 Agric. fields (Luxembourg) C org. PLSR 91 xval 3.7 g/kg 0.96 3.13 Denis et al. [29]

AHS * 450–2120 (VNS), 30, 2.6 Partially vegetated agric. fields (Belgium) C org. PLSR (8) 52|16 1.7 g/kg 0.56 1.50 Bartholomeus et al. [37]

AHS * 442–1019 (VN), 20, 2.6 Agric. fields (Luxembourg) C org. PLSR 46|31 2.2 g/kg 0.74 1.9 Steinberg et al. [28]

AHS * 430–2335 (VNS), 38, 5 Partially vegetated burned areas (Spain) C total
C oxid.

PLSR (7)
PLSR (7)

89|10
89|10

7.8%
5.1%

0.73
0.72

1.92
1.89 Fernández et al. [38]

AHS * 430–2335 (VNS), 38, 5 Partially vegetated burned areas (Spain) C total
C oxid.

SMLR (8)
SMLR (2)

39 xval
39 xval

9.1%
6.4%

0.62
0.60

1.62
1.60 Peón et al. [this paper]

HyMap * 420–2480 (VNS), 127, 6 Agric. fields (Germany) C org.
C org.

PLSR (7)
MLR (4)

60 xval
60 xval

0.29%
0.22%

0.90
0.86 Selige et al. [22]

HyMap * 450–2500 (VNS), 128, 4 Agric. fields (Germany) C org. PLSR 9 xval 1.6 g/kg 0.74 Patzold et al. [26]

HyMap * 420–2480 (VNS), 110, 6 Bare soils (Spain) C total PLSR 61|61 0.13% 0.77 1.92 Schwanghart and Jarmer [23]

HyMap * 450–2480 (VNS), 128, 4 Agric. fields (Germany) C org. PLSR (2) 38|29 2.1 g/kg 0.71 1.80 Gerighausen et al. [24]

HyMap * 400–2500 (VNS), 124, 5 Agric. fields (France) C org. PLSR 95 xval 2.6 g/kg 0.02 0.99 Gomez et al. [25]

HyMap * 539–2477 (VNS), 126, 8 Agric. fields (Germany) C org. PLSR (7) 204 xval 1.1 g/kg 0.83 2.45 Hbirkou et al. [21]

DAIS * 400–2500 (VNS), 69, 8 Agric. fields (Israel) OM MLR (4) 62|5 0.83 Ben-Dor et al. [34]

HSTIR * 400–2450 (VNS), 178, 2.5 Agric. fields (USA) C org. PLSR (8) 269 xval 0.18% 0.64 1.39 Hively et al. [35]

P-AISA * 400–2500 (VNS), 282, 1 Weathered soils (Brazil) OM PLSR (8) 60 xval 2.8 g/kg 0.60 1.60 Franceschini et al. [36]

AVNIR * 429–1010 (VN), 60, 1.2 Agric. fields (California) C total
OM

MLR (4)
MLR (4)

321|-
321|-

0.08%
0.08%

0.27
0.49 DeTar et al. [33]

CASI * 409–947 (VN), 71, 2 Agric. fields (Canada) OM PCA-SMLR 47 xval 0.5% 0.75 1.57 Uno et al. [32]

CASI * 405–950 (VN), 96, 6 Agric. fields (Belgium) C org. PLSR (2) 170|57 5.1 g/kg 0.85 1.86 Stevens et al. [31]

HYP ** 427–2355 (VNS), 152, 30 Agric. fields and pastures (Australia) C org. PLSR (3) 72 xval 0.73% 0.51 1.43 Gomez et al. [39]

HYP ** 468–1770 (VNS), 98, 30 Forests, pastures and agric. fields (USA) C org. SMLR-ANN 227|76 11.3 t/ha 0.68 Jaber et al. [43]

HYP ** 400–2500 (VNS), 158, 30 Agric. fields (China) C org. PLSR (3) 47 xval 1.6 g/kg 0.63 1.65 Lu et al. [40]

HYP ** 400–2500 (VNS), 150, 30 Agric. fields (USA) C total
OM

PLSR (3)
PLSR (4)

20|8
20|8

0.33%
0.66%

0.48
0.74

1.48
1.91 Zhang et al. [41]

HYP ** 436–2345 (VNS), 171, 30 Maize crops (Italy) OM OLS MNF 72 xval 0.15% 2.93 Castaldi et al. [42]

HYP ** 427–2335 (VNS), 155, 30 Partially vegetated burned areas (Spain) C total
C oxid.

SMLR (18)
SMLR (20)

200 xval
200 xval

7.6%
3.7%

0.49
0.61

1.39
1.58 Peón et al. [this paper]

a Asterisks indicate the sensor type: airborne (*), satellite (**). Sensor names: HSTIR = HyperSpecTIR, P-AISA = ProSpecTIR-AISA, HYP = Hyperion. b The spectral region is shown in
brackets: visible (V, 400–700 nm), near infrared (N, 700–1300 nm), short-wave infrared (S, 1300–2500 nm). c Agric. fields = agricultural fields. d C org. = C organic, C oxid. = C oxidizable,
OM = organic matter. e MLR = multiple linear regression, PCA = principal component analysis, ANN = artificial neural network, OLS MNF = ordinary least squares using the minimum
noise fraction eigenvectors. The number of channels or PLSR factors used in the models is shown in brackets. f ncal|nval indicate the number of samples used in the calibration and in the
validation, respectively. “xval” indicates that the validation was performed using the cross-validation technique. g RMSE, R2, and RPD obtained in the validation.
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SOC has rarely been estimated using satellite hyperspectral data, and only the Hyperion sensor
with a spatial resolution of 30 m was used (Table 4). The validation statistics obtained with Hyperion
data in this study (R2 = 0.49–0.61 and RPD = 1.39–1.58) were comparable to those found in bare soil
or agricultural areas [39–41]. PLSR models obtained in these studies also provided an intermediate
prediction ability, with R2 = 0.48–0.74, and RPD = 1.43–1.91. Regarding the studies in areas covered
by vegetation, heterogeneous validation results were reported. The results obtained in this study
were better than those reported by Jaber et al. [43], which used a large dataset with 227 samples to
model SOC over forests, pastures, and agricultural fields, using SMLR and artificial neural networks.
Their results using both SMLR and artificial neural networks were significantly better than those using
only SMLR or PLSR, but their models showed a low prediction ability, with RPD = 0.68. Castaldi et
al. [42] used Hyperion data to estimate organic matter in maize crops and did not find significant
differences between the validation results obtained under bare soil and vegetation cover conditions.
They obtained PLSR models with low prediction ability (RPD = 1.02) under vegetation conditions,
using a calibration dataset with organic matter in the range of 1.1–2.7%. However, the performance of
these models was improved significantly using the ordinary least squares technique and the minimum
noise fraction (MNF) eigenvectors instead of the reflectance spectra (RPD = 2.93).

The results obtained in the Monte Carlo simulation that was performed to analyze the error
propagation in the best models for the Hyperion sensor (mean RPD = 1.23 for TOC and mean RPD
= 1.20 for OC) were slightly lower than those obtained in the cross-validation of the same models
(Table 2), but still comparable to those found in previous studies in Table 4.

Based on the results obtained in previous studies for SOC estimation using either airborne or
satellite hyperspectral data (Table 4), SOC prediction is expected to improve by using large datasets,
which would allow the calibration of local models for the different regions and soil textures in the study
area. The prediction could also be improved by applying methods to reduce the soil relative shadows,
as well as using more sophisticated modeling techniques, such as multivariate adaptive regression
splines (MARS) or artificial neural networks, which are currently used for SOC estimation with lab
spectroscopy [11]. The use of the MNF transformation before modeling might effectively segregate the
noise in the reflectance spectra and improve the estimation. The prediction of SOC over areas partially
covered by vegetation might be improved with the application of spectral unmixing techniques.

However, the use of complex modeling techniques or methods that require extensive field data
collection contrasts with the idea of operational soil mapping. Field campaigns for the collection of
soil samples are expensive and time-consuming. The use of legacy data to calibrate models might
be very profitable for operational soil mapping [89]. Efforts should also focus on the development
of simple techniques to estimate SOC, such as the use of spectral indices in combination with SMLR.
The identification of spectral regions that are important for SOC prediction could also help create new
indices with high potential to be transferred to future hyperspectral sensors. Several next generation
satellite VIS–NIR–SWIR hyperspectral sensors are planned to be launched, including: HISUI from
Japan [90], PRISMA from Italy [91], and EnMAP from Germany in 2018 [92]; HYPXIM from France in
2020 [93]; SHALOM from Italy and Israel in 2021 [94]; and HyspIRI from USA in ~2022 [95]. These
hyperspectral sensors, which have spatial resolutions between ~8–30 m, are expected to provide
higher SNRs than current sensors, especially in the SWIR region, and could allow for an operational
quantitative SOC mapping at low cost with global coverage. SOC could be estimated using the
forthcoming sensors PRISMA, EnMAP, and HyspIRI with an intermediate accuracy (RMSE about 0.2%
and R2 between ~0.5–0.7), according to the tests performed by Castaldi et al. [96] using simulated data.

5. Conclusions

Topsoil organic carbon was estimated using hyperspectral data acquired by an airborne sensor
(AHS) and a satellite sensor (Hyperion), which are characterized by different spectral and spatial
resolutions. The prediction was performed in burned mountain areas far from the bare soil ideal
conditions, because they were slightly covered by heather. Despite the significant difference in the
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spectral and spatial resolution of the AHS and Hyperion images, SOC estimations were consistent
using both sensors, and the validation results were comparable in terms of R2 and the RPD to those
found in the literature, even to those reported in several studies that focused on agricultural fields or
bare soil areas. Slightly worse results were obtained for the Hyperion sensor, and this was attributed
to the lower SNR of this sensor.

SOC modeling using simple techniques such as SMLR based on spectral indices showed a
performance comparable to the more complex PLSR method, but with several advantages, including
the use of a lower number of channels (38/155 channels in PLSR and a maximum of 21 in SMLR)
and easier application to the images. As the SOC prediction models were based on the simple SMLR
technique and used a relatively low number of indices, they could be transferred easily to other
hyperspectral sensors, such as the upcoming satellite hyperspectral sensors with improved SNR. These
models might even be transferred to current or future multispectral sensors with bands at relevant
wavelengths for SOC prediction. Important wavelengths to estimate SOC were the red region of the
spectrum (600–700 nm), as well as the SWIR region between ~2000–2250 nm. The development of
spectral indices based on these regions, in combination with the use of simple modeling techniques,
might be very useful for increasing the applicability of these SOC mapping methods. Although the
operational topsoil mapping using these methods still remains a challenge, the results showed the
potential of hyperspectral sensors to estimate SOC.
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