
João Carlos Andrade de Almeida

Licenciado em Engenharia Informática

Intrusion Tolerant Routing with Data
Consensus in Wireless Sensor Networks

Dissertação para obtenção do Grau de Mestre em
Engenharia Informática

Orientador : Prof. Doutor Henrique João Lopes Domingos,
Professor Auxiliar, DI-FCT-UNL

Co-orientador : Prof. Doutor Vitor Manuel Alves Duarte,
Professor Auxiliar, DI-FCT-UNL

Júri:

Presidente: Prof. Doutor Pedro Manuel Barahona

Arguente: Prof. Doutor António Casimiro da Costa

Vogal: Prof. Doutor Henrique João Lopes Domingos

Outubro, 2013

iii

Intrusion Tolerant Routing with Data Consensus in Wireless Sensor Networks

Copyright c© João Carlos Andrade de Almeida, Faculdade de Ciências e Tecnologia, Uni-
versidade Nova de Lisboa

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito,
perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de ex-
emplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro
meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios
científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de in-
vestigação, não comerciais, desde que seja dado crédito ao autor e editor.

iv

Acknowledgements

Ao longo da realização desta dissertação, várias foram as pessoas e instituições que me
apoiaram. Dirijo às mesmas o meu mais sincero apreço e agradecimento:

Ao meu orientador, Professor Doutor Henrique João Lopes Domingos por toda a
disponibilidade, por todo o aconselhamento, pela revisão e pelos valiosos contributos
que contribuiram para que este trabalho tivesse o devido valor e contribuísse para o pro-
jecto no qual está integrado;

Ao meu co-orientador, Professor Doutor Vitor Manuel Alves Duarte por toda a disponi-
bilidade e empenho em contribuir para este trabalho, dando valiosos conselhos e sug-
estões para o mesmo;

À Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, em particular
ao Departamento de Informática, por ter sido a minha segunda casa ao longos destes
últimos anos e que sempre proporcionou ferramentas excepcionais para o sucesso dos
seus alunos;

A todos os meus colegas de trabalho com os quais ao longo destes últimos anos me
fui cruzando, pela sua amizade, pelas discussões técnicas e apoio mútuo nestes anos
importantes das nossas vidas;

Aos meus pais, por me terem dado a possibilidade de chegar até aqui, por me terem
permitido escolher o meu próprio caminho e por terem acreditado em mim;

Aos meus amigos pela companhia nos bons momentos e pelo apoio nos maus, em
especial à Sara Ralha pelo interesse demonstrado, pelo apoio, companhia, compreensão,
confiança e sábios conselhos.

v

vi

If you have an apple and I have an apple and we exchange these
apples then you and I will still each have one apple. But if you

have an idea and I have an idea and we exchange these ideas,
then each of us will have two ideas.

– George Bernard Shaw

viii

Abstract
Wireless sensor networks (WSNs) are rapidly emerging and growing as an important
new area in computing and wireless networking research. Applications of WSNs are nu-
merous, growing, and ranging from small-scale indoor deployment scenarios in homes
and buildings to large scale outdoor deployment settings in natural, industrial, military
and embedded environments. In a WSN, the sensor nodes collect data to monitor phys-
ical conditions or to measure and pre-process physical phenomena, and forward that
data to special computing nodes called Syncnodes or Base Stations (BSs). These nodes
are eventually interconnected, as gateways, to other processing systems running appli-
cations.

In large-scale settings, WSNs operate with a large number of sensors – from hundreds
to thousands of sensor nodes – organised as ad-hoc multi-hop or mesh networks, work-
ing without human supervision. Sensor nodes are very limited in computation, storage,
communication and energy resources. These limitations impose particular challenges in
designing large scale reliable and secure WSN services and applications. However, as
sensors are very limited in their resources they tend to be very cheap. Resilient solutions
based on a large number of nodes with replicated capabilities, are possible approaches to
address dependability concerns, namely reliability and security requirements and fault
or intrusion tolerant network services.

This thesis proposes, implements and tests an intrusion tolerant routing service for
large-scale dependable WSNs. The service is based on a tree-structured multi-path rout-
ing algorithm, establishing multi-hop and multiple disjoint routes between sensors and
a group of BSs. The BS nodes work as an overlay, processing intrusion tolerant data con-
sensus over the routed data. In the proposed solution the multiple routes are discovered,
selected and established by a self-organisation process. The solution allows the WSN
nodes to collect and route data through multiple disjoint routes to the different BSs, with
a preventive intrusion tolerance approach, while handling possible Byzantine attacks and
failures in sensors and BS with a pro-active recovery strategy supported by intrusion and
fault tolerant data-consensus algorithms, performed by the group of Base Stations.

Keywords: Wireless Sensor Networks (WSN), Routing Services and Protocols for WSN,
Reliability, Consensus Protocols, Intrusion Tolerance, Simulation Environments for WSN.

ix

x

Resumo Alargado
As Redes de Sensores Sem Fios (RSSF) são compostas por pequenos dispositivos com-
putacionais (sensores), que podem ser distribuídos por uma grande área geográfica, de
modo a medirem e transmitirem dados relativos às condições actuais ou acontecimentos
físicos no meio ambiente envolvente. Os dados recolhidos pelos sensores são então enca-
minhados para nós especiais chamados Estações de Base (que por sua vez poderão estar
conectados a outros nós onde executam as aplicações).

As RSSF de grande escala podem envolver uma enorme quantidade de nós, possi-
velmente operando em vasta áreas geográficas e em condições limitadas de acessibili-
dade. Estas redes funcionam como redes auto-organizadas e sem supervisão humana,
tendo por base arquitecturas de rede com encaminhamento ponto-a-ponto (ou sensor-
a-sensor). Os sensores são em geral muito limitados nos seus recursos de computação,
memória, comunicações e energia. Estas limitações tornam a concepção e o desenvol-
vimento de serviços e aplicações para estas redes um grande desafio. A abordagem de
serviços de segurança e fiabilidade, num contexto de RSSF confiáveis, torna este exercício
ainda mais exigente. Sendo os sensores limitados nos recursos acima referidos e podendo
ser materializados em dispositivos computacionais miniaturizados, tal permitirá que se
criem condições que os tornem muito baratos no futuro. Desta forma, uma hipótese que
permite endereçar soluções resilientes com tolerância a falhas ou intrusões pode ser ba-
seada na adopção de redes com um grande número de nós, com replicação de dados
e processamento. Uma RSSF segura terá de oferecer suporte a confiança na rede, bem
como requisitos de segurança suportados por serviços de encaminhamento seguros tole-
rantes a falhas ou intrusões. A abordagem de soluções deste tipo para RSSF de grande
escala tem sido recentemente uma área com bastante interesse por parte da comunidade
científica.

O objectivo principal desta dissertação é o de propor, implementar e testar um serviço
de encaminhamento seguro e tolerante a intrusões para RSSF multi-hop de larga escala.
Este serviço é baseado num algoritmo de encaminhamento com múltiplas rotas e estru-
turado em árvore, estabelecendo múltiplas rotas disjuntas multi-hop entre os nós e um
conjunto de Estações de Base ou nós de recepção e agregação de dados. As rotas são
descobertas, seleccionadas e estabelecidas durante o processo de auto-organização da
rede, podendo ser estabelecidas e mantidas com base em optimização e balanceamento
de métricas específicas, tais como: condições de cobertura da rede, latência, consumo de

xi

xii

energia, distribuição de carga, fiabilidade ou níveis de tolerância a intrusões. As Estações
de Base podem ser vistas como uma rede sobreposta com um grupo de nós confiáveis que
processam serviços de consenso sobre os dados recebidos para tolerância a intrusões.

A solução apresentada permite aos nós da RSSF obter e transmitir dados através de
múltiplas rotas disjuntas para as diferentes Estações de Base, com uma tolerância a in-
trusões preventiva. Ao mesmo tempo, lida-se com possíveis ataques ou falhas bizanti-
nas nos sensores ou nas Estações de Base através de uma estratégia de recuperação pró-
activa, suportada por um serviço de consenso de dados distribuído e tolerante a falhas e
intrusões.

Palavras-chave: Redes de Sensores Sem Fios (RSSF), Serviços de Encaminhamento para
RSSF, Confiança, Protocolos de Consenso, Tolerância a Intrusões, Ambientes de Simula-
ção para RSSF

Contents

1 Introduction 1
1.1 Context and Motivation . 1
1.2 The thesis problem . 2
1.3 Objectives and focus . 3
1.4 Approach to the system and adversary models 5
1.5 Thesis Goals . 6
1.6 Thesis Contributions . 6
1.7 Organization and document’s structure . 6

2 Wireless Sensor Networks 9
2.1 Wireless Sensor Networks (WSN) . 9
2.2 Software Architecture in WSN . 10
2.3 WSN for large scale topologies and environments 12
2.4 Routing Protocols . 12

2.4.1 Proactive Routing . 14
2.4.2 Reactive Routing . 14
2.4.3 Routing topology . 15

2.5 Security and Reliability . 16
2.5.1 Attacker’s model . 17
2.5.2 MAC Layer . 18
2.5.3 Network Layer and Routing Attacks 19
2.5.4 Defences of Routing Attacks for WSN 24
2.5.5 Critical Analysis . 29

3 Related Work 31
3.1 WSN Simulation . 31

3.1.1 Simulation with Emulation . 32
3.1.2 Hybrids Environments for Simulation and Calibration 32
3.1.3 WSN Simulators . 33

xiii

xiv CONTENTS

3.1.4 Critical Analysis . 36
3.2 Secure Routing in WSN . 36

3.2.1 Clean-Slate . 36
3.2.2 H-SPREAD . 37
3.2.3 SeRINS . 37
3.2.4 INSENS . 38
3.2.5 MINSENS . 39
3.2.6 MINSENS++ . 39
3.2.7 Critical Analysis . 40

3.3 Consensus Protocols . 41
3.3.1 The Distributed Consensus Problem 41
3.3.2 WSN and the impossibility of data consensus 42
3.3.3 Protocols with Randomness . 43
3.3.4 Probabilistic Failures Detectors . 43
3.3.5 Non-Deterministic Consensus . 44
3.3.6 Critical Analysis . 46

4 System Overview 47
4.1 System Model . 47
4.2 Adversary’s Model . 48
4.3 System Software Components . 49

4.3.1 MINSENS++ . 50
4.3.2 MVC and Turquois . 50

4.4 Contributions Contextualisation . 50
4.5 Network Model . 51

5 MINSENS++ 55
5.1 System Model for MINSENS++ . 55

5.1.1 Nodes and routes discovery . 56
5.1.2 Routes selection . 56
5.1.3 Data routing . 56

5.2 Algorithmic vision . 56
5.2.1 Nodes and routes discovery . 56
5.2.2 Routes selection . 57
5.2.3 Data routing . 58

5.3 MINSENS++ Implementation . 60

6 Multi-Valued Consensus 61
6.1 System Model for Multi-Valued Consensus 61
6.2 Algorithmic vision . 61

6.2.1 Turquois . 61
6.2.2 MVC . 65

CONTENTS xv

6.3 Multi-Valued Consensus Implementation 67
6.4 Multi-Valued Consensus Usage . 67

6.4.1 Routes Consensus . 67
6.4.2 Local Data Consensus . 68
6.4.3 Distributed Data Consensus . 68

7 Evaluation 69
7.1 Implementation issues and testbeds . 69

7.1.1 MINSENS++ Implementation . 70
7.1.2 Consensus Protocol . 70
7.1.3 Raspberry PI nodes . 72

7.2 MINSENS++ Protocol Assessment . 77
7.2.1 Methodology . 77
7.2.2 Results . 78

7.3 Consensus Protocol Assessment and Methodology 84
7.4 Assessment for Unanimity Conditions . 84

7.4.1 Results . 85
7.4.2 Critical analysis for the obtained results 90
7.4.3 IPSec Considerations . 91

7.5 Complementary Assessment under Different Settings 92
7.5.1 Motivation and Settings . 92
7.5.2 Latency in a Failure-Free Setting . 97
7.5.3 Latency in a Fail-Stop Setting . 97
7.5.4 Latency in a Byzantine Setting . 98
7.5.5 Critical Analysis . 100

7.6 MINSENS++ Integration Assessment . 101
7.6.1 Integration Setting . 102
7.6.2 Integration Results . 106

7.7 Critical Analysis . 110

8 Conclusions 111
8.1 Research conclusions . 111
8.2 Future Work . 115

xvi CONTENTS

List of Figures

2.1 Stack for WSN Software Support . 11

2.2 Summary of the attacks analysed in the following sections 20

2.3 HELLO flood attack. 22

2.4 Sinkhole attack. 22

2.5 Wormhole attack. 23

2.6 Base Station authentication. 26

2.7 DADS example, with a quarantine region. 29

3.1 RITAS protocols stack . 45

4.1 Scheme of a sensor forwarding data . 51

4.2 Simplified example of a network’s topology 53

7.1 Network topology with 300 nodes and 4 base stations 70

7.2 Network topology with 500 nodes and 4 base stations 71

7.3 Network topology with 1000 nodes and 4 base stations 71

7.4 Network coverage with INSENS and MINSENS++ Protocols 79

7.5 Network reliability with INSENS and MINSENS++ Protocols 81

7.6 Network latency with INSENS and MINSENS++ Protocols 82

7.7 Network latency with various Base Stations 83

7.8 Comparison between all protocols for 3+1 nodes 85

7.9 Comparison between UDP and Multicast protocols for 3+1 nodes 87

7.10 Comparison between UDP and Multicast protocols for 5+2 nodes 88

7.11 Comparison between UDP and Multicast protocols for 7+3 nodes 89

7.12 Comparison of Consensus Time in milliseconds in a Failure Free Setting . 97

7.13 Comparison of Consensus Time in milliseconds in a Fail-Stop Setting . . . 98

7.14 Comparison of Consensus Time in milliseconds in a Byzantine Failure Set-
ting . 99

xvii

xviii LIST OF FIGURES

7.15 Comparison of the Best Consensus Times (in milliseconds) in Test A and
Test B . 99

7.16 Interconnection of external SunSpot sensors (left) with the WiSeNet Simu-
lation Platform (right) . 104

7.17 Testbench for the consensus component, integrating external real Base Sta-
tion nodes as virtual nodes in WiSeNet . 105

List of Tables

2.1 Summary of the discussed attacks and some possible preventions 30

3.1 Routing protocols defences against internal attacks 40

7.1 Technical specifications of used Raspberry PI nodes 73
7.2 Parameters used for MINSENS++ connectivity test 79
7.3 Parameters used for MINSENS++ reliability test 80
7.4 Parameters used for MINSENS++ latency test 82
7.5 Parameters used for MINSENS++ second latency test 83
7.6 Configuration refinements terminology (all times in milliseconds) 86
7.7 Latency times (in seconds) of a file transfer with and without IPSec in a

wired network . 91
7.8 Latency times (in seconds) of a file transfer with and without IPSec in a

wireless network . 92
7.9 Iperf results with wired Ethernet . 93
7.10 Iperf results with structured IEEE 802.11g 93
7.11 Iperf results with ad-hoc IEEE 802.11g . 94
7.12 Relation between CPU Load and Packet Loss Ratio on Raspberry PI 95
7.13 Relation between network bandwidth and Packet Loss Ratio on Raspberry

PI . 96
7.14 Configuration refinements for the new assessment (all times in milliseconds) 96
7.15 Parametrised metrics in the WiSeNet for the randomly generated topologies106
7.16 Obtained connectivity and reliability metrics in the randomly generated

topologies . 106
7.17 Latency times (in milliseconds) measured by the coordinating process . . 107
7.18 Effective throughput and location of bottlenecks in the network 108

xix

xx LIST OF TABLES

1
Introduction

1.1 Context and Motivation

Wireless Sensor Networks (WSN) are formed by a set of small devices (sensor or motes1)
distributed across the space, where each sensor node communicates with the others
through a wireless communication environment. These networks can operate without
human intervention, being deployed as autonomous systems and forming self-organized
or ad-hoc networks.

Sensor nodes have some important limitations: they can communicate just with their
(short-range) neighbours, have small computational processing capacities, low memory
resources and limited energy (sometimes a non-rechargeable finite resource).

WSN became an interesting field in the research community. Because of its charac-
teristics [1], this kind of networks are adequate to a enormous set of applications, like:
military monitoring in battlefields or intrusion detection in military areas [2]; critical in-
dustries vigilance [3]; biomedical indicators monitoring [4]; nature habitats monitoring
[5] and environmental conditions [6]; control of vulcanological and seismological phe-
nomenons [7]; infrastructures monitoring in civil engineering [8]; control and vigilance
in people and goods location [9].

However, there are important security issues we must be aware as the applications
supported in the network could require. In this way, WSN should support flaws or at-
tacks that can occur at communication level or caused by intrusions in the nodes.

Indeed, in different scenarios of applications managing critical data, goods, lives and
livelihoods may depend on the timeliness and correctness of the sensor data obtained

1A node in a wireless sensor network that is capable of performing some processing, gathering sensory
information and communicating with other connected nodes in the network.

1

1. INTRODUCTION 1.2. The thesis problem

from dispersed sensor nodes working without human supervision. As a result, such
WSNs must be secured to prevent an intruder from obstructing the delivery of correct
sensor data or correct node level processing, and from forging sensor data, that will cause
major damage to the supported applications. To address the problem, end-to-end data
authentication, confidentiality or integrity protection, as well as, reliable and intrusion-
tolerant post-processing of sensor data must be guaranteed, to identify and to correct
forged sensor data.

Within the scope of this thesis, we are particularly interested in the security and relia-
bility concerns of large-scale networks (in the magnitude from hundreds to thousands of
sensor nodes), as two complementary dimensions of dependability solutions for WSNs.
In this context, the main objective is to design, to implement, and to assess, with an ex-
perimental environment, a secure intrusion tolerant routing service for large scale WSNs.

The proposed solution combines multiple disjoint routes, selected and established in
an ad-hoc way over multiple Base Stations and data consensus mechanisms performed
by those Base Stations as a mechanism to support intrusion tolerance properties. Thus,
the design of the routing protocol follows a resilient approach using disjoint multi-path
routes established from each sensor to each different Base Station (BS), as a preventive
intrusion tolerant approach, constructing forwarding tables at each node to facilitate
communication between sensor nodes and the multiple base stations. These routes are
formed when the WSN is in its self-organization process, following an ad-hoc model.
Data received by the multiple base stations are subjected to a data-consensus verification
mechanism implemented by a pro-active intrusion-tolerant consensus protocol. After
this verification, data can be used safely by the final applications.

The main idea behind the solution is to minimize computation, communication, stor-
age, energy consumption and bandwidth requirements at the level of sensor nodes, at the
possible expense of increased computation, communication, storage, energy availability
and bandwidth requirements at the Base Stations running the data-consensus algorithms.

The present thesis is integrated in a task of the SITAN (Services for Intrusion Tolerant
AdHoc Networks) research project [10], which is funded by the Fundação da Ciência e
Tecnologia, MCES (ref. PTFC/EIA/113729/2010), inserted on the goal of the development
of data dissemination services resilient to intrusions in ad-hoc networks.

SITAN project is developed at CITI (Centro de Informática e Tecnologias da Informação),
FCT-UNL (Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa) in collaboration
with LASIGE (Laboratório de Sistemas de Informação de Grande Escala), FC-UL (Faculdade de
Ciências da Universidade de Lisboa).

1.2 The thesis problem

Security is critical for a variety of WSN applications and deployment environments, such
as home security monitoring, critical infrastructures monitoring or military deployments.
In these applications, each sensor node is highly vulnerable to many kinds of attacks,

2

1. INTRODUCTION 1.3. Objectives and focus

both physical and logical, due to each node’s cost, energy limitations, wireless communi-
cations and exposed location on the field. In large-scale scenarios, security requirements
are particularly emphasized, considering certain operation criteria of WSNs as ad-hoc or
autonomic distributed systems, working with no human supervision. As a result, mech-
anisms to achieve security concerns (including both fault and intrusion tolerance) are
necessary for sensor networks, regarded as a dependable distributed system.

Although intrusion and fault tolerance has been extensively studied in the context
of wired networks, ad-hoc wireless sensor networks introduce a combination of threats
that are not usually faced by wired networks, or considered by their adversary and fail-
ure models. The intrinsic radio broadcast nature of the wireless communication medium
significantly enhances the capabilities of an adversary to eavesdrop, tamper transmit-
ted packets, inject malicious packets or to initiate denial-of-service (DoS) attacks. These
susceptibilities also apply to wireless LANs such as IEEE 802.11 and mobile ad-hoc net-
works. However, sensor nodes are highly resource constrained, with limited energy life-
time, low-powered micro-sensors and actuators, using slow embedded processors, lim-
ited memory, and low-bandwidth with short-range radio communications. This limits
the ability for sensor nodes to perform heavyweight public key cryptography, though
elliptic curve cryptography offers a promising course of possible application in the fu-
ture. The relatively weak defences of sensor nodes are susceptible to external attacks by
adversaries equipped with more powerful computing and communication equipment,
used in the WSN deployment area. But more important, sensor nodes are distributed
in the field without physical security monitoring conditions, as available to most wired,
wireless LANs and other forms of wireless networks. As a result, WSNs are highly sus-
ceptible to the physical compromise and possible capture of one or more sensor nodes.
Once compromised, the sensor node(s) are used as "internal" malicious nodes, exploited
by intruders to damage the WSN through DoS, jamming, spoofing, malicious routing
processing and several other attacks as better explained on Chapter 2.

1.3 Objectives and focus

Considering a conventional WSN software stack, the security problems cover different
levels of approach:

• Physical layer protection;

• Data-link layer security, to avoid medium-access control vulnerabilities and to pro-
tect wireless communication from external attacks;

• Network-level security services including secure network discovering and ad-hoc
organization services, as well as dependable routing protocols and services sup-
porting reliable and intrusion-tolerant data dissemination;

3

1. INTRODUCTION 1.3. Objectives and focus

• Application-level security issues, including secure and reliable data aggregation
and other in-network processing capabilities.

The main focus of the thesis is on the security solutions for dependable WSN at a
network-level approach. The objective is particularly focused in the research of novel
solutions for intrusion tolerant routing services for dependable WSNs operating in large
scale environments as multi-hop systems that collect and forward sensor data to informa-
tion sinks, usually implemented by Base Stations (BSs) or syncnodes with more resources
and data-processing capabilities than the sensor nodes. Syncnodes and BSs also act as
gateways to WLANs or wired Internet environments, where final applications are run-
ning to finally process the data received from the WSN. In this vision, WSNs may be re-
garded as monitoring islands with primary sensing, routing and processing capabilities,
interconnected with more complex and scalable monitoring infra-structures composed
by different WSNs, used in the context of distributed applications.

As a possible application scenario, we can anticipate applications inspired in moni-
toring events with measurement of values in the WSNs and then transmitting the values
through the WSN to the syncnodes or BSs. We consider applications with "soft real-
time" constraints, adapted to the communication latencies imposed by the multi-hop
routing structure and communication characteristics of WSN standards (IEEE 802.15.4
[11] and/or Zigbee [12], working in ad-hoc settings with Medium Access Control based
on CSMA/CA2).

In the above scenario, the communications pattern in the WSN is relatively simple
when compared to a traditional wired or conventional ad-hoc wireless network. Data
transmission in the WSN itself is dominated by local communication between sensor
nodes in a limited transmission range, and multi-hop forwarding between sensor nodes
and the multiple syncnodes or BSs. Primarily, data is transmitted from sensor nodes to
one or more Base Stations or syncnodes. In general, the number of Base Stations in a
WSN will be significantly less than the amount of sensor nodes. For this thesis purposes,
the base stations are relatively resource-rich when compared with the sensor nodes, in
terms of processing, storage, energy, and communication capabilities. The large number
of resource-constrained sensor nodes and the small number of resource-rich base stations
collectively form an asymmetric network. In this network, the group of syncnodes and
Base Stations may be also regarded as an overlay.

While other sensor network architectures and routing protocols for those architec-
tures have been proposed, our focus in the thesis is on the common asymmetric tree-
structured multi-path routing architecture associated to this overlay vision.

2Carrier Sense Medium Access with Collision Avoidance

4

1. INTRODUCTION 1.4. Approach to the system and adversary models

1.4 Approach to the system and adversary models

According to our objectives, the dependable routing service constructs a secure and effi-
cient tree-structured intrusion tolerant routing network for WSNs, adapted to the asym-
metric architecture and resource constraints, between sensor nodes and Base Stations or
syncnodes, as introduced above. A key objective is to circumvent (with a preventive
intrusion tolerance approach) the possible damage caused by an intruder who has com-
promised one or more deployed sensor nodes. Such an intruder could inject, modify,
or block data packets. The routing service therefore is designed to prevent from these
intrusions, limiting the ability of an intruder to cause mischief through a combination
of distributed lightweight security mechanisms, in which the possible use of multiple
disjoint routes is a key strategy.

Complementarily, we consider that BS nodes can be also attacked by intrusion, caus-
ing incorrect processing at the Base Station level, forging or faking data flowing from the
WSN to the final applications.

The scope of the mechanisms studied in this thesis is bounded in the following re-
search directions. We explore a solution for securing upstream data traffic – from leaf
sensor nodes, through the multi-path tree-structured routing topology, until one or more
Base Station sinks. Peer-to-peer secure communications among sensor nodes is out of
the scope of our goals, and is not viewed as usual for flat peer-based networks. Down-
stream traffic beyond what is needed to securely set up upstream routing trees (during
the network’s configuration) is not a focus of our work itself. We consider the adoption
of efficient and well-adapted light-weight cryptographic mechanisms and algorithms, as
well as key-distribution protocols to establish pair-wise keys as solutions that can be de-
vised, subjacent to the routing service itself.

Another assumption in our network model is that sensor nodes can have only limited
mobility after their initial deployment, which we believe to be the commonest case in
many situations of large scale WSNs. The topology discovery and network organization
process and set up is designed to be rerun periodically, in order to update changes in the
topology due to faults, to refresh the topology and network organization; the same pro-
cess can be applied to accommodate "limited mobility". Continuous or strong mobility
concerns during and after set up is out of the scope of this thesis.

In our system and adversary model we consider that intrusions (or failures) following
a Byzantine setting are possible in sensor nodes and Base Stations. However, we consider
that these possible intrusions are independent; thus we don’t support an adversary that
simultaneously attacks sensor nodes and Base Stations (or in a selective way controls
the entire topology, by controlling a number of sensor nodes and by also controlling a
number of Base Stations). In this way, we consider that an adversary can only randomly
compromise a limited number of sensor nodes somewhere in the topology or a limited
number of Base Stations.

5

1. INTRODUCTION 1.5. Thesis Goals

1.5 Thesis Goals

The objective of this thesis will be the experimental assessment of the intrusion tolerant
routing service, namely based on the multi-path tree-based routing strategy and data
consensus mechanisms performed by the Base Stations overlay. The assessment of con-
sensus mechanisms based on probabilistic consensus algorithms in this case is one im-
portant goal of the thesis.

For the experimental assessment, a simulation environment has been used. For this
purpose, the WiSeNET simulation environment [13] is considered. This simulation envi-
ronment has been developed and used in the scope of the SITAN project [10]. However
and because of the characteristics of these networks (including the huge number of sen-
sors, usually in the magnitude of thousands), it’s hard to know if the simulation results
are reliable (ie., if in a simulated environment the output is equal to an hypothetical out-
put obtained from a real network configured in the same way). The results of this thesis
will help to obtain real outputs from a real network, in order to calibrate the simulation
environment (concerning the consensus mechanisms), as a future work; this way the ob-
tained results from the simulator will be more reliable as they are based in real values.
With this approach, this thesis will drive an hybrid simulation environment in which cer-
tain nodes of the WiSeNet simulator will be implemented as virtual nodes representing
Base Stations. The evaluation of the consensus protocols running at this level is consid-
ered by implementing these algorithms in real nodes, materialized by Rabsperry Pi [14]
platforms.

1.6 Thesis Contributions

The contributions of this thesis are:

• Design of the dependable routing service for large scale WSNs, based on a multi-
path tree-based routing protocol (called MINSENS++) and its integration with the
consensus overlay composed by multiple sync nodes;

• Design, implementation and assessment of consensus mechanisms in the WSN con-
text, as discussed above in the introduction of the system and adversary models;

• Assessment approach by using an hybrid simulation environment, where the Base
Stations are implemented with real nodes (Raspberry PI), represented in the WiSeNet
simulator as virtual nodes; In this way, BSs or Syncnodes will act as real nodes.

1.7 Organization and document’s structure

The next chapters are organized as follows:

6

1. INTRODUCTION 1.7. Organization and document’s structure

• In chapter 2, WSN are explained in a more detailed way. This includes WSN appli-
cations, related software, routing and security;

• In chapter 3 is presented the related work already done and the state of the art. This
includes the simulation of WSN and specific routing protocols developed recently
for WSN and inspiring the desired purposes for this thesis;

• In chapter 4 a System Overview is done, including the contextualisation of the pre-
vious contributions.

• In chapter 5 the MINSENS++ protocol is presented and specified.

• In chapter 6 the Multi-Valued Consensus (MVC) and Turquois protocols are pre-
sented and specified.

• In chapter 7 the results of this thesis are presented.

• In chapter 8 the conclusions of this thesis are discussed.

7

1. INTRODUCTION 1.7. Organization and document’s structure

8

2
Wireless Sensor Networks

In this chapter, Wireless Sensor Networks (WSN) will be discussed, focusing on its appli-
cations, supporting software, topologies, routing and security.

2.1 Wireless Sensor Networks (WSN)

Wireless Sensor Networks (WSN) are radio frequency communications’ networks using
the standard IEEE 802.15.4, ZigBee [12] as better explained in 2.2. These networks are
deployed by using devices (called sensors) that are cheap (expected to cost about 1 US$)
and small (from tens of cubic millimetres to tens of cubic centimetres). These sensors
are very limited in computational, energetic and communication capabilities [15]. They
are deployed along some geographic area, forming a communication network (that can
be more dense or sparse) taking as advantages the price and the easiness of deployment
of the sensors. The involved costs of deployment are usually insignificant and for it
contributes the fact that the network must be able to self-organize and don’t need a su-
pervision during its work [16].

On a WSN, sensors cooperate among them in order they can produce the desired
work. This work can be (as already stated in 1.1) the result (in form of events) of moni-
toring of/interaction with physical environment (measuring the involved physical vari-
ables).

A sensor node has a microprocessor, a radio communications circuit (IEEE 802.15.4)
and one or more sensors (environment variables measurement units) with capabilities
to measure and process some kind of external events: temperature, humidity, pressure,
noise, light, etc. These sensors can also be applied to medicine, with the external events
being the physiological indicators or vital signs of the human body.

9

2. WIRELESS SENSOR NETWORKS 2.2. Software Architecture in WSN

Events are detected and measured by sensors and then the information is dissemi-
nated over the network (optionally, before being sent, data can be preprocessed). The
network usually has a multi-hop topology (single-hop in some cases [17]) and along
the network can exist some intermediate nodes that process and aggregate data sent by
source sensors. In the end, data is collected by Base Stations (BSs) that are responsible for
the aggregation of all the data. Base Stations are special nodes that usually have less lim-
itations than the sensor nodes; this includes better computational, energetic, storage and
communication capabilities. These BSs are usually connected in some way (for example a
TCP/IP wired or wireless network, or over Internet) between them and to systems where
applications are running and waiting for the data collected by sensors.

2.2 Software Architecture in WSN

The Software Architectures in WSN are usually structured considering the specific re-
quirements of the software being developed. It can even happen that different layers
could merge, in order to achieve a better performance meeting specific requirements.

However it is possible to present a generic reference model as the one presented in
figure 2.1, representing the communications stack supported in a sensor node platform
[18, 19, 20, 21, 11, 22]. It can be decomposed in:

• Application — Refers to the specific application software running on WSN nodes;

• Network — Refers to the routing protocols used by sensors;

• MAC (Media Access Control) — Refers to the media access control implemented
by the hardware present in the sensors;

• Physical — Refers to the physical used medium (in the case of WSN, the air), man-
aging the emitter/receiver of radio waves and selecting appropriate communica-
tion channels;

The security layer is transversal to all the other layers, since we’re interested in having
security in all the above layers.

IEEE 802.15.4 [11] norm specifies the physical and MAC layers, intending to make
nodes communicate in dozens of meters; because of its short ranges, this communica-
tions are called Wireless Personal Area Networks (WPAN). This norm tries to satisfy the
requirements of this kind of networks, being energy-aware and obtaining minimal oper-
ation costs with technological simplicity.

Considering the WSN security stack as represented in the Figure 2.1, on top of the
MAC-DataLink Layer can be found a base secure wireless communication layer, with
different solutions from the industry (e.g. IEEE 802.15.4 security services [23] or Tiny-
Sec [24] or from research implementations like MiniSec [25]). These base secure sensor
network communication protocols need to provide three basic properties: data secrecy,

10

2. WIRELESS SENSOR NETWORKS 2.2. Software Architecture in WSN

Application

Network

MAC (Media Access Control)
and DataLink Layer

OS Layer

S
ec

ur
ity

TinyOS, Contiki, J2ME/JVM

IEEE 802.15.4,
Zigbee-MAC

Network Organization
and Routing Services

Data-aggregation, Data-Processing,
Data-Management and

Specific Application Support

HardwareMicaMotes, SunSpots, ...

Figure 2.1: Stack for WSN Software Support

authentication, and replay protection. Secure sensor network link layer protocols such
as TinySec and ZigBee benefit from a significant attention in the research community.
However, TinySec achieves low energy consumption by reducing the level of security
provided. In contrast, ZigBee provides high security, but suffers from high energy con-
sumption. MiniSec is a secure network layer that obtains the best of both worlds: low
energy consumption and high security. MiniSec has two operating modes, one tailored
for single-source communication, and another tailored for multi-source broadcast com-
munication. The latter does not require per-sender state for replay protection and thus
scales to large networks.

In the context of this thesis, these security layers are not in the focus of our expected
contributions and we will reuse a specific solution implementing MiniSec primitives, as
the main base security abstraction level to support the routing services. In the context of
the SITAN project, a publicly available implementation of MiniSec for the Telos B plat-
forms has been used. Experimental results [26] demonstrate that it is a good solution
(compared with the other solutions above), for the balance optimization between secu-
rity and energy savings.

For this thesis, the developed work will be focused on Network layer. It is expected
that the MAC layer already offers secure communications mechanisms (including the
cryptographic keys management and distribution). The idea of this project is to propose,
implement and assess an intrusion tolerant routing service for WSN inspired by existing

11

2. WIRELESS SENSOR NETWORKS 2.3. WSN for large scale topologies and environments

routing protocols [27, 28, 29, 30, 31]. An analysis to these protocols is made in section 3.2.
General considerations about routing protocols for WSN are made in 2.4.

2.3 WSN for large scale topologies and environments

Wireless Sensor Networks are supposed to be used in large-scale environments (thou-
sands of nodes) in order to cover large geographic areas. Obviously some properties
must be verified, like the density of nodes and their distribution. The number of nodes
must be sufficient to cover the desired area and must be properly distributed along the
field in order to comply with the communications level limitations.

In such environments (large geographic extensions or locations hard to reach), it is
fundamental that the network can organize itself (at start or at each reset, by establish-
ing connections and routes between nodes accordingly to some criteria of discovery and
self-organization) and operate in an autonomous way, without any kind of supervision.
During the organisation process and the normal operation, the network must also be able
to adapt itself to the physical environment where is placed (for example, deal with signal
reflections, environmental conditions, hidden terminal problem, etc.).

The communication model consists in the multi-hop routing of the data generated
by nodes, through various nodes of the network until the data aggregation nodes (Base
Stations). Although the number of nodes generating data is of the order of thousands of
nodes (as already stated), the Base Stations are in small number (usually not more than
from one to some dozens). So that the energy consumption can be reduced (increasing
the network lifetime), some filtering to the sent data shall be applied; this filtering can
be done in the source node (through some preprocessing, like sending the mean of some
measurement instead of all reads) or in intermediate nodes (through some kind of pro-
cessing by these nodes).

2.4 Routing Protocols

An ad-hoc network consists of a collection of wireless nodes, each node communicating
directly with other nodes within its transmission range. Communications between out-
of-range nodes have to be routed through one or multiple intermediate nodes (hops).
Since nodes may be mobile, the routing protocol should be able to handle rapid topology
changes.

Wireless Sensor Networks are considered as a particular case of ad-hoc networks,
where the nodes are extended with sensing capabilities. This leads to a network com-
posed by one or multiple Base Stations or syncnodes (acting as sinks) and many tiny
and low-powered sensor nodes. Both networks share in common many properties, such
as the self-organisation, energy efficiency, wireless multi-hop communications and the
usage of CSMA-CA technique for MAC level.

12

2. WIRELESS SENSOR NETWORKS 2.4. Routing Protocols

A Wireless Sensor Network differs however from an ad-hoc network in several as-
pects:

• Equipment — A node in an ad-hoc network is usually a more powerful device
in terms of available resources (like laptops or PDAs), while in WSN a node is
typically a smaller device with a low-speed processor, limited memory and a short-
range transceiver;

• Software stack — An ad-hoc network offers an uniform software stack for different
applications, possibly with multiple applications running over the same stack. In
a WSN the software stack offers the more low-level common abstractions (physical
and data-link IEEE 802.15.4) and all the rest is left to application-specific require-
ments;

• Energy — WSN have tighter requirements in terms of energy. This is usually a
finite resource in many large-scale outdoor environments;

• Mobility — In ad-hoc networks the nodes are usually mobile while in WSN the
sensors are not (or have a limited mobility);

• Environment interaction — Although more recent applications for ad-hoc net-
works can interact with the environment (like participatory sensing applications),
this interaction is usually absent in these networks. In the other hand, the interac-
tion with the environment is the core of WSN.

• Communication throughputs — Theoretical throughputs are 250 Kbps for WSN
(IEEE 802.15.4) while in ad-hoc networks tens to hundreds of Mbps can be achieved
(IEEE 802.11).

Considering the previous points, the differenced characteristics of the WSN add strong
constrains to the routing protocols, namely in terms of correctness, evolving and perfor-
mance, as well as the supported security properties.

Routing protocols (network layer in Figure 2.1) have thus an essential role in Wire-
less Sensor Networks. In fact, they have the responsibility to make all the nodes in the
network able to communicate with all others (obviously in a non-partitioned network)
through multi-hop in a simple, efficient and energy-aware manner. In Section 3.2, WSN
specific protocols are analysed in a detailed way; in this section, we’ll talk about general
concerns of these protocols.

In the scope of the ad-hoc networks, routing protocols are usually divided into two
large categories (as studied in the following sections):

• Proactive Routing (2.4.1);

• Reactive Routing. (2.4.2).

13

2. WIRELESS SENSOR NETWORKS 2.4. Routing Protocols

2.4.1 Proactive Routing

Proactive routing protocols (also called as table-driven protocols) use pre-established
routing tables in order to forward the packets. In these protocols, nodes constantly ex-
change information in order to maintain the routing tables always updated (even when
there’s no communication requests). DSDV (Destination-Sequenced Distance-Vector) [32]
and OLSR (Optimized Link State Routing) [33] are examples of table-driven routing pro-
tocols used in ad-hoc networks.

This kind of protocols are usually divided into the following main steps:

1. Nodes discovery and self-organisation;

2. Routes discovery;

3. Routes selection;

4. Routes maintenance.

Step 1 refers to each node discovering the existence of other nodes in its physical
neighbourhood and organising itself in order to establish, for example, cryptographic
keys with each of the neighbours. Each node sends HELLO messages to the others, in
order to introduce himself in the network.

Step 2 refers to the process of (for each node) discovering which possible routes exist
between the node and the Base Station(s).

Step 3 is the selection of the output produced by step 2; the previous step usually
finds a large set of possible routes, and the node is usually interested in just a subset of
them, accordingly with defined priorities (for example, the n routes with less hops). In
the end of this step, the network is operating normally.

Step 4 refers to a step that is always present during the normal operation of the net-
work. Nodes can fail, a pair of nodes belonging to a route can no more be able to commu-
nicate with each other (for example, due to change of weather conditions) or even after
a certain amount of time operating, cryptographic keys can be cracked. This way, the
routes should be constantly monitored/maintained and managed. One possibility is to
start the process from the beginning (reset and start from step 1) that is specially suitable
for cases like the crack of cryptographic keys.

The overhead created by all these steps and by the routing tables management com-
pensates in applications where data is sent by nodes in a regular or permanent way. Some
examples are applications for permanent monitoring of events or regular measurement
of physical phenomenons.

2.4.2 Reactive Routing

Reactive routing protocols (also called as on-demand protocols) are, as the name says,
protocols that are reactive, acting just when necessary in order to forward the packets.

14

2. WIRELESS SENSOR NETWORKS 2.4. Routing Protocols

For the support of multiple applications, based in non-regular events dissemination, on-
demand protocols can be better as the nodes just exchange informations when there are
communications to establish. This way, routing tables are not necessary and routes selec-
tion processes are started when there is data to send over the network. This avoids the
overhead of routing tables management and maintenance.

AODV (Ad-hoc On-demand Distance Vector) [34] is an on-demand protocol and DSR
(Dynamic Source Routing) [35] is a variant, with source-routing policies.

On-demand protocols are widely used in ad-hoc networks but mostly in mobile net-
works, whose nodes can move difficulting the maintenance of links states. In our case
study (WSN), sensors are statically placed and are sending regularly measured data. In
this environment, there is no sense in implementing on-demand routing protocols as
routes reorganization, discovery or selection and evaluation of new routes will have no
advantages, considering energy consumption and latency in the network.

In order to evaluate the most appropriated routing category, it is important to take
into account the context of the secure routing service for WSN presented on this disserta-
tion. It is important to consider the particularities of the ad-hoc networks in our context
(considering WSN as a particular case of them), namely the autonomous operation and
the non-mobility of the nodes. In the scope of this work, we are particularly interested in
routing protocols with proactive characteristics, for plain topologies (as will be discussed
in 2.4.3).

2.4.3 Routing topology

Apart of being table-driven or on-demand, there are another typologies to consider.
In terms of centralization, a routing protocol can discover the routes in a centralized

or distributed manner. On the centralized discovering, nodes ask Base Stations (or other
special nodes) about routes. This way, Base Stations are the nodes responsible for routes
discovery and computation, based in each node neighbourhood’s information. On the
distributed discovery, each node is responsible for create, compute and maintain (update)
its routing table.

In terms of organization of the routes in the network, there are three modes:

• Geographical routing [36];

• Cluster-based routing [37, 38];

• Plain routing.

Geographical routing requires that each node knows its own location as well as the
location of the destination nodes where to it will send data. The route (and thus the
next hop) of some packet is determined in the moment that the packet is received and
depends just on the geographical information of the destiny. This way, nodes do not
need to store any information about routes. Examples of protocols of this group are the
SIGF [36] protocols family.

15

2. WIRELESS SENSOR NETWORKS 2.5. Security and Reliability

Cluster-based routing aggregates the nodes in clusters, having each cluster a rep-
resentative node called cluster-head. Nodes of each cluster send the packets to their
representatives (cluster-heads) which in turn forward the packets between cluster-heads
until their destinations. Destiny is usually a Base Station or another node in the network
- regular node or another cluster-head. This kind of protocols can have energy-aware
properties, as they can define as cluster-heads those nodes with more energy at a given
moment; after a certain amount of time, the cluster-heads can be exchanged with other
nodes that have then more energy. Cluster hierarchies are allowed, meaning that some
cluster-head can itself be a member of a cluster with another cluster-head of a superior
level. Some examples of this kind of protocols are LEACH [37] and PEGASIS [38].

Plain routing protocols do not require any kind of structure in the network; who
develops the protocol is totally free to define the organisation of nodes and how routes
are generated. This way, some protocols choose to structure the network in some way
while others choose to use the network without any specific structure. While in a non-
structured network is not necessary, in a structured network some rules must be followed
in order to construct the network. For example, in a tree organized network, the sink node
(usually a Base Station) is placed as the root of the network; each of the other nodes must
be organized in such way that at least one root exists above it. The tree organization leads
to a faster wastage of energy in the topper levels nodes.

This dissertation addresses the secure routing problem with intrusion tolerance char-
acteristics in ad-hoc WSN; in this setting, we are particularly concerned on routing pro-
tocols following the randomly generated plain topology routing model. Within this idea,
we are particularly interested in protocols with the following characteristics:

• Exploit of redundancy in order to tolerate intrusions without any need for detecting
the nodes where intrusions have occurred. This will allow the network to operate
correctly in the presence of undetected intrusions;

• Perform all the heavy computations at the BS level, minimising the role of sensor
nodes in building routing tables or dealing with security and intrusion-tolerance
issues. This allows to minimise the need for computation, storage, bandwidth and
energy capabilities at the sensor nodes;

• Limit the scope of damage done by undetected intruders, limiting the flooding and
using appropriate authentication mechanisms (like symmetric-key cryptography).

As related examples of the approach to the goals of this dissertation, protocols with
these characteristics are presented in Chapter 3.

2.5 Security and Reliability

Security services, techniques and mechanisms usually used in conventional networks (or
even in general purpose ad-hoc mobile networks) can not be used in WSN due to their

16

2. WIRELESS SENSOR NETWORKS 2.5. Security and Reliability

characteristics and limitations. Considering all the physical characteristics, wireless com-
munications properties and application scenarios, security mechanisms must be present
at all stack protocol’s layers.

WSN are usually deployed in geographical areas without any kind of supervision;
this factor leads us to the risk of physical attacks to the sensors. Plus, the interaction
of these kind of networks with the environment increases vulnerability, as sensors are
exposed to all kind of adversities from the environment.

For a network to be secure, the degradation of the operation must be at most pro-
portional to the number of attacks (this is called graceful degradation). Obviously, a net-
work will be as better as how much it can resist to the fail or attack situations; the more
immune the network is to affected nodes (maintaining global connectivity), the better
service it will provide. A secure routing service should therefore guarantee the network
connectivity, reliability and preferably that the dissemination is made in optimal con-
ditions (relative to latency and energy consumption). In order to reach this purpose,
various security services from different stack’s layers should complement each others; it
is also important to be conscious that security services must have adequate communica-
tions and computational complexity for WSN.

The security focus of this thesis will be held in the network layer. It is important
however to understand what guarantees are offered by lower layers, as MAC. This topic
is studied in 2.5.2.

2.5.1 Attacker’s model

Attacker’s model defines the (possible) behaviour of an attacker, in such a given system.
Attacker’s model for WSN is defined by Karlof-Wagner [39] and the following descrip-
tion is based in that definition.

In a WSN an attacker can be active or passive. A passive attacker (similar to what
is defined by Dolev-Yao [40]) just intercepts communications in order to know the in-
formation that is being transmitted. On the other hand, an active attacker (with some
characteristics from Dolev-Yao and from OSI X.800 Framework [41]) is able to change
the normal behaviour of the network for example by changing messages’ data, posing as
various other nodes, dropping all the messages he receives, sending a node’s information
to other not in its neighbourhood, etc. Passive attacks are more difficult to detect, as such
attacks do not destroy the operations of routing protocols. A passive attack typically in-
volves only eavesdropping1 the routing traffic, in order to discover valuable information;
two possible solutions to restrain eavesdropping can be the adoption of encryption in the
application layer [42] or to transmit parts of a message over multiple disjoint paths and
reassemble them at the destination [43].

An attacker can also be internal or external. An internal attacker attacks from inside

1Eavesdropping is the act of secretly listening to the private conversation of others without their consent.

17

2. WIRELESS SENSOR NETWORKS 2.5. Security and Reliability

of the network, while an external attacker acts from outside of the network. An inter-
nal attacker is able to capture any node from the network and obtain all the data within
the node (communications history and cryptographic keys). The captured node(s) still
belongs to the network (as it still has its credentials) but can have a behaviour defined
by the attacker. This way, the infected node can have the same behaviour of an external
attacker, with the privilege that is trusted by the other nodes. By changing the behaviour
of a node, this intruder can attack accordingly to the Byzantine model. Security mech-
anisms relying on authentication or encryption may not handle internal attacks, since
these compromised nodes also have the keys (and thus are treated as authorised parties
in the network).

From outside of the network, an external attacker can see the traffic or block commu-
nications through jamming2. The external adversary can belong to one of two classes:
sensor-class or laptop-class. A sensor-class attacker uses one or more sensors equals to
those from the WSN to attack the network; that means he can only reach the neighbour-
hood of each attacker’s sensor. A laptop-class attacker is equipped with a laptop com-
puter, meaning that he has more computational power, memory storage, communication
and energy than WSN’s nodes; this way, this kind of attacker can reach a big part or even
all the network to do more sophisticated attacks.

As an internal attacker is trusted by the network, it is the most dangerous attacker in
WSN and that’s why WSN need security services with intrusion tolerance.

Several possible attacks are presented in the following sections.

2.5.2 MAC Layer

The attacks made to MAC layer can follow the MAC protocol or not.

If following the protocol, the attacker acts as a legitimate member of the network.
One example of possible attacks is DoS (Denial of Service) attack (through the flooding
of maximum sized packets), causing an energy draining in correct nodes and decreas-
ing the available bandwidth. Another example is the configuration of a node to act as if
working without battery (infinite energy), what makes the pause time between retrans-
missions to be reduced, causing CSMA/CA mechanism to monopolize the access to the
communication medium. These two attacks make the delivered packets ratio to be re-
duced [44].

If not following the protocol, the attacker can make a node not to use the CSMA/CA
mechanism correctly. This way, collisions will exist in the communications and all the
transmissions will be blocked. This attacker can also resend, modify or send false infor-
mation (for example, false ACKs3).

2Radio jamming is the (usually deliberate) transmission of radio signals that disrupt communications by
decreasing the signal to noise ratio.

3In data networking, an acknowledgement (ACK) is a signal passed between communicating processes
to signify acknowledgement, or receipt of response, as part of a communications protocol.

18

2. WIRELESS SENSOR NETWORKS 2.5. Security and Reliability

2.5.3 Network Layer and Routing Attacks

An analysis to the network layer comprises the study of the network organisation and
the data dissemination models (routing) (2.4). Another important aspect is the security
concerns of the layer. Cryptographic keys distribution mechanisms are also considered;
however, in this thesis context, it is assumed that a secure cryptographic keys distribution
mechanism is already available.

The earliest developed routing protocols used to assume that all the nodes in the net-
work had a correct behaviour, without any security concerns. More recent routing proto-
cols are now aware of the attacker’s model for WSN (2.5.1). One of the main concerns is
to make intrusion tolerant routing protocols; this can be done in a preventive way or in a
detection/correction way.

Preventive protocols use mechanisms in order to work in the best possible way in the
presence of intruders. The detection/correction protocols use intruders’ detectors and try
to kick the intruder(s) out of the network. Concerning the network’s organisation model
and data routing, in 3.2 some routing protocols are analysed.

Accordingly with the attacker’s model (2.5.1), we introduce below several possible
attacks; some of them intend to modify the exchanged information while others intend
to modify the network’s topology. We divide these attacks into three classes: attacks on
route discovery process, attacks on route selection process, and attacks after establishing
routing paths.

Before the analysis to some of the existing attacks, the analysed ones are summarised
in Figure 2.2. As we can see from the figure, some of these attacks are directed just to sen-
sor networks, just to ad-hoc networks (composed by powerful devices) and others are
directed to both [45]. In the scope of this thesis, we are interested just in the attacks di-
rected to sensor networks (just to sensor networks or both ad-hoc and sensor networks).
Although Base Stations are powerful devices when compared with sensor nodes, in our
solution they are working in infrastructure mode (instead of an ad-hoc operation). At-
tacks directed just to ad-hoc networks (Rushing Attacks and RREQ4 Flood Attacks) are
not considered as their main purpose is to break the route discovery process of a pure
ad-hoc network (composed by powerful devices) using an on-demand routing protocol.

2.5.3.1 Attacks on Route Discovery Process

The attacks directed to the route discovery process attempt to prevent legitimate nodes
from establishing routing paths among them, for example by sending fake routing infor-
mation. This kind of attacks will lead to a denial of service (DoS).

Fake Routing Information
An efficient attack against a routing protocol is to provide fake routing information, dur-
ing its route discovery process.

4RREQ is an acronym used for Route Request Messages.

19

2. WIRELESS SENSOR NETWORKS 2.5. Security and Reliability

Attacks on Routing

Mechanisms

On Route Discovery

Process

On Route Selection

Process

After Establishing

Routing Paths

Fake Routing Information

Rushing Attacks

RREQ Flood Attacks

HELLO Flood Attacks

Sinkhole Attacks

Wormhole Attacks

Sybil Attacks

Blackhole Attacks

Spam Attacks

Attacks in ad-hoc and sensor networks

Attacks just in ad-hoc networks

Attacks just in sensor networks

Figure 2.2: Summary of the attacks analysed in the following sections

20

2. WIRELESS SENSOR NETWORKS 2.5. Security and Reliability

For table-driven routing protocols (the protocols family we are interested in the scope
of this thesis), a malicious node can interfere with legitimate nodes by announcing in-
correct routing information [46]. Such behaviour can invalidate the routing tables of the
legitimate nodes, leading to the impossibility of communication among them. Some pos-
sible results are the partition of the network or the creation of routing cycles.

2.5.3.2 Attacks on Route Selection Process

The attacks directed to the route selection process attempt to increase the chance that
malicious nodes are selected as part of the routes, by legitimate nodes.

By establishing routes through malicious nodes, they can overhear transmitted mes-
sages or improve the attacks presented in 2.5.3.3, leading to a disruption of the network
operation.

HELLO Flood Attacks
Many of the routing protocols developed to WSN require nodes to broadcast HELLO
messages, in order to announce themselves to their neighbours. The nodes receiving
such messages assume that the senders are their neighbours, with a one-hop distance.

A laptop-class external attacker (2.5.1) may however violate this assumption. Such
an attacker has a greater transmission power to broadcast HELLO messages, thus being
able to cover a larger range of nodes. The receiving (legitimate) sensors will be convicted
that the attacker is one of their one-hop distance neighbours.

Protocols relying on localised information exchange between neighbours for topology
maintenance (or flow control) are vulnerable to this attack. Furthermore, the attacker can
advertise higher quality or shorter routes, causing the nodes to follow these routes.

With this attack [15], most of the messages (from legitimate nodes) will not reach the
attacker, since sensor nodes have a much smaller transmission power than the attacker
and the network will be driven to a chaotic and confused state. An example of this attack
is shown in Figure 2.3.

Sinkhole Attacks
The goal of a sinkhole attacker [15] is to attract all the messages from its neighbours to be
routed through it.

With this attack, all the traffic from the area near the adversary will flow through
it, creating a (metaphorical) sinkhole centred in the malicious node. These attacks are
performed by making the attacker look especially attractive to its neighbours (respecting
to the routing algorithm). An attacker can, for example, offer an extremely high quality
route to a Base Station; alternatively, the malicious node may even announce itself as a
neighbour of a Base Station, spoofing the legitimate nodes.

While in the HELLO flood attack the attacker uses a greater transmission power, the
sinkhole attacker usually uses a normal transmission power, thus affecting just a certain

21

2. WIRELESS SENSOR NETWORKS 2.5. Security and Reliability

Figure 2.3: HELLO flood attack.

Figure 2.4: Sinkhole attack.

subset of the network. This attack is shown in Figure 2.4 and can be performed both by
an internal or by an external adversary.

Wormhole Attacks
Unlike HELLO flood and sinkhole attacks, multiple malicious nodes can cooperate to
generate attacks against the network during its route selection process; one of these at-
tacks is the wormhole attack.

In a wormhole attack [47], two distant malicious nodes use an autonomous commu-
nication channel (available only to the attackers) in order to tunnel received messages
from one side to the other. Packets transmitted through this wormhole tunnel usually
have lower latency than those sent between the same pair of nodes over normal multi-
hop routing (due to the number of hops). This causes the false appearance that routing

22

2. WIRELESS SENSOR NETWORKS 2.5. Security and Reliability

Figure 2.5: Wormhole attack.

through the malicious nodes is a better choice and the legitimate nodes will select the
malicious nodes as intermediate nodes in their routes. Furthermore, wormholes can in-
terfere in the network’s topology, by relaying packets between two distant nodes and
thus causing them to consider themselves as neighbours in a fake network topology.

WSN are very vulnerable to the wormhole attack due to two reasons. First, because
external laptop-class attackers can use communication technologies not available to the
sensors (like IEEE 802.11 or IEEE 802.3), offering low latency and high bandwidth tun-
nels. Second, because an adversary geographically close to a Base Station can control a
lot of the routing, by creating a well-placed wormhole. Figure 2.5 exemplifies the situa-
tion in which the adversary is located close to a Base Station, and thus more than half of
the sensor nodes guide their traffic through the wormhole tunnel.

Sybil Attacks
In a Sybil attack [48], an adversary disguises itself with multiple identities.

Such an attacker acts as multiple different nodes, by advertising to its neighbours a set
of multiple identities. Furthermore, the adversary can create many fake (virtual) nodes
and thus increase the probability of the malicious (real) node being selected by the other
nodes as part of their routing paths. Another perverse effect of this attack is that it can
also significantly reduce the effectiveness of fault-tolerance mechanisms, such as multiple
disjoint paths routing [49, 50], making the adversary belong to two different routes due
to its multiple identities. Other nodes will then treat the fake nodes as different nodes
and establish different routes through the same infected node.

2.5.3.3 Attacks after Establishing Routing Paths

Once an attacker successfully inserts an infected node in the network (using for example
techniques explained in 2.5.3.2), several attacks after the establishment of routing paths

23

2. WIRELESS SENSOR NETWORKS 2.5. Security and Reliability

can be made. At this stage, source nodes have already established routes through the
infected node.

Such a malicious node can unscrupulously drop all the packets passing through it,
or modify their contents (if no encryption is used). Another common attack is to act
as a source node (establishing routes to other nodes) and just send dummy messages,
exhausting other nodes’ energy and network’s bandwidth.

Blackhole Attacks
The operation of networks based on multi-hop communications (such as WSN) must rely
on the assumption that the participating nodes will cooperate on the forward of received
messages.

In a blackhole attack [51], the malicious nodes violate such assumption. In fact, they
drop all the received messages, preventing them from being propagated until their des-
tinations (creating a metaphorical blackhole).

To prevent these attacks, many routing protocols have a route maintenance mechanism
that removes from the network the nodes that are not propagating the messages. Such
infected nodes are detected when a legitimate node finds that its next-hop neighbour
is not routing the messages and warns the source to create another routing path. With
such mechanism, a blackhole attack is trivial to detect; a trickier and more sophisticated
attacker selectively forwards some of the packets [15], in order to cheat the source that
the route is still alive and forwarding.

Spam Attacks
Spam attacks5 [52] frequently generate a large number of unsolicited and useless mes-
sages to the network. The only purpose of this attack is to waste the network’s bandwidth
and the energy of nodes receiving or forwarding such messages.

Spam attacks are more harmful to sensor networks as in these networks the energy
is (most of the times) a finite resource. A well planned attack (possibly with more than
one infected node) will make the infected node(s) transmit dummy messages to the Base
Stations, consuming energy of the forwarding sensors (specially those closer to the Base
Stations). Once the energy of these sensors is exhausted, Base Stations will no more
be able to receive data from the sensor network, causing the collapse of all the WSN
(although with most of the sensors alive).

2.5.4 Defences of Routing Attacks for WSN

In this section, we make an overview of some possible defences against the attacks spec-
ified in the previous section (2.5.3).

5Spam is the use of electronic messaging systems to send unsolicited bulk messages indiscriminately.
While the most widely recognized form of spam is e-mail spam, the term is applied to similar abuses in
other media.

24

2. WIRELESS SENSOR NETWORKS 2.5. Security and Reliability

The routing service presented in this dissertation does not rely on detecting intru-
sions, but rather tolerates intrusions by bypassing the malicious nodes.

In Wireless Sensor Networks, the wireless nature of the communications among the
sensor nodes increase the vulnerability of the network to a wide range of attacks (like
eavesdropping, unauthorised access, spoofing and replay attacks). Also, the presented
highly resource-constrained nature of the sensors limit the degree of encryption, de-
cryption and authentication that can be implemented on individual sensor nodes; this
calls into question the suitability of traditional security mechanisms (such as compute-
intensive public-key cryptography) for such resource-constrained sensors. Furthermore,
WSN face the added physical security risk of sensor nodes deployed across the field being
captured by an intruder; with such successful attack, the intruder can use the compro-
mised sensor node to instigate malicious actions (as advertising fake routing information)
from within the sensor network.

The combination of these threats motivate the following design philosophy in order
to achieve secure WSN: concede that a well-equipped intruder can compromise individ-
ual sensor nodes, but secure the overall design of the WSN so that these intrusions can
be tolerated and the network as a whole remains functioning despite of such localised in-
trusions. The objective of this dissertation is thus the design of intrusion-tolerant secure
WSN that have the property that a single compromised node can only disrupt a localised
portion of the network, and can not shut down the entire WSN.

2.5.4.1 Defences against Fake Routing Information

One possible solution to prevent an external attacker from generating fake routing infor-
mation on the network, is to apply security mechanisms based on encryption; with the
usage of such mechanisms, authentication may be required by the routing protocol.

In order to use this defence, nodes in the network share keys to authenticate their
data packets and routing control messages. Within this vision and since an external at-
tacker does not have the keys to authenticate its packets, all the fake routing information
injected in the network will not be accepted by the other legitimate nodes. With such
mechanism, these attacks can be defended.

2.5.4.2 Defences against HELLO Flood Attacks

As already studied, HELLO Flood Attacks are usually caused by an external laptop-class
attacker, using a large transmission power and creating asymmetric links between it and
the legitimate nodes. One possible and intuitive defence for this attack is to check the
bi-directionality of a link between two neighbours. With this defence, a node discovering
neighbours broadcasts an HELLO message and waits for each neighbour to answer with
its identity; the first node will only consider as neighbours the nodes who from it receives
correct responses.

Another defence to this attack is to use a Base Station as a trusted third-party to help

25

2. WIRELESS SENSOR NETWORKS 2.5. Security and Reliability

Figure 2.6: Base Station authentication.

two sensors verify each other; thus, each node in the network must share a unique sym-
metric key with the BS. Two sensors (u and v) are then able to verify each other’s identity
and establish a shared key through the BS, that will be used for them to communicate. To
prevent an attacker from trying to establish too many connections (with HELLO Flood
Attack), the Base Station can reasonably limit the maximum number of neighbours for
each node. This mechanism is represented in Figure 2.6.

2.5.4.3 Defences against Sinkhole Attacks

In this attack, the intruder tries to attract the traffic to be routed through it.

A proposed solution to on-demand protocols (more specifically to Dynamic Source
Routing protocol) [53] uses three indicators to determine whether sinkhole attackers exist
in the network:

1. Discontinuity of sequence numbers — Sequence numbers of packets originated
from a node should strictly increase in DSR. However, a sinkhole attacker attempts
to use a very large sequence number, in order to update the route caches contents
of other nodes. To prevent the attack, a node must then monitor the sequence num-
bers of received RREQ packets and pay attention to those not strictly increasing or
unusually large;

2. Ratio of verified RREQ packets — The source address of a node initiating a RREQ
packet shall be its own address. A sinkhole attacker initiates, however, RREQ pack-
ets with different sources (and periodically broadcasts them). Anyway, the RREQ
can be verified by the source’s neighbours; this means that a lower ratio of verified
RREQ packets in the overall network may reveal the presence of a sinkhole attacker.

3. Ratio of routes through a particular node — Legitimate nodes of the network may
determine the existence of a sinkhole attacker by checking their routing caches. If

26

2. WIRELESS SENSOR NETWORKS 2.5. Security and Reliability

a given (legitimate) node finds that most of its cached routes are through a partic-
ular node, it will suspect that this node is a potential attacker, since the goal of the
attacker is to exactly have a big amount of routes passing through it.

2.5.4.4 Defences against Wormholes Attacks

A possible solution to prevent two distant malicious nodes from using an out-of-bound
channel to tunnel packets (a wormhole attack) is to introduce the concept of packet leash
[47]. A leash is the information added to a packet, defining the maximum allowed trans-
mission distance; such distance can be geographical or temporal. While the geographical
guarantees that the receiver of the packet is within a certain distance from the sender,
the temporal guarantees that the packet has a lifetime, which also restricts its maximum
travelling distance.

With temporal leashes all the nodes in the network must have tight time synchro-
nization (the maximum allowed difference in clocks between any two nodes is ∆, known
by all of them). When a node u transmits a packet, the claimed transmission time (tu)
and a expiration time (texpire = tu + L

vc
− ∆, where L is the maximum distance that the

packet is allowed to travel and vc is the propagation speed) are included and protected
with cryptographic authentication. When a node v receives the packet at time tv, it can
determine if there are any wormhole attacks in its route. If tv < texpire, v will accept the
packet; otherwise, the packet is discarded and the wormhole attack is found, with earlier
RREQ packets having been tunnelled previously.

2.5.4.5 Defences against Sybil Attacks

In the Sybil Attacks, the intruder presents itself with many different identities to its neigh-
bours. One possible defence is called radio resource testing [48] and is based in the as-
sumption that each physical node (including the attacker) has only one radio device; fur-
thermore, a radio is incapable of simultaneously sending or receiving on more than one
channel. With this idea, a node searching for Sybil attackers in its neighbourhood assigns
to each of its neighbours a different channel to broadcast messages and then randomly
selects a channel to listen. If a message can be received, the neighbour is legitimate; oth-
erwise, the node is considered a Sybil attacker.

Another defence is the random key pre-distribution. Although this scheme is intended
to be a key distribution mechanism, it can also prevent the Sybil attacker. It consists in
each node having a set of keys assigned, from which its personal keys are those whose
indexes are determined by the hash value of its identity. Since the hash function is very
hard to inverse (and obtain the original identity), a Sybil attacker cannot just collect a
random subset of keys and claim fake identities from these keys.

27

2. WIRELESS SENSOR NETWORKS 2.5. Security and Reliability

2.5.4.6 Defences against Blackhole Attacks

A proposed solution [54] to defend against blackhole attacks is to use a watchdog scheme
to identify potential malicious nodes, and provide data to a pathrater scheme.

The watchdog scheme is based in the assumption that a node can overhear the packets
transmitted by its neighbours. The idea for a protocol like DSR is then that when a node
u transmits a data packet to its next-hop neighbour v, u will overhear the transmission
from v to check if v is really forwarding the packet to its neighbours or not. At each
node, the watchdog maintains a counter to record bad behaviours of each of its next-hop
neighbours; if the counter exceeds a given threshold for a given neighbour, the watchdog
will infer that its neighbour may be a malicious node and reports it to the source.

Combined with the watchdog, a pathrater scheme helps to avoid these kind of attacks.
With the data provided by the watchdog, each node will eventually assign a rating to
every other nodes of the network (a non-negative value to every legitimate node and a
highly negative value to each malicious node). The overall rating of a routing path is the
average rating of nodes on that route. The source is then able to select the most reliable
route, by using the one with the highest ranking value to forward its packets. A routing
path with an overall negative ranking value implies the presence of malicious nodes in
that path.

Another solution [55] for a protocol like DSR uses the following mechanism:

1. Source routing — The source specifies in each data packet the sequence of nodes
that the packet has to traverse;

2. Destinations acknowledgements — The destination sends an acknowledgement
(ACK) to the source through the same route (in the inverse path) when it receives a
data packet;

3. Timeouts — The source and each intermediate node set a timer for each data packet,
during which they expect to receive an ACK or a fault announcement (FA);

4. Fault announcements — When the timer expires, the node generates a FA and
propagates it to the source.

All the exchanged data within this mechanism (data, ACK and FA messages) are au-
thenticated, in order they can not be modified or fabricated by an attacker. When the
source receives a FA message, the source can detect the presence of a potential blackhole
attacker, and thus select another route to forward its packets.

2.5.4.7 Defences against Spam Attacks

Detect and defend spam (DADS) scheme [52] proposes quarantine regions to isolate spam
attackers and thus defend from spam attacks. Base Stations are responsible for detect-
ing the attacks in the network, with three methods available. The first method consists

28

2. WIRELESS SENSOR NETWORKS 2.5. Security and Reliability

Figure 2.7: DADS example, with a quarantine region.

in filtering incoming messages accordingly with their contents, and detect the nodes fre-
quently sending faulty messages; the second method consists in analysing the arrival rate
of messages from a region of the network; finally, the third method consists in analysing
the packet generation rate of the overall network. The third method is the one suggested
by DADS, because an attacker can possibly move or change its identity, spoofing the BS.

When the number of data packets arriving at the Base Station exceeds a reasonable
level, a defend against spam (DAS) message is sent by the BS to the network. The purpose of
such messages is to quarantine a spam attacker by its one-hop neighbours. When a node
a receives a DAS message, it starts a timer (ta). While this timer does not expire, a only
forwards authenticated messages; if an unauthenticated message is received from b, a
will ask b to retransmit an authenticated message. If this authentication fails, a considers
itself inside a quarantine region and will just forward authenticated messages (including
their own). To save the authentication overhead, if ta expires and a does not detect any
failed authentication during that time, a switches back to the normal mode, cancelling
the quarantine.

Figure 2.7 shows a situation whereM failed the authentication; note that all the nodes
outside of the quarantine region are able to send unauthenticated messages, except e
because c will only accept authenticated messages.

2.5.5 Critical Analysis

In this section, Security and Reliability in WSN was discussed.

An attacker in a WSN can be internal (as an intrusion attack, through the capture of le-
gitimate nodes and consequent modification of their behaviours) or external (as an attack
to the communications); if external, an attacker can belong to a sensor-class (where the
attacker uses similar devices as nodes) or to a laptop-class (where the attacker uses more

29

2. WIRELESS SENSOR NETWORKS 2.5. Security and Reliability

powerful devices, like laptops). An internal attacker is observed as an apparently legit-
imate and trustable node, that knows the cryptographic keys in use by the network. In
the other hand, an external attacker has the advantages of possibly being distributed with
various nodes across the network (if a sensor-class attacker) or to have more resourceful
devices with greater capabilities (if a laptop-class attacker).

An intruder can inject a malicious behaviour in a Wireless Sensor Network at many
levels. However, in the scope of this thesis we are particularly interested in the attacks
directed to the routing layer of the network, with the previously described topology;
attacks to other layers (like DoS attacks to the MAC layer) are out of the scope of this
thesis.

Concerning the attacks to the routing layer in WSN, they can be grouped into attacks
during the route discovery process, attacks during the route selection process and attacks after
the establishment of the routing paths. Many possible attacks within these groups were
presented, as well as possible defences for each. A summary of the discussed attacks and
some possible preventions is presented in table 2.1.

Routing Phase Attack Defences
Intrusion-level

adversary
defences

Route Discovery
Process

Fake Routing
Information

Techniques based on encryp-
tion.

X

Route Selection
Process

HELLO Flood
Attacks

Check of bi-directionality on
links; X
Base Station authentication

Sinkhole
Attacks

Sequence numbers on mes-
sages;

X
Verification of RREQ source
address by neighbours;
Analysis of routing caches

Wormhole
Attacks

Packet leashes, protected by
encryption

X

Sybil Attacks
Radio Resource Testing;

X
Random key pre-distribution

After
Establishing
Route Paths

Blackhole
Attacks

Watchdog + pathrater;
X

ACK / Fault announcements
scheme

Spam Attacks
Detect and defend spam
(DADS) scheme

X

Table 2.1: Summary of the discussed attacks and some possible preventions

30

3
Related Work

The goals for this thesis are the development of a secure, reliable and multi-hop routing
service for a large-scale WSN, the experimental assessment of such routing mechanisms,
assessment of consensus mechanisms and the approach to an hybrid solution within the
simulation environment. The focus is thus in the Network layer as presented in 2.2. The
important related work for such goals is analysed below. In 3.1 simulation environments
will be studied, including an address to emulation environments. In 3.2 an approach to
routing algorithms will be done. The algorithms we are interested in are those offering
security and reliability services. In 3.3 the problem of the distributed consensus will be
discussed, including protocols for solving it.

3.1 WSN Simulation

In the development of software for a Wireless Sensor Network, it is mandatory to have
some way to test it (as in the development of software in general). The developed soft-
ware has a lot of requirements; thereby, the need for reliable and dependable implemen-
tations grows, making almost infeasible to deploy a real WSN with thousands of nodes
for test purposes.

The operation of the protocols is driven by environment variables (measured by the
sensors) and is able to affect even the topology of the network; the energy consumption
depends on the behaviour of the nodes. These constraints make unfeasible [56] to an-
alytically model a WSN, predicting its behaviour and performance of the implemented
protocols.

Instead, this is leading the simulation tools to become more and more important. In

31

3. RELATED WORK 3.1. WSN Simulation

the presence of appropriated testing suites (with good models and tools), the applica-
tion software (developed for the WSN) can be previously tested by running it in PC-
environments before the deploy to sensor nodes of a physical WSN.

3.1.1 Simulation with Emulation

As stated in 3.1, it is almost infeasible to deploy a real network to test in development
software for WSN, bringing simulation testing suits a good approach to testing. How-
ever, testing suites can not only simulate but also emulate. These two concepts can be
defined as [57]:

• Simulation — The properties of an existing or planned network are computation-
ally simulated in order to assess performance and predict behaviours that occur in
the network. Is useful for quickly try new ideas and to evaluate the behaviours
of the implemented protocols; however, there is in simulation a lack of fidelity,
making unrealistic to simulate at instruction-level and with high-fidelity physical
models (radio, power-consumption), that can be relevant for environments where
there is a lack of resources and incidental physical characteristics.

• Emulation — The actions of the nodes are similar to real nodes, running the same
code that would be ran in real sensor nodes, making a similar behaviour occur
(processor, sensors and radio). This solves the flaws from simulation and can be
done, for example, in a simulator supporting both virtual nodes and physical nodes
working on the same network as neighbours [58]. Emulation concept is therefore
situated between a Physical Network and a Simulated Network.

3.1.2 Hybrids Environments for Simulation and Calibration

As already stated, simulation in WSN development is a valuable test environment (for
example, to understand the behaviour of the network in large-scale ad-hoc networks in
order to evaluate the protocols).

However, simulation tests inevitably take assumptions and simplifies mathematical
models like assuming bi-dimensional topologies, perfectly circular transmission ranges,
non-existence of environmental noise, fading effects, etc. [59]. With all these flaws, the
credibility of the obtained measurements and of the results of studies can be questioned
because of this lack of accuracy, comparing with the real world. This conducts to incon-
sistent or misleading results, what requires to calibrate the simulators in order to achieve
realistic results.

Realistic results in WSN Simulators can be achieved by two similar ways:

(a) Implementing a real (small-scale) WSN, obtaining measurements and calibrating the
simulation model of the simulator by reintegration of the measured real-world pa-
rameters [59];

32

3. RELATED WORK 3.1. WSN Simulation

(b) Using an Hybrid Simulator that can, autonomously calibrate itself with measure-
ments obtained from real sensors [60].

An Hybrid Simulator is a simulator that, while providing the simulation capabilities,
enables the interaction of virtual nodes with real ones. While the simulation capabilities
allow the generation of easily scalable scenarios (and all the already referred advantages),
the interaction with real deployed nodes in a real sensor field allow the generation of
realistic data models. With these obtained data models, the calibration of the simulator
[60] is possible.

3.1.3 WSN Simulators

The key properties to select a good and suitable simulation environment for WSN are
[56]:

1. Availability and reusability;

2. Performance and scalability;

3. Support for rich-semantics scripting languages to define experiments and process
results;

4. Graphical, debug and trace support.

Item 1 refers to the existence of implementations of common models in the simula-
tion tools and the easiness in modifying such existing models, or adding new ones. The
former property is important in order a researcher can compare, for example, the per-
formance of a new technique against existing ones, and the latter is important in order a
researcher can reuse or modify code from previous implementations.

Item 2 refers to a major concern in simulation. Simulators should have a nice per-
formance in order to consume a reasonable amount of time and allow the simulation of
large-scale environments.

Item 3 refers to the support of a scripting language that can be used as input to the
simulator, with high-level semantics. This supports the definition of the simulation en-
vironment, as for example but not exclusively, the number of nodes, where is each node
placed, how nodes generate events, etc. This item also refers to an output scripting lan-
guage, allowing the output results to be quickly and precisely analysed.

Item 4 refers to the Graphical User Interface (GUI) being important as a debugging
aid (allowing to watch the behaviour of the simulation), as a visual modelling and com-
position tool (in small and basic experiences) and as a results visualiser (showing quick
results of the execution).

Below are presented some simulators with its main characteristics.

33

3. RELATED WORK 3.1. WSN Simulation

3.1.3.1 TOSSIM/PowerTOSSIM

Tossim [61] is a simulator for sensors equipped with TinyOS. This simulator compiles
and executes the same code that a physical sensor can execute. However, in terms of
emulation, it just emulates a limited set of hardware in a too simplistic way; this leads
to results very different from those obtained from a real physical deployment. Other
problem is that all the sensors in the simulator must run the same code.

PowerTOSSIM [62] appeared as an extension to TOSSIM. It introduces energy con-
sumption emulation mechanisms in the nodes. For each hardware component of the sen-
sor, energy consumption measurements are made. This is an important extension that
allows the programmer to study the behaviour of one of the most important limitations
in WSN: the energy consumption.

3.1.3.2 Freemote

Freemote [58] is a Java-based emulation environment. This platform emulates nodes
running Java code, trough optimized JVMs (Java Virtual Machines) for sensors.

The software architecture is divided into three distinct layers: Application Layer,
Routing and Communications Layer and Hardware Layer. Real nodes can be any de-
vices based in communications standard IEEE 802.15.4 (MICAz, JMotes, etc).

3.1.3.3 Avrora

Avrora [63] simulator was born from a research project called AVR Simulation and Anal-
ysis Framework Platform. It is used as a set of simulation and analysis tools for software
developed for AVR micro-controller (used by Mica2 sensors). This simulator offers an
almost complete and realistic implementation of Mica2 sensors’ hardware.

AvroraZ [64] appeared as an extension to Avrora and allows the emulation of nodes
with AVR micro-controller and radio communications over IEEE 802.15.4 norm. The
main goal of this extension is to provide an accurate emulation of radio communications,
without any changes in running code from real to simulated nodes.

3.1.3.4 VMNet

VMNet [65] is a WSN emulator that aims to provide applications realistic performance
evaluation. In this platform, a WSN is emulated as a Virtual Mote Network (VMN).
The developed software for real nodes can be executed in the emulator; this emulates
the operation of the real node’s hardware, allowing a realistic evaluation of the response
times and of the energy consumption. However, VMNet supports only Crossbow Mica2
sensors.

34

3. RELATED WORK 3.1. WSN Simulation

3.1.3.5 NS-2 and NS-3

NS-2 and NS-3 [66] are discrete events simulators, focused to support the computer net-
works’ researches. They are two of the most used simulators that support WSN simula-
tion. They include a large set of protocols, traffic generators and tools to simulate many
routing protocols over wired and wireless networks, local or by satellite.

The main focus is the OSI model simulation, including the random generation of phe-
nomenons at hardware level and energy consumption models. For WSN, they include
sensors simulation models, battery models, protocols stacks for sensors and have tools
for generating statistics of the network behaviour.

However, the detail level in simulation makes infeasible to simulate large networks,
with thousands of nodes [67] (like the ones we are interested in).

3.1.3.6 SENSE

SENSE [68] is a specific simulator for WSN. It offers battery, routing layer and applica-
tion layer models. SENSE is able to simulate networks with about 5000 nodes, but this
number can decrease depending on the communication’s patterns used. However, the
radio communications are limited to IEEE 802.11 norm.

3.1.3.7 JProwler

JProwler [69] is a discrete events simulator implemented in Java. It simulates the ra-
dio transmission, propagation and reception, including collisions and the MAC layer
operation. The radio definitions are implemented with plug-ins, that allows a great ex-
tensibility to the simulator. The discrete events simulator can be set to work in a deter-
ministic way (reproducing replicable results) or in a probabilistic way (that simulates the
non-determinism of the communication channels and of the low level communication
protocols).

3.1.3.8 WiSeNet

Wisenet [13] is a simulator based in JProwler (3.1.3.7), adding attacks to the WSN sim-
ulation mechanism. Its main focus in the design is the easiness of networks topologies’
creation and configuration.

Some interesting points of this simulator are its graphical user interface (GUI) for
network visualisation and configuration and the modules. GUI has general information
about the network as well as information for each node in particular; it has also a network
topologies’ generator, allowing the generation of random, grid or structured topologies.
The modules allow the extraction of certain metrics as energy consumption, latency, reli-
ability, etc.

35

3. RELATED WORK 3.2. Secure Routing in WSN

3.1.4 Critical Analysis

In order to evaluate the secure routing service developed in this thesis, it is mandatory to
observe its behaviour during attacks. WiSeNet is the chosen simulator, as is the only one
allowing to easily introduce attacks in the network. It also provides information about
metrics (like energy consumption, reliability, latency, etc.) that are fundamental to assess
the network operation.

3.2 Secure Routing in WSN

In the past some routing protocols were developed for WSN, although they were not
thought to deal with intrusions. However, these protocols had characteristics and func-
tionalities that inspired the developed protocol; in this way, next we will see the most
important ones.

3.2.1 Clean-Slate

Clean-Slate protocol [27] is a routing protocol for WSN that was developed thinking in
prevention, detection/recovery and resiliency.

This protocol assumes that a Certifying Authority (CA) exists in the network (with its
public and private key). That CA delivers to each node, at start, a Certified Identity (CI)
as well as an unique address and a set of random challenges that should be solved by the
nodes.

After having the CI, the nodes start finding neighbours through a secure protocol
(using their CIs) where a given node presents itself to its direct neighbours. After this
procedure no more sensors can join the network, avoiding the entrance of intruder nodes.

Then, in order to configure the routing, it is started a recursively group creation algo-
rithm based in the idea that the network can be seen as groups of nodes. This algorithm
starts by creating a group for each node (ie. each node is alone on its own group); each
group sends a joining proposal to the smaller group (with less nodes) and if the proposal
occurs in both ways, the two groups (G0 and G1) merge creating a new and unique group.
The process repeats until all the network converge to just one group with all the nodes.
For each merge, nodes’ addresses are revised and routing tables are updated, in order
that each node from G0 has at least a next-hop to reach the group G1 and vice-versa.
For security reasons, at each stage of the algorithm, groups are authenticated using a
Group-Verification Tree (GVT).

With the previously found addresses and routing tables, it is possible to do the routing
of the messages. However, the resiliency routing mechanism (that consists in maintaining
multiple paths from the source to the destination) offers better guarantees in the messages
delivery. The multiple paths are obtained from the Groups Merging Algorithm that keeps
in the routing tables multiple next-hops for each destination group; this way, the sender

36

3. RELATED WORK 3.2. Secure Routing in WSN

can select the desired path. This selection can be done, for example, considering the
next-hop as one of those nearer from the destination group (ie, based in the distance).

Detection and recovery of attacks are made in the following ways:

• For the inconsistencies in the Groups Merging Algorithm, a Group-Verification Tree
(GVT) is used;

• Detection of replicas/duplicated nodes, that does not allow the nodes to have dif-
ferent identities (using, for instance, copies of CIs from other nodes) or trying to be
members of more than one group simultaneously;

• Remotion of detected malicious nodes through the Honeybee technique. This tech-
nique consists in removing both the node that detected and reported the intruder
as well as the intruder itself. This double remotion prevents from the case in where
a malicious node is reporting innocent nodes as being malicious; however, this re-
covery technique can also be a problem if used intentionally by an attacker, as he
can use it to shutdown correct nodes.

3.2.2 H-SPREAD

H-SPREAD [30] is a routing protocol that uses multiple disjoint routes from the nodes to
a Base Station (BS). In order to enhance the network reliability, the BS sends the messages
through the multiple routes using a threshold secret sharing scheme.

The threshold secret sharing scheme consists in dividing a secret into smaller parts
called shares; then, for someone to read the secret, it is necessary to collect at least a
certain (defined) number of shares.

The routes discovery is done in a distributed way by all the nodes of the network by
using a branch-aware flooding algorithm; this consists in first calculating a spanning tree
of the network and then using another algorithm to create new connections between the
nodes, in order to create the multiple routes to the BS.

When a sensor in the network wants to send a message to the BS, it starts by dividing
the message into smaller parts as already stated with the threshold secret scheme algo-
rithm; then, each share of the message is sent across a different route of the set of multiple
routes that connect the sensor and the BS. After receiving the minimum (defined) set of
shares, the BS can decode the message. To read the message, an intruder must at least
infect a minimum set of routes from the sender to the BS, corresponding to the minimum
number of shares to decode and read the message.

3.2.3 SeRINS

SeRINS (Secure alternate path Routing IN Sensor networks) protocol [31] is a routing
protocol that uses multiple routes from each node to the Base Station (BS). The network
structure is based in a tree where the root is the BS and the other nodes are the sensors;
each of the other nodes can have multiple parents.

37

3. RELATED WORK 3.2. Secure Routing in WSN

The routes discovery process is started by the Base Station, which broadcasts a route
update message announcing its distance (hops number between the BS and the node)
as being 0 (zero). Every node receiving the message adds the sender as first parent if
it hadn’t a parent yet or if the new parent has a lower hop count. The distance of the
message (hop count) is then incremented and the message is forwarded at most once.

During this process, an attacker could easily announce a false distance and compro-
mise the protocol; however, this protocol implements a intrusion detection system that
detects intruders that are changing the routing data, based on the neighbours’ reports to
the Base Station (belonging to the BS the final decision). Once the BS decided that the
reported node is in fact an intruder, all the nodes from the network having it as parent
remove it from the parents list.

A message sent by one node to the BS is always forwarded by each intermediate node
to one of its parents. The parent where to the message is forwarded is chosen randomly,
inserting non-determinism in the routing process and thus avoiding possible attacks.

3.2.4 INSENS

INSENS (INtrusion-tolerant routing protocol for wireless SEnsor NetworkS) [28] is a se-
cure routing protocol that is intrusion tolerant in a network with an asymmetrical topol-
ogy.

The intrusions in this protocol are tolerated by the existence of multiple disjoint paths,
whose messages are sent through, as well as the guarantee that just one (infected) node
can not compromise all the network (affecting just a little portion without compromising
all the network operation).

In this protocol, just the Base Station (BS) is able to broadcast messages through the
network; every node that wants to send a message to another nodes (even if in an unicast
manner), must always communicate first with the BS. This way, BS will work as a filter
avoiding a node from flooding all the network with messages. This mechanism avoids
DoS attacks.

The routes discovery in INSENS is done in the following way:

1. Route Request - The BS starts a limited flooding, requiring for information about
all the reachable nodes in the network. This mechanism makes nodes to meet their
neighbours;

2. Route Feedback - All the nodes send their local information/topology to the BS as
a response to the previous request. Messages are sent to the BS through the inverse
path of the received message;

3. Routing Table Propagation - The BS computes the routing tables for each node and
sends them to each one.

Each node shares a symmetric key (due to resources limitations) with the BS, in or-
der that the messages from the previous steps can be authenticated. This way, the fake

38

3. RELATED WORK 3.2. Secure Routing in WSN

routing information attack is avoided.

The asymmetrical topology of the network is used as a solution for the problem of
the energy consumption. As the BS has greater computational and energetic power than
sensors, the BS aggregates the data sent by the nodes and computes the routing tables for
all sensors (as previously stated).

3.2.5 MINSENS

MINSENS [29] is a protocol developed as an improvement of INSENS protocol. MIN-
SENS allows the coexistence of multiple base-stations (BSs), providing BS redundancy
improving reliability and balancing the energy consumption over the WSN.

In terms of routing each BS works as an INSENS’ BS, creating its own dissemination
tree; thus, each node will have #B routing tables, where #B is the number of BSs in the
WSN. Each message shall include a route id (unique for all the sets of routes) in order
that the nodes can understand to which route the message belongs, therefore searching
the next-hop in the appropriate routing table.

In this protocol all the routes from all the BSs are disjoint, meaning that a single node
can belong at most to one route of the network. This property guarantees that an infected
node will affect just one route. At start, each BS computes its own disjoint routes that
could not be disjoint from all the routes of the network; then all the BSs share among
them the computed routes, agreeing in the routes used by each one in order to make all
of the routes disjoint.

A node can send a message in MINSENS protocol to a Base Station (like in INSENS,
it is not able to send directly to another node) by one or more than one routes; it can even
send the same message to one or more Base Stations. If the message is sent to more than
one BS, then all the BSs that received the message shall agree in the value of the received
message. This protocol assumes that the Base Stations are not however under attacks.

3.2.6 MINSENS++

MINSENS++ [70] is an improved protocol, based on MINSENS.

This protocol works like MINSENS on terms of routing: various disjoint routes from
each node to each Base Station are discovered like in the previous protocol.

However and in contrast with MINSENS, MINSENS++ Protocol extends the adver-
sary model to the Base Stations, considering that they are not trustable and can also be
under attack. This fact leads us to the necessity of consensus mechanisms among the ex-
isting Base Stations, in order to recover from attacks at Base Station level. For this reason,
it is very important to study the problematic of consensus; therefore, this problematic
and the distributed consensus in WSN are discussed in section 3.3 (page 41).

The secure routing service presented in this dissertation tries to protect a WSN against
the attacks presented in 2.5.3 by using different techniques. As discussed in 2.5.4, we
concede that an intruder can compromise individual sensor nodes; the network can thus

39

3. RELATED WORK 3.2. Secure Routing in WSN

tolerate these intrusions while remaining functioning properly as a whole without being
shut down. MINSENS++ protocol uses the combination of nodes redundancy and the
existence of multiple disjoint routes in order to achieve such property; many attacks (such
as HELLO flood attack, Wormhole attacks, Sybil attacks and SPAM attacks) are circumvented
in this way.

In addition to this redundancy, some other countermeasures are taken into account
for some specific attacks. To protect the network against the fake routing information attack,
MINSENS++ protocol uses encryption in the exchanged messages; the protocol assumes
that a keys’ distribution mechanism is available, and thus all the nodes have their keys
at start.

In the other hand, the possible defences presented against Sinkhole attacks (2.5.4.3)
and Blackhole attacks (2.5.4.6) do not apply to our specific routing algorithm; due to the
use of a table-driven philosophy in our protocol (as already discussed in 2.4.1 and 2.4.2),
the routing path is not completely decided by the source and thereby MINSENS++ must
deal with these attacks by using multiple routes and redundancy. Also the proposed
solutions for Wormhole attacks can not be used by our solution because we consider an
asynchronous system, without a geographical awareness by the nodes.

The usage of multiple disjoint routes and redundancy in order to defend against the
attacks creates a whole new problem: If different BS receive from different routes different
values, which one is the correct? And if some of the BS are under attack, and just try to propose
on fake values? To solve this, the presented secure routing service will include a data
consensus component, in order to perform a consensus over the received values.

The encryption used by our routing service is also an advantage against a passive at-
tacker that could be eavesdropping the packets through an attack to the communications.

3.2.7 Critical Analysis

Several protocols for secure routing were analysed. The following table (Table 3.1) presents
a summary of each analysed protocol, concerning the defences against some of the pos-
sible attacks.

False
Routing

Information

Selective
Routing

Sybil Sinkhole
HELLO

flood

Intrusion
on BS /
Syncnodes

Clean-Slate X Probabilistic Remove N/A X
H-SPREAD X Probabilistic N/A

SeRINS Remove Probabilistic Remove
INSENS X Probabilistic X N/A X

MINSENS X Probabilistic X N/A X
MINSENS++ X Probabilistic X N/A X X

Table 3.1: Routing protocols defences against internal attacks

A common technique of all the analysed algorithms is the multiple routes strategy,

40

3. RELATED WORK 3.3. Consensus Protocols

present in all of them.
False Routing Information attacks are prevented with cryptography by all protocols,

except by SeRINS that uses also the neighbour report system and removes the compromised
node(s) from the network.

The prevention of Selective Routing attacks is probabilistic, through the use of multi-
ple routes by all the protocols.

Sybil and HELLO flood attacks are prevented by Clean-Slate and INSENS-based pro-
tocols through the use of cryptography; however, Clean-Slate uses the Honeybee tech-
nique to also remove the intruder in case of a Sybil attack.

Finally, Sinkhole attack only applies to SeRINS protocol due to the routes computa-
tion philosophy; once again, this attack is prevented through the neighbour report system
present in this protocol.

As we can see from the table, the best protocols fulfilling our requirements are the
INSENS-based protocols and Clean-Slate; however, Clean-Slate suffers from the described
adverse effect of Honeybee technique. Thus, for this thesis we are particularly interested
in the INSENS-based protocols.

MINSENS adds the possibility (when compared to INSENS) of the existence of multi-
ple Base Stations. However, the intrusion problem must be solved by the network; if the
network does not solve a problem, Base Stations will not be able to solve it (as they are
considered as always safe and correct).

MINSENS++ is the most evolved protocol of the INSENS family. As Base Stations are
considered as attackable, possible intrusion problems not resolved by the network can
be solved by the Base Stations, trough consensus mechanisms. At this point, consensus
mechanisms will add the possibility of all the correct Base Stations decide on the cor-
rect values. Thus, in this thesis and for the development of the intrusion tolerant secure
routing service, the focus will be in the MINSENS++ protocol.

3.3 Consensus Protocols

3.3.1 The Distributed Consensus Problem

Consensus protocols have many applications in distributed systems. A consensus pro-
tocol consists in a set of processes, each one proposing at start a value and at the end all
of the processes agreeing unanimously in a common value [71] (which was one of the
initially proposed values). These kind of protocols comprise the following properties:

• Termination — Every correct process eventually decides on a value;

• Integrity — A process decides at most once;

• Agreement — Two correct processes do not decide differently;

• Validity — A process can only decide a value that was previously proposed (at
start).

41

3. RELATED WORK 3.3. Consensus Protocols

Although the consensus problematic has simple and already developed solutions in
the absence of failures [72], in the presence of failures solutions are not trivial; what in-
creases the complexity is that the protocol shall work properly even in the presence of
failures, that can be of one of two types:

• Fail-stop failures — Occur when a process operating properly suddenly crashes,
ceasing all its actions;

• Byzantine failures — Occur when it is not possible to make assumptions about
the process’ behaviour. These are the most difficult type of failures to deal with, as
a given process can send messages not supposed to be sent (with erroneous data,
partial data or temporally incorrect messages), stop answering for a certain period
of time (seeming as a fail-stop failure) and then answering again soon after, or send
different messages to different nodes.

In addition to the failures model, there is another assumption about the system model
that make the solutions depend of. There are two types of synchronism:

• Synchronous system — In this kind of systems, it is assumed that all the operations
have a well defined portion of time to be executed (temporal limits are assumed),
what means it is reasonable to make a request and wait (without doing nothing
more – blocked) for an answer;

• Asynchronous system — In this kind of systems, no assumptions are made about
the execution time of the operations (no temporal limits assumed). This means that
when a request is made, the wait for the answer shall not be blocking.

Because of the WSN properties (as studied in Chapter 2) as for example the commu-
nications failures, this thesis will assume a system model with Byzantine failures and
asynchronous operation. Consensus will be essential, for example, when the Base Sta-
tions need to agree in a received value (from multiple values received from different
routes and to different Base Stations).

3.3.2 WSN and the impossibility of data consensus

As viewed in section 3.3.1, will be assumed for the WSN an asynchronous model with
byzantine failures.

A key aspect is if the failure of a node (sending an expected message) can or cannot
be detected by other nodes; if it can be detected, the receiver gains the role of failures
detector. However, this can only be done in a system where there are clocks and time-
bounds or in a synchronous model where the processes block until receive an expected
message. Although, in asynchronous systems it is impossible to differentiate a crashed
node from a node that is running very slowly; thus, this kind of detection (by the receiver)
is impossible to implement in asynchronous systems (and consequently in WSN) as a

42

3. RELATED WORK 3.3. Consensus Protocols

correctly operating node could be waiting for indeterminate time for a message from a
node that have one of the referred behaviours.

This impossibility leads us to the Fischer-Lynch-Paterson (FLP) impossibility result
[73], stating that consensus problem is impossible to solve by using deterministic proto-
cols in asynchronous systems in the presence of failures.

Also for synchronous systems, there is an analogous impossibility when communi-
cations are unreliable. This result is Santoro & Widmayer Impossibility [74], stating that
even with strong synchronism, there is no deterministic solution to the consensus prob-
lem if n − 1 or more messages are lost per communication round, in a system with n

processes.

3.3.3 Protocols with Randomness

Historically, many protocols were developed working on a randomisation basis [75]. The
reasons for the development of these protocols so many years ago were the low compu-
tational power of the computers at that time, the network constraints (bandwidth) and
the high packet-error ratios.

Back then, it was very difficult for a computer to, for example, make computations
based on asymmetric cryptography algorithms with good keys (more than 1024 bits)
and to have reliable communications; this was also a problem for consensus algorithms.
Based on this assumptions, randomised algorithms were developed using a non-deterministic
approach.

However, with evolution of computers and consequent growth of computational power
and improvement of communications, these kind of non-deterministic algorithms lost
their importance. From then, networks became better with larger bandwidth, more re-
liable with lower ratios of packet-error and computers gained stronger computational
power.

Nowadays, with the growing popularity of small devices (low computational pow-
ered as the wireless sensors (Chapter 2)), this kind of protocols gained again an important
role in computer science and particularly in the research area of this thesis.

3.3.4 Probabilistic Failures Detectors

The FLP impossibility can be bypassed by using time limits for messages delivery in the
system. In [76] the impact of adding limited synchronism to a (asynchronous) message
exchange system was studied. Latter, the partial synchronism model was introduced
[77, 78], developing mathematical formulas for the calculus of the byzantine temporal
limits (given the considering number of faulty process and some temporal limit values
known by processes).

Based on this, fails detectors can be developed; these fails detectors notify the partici-
pating processes that another process may have failed. However, these fails detectors are
probabilistic, meaning that they can eventually identify a correct process as being faulty

43

3. RELATED WORK 3.3. Consensus Protocols

(for example, a delayed but still correct one) and vice versa. These detectors can be called
as unreliable fails detectors and their development was started by Chandra and Toureg
[79, 80].

3.3.5 Non-Deterministic Consensus

As stated in 3.3.2 and accordingly to the impossibility of consensus, in this thesis a non-
deterministic consensus approach will be used. To achieve this form of consensus, it is
necessary to weaken the usual consensus properties, allowing a probabilistic termination
property instead of the deterministic termination property. Thus, the new consensus
properties are the following:

• Validity — If every sensor proposes on a same value x, then all the correct sensors
that make a decision, will decide the value x;

• Agreement — Two correct processes do not decide differently;

• Termination — All the correct sensors eventually decide, with probability p = 1.

The next presented algorithms for non-deterministic consensus are based on the coin
tossing cryptographic schemes.

3.3.5.1 Coin Tossing Protocols

The coin tossing cryptographic schemes main idea is the consensus and delivery of a
binary value: 0 or 1 (or an array of such values), accordingly with a given probabilities
distribution [81].

The security guarantees given by these algorithms depend on the considered adver-
sary: an adversary that has access to previous coin-toss extractions is able to compute the
coming values.

These protocols are mainly categorized in one of two classifications: Local Coin-toss
Protocol (LCP) and Shared Coin-toss Protocol (SCP). LCP protocols ([82, 83]) are compu-
tationally lighter (since they use symmetric cryptography) but are expected to end in an
exponential number of execution rounds; on the other hand, SCP protocols ([84, 85]) are
computationally heavier (since they use asymmetric cryptography) but are expected to
end in a constant number of execution rounds.

Since LCP and SCP are opposites in their mode of operation, it is necessary to find a
trade-off between them. This trade-off was experimentally assessed, but over common
networks (with computers) and over mobile networks (ad-hoc) with devices like PDAs
[86, 87].

These algorithms are just thought for the binary consensus problem; however, for
some applications (as our) this could not be sufficient as they may need to reach a con-
sensus over a complex value (non-binary) or a set of complex values. On next sections
(3.3.5.2 and 3.3.5.3), two protocol’s stacks are presented, solving this problem of the non-
deterministic and byzantine failures tolerant consensus.

44

3. RELATED WORK 3.3. Consensus Protocols

Figure 3.1: RITAS protocols stack

3.3.5.2 RITAS Stack

RITAS (Randomized Intrusion-Tolerant Asynchronous Services) [88] is a protocols stack
(all of them are asynchronous) that uses protocols with randomness to solve the problem
of the multi-valued (or set) consensus. This implementation shows that the protocols
with randomness (as LCP and SCP) are efficient solving the problem of the distributed
consensus over LAN’s and WAN’s.

On the stack (represented in Figure 3.1), TCP layer is used to guarantee reliability and
the IPSec layer is used to guarantee integrity of the transmitted data. The set of layers
between TCP and the Application are intended to solve the consensus problem, with op-
timal resilience to f = N−1

3 processes with Byzantine failures. The binary consensus layer
uses a protocol with randomness based in LCP (developed by Bracha [83] as referred on
the previous section 3.3.5.1).

3.3.5.3 Turquois

Turquois [89] is a binary consensus protocol specifically designed for wireless ad-hoc
networks that assumes nodes being subject to transitory disconnection (because of unre-
liable communications) and permanent corruption by a malicious entity.

Turquois is developed for resource-constrained devices and thus maximises the effi-
ciency of the consensus, by making a rational use of the resources provided by the en-
vironment while aiming for optimal resilience parameters. Namely, since the network
provides a natural broadcasting medium, the cost of transmitting a message to multiple
nodes can be just the same of sending it to a single one (assuming they are all within the
communication range). This property can have a profound impact on performance.

The model proposed by Turquois derives from the one introduced by Santoro & Wid-
mayer (3.3.2). This means that the model assumes that any communication from one

45

3. RELATED WORK 3.3. Consensus Protocols

node to another can be faulty at a given moment and be correct at another. The result of
such assumption is that any broadcast message may be delivered non-uniformly by the
intended recipients (some of them may deliver while others may not). Under particu-
larly harsh conditions (for example, during a jamming attack), all the messages may be
lost during a certain period of time.

Turquois’ model assumes a set of n ad-hoc nodes and tolerates a subset of f com-
promised by a malicious adversary nodes (possibly with a Byzantine behaviour) where
f < n

3 . All the communications from that f nodes might potentially be lost or discarded.
Additionally, dynamic omission transmission faults can exist, affecting the communica-
tions between correct nodes.

This protocol is based in LCP (3.3.5.1) as it is designed for resource-constrained de-
vices.

The Turquois’ evaluation results are promising when compared with the ones from
other available solutions. The key to its performance is the assumption of unreliable
communications, while allowing the protocol to take full advantage of the broadcasting
medium. Furthermore, the protocol avoids the use of public-key cryptography during its
operation, in order to preserve the limited computational power of the nodes.

3.3.6 Critical Analysis

WSNs have an asynchronous communications model, resource-constrained devices and
are subject to intrusions or Byzantine flaws. A consensus solution for such networks must
therefore adapt to these characteristics. The non-deterministic consensus and intrusion
tolerant solutions are the most adequate to this problem; RITAS and Turquois were the
analysed solutions (3.3.5.2 and 3.3.5.3).

RITAS protocols stack assumes the presence of TCP protocol; however, this protocol is
not practical for WSNs due to their communication characteristics (in terms of reliability
and in terms of the characteristics of the communications medium).

Turquois protocol is the best that suits WSN characteristics. This protocol assumes un-
reliable communications and has special concerns about the resource-constrained devices
and consequent performance. While aiming for optimal resilience parameters, Turquois
outperforms other protocols particularly as the number of processes in the system in-
creases. For a possibly large scale network as a WSN, Turquois is then the chosen protocol
for binary consensus.

46

4
System Overview

In the present Chapter, a System Overview is done, including the contextualisation of the
previous contributions.

4.1 System Model

The presented secure routing service was developed with large scale networks in mind,
from dozens to thousands of nodes (as a reference, let’s consider from 1000 to 10000
nodes). Those nodes are randomly deployed in large geographic areas without any kind
of supervision and subjected to all kind of adversities from the environment. Further-
more, we assume that sensor nodes have a very limited mobility after their initial deploy-
ment; we believe that this is the commonest case in many situations in these networks.
However, the network’s set up process may rerun periodically in order to accommodate
changes in the network (like changes in topology due to faults or limited mobility).

The routing is based on a multi-hop philosophy, where data is disseminated from the
sensor nodes until special aggregation nodes called Base Stations. These special aggre-
gation nodes have special processing, storage, energy and communication capabilities;
the special communication capabilities mean that BSs are connected among them with a
dedicated and more powerful network environment (such as IEEE 802.11 or IEEE 802.3
Ethernet), supporting the TCP/IP stack (this can be viewed as an overlay network). Base
Stations are then also connected with data management software that will provide the
captured data for the developed applications.

Network’s topology is based on a plain topology (see 2.4.3), supported by IEEE 802.15.4

47

4. SYSTEM OVERVIEW 4.2. Adversary’s Model

protocol in an ad-hoc mode with (possibly) intermittent connectivity conditions. The net-
work is thereby a graph that must ensure (after the self-organisation process) connectiv-
ity and coverage to all nodes, in order that every one can communicate with the Base
Stations.

The operation of the WSN assumes that communications are asynchronous and not
reliable (but with a best-effort delivery service).

4.2 Adversary’s Model

Accordingly with the definitions in 2.5.1, in the scope of this dissertation the considered
adversary’s model is based on the definitions by Karlof-Wagner [39], Dolev-Yao [40] and
OSI X.800 Framework [41].

An attacker to a WSN can change the normal behaviour of the network, by drop-
ping messages, faking route information or modifying messages, and we call him an
active attacker. This kind of intrusion corresponds to a possible proactive introduction of
Byzantine flaws by the attacker. In the other hand, an attacker can simply intercept the
communications in order to capture transmitted information (also called eavesdropping).
This kind of attacker is known as a passive attacker.

Besides, an attacker can be internal or external. For an internal attacker, we assume
that he can physically capture a limited number of nodes and/or introduce malicious
behaviour on them. By network’s nodes we intend sensor nodes or Base Stations; how-
ever, this attacks must be independent (an attacker can not compromise both Base Sta-
tions and sensor nodes simultaneously). This includes capturing data from the captured
nodes (namely cryptographic keys), being an apparently legitimate and trustable node
(with the stolen identity) while having a behaviour defined by the attacker.

An external attacker acts from outside of the network for example by listening to
communications (passive attacker) or jamming (active attacker). Two classes of external
attacker exist:

• Sensor class — This attacker uses one or more sensors, equivalent to those present
in the WSN, with the same limitations (meaning that he can reach just the neigh-
bourhood of each attackers’ node);

• Laptop class — This attacker uses a laptop computer, which gives him more com-
putational power, memory storage, communication power and energy autonomy
when compared with the nodes from the WSN. This attacker is usually able to reach
a big part of the WSN.

Respecting the flaws’ model, asynchronous, independent and Byzantine flaws are
considered. These flaws can be present both in the sensor nodes and in the Base Stations,
but in an independent way as already stated.

Denial of Service (DoS) attacks and all those made to other layers than the network
layer (for example, attacks to the MAC Layer exploiting the IEEE 802.15.4 stack (2.5.2))

48

4. SYSTEM OVERVIEW 4.3. System Software Components

are not considered in this thesis, as well as other possible physical or data-link attacks that
can affect the radio communications. For the purposes of the base security communica-
tion properties in the WSN level, we consider the use of a well-known implementation
of secure MAC-level primitives, as proposed in the TinySec [24] or MiniSec [25] security
stack. These security properties, based on symmetric cryptography algorithms, will help
to solve the issues of the lower levels namely the attacks to the communications at MAC
Layer.

4.3 System Software Components

The system software model adopted in this dissertation is based on the specification stud-
ied in section 2.2, being divided in the layers presented below.

For the physical layer, the considered nodes are of MicaMotes’ type; this is also the
nodes type supported by WiSeNet simulation environment.

Concerning the Operating System layer, an OS supporting Java (with a JVM imple-
mentation) is considered. In fact, in the scope of this dissertation we are highly interested
in systems supporting Java. Despite of the disadvantages of Java (like in terms of perfor-
mance and memory consumption), among others Java has the following advantages we
are interested in:

• Platform independence — Java is platform independent and thus Java programs
can easily be moved between heterogeneous systems without significant changes;

• Object oriented — Java is object oriented, allowing the creation of modular and
reusable code;

• Distributed — Java has the network capabilities and design to easily allow the
development of distributed applications;

• Secure and Reliable — The design of Java considers security and the errors check-
ing of Java compiler provides reliability;

• Easiness — Java simplifies the process of code writing, compiling, debugging and
running.

For the MAC layer, the IEEE 802.15.4 is the chosen one, with CSMA/CA mechanism
support; this thesis assumes that this layer provides secure communications mechanisms
as well as secure and intrusion tolerant keys exchange mechanisms.

In this thesis, the layer we are focused in is the Network layer. Our secure routing
service is inserted in this layer, offering the secure and intrusion tolerant routing service,
with self-organisation of the nodes.

The applications that will consume the data produced by the WSN are developed in
the Application layer.

49

4. SYSTEM OVERVIEW 4.4. Contributions Contextualisation

4.3.1 MINSENS++

MINSENS++ is a secure routing protocol specifically designed for WSN, and is an im-
provement of MINSENS protocol, based on INSENS protocol.

MINSENS ++ protocol extends the adversary model to the Base Stations, assuming
that they can be compromised (what didn’t happen in MINSENS, whose Base Stations
were always trustable).

This protocol offers security and reliability guarantees among the network with the
help of route’s replication (together with other countermeasures stated in 3.2.6).

This protocol will be further studied in Chapter 5.

4.3.2 MVC and Turquois

MINSENS++ protocol has the need of a consensus mechanism, in order to guarantee the
desired security and reliability levels.

This consensus mechanism must be able to perform a consensus over a set of non-
binary values, with intrusion and fault tolerance capabilities. Multi-Valued Consensus
protocol (MVC) was developed to provide this service. MVC protocol has the need of
a binary consensus layer in order to perform the non-binary consensus; as the binary
consensus layer, Turquois protocol is used.

MVC and Turquois protocols are studied in Chapter 6. We consider f flaws to n

nodes, where f is the number of failing/attacked nodes and n is the total number of
nodes involved in consensus.

4.4 Contributions Contextualisation

In Chapter 3, many related works were presented; in the current section, the most impor-
tant contributions for this thesis are summarised.

A simulation environment is important in order to observe the network’s behaviour
while being attacked. WiSeNet simulator (3.1.3.8) was the chosen one, because it allows
to easily introduce attacks in the network while providing metrics to assess the network
operation.

Concerning the routing protocols, MINSENS++ protocol (3.2.6) is the base of this
work. MINSENS protocol was developed within the SITAN Project, and is the best fitting
the project’s purposes. MINSENS++ is an improvement of MINSENS.

About the consensus protocols, MVC and Turquois protocols are used. MVC protocol
is inspired by RITAS stack.

50

4. SYSTEM OVERVIEW 4.5. Network Model

Physical

MAC

Routing

Q
U
EU

E
 Q

U
EU

E

Figure 4.1: Scheme of a sensor forwarding data

4.5 Network Model

Wireless Sensor Networks are networks composed by (possibly thousands of) small de-
vices very weak in terms of resources (computing, storage, memory, battery and commu-
nications) called sensor nodes. These devices usually operate in a self-organised ad-hoc
way, with no human supervision. These sensors have two tasks: collect and send data
from the physical environment and forward the data sent from their neighbours to the
data’s destination. The destinations of all this data are the Base Stations, that are spe-
cial nodes (usually less than ten percent in number, when compared to sensor nodes)
with special capabilities in terms of resources (more computing power, storage, memory,
power and communications). Figure 4.1 represents a sensor forwarding data; the deci-
sion to forward data is made in the routing / network layer. Thus the message is not
passed to the application level (hidden in the figure). Note that it might happen that the
message is not immediately transmitted; message queues must be used, in order to avoid
collisions.

For such aim, the WSN must adapt itself to the asymmetric architecture and resource
constraints between sensor nodes and Base Stations. The network uses a plain topol-
ogy; it is organised using a multi-path tree-structured routing topology, whose roots are
the Base Stations and whose leafs and intermediary nodes are sensors. The data flows
from the sensor nodes to the Base Stations with the help of a secure and intrusion tol-
erant routing algorithm. The sensors do not communicate with each others, except for
routing purposes; this means that peer-to-peer communications among sensors is out of

51

4. SYSTEM OVERVIEW 4.5. Network Model

the scope of this dissertation. Figure 4.2 shows simplified1 examples of possible network
topologies, from the point of view of the sensor marked in green.

The main objective of this dissertation is to propose, implement and test an intrusion
tolerant routing service for such dependable WSNs.

In order to successfully route all the generated data by the sensors, MINSENS++ Pro-
tocol is used. This protocol is responsible for organising all the network (including its
routes) and forward all the data from each sensor to each Base Station.

When the same message arrives to various Base Stations, they need to reach a con-
sensus about its value. This is important when an attacker is modifying the message’s
value, trying to persuade the other Base Stations to accept the wrong value as correct.
Such consensus between Base Stations is made with the MVC Protocol as we’ll see in the
next chapters.

Finally and after all these processes, the messages can be passed to the application
layer.

From this point of this document, only the MINSENS++ and MVC protocols overview,
implementation and assessment will be addressed.

1Note that these examples are simplified for visibility purposes. Firstly, only the multi-path routes from
the node in green are showed. Secondly, the number of Base Stations is high when compared with the
number of sensors. And lastly, the number of sensors and the wireless connections between them are fairly
modest; a real scenario would have more, resulting in more routes to the Base Stations.

52

4. SYSTEM OVERVIEW 4.5. Network Model

Base Station Sensor Node Wireless Link

(a) Example 1

Base Station Sensor Node Wireless Link

(b) Example 2

Figure 4.2: Simplified example of a network’s topology

53

4. SYSTEM OVERVIEW 4.5. Network Model

54

5
MINSENS++

In this chapter, the MINSENS++ protocol is presented and specified.

5.1 System Model for MINSENS++

MINSENS++ is a routing protocol designed specifically for WSNs with a multi-hop rout-
ing philosophy. This protocol uses multiple disjoint routes from each sensor node to
several Base Stations, in order to guarantee security and reliability. The target networks
can have thousands of nodes (large scale networks) and are self-organised (operating in
an autonomous way).

MINSENS++ is an extension to the MINSENS protocol (see 3.2.5) and its improve-
ments are:

• Improve network’s reliability;

• Extend the attacker’s model (2.5.1) to the Base Stations.

Network’s reliability is improved through the introduction of consensus mechanisms
for the received data. For the extension of the attacker’s model to the BSs, it is neces-
sary to use consensus protocols specially adapted and developed for WSNs, with some
properties as faults and intrusions tolerance.

MINSENS++ protocol has three different phases (based in the general proposal in 2.4.1):

1. Nodes and routes discovery;

2. Routes selection;

3. Data routing.

55

5. MINSENS++ 5.2. Algorithmic vision

Each phase is better described below, in the following subsections. A more precise
and algorithmic vision is given in the next section (5.2).

5.1.1 Nodes and routes discovery

In the nodes and routes discovery phase, each node presents itself to its neighbourhood.
At the same time, it also discovers its neighbours. After that presentation phase, each
node transmits its neighbourhood’s information to the Base Stations. In the end of this
process, each Base Station will have computed multiple disjoint routes from each node
in the network to it. This computations are based in the neighbourhood’s information
provided by the sensor nodes of the network.

5.1.2 Routes selection

The routes selection phase is started immediately after the previous phase (5.1.1), when
the Base Stations transmit to each networks’ node its own routing table.

Routing tables are sent to the nodes ordered by the distance between the given node
and the Base Station. After all the nodes received their routing tables, the network is
finally (self-)organised and ready to start data dissemination.

5.1.3 Data routing

During the data routing phase, accordingly with the WSNs philosophy, the sensor nodes
(producers) send data to the Base Stations (consumers) through multi-hop paths.

In order to check the correctness of the transmitted data, all the Base Stations receiving
a message must reach a consensus for the data received within the message. This consen-
sus process specification is not considered as belonging to the MINSENS++ protocol and
thus is studied in its own chapter: Chapter 6 (page 61).

5.2 Algorithmic vision

In this section, an algorithmic vision of the different phases of the MINSENS++ protocol
will be given. For a better understand, each subsection corresponds to each phase of the
protocol.

5.2.1 Nodes and routes discovery

In the beginning of the protocol, each Base Station bsID broadcasts a route request mes-
sage to the network. The message has the 〈RREQ, bsID〉 format, and is propagated epi-
demically.

When a node ni receives one of that messages, it verifies if it has already received
that message ("infected" by bsID). If the message is new, the emitter is added to the
neighbours’ set (Ni) and defined as father of i; otherwise, the emitter is just added to Ni.

56

5. MINSENS++ 5.2. Algorithmic vision

After a certain amount of time, ni sends to bsID its neighbourhood data; this data is
sent through the inverse path (ie., each node sends to its father until reach bsID). This
message has the 〈FDBK, i, Ni〉 format.

Base Stations store the neighbourhoods’ data, in order to compute the network’s
routes. In each BS, disjoint routes are computed like in INSENS (3.2.4); however, it is
necessary that all the routes computed by all the BSs are disjoint. To accomplish this,
a routes’ consensus is done between all BSs as explained in 6.4.1. When the routes are
consensual, they are saved in the routing tables that will be sent to each routes’ source.

5.2.2 Routes selection

When the routing tables’ computation is ended, they must be distributed over the net-
work’s nodes. This distribution is ordered by the distance between the Base Station and
the node; this way, routing tables from nearer nodes can be used to route the routing
tables of the farther ones.

This messages are called route update and have the following format: 〈RUPD, bsID, ni,
routing_table〉, where bsID is the (unique) ID of the BS, ni is the (unique) ID of the node
and routing_table is the set of disjoint routes from ni to bsID. The routing table is ciphered
with a symmetric key (shared with the destination sensor node) in order to allow just ni
to access its contents.

A sensor node (ni) stores in its final routing table the union of all the received routing
tables (to different BSs).

However, a sensor node (ni) can receive a message whose destination is not it. In this
case, it verifies if has in its routing table a path from the destination node (nk) until the
emitting BS; if so the message is retransmitted.

When (ni) has its routing table complete (with routes to all the BSs), it declares itself
as stable. This means it is ready to start disseminating and routing data over the network.

This description is summarised in Algorithm 1.

Input: ID of the node nodeIdi

routingTablei ← ∅

when m = 〈RUPD, bsId, nodeId, routingTable〉 is received do
if nodeId = nodeIdi then

routingTablei ← routingTablei ∪ routingTable;
else

if routingTablei contains route to nodeId then
broadcast(m);

end

end

end

Algorithm 1: RUPD messages processing in node nodeIdi

57

5. MINSENS++ 5.2. Algorithmic vision

5.2.3 Data routing

In MINSENS++ protocol, data routing is divided in two distinct phases:

1. Routing between sensor nodes;

2. Data consensus in each Base Station.

The first phase deals with the data packets’ routing, through the computed routes,
from the origin until the BSs.

In the second phase, each Base Station must manage the reception of the different
replicas of a given message (received from different routes). Then, the Base Station per-
forms the consensus protocol over the received data. This phase shall not be confused
with the consensus referred in the end of 5.1.3. The consensus referred at this point is lo-
cal to each Base Station; as a different number of replicas of a given message are received
by a given Base Station, a local consensus is made in order to determine the correct value
of the message. Then, the product of this consensus is used as referred in the end of 5.1.3
to do a distributed consensus within all the Base Stations. We can then say that the final
consensual value is the result of the (distributed) consensus of many (local) consensus.

Once more, in this chapter just the local consensus will be discussed. As stated in the
end of 5.1.3, the distributed consensus is studied in Chapter 6 (page 61).

5.2.3.1 Routing between sensor nodes

Sensor nodes are regularly measuring physical phenomenons and environmental vari-
ables; this measured data must then be sent to the Base Stations. Data messages have the
following format: 〈DATA, id, ni, bsID, routes, r, data〉, where id is the (unique) ID of the
message, ni is the (unique) ID of the source node, bsID is the (unique) ID of the BS, routes
is the set of routes that will disseminate the message, r is the current route of this copy of
the message and data is the ciphered data. The messages are authenticated with MAC,
assuring also the integrity of the message.

MINSENS++ provides five routing modes:

1. Routing trough one random route;

2. Routing trough one route chosen accordingly with a round-robin1 policy;

3. Routing trough k random routes;

4. Routing trough k random routes, balanced by Base Station;

5. Routing trough all the routes.

1Round-robin is one of the simplest scheduling algorithms. It consists in selecting each resource in a
circular order, handling all without priorities.

58

5. MINSENS++ 5.2. Algorithmic vision

When the data is sent just through one route, data arrives just to one BS. In the other
hand, if the data is sent through more than one route, two different situations may occur:
data can be sent through multiple routes just to the same Base Station or can be sent
through multiple routes to different Base Stations (possibly, more than one route to each
Base Station).

In Algorithm 2, the routing process is presented. When a sensor node is ready to send
a new message m, it broadcasts m. Another sensor node receiving m verifies if any of the
routes of the message is present in its routing table; if so, the message is retransmitted;
otherwise, it is ignored.

In order to reduce the messages’ number in the network, each node has a log of re-
ceived messages, in order to retransmit just new messages.

Input: ID of source node nodeIdi; routing table rti; routing mode rmi

when has data ready to send do
msgId← get new unique message identifier;
routes← get routes for rmi from rti;
foreach r : r ∈ routes do

d← destination of r;
broadcast(〈DATA,msgId, nodeIdi, d, routes, r, data〉);

end

end

when m = 〈DATA, id, s, d, routes, r, data〉 is received do
if nodeIdi = d then

handle reception of m;
else

if ∃route ∈ rti : route identifier = r then
broadcast(m);

end

end

end

Algorithm 2: Data messages routing protocol

5.2.3.2 Data consensus in each Base Station

This phase is started when a message reaches a Base Station, and it depends on the rout-
ing mode.

When a message is routed just through one route to one Base Station, the BS validates
the message and (when valid) delivers it to the application level. This validation verifies
the message’s authentication and integrity.

When a message reaches a given BS through many routes, the BS stores all the dif-
ferent replicas of the message. Then a consensus is made and when the BS stored more

59

5. MINSENS++ 5.3. MINSENS++ Implementation

than half of the replicas (message_routes
2) with the same value, message is validated (with

the consensual value). At this point, two possibilities exist: the message is just destined
to that BS and after the validation, the message is delivered to application level; or the
message was sent to many BSs and it’s necessary to start a consensus process between all
the BSs with the local validated data (more on this in the next chapter).

It is important to understand that if the BSs agree in a given value (of a message), it is
considered a valid message and passed to the application level by all the correct BSs. If a
consensus is not reached, the message is simply ignored. When the message is passed to
the application level, its contents are deciphered in the BSs.

5.3 MINSENS++ Implementation

In the scope of this project, MINSENS++ protocol was implemented in Java. This im-
plementation was based in the WiSeNet simulation environment that was the chosen
simulator.

The Java implementation of MINSENS++ was programmed based on the presented
algorithm.

60

6
Multi-Valued Consensus

In this chapter, Multi-Valued Consensus (MVC) [70] protocol and mechanisms are pre-
sented and specified.

6.1 System Model for Multi-Valued Consensus

MVC is an asynchronous and probabilistic protocol designed to reach consensus over a
set of non-binary values. This protocol has intrusion and fault tolerance in the presence of
f fails or attacks when f < n

3 . Considering the asynchronism, some communications can
fail without compromising all the consensus (complying with the previously mentioned
fault tolerance criteria).

MVC protocol allows to consensus over any type of value since they are convert-
ible to a byte array. It is based on the multi-value consensus protocol from RITAS stack
(see 3.3.5.2).

This protocol uses also a randomised binary consensus protocol (in our case, Turquois
is used) as we’ll see in 6.2.2.

Details about the algorithmic vision of these protocols are given in the next section.

6.2 Algorithmic vision

In this section, an algorithmic vision of Turquois and MVC protocols will be given.

6.2.1 Turquois

Turquois is a randomised binary consensus protocol that allow k processes out of n (k ⊆
n) reach a binary consensus v ∈ {0, 1}. The correctness of the protocol is guaranteed as

61

6. MULTI-VALUED CONSENSUS 6.2. Algorithmic vision

long as the Byzantine flaws f satisfy the condition f < n
3 . The pseudo-code for Turquois

is presented in Algorithm 3.
In the beginning, each process has an internal state composed by:

• phase φi ≥ 1;

• proposed value vi ∈ {0, 1};

• decision status statusi ∈ {decided, undecided}.

The protocol is started with values φi = 1, statusi = undecided and vi is the input
proposali.

The protocol runs in cycles, each one with three phases: CONVERGE (φi mod 3 =

1), LOCK (φi mod 3 = 2) and DECIDE (φi mod 3 = 0). During CONVERGE phase, the
processes try to converge to the most observed value, among all the participants; on
LOCK phase, the processes try to lock a value v ∈ {0, 1} or ⊥ if the process is not able to
decide (without preference); finally on DECIDE phase, the processes try to decide on the
locked value on the previous phase. If a consensus is not reached, each process calculates
a random value to start a new cycle. This random choose of new values guarantees that
eventually all the correct processes will decide in one value.

Sender and Receiver tasks run in parallel. Sender task defines a broadcasting round
and is activated periodically upon a local clock tick. A process pi broadcasts a message
with the following format: 〈i, φi, vi, statusi〉, where i is its identifier and φ, v and status

are its local variables comprising its internal state.
Receiver task is activated whenever a message is received. All the received messages

are subject to a validation procedure, in order to ignore Byzantine messages; this way it is
guaranteed that all the considered messages were sent by correct processes. All the valid
messages are stored in a set Vi.

The state of a process changes if:

a. The set Vi holds some message whose phase value φ is higher than the current phase
φi;

b. The set Vi holds more than n+f
2 messages with equal phase (φi).

In the first case, the state of the current process is set to match the state of the received
message. There is however an exception: if the phase is CONVERGE and v is a random
value (obtained as result of a coin flip), a local coin flip is done to determine vi.

The second case is more complex and depends on the value of process’ current phase.
In CONVERGE phase the proposal value is set to the majority value of all messages with
phase value φ = φi.

In LOCK phase the proposal value vi is updated as follows: if there are more than
n+f
2 messages in Vi with the same value v and phase equal between them and the local

process (φ = φi), then vi is set to v; otherwise it is set to ⊥ meaning lack of preference

62

6. MULTI-VALUED CONSENSUS 6.2. Algorithmic vision

Input: Initial binary proposal value, proposali ∈ {0, 1}
Output: Binary decision value, decisioni ∈ {0, 1}

φi ← 1;
vi ← proposali;
statusi ← undecided;
Vi ← ∅;

Task Sender:
when local clock tick do

broadcast(〈i, φi, vi, statusi〉);
end

Task Receiver:
when m = 〈j, φj , vj , statusj〉 is received do

Vi ← Vi ∪ {m : m is valid};
if ∃〈∗, φ, v, status〉 ∈ Vi : φ > φi then

φi ← φ;
if φ mod 3 = 1 and v is the result of a coin flip then

vi ← coini();
else

vi ← v;
end
statusi ← status;

end
if |{〈∗, φ, ∗, ∗〉 ∈ Vi : φ = φi}| > n+f

2 then
if φi mod 3 = 1 then /*phase CONVERGE*/

vi ←majority value v in messages with phase φ = φi;
else if φi mod 3 = 2 then /*phase LOCK*/

if ∃v ∈ {0, 1} : |{〈∗, φ, v, ∗〉 ∈ Vi : φ = φi}| > n+f
2 then

vi ← v;
else

vi ←⊥;
end

else /*phase DECIDE*/
if ∃v ∈ {0, 1} : |{〈∗, φ, v, ∗〉 ∈ Vi : φ = φi}| > n+f

2 then
statusi ← decided;

end
if ∃v ∈ {0, 1} : |{〈∗, φ, v, ∗〉 ∈ Vi : φ = φi}| ≥ 1 then

vi ← v;
else

vi ← coini();
end

end
φi ← φi + 1;

end
if statusi = decided then

decisioni ← vi;
end

end
Algorithm 3: Turquois

63

6. MULTI-VALUED CONSENSUS 6.2. Algorithmic vision

/ undecided. This step ensures that in the next phase every process proposes the same
value v ∈ {0, 1} or ⊥. Furthermore, if consensus was achieved amongst correct processes
at the previous phase, then every process must set its proposal value to the same value
v (since messages with a different value are considered invalid). This will imply that in
the next phase every process receives the same value v ∈ {0, 1} in all valid messages and
decides.

In DECIDE phase a process sets its status to decided with vi = v if there are more
than n+f

2 messages in Vi with the same phase of the process (φ = φi) and the same value
v ∈ {0, 1} (v 6=⊥). Otherwise, vi receives the result of a coin flip c (c ∈ {0, 1}, each with
probability 1

2). Regardless of the previous steps, the phase is always incremented by one
unit.

Concerning the validation of received messages, two different checks are made: au-
thenticity validation and semantic validation.

Authenticity validation guarantees that a given message was actually generated by
its declared sender. In original Turquois, this validation requires the share of keys’ matri-
ces with all the phase vs. proposed value possible combinations. As MINSENS++ protocol
requires all the nodes to share symmetric keys, that mechanism can be reused. There-
fore Turquois’ authentication mechanism was replaced with MAC authentication in the
messages; this is equally effective and avoids the round for secure dissemination of keys’
matrices.

Semantic validation ensures that the contents of a given message are congruent with
the current execution of the algorithm. There are two ways for the congruency of mes-
sages to be verified: one is implicit and the other is explicit. The implicit way is based on
whenever a process receives a message, it verifies (in Vi) if enough messages have arrived
to justify the values carried by the recently received message.

The explicit way is based on broadcasting along with the message the previous mes-
sages that justify the values of the state variables. All the sent messages for the explicit
semantic validation are also verified. Each state variables carried by a message are val-
idated independently. A message passes this validation if all the following tests are
passed:

Phase value — The phase value φ of a message requires more than n+f
2 messages from

the previous phase (φ− 1) to be considered valid;

Proposal value — The validation of the proposal value depends on the phase (φ) carried
by the message:

Messages with phase φ = 1: These messages do not require validation and are imme-
diately accepted;

Messages with phase CONVERGE: The validity of the proposed value v depends if it
was obtained deterministically or randomly. In the first case, it requires more
than n+f

2 messages with value v and phase φ−2; in the second case, it requires

64

6. MULTI-VALUED CONSENSUS 6.2. Algorithmic vision

more than n+f
2 messages with value ⊥ and phase φ− 1;

Messages with phase LOCK: The proposal value v is valid if there are more than (n+f
2)/2

messages with phase φ− 1 and value v;

Messages with phase DECIDE: If the proposal value is v ∈ {0, 1}, then it requires
more than n+f

2 messages with phase φ−1 and proposal value v. If the proposal
value is ⊥, then it requires more than (n+f

2)/2 messages with phase φ− 2 and
value 0 and more than (n+f

2)/2 messages with phase φ− 2 and value 1.

Status value — Concerning the status value, any message with phase φ < 3 must nec-
essarily carry the status undecided, because no process can decide prior to phase
3. For messages with φ ≥ 3, a status decided (for a value v) requires more than
n+f
2 messages with φ mod 3 = 0. The undecided status requires more than (n+f

2)/2

messages with phase φ′ and value 0 and more than (n+f
2)/2 messages with phase

φ′ and value 1, where φ′ must be the highest φ′ mod 3 = 2 lower than φ.

Explicit semantic validation increases the amount of exchanged data, by adding a
huge amount of messages needed to be transmitted and an extra computation effort; for
this reason, its usage is not mandatory.

6.2.2 MVC

Multi-Valued Consensus protocol (MVC) allows a set of processes to reach consensus
over a value of any size v ∈

∨
; the decided value is one of the proposed values or a

predefined value ⊥3
∨

.

MVC protocol requires a communication layer and a binary consensus layer. These
layers are transparent to the MVC protocol. In this thesis, Turquois was used for the
binary consensus layer; for the communication layer, a set of protocols were widely tested
as specified in Chapter 7, where the main contributions of this thesis are presented.

The pseudo-code for MVC is presented in Algorithm 4.

The protocol starts when each process announces its proposal vi to the others. The
sent message has the following format: 〈INIT, i, vi〉, where i is the (unique) ID of the
process and vi is its proposal. Each process accumulates the received messages in Vi and
waits until (n−f) INIT messages have arrived. If a process receives n−2f messages with
same value v, it broadcasts the message 〈VECT, i, v〉. If v can not be decided, ⊥ value is
sent instead.

In the next step, the process waits until it receives (n−f) VECT messages. If it process
receives (n−2f) VECT messages with the same proposed value (v), the binary consensus
is started with value 1 as proposal. If it is not possible to decide on a v value, the binary
consensus is started with value 0 as proposal. Value v is accepted if the result of the
binary consensus is 1; otherwise, the decided value is ⊥.

65

6. MULTI-VALUED CONSENSUS 6.2. Algorithmic vision

Input: initially proposed value, proposali ∈
∨

; (unique) ID of the node i
Output: consensus value, decisioni ∈

∨
or ⊥ if no decision reached

vi ← proposali;
phasei ← INIT ;
statusi ← undecided;
Vi ← ∅;

Initialization:
broadcast(〈INIT, i, vi〉);

Task Receiver:
when m = 〈msgPhase, j, vj〉 is received do

Vi ← Vi ∪ {m : m is valid };
if phasei = INIT ∧ | {〈INIT, ∗, ∗〉 ∈ Vi} | > n− f then

if | {〈INIT, ∗, v〉 ∈ Vi} | > n− 2f then
vi ← v;

else
vi ←⊥;

end
phasei ← V ECT ;
broadcast(〈V ECT, i, vi〉);

else if phasei = V ECT ∧ | {〈V ECT, ∗, ∗〉} | > n− f then
if | {〈V ECT, ∗, v〉} | > n− 2f then

binResult← binary consensus(1);
else

binResult← binary consensus(0);
end
if binResult = 1 then

decisioni ← v;
else

decisioni ←⊥;
end
statusi ← decided;

end
end

Algorithm 4: MVC algorithm

66

6. MULTI-VALUED CONSENSUS 6.3. Multi-Valued Consensus Implementation

6.2.2.1 Delayed nodes recovery

Due to the asynchronous communications model of WSN, a message being disseminated
through various disjoint routes to various Base Stations can arrive to each of its destina-
tions with a considerable delay (relatively to each others). This leads some processes to
start the consensus protocol before some others, causing the agreement rate among all
the participants to be very low.

The problem for a delayed process is that it will never receive the messages of the
initial phases from the other processes. The reason for some processes start the consensus
before others is because just n+f

2 processes are required to start the protocol.
In order to solve the problem of the delayed nodes, a mechanism for the recovery

of them was developed. Each consensus’ participant stores the sent messages in each
protocol’s phase; when it receives a message with an older phase value than its current
phase (φ < φi), it resends the message corresponding to the previous phase (φ) in order
that the other process can recover from the delay. To prevent cycles, a message is only
resent if it is an answer to a new or non-resented message.

6.3 Multi-Valued Consensus Implementation

During the elaboration of this thesis, MVC and Turquois protocols were implemented
in Java 7. These implementations were not based in the WiSeNet simulation environ-
ment (like previous implementations) as the Base Stations are supposed to have special
resources, namely communication capabilities (see 2.1).

The Java implementation of MVC and Turquois was programmed based on the pre-
sented algorithms. The Javadoc API was also generated, with the help of the Javadoc
Tools.

6.4 Multi-Valued Consensus Usage

As already stated in 5.2.3, in the context of this project, consensus mechanisms are used
in many situations. After the study of MINSENS++, MVC and Turquois protocols, a
summary of the consensus usage is now made in the following subsections.

6.4.1 Routes Consensus

In MINSENS++, during the routes selection process (5.1.2), it is necessary that all the BSs
reach a consensus about each route, in order to guarantee that all the routes are disjoint.

After the generation of a route ri by a BS bsi, it is necessary that ri is accepted by all the
others BSs. A message with format 〈ROUTE, i, ri〉 is then sent by bsi; a binary consensus
(with Turquois protocol) is started and all the BSs accepting ri propose 1, while the others
propose 0. If the consensus result is 1, ri is considered valid and accepted; otherwise ri is
discarded.

67

6. MULTI-VALUED CONSENSUS 6.4. Multi-Valued Consensus Usage

6.4.2 Local Data Consensus

Local Data Consensus in MINSENS++ is the process described in 5.2.3.2.
When a set of replicas of the same message arrive to a BS through various disjoint

routes, a local consensus is done in order to determine the value of the received message.

6.4.3 Distributed Data Consensus

Distributed Data Consensus is the protocol executed between BSs in order to reach a
consensus over a value, described in the present Chapter. The set of values (one per Base
Station) used in this consensus are, for each BS, the result from the consensus described
in the Local Data Consensus (6.4.2).

68

7
Evaluation

In this Chapter, the assessment process and the obtained results are presented and dis-
cussed. Initially we introduce in the section 7.1 the relevant information related with the
adopted testbed. This includes the rational for the MINSENS++ implementation base
and software dependencies, the simulation environment used to run the WSN routing
component and the hardware and software used to implement syncnodes or Base Sta-
tions, running the consensus algorithms and mechanisms.

In the section 7.2 we include the first experiments and observations for the imple-
mented MINSENS++ Protocol.

In the section 7.3 the methodology for the consensus assessment is presented.
In the section 7.4, we present the obtained results with the consensus mechanisms.

This evaluation allows us to obtain the results that will help to form conclusions rela-
tively to the correctness and expected work of the protocols. The main focus in the as-
sessment of this thesis is concerning the consensus protocol, which results are potentially
interesting and more innovative, in the context of the MINSENS++ protocol.

In the section 7.5 we include some complementary results and more observations
related with optimisations introduced in the consensus protocols and the testbed for the
MINSENS++ proposed solution.

In section 7.6 an assessment to an integrated solution is made and discussed.
Finally in section 7.7 a summarised analysis of the present chapter is made.

7.1 Implementation issues and testbeds

In this section we introduce the adopted testbeds, as well as an introduction to some
implementation issues.

69

7. EVALUATION 7.1. Implementation issues and testbeds

Figure 7.1: Network topology with 300 nodes and 4 base stations

We start by studying the implemented network for the MINSENS++ assessment (7.1.1)
followed by the testbed for the consensus protocol (7.1.2). In the end of this section (7.1.3),
we introduce Raspberry PI computers, including its specifications and some possible lim-
itations or bottleneck previsions.

7.1.1 MINSENS++ Implementation

The assessment to MINSENS++ protocol (section 7.2) intends to evaluate its performance,
as well as its correlation with the performance of the Consensus Mechanisms. The used
simulation environment (WiSeNet) allows the study of large scale WSNs, from hundreds
to tenths of thousands of nodes. In the presented tests, the used network topology varies
in the number of nodes; three settings were used: 300, 500 and 1000 nodes. These topolo-
gies represent in the simulator 900*500, 900*800 and 900*1600 metres of terrain, respec-
tively. Figures 7.1, 7.2 and 7.3 are graphical representations of the used topologies.

7.1.2 Consensus Protocol

The assessments’ focus within this thesis are mainly on the data consensus mechanisms.

As already stated in 3.1.2, the results obtained from a real deployment are essential
in order to validate and calibrate the parameters of existing simulators and protocols. To
obtain such measurements, a real deployment with Base Stations was executed.

During the experiments and to represent Base Stations, Raspberry PI devices [14]
Model B were used. These were the chosen devices because they are relatively weak
in terms of computation, storage and memory; however, they are less limited than the

70

7. EVALUATION 7.1. Implementation issues and testbeds

Figure 7.2: Network topology with 500 nodes and 4 base stations

Figure 7.3: Network topology with 1000 nodes and 4 base stations

71

7. EVALUATION 7.1. Implementation issues and testbeds

sensor nodes of the WSN (as referenced in 2.1). Therefore, these devices could easily be
the ones found in a real deployed WSN, acting as Base Stations.

During the tests, the Base Stations used IEEE 802.11 communications in infrastructure
mode (using a Linksys WRT54GC wireless router). The devices were randomly deployed
across the space (a few meters distant from each other), accordingly to the system model
for a real WSN.

A total amount of 13 nodes were used in the largest test and the methodology of the
tests is presented in section 7.3. The Raspberry PI characteristics are studied further in
the following subsection (7.1.3).

7.1.3 Raspberry PI nodes

The Raspberry PI computer was designed as a cheap credit-card-sized single-board com-
puter. It was initially designed and developed in the United Kingdom, by the Raspberry
PI foundation [14]. This foundation was created in 2009 as a non-profitable organisation,
under the support of the Charity Commission for England and Wales (a non-ministerial
government department that regulates different initiatives and projects from charity in-
stitutions). The foundation works in the direct coordination with the UK’s parliament
and government, and is hosted by the University of Cambridge, Computer Laboratory
and Broadcom. The main objective of the Raspberry PI foundation is the promotion of
basic Computer Science in schools. The Raspberry PI computer project is one of the
projects associated to this objective, funded to "promote the study of computer science
and related topics, especially at school level, and to put the fun back into learning com-
puting" [14]. The Raspberry PI is manufactured under the license of manufacturing for
different companies, namely: Element 14 Ltd [90], Premier Farnell [91], RS Components
[92] and Egoman [93]. All these companies sell the Raspberry PI computer online, all
over the world, since August 2012; the first alpha model of the system was released in
August/2011 for use by the early adopters. The official launch (after a period of Beta
versions) to the general consumer was on was 29 February 2012. Although the Founda-
tion’s goal was to offer two versions (A priced at US$25.00 and B priced at US$35.00), the
initial release included just the B Model; Model A (with the lower cost of US$25.00) was
released on 4 February 2013.

Since the model B was released, the platform became very popular and is currently
inspiring different projects and initiatives by researching the use of cheap and small on-
board credit-card-sized computers as possible solutions to support a range of different
appliances. Some possible appliances are: on-board media-centre solutions, IP Phone de-
vices, IP routing boxes, TCP/IP firewall nodes, Ethernet switching boxes, sensor based
computing platform or Wireless Local Area Network Access Points. In the context of our
dissertation, we followed these initiatives and contributions and we found an interesting
motivation in the materialisation of cheap syncnodes or Base Stations, as well as future
gateway solutions combined with the available technology for Wireless Sensor Networks.

72

7. EVALUATION 7.1. Implementation issues and testbeds

7.1.3.1 Raspberry PI Architecture

The information related with the Raspberry PI computer and its architectural issues is
currently available in a large documentation base in the Internet [94].

Here we include a summarised vision of the Raspberry PI architecture of the Model
B - the platform used in the implementation and validation of the consensus protocol in
the tests presented in the present chapter.

In the following table (table 7.1) we summarise the main hardware specifications and
related characteristics of the Raspberry PI computer (model B) [94], as used in the exper-
imental work of this thesis.

Price per unit
US$38.00 plus US$12.00 for additional power cord, DC
Power Supplier (5V to 250V, 1.2A), mini USB connectors
and VGA/HDMI cables

System on a Chip
Broadcom BCM2835 (CPU, GPU, DSP, SDRAM, and a sin-
gle USB native port on board)

CPU
700 MHz ARM1176JZF-S core (ARM11 family, ARMv6 in-
struction set)

GPU
Broadcom VideoCore IV @ 250 MHz, OpenGL ES 2.0 (24
GFLOPS), MPEG-2 and VC-1, 1080p30 h.264/MPEG-4 AVC
high-profile decoder and encoder.

Memory (SDRAM) 512 MB, shared with GPU

USB

2 * USB 2.0 ports (via the built-in integrated 3-port USB
hub (with only one USB via, multiplexing the USB avail-
able ports, supported on in-processing software running in
the CPU)

Video Input
A CSI input connector allows for the connection of a RPF
designed camera module

Video Output

Composite RCA (PAL and NTSC), HDMI, raw LCD Panels
via DSI connection. 14 HDMI resolutions supported, from
640*350 to 1920*1200 plus various PAL and NTSC stan-
dards.

Audio Output
3.5 mm jack, HDMI, I2S audio (potentially used for audio
input)

Onboard storage
SD / MMC / SDIO card slot (3,3V card power support
only). No expansions used.

Onboard network
10/100 Ethernet (8P8C) USB adapter on the third port of
the USB hub

Low-level peripherals
8 * GPIO, UART, I2C bus, SPI bus with two chip selects, I2S
audio, +3.3 V, +5 V, ground.

Power ratings 700 mA (3.5 W)
Power source 5 volt via MicroUSB or GPIO header

Size 85.60 mm * 53.98 mm
Weight 45 g

Table 7.1: Technical specifications of used Raspberry PI nodes

73

7. EVALUATION 7.1. Implementation issues and testbeds

7.1.3.2 Hardware architectural issues

In the context of our dissertation, it is important to add some additional notes related with
the hardware architecture of the used nodes. Such details will have significant impacts
in our results, as we will see further in this subsection.

• Memory management — In the architecture of the nodes and serial numbers that
were acquired for the experimental work in the dissertation and hardware config-
uration as used, the total memory of 512 MB is available (both to the GPU and for
the CPU). Level 2 Cache is configured to 128 KB but is used primarily by the GPU,
and not by the CPU;

• Processor — All the acquired nodes use the ARM11 processor, designed from the
version 6 specification of the ARM architecture (ARMv6)1 [95], which due to its age
is no longer supported by several popular and recent versions of Linux - including
Debian, Fedora or Ubuntu which dropped support for processors prior to ARMv7
since 2009;

• Other devices — The nodes support a 15-pin MIPI camera interface (CSI) connector
(not used in our work) and raw LCD panels available in hardware through DSI
connections and standardised by the Mobile Industry Processor Interface (MIPI)
Alliance. For the most part of our observations, we do not use this support, since
we used ssh to have remote terminals running in the nodes (and only one of the
nodes was connected to a LCD monitor - with a 1280*800 WXGA resolution - and
an USB keyboard);

• Wireless Ethernet Support — We used a Tiny Wireless Ethernet USB EDIMAX (EW
7811 UN model) adapter that was easy to use and set up in an experimental wireless
network. Such network interconnected the Raspberry PI nodes implementing the
group of Base Stations and running the consensus algorithms. The main features of
the EDIMAX dongles used are the following:

– 2.4 GHz, ISB Band;

– Low Power (<110mA) with Advanced Power Management;

– Host Interface: USB 2.0/1.1;

– LED: Link/Activity control.

The used EDIMAX dongle is currently one of the smallest USB wireless adapters
and supports a data rate of 150 Mbps (IEEE 802.11n) - the latest wireless standard.
However the driver used in the Raspberry PI Raspbian OS only allows a stable use
of IEEE 802.11b or IEEE 802.11g modes. Power Saving designed to support smart

1The ARM architecture describes a family of RISC-based (Reduced Instruction Set Computing) computer
processors. Using a RISC based approach, ARM processors require significantly fewer transistors benefiting
of lower costs, less heat, and less power usage.

74

7. EVALUATION 7.1. Implementation issues and testbeds

transmit power control and auto-idle state adjustments are not supported by the
Raspbian OS at the time of our experiments (and thus was disabled).

The most recently available firmware for the used nodes contains an option to con-
figure five overclock options. This allows to get different performance levels out of the
SoC2, without impairing the lifetime of the hardware. Such adjustment is done by mon-
itoring the core temperature of the processor chip and the CPU load, while dynamically
adjusting clock speeds and the core voltage. When there is a low demand on the CPU or
it is getting too hot, the performance is automatically throttled down; in the other hand,
if the CPU has too much to do and the chip’s temperature allows it, the performance is
temporarily increased by increasing the clock speeds up to 1 GHz - depending on the in-
dividual board and on which of the overclock setting is used. Five settings are available:

• None — 700 MHz ARM, 250 MHz core, 400 MHz SDRAM, 0 overvoltage3;

• Modest — 800 MHz ARM, 250 MHz core, 400 MHz SDRAM, 0 overvoltage;

• Medium — 900 MHz ARM, 250 MHz core, 450 MHz SDRAM, 2 overvoltage;

• High — 950 MHz ARM, 250 MHz core, 450 MHz SDRAM, 6 overvoltage;

• Turbo — 1000 MHz ARM, 500 MHz core, 600 MHz SDRAM, 6 overvoltage.

In the highest preset ("Turbo") the SDRAM clock was originally defined to 500 MHz,
but this was later changed to 600 MHz because 500 MHz caused sometimes the cor-
ruption of the SD Card (which is a critical problem in the use of Raspberry PI nodes).
Simultaneously, in the "High" mode the core clock speed was lowered from 450 to 250
MHz, and in "Medium" mode from 333 to 250 MHz. We observed that the processing of
protocols and intensive communication patterns imply on possibly considerable load in
the processor and temperature increase, so we decided to keep the configuration in the
"None" setting. In fact, we observed that there were no real gains in practice in adjust-
ing these settings for our case. Using a significant overclock setting would require more
power from the power source; as the available power sources were unable to provide
more power and as the CPU would require more power, such power would be diverted
from the USB components. The USB is crucial for us (due to the wireless adapter and the
Ethernet port) and thus such overclocks would be ineffective or counter-productive.

The referred additional notes (in the start of this subsection) are relevant for the analy-
sis of the performance achieved with the use of the present hardware settings to support
and evaluate the consensus protocols and obtain performance metrics. This is particu-
larly important in the identification of limitations and bottlenecks at the hardware level.

2SoC is an acronym for System on a Chip. A SoC is an integrated circuit that integrates all the basic
components of a computer or other electronic system into a single chip (namely CPU, memory, external
interfaces controllers, video interfaces controllers, etc.).

3When the voltage in a circuit or part of it is raised above its upper design limit, this is known as over-
voltage.

75

7. EVALUATION 7.1. Implementation issues and testbeds

In particular we must emphasize some limitations related with: power supply issues,
USB support solution and networking capabilities (including the wired 10-100 Mbps Eth-
ernet natively supported via a UTP RJ45 connector in the main board but physically
supported by the integrated USB controller, causing overhead to the CPU) and wire-
less Ethernet, only available through external USB adaptors. At the same time, the three
available USB ports are all multiplexed by an internal USB hub in the same USB bus (with
only one native USB port supported). The USB limitations and the power supply issues
are important limitations for the performance of inter-networking and operation of the
TCP/IP stack. However, this will be discussed in more depth in the chapter dedicated to
the evaluation of the consensus performance, as described in the context of the following
sections of this chapter.

7.1.3.3 Raspberry PI Operating System

The Raspberry PI can use as operating system Linux kernel-based operating systems, in
different variants. The GPU hardware is supported by a firmware image loaded into
the GPU at boot time from an SD Card (in the native on board SD card reader/writer).
This firmware image is known as binary blob4 in the initial terminology used by the
development community). While the associated ARM coded Linux drivers were initially
closed source, nowadays the code is partially released in open source - even that the
actual driver-development work is done using the initial closed source GPU code. On
19 February 2012, the Raspberry PI Foundation released the first considered stable proof
of concept of an SD Card image that could be loaded onto an SD Card to produce a
preliminary operating system. The image was based upon Debian 6.0 (Squeeze), with the
LXDE desktop environment and the Midori browser - plus various typical programming
tools - as found in a Linux-based desktop environment. The image also runs on QEMU
allowing the Raspberry PI to be emulated on many other platforms.

In our implementation we used the Raspbian Operating System, an obtained pre-
installed SD Card distribution (15/July/2012 packaging) with a Linux kernel version
3.2.27+ (dc4@dc4-arm-01 release). Raspbian is a Debian-based free operating system op-
timised for the Raspberry PI hardware. It is the current recommended system, whose
first stable version was officially released in July 2012 (although it is still in continuous
development, refinement and optimisation). It is a free software although it is not de-
veloped by the Raspberry PI Foundation: in fact, the Raspbian OS is only recommended
as the more stable boot. The system is based on the ARM hard-float (armhf)-Debian 7
’Wheezy’ architecture port and its LXDE desktop environment, initially optimised for
the ARMv6 instruction set of the Raspberry PI. It provides some available Debian dis-
tribution software packages and pre-compiled software bundles. A minimum size of 2
GB SD card is required for Raspbian, but a 4 GB SD card or above is recommended as

4In the context of open source software, a binary blob is a closed source binary-only driver without
publicly available source code.

76

7. EVALUATION 7.2. MINSENS++ Protocol Assessment

we could confirm. We ended using 8 GB SD Cards in our implementation setup and ex-
periments. The downloaded Raspbian "wheezy" image file had to be unzipped and then
written to a suitable SD Card, formatting it for use with efficiency. There is a server based
deployment as a specific edition of Raspbian (known as the Raspbian Server Edition (or
RSE). RSE is, in fact, a stripped version of the Raspbian LXDE with other software pack-
ages bundled. We used also this variant to observe possible implications in the study and
analysis of the protocols developed in our dissertation.

7.2 MINSENS++ Protocol Assessment

The obtained results for MINSENS++ are presented during the following subsections.
This tests are important in order to understand the correlation of them with the obtained
for the Consensus Mechanisms Assessments (section 7.3).

The tests to MINSENS++ protocol were conducted over a set of various metrics (namely
energy cost, connectivity, effective reliability and latency conditions), in order to under-
stand its behaviour in a large-scale WSN environment. However and for the purposes
of this thesis, we are only interested in the connectivity, effective reliability and latency
conditions.

7.2.1 Methodology

In order to achieve this thesis’ goals, the performance of MINSENS++ Protocol was eval-
uated with the following indicators:

• Network connectivity percentage — The ability of any node to transmit data to any
other node in the network, by using the implemented protocol. It is calculated as
the percentage of the relation between the covered nodes (those sending messages
successfully delivered) and the total number of sender nodes;

• Network reliability percentage — The quality of communication, given the trans-
mission method. It is calculated as the percentage of the relation between the suc-
cessfully received messages and the total number of sent messages;

• Latency — The measurement of the average number of hops that a message travels
before arriving to its destination.

The results of the presented tests are calculated as the average values for all the anal-
ysed indicators; for each test, 10 observations are made. Each of the observations uses a
different set of sender nodes, chosen randomly by the simulator. This randomness sim-
ulates the real randomness of a real WSN, where the senders can be any participating
node.

Every observation for each test was made under the same network topology and pro-
tocol instantiation. The measurements for the tests are made after the start of the protocol

77

7. EVALUATION 7.2. MINSENS++ Protocol Assessment

(thus after the setup phase), allowing the ad-hoc network organisation to be built without
influencing them. This allows also to have the maximum amount of stable nodes5.

7.2.2 Results

In this section, the observed results (accordingly with the presented Testbed and Method-
ology) are presented. For the results presentation, a comparison between INSENS and
MINSENS++ Protocols is made for each test, allowing to take a glance at both of them.

MINSENS++ Protocol (in opposition to INSENS) is highly customisable, namely re-
garding to the number of Base Stations or the transmission scheduling policy. For sim-
plicity and accordingly with the needs for this thesis, the presented tests use MINSENS++
with 2 Base Stations and with a round-robin scheduling policy (when choosing the desti-
nation Base Station).

5A node is considered stable when it is part of the routing process and is able to send and forward
messages.

78

7. EVALUATION 7.2. MINSENS++ Protocol Assessment

7.2.2.1 Network Connectivity

For the network connectivity test, the following parameters were used:

Parameter Defined Setting

Number of stable nodes INSENS - 250/426/680
MINSENS++ - 297/490/996

Number of observations 10
Percentage of sender nodes 10% to 30%

Number of Base Stations INSENS - 1
MINSENS++ - 2

Table 7.2: Parameters used for MINSENS++ connectivity test

The observed results with the above parameters are the presented in Figure 7.4.

(a) with 300 nodes (b) with 500 nodes

(c) with 1000 nodes

Figure 7.4: Network coverage with INSENS and MINSENS++ Protocols

Network connectivity is directly related and limited by the number of stable nodes
of the network. As we can see in the used parameters, a significantly bigger number of
stable nodes was achieved by MINSENS++ (for every number of nodes of the network).
This leads MINSENS++ to offer a superior network coverage when compared to INSENS.

MINSENS++ scales thus better, as we can see by Figure 7.4(c) where connectivity is
about 33% superior when compared to the INSENS Protocol.

79

7. EVALUATION 7.2. MINSENS++ Protocol Assessment

7.2.2.2 Network Reliability

For the network reliability test, the following parameters were used:

Parameter Defined Setting

Number of stable nodes INSENS - 250/426/680
MINSENS++ - 297/490/996

Number of observations 10
Percentage of sender nodes 10% to 30%

Number of Base Stations INSENS - 1
MINSENS++ - 2

Table 7.3: Parameters used for MINSENS++ reliability test

The observed results with the above parameters are the presented in Figure 7.5.
Like in network coverage, the network reliability is directly related and limited by

the number of stable nodes of the network, as the source nodes are chosen from all the
nodes of the network. Once again, reliability is better in MINSENS++ Protocol for every
number of nodes of the network.

MINSENS++ showed again to scale better then INSENS, with reliability being about
20% better in MINSENS++ (Figure 7.5(c)).

80

7. EVALUATION 7.2. MINSENS++ Protocol Assessment

(a) with 300 nodes (b) with 500 nodes

(c) with 1000 nodes

Figure 7.5: Network reliability with INSENS and MINSENS++ Protocols

81

7. EVALUATION 7.2. MINSENS++ Protocol Assessment

7.2.2.3 Latency

For the latency test, the following parameters were used:

Parameter Defined Setting

Number of stable nodes INSENS - 250/426/680
MINSENS++ - 297/490/996

Number of observations 10
Percentage of sender nodes 10% to 30%

Number of Base Stations INSENS - 1
MINSENS++ - 2

Table 7.4: Parameters used for MINSENS++ latency test

The observed results with the above parameters are the presented in Figure 7.6.

(a) with 300 nodes (b) with 500 nodes

(c) with 1000 nodes

Figure 7.6: Network latency with INSENS and MINSENS++ Protocols

Although with better results in network coverage and reliability, MINSENS++ showed
worse results in the latency tests, when compared to INSENS. However, the obtained
results are very close between INSENS and MINSENS++ and are inconsistent across
topologies (with the MINSENS++ being better with 500 nodes).

82

7. EVALUATION 7.2. MINSENS++ Protocol Assessment

7.2.2.4 Latency (revisited)

For this latency test, various combinations on the number of Base Stations and on the
scheduling policy (when choosing the destination Base Station) are made. The following
parameters were then used:

Parameter Defined Setting

Number of observations 10
Percentage of sender nodes 10% to 30%

Number of Base Stations 2 to 4

Table 7.5: Parameters used for MINSENS++ second latency test

The observed results with the above parameters are the presented in Figure 7.7.

(a) with 300 nodes (b) with 500 nodes

(c) with 1000 nodes

Figure 7.7: Network latency with various Base Stations

These results show that on the 1000 nodes topology, the bigger the number of avail-
able Base Stations, the better the average communication latency. Also, the round robin
scheduling policy is better than sending the same message to all the BSs.

For the scope of this thesis, the latency results are the most important as they allow to
understand the correlation between the messages arriving rate to Base Stations and the
consensus times. These results will thus be recovered later on section 7.6.

83

7. EVALUATION 7.3. Consensus Protocol Assessment and Methodology

7.3 Consensus Protocol Assessment and Methodology

The performance metric used in the experiments is the latency. This metric is always
relative to a given process pi, and is denoted as the interval of time between the moment
that the process proposes a value to a consensus execution and the moment it decides.

The average latency for the set of processes is obtained in the following way: A sig-
nalling machine (that does not participate in the consensus protocol) coordinates the ex-
periment; it starts by sending a virtually measured value (as if it was a sensor node in
a WSN) to each process, over a TCP connection. A process receiving such message, as-
sumes the received value as originated in a WSN and considers it as the proposal value;
the process stands then on hold. After all the participating processes received the pro-
posal message, the signalling machine sends a broadcast message in order to the pro-
cesses start the consensus; when a process receives such message, it starts the consensus
execution. Each process records the latency value and after the end of the protocol, such
value is printed in the console. The average latency is obtained by executing 3 consen-
sus instances, and then averaging the latencies collected by all processes through all the
instances.

The experiments were made in various combinations of group size, communication
protocol, presence of failures and configuration refinements. The group size defines the
number of processes (nodes) in the system; in our case, the values were 4, 7 and 10
nodes. The communication protocol defines the protocol used by the nodes to communi-
cate among them; the implemented communication protocols were UDP, UDP Multicast,
Non-Persistent TCP and Persistent TCP6. The presence of failures respects to the number
of nodes present in the consensus group that are acting as malicious. Within this criteria,
two experiments are made: without any fail (f = 0) and with max f : f < n

3 . Malicious
nodes (f nodes) broadcast an erroneous predefined value, simulating a Byzantine failure.

Concerning the configuration refinements, during the implementation of the algo-
rithms some sleep timers were implemented. This allows a given portion of code to run
slower (making the process to sleep for a certain amount of time). Although at a first
glance setting all the timers with the zero value could seem a pretty good decision, this
would increase the messages collisions rate. A more careful approach needs to be done
to these configuration refinements, and the results of such refinements are presented fol-
lowing in this Chapter.

7.4 Assessment for Unanimity Conditions

In the following subsections, the observed results for the Consensus Mechanisms are
presented.

6The difference between Non-Persistent TCP and Persistent TCP concerns the persistence properties of
the TCP connection, as exposed in section 7.4.1.5.

84

7. EVALUATION 7.4. Assessment for Unanimity Conditions

1534

1148

1790

1750

931

1313

1043

1402

0

1000

2000

3000

4000

5000

6000

Persistent TCP Non-Persistent TCP UDP Multicast

Times in milliseconds for all protocols with 3+1 nodes

Turquois MVC Turquois MVC Turquois MVC Turquois MVC

Figure 7.8: Comparison between all protocols for 3+1 nodes

7.4.1 Results

In this section, the observed results are presented. During the tests, when we refer to a
group of nodes as being x+y nodes, we mean that in a group of z nodes (with z = (x+y)),
x of them are working correctly while y are attacked and acting as malicious, introducing
Byzantine failures.

Figure 7.8 compares the results for each protocol with 4 nodes. In all the performed
tests and as showed by the chart, UDP and UDP Multicast Protocols seem to always be
better than TCP (both Persistent and Non-Persistent) Protocols; this means that UDP and
UDP Multicast Protocols seem to be the most interesting protocols with the best results
for this kind of application. With this result in mind, in the next subsections further
results are presented for the tests where UDP and UDP Multicast Protocols were used.
However, an analysis to Non-Persistent TCP and Persistent TCP Protocols is made in
subsection 7.4.1.5.

The following subsections are organised as follows: results are first divided by the
size of the group (amount of nodes) and then by communication protocol. The impact
of the presence of failures for the performance of the protocols is discussed in 7.4.1.6.

85

7. EVALUATION 7.4. Assessment for Unanimity Conditions

The configuration refinements specified in the charts use the terminology explained by
Table 7.6.

Refinement a b c d e f g h

MVC Sleep Time Between Receptions 50 50 50 50 25 25 25 0
MVC Sleep Time Between Checks to
Turquois

500 0 0 0 0 0 0 0

MVC Sleep Time Between Sends 500 500 300 200 150 125 100 0
Turquois Sleep Time Between Receptions 50 50 50 50 25 25 25 0
Turquois Sleep Time Between Sends 500 500 300 200 150 125 100 0
Application Sleep Time Between Checks
to MVC

500 0 0 0 0 0 0 0

Table 7.6: Configuration refinements terminology (all times in milliseconds)

In the previous table (Table 7.6), the refinement settings have the following meanings
in the context of the implementation of the algorithms:

• MVC Sleep Time Between Receptions — This time interval corresponds to the
time that, in the MVC layer, the protocol waits between two consecutive message
receptions. This refinement allows to avoid the overload of the CPU, if suddenly
many messages arrive to this layer;

• MVC Sleep Time Between Checks to Turquois — This time interval corresponds
to the time that the MVC layer waits between two consecutive requests to the
Turquois layer, asking about the results of the binary consensus. This refinement
allows to avoid the useless usage of the CPU due to busy waiting7, allowing it to
perform other tasks;

• MVC Sleep Time Between Sends — This time interval corresponds to the time
that, in the MVC layer, the protocol waits between two consecutive message sends.
This refinement tries to constrain the overload of the medium, by restricting the
sends’ frequency;

• Turquois Sleep Time Between Receptions — This time interval corresponds to the
time that, in the Turquois (binary consensus) layer, the protocol waits between two
consecutive message receptions. This refinement allows to avoid the overload of
the CPU, if suddenly many messages arrive to this layer;

• Turquois Sleep Time Between Sends — This time interval corresponds to the time
that, in the Turquois layer, the protocol waits between two consecutive message

7Busy waiting is a technique in which a process repeatedly checks to see if a condition is true. Busy wait-
ing itself can be made much less wasteful by using a delay function (e.g., sleep()) found in most operating
systems. This puts a thread to sleep for a specified time, during which the thread will waste no CPU time.
If the loop is checking something simple then it will spend most of its time asleep and will waste very little
CPU time.

86

7. EVALUATION 7.4. Assessment for Unanimity Conditions

1512
1338

931
760

628 612

971

1530

1537

1522

1313

1252

1136 1111

1103

1543

1684
1442

1043 1071
1229 1287

1165
1353

1700

1627

1402 1289
1202

1199
1163

1520

a b c d e f g h

0

500

1000

1500

2000

2500

3000

3500

4000

U
D

P

M
u

lt
ic

as
t

U
D

P

M
u

lt
ic

as
t

U
D

P

M
u

lt
ic

as
t

U
D

P

M
u

lt
ic

as
t

U
D

P

M
u

lt
ic

as
t

U
D

P

M
u

lt
ic

as
t

U
D

P

M
u

lt
ic

as
t

U
D

P

M
u

lt
ic

as
t

Comparison of Consensus Time in milliseconds for 3+1 nodes with UDP and UDP Multicast

Turquois UDP MVC UDP Turquois UDP Multicast MVC UDP Multicast

Figure 7.9: Comparison between UDP and Multicast protocols for 3+1 nodes

sends. This refinement tries to constrain the overload of the medium, by restricting
the sends’ frequency;

• Application Sleep Time Between Checks to MVC — This time interval corre-
sponds to the time that the application waits between two consecutive requests to
the MVC layer, asking about the results of the multi-valued consensus. This refine-
ment allows to avoid the useless usage of the CPU due to busy waiting, allowing it
to perform other tasks.

7.4.1.1 Group size with 4 nodes

In this tests, the group size is of 4 nodes. The obtained results were the presented in
Figure 7.9.

For the group with 4 nodes and by using the UDP Protocol, we can verify that the
results are always better than those when using UDP Multicast, except for the most ag-
gressive case (with no sleeps between sends or receives). Therefore, the UDP Multicast
Protocol does not offer any advantage over the UDP Protocol, except for an extremely
aggressive choice of the refinements (case h), when there are no sleep times between sends
or receives.

In the first cases, the amount of messages exchanged over the medium is still not
significant; this allows the communication mechanisms to perform correctly with UDP.
However, in the last case the high rate of exchanged messages causes a lot of collisions;
this leads to a high rate of dropped messages. UDP Multicast Protocol reduces the num-
ber of exchanged messages (by its multicast nature) and that’s the reason for the collisions
rate reduction, thus having better results than UDP.

87

7. EVALUATION 7.4. Assessment for Unanimity Conditions

2194

2913 3000 3003
2790

1587

1452
1468 1436

1403

2213

2840 2987
2711

2424

1556

1533 1353

1419

1459

c d e f g

0

1000

2000

3000

4000

5000

6000

U
D

P

M
u

lt
ic

as
t

U
D

P

M
u

lt
ic

as
t

U
D

P

M
u

lt
ic

as
t

U
D

P

M
u

lt
ic

as
t

U
D

P

M
u

lt
ic

as
t

Comparison of Consensus Time in milliseconds for 5+2 nodes with UDP and UDP Multicast

Turquois UDP MVC UDP Turquois UDP Multicast MVC UDP Multicast

Figure 7.10: Comparison between UDP and Multicast protocols for 5+2 nodes

7.4.1.2 Group size with 7 nodes

In this tests, the group size is of 7 nodes. The configuration refinements set was reduced
in order to focus on those with better results whose consensus process succeeds; the 5
best refinements for 4 nodes were then chosen to continue the tests. The obtained results
were the presented in Figure 7.10.

In this tests with 7 nodes, an inversion between UDP and UDP Multicast Protocols can
be clearly observed. In configurations c and d, the results for both protocols are nearly
the same. However, as the sends / receives sleep times are reduced, UDP Multicast
Protocol starts to show a better performance than UDP Protocol. UDP Multicast avoids
the increase of collisions number that occur in UDP Protocol by reducing the amount of
exchanged messages.

7.4.1.3 Group size with 10 nodes

In the following tests, the group size is of 10 nodes. The configuration refinements set was
reduced again (to focus on those with better results whose consensus process succeeds)
and the 3 best refinements for 7 nodes were chosen to continue the tests. The obtained
results were the presented in Figure 7.11.

The obtained results start to evidence that the choice between the UDP Protocol or the
UDP Multicast Protocol depends on the user’s profile. If the user is more conservative
and prefers configurations with greater sends / receives sleep times, then the UDP Pro-
tocol shall be chosen; however, if the user is less conservative and prefers configurations
with more aggressive sends / receives sleep times, then the UDP Multicast Protocol shall
the chosen.

88

7. EVALUATION 7.4. Assessment for Unanimity Conditions

2839

4078 3890

2065

1894
1873

3403
3874 3938

1855

2020
1546

c d e

0

1000

2000

3000

4000

5000

6000

7000

U
D

P

M
u

lt
ic

as
t

U
D

P

M
u

lt
ic

as
t

U
D

P

M
u

lt
ic

as
t

Comparison of Consensus Time in milliseconds for 7+3 nodes with UDP and UDP Multicast

Turquois UDP MVC UDP Turquois UDP Multicast MVC UDP Multicast

Figure 7.11: Comparison between UDP and Multicast protocols for 7+3 nodes

These results evidence that the UDP Multicast Protocol is a better choice when a lot
of collisions occur over the air and that the UDP Protocol is a better choice when there
is a small amount of collisions occurring, due to slower communications. UDP Multicast
Protocol reduces the collisions by drastically reducing the exchanged messages by its
multicast philosophy, as one single message has various destinations.

7.4.1.4 Group size with 13 nodes

Although the tests were supposed to be performed just over a maximum of 10 nodes,
we tried to reach more results by increasing the group size to 13 nodes. However, with
13 nodes it was observed that the consensus process was so unstable that it was almost
impossible to reach a consensus (thus leading the mechanism to start failing). The best
obtained value was a total consensus time of 6750 milliseconds (2305 milliseconds during
the MVC Protocol and 4445 milliseconds during the Turquois Protocol).

This result reveals that the chosen combination of Hardware and Network constrain
the number of nodes for these protocols.

7.4.1.5 TCP Protocol Considerations

The tests were also performed with two variants of the TCP Protocol. In the first variant
(Non-Persistent TCP Protocol), each time a message needs to be transmitted, a new con-
nection is opened; then the message is transmitted and finally the connection is closed.

In the second variant (Persistent TCP Protocol), all the connections among the Base
Stations (all to all) are opened before the start of the protocol; whenever bsi needs to send
a message to bsj , the former checks its connections table and obtains the opened socket to

89

7. EVALUATION 7.4. Assessment for Unanimity Conditions

the latter. A watchdog process runs in background, recovering any connections that may
accidentally go down.

As already stated in 7.4.1 and viewed in Figure 7.8, both the two variants of the TCP
Protocol have the worst results, when compared to the variants of the UDP Protocol.

For a big group of nodes, it was observed that in our study the TCP Protocol based
consensus do not decide in a reasonable time.

7.4.1.6 Presence of failures

During the execution of the tests for 4, 7 and 10 nodes, tests with no Byzantine failures
were also performed. These tests intended to observe if any relation between the presence
or not of failures would exist.

These tests were similar to the others, except that all the nodes were (at start) propos-
ing the exactly same value.

With these tests we could observe that there is no direct relation between the presence
or not of failures. The obtained results were similar to those from the tests performed
with Byzantine failures injection. In both cases the number of exchanged messages is
similar, and this causes both tests to have similar results.

7.4.2 Critical analysis for the obtained results

During the assessment phase of the consensus mechanisms, 4 communication protocols
were implemented: Non-Persistent TCP, Persistent TCP, UDP and UDP Multicast.

TCP Protocols (both Persistent and Non-Persistent variations) showed to be always
worse than the UDP based protocols. For that reason, the major part of the assessments
were made by just considering the UDP and UDP Multicast Protocols.

When the number of nodes increases, UDP Multicast revealed to be better than UDP.
With a great number of nodes, the number of exchanged messages also increases, thus
leading to the increase of the collisions rate; UDP Multicast allows to reduce the number
of exchanged messages (and thus reduce the collisions rate) due to its multicast philoso-
phy.

For the same number of nodes, there are also differences between UDP Multicast and
UDP accordingly to the configuration refinements. For more conservative configurations
(high sends / receives sleep times) UDP Protocol showed the best results while for less
conservative configurations (low sends / receives sleep times) the UDP Multicast Proto-
col is desirable.

The presence or not of failures showed however that it has no influence in the ob-
served results, as (for the same configuration) the number of exchanged messages is sim-
ilar in both cases.

90

7. EVALUATION 7.4. Assessment for Unanimity Conditions

7.4.3 IPSec Considerations

Additionally to the presented assessment, we studied a possible approach to communi-
cations with IPSec8 in Raspberry PI nodes, in order to anticipate some possible impacts
of such protocol in the consensus results.

IPSec protocol offers security guarantees, such as confidentiality, integrity and au-
thentication through the usage of cryptography.

IPSec can operate in two distinct modes. In the transport mode, only the payload of
the IP packet is usually encrypted and/or authenticated; in the other hand, in the tunnel
mode the entire IP packet is encrypted and encapsulated into a new IP packet with a new
IP header (allowing the original packet to securely cross insecure networks).

The testbed for this test is composed by two Raspberry PI nodes (with the previ-
ous base configurations), sending files of different sizes through the TFTP protocol9. A
mechanism for automatic keys distribution was used, as the used kernel version did not
support manual keys distribution.

Firstly we measured the transfer latency through IEEE 802.3. The obtained results are
presented in table 7.7; note that a zero value on the table means that the transfer time is
negligible.

File Size Without IPSec With IPSec

1KB 0 0
10KB 0 0.1
100KB 0.24 0.5
256KB 0.58 1.2
512KB 1.14 2.3
1MB 2.38 4.7

10MB 23.26 47.44

Table 7.7: Latency times (in seconds) of a file transfer with and without IPSec in a wired
network

After the first test, the Raspberry PI nodes were configured to operate in a wireless
network (IEEE 802.11) and the obtained results are presented in table 7.8.

From the observations we made, we can conclude that the usage of the IPSec protocol
significantly increases the latency of the network. In the first tests (wired network) the la-
tency duplicates when using IPSec; in the second tests (wireless network) the differences
in latency are even more evident.

Although the usage of IPSec eliminates many attacks to a computer network, it intro-
duces an overhead to the participating devices. In the case of low computation power

8Internet Protocol Security (IPSec) is a protocol suite for securing Internet Protocol (IP) communications
by authenticating and/or encrypting each IP packet of a communication session. IPSec also includes proto-
cols for establishing mutual authentication between agents at the beginning of the session and negotiation
of cryptographic keys to be used during the session.

9Trivial File Transfer Protocol (TFTP) is a file transfer protocol notable for its simplicity. It is extremely
limited and does not provide authentication.

91

7. EVALUATION 7.5. Complementary Assessment under Different Settings

File Size Without IPSec With IPSec

1KB 0.22 2
10KB 0.32 10
100KB 12.18 71
256KB 29.9 149
512KB 280.84 328

Table 7.8: Latency times (in seconds) of a file transfer with and without IPSec in a wireless
network

devices (our case with Raspberry PI computers), such overhead have a significant impact
in the network latencies, and thus IPSec is not the most advised.

7.5 Complementary Assessment under Different Settings

7.5.1 Motivation and Settings

Revisiting the limitations on the Raspberry PI nodes (7.1.3.2), namely the networking ca-
pabilities, the following thought has came into account: Would it be possible that Raspberry
PI nodes’ architecture is causing a bottleneck on our solution?. Another possible thought could
be Could we be more optimistic and, in some way, relax the approval conditions of a value in or-
der to decide faster?. In this section (7.5) we present several complementary assessments
under different settings, having in mind the obtained results from the assessment tests of
section 7.4.

7.5.1.1 Raspberry PI USB bottleneck

Considering the first thought (and having the Raspberry PI limitations in mind), we de-
cided to perform some assess to the networking support of Raspberry PI nodes with the
iperf tool10. Such assessment is relevant to understand the severity of the networking
limitations on Raspberry PI nodes, and thus understand better the performance of the
consensus mechanisms assessed in this dissertation. For such tests, two versions of the
Raspberry PI were prepared:

• Raspberry PI Standard Version (RSV) — This version corresponds to the normal
Raspberry PI node, as already used in all the previous tests;

• Raspberry PI Optimised Version (ROV) — This version corresponds to a Rasp-
berry PI with a more recent kernel version and with an available patch applied.
This patch, for CPU performance and USB interrupt rate reduction (called Gordon’s

10Iperf is a tool for network performance measurement written in C++. Iperf was developed by the
Distributed Applications Support Team (DAST) at the National Laboratory for Applied Network Research
(NLANR), a research lab that merged with the University of California San Diego’s CAIDA group, United
States of America

92

7. EVALUATION 7.5. Complementary Assessment under Different Settings

FIQ Fix), allows to reduce the USB interrupt rate and thus improve the general per-
formance of the CPU by about 10% and improving by 20% the data-losses in the
USB bus. This patch was obtained from USB GitHub rpi-update firmware, pro-
vided by the Element 14 distributor [90].

To support the tests, we used the following machines:

• Machine A — A computer running Mac OS X version 10.7.5 with a 3.1GHz Intel
Core i5 CPU, 4GB (1333MHz DDR3) RAM and native Wi-Fi and wired Ethernet
connections;

• Machine B — A Raspberry PI node with the specified configurations (RSV or ROV).

In our evaluations we used first the Machine A as a server in the iperf tool and the
Raspberry PI node (Machine B) as a client; then roles were changed and new observations
were made. All the results were observed with 10 measurements, sending IP packets (of
1024 bytes) during 60 seconds. The presented results were calculated as the average of
the respective observations. Below we present the observed facts about the Raspberry PI
nodes’ limitations.

Iperf results
The first test made with iperf tool (as usually used in a unix environment) corresponded
to a test running among Machine A and the Raspberry PI through wired Ethernet. The
obtained results are the present in table 7.9.

Raspberry PI version Raspberry PI as client Raspberry PI as server

RSV 28 Mbps 26 Mbps
ROV 36 Mbps 36 Mbps

Table 7.9: Iperf results with wired Ethernet

The second test consisted on using wireless communications (IEEE 802.11g) struc-
tured with a Linksys Broadband Wireless-G Router (Model WRT54GC) with DHCP server.
The obtained results are the ones in table 7.10.

Raspberry PI version Raspberry PI as client Raspberry PI as server

RSV 24 Mbps 24 Mbps
ROV 32 Mbps 28 Mbps

Table 7.10: Iperf results with structured IEEE 802.11g

Finally, in the last test we used ad-hoc wireless communications (IEEE 802.11g) and
fixed IP addresses. The results are presented in table 7.11.

In all the performed tests, CPU usage rate was always nearly the 100%; this illustrates
how the I/O operations are CPU-intensive in the Raspberry PI computers. We can ob-
serve that in all the cases, the performance was always far from the theoretical 54 Mbps

93

7. EVALUATION 7.5. Complementary Assessment under Different Settings

Raspberry PI version Raspberry PI as client Raspberry PI as server

RSV 25 Mbps 24 Mbps
ROV 32 Mbps 26 Mbps

Table 7.11: Iperf results with ad-hoc IEEE 802.11g

of the IEEE 802.11g protocol. The Raspberry PI Optimised Version (ROV) showed how-
ever to always have a better performance in all the test cases, when compared with the
Raspberry PI Standard Version (RSV). This points to the value of the applied patch; con-
sidering such results, in all the following tests the Raspberry PI computers have always
the patch applied (corresponding to the ROV).

HTTP test results
After the assessment to the TCP/IP stack performance, we decided to test the application-
level performance, namely using HTTP/TCP. An Apache HTTP server11 was then in-
stalled on the Machine A and a 100 MByte data file was deployed to it (in order to test
the download times and throughputs by the Raspberry PI computers). The wget tool was
used to download the 100 MByte file to Machine B (Raspberry PI Optimised Version) and
the average velocity of 2.2 Mbps was achieved. This value was observed when, while
downloading the file, the CPU was pushed to 100% load. The download tests ran 10
times consecutively with, however, an interval of 5 minutes between each – in order to
allow the device to recover a steady state, in terms of temperature and power consump-
tion.

The following test without the CPU fully available to the USB bus relied on a call to
the X Window server12. The X Window server was then started in the Raspberry PI, using
an ASUS LCD Monitor (with a resolution of 1024*768 pixels) connected via the HDMI
port, during the download of the file. We could observe that the download slowed down
to about 60 Kbps. When the X Window server was stopped, the download rate increased
to about 1.6 Mbps. An interesting fact is that the observations were similar both for the
wired or wireless connections and also for the different configurations presented in the
previous tests.

After some research work over the Internet, we found several discussions about the
performance of the USB controller used in the Raspberry PI’s SoC (Broadcom BCM2835).
Some possible reasons pointed are buggy drivers (causing the serious problems currently
noticed) and the fact that Raspberry PI can only supply an unusually low amount of
power to its USB devices (approximately 140 mA). One possible solution to solve the
second problem would be the usage of powered hubs; it was however reported that this

11The Apache HTTP Server is a web server software program developed and maintained by an open
community of developers under the auspices of the Apache Software Foundation.

12The X Window System is a computer software system and network protocol that provides a basis for
graphical user interfaces (GUIs) and rich input device capability for networked computers. The X.Org Foun-
dation leads the project, with the current reference implementation available as free and open source soft-
ware under the MIT License and similar permissive licenses.

94

7. EVALUATION 7.5. Complementary Assessment under Different Settings

solution aggravates the issues caused by the USB drivers. The Ethernet connections are
also directly affected by this problem because, as already studied, the Ethernet port is
connected to the SoC via USB. This causes a significant amount of lost packets, total loss
of network connectivity or even crashes (depending on the used power supply). We
found several attempts to fix the buggy USB drivers but unfortunately none of them
achieved full success until now. Despite, some cases reported possible bandwidths over
80 Mbps, with specific OS optimisations (using other kernel distributions) and specific
USB dongle hardware (not used in our testbeds).

Power suppliers issues
The power supplier seems to be pointed as the origin of many issues and malfunctioning
cases of Raspberry PI computers by the adopters’ community. The overload of the power
supply seems to cause different problems with devices connected to the Raspberry PI,
namely erratic operation or stop of keyboard, mouse and serious network problems. The
action of hot plugging13 is also reported as a possible origin of crashing other devices
or the system. Finally, under significant network usage, the device may crash or have a
high packet losses rate (usually when the power supply is limited to 5V and 1A) as the
network processing is made by the CPU via the USB bus and driver.

IP Packet Losses Evaluation
We tested the loss of IP packets by measuring the performance of ICMP protocol. To do
so, we made several observations by running Ping tests14 (with 64 bytes ICMP messages)
in parallel, from 10 Raspberry PI nodes to other 10 Raspberry PI nodes (in pairs) on a
wireless LAN in infrastructure mode. We observed that the round-trip times (RTT) were
of 3ms to 5ms, with no relevant difference between different nodes. However, if the CPU
load was increased, the packet loss ratios were the presented on table 7.12.

CPU Load 50% 80% 100%
Packet Loss Ratio 30% 50% 80%

Table 7.12: Relation between CPU Load and Packet Loss Ratio on Raspberry PI

In another experiment, the CPU load was set to 20%. Using the iperf tool to regulate
the bandwidth, we observed that with the increase of bandwidth the packet losses in-
crease significantly as presented in table 7.13. We also noticed that on the last setting (25
Mbps) the CPU load was about 100%.

A last test consisted in 10 Raspberry PI sending ping packets to the air, using as desti-
nation the multicast IP address 224.0.0.1. In this situation we observed a packet loss near
100% when sending the packets at 30 Mbps.

13Hot plugging is a term used to describe the functions of replacing computer system components without
shutting down the system.

14Ping is a computer network administration utility used to test the reachability of a host on an Internet
Protocol (IP) network and to measure the round-trip time for messages sent from the originating host to a
destination computer.

95

7. EVALUATION 7.5. Complementary Assessment under Different Settings

Bandwidth 5 Mbps 10 Mbps 15 Mbps 20 Mbps 25 Mbps
Packet Loss Ratio 1% 2% 40% 65% 90%

Table 7.13: Relation between network bandwidth and Packet Loss Ratio on Raspberry PI

7.5.1.2 Testing topologies

Concerning the second thought introduced in 7.5.1, we can be more optimistic in the
tests’ topologies.

The k-consensus problem [89, 87] considers a set of n processes where at least k of
them have to decide on a common value proposed by one of the processes (in our case,
k = n − f and f = n−1

3). The remaining non-Byzantine processes (at most n − k) do not
necessarily have to decide; however, if they decide, they are not allowed to do it on a
different value. This means that we can be more optimistic and, instead of requiring that
all the nodes decide on the correct value, require just k of them to do it.

The reasons from 7.5.1.1 and 7.5.1.2 lead us to a new assessments set where the Rasp-
berry PI nodes have the USB interrupt rate reduction patch applied and where just k
nodes are necessary to reach a consensus. In the new topology, there are three fault types:

• Failure-Free Setting — In this setting (section 7.5.2) all the nodes behave correctly;

• Fail-Stop Setting — In this setting (section 7.5.3), f = n−1
3 nodes crash during the

consensus process;

• Byzantine Setting — In this setting (section 7.5.4), f = n−1
3 nodes try to avoid the

correct processes from reaching a decision, by attacking the protocol’s execution.
A Byzantine node proposes the opposite value that it would propose if it were
behaving correctly in phase 1 or 2; in phase 3 it simply proposes the value ⊥.

Each test ran 10 times and the presented values are the average of the respective
observations. The configuration parameters for the protocols on this assessment were
the presented on table 7.14.

Refinement

MVC Sleep Time Between Receptions 50
MVC Sleep Time Between Checks to Turquois 500

MVC Sleep Time Between Sends 125
Turquois Sleep Time Between Receptions 50

Turquois Sleep Time Between Sends 125
Application Sleep Time Between Checks to MVC 500

Table 7.14: Configuration refinements for the new assessment (all times in milliseconds)

The proposal distribution defines the initial values to be proposed by each process,
and has the following two variants:

• Unanimous — All the processes propose the same initial value;

96

7. EVALUATION 7.5. Complementary Assessment under Different Settings

107
209

388
505 216

317

500

708

208
411

778

1163

361

486

896

1261

4 nodes 7 nodes 10 nodes 13 nodes

0

500

1000

1500

2000

2500

3000

3500

u
n

an
im

o
u

s

d
iv

er
ge

n
t

u
n

an
im

o
u

s

d
iv

er
ge

n
t

u
n

an
im

o
u

s

d
iv

er
ge

n
t

u
n

an
im

o
u

s

d
iv

er
ge

n
t

Comparison of Consensus Time in milliseconds in a Failure Free Setting

Turquois Unanimous MVC Unanimous Turquois Divergent MVC Divergent

Figure 7.12: Comparison of Consensus Time in milliseconds in a Failure Free Setting

• Divergent — Processes with an odd ID propose one value, while the others propose
another.

7.5.2 Latency in a Failure-Free Setting

In this section we present the results of the assessment when there are no failures, on
figure 7.12 and using a UDP / Multicast IP philosophy for communications.

In this test, all the nodes whose correct decision was mandatory (accordingly with
7.5.1.2) reached a consensus.

It is impossible to compare the results of this test with the tests from the previous tests
(section 7.4) as the settings are completely different (in section 7.4 we assumed always
Byzantine attacks).

In our measurements the network jitter15 was averagely 12% for MVC and 4% for
Turquois and not much variable, what means that the network is relatively stable.

7.5.3 Latency in a Fail-Stop Setting

In this section we present the observed performance when f = n−1
3 nodes crash before

the execution of the protocol begins. In such situation, since f nodes crash exactly n−f =
n+f
2 + 1 nodes are left in the system. Results are presented on figure 7.13 and the used

communications were based on UDP / Multicast IP.
In this test, all the nodes whose correct decision was mandatory (accordingly with

7.5.1.2) reached a consensus.

15On computer networks, jitter is a statistic variation of the data delivery delay. It can be measured as the
variation delay between successive data packets.

97

7. EVALUATION 7.5. Complementary Assessment under Different Settings

989 1046
1339

1771

212

1576

1984

1850

533

1205

1667
1990 797

1678

1954

1908

4 nodes 7 nodes 10 nodes 13 nodes

0

1000

2000

3000

4000

5000

6000

u
n

an
im

o
u

s

d
iv

er
ge

n
t

u
n

an
im

o
u

s

d
iv

er
ge

n
t

u
n

an
im

o
u

s

d
iv

er
ge

n
t

u
n

an
im

o
u

s

d
iv

er
ge

n
t

Comparison of Consensus Time in milliseconds in a Intrusion Stop Setting

Turquois Unanimous MVC Unanimous Turquois Divergent MVC Divergent

Figure 7.13: Comparison of Consensus Time in milliseconds in a Fail-Stop Setting

Once again, these results are not comparable with the results obtained in section 7.4
as the settings are not the same.

In the case of the Fail-Stop Setting and contrarily to the Failure Free Setting, the net-
work jitter is considerable. It was in average of 19% for the MVC protocol and 48% for
the Turquois protocol and a bit variable. This means that there is some instability in the
network, mainly during the execution of Turquois.

7.5.4 Latency in a Byzantine Setting

Here we present the observed results when f = n−1
3 nodes act accordingly with a mali-

cious strategy, on figure 7.14. The communications’ pattern was based on UDP / Multi-
cast IP.

In this test, all the nodes whose correct decision was mandatory (accordingly with
7.5.1.2) reached a consensus. The communications’ pattern was, once again, based on
UDP / Multicast IP.

In figure 7.15 a simplified version of the best obtained results allows us to compare
the results from section 7.4 (Test A) and the results from the current setting (Test B). As
we can see, the results obtained after the improvements (improvements in Raspberry PI
nodes and new testbed) are always better than those obtained on Test A. Furthermore
we can see that as the number of nodes increase, settings from Test A have a tendency to
increase consensus times more rapidly than the settings from Test B.

Finally, in the Byzantine Setting the network jitter is significant. In fact, the jitter
reached values of 40% for the MVC protocol and 31% for the Turquois protocol. Such
instability can be explained by the number of collisions in network that with this test

98

7. EVALUATION 7.5. Complementary Assessment under Different Settings

746

1416
1889 1921

1274

1686

1857
2188

1000

1714
2121 2036

1213

1742

1976
2400

4 nodes 7 nodes 10 nodes 13 nodes

0

1000

2000

3000

4000

5000

6000

7000

u
n

an
im

o
u

s

d
iv

er
ge

n
t

u
n

an
im

o
u

s

d
iv

er
ge

n
t

u
n

an
im

o
u

s

d
iv

er
ge

n
t

u
n

an
im

o
u

s

d
iv

er
ge

n
t

Comparison of Consensus Time in milliseconds in a Byzantine Failure Setting

Turquois Unanimous MVC Unanimous Turquois Divergent MVC Divergent

Figure 7.14: Comparison of Consensus Time in milliseconds in a Byzantine Failure Set-
ting

1165

2213

3403 1163

1556

1855

746

1416

1889

1274

1686

1857

4 nodes 7 nodes 10 nodes

0

1000

2000

3000

4000

5000

6000

Te
st

 A

Te
st

 B

Te
st

 A

Te
st

 B

Te
st

 A

Te
st

 B
Comparison of the Best Consensus Times (in milliseconds) in Test A and Test B

Turquois A MVC A Turquois B MVC B

Figure 7.15: Comparison of the Best Consensus Times (in milliseconds) in Test A and Test
B

99

7. EVALUATION 7.5. Complementary Assessment under Different Settings

start to be significant.

7.5.5 Critical Analysis

In this section, we tried to improve the results obtained previously on section 7.4.

The research for improvements was made mainly in two directions:

1. Possible optimisations to the Raspberry PI nodes’ performance;

2. Possible improvements in terms of the assessment philosophy, trying to be more
optimistic about the consensus.

Concerning the optimisations on the Raspberry PI nodes’ performance, we started
by the study and comprehension of the hardware’s architecture. After our suspicions
concerning the USB bus and controller, we did a research on the Internet. Such research
allowed us to understand that many problems we were suspecting on were already re-
ported and somehow documented.

We installed a new kernel version and a patch for the USB controller issues. Then we
made some tests with two objectives in mind:

• Investigate if the Raspberry PI nodes’ performance increased with such fixes;

• Get to know better the behaviour of the network of such devices when the CPU
was stressed by increasing its load.

Both tests were successful and helped our comprehension in two different directions.
With the first we verified that in fact the patches and tips we found with our research were
useful; thus all the subsequent tests were performed with these patches applied on the
Raspberry PI nodes. With the second test, we confirmed that when the CPU is subjected
to an increase on its load the ratio of lost packets is surprisingly high. The hardware
architecture (with the networking capabilities multiplexed to the single USB bus) is the
main reason for such behaviour, exacerbated with some bugs on the USB drivers and
weakness on the energy supply.

Concerning the possible improvements on the assessments’ philosophy, we decided
to assess the k-consensus problem, where we only require k out of n processes to decide
on the consensus value, where k = n − f and f = n−1

3 . This allowed us to be more
optimistic and to reach better results. Following the philosophy of [87] in order to allow
the comparison of results with the original implementation of Turquois, we decided to
have three different settings: one with no failures, other with fail-stop flaws and another
with Byzantine flaws.

Having the original implementation of Turquois in mind ([87]), we can compare such
results with our measurements. In all the settings, the obtained results were always
worse than those from the original implementation; the latency values on the original

100

7. EVALUATION 7.6. MINSENS++ Integration Assessment

implementation were in average 12% of the values we assessed (between 4% in the min-
imum and 35% in the maximum). However, if we consider each results set in its order
of magnitude and compare how they evolve, we can verify that both the original and
our measurements evolve proportionally. This means that the algorithms’ behaviour is
correct and evolving accordingly with the expected. Some factors that may contribute for
the better results in the original implementation are:

• Java implementation vs. C implementation — The fact that we used Java has ad-
vantages and disadvantages (as already analysed in section 4.3). We were aware for
the fact that one of the biggest disadvantages of Java is its poor performance when
compared with lower-level languages like C. This fact leaded our implementation
to a worse performance than the original one, written in C;

• Testbed — The assessment to the original implementation of Turquois used more
powerful devices (namely Pentium III computers with 600 MHz of clock speed and
256MB of RAM) then our Base Stations (Raspberry PI computers). The computation
power also contributed for the performance differences;

• Simulation Environment — In the original assessment the experiments were car-
ried out on the Emulab simulation environment. Although this simulator attempts
to simulate the issues of real wireless networks, it is not possible to completely and
reliably simulate the effect of real flaws (like electromagnetic interferences on the
frequency spectrum). Thus, collision conditions will not be as aggressive as possi-
bly in a real network, by creating a more aseptic environment.

As in the original experiments and accordingly with the expected, we can observe
that in our results the unanimous proposal distribution has always better results than the
divergent.

The assessment of the third setting (Byzantine Failure Setting) allowed us to compare
the previous results from the Unanimity Conditions (section 7.4) with the new ones, ob-
tained from the refinements to the Raspberry PI nodes and from the change of assessment
philosophy. Such comparison showed that the improvements we made were significant,
allowing to reduce the time to reach consensus in about 13% for four nodes, 17% for
seven nodes and 28% for ten nodes – what is significant. As we can see, as the number of
nodes increases, the improvements achieved by the new tests tend to increase, resulting
in bigger improvements.

7.6 MINSENS++ Integration Assessment

In this last section, we present the MINSENS++ Integration Assessment. The objective
in this testbench was to observe the interoperation issues as well as evaluate the perfor-
mance of the integrated MINSENS++ solution. The integration and interoperation of our
solution has two main components:

101

7. EVALUATION 7.6. MINSENS++ Integration Assessment

• The multi-hop routing protocol running with multiple disjoint routes, established
to multiple Base Stations (MINSENS++ WSN Routing Layer), as initially evaluated
itself in the first testbench (section 7.2);

• The multi-value consensus protocol (MINSENS++ MVC), performed by the group
of Base Stations in order to achieve final data-consistency guarantees from the pack-
ets received from the WSN, as initially assessed itself in the observations of the
second testbench (section 7.4).

The main motivations and objectives for this integrated evaluation were focused on
searching answers for the following questions:

1. Considering the integration of the two main components of the global intrusion
tolerant routing service, does the solution work as expected?

2. Can we evaluate end-to-end latency metrics under different conditions, in the conju-
gation of the two main components of the MINSENS++ integrated solution?

3. In the previous overall evaluation, which is the component that may introduce pos-
sible bottlenecks in performance and reliability? Is it the latency mainly introduced
by the base routing layer service running at the WSN level? Or in the other hand is
the bottleneck due to the MINSENS++ MVC latency limitations?

4. From the obtained results, can we argue our validity conclusions with an improved
confidence level, to address a future implementation of the proposed solutions in a
fully real test environment with available technology?

In the following assessments we will try to find the answers to these questions.

7.6.1 Integration Setting

In order to answer to the previous questions, we created an hybrid testbed environment,
by mixing a simulated large scale Wireless Sensor Network supported by the WiSeNet
simulation platform (as used in the first testbench in section 7.2) and external real nodes
implemented by Raspberry PI computing nodes. External real nodes are connected to
virtual Base Stations, supported by the simulation environment.

The virtual Base Stations of simulated WSNs (created in the WiSeNet environment)
are selected as Base Station nodes, using the functionality provided by the WiSeNet man-
agement tools. By doing this, each virtual node opens a socket to an external specific
process implementing a relay point. Such point sends the received IEEE 802.15.4 data
packets as payloads of UDP datagram packets by IEEE 802.11 to a specific Raspberry PI
computing node. Each relay process routes the received messages to one and only one
Raspberry PI node.

In order to coordinate all the participants, a process running in the machine execut-
ing WiSeNet is used as a coordination process. All the Raspberry PI receiving a message

102

7. EVALUATION 7.6. MINSENS++ Integration Assessment

announces that event to this process. When the number of messages with the same mes-
sage ID reach a predefined k-resiliency threshold, the coordinating process broadcasts a
message to all the Raspberry PI nodes in order that they start the consensus process.

When a Raspberry PI terminates the consensus process, it sends the decision value to
the coordinating process. Then the end-to-end latency time is measured (real time in the
WiSeNet machine), considering the moment when each message is sent by the respective
virtual node representation (in the WiSeNet platform) and the moment when the mes-
sage is received by the coordinating process (after the respective consensus). We also
evaluate the latency observed between the virtual node sender (in the WiSeNet environ-
ment) and the coordinating process. This time is equivalent to the time observed by the
last virtual Base Station that received the message from some disjoint route link, created
by the MINSENS++ routing protocol running in the WiSeNet simulation.

The coordinating process only stores the moment correspondent to the last virtual
Base Station that observed the message before the k-resiliency threshold is reached. To
do this, the coordinating process has a counter for each observed message, incremented
each time the same message is received by a virtual Base Station through the multiple
established routes. With this setting, we can separate and analyse the impact of latencies
imposed by the WiSeNet MINSENS++ routing protocol and the latency imposed by the
Minsens++/MVC protocol.

Complementarily to the above testbed, SunSpot [19] sensors were also used in order
to evaluate real-time indicators of IEEE 802.15.4 data-link conditions. Such indicators
can then be used for manual calibration purposes of the WiSeNet simulation environ-
ment, namely: IEEE 802.15.4 frame losses, link latency and jitter conditions. The SunSpot
testbed was used as follows:

• We measured the effective throughput and packet losses over IEEE 802.15.4 links,
with a tool designed and implemented to have the same functionality as the pro-
vided by the ICMP ping tool for IP reachability tests. The use of that tool is quite
similar to the use of the conventional ping tool between two nodes interconnected
by IEEE 802.11 or IEEE 802.3 links. The used test tool runs on top of the SQUAWK
Operating System [96, 97]. Squawk is a Java Micro-Edition Virtual Machine for
embedded systems and small devices, and is a conventional available operating
system for SunSpots [98]. The SunSpots implement the wireless standard IEEE
802.15.4, using it as the data-link communication layer.

• We used a SunSpot kit [19], composed by two SunSpot sensor devices and a gate-
way device interconnected via a USB connection to the machine running the WiSeNet
platform. The specific hardware of the SunSpot kit is available in [19]. The used
kit implemented a local WSN, used only to register some indicators in order to
calibrate the WiSeNet platform, namely: latency, packet losses and variable jitter
conditions. With this calibration, we balanced the latency conditions observed in
the WiSeNet simulation platform between two nodes (interconnected by multi-hop

103

7. EVALUATION 7.6. MINSENS++ Integration Assessment

Figure 7.16: Interconnection of external SunSpot sensors (left) with the WiSeNet Simula-
tion Platform (right)

links in a random-based topology), obtaining similar conditions for latency, packet
losses and jitter when compared with multiple ping/pong rounds between two real
Sun Spots before the injection of data-packets in the WiSeNet simulated WSN.

• We also calibrated simulation time and real-time conditions as explained before, to
evaluate the latency conditions. The calibration of the simulation environment is
done by tuning the discrete-event simulation kernel, in order to map real-time con-
ditions as observed with ping/pong messages (sent and received by SunSpot sen-
sors). With this strategy we have a reasonable approach of real-time and simulation-
time assumptions in the WiSeNet environment.

Figure 7.16 shows the interconnection between the external real WSN (implemented
by the SunSpot kit) and the simulated WSN. An external real node (on the left) is rep-
resented as a virtual node in the visualised graph in the WiSeNet environment (on the
right).

Figure 7.17 shows the testbed composed by Raspberry PI Base Stations (figure 7.17(a)),
running the Minsens++ MVC protocol, with groups of 4, 7 and 10 nodes in the integrated
environment (represented in figure 7.17(b)).

In the following subsection (7.6.2) we present the results of the integration assess-
ment. For such tests, we executed the MINSENS++ protocol in the simulated WSN with
the same conditions used in section 7.2. For each observation, a random topology was
generated in the WiSeNet environment, selecting the number of base stations for each
case.

104

7. EVALUATION 7.6. MINSENS++ Integration Assessment

Power Supply
Adapt.

EDIMAX Ethernet
WLAN USB Dongle in
USB Connector 2

Wired Ethernet
OnBorad Connector
(USB supported)

HDMI Connector

SD Card
Wheezy Raspbian
Linux OS)

Mini USB

USB Connector 1

(a) Raspberry PI Base Station

Hybrid Environment for the Testbench 3

Consensus Node
(WLAN Consensus Network

Virtual Base Station Node
(WiSeNet Simulation Platform)

BS
Relay

Thread

Local UDP sockets

IP Multicast
(WLAN)

Coordination
Process

(b) Integrated WiSeNet environment

Figure 7.17: Testbench for the consensus component, integrating external real Base Sta-
tion nodes as virtual nodes in WiSeNet

105

7. EVALUATION 7.6. MINSENS++ Integration Assessment

7.6.2 Integration Results

In our experiments we generated WSN random topologies in the WiSeNet platform for
300, 500 and 1000 nodes.

For each generated WSN, we selected 1% of its nodes as sender nodes and a number
of Base Stations as stated in table 7.15.

WSN Size # of senders
of Base
Stations

of disjoint
routes for each
sender to differ-
ent BS (average)

of disjoint routes
between each
sender and each BS
(average)

300 3 4 9.2 2.25
500 5 7 23.1 3.29

1000 30 10 35.9 3.60

Table 7.15: Parametrised metrics in the WiSeNet for the randomly generated topologies

For each test topology, we configured a certain number of nodes to have an omission-
failure and a Byzantine behaviour during the execution of the MINSENS++ routing pro-
tocol. The obtained metrics (following the same criteria as in 7.2) were the results in
table 7.16.

WSN Size Connectivity ratio
Reliability ratio with
10% of Omission Fail-
ure Nodes

Reliability ratio with
10% of Byzantine Fail-
ure Nodes

300 100% 98% 99%
500 93% 91% 89%
1000 83% 79% 77%

Table 7.16: Obtained connectivity and reliability metrics in the randomly generated
topologies

In our experiments each sender sends 10 messages over IEEE 802.15.4, each message
having a size of 32 Bytes. The messages can be decomposed in header (28 Bytes) and
payload data (4 Bytes). Although the IEEE 802.15.4 standard states that a message can
have up to 127 Bytes, we observed that messages with more than 56 Bytes would cause
many collisions. Thus we decided to have (besides the header) messages with a payload
of 4 Bytes, representing a (32 bits) integer.

Measuring the throughput of IEEE 802.15.4 communications between a pair of SunSpot
sensors (with ping tests), a value of 2.2 Kbps was achieved. The WiSeNet simulator was
thus tuned to this value in order to obtain reliable results from WiSeNet.

After such calibration, the end-to-end latencies for the different network sizes were
measured by the coordinating process; the obtained results are represented on table 7.17
and all the proposal distributions in Turquois are always unanimous.

106

7. EVALUATION 7.6. MINSENS++ Integration Assessment

W
SN

Si
ze

#
of

ho
ps

pe
r

se
nd

er
(a

ve
ra

ge
)

k-
re

si
li

en
cy

fa
ct

or

M
IN

SE
N

S+
+

ro
ut

in
g

la
te

nc
y

(m
il

li
se

co
nd

s)

M
V

C
co

ns
en

su
s

la
te

nc
y,

In
tr

us
io

n
Fr

ee
(m

il
li

se
co

nd
s)

M
V

C
co

ns
en

su
s

la
te

nc
y,

In
tr

us
io

n
St

op
(m

il
li

se
co

nd
s)

M
V

C
co

ns
en

su
s

la
te

nc
y,

B
yz

an
ti

ne
A

tt
ac

k
(m

il
li

se
co

nd
s)

%
of

m
es

sa
ge

s
w

it
h

te
rm

in
at

ed
co

ns
en

su
s

30
0

7.
7

3
14

05
35

4
12

98
20

98
96

%
50

0
10

.3
5

17
90

66
6

25
86

31
34

88
%

10
00

11
.9

7
19

68
14

41
35

26
38

52
75

%

Ta
bl

e
7.

17
:L

at
en

cy
ti

m
es

(i
n

m
ill

is
ec

on
ds

)m
ea

su
re

d
by

th
e

co
or

di
na

ti
ng

pr
oc

es
s

107

7. EVALUATION 7.6. MINSENS++ Integration Assessment

WSN
Size

Attacker
Type

End-to-end
latency

(millisen-
conds)

Effective
throughput

Time consumed
on routing layer

(%)

Time consumed
on consensus

layer (%)

300

Intrusion
Free

1759 1.45 Kbps 80% 20%

Intrusion
Stop

2703 0.95 Kbps 52% 48%

Byzantine
Attack

3503 0.73 Kbps 40% 60%

500

Intrusion
Free

2456 104 bps 73% 27%

Intrusion
Stop

4376 58.5 bps 41% 59%

Byzantine
Attack

4924 52 bps 36% 64%

1000

Intrusion
Free

3409 75 bps 58% 42%

Intrusion
Stop

5494 46.6 bps 36% 64%

Byzantine
Attack

5820 44 bps 34% 66%

Table 7.18: Effective throughput and location of bottlenecks in the network

108

7. EVALUATION 7.6. MINSENS++ Integration Assessment

On table 7.18 we summarise the end-to-end latencies observed on the different test
settings (failure free, omission stop and Byzantine failures) as well as the bottlenecks for
each setting.

With the obtained results in mind, we can now revisit the previous questions that
motivated the assessments present in this section.

This experiment allowed us to verify that the integration of the two main components
of the intrusion tolerant routing service (routing layer provided by MINSENS++ protocol
and consensus layer provided by MVC and Turquois protocols) is possible. The solution
works as expected, routing the data generated by the sensors to the Base Stations and then
performing a consensus (among Base Stations) over the received values by the multiple
Base Stations over the multiple routes.

The end-to-end latency metrics were successfully assessed under different settings.
The tests comprised different number of nodes in the WSN (300, 500 and 1000 nodes)
as well as different types of attacks (Failure Free, Intrusion Stop and Byzantine Attacks).

The observed results showed that the possible bottlenecks in the network are not
always present in the same components, considering the different assessment settings.
Accordingly with the network’s throughput, the bottleneck occurrence depends on the
number of Base Stations performing the consensus algorithm. In our tests we observed
that around the 7 Base Stations the bottleneck changes from the routing to the consensus
component (and vice versa). Thus, as represented on table 7.18 and accordingly with our
observations, the location of the bottlenecks are as follows:

• Bottleneck in the routing layer (MINSENS++) — The bottleneck occurs on the
routing layer when the number of Base Stations is low (below 7 Base Stations, in our
testbed). With such a small group of Base Stations, they can rapidly reach consensus
decisions over the received values, with a small amount of exchanged messages and
in a small number of rounds.

• Bottleneck in the consensus layer (Base Stations) — The bottleneck is located in
the Base Stations layer (performing the consensus mechanisms) when the number
of Base Stations is high (7 or above Base Stations, in our testbed). With such a big
group of Base Stations, it is not trivial for them to reach a consensus over the re-
ceived values. The amount of consensus rounds necessary to decide increase, espe-
cially with Byzantine attacks. The significant increase on the exchanged messages
(due to the increase on the number of Base Stations and to the number of rounds)
causes the Base Stations to take longer to reach the necessary consensus.

After the observations made, we can argue that an implementation of the solution
proposed in this dissertation, as a fully real test environment with the currently available
technology, would be a very interesting work in the future. Such implementation and
assessment would allow to get real assessment metrics, considering all the mechanisms
involved in the proposed solution (routing and consensus layers). The integration of

109

7. EVALUATION 7.7. Critical Analysis

these two main components of the intrusion tolerant routing service would be expected
to work correctly and accordingly with the observed behaviour in this testbed.

7.7 Critical Analysis

In this chapter many different assessments were made. We measured latencies between
sensor nodes in a WSN, consensus latencies in a real deployment of Base Stations, re-
searched possible optimisations and assessed an integrated testbed, comprising both vir-
tual and real sensor nodes and Base Stations.

On section 7.4 we could successfully implement and assess a testbed with real nodes
representing Base Stations and performing the consensus mechanisms of our solution.
We observed that such consensus mechanisms work as expected, having in mind the
throughput / latency limitations of the conditions obtained in such experiment.

On section 7.5 we successfully optimised the previously obtained results. The tuning
applied to the Raspberry PI nodes, as well as the flexibility on the consensus conditions
proved to have an important and significant impact on the measured latencies.

Finally, the proposed solution including the integration of the two main components
of the intrusion tolerant routing service (routing layer and consensus layer) analysed in
section 7.6 is viable. We must have however in mind the issue of the tradeoff between
the maintenance of the throughput of the WSN and the number of available nodes (Base
Stations) with the hardware and software characteristics of Raspberry PI devices. Such
tradeoff will be decisive in the location of the bottleneck of the network.

110

8
Conclusions

In this Chapter, the conclusions of this research work are presented, as well as some
research directions for future work.

8.1 Research conclusions

This thesis addresses the design of a dependable routing service for large scale WSNs,
based on a multipath tree-based routing protocol (called MINSENS++) integrated with
a data consensus protocol. The proposed solution provides an intrusion-tolerant routing
service composed by two main components:

• A component to construct a secure and efficient tree-structured routing structure
supported by an intrusion tolerant routing algorithm that establishes multiple dis-
joint routes between sensor nodes in a large scale WSN and multiple Base Stations
(or syncnodes);

• A component supporting a consensus protocol for intrusion tolerant agreement of
data values received by the multiple Base Stations through the multiple disjoint
routes.

The multi-path algorithm (called MINSENS++) is designed to adapt to the asymmet-
ric architecture and resource constraints between typical sensor nodes and Base Stations
(or syncnodes) in a WSN, minimising the processing and communication requirements
at the WSN level and balancing these requirements by using the processing resources
provided by the Base Stations (or syncnodes). The key objective of MINSENS++ is to cir-
cumvent (with a preventive intrusion tolerance approach) the possible damage caused by

111

8. CONCLUSIONS 8.1. Research conclusions

an intruder who has compromised one or more deployed sensor nodes in a specific route.
Such an intruder could inject, modify, or block data packets routed through the multi-hop
structure of the WSN. The routing service is therefore designed to prevent from these in-
trusions, limiting the ability of an intruder to cause mischief through a combination of
distributed lightweight security mechanisms, where the use of multiple disjoint routes is
a key strategy.

The data consensus performed by the Base Stations (or syncnodes) is used with an
overlay network approach, being a second intrusion tolerance level over the base WSN
(designed as a consensus overlay network). The intrusion tolerance consensus mech-
anisms used at this level are inspired by probabilistic Byzantine consensus protocols,
adapted to the requirements of the designed routing service proposed by the thesis.
The solution follows the Turquois [87] approach (section 6.2.1), an intrusion-tolerant bi-
nary consensus protocol designed for resource-constrained nodes, in wireless ad hoc net-
works. The original Turquois protocol allows an efficient utilisation of the IP multicasting
medium in a typical TCP/IP stack – as implemented in a typical node belonging to an
IEEE 802.11 ad-hoc network. The protocol avoids synchrony assumptions, refraining
from public-key cryptography during its normal operation and takes into account the
typically constrained resources of typical wireless ad-hoc nodes (such as mobile hand-
held computers, PDAs or mobile phones). The protocol also assumes asynchronous
communication settings, while aiming for optimal resilience in the case of intrusions and
Byzantine attacks or failures.

In the context of this dissertation, the adoption and integration of the Turquois proto-
col to run as a data-consensus layer of the MINSENS++ routing algorithm required the
adaptation of the original protocol in some different directions:

• in adding support to run in different TCP/IP communication settings, namely TCP,
UDP/Unicast IP, UDP/Multicast IP;

• in providing a new Java implementation;

• in implementing a stack based in a first layer, by the adaptation of the original
Turquois protocol and a complementary multi-value consensus layer to support
data consensus related with data encapsulated in IEEE 802.15.4 messages, routed
to the Base Stations by the MINSENS++ protocol.

The final solution was designed and implemented in real Raspberry PI computing
nodes, communicating in a IEEE 802.11 WLAN. This was the selected technology to ma-
terialise the Base Stations or Syncodes, in the context of the proposed intrusion tolerant
routing service.

The adapted consensus protocol is safe, despite the arbitrary failure of f < n
3 pro-

cesses running in from a total of n processes supported in n Raspberry PI nodes. It is also
safe despite unrestricted message omissions. The implemented solution assumes com-
munication to be inherently unreliable by incorporating a communication failure model

112

8. CONCLUSIONS 8.1. Research conclusions

presented in this thesis [74] (section 3.3).

The integrated consensus mechanisms support the required safety and liveness prop-
erties in the objectives of the dissertation. Safety is maintained despite unrestricted mes-
sage omissions and under asynchronous communication settings. Liveness is ensured in
different rounds where the number of omissions is limited to (n − k − t) = n−t

2 + k − 2,
where k is the number of correct processes required to decide a correct message, and
t ≤ f is the number of processes that are actually faulty by possible intrusions.

In the designed and implemented solution of the data-consensus mechanisms inte-
grated with the MINSENS++ routing protocol, timing assumptions are weak. It is only
required a local timeout on each process running in each Raspberry PI Base Station to
ensure these keep sending messages, as well as some other parameters to regulate and
optimise the performance of the internetworking support in each Raspberry PI node.
These parameters also minimise the effect of possible collisions during the communica-
tion rounds required to achieve the consensus termination.

The multi valued consensus protocol supported in the IEEE 802.11 overlay network
(over the base IEEE 802.15.4 WSN running the MINSENS++ routing protocol) ensures
the following properties:

• Validity — If all correct processes running in the base stations propose the same
value v, then every correct process that decides a value, decides v;

• Agreement — No two correct processes running in two Base Stations decide differ-
ently;

• Termination — At least k correct processes running in k Base Stations eventually
decide, with probability 1.

The key to the performance optimisation of the protocol and to promote termination
conditions was the decision to assume unreliable communications. This allowed the pro-
tocol to take full advantage of IP multicasting support, even considering the limitations
and drawbacks observed in the TCP/IP stack performance of the Raspberry PI nodes. By
using IP multicast the cost of transmitting a message to multiple nodes can be just the
same as sending it to a single node, since the necessary regulation to minimise collisions
is prevented by a set of configuration parameters (provided in the implementation of the
consensus protocols).

When a lot of Base Stations exist in the network, or when they are sending a lot of
messages rapidly (which is the case when the multi-valued consensus protocol is running
over the binary consensus protocol), the adoption of UDP transport using IP Multicast
proved to be the best solution as it reduces the amount of messages over the air (and thus
the collisions rate). On the other hand, when the number of Base Stations is reduced or
when the Base Stations are sending the messages slowly, UDP Protocol using IP Unicast
used as the communication backend proved to be the one with best results.

113

8. CONCLUSIONS 8.1. Research conclusions

As an important part of the proposed solution, the MINSENS++ algorithm operates
correctly in the presence of (undetected) intruders in the base WSN, promoting a pre-
ventive intrusion tolerance strategy that minimises computation and communication re-
quirements at the level of IEEE 802.15.4 WSNs. To address these resource constraints,
computation on the sensor nodes is offloaded to the more resource-rich Base Stations,
even implemented with no expensive and limited hardware/software (such as the case
of the used Raspberry PI devices). Following this strategy, Base Stations compute and es-
tablish routing tables to set up multiple disjoint routes, while only low-complexity secu-
rity methods are required at the WSN node level, forming a first baseline of secure com-
munication in the WSN level (for example, symmetric key cryptography for message-
confidentiality, one-way hash functions and hashed message authentication codes for
integrity checks). By using multiple routes established as disjoint routes over multiple
Base Stations, the scope of the possible damage inflicted by (undetected) intruders is fur-
ther limited, by restricting flooding to the Base Station and by having its packets ordered
using one-way sequence numbers. Later, possible intrusion attacks will be discarded by
the consensus protocol performed by the group of Base Stations.

An important property of the MINSENS++ component is that while a malicious node
may be able to compromise a small number of nodes in its vicinity, it cannot cause
widespread damages in the network. Performance measured from a prototype imple-
mentation using the WiSeNet simulation tool showed that INSENS tolerates malicious
attacks launched by intruder nodes, performing correctly over a variety of simulated
random and grid topologies, despite possible intrusions.

The consensus mechanisms combined with the MINSENS++ protocol were validated
with an hybrid environment mixing:

• The WSN simulation environment for IEEE 802.15.4 WSN nodes, interconnected
with Base Stations (materialised by the WiSeNet simulation platform);

• Real Base Station nodes, materialised by a group of Raspberry PI nodes running the
consensus protocols supported in a WLAN IEEE 802.11 environment. The integra-
tion of the multi-valued consensus layer with the simulated MINSENS++ protocol
shows an interesting potential to help in the development of a new approach and
novel direction to propose innovative Intrusion Tolerant Routing Solutions for Scal-
able WSNs.

The implementation prototypes, testbench installations and assessment results ob-
tained in the validation of the ideas developed in this dissertation, show that the pro-
posed solutions are valid and the interesting achieved results consolidate the potential of
innovation that may be explored in future wok directions.

114

8. CONCLUSIONS

8.2 Future Work

The obtained results were very interesting and innovative. However, many directions
for future work are still opened issues. Therefore and accordingly with the conclusions
of this research, many interesting directions for future work exist, namely:

• Revise the implementation of the integrated solution in order to support more ex-
tensive tests for latency conditions, energy consumption, and resilience metrics un-
der simultaneous and independent intrusion attacks against the Base Stations run-
ning the Consensus Layer and the WSN nodes executing the MINSENS++ protocol
in the WiSeNet simulation platform;

• Protocols optimisation:

– Implement and assess the optimised version of Turquois protocol [87];

– Optimisation at the level of Java Serialization of Messages, in the current im-
plementation of the Binary Consensus and Multi-Valued Consensus Layers;

– Optimisation by using a dynamic monitoring component, providing autonomous
dynamic configurations and adjustments of the Consensus Protocol parame-
ters, in order to dynamically obtain in real time the best settings for the Binary
and Multi-Valued Consensus Protocols, optimising latency, minimising colli-
sions and thus ensuring the termination conditions.

• Tuning of the Raspberry PI computers in order to achieve better performance, namely
at a low level in the devices (Operating System and drivers);

• Implementation and assessment of the Consensus Layer using other devices as Base
Stations, to investigate possible replacement alternatives for Raspberry PI nodes,
overcoming the performance problems at the level of LAN and WLAN support
and the TCP/IP stack observed bottlenecks for IP Unicast and IP Multicast com-
munications;

• Implementation of the MINSENS++ protocol in real IEEE 802.15.4 sensor nodes,
comparing the performance to calibrate the results obtained by simulation;

• Analysis and study of hybridisation facilities to interconnect real WSN nodes in a
simulated large scale environment, allowing a dynamic calibration of the simula-
tion environment with the results observed in real nodes;

• Implementation of the proposed solution as a fully real test environment with real
WSN nodes and real Base Stations, comprising the integration of the two main com-
ponents of the intrusion tolerant routing service (routing layer provided by MIN-
SENS++ protocol and consensus layer provided by MVC and Turquois protocols).

115

8. CONCLUSIONS

116

Bibliography

[1] M. Kuorilehto, M. Hännikäinen, and T. D. Hämäläinen, “A survey of application dis-
tribution in wireless sensor networks,” EURASIP J. Wirel. Commun. Netw., vol. 2005,
pp. 774–788, Oct. 2005.

[2] T. He, S. Krishnamurthy, L. Luo, T. Yan, L. Gu, R. Stoleru, G. Zhou, Q. Cao, P. Vicaire,
J. A. Stankovic, T. F. Abdelzaher, J. Hui, and B. Krogh, “Vigilnet: An integrated
sensor network system for energy-efficient surveillance,” ACM Trans. Sen. Netw.,
vol. 2, pp. 1–38, Feb. 2006.

[3] V. C. Gungor and G. P. Hancke, “Industrial Wireless Sensor Networks: Challenges,
Design Principles, and Technical Approaches,” IEEE Transactions on Industrial Elec-
tronics, vol. 56, pp. 4258–4265, Oct. 2009.

[4] A. Milenković, C. Otto, and E. Jovanov, “Wireless sensor networks for personal
health monitoring: Issues and an implementation,” Comput. Commun., vol. 29,
pp. 2521–2533, Aug. 2006.

[5] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson, “Wireless sen-
sor networks for habitat monitoring,” in Proceedings of the 1st ACM international work-
shop on Wireless sensor networks and applications, WSNA ’02, (New York, NY, USA),
pp. 88–97, ACM, 2002.

[6] J. Burrell, T. Brooke, and R. Beckwith, “Vineyard computing: Sensor networks in
agricultural production,” IEEE Pervasive Computing, vol. 3, pp. 38–45, Jan. 2004.

[7] G. Werner-Allen, K. Lorincz, M. Welsh, O. Marcillo, J. Johnson, M. Ruiz, and J. Lees,
“Deploying a wireless sensor network on an active volcano,” IEEE Internet Comput-
ing, vol. 10, pp. 18–25, March 2006.

[8] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and M. Turon, “Health
monitoring of civil infrastructures using wireless sensor networks,” in Proceedings of
the 6th international conference on Information processing in sensor networks, IPSN ’07,
(New York, NY, USA), pp. 254–263, ACM, 2007.

117

BIBLIOGRAPHY

[9] L. Evers, M. J. J. Bijl, M. Marin-perianu, R. Marin-perianu, and P. J. M. Havinga,
“Wireless sensor networks and beyond: A case study on transport and logistics,” in
In International Workshop on Wireless Ad-Hoc Networks (IWWAN 2005, pp. 1381–3625,
2005.

[10] “Sitan - services for intrusion tolerant ad-hoc networks.” http://asc.di.fct.

unl.pt/SITAN/.

[11] “Ieee 802.15.4.” http://www.ieee802.org/15/pub/TG4.html. (Accessed:
09/July/2012).

[12] P. Baronti, P. Pillai, V. W. C. Chook, S. Chessa, A. Gotta, and Y. F. Hu, “Wireless sensor
networks: A survey on the state of the art and the 802.15.4 and zigbee standards,”
Comput. Commun., vol. 30, pp. 1655–1695, May 2007.

[13] P. Silva, “Wisenet - wireless sensor networks simulator.” http://code.google.
com/p/wisenet/.

[14] “Raspberry pi devices.” http://www.raspberrypi.org/. (Accessed: 10/Ju-
ly/2013).

[15] C. Karlof and D. Wagner, “Secure routing in wireless sensor networks: attacks and
countermeasures,” in Sensor Network Protocols and Applications, 2003. Proceedings of
the First IEEE. 2003 IEEE International Workshop on, pp. 113–127, 2003.

[16] J. P. Walters, Z. Liang, W. Shi, and V. Chaudhary, “Wireless sensor network secu-
rity: A survey,” in book chapter of security,” in in Distributed, Grid, and Pervasive
Computing, Yang Xiao (Eds, pp. 0–849, CRC Press, 2007.

[17] D. Schmidt, M. Berning, and N. Wehn, “Error correction in single-hop wireless sen-
sor networks: a case study,” in Proceedings of the Conference on Design, Automation and
Test in Europe, DATE ’09, pp. 1296–1301, 2009.

[18] “Mica motes device types.” http://www.memsic.com/products/

wireless-sensor-networks/wireless-modules.html. (Accessed: 09/Ju-
ly/2012).

[19] “Sunspot.” http://www.sunspotworld.com/. (Accessed: 20/July/2013).

[20] “Tinyos.” http://www.tinyos.net/. (Accessed: 09/July/2012).

[21] “Contikios.” http://www.contiki-os.org/. (Accessed: 09/July/2012).

[22] “Zigbee suite.” https://docs.zigbee.org/zigbee-docs/dcn/09-5231.

PDF. (Accessed: 09/July/2012).

[23] Z. Alliance, “Zigbee specification. technical report document 053474r06, version
1.0,” tech. rep., ZigBee Alliance, June 2005.

118

http://asc.di.fct.unl.pt/SITAN/
http://asc.di.fct.unl.pt/SITAN/
http://www.ieee802.org/15/pub/TG4.html
http://code.google.com/p/wisenet/
http://code.google.com/p/wisenet/
http://www.raspberrypi.org/
http://www.memsic.com/products/wireless-sensor-networks/wireless-modules.html
http://www.memsic.com/products/wireless-sensor-networks/wireless-modules.html
http://www.sunspotworld.com/
http://www.tinyos.net/
http://www.contiki-os.org/
https://docs.zigbee.org/zigbee-docs/dcn/09-5231.PDF
https://docs.zigbee.org/zigbee-docs/dcn/09-5231.PDF

BIBLIOGRAPHY

[24] C. Karlof, N. Sastry, and D. Wagner, “Tinysec: a link layer security architecture for
wireless sensor networks,” in Proceedings of the 2nd international conference on Embed-
ded networked sensor systems, SenSys ’04, (New York, NY, USA), pp. 162–175, ACM,
2004.

[25] M. Luk, G. Mezzour, A. Perrig, and V. Gligor, “Minisec: a secure sensor network
communication architecture,” in Proceedings of the 6th international conference on In-
formation processing in sensor networks, IPSN ’07, (New York, NY, USA), pp. 479–488,
ACM, 2007.

[26] J. Borges, “Distribuição e estabelecimento seguro de chaves criptográficas para redes
de sensores sem fios,” 2008.

[27] B. Parno, M. Luk, E. Gaustad, and A. Perrig, “Secure sensor network routing: a
clean-slate approach,” in Proceedings of the 2006 ACM CoNEXT conference, CoNEXT
’06, (New York, NY, USA), pp. 11:1–11:13, ACM, 2006.

[28] J. Deng, R. Han, and S. Mishra, “INSENS: Intrusion-tolerant routing for wireless
sensor networks,” Computer Communications, vol. 29, pp. 216–230, Jan. 2006.

[29] A. Guerreiro, “Intrusion tolerant routing protocols for wireless sensor networks,”
Master’s thesis, Departamento de Informática da Faculdade de Ciências e Tecnolo-
gia da Universidade Nova de Lisboa, Sept. 2011.

[30] W. Lou and Y. Kwon, “H-spread: A hybrid multipath scheme for secure and reliable
data collection in wireless sensor networks,” IEEE Transactions on Vehicular Technol-
ogy, vol. 55, pp. 1320–1330, July 2006.

[31] S.-B. Lee and Y.-H. Choi, “A secure alternate path routing in sensor networks,” Com-
put. Commun., vol. 30, pp. 153–165, December 2006.

[32] C. E. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced distance-
vector routing (dsdv) for mobile computers,” in Proceedings of the conference on Com-
munications architectures, protocols and applications, SIGCOMM ’94, pp. 234–244, 1994.

[33] T. Clausen and P. Jacquet, “Optimized link state routing protocol (olsr),” rfc, RFC
Editor, 2003.

[34] C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance vector routing,” in IN
PROCEEDINGS OF THE 2ND IEEE WORKSHOP ON MOBILE COMPUTING SYS-
TEMS AND APPLICATIONS, pp. 90–100, 1997.

[35] D. B. Johnson, D. A. Maltz, and J. Broch, “Dsr: The dynamic source routing protocol
for multi-hop wireless ad hoc networks,” in In Ad Hoc Networking, edited by Charles
E. Perkins, Chapter 5, pp. 139–172, 2001.

119

BIBLIOGRAPHY

[36] A. D. Wood, L. Fang, J. A. Stankovic, and T. He, “Sigf: a family of configurable,
secure routing protocols for wireless sensor networks,” in Proceedings of the fourth
ACM workshop on Security of ad hoc and sensor networks, SASN ’06, pp. 35–48, 2006.

[37] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient com-
munication protocol for wireless microsensor networks,” in Proceedings of the 33rd
Hawaii International Conference on System Sciences-Volume 8 - Volume 8, HICSS ’00,
pp. 8020–, 2000.

[38] S. Lindsey and C. S. Raghavendra, “PEGASIS: Power-efficient gathering in sensor
information systems,” in Aerospace Conference Proceedings, 2002. IEEE, vol. 3, pp. 3–
1125–3–1130 vol.3, 2002.

[39] C. Karlof and D. Wagner, “Secure routing in wireless sensor networks: attacks and
countermeasures,” in Sensor Network Protocols and Applications, 2003. Proceedings of
the First IEEE. 2003 IEEE International Workshop on, pp. 113–127, 2003.

[40] D. Dolev and A. C. Yao, “On the security of public key protocols,” tech. rep., Stan-
ford, CA, USA, 1981.

[41] I. Telegraph and T. C. Committee, CCITT Recommendation X.800: Data Communica-
tion Networks: Open Systems Interconnection (OSI); Security, Structure and Applications
: Security Architecture for Open Systems Interconnection for CCITT Applications. Inter-
national Telecommunication Union, 1991.

[42] C. Karlof and D. Wagner, “Secure routing in wireless sensor networks: attacks and
countermeasures,” in Sensor Network Protocols and Applications, 2003. Proceedings of
the First IEEE. 2003 IEEE International Workshop on, pp. 113–127, 2003.

[43] H. Chan and A. Perrig, “Security and privacy in sensor networks,” Computer, vol. 36,
no. 10, pp. 103–105, 2003.

[44] V. B. Misic, J. Fung, and J. V. Misic, “Mac layer security of 802.15.4-compliant net-
works.,” in MASS, IEEE, 2005.

[45] Y.-C. Wang and Y.-C. Tseng, “Attacks and defenses of routing mechanisms in ad hoc
and sensor networks,” Security in Sensor Networks, pp. 4–23, 2006.

[46] A. Mishra, K. Nadkarni, and A. Patcha, “Intrusion detection in wireless ad hoc net-
works,” Wireless Communications, IEEE, vol. 11, no. 1, pp. 48–60, 2004.

[47] Y.-C. Hu, A. Perrig, and D. Johnson, “Packet leashes: a defense against wormhole
attacks in wireless networks,” in INFOCOM 2003. Twenty-Second Annual Joint Con-
ference of the IEEE Computer and Communications. IEEE Societies, vol. 3, pp. 1976–1986
vol.3, 2003.

120

BIBLIOGRAPHY

[48] J. Newsome, E. Shi, D. Song, and A. Perrig, “The sybil attack in sensor networks:
analysis & defenses,” in Proceedings of the 3rd international symposium on Information
processing in sensor networks, pp. 259–268, ACM, 2004.

[49] J. Chen, P. Druschel, and D. Subramanian, “An efficient multipath forwarding
method,” in INFOCOM’98. Seventeenth Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings. IEEE, vol. 3, pp. 1418–1425, IEEE, 1998.

[50] K. Ishida, Y. Kakuda, and T. Kikuno, “A routing protocol for finding two node-
disjoint paths in computer networks,” in Network Protocols, 1995. Proceedings., 1995
International Conference on, pp. 340–347, IEEE, 1995.

[51] H. Deng, W. Li, and D. P. Agrawal, “Routing security in wireless ad hoc networks,”
Communications Magazine, IEEE, vol. 40, no. 10, pp. 70–75, 2002.

[52] S. Sancak, E. Cayirci, V. Coskun, and A. Levi, “Sensor wars: detecting and defending
against spam attacks in wireless sensor networks,” in Communications, 2004 IEEE
International Conference on, vol. 6, pp. 3668–3672, IEEE, 2004.

[53] B. Culpepper and H. Tseng, “Sinkhole intrusion indicators in dsr manets,” in Broad-
band Networks, 2004. BroadNets 2004. Proceedings. First International Conference on,
pp. 681–688, 2004.

[54] S. Marti, T. J. Giuli, K. Lai, and M. Baker, “Mitigating routing misbehavior in mobile
ad hoc networks,” in Proceedings of the 6th annual international conference on Mobile
computing and networking, MobiCom ’00, (New York, NY, USA), pp. 255–265, ACM,
2000.

[55] I. Avramopoulos, H. Kobayashi, R. Wang, and A. Krishnamurthy, “Highly secure
and efficient routing,” in INFOCOM 2004. Twenty-third AnnualJoint Conference of the
IEEE Computer and Communications Societies, vol. 1, IEEE, 2004.

[56] E. Egea-Lopez, J. Vales-Alonso, A. Martinez-Sala, P. Pavon-Marino, and J. García-
Haro, “Simulation tools for wireless sensor networks,” in Proceedings of the Interna-
tional Symposium on Performance Evaluation of Computer and Telecommunication Systems
(SPECTS’05), 2005.

[57] G. Coulson, B. Porter, I. Chatzigiannakis, C. Koninis, S. Fischer, D. Pfisterer, D. Bim-
schas, T. Braun, P. Hurni, M. Anwander, G. Wagenknecht, S. P. Fekete, A. Kröller,
and T. Baumgartner, “Flexible experimentation in wireless sensor networks,” Com-
mun. ACM, vol. 55, pp. 82–90, Jan. 2012.

[58] T. Maret, R. Kummer, P. Kropf, and J.-F. Wagen, “Freemote emulator: a lightweight
and visual java emulator for wsn,” in Proceedings of the 6th international conference on
Wired/wireless internet communications, WWIC’08, (Berlin, Heidelberg), pp. 92–103,
Springer-Verlag, 2008.

121

BIBLIOGRAPHY

[59] P. Hurni and T. Braun, “Calibrating wireless sensor network simulation models with
real-world experiments,” in Proceedings of the 8th International IFIP-TC 6 Network-
ing Conference, NETWORKING ’09, (Berlin, Heidelberg), pp. 1–13, Springer-Verlag,
2009.

[60] Z. Y. Song, M. Mostafizur, R. Mozumdar, M. Tranchero, L. Lavagno, R. Tomasi, and
S. Olivieri, “Hy-sim: model based hybrid simulation framework for wsn application
development,” in Proceedings of the 3rd International ICST Conference on Simulation
Tools and Techniques, SIMUTools ’10, (ICST, Brussels, Belgium, Belgium), pp. 87:1–
87:8, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunica-
tions Engineering), 2010.

[61] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: accurate and scalable simula-
tion of entire tinyos applications,” in Proceedings of the 1st international conference on
Embedded networked sensor systems, SenSys ’03, (New York, NY, USA), pp. 126–137,
ACM, 2003.

[62] V. Shnayder, M. Hempstead, B. rong Chen, G. W. Allen, and M. Welsh, “Simulating
the power consumption of large-scale sensor network applications,” in In Sensys,
pp. 188–200, ACM Press, 2004.

[63] B. L. Titzer, D. K. Lee, and J. Palsberg, “Avrora: scalable sensor network simulation
with precise timing,” in Proceedings of the 4th international symposium on Information
processing in sensor networks, IPSN ’05, (Piscataway, NJ, USA), IEEE Press, 2005.

[64] R. de Paz Alberola and D. Pesch, “Avroraz: extending avrora with an ieee 802.15.4
compliant radio chip model,” in Proceedings of the 3nd ACM workshop on Performance
monitoring and measurement of heterogeneous wireless and wired networks, PM2HW2N
’08, (New York, NY, USA), pp. 43–50, ACM, 2008.

[65] H. Wu, Q. Luo, P. Zheng, and L. M. Ni, “Vmnet: Realistic emulation of wireless
sensor networks,” tech. rep., 2005.

[66] Nsnam, “Ns-3.” http://www.nsnam.org/. (Accessed: 09/July/2012).

[67] A. Kröller, D. Pfisterer, C. Buschmann, S. P. Fekete, and S. Fischer, “Shawn: A new
approach to simulating wireless sensor networks,” CoRR, vol. abs/cs/0502003, 2005.

[68] G. Chen, J. Branch, M. J. Pflug, L. Zhu, and K. Szymanski, “Chapter 1 sense : A
sensor network simulator,” Components, pp. 249–267, 2004.

[69] A. Ledeczi, “Jprowler.” http://www.escherinstitute.org/Plone/

frameworks/nes/tools/prowler.

[70] J. Tavares, “Encaminhamento e disseminação de dados tolerantes a instrusões para
redes de sensores sem fios,” Master’s thesis, Departamento de Informática da Fac-
uldade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2012.

122

http://www.nsnam.org/
 http://www.escherinstitute.org/Plone/frameworks/nes/tools/prowler
 http://www.escherinstitute.org/Plone/frameworks/nes/tools/prowler

BIBLIOGRAPHY

[71] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the presence of
faults,” J. ACM, vol. 27, pp. 228–234, April 1980.

[72] D. Davies and J. F. Wakerly, “Synchronization and matching in redundant systems,”
IEEE Trans. Comput., vol. 27, pp. 531–539, June 1978.

[73] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of distributed consen-
sus with one faulty process,” J. ACM, vol. 32, pp. 374–382, April 1985.

[74] N. Santoro and P. Widmayer, “Time is not a healer,” in Proceedings of the 6th An-
nual Symposium on Theoretical Aspects of Computer Science, (London, UK), pp. 304–313,
Springer-Verlag, 1989.

[75] P. Feldman and S. Micali, “Optimal algorithms for byzantine agreement,” in Proceed-
ings of the twentieth annual ACM symposium on Theory of computing, STOC ’88, (New
York, NY, USA), pp. 148–161, ACM, 1988.

[76] D. Dolev, C. Dwork, and L. Stockmeyer, “On the minimal synchronism needed for
distributed consensus,” Journal of the ACM, vol. 34, pp. 77–97, 1987.

[77] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence of partial syn-
chrony,” Journal of the ACM, vol. 35, pp. 288–323, 1988.

[78] H. Attiya, C. Dwork, N. Lynch, and L. Stockmeyer, “Bounds on the time to reach
agreement in the presence of timing uncertainty,” J. ACM, vol. 41, pp. 122–152, Jan-
uary 1994.

[79] T. D. Chandra, V. Hadzilacos, and S. Toueg, “The weakest failure detector for solving
consensus,” J. ACM, vol. 43, pp. 685–722, July 1996.

[80] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable distributed
systems,” J. ACM, vol. 43, pp. 225–267, March 1996.

[81] M. Blum, “Coin flipping by telephone a protocol for solving impossible problems,”
SIGACT News, vol. 15, pp. 23–27, Jan. 1983.

[82] M. Ben-Or, “Another advantage of free choice (extended abstract): Completely asyn-
chronous agreement protocols,” in Proceedings of the second annual ACM symposium
on Principles of distributed computing, PODC ’83, pp. 27–30, 1983.

[83] G. Bracha, “An asynchronous [(n - 1)/3]-resilient consensus protocol,” in Proceedings
of the third annual ACM symposium on Principles of distributed computing, PODC ’84,
pp. 154–162, 1984.

[84] R. Canetti and T. Rabin, “Fast asynchronous byzantine agreement with optimal re-
silience,” in Proceedings of the twenty-fifth annual ACM symposium on Theory of comput-
ing, STOC ’93, pp. 42–51, 1993.

123

BIBLIOGRAPHY

[85] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in constantinople: practi-
cal asynchronous byzantine agreement using cryptography (extended abstract),” in
Proceedings of the nineteenth annual ACM symposium on Principles of distributed comput-
ing, PODC ’00, pp. 123–132, 2000.

[86] H. Moniz, N. F. Neves, M. Correia, and P. Verissimo, “Experimental comparison of
local and shared coin randomized consensus protocols,” in Proceedings of the 25th
IEEE Symposium on Reliable Distributed Systems, SRDS ’06, (Washington, DC, USA),
pp. 235–244, IEEE Computer Society, 2006.

[87] H. Moniz, Byzantine fault-tolerant agreement protocols for wireless Ad hoc networks. PhD
thesis, Faculdade de Ciências da Universidade de Lisboa, 2010.

[88] H. Moniz, N. F. Neves, M. Correia, and P. Verissimo, “Ritas: Services for random-
ized intrusion tolerance,” IEEE Trans. Dependable Secur. Comput., vol. 8, pp. 122–136,
January 2011.

[89] H. Moniz, N. F. Neves, and M. Correia, “Turquois: Byzantine consensus in wireless
ad hoc networks.,” in DSN, pp. 537–546, IEEE, 2010.

[90] “Element 14 ltd.” http://www.element14.com. (Accessed: 19/July/2013).

[91] “Premier farnell.” http://www.premierfarnell.com. (Accessed: 19/Ju-
ly/2013).

[92] “Rs components.” http://uk-rs.online.com. (Accessed: 19/July/2013).

[93] “Egoman.” http://www.egoman.com.cn. (Accessed: 19/July/2013).

[94] “Raspberry pi wikipedia page.” http://en.wikipedia.org/wiki/

Raspberry_Pi. (Accessed: 13/July/2013).

[95] “Arm architecture.” https://en.wikipedia.org/wiki/ARM_architecture.
(Accessed: 19/July/2013).

[96] D. Simon and C. Cifuentes, “The squawk virtual machine: Java™ on the bare
metal,” in Companion to the 20th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, OOPSLA ’05, (New York, NY, USA),
pp. 150–151, ACM, 2005.

[97] N. Shaylor, D. N. Simon, and W. R. Bush, “A java virtual machine architecture for
very small devices,” in Proceedings of the 2003 ACM SIGPLAN conference on Language,
compiler, and tool for embedded systems, LCTES ’03, (New York, NY, USA), pp. 34–41,
ACM, 2003.

[98] “The squawk development wiki.” https://java.net/projects/squawk/

pages/SquawkDevelopment. (Accessed: 20/July/2013).

124

http://www.element14.com
http://www.premierfarnell.com
http://uk-rs.online.com
http://www.egoman.com.cn
http://en.wikipedia.org/wiki/Raspberry_Pi
http://en.wikipedia.org/wiki/Raspberry_Pi
https://en.wikipedia.org/wiki/ARM_architecture
https://java.net/projects/squawk/pages/SquawkDevelopment
https://java.net/projects/squawk/pages/SquawkDevelopment

	Introduction
	Context and Motivation
	The thesis problem
	Objectives and focus
	Approach to the system and adversary models
	Thesis Goals
	Thesis Contributions
	Organization and document's structure

	Wireless Sensor Networks
	Wireless Sensor Networks (WSN)
	Software Architecture in WSN
	WSN for large scale topologies and environments
	Routing Protocols
	Proactive Routing
	Reactive Routing
	Routing topology

	Security and Reliability
	Attacker's model
	MAC Layer
	Network Layer and Routing Attacks
	Defences of Routing Attacks for WSN
	Critical Analysis

	Related Work
	WSN Simulation
	Simulation with Emulation
	Hybrids Environments for Simulation and Calibration
	WSN Simulators
	Critical Analysis

	Secure Routing in WSN
	Clean-Slate
	H-SPREAD
	SeRINS
	INSENS
	MINSENS
	MINSENS++
	Critical Analysis

	Consensus Protocols
	The Distributed Consensus Problem
	WSN and the impossibility of data consensus
	Protocols with Randomness
	Probabilistic Failures Detectors
	Non-Deterministic Consensus
	Critical Analysis

	System Overview
	System Model
	Adversary's Model
	System Software Components
	MINSENS++
	MVC and Turquois

	Contributions Contextualisation
	Network Model

	MINSENS++
	System Model for MINSENS++
	Nodes and routes discovery
	Routes selection
	Data routing

	Algorithmic vision
	Nodes and routes discovery
	Routes selection
	Data routing

	MINSENS++ Implementation

	Multi-Valued Consensus
	System Model for Multi-Valued Consensus
	Algorithmic vision
	Turquois
	MVC

	Multi-Valued Consensus Implementation
	Multi-Valued Consensus Usage
	Routes Consensus
	Local Data Consensus
	Distributed Data Consensus

	Evaluation
	Implementation issues and testbeds
	MINSENS++ Implementation
	Consensus Protocol
	Raspberry PI nodes

	MINSENS++ Protocol Assessment
	Methodology
	Results

	Consensus Protocol Assessment and Methodology
	Assessment for Unanimity Conditions
	Results
	Critical analysis for the obtained results
	IPSec Considerations

	Complementary Assessment under Different Settings
	Motivation and Settings
	Latency in a Failure-Free Setting
	Latency in a Fail-Stop Setting
	Latency in a Byzantine Setting
	Critical Analysis

	MINSENS++ Integration Assessment
	Integration Setting
	Integration Results

	Critical Analysis

	Conclusions
	Research conclusions
	Future Work

