310 research outputs found

    Raptorq-Based Multihop File Broadcast Protocol

    Get PDF
    The objective of this thesis is to describe and implement a RaptorQ broadcast protocol application layer designed for use in a wireless multihop network. The RaptorQ broadcast protocol is a novel application layer broadcast protocol based on RaptorQ forward error correction. This protocol can deliver a file reliably to a large number of nodes in a wireless multihop network even if the links have high loss rates. We use mixed integer programming with power balance constraints to construct broadcast trees that are suitable for implementing the RaptorQ-based broadcast protocol. The resulting broadcast tree facilitates deployment of mechanisms for verifying successful delivery. We use the Qualcomm proprietary RaptorQ software development kit library as well as a Ruby interface to implement the protocol. During execution, each node operates in one of main modes: source, transmitter, or leaf. Each mode has five different phases: STARTUP, FINISHING (Poll), FINISHING (Wait), FINISHING (Extra), and COMPLETED. Three threads are utilized to implement the RaptorQ-based broadcast protocol features. Thread 1 receives messages and passes them to the receive buffer. Thread 2 evaluates the received message, which can be NORM, POLL, MORE, and DONE, and passes the response message to the send buffer. Thread 3 multicasts the content of the send buffer. Results obtained by testing the implementation of the RaptorQ-based broadcast protocol demonstrate that efficient and reliable distribution of files over multihop wireless networks with a high link loss rates is feasible

    Multi-purpose embedded communication gateway : system design and testbed implementation

    Get PDF
    Masteroppgave i Informasjons- og kommunikasjonsteknologi IKT590 Universitetet i Agder 2014This dissertation revolves around developing a multi-purpose embedded communication gateway. The gateway is equipped with multiple communication interfaces including Ethernet, Bluetooth, WiFi, Zigbee, LTE, and it can be configured and utilized for many purposes, such as a failover of an Ethernet cable via 4G in order to maintain the network connectivity. Raspberry Pi circuit board and the operating system Raspbian are selected as the hardware and the software platforms respectively. Different communication interfaces are coordinated by the Raspberry Pi and are configured via Linux scripts according to various use cases. Furthermore, a hardware watchdog is adopted to enhance the availability of system. In addition, the system is encapsulated into a box to increase its portability. The system is validated and evaluated through rigorous test-bed experiments. Experiment results indicate that the developed router works smoothly and reliably in environments with little electrical disturbances

    Redes definidas por software e funções de redes virtualizadas em ambientes com recursos restritos

    Get PDF
    With technologies such as SDN and NFV pushing the the development of the next generation networks, new paradigms, such as Fog Computing, appeared in the network scene. However, these technologies have been associated with the network infrastructure, such as the datacenter. In order for these technologies to be used, for instance, in a Fog Computing scenario it is necessary to, therefore, study and develop these technologies to form new control and operation mechanisms. So, a Fog Computing scenario composed by resource-constrained devices, typical in these types of situations, was developed, and, a solution proposal is presented. The solution consists in customizing an existent VIM, OpenVIM, to this kind of devices, after the implementation of the solution, where a Raspberry Pi is used to exemplify this type of devices. Tests are done to measure and compare this devices to more powerful ones. The tests are comprised by benchmarks runs, focusing on instantiation times, and power consumption. The results show some drawbacks inherent to this kind of devices when compared to more powerful ones. However, it is possible to see the potential that this kind of devices might have in the near future.Com tecnologias como SDN e NFV a impulsionar o desenvolvimento das redes da próxima geração, novos paradigmas como por exemplo, Fog Computing, apareceram na área de redes. Contudo, estas tecnologias têm estado associadas à infraestrutura das redes, como o datacenter. Para que estas tecnologias possam ser utilizadas, como por exemplo, num cenário de Fog Computing é necessário, então, estudar e desenvolver estas tecnologias para formar novos mecanismos de controlo e operação. Desta forma, um cenário de Fog Computing composto por dispositivos com recursos limitados, típicos neste tipo de situação, é desenvolvido, e, uma proposta de solução é apresentada. A solução consiste em adaptar uma VIM existente, OpenVIM, para este tipo de dispositivos, após a implementação da solução, onde um Raspberry Pi é utilizado para exemplificar este tipo de dispositvos. Testes são realizados para medir e comparar como estes dispositivos se comportam em comparação com dispositivos mais poderosos. Estes testes são compostos por testes de desempenho, focando o tempo de instanciação e consumo energético. Os resultados apresentam algumas limitações inerentes a este tipo de dispositivos resultantes dos seus recursos limitados, quando comparados com hardware com maior capacidade. Contudo, é possível verificar o potencial que este tipo de dispositivos podem apresentar no futuro próximo.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    Network-Aware AutoML Framework for Software-Defined Sensor Networks

    Full text link
    As the current detection solutions of distributed denial of service attacks (DDoS) need additional infrastructures to handle high aggregate data rates, they are not suitable for sensor networks or the Internet of Things. Besides, the security architecture of software-defined sensor networks needs to pay attention to the vulnerabilities of both software-defined networks and sensor networks. In this paper, we propose a network-aware automated machine learning (AutoML) framework which detects DDoS attacks in software-defined sensor networks. Our framework selects an ideal machine learning algorithm to detect DDoS attacks in network-constrained environments, using metrics such as variable traffic load, heterogeneous traffic rate, and detection time while preventing over-fitting. Our contributions are two-fold: (i) we first investigate the trade-off between the efficiency of ML algorithms and network/traffic state in the scope of DDoS detection. (ii) we design and implement a software architecture containing open-source network tools, with the deployment of multiple ML algorithms. Lastly, we show that under the denial of service attacks, our framework ensures the traffic packets are still delivered within the network with additional delays

    A Cognitive Routing framework for Self-Organised Knowledge Defined Networks

    Get PDF
    This study investigates the applicability of machine learning methods to the routing protocols for achieving rapid convergence in self-organized knowledge-defined networks. The research explores the constituents of the Self-Organized Networking (SON) paradigm for 5G and beyond, aiming to design a routing protocol that complies with the SON requirements. Further, it also exploits a contemporary discipline called Knowledge-Defined Networking (KDN) to extend the routing capability by calculating the “Most Reliable” path than the shortest one. The research identifies the potential key areas and possible techniques to meet the objectives by surveying the state-of-the-art of the relevant fields, such as QoS aware routing, Hybrid SDN architectures, intelligent routing models, and service migration techniques. The design phase focuses primarily on the mathematical modelling of the routing problem and approaches the solution by optimizing at the structural level. The work contributes Stochastic Temporal Edge Normalization (STEN) technique which fuses link and node utilization for cost calculation; MRoute, a hybrid routing algorithm for SDN that leverages STEN to provide constant-time convergence; Most Reliable Route First (MRRF) that uses a Recurrent Neural Network (RNN) to approximate route-reliability as the metric of MRRF. Additionally, the research outcomes include a cross-platform SDN Integration framework (SDN-SIM) and a secure migration technique for containerized services in a Multi-access Edge Computing environment using Distributed Ledger Technology. The research work now eyes the development of 6G standards and its compliance with Industry-5.0 for enhancing the abilities of the present outcomes in the light of Deep Reinforcement Learning and Quantum Computing

    Routing for Flying Networks using Software-Defined Networking

    Get PDF
    Nos últimos anos, os Veículos Aéreos Não Tripulados (UAVs) estão a ser usados de forma crescente em inúmeras aplicações, tanto militares como civis. A sua miniaturização e o preço reduzido abriram o caminho para o uso de enxames de UAVs, que permitem melhores resultados na realização de tarefas em relação a UAVs independentes. Contudo, para permitir a cooperação entre UAVs, devem ser asseguradas comunicações contínuas e fiáveis.Além disso, os enxames de UAVs foram identificados pela comunidade científica como meio para permitir o acesso à Internet a utilizadores terrestres em cenários como prestação de socorros e Eventos Temporários Lotados (TCEs), tirando partido da sua capacidade para transportar Pontos de Acesso (APs) Wi-Fi e células Long-Term Evolution (LTE). Soluções que dependem de uma Estação de Controlo (CS) capaz de posicionar os UAVs de acordo com as necessidades de tráfego dos utilizadores demonstraram aumentar a Qualidade de Serviço (QoS) oferecida pela rede. No entanto, estas soluções introduzem desafios importantes no que diz respeito ao encaminhamento do tráfego.Recentemente, foi proposta uma solução que tira partido do conhecimento da CS sobre o estado futuro da rede para atualizar dinamicamente as tabelas de encaminhamento de modo a que as ligações na rede voadora não sejam interrompidas, em vez de se recuperar da sua interrupção, como é o caso na maioria dos protocolos de encaminhamento existentes. Apesar de não considerar o impacto das reconfigurações na rede de acesso, como consequência da mobilidade dos APs, ou o balanceamento da carga na rede, esta abordagem é promissora e merece ser desenvolvida e implementada num sistema real.Esta dissertação tem como foco a implementação de um protocolo de encaminhamento para redes voadoras baseado em Software-Defined Networking (SDN). Especificamente, aborda os problemas de mobilidade e de balanceamento da carga na rede de uma perspetiva centralizada, garantindo simultaneamente comunicações ininterruptas e de banda-larga entre utilizadores terrestres e a Internet, permitindo assim que os UAVs se possam reposicionar e reconfigurar sem interferir com as ligações dos terminais à rede.In recent years, Unmanned Aerial Vehicles (UAVs) are being increasingly used in various applications, both military and civilian. Their miniaturisation and low cost paved the way to the usage of swarms of UAVs, which provide better results when performing tasks compared to single UAVs. However, to enable cooperation between the UAVs, always-on and reliable communications must be ensured.Moreover, swarms of UAVs are being targeted by the scientific community as a way to provide Internet access to ground users in scenarios such as disaster reliefs and Temporary Crowded Events (TCEs), taking advantage of the capability of UAVs to carry Wi-Fi Access Points (APs) or Long-Term Evolution (LTE) cells. Solutions relying on a Control Station (CS) capable of positioning the UAVs according to the users' traffic demands have been shown to improve the Quality of Service (QoS) provided by the network. However, they introduce important challenges regarding network routing.Recently, a solution was proposed to take advantage of the knowledge provided by a CS regarding how the network will change, by dynamically updating the forwarding tables before links in the flying network are disrupted, rather than recovering from link failure, as is the case in most of the existing routing protocols. Although it does not consider the impact of reconfigurations on the access network due to the mobility of the APs, it is a promising approach worthy of being improved and implemented in a real system.This dissertation focuses on implementing a routing solution for flying networks based on Software-Defined Networking (SDN). Specifically, it addresses the mobility management and network load balancing issues from a centralised perspective, while simultaneously enabling uninterruptible and broadband communications between ground users and the Internet, thus allowing UAVs to reposition and reconfigure themselves without interfering with the terminals' connections to the network

    Intrusion tolerant routing with data consensus in wireless sensor networks

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia InformáticaWireless sensor networks (WSNs) are rapidly emerging and growing as an important new area in computing and wireless networking research. Applications of WSNs are numerous, growing, and ranging from small-scale indoor deployment scenarios in homes and buildings to large scale outdoor deployment settings in natural, industrial, military and embedded environments. In a WSN, the sensor nodes collect data to monitor physical conditions or to measure and pre-process physical phenomena, and forward that data to special computing nodes called Syncnodes or Base Stations (BSs). These nodes are eventually interconnected, as gateways, to other processing systems running applications. In large-scale settings, WSNs operate with a large number of sensors – from hundreds to thousands of sensor nodes – organised as ad-hoc multi-hop or mesh networks, working without human supervision. Sensor nodes are very limited in computation, storage, communication and energy resources. These limitations impose particular challenges in designing large scale reliable and secure WSN services and applications. However, as sensors are very limited in their resources they tend to be very cheap. Resilient solutions based on a large number of nodes with replicated capabilities, are possible approaches to address dependability concerns, namely reliability and security requirements and fault or intrusion tolerant network services. This thesis proposes, implements and tests an intrusion tolerant routing service for large-scale dependable WSNs. The service is based on a tree-structured multi-path routing algorithm, establishing multi-hop and multiple disjoint routes between sensors and a group of BSs. The BS nodes work as an overlay, processing intrusion tolerant data consensus over the routed data. In the proposed solution the multiple routes are discovered, selected and established by a self-organisation process. The solution allows the WSN nodes to collect and route data through multiple disjoint routes to the different BSs, with a preventive intrusion tolerance approach, while handling possible Byzantine attacks and failures in sensors and BS with a pro-active recovery strategy supported by intrusion and fault tolerant data-consensus algorithms, performed by the group of Base Stations
    • …
    corecore