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resumo Com tecnologias como SDN e NFV a impulsionar o desenvolvimento das redes da
próxima geração, novos paradigmas como por exemplo, Fog Computing, apare-
ceram na área de redes. Contudo, estas tecnologias têm estado associadas à
infraestrutura das redes, como o datacenter. Para que estas tecnologias possam
ser utilizadas, como por exemplo, num cenário de Fog Computing é necessário,
então, estudar e desenvolver estas tecnologias para formar novos mecanismos de
controlo e operação. Desta forma, um cenário de Fog Computing composto por
dispositivos com recursos limitados, típicos neste tipo de situação, é desenvolvido,
e, uma proposta de solução é apresentada. A solução consiste em adaptar uma
VIM existente, OpenVIM, para este tipo de dispositivos, após a implementação
da solução, onde um Raspberry Pi é utilizado para exemplificar este tipo de dis-
positvos. Testes são realizados para medir e comparar como estes dispositivos se
comportam em comparação com dispositivos mais poderosos. Estes testes são
compostos por testes de desempenho, focando o tempo de instanciação e consumo
energético. Os resultados apresentam algumas limitações inerentes a este tipo de
dispositivos resultantes dos seus recursos limitados, quando comparados com hard-
ware com maior capacidade. Contudo, é possível verificar o potencial que este tipo
de dispositivos podem apresentar no futuro próximo.





keywords SDN, NFV, Fog Computing, Resource-constrained devices, Raspberry Pi

Abstract With technologies such as SDN and NFV pushing the the development of the next
generation networks, new paradigms, such as Fog Computing, appeared in the
network scene. However, these technologies have been associated with the network
infrastructure, such as the datacenter. In order for these technologies to be used,
for instance, in a Fog Computing scenario it is necessary to, therefore, study and
develop these technologies to form new control and operation mechanisms. So,
a Fog Computing scenario composed by resource-constrained devices, typical in
these types of situations, was developed, and, a solution proposal is presented.
The solution consists in customizing an existent VIM, OpenVIM, to this kind of
devices, after the implementation of the solution, where a Raspberry Pi is used to
exemplify this type of devices. Tests are done to measure and compare this devices
to more powerful ones. The tests are comprised by benchmarks runs, focusing on
instantiation times, and power consumption. The results show some drawbacks
inherent to this kind of devices when compared to more powerful ones. However,
it is possible to see the potential that this kind of devices might have in the near
future.
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Chapter 1

Introduction

Technologies such as Software Defined Networking (SDN) and Network Function Virtualization
(NFV) are here to stay, and with the next generation networks (5G) in sight, solutions are being
designed and developed in which these technologies can be fully utilized. SDN, which brought
to the table the decoupling of data and control planes in networks enabling a centralized view
of the network, complemented with NFV, which brought the virtualization of network functions
decoupling them from the proprietary hardware they used to run in, gave the opportunity for the
community to walk away from the vendor lock-in problem, thus, propelling the rise of open source
solutions. This meant that companies and researchers could now work together in developing these
technologies, and while still not everything is disclosed and revealed, it still meant more people
were now able to help its development.

Along with others paradigms that emerged due to the combination of the technologies men-
tioned above, Fog Computing appeared with the objective of enabling computing on the edges
of the network. More and more devices are connecting to the Internet, therefore, infrastructures
need to be constructed or modified in order to manage this recent growth of devices. Since some
of these services have several requirements, such as low latency, the distance between the compute
node and the infrastructure should be low as well, thus, the need of enabling computing near
the edge, instead of just at the core of the network. Fog Computing intends to cooperate and
compensate for the deficiencies of the Cloud in these types of scenarios. There are already appli-
cations which require both the Cloud Computing and the Fog Computing capabilities, moreover,
the combination of these paradigms enables new services and applications to appear on the edge.

This dissertation rises from the need to explore mechanisms, such as SDN and NFV, in fields
such as Fog Computing. These mechanisms have been more focused towards the infrastructure,
such as the datacenter, so there is little support for devices on the edge of the networks, as
the software designed ends up being too powerful to run. Therefore, this dissertation aims to
explore scenarios where SDN and NFV technologies are applied in non-traditional equipments,
such as Single-Board Computers (SBCs) (e.g., a Raspberry Pi (RPi)), which are devices that, when
compared to normal computers and/or laptops, are more resource-constrained and, therefore, offer
less computing power but are smaller and less expensive.
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1.1 Motivation

The application of Information and Communication Technologies in a growing number of sec-
tors of our society has been rising the technological requirements in the supply of networks and
services, in both users and connected devices. Therefore, there are scenarios where not only a great
number of services with different requirements exist, but also devices with different characteristics
(i.e., from datacenters to microcontrollers), different capacities and connected by different types
of access networks.

In order to expedite the control and organization of telecommunications networks, and face the
necessities of controlling and operating networks in this type of environment, the next generation
networks will capitalize in the usage of mechanisms such as SDN and NFV. However, so far, the
focus of the application of these two new mechanisms is mainly associated with the operation of
the infrastructure of the operator network, and the datacenter part, where processing capacity
and energy efficiency are on a different scale when compared to resource-constrained devices.
Conversely, if scenarios consisting of low resource devices, such as the ones involving Internet of
Things (IoT), and aimed to use services with high requirements (such as video), it is necessary to
develop and apply these mechanisms to operate in these environments.

In short, this dissertation aims to study, develop and validate new control mechanisms and
network operations, using SDN and NFV, in low-power computing environments.

1.2 Objectives and Contributions

The objectives of this dissertation can be divided in two parts. In the first part, the goal is to
define and design a scenario for the integration of low-power computing devices using technologies
associated with 5G network control mechanisms (i.e., SDN and NFV). In the second part, the goal
is to implement, configure and test the developed scenario in order to compare results with more
powerful devices normally used in the usual scenarios. This dissertation is part of a pioneering
national project in 5G networks (Mobilizador 5G, http://5go.pt/).

1.3 Document Structure

This document is structured in 5 chapters, where the first one is this introduction. The
following chapters are listed below:

Chapter 2 - Concepts and Tools: A chapter where concepts are presented for a better under-
standing of this dissertation’s contributions and a look is taken into tools recently developed and
researched.
Chapter 3 - Framework and Implementations: Presenting the solution reached in order to
solve the issue presented in this dissertation, the adjustments that had to be made and actual
implementation.
Chapter 4 - Results and Analysis: Results obtained throughout this dissertation and their
analysis.
Chapter 5 - Conclusion: In this final chapter the conclusions about the results are presented
and future work is also discussed.

2
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Chapter 2

Concepts and Tools

This chapter presents the main concepts that allow for a better understanding of this disser-
tation as well as some tools recently developed by third parties which are within the scope of this
dissertation.

2.1 Concepts

The usage of technologies such as SDN and NFV drove the area to new paradigms. Initially,
Cloud Computing appeared and by pushing the computing tasks to the Cloud led to a more
efficient way to process data, since there was no need to invest on infrastructures if the processing
was outsourced to Cloud Computing infrastructures. Therefore, computation time was reduced
when compared to the low capabilities at edge. However, the increase of data consumption,
data production, number of devices on the edge, and, the stagnation of bandwidth led to the
appearance of new paradigms to solve these issues. So, Edge Computing was the answer to this
issue, by enabling technologies that allowed computation at the edge of the network instead of at
the centralized datacenter. Afterwards, other more niche paradigms appeared, with the name of
Fog Computing and Multi-access Edge Computing (MEC) aiding this paradigm while answering
their own issues [11].

2.1.1 Software Defined Networking

In legacy networks (non-virtualized networks), the data and control planes are coupled, the
transmission of data has been dominated by the use of dedicated switches or routers to direct
packets between servers or other connected devices. These switches consist of two planes: the data
or forwarding plane, which handles the routing of data packets to its network destination; and the
control plane, which creates the flow tables that determine how packets are sent to a destination
[12]. In this approach, once the flow management (forwarding policy) has been set, modifying the
configuration of the devices themselves is the only way to make changes. This proved restrictive
for network operators who needed to scale their networks in response to changing traffic demands
and increasing use of mobile devices [13]. Software Defined Networking (SDN) is a concept that
proposes the decoupling of the data and control planes in networks detaching the connections and
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equipments through which packets flow (forwarding plane) from the control decisions made as to
what should be done with those packets (control plane), turning the network into a programmable
entity [14] and allowing the network to better adapt to more dynamic environments.

2.1.1.1 SDN Architecture

The SDN architecture (figure 2.1) allows for decoupling of the data and control planes as
said above. This enables a centralized view of the network and an abstraction of the network
infrastructure from the applications, which results in scalable, flexible networks that can adapt
and react to the needs of the network administrator.

There are three main planes in this architecture:

• Data plane which is composed of network elements and is in charge of exposing their
capabilities to the control plane.

• Control plane where decisions about where the traffic is sent to are decided and it is also the
responsibility of the control plane to configure and manage the network as well as updating
the flow table information. The control plane also translates the applications requirements
and provides meaningful information to the applications.

• Application plane that consists of network applications that network administrators want
to deploy in their networks.

Figure 2.1: SDN architecture.

The interaction between the control and forwarding planes is enabled through a southbound
Application Programming Interface (API). There are several interfaces, however the most promi-
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nent is OpenFlow, created by Open Networking Foundation (ONF)1. Between the control and
application planes the communication is done through the northbound API which facilitates the
orchestration and automation of network services running in the application plane.

2.1.1.2 SDN Benefits

With a centralized and programmable network, SDN provides several benefits to companies
and network operators such as [15]:

• Programmable: Since the control plane is decoupled from the data plane, the network can
be programmed or configured by the controller.

• Centralized: Network intelligence is logically centralized in the controller which keeps a
global view of the network, which appears as a single, logical switch.

• Reduce Capital Expenditure (CAPEX): SDN potentially reduces the need to purchase
dedicated networking hardware, supporting pay-as-you-grow models instead.

• Reduce Operational Expenditure (OPEX): Enables control of the network elements
(e.g., hardware or software switches/routers) which are programmable, making it easier to
design, deploy, manage and scale networks. Overall management time is reduced due to
optimized serviced availability.

• Agility and Flexibility: Rapidly deploy new applications, services and infrastructure to
meet changing goals and objectives.

• Innovation: It enables organizations to create new types of applications, services and
business models that can offer new revenue streams and more value from the network.

All the points above illustrate why SDN has risen up in popularity and is now being utilized in
the new generation networks.

2.1.1.3 SDN Controllers

As stated before, the separation of the data and control planes within the network, allowed the
state of the network to be managed and controlled centrally. Residing in the control plane, the
SDN controller has a complete view of the network and with that, it is capable of deciding where
the traffic is directed, besides it also keeps an updated flow table.

Since SDN is still being heavily researched and developed, there is a large number of SDN
controllers available for use, at different stages of development and deployment. Amongst them,
OpenDaylight2, ONOS3, and, Floodlight4 will be introduced, since these are the controllers sup-
ported by the software chosen for the framework presented later (section 3.1).

1https://www.opennetworking.org
2https://www.opendaylight.org
3https://onosproject.org
4http://www.projectfloodlight.org/floodlight/
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OpenDaylight Founded in 2013, and now a member of LF Networking, OpenDaylight is an
open-source project with a modular open platform for tailoring networks of any size and scale. The
modular and multiprotocol permits downstream users and solution providers maximum flexibility
when building a controller which fits their needs, by leveraging services created by others, writing
and creating their own. Since OpenDaylight is implemented in Java, it can be ran on any hardware
and operating system platform that supports Java.

Its latest release, named Fluorine[1], was released on August, 2018. It is the ninth release
moving the project to a system of managed releases. The architecture of this release can be found
on figure 2.2.

Figure 2.2: OpenDaylight’s Fluorine architecture [1].

OpenDaylight has three main layers. The northbound layer uses REST, RESTCONF or NET-
CONF in order to communicate between the third party apps and the core. The southbound layer
has several protocols and control plane services, which can be individually selected or written, and
packaged together in requirement to a specific use case, connecting to the data plane elements.
The controller platform offers some platform services, as well as, network services and applications.
This is managed by the Model-Driven Service Abstraction Layer (MD-SAL). In OpenDaylight,
underlying network devices and network applications are all represented as objects, or models,
whose interactions are processed within the Service Abstraction Layer (SAL)[16].

The SAL is a data exchange and adaptation mechanism between YANG models. These models
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give a generalized description of capabilities without needing to know the implementation details
of the other. In SAL, models are defined by their roles in an interaction. A producer implements
an API and provides its data, generates notifications and inserts data into SAL’s storage, while a
consumer utilizes the API and its data, receives notifications and gets data from providers, and
reads data from SAL’s storage. Inside SAL, consumer and producer are more accurate descriptions
of interactions than southbound and northbound, which provide a network’s engineer view. Using
its data stores, SAL matches producers and consumers and exchanges information.

ONOS Founded by Open Networking Lab (ON.Lab), the Open Network Operating System
(ONOS) is the open source SDN networking operating system for Service Provider networks ar-
chitected for high performance, scale and availability[17]. As ONOS is a Network Operating
System it is responsible for: managing finite resources in the name of resource consumers, isolat-
ing and protecting users from each other, providing useful abstractions that enable users to easily
utilize services and resources, and, providing security from the external world[18].

In order to accomplish its goals, ONOS’s architecture possesses the following features[19]:

• High Availability and Resiliency: High availability is required of service providers to
avoid network downtime and there are mechanisms to support demanding networks ensuring
reliable network connections.

• Performance at Scale: Built to provide the best performance possible, ONOS maintains
its response time while adding new features.

• Modular Software: Software modularity makes it easy to develop, debug, maintain and
upgrade ONOS as a software system.

• Northbound Abstractions: Eases the development of control, management, and config-
uration services.

• Southbound Abstractions: Insulates the core of ONOS from the details of different
devices and protocols.

• GUI Framework and Base UI: Provides the view of the multi-layered network allowing
the exploration of various elements, errors and state of the network.

• YANG Tool-Chain: Interacts with several network elements who support configurations
modeled via YANG and allows ONOS’s platform to dynamically extend its configuration
capabilities.

ONOS believes there should be clear boundaries between subsystems, and therefore, it is
partitioned into three main tiers[20]:

• protocol-aware network-facing modules interacting with the network;

• protocol-agnostic system core tracking and serving information about the network state;

• applications consuming and acting upon the information given by the core.
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Figure 2.3 represents a summary of the various tiers of functionality included in the ONOS
architecture. The Providers and Protocols layers include functionalities to communicate with the
Network Elements and, with the help of southbound (provider) API, network-facing modules can
also communicate to the core layer. The core layers, as mentioned above, track and serve infor-
mation about the state of the network. Finally, the core can communicate with the applications
via the northbound (consumer) API, which, also provides these applications with abstractions
describing network components and properties.

Figure 2.3: ONOS Layers [2].

Floodlight Floodlight is an open source SDN controller, supported by the community and Big
Switch Networks developers. It is an Apache-licensed, Java-based OpenFlow Controller. The
controller does a set of functionalities to control and inquire an OpenFlow network, and different
user needs on the network are solved through applications running on top of it.

Figure 2.4 represents the architecture diagram of the floodlight controller, where it is possible
to see that Floodlight is comprised of various modules that communicate via the east/westbound
API and it can even be extended with new modules providing new functions. Developers can use
any language that supports REST to build software for the application plane due to the REST
compatible northbound API present[21].

Floodlight adopts a modular architecture to implement its controller features and some appli-
cations. Some of its modules are described below:

• Device Manager: Manages hosts/devices and where they are connected to the network;

• Firewall: Reactively inserts flows that either allow or deny packets from traversing the
network, enforcing Access Control List rules on OpenFlow enabled switches;

• Forwarding: As the name implies, it forwards packets between two devices;

• Learning Switch: Replicates traditional learning switch behavior and associates MAC
addresses with switch ports;

• Packet Streamer: Selectively streams Openflow packets exchanged between any switch
and the controller to an observer;
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• PortDown Reconciliation: Reconcile flows across a network when a port or link goes
down;

• Static Flow Entry Pusher: Allows modules to insert static/proactive flows and groups
identified by a unique string name per entry;

• Thread Pool: As implied, it provides threads to modules;

• Topology Manager/Routing: Manages the topology based on discovered links and con-
nected switches;

Figure 2.4: Floodlight Architecture Diagram [3].

2.1.2 Network Function Virtualization

In legacy networks, network function implementations are often strongly connected with the
infrastructure they run on. Network Function Virtualization (NFV) is a concept that decouples
network functions from the computation, storage, and networking resources they use [22] enabling
them to be run on commercial-off-the-self (COTS) hardware be it inside a container or Virtual
Machine (VM) bringing forth several benefits. The ability to launch a network function on-demand
increases flexibility and agility. Furthermore, it removes the problem of vendor lock-in as there
is no more need to buy proprietary hardware, which reduces CAPEX and OPEX in itself, since
a general machine can be used to instantiate a network function and in the future be reused to
instantiate a different one. It also allows for customization of services where a network function
is designed to better fit different requirements.
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2.1.2.1 ETSI-NFV Framework

In order to standardize work in the NFV field, the European Telecommunications Standards
Institute Industry Specification Group (ETSI ISG)5 created an high-level framework (figure 2.5)
composed of three main working domains: NFV Infrastructure (NFVI), Virtual Network Functions
(VNFs), and NFV Management and Orchestration[4].

Figure 2.5: High-level NFV framework [4].

NFV Infrastructure: The NFVI features the totality of all hardware and software components
in which the VNFs are deployed, managed and executed. From the VNF’s point of view, the
virtualization layer and the hardware resources look like a single entity providing the VNF with
desired virtualized resources. The physical resources include computing, storage and network
that supply processing, storage and connectivity to VNFs through the virtualization layer. The
virtualization layer abstracts and logically partitions physical resources, enables the software that
implements the VNF to use the underlying virtualized infrastructure and provides virtualized
resources to the VNF, so that the latter can be executed [4].

Virtual Network Functions: A VNF is a virtualization of a network function in a legacy
non-virtualized network. A Physical Network Function (PNF) and a VNF should have the same
functional behaviour and external operational interfaces. The Element Management performs the
management functionality for the VNFs [4].

NFV Management and Orchestration:
The NFV Management and Orchestration (NFV-MANO) represented in figure 2.6, is composed
of three main blocks, they are the NFV Orchestrator, the VNF Manager and the Virtualized
Infrastructure Manager (VIM). The NFV Orchestrator is tasked with orchestrating and managing
of the NFV infrastructure and software resources, and realizing network services on NFVI. The
VNF Manager is designated with VNF lifecycle management (e.g. instantiation, update, query,
scaling, termination). Finally, the VIM encompasses the functionalities which are used to control

5https://www.etsi.org

10

https://www.etsi.org


and manage the interaction of a VNF with computing, storage and network resources, as well as
their virtualization. In addition, performs resource management that is in charge of the inventory
of software and hardware resources reserved to NFVI, allocation of virtualization enablers and
management of infrastructure resource and allocation. It also offers operations for visibility into
and management of the NFV infrastructure, as well as collecting various kinds of information
intended for capacity planning, monitoring, optimization, etc.

Figure 2.6: NFV architecture [4].

2.1.2.2 NFV Platforms

Now that NFV has been introduced, platforms where one can run virtualization services will
be discussed. As with the SDN controllers, there are also several platforms available to run
virtualization services. Two of them will be briefly discussed here: OpenStack and OpenVIM.
OpenStack because it is, probably, the most popular one of these platforms, and, OpenVIM
because it is the software chosen in this dissertation.

OpenStack Created in 2010 by the joint effort of NASA and Rackspace, who based this project
on their previous work: NASA had a compute project which ended up being Nova, and Rackspace
had a Cloud files project which ended up being Swift[23]. Nowadays, developed by the Open-
Stack Foundation, founded in 2012, OpenStack is an open-source Infrastructure-as-a-Service (IaaS)
Cloud Computing software.

OpenStack software controls large pools of compute, storage, and, networking resources in
the NFVI on a datacenter. It is comprised of multiple projects or modules developed semi-
independently, each performing his part on a Cloud Computing service.

Figure 2.7 presents a logical architecture of OpenStack, where it is possible to see the common
integrated services within OpenStack and how they interact with each other[24].

11



Figure 2.7: Openstack logical architecture [5].

• Dashboard, or Horizon, is a web application providing an User Interface (UI) where users
can interact with the OpenStack framework. It can be used to implement most of the
services, interacting with them through specific APIs;

• Object Store, or Swift, is a reliable, distributed object/blob store, which permits users to
store and retrieve files;

• Image Service, or Glance, is a system for discovering, registering, and retrieving VM
images, providing an efficient way to boot VMs. It can be configured to use Swift or a local
file system as storage;

• Compute, or Nova, provides management and provision of VMs, or virtual servers, after
interaction with the available hypervisors, giving a platform for Cloud management through
its APIs;

• Block Storage, Cinder, provides persistent volumes to guest VMs, which are then managed
by Nova. It is Cinder that allows through its API to manipulate volumes, volume types and
volume snapshots;

• Networking, or Neutron, provides network connectivity as a service managed by other
services (e.g., Nova). It also provides tasks that enable the deployment of VMs (e.g., Dynamic
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Host Configuration Protocol (DHCP), Virtual Local Area Networks (VLANs), Domain Name
System (DNS), etc.);

• Identity Service, or Keystone, provides authentication and authorization policy services
applying them to users and services interactions.

OpenVIM Openvim6 was originally an open source project providing a practical implementa-
tion of an ETSI MANO stack, where OpenVIM was the VIM implementation directly interfacing
with the compute nodes and storage in the NFVI, and an OpenFlow controller. Nowadays, the
project has contributed to the open source community project Open Source MANO (OSM)7,
hosted by ETSI, and is currently being maintained by OSM where it is currently on the third
release[25].

OpenVIM has a simple architecture displayed in figure 2.8. It possesses 5 modes in which it
can be used, these 5 modes are shown on table 2.1. The "normal" mode is the default mode, where
the OpenFlow controller, switches and real hosts are needed. The "test" mode is used for testing
the HTTP API and the database without connection to the host or to the OpenFlow controller.
The "host only" mode is used when neither the OpenFlow controller nor the OpenFlow switch are
provided, and, dataplane networks must be done manually (no Single-root input/output virtual-
ization (SRIOV) connections, SR-IOV is a specification that makes a single Peripheral Component
Interconnect Express (PCIe) physical device under a single root port to appear to be multiple sep-
arate physical devices to the hypervisor or the guest Operating System (OS)). The "OF only"
mode is used to test new OpenFlow controllers support, no real VM deployments will be done, but
the OpenFlow Controller will be used as in "normal" mode. Finally, the "develop" mode forces a
Cloud-type deployment, where a bridge network instead of a real OpenFlow controller/dataplane
networks is used, normal memory instead of hugepages is used, and, no CPU pinning is used, in
other words, no Enhanced Placement Awareness (EPA) (EPA facilitates better informed decision
making related to VM placement resulting in better performance and efficiency).

Mode Compute Hosts OpenFlow Controller Note

Test Fake X No real deployment. Just for API test.

Normal Needed Needed Normal behaviour.

Host Only Needed X No PT/SRIOV connections.

Develop Needed X Force to Cloud type deployment without EPA.

OF Only Fake Needed To test OpenFlow controller without need of compute hosts.

Table 2.1: Modes available in OpenVIM.

OpenVIM has a REST based northbound API alongside its main service (openvimd), which is
responsible for maintaining the VMs, images and networks. Every functionality in this server has
its own thread (HTTP Server, DHCP Controller, OpenFlow Controller, Database Management,
and, Host). OpenVIM delegates the provision of the virtualization infrastructure to the host/com-
pute node, therefore, each host needs to run libvirt and KVM8. When a compute node is added to

6https://github.com/nfvlabs/openvim
7https://osm.etsi.org
8https://www.linux-kvm.org/page/Main_Page
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OpenVIM a Secure Shell (SSH) channel is created between the compute node and a host thread
from OpenVIM for communication.

OpenVIM supports three OpenFlow controllers: Floodlight, ONOS, and, OpenDaylight. For
overlay network management OpenVIM offers two options, precreated bridges at compute nodes
which possess L2 connectivity simply named "bridge" or an OpenvSwitch (OvS) VXLAN tunnel
named "ovs". If the first is chosen, then an external DHCP server needs to be provided for the
management network, if it is the second that is chosen, then, OpenVIM launches a DHCP server
in the OVS controller.

Figure 2.8: OpenVIM logical architecture [6].

2.1.3 Cloud Computing

According to [26], Cloud Computing is a blueprint for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing resources. This access can
be rapidly provisioned and released with minimal management effort or service provider interac-
tion. This blueprint is comprised of five essential characteristics, three service models, and four
deployment models.

The five characteristics are:

• On-demand self-service: Computing capabilities can be unilaterally provisioned as needed
by a consumer without requiring human interaction.

• Broad network access: Capabilities need to be available through the network and acces-
sible through standard mechanisms.

• Resource pooling: The provider’s computing resources are combined to serve a number
of consumers using a multi-tenant model. Although, the consumer normally has no control
or knowledge of the precise location of the provided resources, the consumer may be able to
determine location at a higher level (e.g., country, state, or datacenter).
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• Rapid elasticity: Capabilities can be scaled (provisioned and released) at any time.

• Measure service: Resources must be metered so that Cloud Computing systems can au-
tomatically control and optimize resource usage.

The service models determine the abstraction level that the shared resources are made available.
Software-as-a-Service (SaaS) has the resources presented as an end-application, Platform-as-a-
Service (PaaS) the consumer does not manage or control the underlying infrastructure, but has
control over the deployed applications, finally, in IaaS the consumer is provisioned with computing
resources where the consumer is able to deploy and run arbitrary software.

Lastly, the deployment models are the "private cloud", where the infrastructure is provisioned
for the exclusive use by a single organization, the "community cloud", which is similar to the private
Cloud, but is provisioned to several organizations that have shared concerns, the "public cloud",
where the infrastructure is provisioned for open use by the general public and the "hybrid cloud",
which is a composition of two or more Cloud Computing infrastructures, but are tied together by
standardized or proprietary technology that enables migration of data and applications.

2.1.4 Edge Computing

Edge Computing stemmed due to the inefficient support from the Cloud Computing to some
applications who required faster response times. Cloud Computing with its efficient, faster compu-
tation times due to the more powerful devices present in the datacenter is still an answer, however,
data processing speed evolved, whilst, the bandwidth of a network came to stagnation and with
more data generated at the edge, due to the growth of IoT, speed of data transportation became
the bottleneck for the Cloud paradigm[11]. If data needs to be processed fast, the Cloud is an
attractive idea, but, the response time would be too long, therefore, the data has to be processed
at the edge to lower the response time and the network pressure. With IoT, attempting to connect
everything together, the number of devices connecting to the Internet is growing as well, therefore,
raw data production will grow to a phase where normal Cloud Computing will not be sufficient,
and/or the bandwidth and resource usage would be to large[11]. The change from data consumer
to "prosumer" (i.e., both producer and consumer) by the end devices also supports the need for
another paradigm to exist before the Cloud. Thus, Edge Computing proposes the enabling of
technologies to let computation be done closer to the end devices on behalf of the Cloud[11].
This way, response time can be lowered, important for time-restricted applications, which, need-
ing lower latency felt the centralization of the data processing the most, and bandwidth on the
datacenters can be alleviated by performing the processing closer to the devices. Inside this new
paradigm, more specific ones appeared, like Fog Computing and MEC.

Fog Computing extends the Cloud Computing to the edge of the network. Ever since the rise of
IoT there was a need of a new platform that better suited the needs of such deployments. As [27]
stated, some motivating examples for a new Fog Computing architecture are edge location, location
awareness, low latency, geographical distribution, large-scale sensor networks, very large number of
nodes, support for mobility, real-time interactions, predominance of wireless access, heterogeneity,
interoperability and federation and support for on-line analytic and interplay with the Cloud.
By distributing small clusters of servers with limited computation and storage resources, the
distribution of Fog Computing throughout the Edge is achieved. These clusters range from a
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single SBC (e.g., a RPi), to a cluster of RPis, a laptop, or even, a home server depending on the
requirements[28]. Fog Computing is not only located at the edge, unlike Cloud Computing, which
is more centralized, Fog Computing targets the services and applications with widely distributed
deployments, like mobile nodes[29].

MEC can provide Cloud Computing capabilities at the edge of Radio Access Network (RAN)
in close proximity to mobile users. It is currently being standardized by an ETSI ISG. Introduced
in order to try to reduce the distance between the Cloud and the user, which hinders latency and
therefore, response time, MEC is built on a virtualized platform and enables applications running
at the edge and by giving RANs strong computing capabilities, intends to reduce latency, guar-
antee efficient network operation and service delivery, and provide an improved user experience.
Therefore, MEC is characterized by low latency, proximity, high bandwidth and real-time insight
into radio network information and location awareness, enabling the evolution to 5G, so the mobile
network can be transformed into a programmable world[30].

Both Fog Computing and Multi-access Edge Computing are inserted within Mobile Edge Net-
works and although these two architectures are similar, there are some differences between them
[31]. On one hand, Fog Computing intends to leverage Cloud Computing and Edge Computing
architectures to enable end-to-end IoT scenarios, and as stated before, is driven from an IoT per-
spective to give distributed Cloud Computing to IoT, is an extension of the Cloud, but requires
distributed computing and storage to accommodate the numerous devices present in an IoT sce-
nario. It also requires near real time interaction and efficient communication between different
edge nodes, and is located between devices and a datacenter. On the other hand, Multi-access
Edge Computing intends to provide IT and Cloud Computing capabilities withing the RAN. It
creates architecture framework and standards for APIs located at the edge, does not need to be
an extension of Cloud Computing and it focuses more on enabling applications that need low
latency. It does not need the same amount of efficiency and real time interaction as nodes in
Fog Computing, since the mobility is mainly consisted of disassociating from one edge node and
associating with a new one.

2.2 Existing Experimental Works

There have been some active research made on resource-constrained devices, be it tests on
general Central Processing Unit (CPU) performance, energy efficiency, etc., of SBCs, or in the
developing fields of SDN and NFV for simple economic testbeds. Some research has, also, been
made more specifically on Edge or Fog Computing scenarios, where, resource-constrained devices
thrive.

2.2.1 Tests on Single-Board Computers

In [7] and [32], Kaup, Fabian, et al. evaluate the forwarding and computing performance of
several SBCs over the last years and then derive models for performance and energy cost extending
on previous studies done in [33]. The SBCs under analysis are Raspberry Pi 2 and 3, Odroid C1
and C2 and Cubieboard3 and a schematic of the power measurements is shown in figure 2.9. In
the end, the authors are able to derive models mapping the system utilization to power, therefore,
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providing a method of calculating the power consumption of live systems providing VNFs at end-
user premises. These experiments showcase one of the main strengths about SBCs, its power
consumption, which, on this dissertation will also be calculated to gain a better understanding of
the difference in power consumption between a SBC and a normal laptop running NFV services.
The methods for power measurements differ between these experiments and this dissertation, as
the power in the experiments is measured with the help of the USB dongles on the RPi, while, in
this dissertation the power is calculated by measuring the current flowing from the outlet to the
RPi’s power source (section 4.3).

Figure 2.9: Overview of the power and measurement setup [7].

In [34], the author analyzes the deployment requirements of IoT gateways and evaluates con-
tainerized deployment with linux containers as a potential approach addressing them. Comparing
two models of Raspberry Pi, RPi model B+ and RPi 2 model B, the author runs synthetic
benchmarks for CPU, memory, disk, network, and Input/Output (I/O) performance and then
application benchmarks for throughput and latency in order to isolate and understand the over-
head introduced by the linux containers and Docker9. The results of the synthetic benchmarks
show that the only relevant performance overhead introduced by Docker was found in the network
I/O tests due to Network Address Translation (NAT), resulting on a performance degradation on
the RPi B+. Additionally, the results of the application benchmarks indicate that using linux
containers and Docker on the RPi B+ result in a significant performance degradation, supporting
the results of synthetic benchmarks, and that NAT is not the only cause of performance decrease
since disabling it did not allow to reach the performance of the native hardware. On the other
hand, the RPi 2 showed more promising results, since, even though using Docker results in a
measurable overhead in some occasions, the results are predictable and disabling NAT allows to
reach performance comparable to the native hardware.

Analyzing the performance of the container (Docker) approach compared to a hypervisor-
based virtualization (KVM) when running on devices typically used at the network edge, the
authors in [35] run benchmarks on a Cubieboard2 to measure CPU, memory, disk I/O, and
network I/O performance. First, a native (non-virtualized) performance was used as a base case
to compute the virtualization overhead of both solutions. After running all the benchmarks stated
previously, the results showed a better performance overall of Docker containers compared to

9https://www.docker.com
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hypervisor virtual machines. In CPU benchmarks, Docker showed comparable results to native
performance while KVM introduced relevant overhead. The disk benchmarks showed, once more,
that native and container-based performances are similar, and KVM was significantly worse. In
terms of memory benchmarks, although the difference between the results were small, Docker still
outperformed KVM in every situation when compared to the native execution. Finally, the network
benchmarks revealed that virtualized platforms were not as responsive as the native one, where
Docker introduced a considerable overhead and KVM introduced an even higher one, concluding
that while the hypervisor-based solution displayed a relevant overhead, the results of Docker were
promising.

Both these articles test NFV scenarios in SBC devices, which, are of interest for this disser-
tation, as it compares the implementation of container-based virtualization and hypervisor-based
virtualization. The implementation chosen on this dissertation was the hypervisor-based resorting
to KVM and libvirt, which are the used by the software chosen.

2.2.2 Single-Board Computers as testbeds for SDN/NFV

Over the last few years researchers have utilized the low cost advantage of SBC to perform
tests of technologies like SDN and NFV.

For example, in [36] the authors implement a realtime testbed for Software Defined Wireless
Networks (SDWN) by using RPi as OpenFlow Switches. In order to provide an inexpensive and
easy to implement testbed, OpenFlow switches are obtained by using RPi withWiFi dongles, where
the software stack is based on OpenWRT10 and OvS11 is installed. A SDN controller is needed,
in which OpenDaylight was used, furthermore, a traffic aware routing algorithm is implemented
as a northbound service application in order to test and configure the tested environment.

Another one can be found in [8], where a SDN testbed with OvS based on RPi is implemented.
In order to make a suitable testbed for evaluating small-scale SDN, the authors suggest a simple
and cost-effective testbed using RPis. The testbed includes three network devices, the SDN
controller, the SDN switch, and the host device, as shown in figure 2.10. For the SDN controller
Floodlight is used while OvS is used on the switch device to create virtual interfaces, since the 1
Gbps Ethernet interface is not sufficient to process multiple connections individually. Afterwards,
the maximum throughput is evaluated for different Maximum Segment Sizes (MSSs) where the
testbed compared to the 1 Gbps net-FPGA showed similar results.

10https://openwrt.org
11https://www.openvswitch.org
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Figure 2.10: Network design of the Raspberry Pi based SDN testbed [8].

Similarly, in [9], the authors developed an OpenFlow testbed named Pi Stack Switch, where
the Pi Stack Switch consists of four RPis installed with OvS. The reason these devices are tied is
to expand the ethernet ports. The network architecture can be found in figure 2.11. To evaluate
this testbed the topology change latency is measured, which is calculated by the sum of the link-
up latency and link-down latency. The results showed that the network administrator recognized
topology changes in less than one second.

Figure 2.11: Network architecture of Pi Stack Switch [9].

Finally, in [37] and [38], RPis are used to create to build a cluster, which then is used in a
testbed for Cloud Computing research.

All these testbeds showcase the ability to use SDN technology on SBCs, which, there is the pos-
sibility to implement in this dissertation with the software chosen offering various SDN controllers
to implement.
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2.2.3 Experiments on edge scenarios

Kempen, Alexandre et al., presented in [10] the design and implementation of MEC-ConPaaS,
a mobile-edge Cloud platform, which aimed to support future research on edge Cloud applications.
With the objective of creating an open-source mobile edge Cloud implementation which can be
deployed over a campus or a city center to support real-word implementations, the authors claim
that an easier way to deploy an experimental MEC testbed is to rely on SBC such as RPis and
similar devices [10].

Figure 2.12: Geographical distribution of a MEC-ConPaaS deployment [10].

MEC-ConPaaS is a mobile edge Cloud platform designed to be physically deployed across a
city or campus-sized geographical area, as shown in figure 2.12, and to execute single-user and
multi-user edge applications where proximity between the Cloud Computing instances and their
end users is important. Any system node acts both as an access point and a Cloud Computing
server: every node has a Wi-Fi interface to which client nodes can connect, while, at the same
time, a virtualized infrastructure run by the sames nodes can deploy applications in immediate
proximity to the end users. A traditional server controls the system while acting as the entry
point of the system.

Figure 2.13: System architecture of MEC-ConPaaS [10].
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The system’s architecture, represented in figure 2.13, features multiple layers. The hardware
layer is composed of SBCs such as Raspberry Pis, these devices are equipped with wifi interfaces
to directly communicate with users at the edge. A wired backbone network, or the leverage of
the RPi’s wifi interfaces ensures the interconnection between the devices. To provide elasticity
and fault tolerance, applications are deployed inside a virtualized environment (Linux Contain-
ers (LXC)) hosted on the same single-board devices. These containers are orchestrated with
OpenStack, while the ConPaaS layer eases the deployment of actual elastic applications.

Afterwards, the authors test the hardware to show that it is suitable enough to support Cloud
Computing applications, describe the middleware layer and compare performances between the
raspberries and a HP 820 G2 laptop concluding that the very fast development of other brands of
single-board devices suggest that future generations of single-board computers will deliver better
performance, while retaining similar cost, volume, and power consumption as the devices available
nowadays [10]. This edge scenario differs from the scenario in this dissertation, since this is a
MEC scenario, while this dissertation is aimed towards Fog Computing scenarios, but there are
still similarities in the use of SBCs and NFV infrastructures.

In [39], the authors present a solution for slicing WLAN infrastructures, aiming to provide
differentiated services on top of the same substrate through customized, isolated and independent
digital building blocks. The authors then present a proof of concept realized over a real testbed
and evaluate its feasibility, where they extend the capacity of a standard WLAN Access Point
(AP) commonly used by Internet Service Providers (ISPs) (TP-Link) by attaching it to a SBC
(Raspberry Pi). For the proof of concept evaluation, a network function responsible for enforcing
bandwidth limits for two slices is implemented, one configured with 5 Mbps while the other was
configured with 45 Mbps. Two virtual APs were set at the TP-Link to allow each client to connect
to a different network, each one serving a different slice, while all the traffic arriving at the APs
wireless interface was redirected to the VNF at the SBC where it was shaped before reaching the
AP’s WAN port. Afterwards, a performance evaluation was executed in order to perceive how the
resource-constrained Fog node performed in the face of an increasing number of instantiated VNFs
and a straightforward performance evaluation was also done in order to have a comparison between
the Fog system and the Cloud. Finally, results showed that in the proof of concept evaluation the
throughput values stayed within the limits of each slice. In the performance evaluation, results
showed that the processing element can handle the same data rate for up to six chained VNFs,
while the average delay of the Cloud was higher than the average delay of the Fog system. Being
implemented on a Fog Computing scenario, this research utilizes slices to offer network services,
where in this dissertation slices are not used, only possible VNFs can be provided.

The authors in [40] present a Fog-oriented framework for IoT applications based on the Kura
framework and Docker-based containerization over resource-constrained RPi devices. The authors
use Kura, an open-source framework for IoT applications, which provides a platform for building
IoT gateways. After detecting some relevant weakness in the Kura architecture for Fog Comput-
ing exploitation, the authors add relevant extensions to nullify these weakness. These extensions
consist on adding a Message Queuing Telemetry Transport (MQTT) broker on each gateway to
collect sensed information at the gateway side, and, enabling cluster/mesh topologies for Kura
gateways. In order to create Fog nodes on-the-fly, the authors resort to containerization-based
virtualization by using Docker to create container-based applications/services. Afterwards, the
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authors tested a primary implementation to quantitatively analyze the scalability of the approach
and its overhead on different filesystems available to Docker, which according to the authors, the
performance was dependent on. The filesystems tested were AUFS, Device-mapper, and, Over-
layFS, and the measurements made on the first test were the overhead on container start, I/O
operations, CPU operations, and, total execution and on the second test, the execution time over
multiple containers. The results show, for test one, that AUFS and OverlayFS have comparable
results while Device-mapper had the worst performance, for test 2, AUFS and OverlayFS, again,
outperform Device-mapper showing a linear dependency of execution time on the number of con-
currently running containers. Finally, the authors conclude that the results for the scalability of
multiple container execution on resource-constrained nodes are encouraging for further activities
in the field and talk about some future work on this project. This work, whilst differing on the sce-
nario, more directed towards IoT applications and tools used, Docker-based over hypervisor-based,
showcases a scenario in Fog Computing, paradigm in which this dissertation is inserted.

In [6], the authors study the evolution of the edge computing by focusing on the compo-
nent managing the resources, in other words, the VIM. By measuring the time overhead created
when requests for VM provisioning and deprovisioning were sent and completed, the authors com-
pare two different solutions, OpenStack and OpenVIM. This time overhead is measured using
CloudBench and the test environment were implemented on a single host with the following con-
figuration: Intel(R) Xeon(R) CPU E5-2623 v4 @ 2.60GHz with 32GB memory and 4TB storage
and Ubuntu 16.04.1 Server operating system with KVM-enabled 4.4.0-31-generic Linux kernel[6].
After performing the tests, OpenVIM shows a better performance in all tests when compared to
OpenStack, giving it advantage to resource-constrained enviroments, however, the authors con-
clude that OpenVIM lacks support and development from the community, as well as, lacking some
important functionalities (e.g., authentication and security) and, with that, the authors eventually
preferred OpenStack as the better choice. This work is similar to the work done in this dissertation,
since NFV services are implemented using the same solution (OpenVIM), except in this work two
different solutions doing the same implementation are compared and the hardware used for the
virtualization services is a powerful computer and not a resource-constrained device, while in this
dissertation the virtualization services are instantiated on resource-constrained devices, therefore,
the comparison is done between hardware, a SBC and a laptop.

2.3 Chapter Overview

This chapter explained some important concepts discussed over this dissertation, these concepts
being the technologies that galvanized the field (SDN and NFV), as well as, some of the paradigms
that were born due to these technologies (Cloud computing, Edge computing, Fog computing, and,
MEC), some platforms that implement these technologies are also addressed (SDN controllers and
NFV solutions). Afterwards, a look into some tools that have been developed is taken, where it
can be seen that resource-constrained devices have been used in a wide range of manners, where
in some applications a small-cost device is required just to prove some sort of concept in which
the device itself is not important (e.g., some testbeds) and others, where the object of the study
is the device itself by seeing how can a concept be implemented (e.g., edge scenarios) in these sort
of devices or how well theses devices fare against more powerful ones (e.g., tests on SBCs).
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Chapter 3

Framework and Implementation

In this chapter, a framework is proposed to tackle the problem addressed by this dissertation.
Furthermore, the actual implementation of the framework is presented and what compromises
were made to accommodate the implementation.

3.1 Framework

3.1.1 Problem Statement

Currently, technologies such as SDN and NFV have been focusing more towards the infras-
tructure and the datacenter scenes. However, with paradigms such as Fog Computing growing in
popularity, programs that realize functions such as, for example, a VIM, are not available or easy
to implement in environments where low-power computing devices operate. Since such software
was designed to accommodate the general use of what the demand of the community was, they
ended up being too powerful to run in scenarios where low-power computing devices exist.

3.1.2 Solution

This dissertation aims to modify a lightweight VIM to be capable of running in scenarios
where resource-constrained devices operate and then compare its performance to a more powerful
implementation. This lightweight VIM will be able to be used in scenarios incorporated in Fog
Computing, IoT, and others. An use case, at the moment, would be, for example, in a private
Local Area Network (LAN) a personal laptop or computer running this lightweight VIM and
instantiating VNFs in a single or multiple SBCs such as RPis to perform a needed function. This
use case should be extendable to scenarios where the instantiation of one or more VNFs on one
or more compute nodes, equipped with an ARM processor, occurs.

Having a VIM that was both lightweight and capable of running on ARM processors, as
demanded by RPis, was not available, so an open-source lightweight VIM was modified to fit these
two requirements. As shown in section 2.1.2.2, OpenVIM is a lightweight implementation of an
NFV VIM. Utilizing its open source feature, the source code could now be modified so VMs could
be launched in ARM processors, typical of resource-constrained devices.
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A RPi serves as a compute node to the VIM and, as such, VMs can be instantiated on them.
As mentioned in section 2.1.2.2, OpenVIM provides two options for overlay management network
management: "bridge" and "ovs". The first was chosen, which, then led to the need of an exter-
nal DHCP server for the management network, therefore, Internet Systems Consortium (ISC)’s
DHCP1 was used.

Finally, NAT was configured on instantiated VMs so that the VM could communicate to the
Internet. An overview of the architecture of the solution is displayed in figure 3.1, there it can be
seen the laptop running the modified OpenVIM and possible compute nodes connected to it.

Figure 3.1: Overview of the solution proposed.

3.2 Implementation

In order to implement the solution above, 5 main steps were needed to be completed in order
to launch a VM through OpenVIM on a compute node (RPi).

1. OpenVIM needs to be modified to create VMs in an ARM architecture;

2. Precreate a bridge with L2 connectivity in the compute node (RPi);

3. Create an external DHCP server to provide IP addresses;

4. Create description files for OpenVIM to instantiate a VM;

5. Configure NAT.

During these implementations, the configuration file of OpenVIM (openvimd.cfg) needs to be
updated to avoid errors during the utilization of the program. Some of these updates correspond to:
the DHCP implementation, since it is an external server, OpenVIM needs to know its parameters,
and some others such as the host image path, or the path to SSH’s keyfiles, or the bridge interfaces.

1https://www.isc.org/downloads/dhcp/
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With all the previous steps completed and a compute node added to OpenVIM beforehand
through the command line of the laptop, a VM can finally be instantiated successfully. OpenVIM
creates a SSH channel between the laptop and the RPi and, remotely, instantiates a VM on the
device.

3.2.1 OpenVIM with ARM processors

As stated before, the chosen tool to use as a VIM was OpenVIM, however when it is installed,
OpenVIM does not have the ability to instantiate a VM on an ARM processor, more specifically
on an "aarch64" architecture which is the architecture present on a RPi, only on AMD/Intel
processors or "x86_64" architectures. Therefore, the first step is to change the source code so
that VMs can be instantiated in this architecture. Afterwards, also related to OpenVIM, some
configuration files have to be created to actually instantiate a VM, but this will be covered in
section 3.2.4.

It is important to point out that, at a first glance, such changes may seem trivial. However, un-
til these changes were effectively done and addressed, a thorough and careful analysis of the whole
system of OpenVIM was done. Particularly considering the poor level of the development docu-
mentation, several trial and errors assessments were made, until finally the system was thoroughly
comprehended.

3.2.1.1 Source Code

Before looking into the source files of OpenVIM, the expected change needed in the source code
was where the VM were instantiated, since the code was designed for "x86_64" and not "aarch64",
and after determining the part where the XML code for VM instantiation was generated, simply
changing the architecture was required: <type arch=’aarch64’ machine=’virt-2.9’>hvm</ty

pe>, where arch was previously x86\_64 and <emulator>/usr/bin/qemu-system-aarch64</emu

lator>, which previously was qemu-system-x86\_64.
Simply changing these two lines made OpenVIM capable of launching VMs on a RPi. However,

when instantiating there were errors from the rest of the XML code due to different architectures,
more changes were made to instantiate a VM without errors. An example of the generated XML
code after the changes for a VM instantiation is shown on appendix A1.

These changes were:

• the code where the memory for each VM is calculated. Since OpenVIM was designed
for more powerful devices, the minimum memory designated was 1 GB, however this value
is higher than what the RPi can provide, therefore, it was lowered so that it declared values
lower (e.g., 524288 KB or approximately 524 MB);

• the removal of hugepages. OpenVIM was designed to run with 1 GB hugepages to
optimize memory, but, again, since 1 GB is too much for a RPi, this part of the code was
removed, despite slightly slowing the performance.

• the OS type was changed to <type arch=’aarch64’ machine=’virt-2.9’>hvm</type>,
the arch was mentioned above, the machine was also change to virt-2.9 since the previous
value was unsupported by the architecture/RPi.
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• the option for a loader and nvram were added (<loader readonly=’yes’ type=’pfl

ash’>/usr/share/qemu/aavmf-aarch64-code.bin</loader> and <nvram>/var/lib/libv

irt/qemu/nvram/debian_VARS.fd</nvram>), the first to support an UEFI image, the other
to store variables for the UEFI firmware.

• the CPU mode to <cpu mode=’host-passthrough’>. . . , since the previous mode was not
supported by the hypervisor for a domain on aarch64.

• the model type for the video device was changed to <model type=’virtio’/> due to
not being supported as well.

• and the ROM file was specified to none (<rom file=’’/>), since there was no definition
before, and it lead to an error during boot due to the ROM file not being found.

The rest of the XML is the same as the original code generates. The rest of the unchanged options
on the XML are described briefly below:

• the VCPU option defines the number of virtual CPUs allocated to the VM, and the cputune
option tunes this allocation. This is generated by the code according to the description file
of the VM to be created;

• the NUMA option is to provide details for the performance of a NUMA host. This is generated
by the code according to the description file of the VM to be created;

• the features are options that hypervisors accept. The features added correspond to phys-
ical address extension (pae), power management (acpi), and, usage of programmable IRQ
management (apic);

• the clock option is to define the VM time, the option ’utc’ synchronizes to UTC;

• the poweroff, restart, and, crash are options to specify what the VM should do when
these events happen;

• the rest of the options are to define devices provided to the VM:

– the serial and console, are used to define a serial and console communication between
the host and the VM;

– the disk is used to declare the disk configuration, in this case, is the image chosen,
therefore, these values come from the description file for the image provided to the VM;

– the interface is used to declare the network configuration, in this case, the network
interface (bridge) used to host the VM, the configuration comes from the description
file of the network provided to the VM.

3.2.2 Bridge

As stated before, a precreated bridge at the computed node had to be created beforehand.
The hardware used during this implementation was a RPi installed with openSUSE (table 4.1),
therefore, openSUSE offers two methods to create a bridge: through the command line terminal,
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or through a Graphical User Interface (GUI) supplied by YaST. Despite which method is utilized
the important part is that the bridge ends up correctly set up. First, a VLAN of the ethernet
interface was created, and then, the bridge itself was created. This resulted in two configuration
files called ifcfg-vlan9 and ifcfg-br0, respectively, these configurations files are shown below:

ifcfg-vlan9:

BOOTPROTO=’none’

BROADCAST=’’

ETHERDEVICE=’eth0’

ETHTOOL_OPTIONS=’’

IPADDR=’’

MTU=’’

NAME=’’

NETMASK=’’

NETWORK=’’

PREFIXLEN=’’

REMOTE_IPADDR=’’

STARTMODE=’auto’

VLAN_ID=’9’

The only important parameters are the ones filled, in this case, the VLAN number (VLAN_ID),
the interface of the VLAN (etherdevice), the startmode, so that the VLAN starts automati-
cally, and no protocol is used to give an address to the vlan due to being connected to a bridge
(BOOTPROTO=’none’).

ifcfg-br0:

BOOTPROTO=’static’

BRIDGE=’yes’

BRIDGE_FORWARDDELAY=’0’

BRIDGE_PORTS=’vlan9’

BRIDGE_STP=’off’

BROADCAST=’’

ETHTOOL_OPTIONS=’’

IPADDR=’10.210.0.1/24’

MTU=’’

NAME=’’

NETWORK=’’

GATEWAY=’10.210.0.1’

DNS1=’193.136.92.73’

DNS2=’193.136.92.74’

REMOTE_IPADDR=’’
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STARTMODE=’auto’

Once again, the important parameters are the ones filled.

• the BOOTPROTO is now static, because the IP address is given statically;

• the bridge, forward_delay, ports, and, stp declare whether this interface is a bridge and
its delay, ports, and whether the Spanning Tree Protocol (STP) is activated or not;

• the ipaddr specifies the IP address and the mask for the bridge interface network;

• the gateway specifies the gateway of this network;

• the dns specifies the DNS, this is an optional parameter, but it was used since the VM was
having Internet connection problems;

• the startmode is once again set to auto to start automatically.

3.2.3 DHCP

The bridge configuration led to the creation of an external DHCP server, the service used
ended up being ISC’s DHCP. To configure a DHCP server, the dhcpd.conf file needs to be edited
to declare the configurations of said server. The parameters should be consistent with the previous
configurations. An example of a configuration can be found below:

option broadcast-address 10.210.0.255;

option subnet-mask 255.255.255.0;

option domain-name-servers 193.136.92.73, 193.136.92.74;

option routers 10.210.0.1;

subnet 10.210.0.0 netmask 255.255.255.0 {

range 10.210.0.4 10.210.0.254;

}

The parameters, respectively, represent the IP address used for broadcast, the mask of the
network, the DNS addresses, the gateway, the network and mask, and, the range of IPs available
for the DHCP server to give. Afterwards, a script is created on the compute node (RPi) on a
directory accessible from PATH, so that, OpenVIM can retrieve the IP address leased from the
DHCP server.

#!/bin/bash

awk ’

($1=="lease" && $3=="{"){ lease=$2; active="no"; found="no" }

($1=="binding" && $2=="state" && $3=="active;"){ active="yes" }

($1=="hardware" && $2=="ethernet" && $3==tolower("’$1’;")){ found="yes" }

($1=="client-hostname"){ name=$2 }

($1=="}"){ if (active=="yes" && found=="yes"){ target_lease=lease; target_name=

name}}

END{printf("%s", target_lease)} #print target_name

’ /var/lib/dhcp/db/dhcpd.leases
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3.2.4 Description Files

OpenVIM accepts two languages for this kind of files, JSON and YAML, and both languages
can define the same parameters.

3.2.4.1 Compute Node

This file will describe the RPi that will be added to OpenVIM as a compute node to have VMs
instantiated on it. An example of a JSON file can be found on Appendix A2.

The parameters are:

• ip_name, which is the IP address of the compute node;

• user, which is the username to which OpenVIM will SSH into to create the VM;

• numa description, that has the number of cores, interfaces (e.g., data plane interfaces) and
memory available to implement VMs, in other words, the resources available in the host;

• ranking, which symbolizes how powerful the host’s processor is, in this case it was given the
lowest value of 100;

• name, which is the name of host, that can be used instead of its ID given by OpenVIM upon
being added to the database.

3.2.4.2 Flavour

A flavour defines the compute, memory, network, and storage capacity of an instance. An
example of a YAML file can be found on Appendix A3. It is noteworthy, that, some of the
descriptions on this file can be overwritten with other files later implemented.

3.2.4.3 Image

The image is the file which the VM will be run in. OpenVIM provides two methods to deliver an
image to a VM, either the image is provided locally on a directory on the RPi or an URL link to the
image is provided and the image is then downloaded during the VM instantiation. Two examples
for each method can be found on Appendices A4 and A5, respectively. The implementation is
similar between both, where the variable "path" either receives an URL or a directory path to an
image file. The metadata provided on this file is optional, meaning its not necessary for the image
to be added to the OpenVIM database.

3.2.4.4 Network

The network also needs to be described, this file was created after the Bridge and DHCP con-
figuration, so that all parameters could be filled correctly. As stated before the method for overlay
management network chosen was the "bridge" method, which differs from the "ovs" method. A
sample code for a network YAML file can be found on appendix A6. In this file:

• name defines the name of the network, which can be used instead of the ID of the network
given after being added to the database;
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• type defines the type of network, there are four options: two for data plane networks, and
two for control plane networks;

• shared defines if the network is external or not, in other words, if there is more than one
tenant, whether all of them can use the network or not;

• cidr defines the IP of the network;

• enable_dhcp defines whether DHCP is needed or not;

• dhcp first and last ip defines the range of IPs of the DHCP server;

• provider defines which interface is providing this network, in this case, a bridge named br0;

• dns defines the DNS addresses for the VMs.

• routes defines the default route for the instantiated VMs.

3.2.4.5 Virtual Machine/Server

Finally, the file description for implementation of a VM or, as OpenVIM names it, server is
created. Once again, an example can be found on Appendix A7. In this file:

• hostId defines the host where the VM will be instantiated, although, this is an optional
parameter, since OpenVIM automatically searches available hosts to implement the VM that
can accommodate the VM requirements, nevertheless a declaration overwrites this search.

• name defines the name of the VM, which can be used instead of the ID given by OpenVIM
after being added to the database;

• imageRef defines the image to be used for the VM;

• flavorRef defines the flavour to be used for the VM;

• start defines whether the VM should be started upon being added to OpenVIM or not,
other options include ’no’, where only the resources for the VM are reserved, and ’pause’,
where the resources for the VM are reserved and the VM is launched on pause mode;

• extended defines parameters for the VM like the number of cores allocated, the interfaces,
and the memory. Some of these parameters can overwrite the definitions declared previously
on the flavour description;

• networks defines the networks where the VM is instantiated.

3.2.5 NAT

To enable NAT for VMs to be able to connect to the Internet, IPv4 forwarding needs to be en-
abled and then, the bridge and its interfaces need to be added to the firewall so that these interfaces
can be masqueraded by the firewall and traffic prerouted and forwarded to them. In openSUSE,
these changes can be made in the YaST’s GUI or directly in the firewall configuration file located in
/etc/sysconfig/SuSEfirewall2 and IPv4 forwarding can be enabled by typing in the command
line terminal: sysctl -w net.ipv4.ip_forward=1 or echo 1 > /proc/sys/net/ipv4/ip_forw

ard.
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3.3 Chapter Overview

In this chapter, the problem that this dissertation attempted to solve is stated, as well as,
a solution to said problem, which corresponds to the lack of programs to implement functions
needed in Fog Computing environments like a VIM. Therefore, this work attempts to modify an
already lightweight VIM, OpenVIM, to function in resource-constrained environments, which are
characterized by the usage of SBCs like RPis which use ARM processors.

In the second part of the chapter, since OpenVIM was not designed to run in this architecture,
changes to the source code made to accommodate the new architecture and to implement VMs
in these scenarios are explained. Afterwards, the various implementations made are described, in
order for OpenVIM to instantiate a VM on a compute node (RPi). This second part results from a
thorough assessment of the underlying operation mechanisms from OpenVIM which, due to poor
documentation, required deep analysis of the source code for its comprehension.
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Chapter 4

Results and Analysis

In order to have an idea of how a VM performs in a low-resources environment, some tests
were realized to get some quantifiable results. The tests realized were CPU benchmarks on a RPi,
along with the time needed for a instantiated VM to perform a ping to another computer on the
network and the Internet. Finally, the power consumption of a RPi was measured during a VM
instantiation. All these tests were performed on a laptop to serve as reference for comparison with
the RPi.

4.1 Performance Benchmarks

The CPU performance benchmarks were realized on a laptop computer for reference against
a Raspberry Pi 3 Model B using the Phoronix Test Suite1 software. The specifications of the
Devices under tests (DUTs) can be found in table 4.1. The chosen tests were two versions of
the SciMark2, the ANSI C version and the Java version, which are benchmarks for scientific
and numerical computing developed by programmers at the National Institute of Standards and
Technology (NIST), comprised of[41]:

• Fast Fourier Transform (FFT) where a 1D forward transform of complex numbers is
performed.

• Jacobi Successive Over-relaxation where an algorithm assigns each cell with the average
weight of its four nearest neighbours.

• Monte Carlo where the value of Pi is estimated by approximating the area of a circle.

• Sparse Matrix Multiply computes a matrix-vector multiply with a sparse matrix held in
compress row format.

• dense LU matrix factorization calculates the LU factorization using partial pivoting.

• Composite where more than one of the previous tests is run.

The Phoronix Test Suite software offers the option of comparing benchmarks performances
against other people’s benchmarks that are posted on their website2, however, this feature will

1https://www.phoronix-test-suite.com
2https://openbenchmarking.org
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not be utilized since both the reference device and the device under scope of this test are available
to be tested directly.

Dell Inspiron 3251 Raspberry Pi 3 Model B Raspberry Pi 3 Model B VM
Machine Type Laptop Single-board Single-board

Operating System Ubuntu 16.04 openSUSE 42.3 Debian 9.5
Kernel 4.15.0-36-generic (x86_64) 4.4.155-68-default (aarch64) 4.9.0-7-arm64 (aarch64)

CPU Intel Core i5-3337U @
1.80 GHz (2 Cores)

Quad Core 1.2 GHz Broadcom
BCM2837 64bit VM

Memory 2 GB 1 GB 512 MB
Network 1 Gbps 100 Mbps 100 Mbps
Storage 150 GB HDD Drive 16 GB microSD card 2 GB QEMU HDD

Table 4.1: Hardware specifications of the DUTs.

The two tests were ran several times in order to obtain 10 samples and calculate the mean and
the standard deviation. The benchmarks were ran, firstly, on a laptop as referred above, then on
a RPi and finally, on a VM instantiated on the RPi to first see the differences between a normal
laptop and a SBC, in this case a RPi, and then to see the differences between the performance of a
normal RPi and its VM. The results are displayed on tables 4.2 and 4.3 and then on bar graphics
on figures 4.1 and 4.2. The results are given in Floating Point Operations per Second (flops) and
despite the software in some cases giving a higher number of decimal digits all the results were
rounded up to 2 decimal digits.

PC - Ubuntu RPi - openSUSE RPi - Debian (VM)
Composite 368.90 ± 7.85 Mflops 23.67 ± 2.98 Mflops 24.98 ± 2.56 Mflops

Monte Carlo 86.29 ± 1.19 Mflops 10.60 ± 0.64 Mflops 11.83 ± 1.64 Mflops

Fast Fourier
Transform 94.75 ± 3.21 Mflops 10.16 ± 1.06 Mflops 9.37 ± 1.03 Mflops

Sparse Matrix
Multiply 390.00 ± 13.00 Mflops 21.65 ± 3.79 Mflops 21.33 ± 4.00 Mflops

Dense LU Matrix
Factorization 515.65 ± 13.38 Mflops 32.80 ± 5.14 Mflops 31.26 ± 3.28 Mflops

Jacobi Successive
Over-Relaxation 757.07 ± 12.58 Mflops 44.49 ± 7.96 Mflops 50.70 ± 7.68 Mflops

Table 4.2: C-SciMark2 benchmarks results for the different devices.

34



PC - Ubuntu RPi - openSUSE RPi - Debian (VM)
Composite 1342.71 ± 6.42 Mflops 84.40 ± 6.92 Mflops 99.42 ± 5.17 Mflops

Monte Carlo 619.90 ± 2.60 Mflops 47.30 ± 5.76 Mflops 61.25 ± 15.07 Mflops

Fast Fourier
Transform 814.33 ± 24.99 Mflops 58.85 ± 19.86 Mflops 66.45 ± 15.82 Mflops

Sparse Matrix
Multiply 1238.44 ± 29.18 Mflops 70.40 ± 14.93 Mflops 81.42 ± 21.45 Mflops

Dense LU Matrix
Factorization 3022.64 ± 15.62 Mflops 83.70 ± 9.70 Mflops 157.42 ± 23.40 Mflops

Jacobi Successive
Over-Relaxation 1018.21 ± 1.77 Mflops 156.41 ± 20.66 Mflops 165.97 ± 44.92 Mflops

Table 4.3: Java-Scimark2 benchmarks results for the different devices.
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Figure 4.1: CPU Scimark2 benchmarks.
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Figure 4.2: CPU Java-Scimark2 benchmarks.

The results above show, as expected, that the RPi is still far away from the results of a regular
laptop available on the market. With performances varying between 6 and 18 times higher, every
test was dominated by the computer, as the bar graphics in figure 4.1 and 4.2 show. Comparing
the results of table 4.2 and table 4.3, for the ANSI C benchmarks, the performance of the RPi with
and without a VM is fairly similar where the values obtained for both cases are almost identical.
However, the Java benchmarks performed higher than the ANSI C benchmarks, therefore, at least
in these tests, the Java language is able to obtain higher flops than the ANSI C language. These
tables also indicate that the standard deviation is higher for the laptop tests, however, it can be
explained by the fact that since the mean values are higher, the deviation is higher as well, since
the laptop has more stable results than the RPi (lower percentage standard deviation). Although
it is not visible on table 4.2, table 4.3 shows better performance for the runs on the VM when
compared to the runs on the RPi. Since the hardware is the same on both cases, a possible
explanation can be the different OSs in which the tests were performed, leading to believe that, at
least for the Java benchmarks, the Debian OS leads to higher flops compared to the openSUSE OS.
The usage of different OSs occurs because compatible images with OpenVIM of the OS installed
on the RPi were not readily available to be used to instantiate the VM.

Finally, it should be said that despite having lower results, devices such as the RPi can still
be used in several scenarios, such as scenarios where there is no need for high processing power.
That is because the RPi is still highly cost-effective considering its performance and, despite the
difference in Mflops, depending on the computer, its price can be at least ten times lower.
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4.2 Instantiation Time

With the objective of knowing how long it took for a VM to be ready after instantiation, a
small test divided in two phases was devised to obtain this value.

The first phase of the test is composed of a Transmission Control Protocol (TCP) socket opened
between a server and a client (the RPi) exchanging commands between them as depicted in figure
4.3, starting by the command for instantiation of the VM and finishing by a ping from the VM to
the server and to the internet. Meanwhile, in between the first and the last command the client is
in a loop trying to open a SSH channel to the newly VM and when it is possible to do so, the loop
finishes and the next command is to send a packet from the VM to the server. The second phase
is the same as the first, except now, two VMs are instantiated instead of one, allowing observation
of how scalability affects the DUTs in terms of booting time since two VMs are being instantiated
simultaneously, depicted in figure 4.4.

Figure 4.3: Sequence diagram of the messages exchanged during the first phase of the test.

As stated previously, figure 4.3 depicts an abbreviated diagram comprised of the sequence of
messages exchanged between the server and client. The first two messages labeled as "Connection
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Establishment" are an abbreviation of the three-way handshake performed when a TCP connection
is established in order to synchronize the client and the server. The next pair of messages (3 and
4) is the server sending the command to the client to create the VM and the respective response
(ACK), this marks the initial point of the instantiation time. Following this, a loop starts trying to
open a SSH channel between the client and the newly created VM and breaks when a connection
is finally established represented in messages 5 to 8. Afterwards, the following pair of messages
(9 and 10) refer to the ping requested from the VM to the server, marking the end point of the
instantiation time, and the response from the server. Finally, the messages 11 and 12 are an
abbreviation of the termination of the TCP session.

While this packet exchange is happening, a network packet analyzer, Wireshark3, is running
on the background of the server catching the packets that arrive and leave the server. Afterwards,
it is possible to review the packet exchange and measure the time period between the instantiation
command and the first ping to the server to obtain an estimated value for the time needed for
a virtual machine to be ready. In this evaluation, 15 exchanges were realized and then a mean
value was obtained as well as a standard deviation value and, although Wireshark has 9 decimal
digits in its time column, the results shown are rounded up to only 4 decimal digits. By using the
filter feature of Wireshark with the filter "tcp.port == (port number) || icmp", it is possible to
filter the unwanted packets showing only the relevant packets, since the port filtered only has the
socket traffic catching all the TCP exchange while "icmp" catches the ping packets.

Computing the values obtained in the first phase, it is possible to compute the mean value
and the standard deviation obtaining a mean value of 82,4484 seconds and a standard deviation
of 5,2060 seconds. Analyzing these results, the time that a VM needs to perform a command
is rather long, however, it should be noted that most of this time is due to the boot of the OS
(Debian) which is a rather heavy OS and lighter operating systems would reduce this time. To
establish a reference, a similar method to the one explained before was used on a laptop to obtain
samples and calculate the same values for comparison. For the laptop, a mean value of 92,4290
seconds was obtained, as well as a standard deviation of 1,5047 seconds.

Comparing instantiation times, the RPi shows a faster booting time, by approximately 10
seconds, when compared a normal laptop, which for a device such as a RPi is really important,
since the benchmark tests were in favor of the more powerful laptop.

Afterwards, the second phase of the test is performed to evaluate the scalability of the RPi
when the number of VMs increased, the same test, shown in figure 4.4 was made except now the
number of VMs launched are two. This means that 2 VMs are instantiated at the same time,
and then the time that it takes each one to issue a ping command to the server is measured. The
main differences are, now, two SSH channels need to open, one for each VM, and, the TCP socket
has to be kept open until both VMs boot. Figure 4.4 is merely an example, since the VM that
is instantiated first might not be the one that finishes first during the actual test. On this test 4
samples were taken, and for the RPi, VM1 had a mean booting time of 101,3184 seconds with a
standard deviation value of 3,1914 seconds, the VM2 had a mean value of 91,8872 seconds and a
standard deviation value of 4,0515 seconds. Comparing these 2 values with the value taken from
a single instantiation it is possible to observe that the instantiation times are slower by around
9 seconds for one VM and 18 seconds for the other. The same test is, once again, ran on the

3https://www.wireshark.org
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laptop for reference. The values obtained are, for VM1, a mean value of 115,8727 seconds and
a standard deviation of 2,8902 seconds, and, for VM2, a mean value of 122,6502 seconds and a
standard deviation of 4,4458 seconds, resulting in a difference of around 23 seconds for VM1 and
30 seconds for VM2.

Comparing these results, once again the results are in favor of the RPi, since it still boots
faster and both times degraded less than the laptop’s. Since the laptop’s disk is faster than the
RPi’s disk, a possible explanation for the better results is the RPi’s VM/image being better tuned
for the device when compared to the VM/image used for the laptop. However, further scalability
would prove difficult for the RPi due to lower RAM (table 4.1), since its 1 GB is already in the
higher end of RAM available to the RPi models and more VMs would cap this value, whilst, the
laptop’s RAM is very low for the current market.

Figure 4.4: Sequence diagram of the messages exchanged during the second phase of the test.
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4.3 Power Consumption

In order to better understand the impact of a VM on a RPi, a look into the energetic impact
is taken, thus, a small circuit was devised to measure the power consumption of a RPi before,
during, and after the instantiation of a VM and a laptop for comparison. The circuit is displayed
in figure 4.5 and it features a multimeter (Fluke 77 Series II) in series between the Alternate
Current (AC) voltage source and the RPi’s power supply (DUT) measuring the alternate current
passing through the voltage source and the DUT. By measuring the alternate current and having
measured the voltage beforehand, it is possible to calculate the power consumption.

Figure 4.5: Block diagram for the power consumption measurement.

The voltage measurement before starting the test was 220.4 V, this value is obtained by putting
the plugs of the multimeter in both ends of the AC voltage source and reading the value on the
multimeter.

After these preparations, the measurement of the current of the RPi began where each men-
suration for a total of 5 performed lasted for 200 seconds with measures being taken every 10
seconds. The first 30 seconds is simply the RPi before the VM instantiation, to have an idea of
the idle power when nothing is running on the RPi. Then, approximately, on the 30 second mark
the VM is instantiated to see how a RPi performs during the instantiation. Finally, knowing from
before (section 4.2) that it takes approximately 80 seconds for a VM to be ready, 140 seconds
pass to evaluate the power consumption after the VM stabilizes and then, on the 170 seconds
mark a continuous ping command is issued from the VM in order to evaluate how a command
from a VM affects the power consumption. For the reference laptop, the procedure and number
of measurements is the same as the RPi.

The power consumption is then obtained by multiplying the samples obtained with the measure
voltage, as equation 4.1 shows. Having obtained the power consumption for each measurement,
the mean value in each point is calculated and then graphically shown in figures 4.6 and 4.7.

P (s) = Vrms ∗ Irms(s) (4.1)

P (s) = 220.4 ∗ Irms(s) ∗ 10−3

Since the multimeter was set in the mA scale, that has to be taken into account when computing
the power hence the 10−3 in equation 4.1.
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Figure 4.6: Power consumption during a VM instantiation for a RPi.
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Figure 4.7: Power consumption during a VM instantiation for a RPi and a laptop.

Analyzing the RPi graphic on figure 4.6, the first 30 seconds of idle power settles around 2.75 W
when the RPi is inactive. Past 30 seconds it is possible to clearly see the spike of power consumption
right after the VM instantiation with values almost reaching 4 W. After the instantiation, the
power consumption starts slowly decreasing with sudden increases in between skewing towards a
value slightly above the idle power close to 2.80 W. Finally, at 170 seconds a ping command is
issued from the VM to continuously ping another host on the same network and the graphic shows
the power consumption slightly above the value measured before the issued ping at around 2.90
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W.
On the other hand, the laptop graphic on figure 4.7 shows that for the first 30 seconds the

computer has an idle power of around 17 W, which then spikes after the 30 second mark (the VM
instantiation) reaching values close to 34 W. At the 80 second mark, the power starts decreasing
ending up with values ranging 22 to 24 W. Just before the 130 second mark, the power consumption
spikes again, this time reaching values above 26 W, and then the VM is finally instantiated.
Similarly to the RPi graphic, the power consumption after the VM finishes the instantiation
decreases settling around 19 W, which is a little higher than the idle power obtained from the
early measurements. At the 170 second mark, a ping command is issued on the VM and it can be
seen that the power reaches values around 20 W.

Observing the graphic on figure 4.7, which also shows the RPi power consumption on the same
scale of the laptop’s, the VM instantiation on the RPi is almost unnoticeable in comparison, and
as expected, the laptop consumes more power than the RPi with values of 6 to 8 times higher
by doing the same action. It should be noted that there were some programs running on the
background on the laptop during the measurement, however, these programs should not draw
much power due to being on the background and the values would still be higher than the RPi.
This can be seen in the graphic, when the VM stopped pulling resources from the laptop the
difference of power was just around 2 W, meaning that one or two programs on the background
with less resource dependency as a VM would not draw much power. Comparing both figure 4.6
and figure 4.7, both devices show a similar behaviour during the experiment. Due to having a
larger range of values in the same measuring unit, the laptop has more sensibility to changes, as
can be seen when a ping command is issued, where, in the RPi, the changes are barely seen, but
in the laptop they are more visible. During this experiment, it was noted that power consumption
on the reference laptop was highly susceptible to text being printed on the display while in the
RPi it was not that clear. A parallel between power consumption and CPU usage can be made
here, since when CPU usage is high the power consumption is also high as stated before.

These values show another one of SBC’s strengths, which is, its low power consumption. For a
device that despite offering a lower CPU performance has such low values for power consumption
while having similar times to instantiate a VM is a great advantage when looking towards sce-
narios where continuous activity is required, making it a possible viable economic approach when
providing services to costumers.

4.4 Chapter Overview

In this chapter, tests were performed to draw a comparison between the performance of a
RPi and a normal laptop used as reference. The results showed that whilst the laptop was clearly
superior in a straight CPU benchmark, the RPi achieved faster times when launching a VM and as
expected drew less power than its counterpart, however, even though the number of VMs increased
and the launching times were still faster in the VM its lower memory thwarts larger scalability.
In the end, these results still showcase the promise of using SBC’s in these types of scenarios.
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Chapter 5

Conclusion

In this dissertation, new control and operation mechanisms are studied in order to develop the
new paradigms, such as Fog Computing. This new paradigm, as stated before, locates itself in the
edge of networks, which means, away from the datacenters and the core networks, in other words,
devices in Fog Computing scenarios which require low latency will need new solutions to take the
place of these datacenters.

Therefore, in chapter 3, a VIM, OpenVIM, is installed on a Fog Computing scenario to provide
VMs to compute nodes (RPis). Then the implementation is presented, where changes on the
source code of the software were made to accommodate the new aarch64 architecture and the
other elements required for the framework are created, such as, a bridge, a DHCP server, and,
description files for the instantiation of VMs. After successfully implementing the framework
proposed, in chapter 4, tests were performed on the device, a RPi, to understand how it was placed
among the usual, more powerful, devices that run this type of services to better understand its
performance and potential problems.

The first test, CPU performance, compared both the RPi and a VM instantiated inside it
against a regular laptop through a CPU benchmarking software, Phoronix Test Suite, and showed
that the laptop had values 6 to 18 times higher, demonstrating that the RPi still lacks the process-
ing speed to match against a laptop, while the RPi with and without a VM showed similar times,
demonstrating that the VM possessed the same processing capabilities of the RPi. The next test,
the instantiation time, compared the time it took VMs to boot on a laptop and a RPi. Divided in
two phases, in the first, a single VM is launched on the DUTs, then two VM are launched simul-
taneously. Resorting to a TCP socket and a network packet analyzer, commands are exchanged
between a server and the client (the DUT) and the time needed for a boot is measured. In the
first phase, the RPi instantiated faster than the laptop with times of approximately, 82 s and 92
s, respectively. In the seconds phase, where two VMs are instantiated at the same time, the RPi,
once again, had faster times than the laptop, with values of, approximately, 92 s and 101 s, com-
pared to the values of the laptop of, approximately, 116 s and 123s, however, RPi’s low memory
value stops scalability to much larger values. The third test compares the power consumption of
both a laptop and a RPi during 200 seconds. During that time, the power is measured when the
device is idled and during the instantiation of a VM with a ping command being issued in the end.
Their behaviour during the measurement is similar, both graphics spiked after the instantiation
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of the VM and then slowly decreased to values slightly above the idle power. As expected, the
power consumption of the RPi is lower when compared to the laptop, with values 6 to 8 times
lower than the laptop.

These results exemplify the state in which SBCs currently stand. On one hand, its hardware is
still one step below the normal equipments used to deploy these services, as the CPU performance
shows. On the other hand, its low power consumption combined with its low cost and, unexpected,
similar instantiation times demonstrate the reason, and the promise, of why these devices are
appearing in these scenarios.

5.1 Contributions

This work contributed to the outcome of an ongoing national project, "Mobilizador 5G" (http:
//5go.pt/) where virtualization mechanisms were studied in human-to-machine environments.

5.2 Future Work

Although this dissertation obtained positive results, to have a VIM provide virtual resources
to Fog Computing nodes, there is still interesting work to realize.

• The increase in compute nodes, as this work only utilized one RPi for compute nodes, despite
being possible to add more to the VIM.

• The implementation of a SDN controller will bring its benefits for these networks, which,
OpenVIM already supports.

• Depending on how the technology evolves it might be a better idea to swap to a more
powerful, stable, and, updated VIM like OpenStack, since, whilst, OpenVIM is under the
OSM project, the more popular and updated more frequently VIM at the moment appears
to be OpenStack.

• Finally, to test this scenario on others SBCs, the SBC chosen in this dissertation was a RPi,
however, this is not the only SBC on the market, so further studies might be interesting
to find if there are better choices in the SBC market for a device more suitable for these
scenarios.
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Appendices

A1 Sample XML code after source code changes.

<domain type=’kvm’>

<name>vm-debian</name>

<uuid>c6218e9c-c010-11e8-8cc6-000c2998c4d4</uuid>

<memory unit=’KiB’>524288</memory>

<currentMemory unit=’KiB’>524288</currentMemory>

<vcpu placement=’static’>1</vcpu>

<cputune>

<vcpupin vcpu=’0’ cpuset=’0’/>

</cputune>

<numatune>

<memory mode=’strict’ nodeset=’0’/>

</numatune>

<os>

<type arch=’aarch64’ machine=’virt-2.9’>hvm</type>

<boot dev=’hd’/>

<loader readonly=’yes’ type=’pflash’>/usr/share/qemu/aavmf-aarch64-code.bin<

/loader>

<nvram>/var/lib/libvirt/qemu/nvram/debian_VARS.fd</nvram>

</os>

<features>

<acpi/>

<apic/>

<pae/>

</features>

<cpu mode=’host-passthrough’>

<model fallback=’allow’/>

</cpu>

<clock offset=’utc’/>

<on_poweroff>preserve</on_poweroff>

<on_reboot>restart</on_reboot>

<on_crash>restart</on_crash>
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<devices>

<emulator>/usr/bin/qemu-system-aarch64</emulator>

<serial type=’pty’>

<target port=’0’/>

</serial>

<console type=’pty’>

<target type=’serial’ port=’0’/>

</console>

<video>

<model type=’virtio’/>

</video>

<disk type=’file’ device=’disk’>

<driver name=’qemu’ type=’qcow2’ cache=’writethrough’/>

<source file=’/opt/VNF/images/debian-9.5.0-openstack-arm64.inc.qcow2’/>

<target dev=’vda’ bus=’virtio’/>

</disk>

<interface type=’bridge’>

<source bridge=’br0’/>

<model type=’virtio’/>

<mac address=’52:50:22:e7:aa:23’/>

<rom file=’’/>

</interface>

</devices>

</domain>
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A2 Sample code for a compute node JSON file.

{

"host":

{

"ip_name": "192.168.1.82",

"user": "root",

"name": "host"

},

"host-data":

{

"name": "host",

"user": "root",

"ip_name": "192.168.1.82",

"ranking": 100,

"numas":

[

{

"cores":

[

{

"core_id": 0,

"thread_id": 0

},

{

"core_id": 0,

"thread_id": 1

},

{

"core_id": 1,

"thread_id": 2

},

{

"core_id": 1,

"thread_id": 3

}

],

"interfaces":

[

{

"source_name": "eth0",

"Mbps": 1000,

"pci": "0000:00:02.0",
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"switch_port": "port2",

"switch_dpid": "00:00:00:00:00:00:00:01",

"sriovs":

[

{

"mac": "a6:12:47:bd:2e:03",

"pci": "0000:00:00.1",

"source_name": 0,

"vlan": 1

}

],

"mac": "B8:27:EB:AC:D5:68"

},

{

"source_name": "br0",

"Mbps": 1000,

"pci": "0000:00:01.0",

"switch_port": "port1",

"switch_dpid": "00:00:00:00:00:00:00:01",

"sriovs":

[

{

"mac": "a6:23:58:ce:3f:14",

"pci": "0000:00:00.1",

"source_name": 0,

"vlan": 1

}

],

"mac": "FE:C7:D5:7A:FD:DF"

}

],

"numa_socket": 0,

"hugepages": 2,

"memory": 1

}

]

}

}
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A3 Sample code for a flavour YAML file.

flavor:

disk: "1"

name: myflavor

description: personal flavor

ram: 512

vcpus: 4

extended:

processor_ranking: 100

numas:

- memory: 1

cores: 4

interfaces:

- name: xe0

bandwidth: 100 Mbps

dedicated: "no"

A4 Sample code for a local image YAML file.

{

"image":

{

"path": "http://cdimage.debian.org/cdimage/openstack/archive/9.5.0/

debian-9.5.0-openstack-arm64.qcow2",

"metadata":

{

"architecture": "aarch64",

"use_incremental": "no",

"vpci": "0000:00:02.0",

"os_distro": "debian",

"os_type": "linux",

"os_version": "9.5.0"

},

"name": "debian-9.5.0-link",

"description": "debian,9.5.0,arm64,link"

}

}
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A5 Sample code for an URL based image JSON file.

image:

name: debian-9.5.0-path

description: debian,9.5.0,arm64,local

path: /opt/VNF/images/debian-9.5.0-openstack-arm64.qcow2

A6 Sample code for a network YAML file.

network:

name: net2

type: bridge_man

shared: True

cidr: 10.210.0.0/24

enable_dhcp: True

dhcp_first_ip: 10.210.0.4

dhcp_last_ip: 10.210.0.254

provider:physical: bridge:br0

dns:

- 193.136.92.73

- 193.136.92.74

routes:

default: 10.210.0.1
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A7 Sample code for a VM JSON file.

{

"server":

{

"hostId": "40b2fad0-58a4-11e8-ae14-000c2998c4d4",

"name": "vm",

"imageRef": "0aa47536-c0b4-11e8-bdf0-000c2998c4d4",

"flavorRef": "23afdb8e-22d3-11e4-94c0-52540030594e",

"start": "yes",

"extended":

{

"processor-ranking": 100,

"numas":

[

{

"cores": 1,

"interfaces":

[

{

"dedicated": "no",

"bandwidth": "100 Mbps",

"name": "eth0"

}

],

"memory": 1

}

]

},

"networks":

[

{

"uuid": "b06e0bca-c010-11e8-8cc6-000c2998c4d4"

}

],

"description": "debian arm vm in a rpi with local qcow2 image"

}

}
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