
University of Mississippi University of Mississippi

eGrove eGrove

Electronic Theses and Dissertations Graduate School

2015

Raptorq-Based Multihop File Broadcast Protocol Raptorq-Based Multihop File Broadcast Protocol

Roya Lotfi
University of Mississippi

Follow this and additional works at: https://egrove.olemiss.edu/etd

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Lotfi, Roya, "Raptorq-Based Multihop File Broadcast Protocol" (2015). Electronic Theses and
Dissertations. 524.
https://egrove.olemiss.edu/etd/524

This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more
information, please contact egrove@olemiss.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by eGrove (Univ. of Mississippi)

https://core.ac.uk/display/288062657?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://egrove.olemiss.edu/
https://egrove.olemiss.edu/etd
https://egrove.olemiss.edu/gradschool
https://egrove.olemiss.edu/etd?utm_source=egrove.olemiss.edu%2Fetd%2F524&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=egrove.olemiss.edu%2Fetd%2F524&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/etd/524?utm_source=egrove.olemiss.edu%2Fetd%2F524&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu

RAPTORQ-BASED MULTIHOP FILE BROADCAST PROTOCOL

A Thesis
presented in partial fulfillment of requirements

for the degree of Master
in the Engineering Science with Emphasis in

Telecommunications
The University of Mississippi

by

Roya Lotfi

Dec 2015

Copyright Roya Lotfi 2015
ALL RIGHTS RESERVED

ABSTRACT

The objective of this thesis is to describe and implement a RaptorQ broadcast protocol

application layer designed for use in a wireless multihop network. The RaptorQ broadcast

protocol is a novel application layer broadcast protocol based on RaptorQ forward error

correction. This protocol can deliver a file reliably to a large number of nodes in a wireless

multihop network even if the links have high loss rates.

We use mixed integer programming with power balance constraints to construct

broadcast trees that are suitable for implementing the RaptorQ-based broadcast protocol.

The resulting broadcast tree facilitates deployment of mechanisms for verifying successful

delivery.

We use the Qualcomm proprietary RaptorQ software development kit library as well

as a Ruby interface to implement the protocol. During execution, each node operates in one

of main modes: source, transmitter, or leaf. Each mode has five different phases: STARTUP,

FINISHING (Poll), FINISHING (Wait), FINISHING (Extra), and COMPLETED. Three

threads are utilized to implement the RaptorQ-based broadcast protocol features. Thread

1 receives messages and passes them to the receive buffer. Thread 2 evaluates the received

message, which can be NORM, POLL, MORE, and DONE, and passes the response message

to the send buffer. Thread 3 multicasts the content of the send buffer.

Results obtained by testing the implementation of the RaptorQ-based broadcast pro-

tocol demonstrate that efficient and reliable distribution of files over multihop wireless net-

works with a high link loss rates is feasible.

ii

DEDICATION

To my family.

iii

ACKNOWLEDGEMENTS

I owe my deepest gratitude to my my advisor Prof. John Daigle, who has made

available his support in many ways throughout my graduate study at the University of

Mississippi. My grateful appreciations also go to Prof. Feng Wang for the many helpful

comments and suggestions on my research. I would like to thank Prof. Ramanarayanan

Viswanathan for his effort and support.

I would like to thank my professors, teachers, colleagues, and family members, whom

supported me in all aspects of life.

iv

TABLE OF CONTENTS

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF FIGURES . vi

LIST OF TABLES . vii

INTRODUCTION . 1

MINIMUM ENERGY BROADCAST TREE FOR MULTIHOP WIRELESS BROAD-

CAST . 5

BALANCED-POWER MINIMUM ENERGY BROADCAST TREE 18

RaptorQ-based BROADCAST PROTOCOL . 36

RAPTORQ-BASED BROADCAST PROTOCOL IMPLEMENTATION 42

CONCLUSION AND FUTURE WORK . 60

BIBLIOGRAPHY . 62

VITA . 66

v

LIST OF FIGURES

3.1 Minimum Energy Broadcast Tree in Topology 1 27
3.2 Balanced-power Broadcast Tree, β = 0.5 in Topology 1 28
3.3 Minimum Energy Broadcast Tree using BIP in Topology 1 30
3.4 Minimum Energy Broadcast Tree in Topology 2 31
3.5 Balanced-power Broadcast Tree β = 0.5 in Topology 2 32
3.6 Minimum Energy Broadcast Tree using BIP in Topology 2 32
3.7 Minimum Energy Broadcast Tree in Topology 3 33
3.8 Balanced-power Broadcast Tree with Different β 34
3.9 Power Balance Broadcast Tree for Different Amounts of β in Topology 3 . . . 35
4.1 Finite State Machines for File Delivery. 41
5.1 Processing Flow for RaptorQ Encoder and RaptorQ Decoder 43
5.2 Raspberry Pi 2 Model B+ . 53
5.3 Tree Topology for Testbed . 54

vi

LIST OF TABLES

1.1 Characteristics of RaptorQ . 3

2.1 Comparison of the Spanning Tree Algorithms 13

2.2 Comparison of the Local Search Algorithms 17

3.1 Essential Instance Methods in Cplex Class 21

3.2 Essential Instance Methods in Indicator Constraints 22

3.3 The Numerical Results based on Three Different Methods in Topology 1 . . . 30

3.4 The Numerical Results based on Three Different Methods in Topology 2 . . . 33

3.5 The Numerical Results based on Different Values of β in Topology 3 34

5.1 IP Configuration in Testbed . 54

5.2 The Average Required Number of Sent Symbols as a Function for Loss Rate 55

5.3 The Minimum Round for the Source Node 57

5.4 Theoretical Result for Generation Time and Completion Time 58

5.5 Measured Result for Generation Time and Completion Time in Testbed . . . 59

vii

CHAPTER 1

INTRODUCTION

The objective of this thesis is to implement an efficient RaptorQ-based protocol for

reliable file distribution over a wireless multihop network. The RaptorQ-based multihop file

broadcast protocol is a novel broadcast protocol designed at the University of Mississippi

based on the RaptorQ technology the objective to bring about reliable content delivery in a

wireless multihop network mesh network. The RaptorQ codes are application-layer forward

error correction (AL-FEC) codes. RaptorQ codes are a class of fountain codes. RaptorQ

forward error correction can achieve reliable delivery of content by recovering the source

from an adequate number of received symbols.

The Qualcomm RaptorQ software development kit library (RaptorQ SDK) is ex-

ploited to encode and decode symbols. The protocol is scripted in Ruby and uses Ruby

interface to C functions developed over the RaptorQ library. We construct a Raspberry

Pi based testbed to implement our protocol. Time delivery and reliability are computed

through a series of tests performed in Raspberry Pi platforms.

Due to various reasons such as high interference and low SINR, some of the trans-

mitted packets might be lost. The high loss rate can significantly degrade the performance

of network protocols. In this study, we utilize RaptorQ to design a new protocol. By using

RaptorQ, the receiver can reconstruct the file if it receives a sufficient number of encoded

symbols regardless of which particular encoded symbols are received. And since RaptorQ is

a fountain code, the sender can send an arbitrary number of new encoded symbols to com-

pensate for any dropped encoded symbols. Therefore, the implementation of this protocol

facilitates delivery of the file to a large number of nodes in a wireless ad hoc network even

if the network has high packet loss.

1

The remainder of this chapter gives an introduction to RaptorQ AL-FEC. The outline

of the thesis is also provided.

1.1 RaptorQ AL-FEC

RaptorQ AL-FEC is an application layer forward error correction which belongs to

the Raptor code series. AL-FEC technologies solve the network packet loss issue by sending

repair symbols in addition to original source symbols.

The Raptor code is also a class of fountain code. Different fountain codes differ in

terms of their overhead for a given error probability and the computational efficiency of

the encoding and decoding processes. In a general fountain code strategy, an original file is

divided into source blocks. Each source block is partitioned into equal sized portions of data,

called source symbols, that basically have the size of one packet. Let k denote the number

of source symbols in the source block. Then, encoded symbols are generated from the source

symbols using an encoder. The encoded symbols are generated as a linear combination of

source symbols. Let n denote the number of encoded symbols. Then, receivers use decoders

to decode the source symbols of the source block from any subsets of k or more linearly

independent encoded symbols. The encoded symbols contain identifiers that inform receivers

of the specific linear combination of source symbols that define the encoded symbol. This is

accomplished by including an encoding symbol ID (ESI).

The LT code introduced by Luby [18] is the first practical fountain code. Each

encoded symbol is computed as the exclusive-or (XOR) of d source symbols. The value of

d is selected from the degree distribution, Ω. The expected number of XORs required to

produce encoded symbols is called an encoding cost. The expected number of XORs required

to decode the source symbols from the received encoded symbols is called the decoding cost.

The encoding cost for LT is O(log(k)) and the decoding cost is O(k log(k)).

The Raptor code is an extension of the LT code introduced by Shokrollahi [19] which

has linear encoding and decoding time. In fact, the Raptor code is a combination of the

2

LT code and the LDPC code. The Raptor code obtains linear time encoding and decoding

performance by taking advantage of pre-coding technique. An appropriate binary block code

C is used to encode source symbols to generate n−k redundant symbols. The concatenation

of k source symbols and n− k redundant symbols is called the intermediate symbols. These

intermediate symbols are then LT encoded. Raptor codes have encoding cost O(log(1
ε
)) and

decoding cost O(k log(1
ε
)), in which ε is a constant overhead, outperform LT codes.

RaptorQ has better performance than the standardized Raptor code. The RaptorQ

code is a systematic code. It means that all source symbols are among the encoded symbols.

Thus, encoded symbols can be a combination of the original source symbols and repair

symbols generated by the encoder. In addition, the RaptorQ code operates over the finite

field GF(256) rather than the Galois field GF(2). The RaptorQ is predictable in terms

of its failure probability as a function of overhead. The RaptorQ code also has a smaller

decoding overhead compared to the standardized Raptor codes. The standardized Raptor

code requires an overhead of 24 to achieve a failure probability of 10−6, but RaptorQ ensures

a failure probability of less than 10−6 with an overhead of 2. Table 1.1 [16] briefly explains

the supported size and the number of blocks and encoded symbols in RaptorQ.

Item Size
SBN 8 bits

Source Blocks 28 = 256
ESI 24 bits

Num of Encoded Symbols per Block 224 = 16777216
Num of Source Symbols per Block 56,403

Max Symbol Size 216 = 65, 536 Bytes
File Length 65, 536× 56, 403× 256 = 946270874880 ≈ 1 TByte

Table 1.1: Characteristics of RaptorQ

1.2 RaptorQ-based Broadcast Protocol

The RaptorQ-based broadcast protocol facilitates reliable content distribution in a

wireless multihop network with high packet loss rate. RaptorQ encodes the content of the

3

transmitter node. The content is then delivered over a wireless multihop network to receiver

nodes which decode the content. The RaptorQ technology used in this protocol recovers data

lost, and completely reconstructs the file without using a retransmission mechanism. The

RaptorQ broadcast protocol guarantees the recovery of content without needing to resend

any symbols. Thus, the transport layer protocol is not required to provide reliability. Hence,

the UDP transport protocol is used in our protocol.

1.3 Outline of the Thesis

The thesis is organized as follows. The next chapter presents the literature on con-

structing a minimum energy broadcast tree. Chapter 3 discuses the mixed integer program

with the power balance objective to construct a tree which is appropriate for the RaptorQ-

based broadcast protocol. Chapter 4 describes the RaptorQ-based broadcast protocol and

shows finite state machines used in this protocol. Chapter 5 explains the implementation

and results of the RaptorQ-based broadcast protocol and, Chapter 6 finally elaborates con-

clusions and future work.

4

CHAPTER 2

MINIMUM ENERGY BROADCAST TREE FOR MULTIHOP WIRELESS BROADCAST

In this chapter, we address the minimum-energy broadcast tree problem in a wireless

mesh network. The literature has been reviewed the alternatives to find the minimum energy

broadcast tree in a wireless mesh network will be discussed. In section 2.1, we introduce

different methods to solve a minimum energy broadcast tree problem. In section 2.2, we

discuss network models. In section 2.3, the integer programming approach for a minimum-

energy broadcast tree (MEB) problem is explained. In section 2.4, different spanning tree

heuristic algorithms and the comparison of their performances are elaborated. In section

2.5, local search heuristic algorithms are discussed. Finally, in section 2.6, the evolutionary

search heuristic algorithm will be described.

2.1 Introduction

The wireless mesh network is a form of infrastructure-less or ad hoc network. In

wireless ad hoc networks, nodes are distributed over a geographical area and communicate

with each other over a multi-hop over a shared radio channel. Their connectivities are de-

termined by the transmit power. Energy consumption is an important factor in wireless ad

hoc communications because wireless nodes use a battery. The main purpose of construct-

ing a minimum energy broadcast tree is to find a set of transmitting nodes as well as their

corresponding transmission powers in order to cover all nodes in the network and minimize

the total transmission energy. In the literature, the minimum energy broadcast tree problem

is known as a MEB problem. Several different methods can be utilized to solve the MEB

problem such as mixed integer linear programming (MILP), spanning tree heuristic algo-

rithm, local search heuristic algorithm and, meta-heuristic algorithm.

5

The inherently broadcast nature of a wireless network, referred as a wireless multicast

advantage (WMA) [21], permit all nodes that their received Signal-to-Noise-Ratios ratio

exceeds a given threshold can receive a transmission even if they do not have direct link with

transmitter node.

2.2 Network Model

The system under consideration is a general wireless mesh network that is connected

to a single gateway to the internet. Let N = {N0,N1, . . . ,NN−1} denote the collection of

nodes in the network. N0 is a source node which is a gateway and includes a file as well. The

fixed N-nodes are randomly located inside the network area. The loss matrix ` is general,

but will be calculated in this thesis based on dα which d is the distance between nodes and

α is the loss exponent between 2 and 4. The transmission power between node i and j is

equal to:

Pij ≥ γmin`ijη ∀j ∈ Ri (2.1)

where Pij denotes the transmission power of node i, Ri represents target nodes of the trans-

mitter i, ηmin denotes the minimum SINR required to meet BER requirements at the rate of

ri , `ij is the loss between nodes i and j, η = kBT is the noise at the receiver j, where k is

Boltzmann’s constant, T is the absolute temperature, and B is the bandwidth. However, in

the literature the transmission power is approximately equal to the loss. Thus

Pij u `ij = dαij (2.2)

2.3 Integer Programming Approach

An integer program is one of the methods to find the minimum energy broadcast tree

in a wireless mesh network. In [15] [3], authors have proved that constructing the minimum

energy broadcast tree problem in a wireless da hoc network is NP-hard.

Das et al. [6] have proposed three different integer program (IP) models. First, they have

6

compared the MEB problem with a traveling salesman problem (TSP), which finds the

minimum cost tour of visiting all cities in a given set of cites subjected to some constraints.

By eliminating and modifying some constraints in the TSP problem, we can obtain the

minimum spanning tree (MST) problem. Let Cij be the cost of the edge (i, j) and Xij be

a binary variable which is 1 if the edge (i, j) is used in the final solution and 0, otherwise.

The objective function for MST and MEB are as the following statements:

MST : minimize
∑
i

∑
j

CijXij; i 6= j

MEB : minimize
∑
i

max
j

(CijXij); i 6= j

The objective function that minimizes the summation of the transmission power is

the same for all three models . However, IP formulation ’A’ and ’B’ have a large computation

time and they are not practical. IP formulation ’C’ is based on the flow model of the IP

formulation ’B’. They have considered Yi as a transmission power of each node, Pij as a cost

between node i and j, Fij as a flow variable, Xij as a binary variable which is 1 if there is

a direct transmission between node i and j, and CD as a cardinality of set D which is N in

the broadcast case. The objective function of this model is given by:

Minimize
N∑
i=1

Yi (2.3)

Subjected to:

Yi − PijXij ≥ 0; ∀(i, j) ∈ V, i 6= j (2.4)

CDXij − Fij ≥ 0; ∀(i, j) ∈ V, i 6= j (2.5)

N∑
j=1

F0j = CD; (2.6)

7

N∑
j=1

Fj0 = 0; (2.7)

N∑
j=1

Fji −
N∑
j=1

Fij = 1; ∀i ∈ D, i 6= j (2.8)

N∑
j=1

Fji −
N∑
j=1

Fij = 0; ∀i /∈ D, i 6= j (2.9)

Xij ∈ {0, 1} (2.10)

Fij ≥ 0; ∀(i, j) ∈ V, i 6= j (2.11)

Constraint 2.4 guarantees that Yi is at least Pij if link i, j is used. Constraint 2.5

ensures that the flow out of a node cannot exceed the number of destination nodes. Con-

straint 2.6 implies that the summation of flow out of a source node is CD. Constraint 2.7

illustrates that the summation of flow into the source node is zero. Constraint 2.8 and 2.8

forces exactly one packet to be delivered to each destination node because each destination

node should keep one packet and a non-destination node just forwards the packet.

Min et al. have presented an IP formulation, a relaxed IP formulation, and two

iterative algorithms. Furthermore, they have compared the computation time of their IP

formulation with Das A, B, C. Their IP formulation is based on flow constrains. They have

used a variable uij which is a binary variable indicating whether or not the node i transmits at

the power level of Pij. By using this variable, they can have tighter LP relaxation and speed

up the computation time. They also have a constraint for the destination node coverage as

the following equation: ∑
i∈N

∑
k∈N,k 6=s,k 6=i,Pik≥Pij

uik ≥ 1 ∀j ∈ D (2.12)

where D = N for the broadcast case. Moreover, they have bound a flow variable Fij and a

8

transmission variable uij which are defined as:

|D|
∑

k∈N,k 6=s,k 6=i,Pik≥Pij

uik − Fij ≥ 0 ∀i, j ∈ N, j 6= s, j 6= i (2.13)

Their flow constraint is the same as the flow constraint in Das. They obtain relaxed

IP formulation by eliminating a number of constrains. They have proposed two iterative

algorithms by using the relaxed IP formulation. In each iteration, they add cuts to the relaxed

infeasible IP formulation to obtain a feasible solution. The original constraint guarantees

the connectivity of resulting graph which is given by:

∑
i∈S

∑
i/∈S

uij ≥ 1 ∀S ⊂ N (2.14)

They also have used other three constraints. The first constraint is to make sure that

a node is connected to the source. The second one is the repetition prevention constraint.

The last one is a branch cutoff constrain based on the upper bound cut off, feasibility cut off,

and no available cut off. In the second iterative algorithm, the source node’s transmission

power is shrunk from the maximum value to the minimum value. Then, the minimum

broadcast tree for each value is computed. They have compared computation times of two

iterative algorithms and their IP formulation for 20, 30, 40 and 50 nodes. Their two iterative

algorithms have better performances than their IP formulation specifically in a large network.

Also, the comparison between their IP formulation with Das model ’C’ have illustrated that

their IP formulation has a better performance.

Guo et al. [7] have presented another form of the MILP model based on a new con-

cept virtual relay. Altinkemer et al. [1] have reformulated the same problem as an integer

programming model of a set covering type. A multi-commodity flow model [24] has been

presented for the MEB problem. The advantage of this new formulation is that both the LP

relaxation and the Lagrangian relaxation of the integer program formulation obtain a good

9

approximation to the optimum.

2.4 Spanning Tree Heuristic Algorithm

The spanning tree heuristic algorithm maintains a tree routed at the source node. This

algorithm iteratively adds new nodes to the tree based on a specific cost metric to acquire

the minimum total energy. Several spanning tree algorithms for the MEB problem have been

developed, e.g. the incremental power (BIP) [21], the broadcast average incremental power

(BAIP) [14], the greedy perimeter broadcast efficiency (GPBE) [13], the center oriented

broadcast routing algorithm (COBRA) [11].

The broadcast incremental power (BIP) heuristic algorithm exploits the wireless mul-

ticast advantage (WMA) to solve the MEB problem. The BIP is a centralized heuristic to

construct the minimum energy broadcast tree. The cost metric in the BIP is defined as a

minimum incremental power. As previously explained, the nodes should be equipped with

omni-directional antennas to obtain WMA properties. The BIP is acquired from Prim’s

MST algorithm; however, the minimum shortest tree (MST) is used in the wired broadcast

network. The BIP is referred as a node-based algorithm and MST as a link-based algorithm

to find the minimum energy broadcast tree.

The transmission power between nodes i and j, Pij, is defined as dα. Initially, the

tree includes the source node. By knowing the power matrix, the source node is connected

to the nearest neighbor and the nearest neighbor is added to the tree. The next new node

is added to the tree based on the minimum incremental power cost which is defined by:

P ′ij = Pij − P (i)

in which Pij = rα and it is the link-based cost and P (i) is the transmission power which

is already assigned to the node i. The BIP algorithm measures the incremental power cost

between nodes existing in the tree and nodes not existing in the tree in each iteration. This

algorithm selects the minimum incremental power cost, and adds related nodes to the tree.

10

The BIP algorithm continues this procedure until the tree consists of all nodes.

Kang et al. [13] have developed a greedy perimeter broadcast efficiency (GPBE) which

is associated with the broadcast efficiency metric. They have used the fundamental idea

that the wireless broadcast advantage is more in the region where nodes are most densely

distributed. The broadcast efficiency metric is defined as a number of newly covered nodes

reached per unit transmission power. Let Ni denote a set of nodes can be reached by node

i, and C denote a set of nodes currently covered by the transmission power of other nodes.

The equation for the number of newly covered nodes by node i is |Ni \ C|. The wireless

broadcast efficiency βij is defined as:

βij =
|Nij \ C|

Pi
for i ∈ N

The GPBE algorithm maintains two sets: C and F . The set C represents nodes

currently covered by other nodes. F represents a set of transmitting nodes such that F ⊆ C.

In the beginning, C = {Source Node} and F = ∅. A pair (i, j) for i ∈ C and j ∈ N \C with a

maximum βij can be found in each iteration. The Pij is assigned to the node i. The node i is

added to F and, Ni is added to C. This procedure counties until C = N . They have shown

that the performance of MST, BIP, EWMA and GPBE in terms of total transmit power for

network sizes of 20, 40, 60, 100, 150, 200, 300. Furthermore, they have used the normalized

total transmit power in 100 instants with α = 2. Results have shown that the performance

of GPBE is better than MST, but it is worse than BIP. The EWMA has obtained the

best performance on all cases. Moreover, they reported that the GPBE possesses a better

performance than BIP if the source node is located in the middle of the network region.

The center-oriented broadcast routing (COBRA) developed by Kang et al. [11] has

considered that the center of a network region is the best place to take advantage of the

broadcast nature. The main idea of the COBRA algorithm is that the source node sends a

packet to a center node of the network region by using more efficient unicast path and the

11

center node broadcasts the packet. Three main concerns play important roles in this algo-

rithm. The closest node to the center point of the network region is considered as the center

node C. The shortest path tree (SPT) algorithm such as Dijkstra or distributed Bellman

Ford algorithm [4] is then used for unicast path between the source node and the center node.

Afterwards, different algorithms like EWMA, GPBE, BIP and MST are evaluated for the

best option of the central broadcast algorithm. The ratio of the total transmit power for the

random source location to the center source location is obtained for each given topology. Re-

sults illustrate that the EWMA and GPBE algorithms have the largest ratios, respectively.

On the other hand, the location of the source node does not have any effects on BIP and

MST algorithms. Next, they have compared several algorithms including EWMA, GPBE,

BIP, MST, COBRA-GPBE, and COBRA-EWMA in the network size of 50, 100, 150, 200,

250, and 300. Results demonstrate that COBRA-EWMA has the best performance. The

level of performance decreases in EWMA, BIP, COBRA-GPBE, and GPBE, respectively. In

addition, there is a larger separation between COBRA-EWMA performance and the rest of

the algorithm performances once the size of the network grows. Also, they have summarized

that BIP, EWMA, and COBRA-EWMA reduce the total transmit power of MST about 7%,

16%, and 23%, respectively.

Kang et al. [9] have compared different algorithms which are not only based on the

average of the total transmit power but also based on the average of the maximum and

average hops and the average ratio of leaf nodes. In this study, MST, BIP, MST-Sweep,

BIP-Sweep and EWMA algorithms have been considered. The results illustrate that they are

ranked as EWMA, BIP-Sweep, BIP, MST-Sweep, and MST regarding to their performances.

Also, they reported that the average ratio of leaf nodes to transmitter nodes in EWMA is

the worst. Furthermore, the number of hops and the ratio of leaf nodes are closely related to

each other. If the portion of leaf nodes are higher than transmitting nodes, it indicates that

transmitting nodes transmit with a higher power. Therefore, the average and the maximum

number of hops become smaller.

12

Table 2.1 [8] briefly explains spanning tree algorithms based on the complexity, the

implementation fashion, and the approximation ratio.

Complexity Implementation Fashion Approximation ratio

BIP O(n3) Centralized 13
3
≤ ρBIP ≤ 10.86

BAIP O(n3) Centralized 4n
lnn
− o(1) ≤ ρBAIP

GPBE O(n3) Centralized Unknown

Table 2.1: Comparison of the Spanning Tree Algorithms

2.5 Local Search Heuristic Algorithm

Local search heuristic algorithms improve the solution obtained by an initial tree. The

local search heuristic algorithm starts with an initial tree. The initial tree is acquired by a

spanning tree heuristic algorithm such as BIP, MST, and etc. This algorithm reduces the

total transmission power by assigning new powers to nodes or changing links between nodes

in each step. The local search algorithm is terminated once there is no further improvement.

Over the recent years, the algorithms like sweep [21], the embedded wireless multicast ad-

vantage(EWMA) [3], the r-shrink [6], the largest expanding sweep search(LESS) [10], and

the iterative maximum-branch minimization(IMBM) [23] are proposed.

The sweep operation procedure [21] eliminates unnecessary transmissions and im-

proves the performance of the BIP. The sweep procedure examines each non-leaf node in

ascending order of its ID and reduces its transmission power, if its farthest children are

covered by transmission of some other nodes. The algorithm stops when all nodes have

been considered. The first run of this algorithm improves the performance of BIP by 5%.

However, further runs show a little improvement.

Another local search algorithm containing the wireless multicat advantage (EWMA)

is presented by Cagalj et al. [3]. The EWMA operation promotes the performance of the

initial MST broadcast tree. The EWMA decision metric is a gain of transmitting nodes in

the initial broadcast tree. The gain of a transmitting node, i, is defined as a decreased total

energy. The gain is acquired by removing a transmitting node and increasing the transmis-

13

sion power of node i to cover children of a removed node. C denotes a set of covered nodes

and E is a set of excluded nodes. The excluded nodes are transmitting nodes in the initial

tree, but they will be discarded in the final optimal tree. Define T as a set of transmitting

nodes in the initial tree and Ri is a set of the receivers of node i. The EWMA algorithm

starts to construct a broadcast tree from nodes in the set C − F − E by determining their

respective gains. Initially, C = {S} in which S is the source node and E = F = {∅}. Thus,

the EWMA starts from the source node and calculates its gain corresponding to other trans-

mitting nodes as the following equations:

∆i
S = max

{j∈Ri}
{eS,j} − eS ∀i ∈ T

giS =
∑

k∈T ,eSk≤eSi

ek −∆i
S ∀i ∈ T

where eij is defined as the energy between node i and j in the initial MST tree. Having the

gain for all nodes from C − F − E , the algorithm selects a node with the highest positive

gain in the set F . The excluded nodes are added to set E . Then, all of the covered nodes

are added to C. This procedure continues until all nodes in the network are covered. The

simulated result has performed in 100 network instances with α = 2 and α = 4 in network

sizes of 10, 30,50, and 100. Result show that the EWMA has a better performance than BIP

and MST. Also, results reveal that the difference in performance of EWMA, BIP, and MST

decreases as the loss constant (α) increases, because the cost of using longer link increases.

Therefore, the performance of EWMA and BIP are close to MST as α increases.

Das et al. [6] have proposed the r-shrink heuristic local search algorithm to improve

the performance of the initial broadcast tree algorithm such as BIP and MST. The r-shrink

procedure sequentially shrinks the radii of transmitting nodes in the given broadcast tree.

Let consider node i with Pij as a transmitting node. Let {α0, α1, . . . , αk, j} denote the order

14

of nodes with respect to their distances from i. Therefore, node j is covered explicitly and

nodes α0, α1, . . . , and αk are covered implicitly. For r = 1, r-shrink reduces the transmission

power of node i such that the farthest node is αk instead of j. Now, the new parent for node

j among its foster parent can be found based on an incremental and a decremental cost. The

foster parents of node j is any of its non-descendants nodes, excluding the current parents.

The algorithm compares the decremntal cost for current parent and the incremental cost for

the new parent. The decremental cost is Pi,j − Pi,αk. The incremental cost of adding node

j to a new parent, k, with furthest node l is Pk,j − Pk,l. If k is a non-transmitting node,

the incremental cost of adding node j is Pk,j. If value of the incremental cost is less than

the value of the decremental cost, the node j chooses a new parent; otherwise, it keeps its

current parent. Similarly, for r = 2, the r-shrink reduces the transmitting node power by

2 notches, such that the farthest node is αk−1. Now, two nodes αk and j try to find the

new parent based on the incremental and decremental cost. They have evaluated 1-shrink

algorithm on 10, 25, 50, 75, and 100 sizes of networks. They have used 50 network instants

with α = 2 in 5× 5 area. The comparison between simulated results show the average total

power for the BIP, BIP (sweep), BIP (1-shrink), MST, MST (sweep), and MST (1-shrink).

BIP(1-shrink) outperforms BIP with 8.38%, 9.71%, 8.48%, 8.25%, and 9.05% for network

sizes of 10, 25, 50, 75, and 100, respectively.

The large expanding sweep search (LESS) [10] is a local search heuristic algorithm

which overcomes the shortage of EMWA. The LESS algorithm reduces either the transmis-

sion power or eliminates a node in each iteration. The start point in this algorithm is a node

with a higher general gain. The gain in the LESS algorithm is different from the EWMA

algorithm. There are some terminologies in the LESS algorithm as the following equations:

Πi→S = {all nodes in a path from i to S}

Qi(j) = Π(Ni(j)) \ i

15

Mi(j) = Ni(j) \ Πi→S

in which δ(i) is a set of children of the node i in the initial tree. Ni(j) denotes a set of

receivers of the node i. Qi(j) is a set of parent nodes of Ni(j) except node i. This set

includes all nodes which will be tested for an expanding sweep search. The sweeping gain is

defined as:

SGi→j =
∑

u∈Qi(j)

(
P (u)− max

k∈δ(u)\Mi(j)
{Puk}

)
(2.15)

Let ∆Pi→j = Pij − Pi represents the incremental power of the node i. Then, the gain is

defined as:

Gi→j = SGi→j −∆Pi→j (2.16)

Therefore, the gain includes the generalized sweeping gain minus the incremental

power. The generalized sweeping gain consists of both eliminated and reduced transmit

power of nodes. If the considered node includes children of the node i which is not inMi(j)

in the initial tree, the power of the node is reduced; otherwise, the node is eliminated. The

(i, j) is selected based on the maximum positive gain. The Pij is assigned to the node i, and

it updates the parent node of the covered nodes except the path nodes Πi→S to node i. Now,

the new improved tree is considered as an input tree for the next iteration. The operation

repeats until the algorithm cannot find any gain. By applying the LESS algorithm on the

initial EWMA tree, there is still a significant improvement. However, applying the EWMA

algorithm on the LESS initial tree has no gain.

The iterative maximum-branch minimization (IMBM) is another local search algo-

rithm presented by Li et al. [23]. It starts from a basic broadcast tree in which the source

node S directly transmits to all other nodes. Then, this algorithm minimizes the maximum

branch for each transmitting node. After constructing a basic broadcast tree, the IMBM

algorithm can find the minimum energy broadcast tree iteratively by using the maximum

branch replacement (MBR) and recursive omni-directional check (ROC) operations. The

16

MBR operation replaces the maximum branch for a given transmitting node by a two-step

less power path. This process is done by using a relay node. The relay node k can be found

for the transmitting node i and a node with the maximum branch (the longest link in the

tree) j such that Pik + Pkj < Pij. In the ROC operation, all nodes can be reached by the

transmitting node which is the middle node in the two-step less power path are connected

to the transmitting node. In fact, the ROC exploits the wireless broadcast advantage. The

algorithm would stop if the total transmission power for the broadcast tree cannot be further

reduced. Results illustrate that the IMBM outperforms BIP in α = 2, but for a larger α

IMBM does not have a better performance to BIP.

Table 2.2 [8] shows briefly the summary of local search algorithm trees based on the

complexity of the improvement, the implementation fashion and the search neighborhood.

Complexity of Improvement Implementation Fashion Search Neighborhood

Sweep O(n) Centralized Tree-based
EWMA O(n3) Centralized Tree-based
r-Shrink O(n2) Centralized Power Assignment based

LESS O(n3) Centralized Power Assignment based
IMBM O(n) Centralized Tree-based

Table 2.2: Comparison of the Local Search Algorithms

2.6 Meta-heuristic Algorithm

Meta-heuristic algorithms are based on evolutionary algorithms and local search al-

gorithms. Several meta-heuristic algorithms have been proposed for the MEB problem,

e.g. Genetic Algorithm (GA) [23], evolutionary local search (ELS) [22], iterated local search

(ILS) [12], hybrid genetic algorithm (HGA) [20], ant colony optimization [23], particle swarm

optimization [23], cluster-merged algorithm [5], and simulated annealing algorithm [17].

17

CHAPTER 3

BALANCED-POWER MINIMUM ENERGY BROADCAST TREE

We have implemented a mixed integer program (MIP) with the power balance objec-

tive to construct a broadcast tree in this chapter. The resulting tree is suitable to implement

a RaptorQ-based protocol. In Section 3.1, characteristics of a balanced-power broadcast

tree is explained. In Section 3.2, the mixed integer program will be discussed in detail.

In Section 3.3, we explain the programming code in the optimization software IBM ILOG

CPLEX. In Section 3.4, results obtained from MIP with the minimum energy and power

balance objectives, and BIP will be compared in different network typologies.

3.1 Characteristic of Balanced-power Minimum Energy Broadcast Tree

The main objective of this thesis is to develop an efficient RaptorQ-based protocol for

file distribution over a wireless mesh network. The construction of broadcast trees which are

suitable for implementing a RaptorQ-based protocol is required. Characteristics of a suitable

broadcast tree include energy efficiency, timely delivery, and the ability to deploy mechanisms

to verify a successful delivery. We consider the ability of parent nodes opportunistically to

overhear transmissions from their children as a mechanism to verify a successful delivery.

Thus, such overheard transmissions serve acknowledgments and the requirement of sending

acknowledgments is almost eliminated in this protocol. However, the child’s transmission

power often is far below the parent’s transmission power in the pure minimum energy broad-

cast tree. Therefore, we add constraints into mixed integer program to force the transmission

power of child nodes to meet SINR requirement of their parent nodes. In addition, we limit

and minimize the maximum transmission power using an imbalance factor, β. Thus, there

is a trade-off between the minimum-energy and the power-balanced broadcast trees.

18

3.2 MIP Formulation

The MIP formulation based on the balanced power objective is defined as:

Minimize
N∑
i=1

Zi

Subject to:

Zi − PijXij ≥ 0; i 6= j (3.1)

∑
i∈N ,i 6=j

Xij = 1 (3.2)

Xij +Xjk ≤ 1 ∀i, j, k ∈ N , j ∈ Ri, k ∈ Rj (3.3)

PijXij

η +
∑

k,l∈N ,k 6=i
PklXkl

`kj

≥ γmin`ij (3.4)

∑
i=N0,j∈N ,i 6=j

Xij ≥ 1 (3.5)

Zj − `jiγminη ≥ 0 ∀j ∈ Ri (3.6)

Zm ≤ Zi ≤
1

β
Zm (3.7)

N∑
j=1

Fij = N ; i = N0, i 6= j (3.8)

N∑
j=1

Fji = 0; i = N0, i 6= j (3.9)

N∑
j=1

Fji −
N∑
j=1

Fij = 1; ∀ i 6= j (3.10)

Xij ∈ {0, 1} (3.11)

Fij ≥ 0; ∀i 6= j (3.12)

β = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} (3.13)

19

where N = {N0,N1, . . . ,NN−1} is a collection of nodes in the network, and N0 is a source

node which is a gateway including a file as well. Zi, Fij, and Pij are the transmission power

of node i, the flow variable and the power required between nodes i and j respectively. β

is an imbalance factor, and Ri is a set of receivers to which node i transmits. γmin is the

minimum SINR required to meet BER requirements. `ij and η are the loss between nodes i

and j and the noise at the receiver respectively. Xij is a binary variable which is 1 if node i

transmit to node j, otherwise 0.

Xij =

1 if node i transmits to node j,

0 else.

(3.14)

The constraint (3.1) ensures that an appropriate power is assigned to node i. The

constraint (3.2) enforces that each node receives from exactly one transmitter. The constraint

(3.3) shows that a node cannot transmit and receive simultaneously. The constraint (3.4) is a

power constraint and the cumulative interference term will be eliminated if any transmitting

nodes do not transmit simultaneously. At least one connection from the source node is

guaranteed by constraint (3.5). The constraint (3.6) enforces that the child node transmits

in high enough power to reach its parent node. The constraint (3.7) limits the transmission

power to within a certain interval of the maximum transmission power. The constraint (3.8)

expresses that the number of flows coming out of the source node is N which is cardinality

of set N . The constraint (3.9) shows that the number of flows coming into the source node

is zero. The constraint (3.10) enforces that the difference between flows into and out of the

node is 1. It means that each node keeps one encoded symbol. The final set of constraints

express the integerality of Xij variables, non-negativity of Fij variables, and a proper amount

of the β variable.

20

3.3 Programming Code in CPLEX Python API

We use the IBM ILOG CPLEX optimization software to develop the mixed integer pro-

gramming model. The CPLEX optimizer has a modeling layer called Concert that provides

interfaces to C++, #.NET, Java, Matlab, and Python languages. We use the Python API

of the CPLEX optimizer. There are various instance methods and the Cplex class to cre-

ate, modify, and solve optimization problems in the CPLEX optimizer. Table 3.1 briefly

introduces these methods.

Method Purpose

init(self, *args) Constructor of the Cplex class
read(self, filename, filetype) Reads a problem from file
write(self, filename, filetype) Writes a problem to file
get problem type(self) Returns the problem type
set problem type(self, type, soln=None) Changes the problem type
solve(self) Solves the problem
set results stream(self, results file, fn=None) Specifies where results will be printed
set log stream(self, log file, fn=None) Specifies where the log will be printed
get problem name(self) Returns the problem name

Table 3.1: Essential Instance Methods in Cplex Class

An indicator constraint interface in Cplex class is used to deliberate relationships among

variables by identifying a binary variable to control whether or not a specified linear con-

straint is active. There are different instance methods to add and modify indicator con-

straints. Table 3.2 briefly introduces these methods.

add method is used to add constraints to the problem which is initiated by Cplex.cplex

method in the Cplex class. The add method includes following arguments:

• lin expr=SparsePair(ind = [], val = []) : This is a linear expression which is either

a SparsePair or a list of two lists. The first one contains variable indices or names, the

second one contains values.

• Sense: It is the sense of the constraint, may be ”L” as less, ”G” as greater, or ”E”

21

as equal. A default value is ”E”.

• rhs : It is a float defining the right hand side of the constraint.

• indvar : It is the name or index of the variable that controls if the constraint is active.

• complemented :It determines whether the constraint is active when the variable

indvar is equal to 0 or 1. The default value is 0.

• name : It is the name of the constraint.

Method Purpose

add(self, lin expr=SparsePair(ind = [], val
= []), sense=’E’, rhs=0.0, indvar=0, comple-
mented=0, name=”)

Adds an indicator constraint to the
problem

delete(self, *args)
Deletes a set of indicator constraints
from the problem

get indicator variables(self, *args)
Returns the indicator variables of a set
of indicator contraints

get complemented(self, *args)
Returns whether a set of indicator con-
straints is complemented

get rhs(self, *args)
Returns the righthand side of a set of
indicator constraints

get senses(self, *args)
Returns the sense of a set of indicator
constraints

get linear components(self, *args)
Returns the linear constraint of a set of
indicator constraints

get names(self, *args)
Returns the names of a set of indicator
constraints

set log stream(self, log file, fn=None) Specifies where the log will be printed
get problem name(self) Returns the problem name

Table 3.2: Essential Instance Methods in Indicator Constraints

An arrays is initialized to store objective function multipliers, upper and lower bounds

for variables, and variable types. The first N variables correspond to node variables which

are the transmission powers of nodes. The initial value for the objective function multiplier,

the lower bound, the upper bound, and the variable type of node variables are 1, 0, infinity,

22

and float, respectively. The next N(N −2) + 1 variables are link variables. The link variable

is an indicator that tells whether the link is used in the broadcast tree or not. All of the

possible links are enumerated using the equiv index(N, i, j) function. The initial value for

the lower bound, the upper bound, and the variable type of link variable are 0, 1, and

binary, respectively. The next N(N − 2) + 1 variables are flow variables. The flow variable

determines the target nodes for each packet in each link. All links are enumerated using

flow equiv index (N, i, j) to assign the flow variable. The initial values for the lower bound,

the upper bound, and the variable type of flow variables are 0, N−1, and integer respectively.

The total number of the variables is N + N(N − 2) + 1 + N(N − 2) + 1 up to now. The

N + N(N − 2) + 1 + N(N − 2) + 1 + 1th variable is K P which is the index of the power

variable. It determines the transmission power of a node in a certain range of the maximum

power. The initial value for the objective function multiplier, the lower bound, the upper

bound, and the variable type of the power variable index is 1, the loss of nearest node to

the source, infinity, and float. The last N variables correspond to the balanced power of

transmission nodes. Thus, we have N + N(N − 2) + 1 + N(N − 2) + 1 + 1 + N variables

which is N(N − 1) + 1 + (N − 1)(N − 1) +N + 1. Then, we use the variable interface and

the add method in the Cplex class to add these variables to the problem.

prob.variables.add(obj = obj , lb = lb , ub = ub , types = "".join(ct)

Listing 3.1: Add Variables to the Problem

in which obj, lb, ub and types are the objective function multiplier, the lower bound, the

upper bound, and the variable type.

Now, each of constraints is set up to use the indicator interface. Listing 3.2 shows

the command for the constraint (3.2) that forces the receivers to receive from exactly one

transmitter.

23

for j in range(1, Number_Nodes):
ind_set = []
val_set = []
for i in range(0, Number_Nodes):

if (j != i):
ind_set.append(equiv_index(Number_Nodes ,i,j))
val_set.append (1)

prob.linear_constraints.add(lin_expr = \
[[ind_set ,val_set]], senses=’E’,rhs =[1.0])

Listing 3.2: The Python Code for Constraint 3.2

Listing 3.3 shows commands for the constraint (3.4). This constraint forces that the

transmitters to transmit at high enough power to reach all receiver nodes. There is one

constraint for each of the children nodes of each transmitter.

gamma = 2.0 #minimum required SINR
for m in range(Number_Nodes):

for j in range(1, Number_Nodes):
if (j != m):

k = equiv_index(Number_Nodes ,m,j)
ic_dict["lin_expr"] = cplex.SparsePair(
ind =[m],val = [1.0])
ic_dict["rhs"] = gamma*loss[m][j]
ic_dict["sense"] = "G"
ic_dict["indvar"] = k
ic_dict["complemented"] = 0
prob.indicator_constraints.add (** ic_dict)

Listing 3.3: The Python Code for Constraint 3.4

Listing 3.4 shows commands for the constraint (3.5) that forces at least one connection

from the source node. The Python code refers that the sum of the equiv index(Number Nodes,0,j)

values for i = 0 is at least 1.

24

ind_set = []
val_set = []
for j in range(1, Number_Nodes):

ind_set.append(equiv_index(Number_Nodes ,0,j))
val_set.append (1)

prob.linear_constraints.add(lin_expr = \
[[ind_set ,val_set]], senses=’G’,rhs =[1.0])

Listing 3.4: The Python Code for Constraint 3.5

Listing 3.5 shows commands for the constraint (3.6). It forces the transmitters transmit

at a high enough power to reach their predecessors for ACK. Listing 3.6 shows commands

for the constraint (3.7) part Zi ≤ 1
β
Zm. This constraint forces the transmission power of all

transmitters to be within a certain factor of the minimum transmission power.

gamma = 2.0 #minimum required SINR
for m in range(1, Number_Nodes):

for j in range(0, Number_Nodes):
if (j != m):

k = equiv_index(Number_Nodes ,j,m)
ic_dict["lin_expr"] = cplex.SparsePair(
ind =[m,k],val = [1.0,- gamma*loss[j][m]])
ic_dict["rhs"] = 0
ic_dict["sense"] = "G"
ic_dict["indvar"] = K_P+m+1
ic_dict["complemented"] = 0
prob.indicator_constraints.add (** ic_dict)

Listing 3.5: The Python Code for Constraint 3.6

For example, if β = 0.1 the transmission power of the considering node would be less

than 10 times of the power required for a minimum broadcast tree.

25

gamma = 2.0 #minimum required SINR
for m in range(1, Number_Nodes):

for j in range(0, Number_Nodes):
if (j != m):

k = equiv_index(Number_Nodes ,j,m)
ic_dict["lin_expr"] = cplex.SparsePair(ind =
[m,k],val = [1.0,-gamma*loss[j][m]])

ic_dict["rhs"] = 0
ic_dict["sense"] = "G"
ic_dict["indvar"] = K_P+m+1
ic_dict["complemented"] = 0
prob.indicator_constraints.add (** ic_dict)

Listing 3.6: The Python Code for Constraint 3.7

Listing 3.7 shows commands for the constraint(3.8) part Zi ≥ Zm that forces the trans-

mission power of all transmitters to be less than some maximum number.

or m in range(Number_Nodes):
ic_dict["lin_expr"] = cplex.SparsePair(
ind = [K_P , m],val = [ef ,-1])
ic_dict["rhs"] = 0
ic_dict["sense"] = "L"
ic_dict["indvar"] = K_P+m+1
ic_dict["complemented"] = 0
prob.indicator_constraints.add (** ic_dict)

Listing 3.7: The Python Code for Constraint 3.8

3.4 Results

The simulation results obtaining from implementation of three methods, MIP with the

minimum energy objective, MIP with the power balance objective, and BIP are presented

in this section. We consider two different typologies in which nodes of the second network

are more evenly distributed than the first one. Also, we evaluate and compare the total

energy in the pure minimum energy broadcast tree with a balanced power broadcast tree

with different imbalance factors β in the third topology. 25 nodes are located randomly in a

100×100 network area. We consider γmin = 2, β = 0.5, and α = 2 in this simulation. Figure

3.1, Figure 3.2, and Figure 3.3 show the minimum energy broadcast tree, the broadcast tree

26

using MIP with the power balance objective with β = 0.5, and the broadcast tree using BIP

heuristic in topology 1, respectively.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

0

1

2

3

4

5

6

7

8

9

10

11

12

13
14

15

16

17

18

19

20

21

22

23

24

X-Location

Y
-L

o
ca

ti
on

Figure 3.1: Minimum Energy Broadcast Tree in Topology 1

The summery of the minimum energy broadcast tree using MIP with the minimum

energy objective in Figure 3.1 is:

• Source node 0 transmits and R0 = {2, 7, 20}

• Node 2 transmits and R2 = {22}. The parent node, node 0, can not hear it.

• Node 22 transmits and R22 = {15, 18}. The parent node, node 2, can hear it.

• Node 15 transmits and R15 = {3, 4}. The parent node, node 22, can not hear it.

• Node 7 transmits and R7 = {9}. The parent node, node 0, can not hear it.

• Node 9 transmits and R9 = {24}. The parent node, node 7, can hear it.

• Node 24 transmits and R24 = {21}. The parent node, node 9, can hear it. Although

node 7 is not in set of receiver, it can overhear the transmission of node 24.

27

• Node 21 transmits and R21 = {14, 19}. The parent node, node 24, can hear it. Al-

though node 13 is not in set of receiver, it can overhear the transmission of node

21.

• Node 14 transmits and R14 = {1, 6, 8, 10, 13, 16, 23}. The parent node, node 21, can

hear it. Although nodes 17 and 19 are not in set of receiver, they can overhear the

transmission of node 14.

• Node 16 transmits and R16 = {11}. The parent node, node 14, can not hear it.

• Node 6 transmits and R6 = {17}. The parent node, node 14, can not hear it.

• Node 17 transmits and R17 = {2, 5}. The parent node, node 6, can hear it.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

0

1

2

3

4

5

6

7

8

9

10

11

12

13
14

15

16

17

18

19

20

21

22

23

24

X-Location

Y
-L

o
ca

ti
on

Figure 3.2: Balanced-power Broadcast Tree, β = 0.5 in Topology 1

The summery of the minimum energy broadcast tree using MIP with the power balance

objective in Figure 3.2 is as follows:

• Source node 0 transmits and R0 = {2, 20}

28

• Node 2 transmits and R2 = {4, 7, 18}. The parent node, node 0, can hear it. Although

node 15 and 22 are not in set of receiver, they can overhear the transmission of node

2.

• Node 4 transmits and R4 = {3, 15, 19, 22}. The parent node, node 2, can hear it. Al

• Node 19 transmits and R19 = {9, 11, 14, 16, 21, 24}. The parent node, node 4, can not

hear it. Although node 13 is not in set of receiver, it can overhear the transmission of

node 19.

• Node 16 transmits and R16 = {2, 5, 6, 17}. The parent node, node 19, can not hear it.

Although node 11 is not in set of receiver, it can overhear the transmission of node 16.

• Node 14 transmits and R14 = {1, 8, 10, 13, 23}. The parent node, node 19, can hear it.

Although node 21 is not in set of receiver, it can overhear the transmission of node 14.

The numerical results obtained from implementation of these methods are tabulated in Table

3.3. The results show that the total energy in MIP with the balanced-power constraint is

30% higher than the minimum energy broadcast tree in topology 1. On the other hand, the

number of transmitters has been decreased from 12 to 6 in MIP with the balanced-power

objective method. Therefore, the delivery time declines significantly. Moreover, the potential

for reducing delivery time at the expense of the modest energy increase exists. Thus, there is

a trade-off between the minimum energy broadcast tree and the minimum delivery time. In

addition, the number of overhearing nodes has been increased from 4 to 6 and the maximum

power has been decreased by 12%. As can be seen in Table 3.3, the total energy of BIP is

between the total energy of MIP with the minimum energy and the energy consumption of

MIP with th balanced-power. In addition, the BIP heuristic is not an appropriate option to

utilize the delivery mechanism in broadcast

29

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

0
2

22

18

15
3

4

20

7

9

24

21

13

19

14

23

10

8

1

6

17

12
5 11

16

X-Location

Y
-L

o
ca

ti
on

Figure 3.3: Minimum Energy Broadcast Tree using BIP in Topology 1

tree because, the transmission power of child node is blow of transmission power of

parent node in most cases. Thus, parents cannot overhear the children transmission. Also,

BIP is not good for the minimum delivery time, because the number of transmitters in BIP

is higher than two other cases.

Total Power
Number of
Transmitters

Max Power Min Power Overhearing Nodes
Percentage of
Increased Energy

MIP(energy) 6698 13 1923 29 6, 7, 13, 19 0
MIP(balanced) 8568 6 1705 1000 9, 11, 13, 15, 21, 22 30%

BIP 6906 14 598 25 13, 19 3%

Table 3.3: The Numerical Results based on Three Different Methods in Topology 1

Figure 3.4 illustrates pure minimum energy broadcast tree in topology 2. Figure 3.5

displays the broadcast tree using MIP with the power balance objective with β = 0.5 in

topology 2. Figure 3.6 illuminates the broadcast tree using BIP heuristic in topology 2. The

difference between the maximum and the minimum power in topology 2 is less than difference

between the maximum and the minimum power in topology 1, and nodes are more evenly

30

distributed in topology 2. The numerical results provided in Table 3.4 show that the total

energy has been increased by 27% in MIP (balanced) in comparison with MIP (energy).

The number of transmitters has been decreased from 13 to 6 which lead to decreasing the

delivery time. In addition, the number of overhearing nodes has been increased from 3 to 7

in MIP with the balanced-power objective method. The result for BIP in this topology is

very similar to the previous one.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

X-Location

Y
-L

o
ca

ti
on

Figure 3.4: Minimum Energy Broadcast Tree in Topology 2

31

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

X-Location

Y
-L

o
ca

ti
on

Figure 3.5: Balanced-power Broadcast Tree β = 0.5 in Topology 2

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

0
24

22

23
11

13
15

1

17

21
6

14

2
20

16
12

3
18

7

9

5

4

19

8
10

X-Location

Y
-L

o
ca

ti
on

Figure 3.6: Minimum Energy Broadcast Tree using BIP in Topology 2

32

Total Power
Number of
Transmitters

Max Power Min Power Overhearing Nodes
Percentage of
Increased Energy

MLP(energy) 6698 12 1608 60 13, 23, 2 0
MLP(balanced) 8627 6 1928 964 2, 9, 11, 17, 20, 21, 23 27%

BIP 7542 14 725 20 2, 9, 16, 22 13%

Table 3.4: The Numerical Results based on Three Different Methods in Topology 2

We implement MIP with the balanced-power objective for β = 0.1, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9 and, 1 in topology 3. Figure 3.7 displays the pure minimum energy broadcast

tree and Figure 3.8 demonstrates the power balanced broadcast tree for

β = 0.2, 0.4, 1.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

0

1

2

34

5

6

7

8

9

10

11

12

13

14

15

16

17

18 19

20

21

22

23

24

Location on abscissa

L
o
ca

ti
on

on
or

d
in

at
e

Figure 3.7: Minimum Energy Broadcast Tree in Topology 3

33

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

0

1

2

34

5

6

7

8

9

10

11

12

13

14

15

16

17

18 19

20

21

22

23

24

X-Location

Y
-L

o
ca

ti
on

(a) β = 0.2

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

0

1

2

34

5

6

7

8

9

10

11

12

13

14

15

16

17

18 19

20

21

22

23

24

X-Location

Y
-L

o
ca

ti
on

(b) β = 0.4

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

0

1

2

34

5

6

7

8

9

10

11

12

13

14

15

16

17

18 19

20

21

22

23

24

X-Location

Y
-L

o
ca

ti
on

(c) β = 1

Figure 3.8: Balanced-power Broadcast Tree with Different β

Numerical results for various values of β for topology 3 are tabulated in Table 3.5. The

total power increases by increasing the amount of β, but the power of nodes are in a smaller

range. Also, Figure 3.9 illustrates the total normalized energy required in different imbalance

factors. Thus, we can have a more balanced power network which is suitable for a reliable

broadcast tree by increasing the value of β with respect to increasing the total power.

Total Power Number of Transmitters Range of Power

MLP(energy) 827 14 75-1821
β = 0.1 10712 7 320-2254
β = 0.2 10791 7 873-2254
β = 0.3 10791 7 873-2254
β = 0.4 10819 6 901-2254
β = 0.5 11236 7 1383-2254
β = 0.6 11236 7 1383-2254
β = 0.7 11431 7 1578-2254
β = 0.8 11876 7 1803-2254
β = 0.9 12625 6 2029-2254
β = 1 13527 6 2254

Table 3.5: The Numerical Results based on Different Values of β in Topology 3

34

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

1

1.5

2

Imbalance factor, β

T
ot

al
N

or
m

al
iz

ed
E

n
er

gy
R

eq
u
ir

ed

Figure 3.9: Power Balance Broadcast Tree for Different Amounts of β in Topology 3

35

CHAPTER 4

RaptorQ-based BROADCAST PROTOCOL

This chapter presents the RaptorQ broadcast protocol. This protocol implements a re-

liable energy efficient file distribution over the wireless ad hoc network by exploiting the

properties of RaptorQ and wireless broadcast advantages. Section 4.1 discusses the explana-

tion of the RaptorQ broadcast protocol. Section 4.2 explains the RaptorQ broadcast protocol

algorithm which is designed by Daigle and finite state machines developed by Wang.

4.1 Description of the RaptorQ Broadcast Protocol

The main concept of this protocol is that each transmitter node is responsible for deliv-

ering the file to its children. Each transmitter node generates repair symbols with ID equal

to its own ID mod N after constructing the file. Thus, different encoded symbols are dis-

tributed over the network by different transmitters expediting the file distribution, because

the receiver is able to reconstruct the file after collecting enough distinct symbols. Another

important concept of this protocol is that broadcast nature of the wireless link can accelerate

the file delivery. It means that the reception of each node is not limited those received from

its parent. That is, the node can also overhear the transmission of other multiple nodes.

We are given a fully connected mesh network of N nodes, N = {N0,N1, . . . ,NN−1},

of which one node, N0, has content to be delivered to all other nodes. The content is

partitioned into a L fixed-length symbols, and these symbols are RaptorQ encoded prior

to transmission. According to the properties of RaptorQ, we define a failure probability of

less than 10−6 with an overhead of 2 symbols. L + 2 required symbols is called kmin in the

developed protocol. The broadcast tree is obtained by applying the MIP with its balanced-

power objective. Thus, we have a set of transmitter nodes and a set of their children nodes.

36

We define three types of nodes source, transmitter, and leaf in this protocol. Children nodes

of a transmitter can be either a transmitter node or a leaf node. The nodes which have a

file are considered as source nodes. The network includes only one source node which is N0

in the beginning of the process. Nodes which have a set of receivers are transmitter nodes.

These nodes will be source nodes whenever they successfully decode the file. The nodes that

do not have any children nodes are called leaf nodes. Also, each transmitter in the network

is assigned a transmitter identification number which starts with 0 in the source node. In

addition, two children of the same parent are not allowed to be scheduled to transmit in

the same slot because of the implementation of the balanced-power broadcast tree. The

protocol has five discrete phases for source and transmitter nodes, STARTUP, FINISHING

(Poll), FINISHING (Wait), FINISHING (Extra) and COMPLETED. Leaf nodes include

only STARTUP and COMPLETED phases.

All packets transferred between nodes are in the same format. We define a packet format

that consists of four parts: time, header, payload which is an encoded symbol, and tail. The

time in the packet is used for scheduling. The data type part specifies the type of this

packet which can be either NORM, POLL, MORE, or DONE. The payload is an encoded

symbol which can be source symbols or repair symbols. The tail part is employed when

the header is POLL or MORE. In the POLL header type, the tail will be the IP address of

selected children, and the tail is Kextra which implies the number of extra symbols needed to

reconstruct the file in the MORE case.

4.2 Algorithm for RaptorQ Broadcast Protocol

We discuss the details of the RaptorQ broadcast protocol in this section. The RaptorQ

broadcast protocol facilitates a reliable distribution of a file over a wireless ad hoc network.

We explain the basic features of this algorithm designed by Daigle for three different node

types as follows:

1. source

37

• During the START-UP phase, node N0 transmits encoded symbols having se-

quential sequence numbers. The encoded symbols include source symbols and

repair symbols randomly.

• During the START-UP phase, node N0 updates the symbol sender’s state if it

receives any encoded symbols.

• After transmitting Kmin sequentially numbered encoded symbols, N0 changes over

to the FINISHING (Poll) phase.

• During the FINISHING (Poll) phase, node N0 transmits a POLL message to poll

the selected neighbor. Thus, non-polled children do not need to reply to the

POLL message. Also, the POLL message can be another symbol with a POLL

header. Node N0 changes over to the FINISHING (Wait) phase.

• During the FINISHING (Wait) phase, node N0 waits to receive the response

from the selected children. This response can be either a MORE message or a

DONE message. If node N0 receives a DONE message, it updates the status of

the selected child as DONE. The node N0 changes over the FINISHING (Extra)

phase once it receives MORE message.

• During the FINISHING (Extra) phase, node N0 generates Kextra number of repair

symbols with symbol IDs that have the same number as its identifier 0 mod N and

transmits them sequentially in its time slot. After sending Kextra new generated

encoded symbols, N0 changes over to the FINISHING (Poll) phase.

• After coming back to the FINISHING (Poll) phase, node N0 transmits a POLL

message to the next selected children. N0 changes over from the FINISHING

(Poll) phase to the COMPLETED phase once all of its children marked as DONE.

2. Transmitter

• During the START-UP phase, all other transmitters can receive the NORM type

of data which is an encoded symbol or a POLL message. If they receive a POLL

38

message, they schedule a MORE message with the number of Kextra in the next

coming time slot. Otherwise, the node simply sends the newly received encoded

symbols to its children in its time slot.

• Transmitter nodes after receiving Kmin and reconstruct the file switch to the

FINISHING(Poll) phase.

• During the FINISHING (Poll) phase, if the transmitter receives a POLL message

that polls itself it schedules a DONE message in its coming time slot.

• During the FINISHING (Poll) phase, the transmitter nodes transmits a POLL

message to poll the selected neighbor and change over to the FINISHING (Wait)

phase.

• The FINISHING (Wait) phase for transmitter nodes is as same as the source

node except transmitter nodes which generate Kextra number of repair symbols

with symbol IDs that have the same number as their own identifier mod N .

• After coming back to the FINISHING(Poll) phase, transmitter nodes transmit

POLL message to the next selected children. Transmitter nodes change over from

the FINISHING(Poll) phase to the COMPLETED phase once all of its children

marked DONE.

• All transmitters listen for symbols of all time slots and maintain a counter, Kack

for the number of ACK’d symbols they hear from each of their children.

• Other alternatives for marked children as DONE are that the parent marks the

child as DONE whenever Kack ≥ Kmin. Also, if a transmitter overhears any of

its children transmitting the child’s own mod numbers, the child is marked as

DONE.

39

3. Leaf

• During the START-UP phase, leaf nodes receive a message. If the message is a

POLL message, they send a MORE message with the number of required symbols

Kextra in the assigned coming slot of its parent. The leaf nodes switch to the

COMPLETED phase after receiving Kmin and successfully decoding the file.

• During the COMPLETED phase,the leaf node transmit the DONE message in

the assigned coming slot of its parent.

The finite state machines developed by Wang for this protocol is shown in Fig4.1.

40

Source:

Transmitter:

Leaf:

Start-up
Finishing

(Poll)

Completed

Event

Action

Slot comes && # of symbols sent < Kmin

Generate and send a new symbol

Receive a symbol

Update symbol sender’s state

Finishing

(Wait)

Finishing

(Extra)

of symbols sent == Kmin

No action

All children marked DONE

No action

Slot comes

Send POLL message to poll selected children

Slot comes && # of extra symbols sent < Kextra

Generated and send a new symbol

of extra symbols sent == Kextra

No action

Receive a symbol

Update symbol sender’s state

A B

On state A, when event happens, take action and transit to state B:

Receive a symbol

Update symbol sender’s state

Start-up
Finishing

(Poll)

Completed

Receive a symbol

Update symbol sender’s state

Finishing

(Extra)

All children marked DONE

No action
of extra symbols sent == Kextra

No action

Receive a symbol

Update symbol sender’s state

Receive a symbol

Update symbol sender’s state

Decode the original file

No action

Start-up

Completed

Receive a symbol

Update symbol sender’s state

Receive a symbol

Update symbol sender’s state

Decode the original file

No action

Parent slot comes

Send the MORE message if scheduled

Receive a POLL message that polls itself

Schedule a MORE message with # of

extra symbols needed in the assigned

coming slot of its parent

Parent slot comes

Send the DONE message piggybacked with

states of other known nodes if scheduled

Receive a POLL message that polls itself

Schedule a DONE message in the

assigned coming slot of its parent

Slot comes

Send the MORE message if scheduled,

otherwise forward a newly received

symbol if any

Receive a symbol

Update symbol sender’s state

Slot comes

Send the DONE message piggybacked with

states of other known nodes if scheduled

Receive a POLL message that polls itself

Schedule a DONE message in its coming slot

Receive a POLL message that polls itself

Schedule a DONE message in its coming slot

Receive a symbol or message

Update sender’s state

Receive a symbol or MORE/DONE message

Update sender’s state

Finishing

(Wait)

Receive a POLL message that polls itself

Schedule a DONE message in its coming slot

All selected children

marked DONE

No action At least one selected child marked MORE with Kextra
denoting the maximum additional # of symbols

needed among all children marked MORE

No action

Receive a POLL message

Schedule a MORE message with # of

extra symbols needed in its coming slot

Slot comes

Send POLL message to poll selected children, which

can be combined with the DONE message if scheduled,

piggybacked with states of other known nodes

Slot comes && # of extra symbols sent < Kextra

Generated and send a new symbol, which can be combined with the DONE

message if scheduled, piggybacked with states of other known nodes

Receive a POLL message that polls itself

Schedule a DONE message in its coming slot

All selected children

marked DONE

No action

At least one selected child marked MORE with Kextra
denoting the maximum additional # of symbols

needed among all children marked MORE

No action

Legend:

Figure 4.1: Finite State Machines for File Delivery.

41

CHAPTER 5

RAPTORQ-BASED BROADCAST PROTOCOL IMPLEMENTATION

This chapter discusses the implementation of the RaptorQ-based broadcast protocol in

detail. The program has been developed in Ruby. Section 5.1 explains the Ruby interface for

the RaptorQ library. Section 5.2 discusses implementation of protocol. Section 5.3 elaborate

the message format in the protocol and Section 5.4 explains the testbed setup.

5.1 Ruby Interface for RaptorQ Library

In the implementation of the RaptorQ-based broadcast protocol, we generate desired

repair symbols via the RaptorQ libraries. These libraries provide a set of C functions that

enables us to build our own RaptorQ encoding and decoding applications.

The Qualcomm-proprietary RaptorQ SDK includes a RaptorQ encoder library and a

RaptorQ decoder library, which provide functions to establish RaptorQ encoding and de-

coding applications. A typical processing flow of the RaptorQ encoder and decoder is shown

in Figure 5.1 [19]. The sender application passes source blocks to the RaptorQ encoder to

generate intermediate blocks, and intermediate blocks are exploited to generate repair sym-

bols. Then, theses source and repair symbols are passed to the transport layer of a sender

which is UDP. The receiver’s transport layer receives a set of source and repair symbols

corresponding to ESI and passes them to the RaptorQ decoder. When the RaptorQ decoder

receives enough either source or repair symbols, the original source blocks can be recovered.

The Qualcomm RaptorQ SDK provides a series of functions to perform the above process.

The interface is responsible for wrapping these functions such that Ruby script operates the

encoding or decoding process. We generate all of repair symbols with ID of transmitter own

ID MOD N after the file is reconstructed successfully in the transmitter.

42

Figure 5.1: Processing Flow for RaptorQ Encoder and RaptorQ Decoder

In the encoding part, the function StringSimpleSend(), was revised as a full RaptorQ

encoding function utilizing APIs. This function takes in the source data as a string and

returns encoded symbols in separate strings. In addition, we can generate repair symbols

with symbol IDs which are ID mod N where ID is an identifier of the current transmitter

and N is the number of total transmitters. Variables for this function are as follows:

• Symbol size. This is an integer variable that gives the length of every symbol in

bytes.

• File size. This integer variable specifies the length of the input string (source data)

in bytes.

• Source data pointer. This is a pointer to the source data which would be encoded.

• Transfer percent. This is an integer variable more than 100. It is typically set

to be 200, 300, 400, and etc. The meaning of the transfer percent is the percentage

protection to be applied to the source data. For instance, a 100 transfer percent stands

for a 100 percent protection where all output symbols will be source symbols and there

is no repair symbols. Once the transfer percent is 200, it implies that as many repair

symbols as source symbols will be generated.

43

• Output file name. This is a string variable determining the output file name. Each

source symbol partitioned from the source data will be written into a output file named

as filename.src.symbolID, and each generated repair symbol will be written into an

output file named name.rep.symbolID.

• Transmitter number. This is an string variable determines the transmitter identifi-

cation number.

• Total transmitter. This is an string variable specifies the number of transmitters in

the network.

In the decoding part, the function FileSimpleDecode() is modified to achieve the Rap-

torQ decoding function. This function will recover the original data from a collection of

source and repair symbols. We write a collection of source and repair symbols to a file.

The recovered data will be returned in a file after a successful decoding, or the function will

return a failure status. The variables for this function are as follows:

• Symbol size. This integer variable corresponds to the symbol size determined in the

encoding process.

• Input file name. This is a string variable. All incoming source and repair symbols

will be written in a file with a name as same as the input file name.

• Output file name. This is also a string variable indicating the output file name of

the decoder. The recovered data will be stored into the output file if the decoding

process succeeds.

• File size. This integer variable specifies the length of the input string (source data)

in bytes.

• Number of extra symbols. This is an integer variable no less than 0, and is defined

as the difference between the number of received symbols and the number of original

44

source symbols. If the number of source symbols is k and we receive k + 2 symbols,

then the number of extra symbols is 2.

In order to execute these two functions in Ruby, we need to use the software development

tool named simplified wrapper and interface generator (SWIG) [2]. SWIG is a software de-

velopment tool that establishes connections between programs written in C and C++ with a

variety of high-level programming languages such as Javascript, Perl, PHP, Python, Tcl, and

Ruby. The process of wrapping the functions StringSimpleSend() and FileSimpleDecode()

along with the RaptorQ encoder and decoder library into dynamic libraries that can be used

by Ruby is as follows:

• Creating a C library that includes the RaptorQ encoder and decoder library.

• making an interface file for SWIG which has an *.i extension.

• Producing a desired dynamic library (*.so) with SWIG.

We wrap the RaptorQ library so that our modified function StringSimpleSend() can be

called directly in Ruby. We run the following command in the command line:

$ swig r u b y Str ingSimpleSend . i

Listing 5.1: Generate a wrap file with SWIG

This will generate a StringSimpleSend wrap.c, which can be compiled into a shared

library used in Ruby. This step will also create an extconf.rb which configures a makefile to

generate the extension. Listing 5.2 illustrates commands to create the extension:

$ ruby extcon f . rb
$ make
$ sudo make i n s t a l l

Listing 5.2: Commands to Generate Dynamic Library

A file named StringSimpleSend.so is generated after a successful make. This is a dynamic

library containing the StringSimpleSend() function that can be called in Ruby. An example

45

of using this function in Ruby to encode a olemiss.jpg file with a symbol sizes of 606 is as

follows:

r e qu i r e ’ . / Str ingSimpleSend ’

f i l e = F i l e . open (” o l emi s s . jpg ” , ” rb”)
Str ingSimpleSend : : Str ingSimpleSend (606 , f i l e . s i z e , f i l e . read , ”Encoded” , 200)

Listing 5.3: The Ruby Code for StringSimpleSend()

In the above example, Ruby passes the source data inFile.read with a size of inFile.size

along with a transfer percent of 200. The encoding process is then finished within the C

function. Generated source symbols will be written into files Encoded.src0 to Encoded.src267

and generated repair symbols will be written into files Encoded.rep0 to Encoded.rep267 ,

respectively.

An example of using the FileSimpleDecode() function in Ruby to decode a olemiss.jpg

file with 2 extra symbols is as follows:

breakatwhitespace
r e qu i r e ’ . / Fi leDecode ’

Fi leDecode : : Fi leSimpleDecode (606 , ”Output . symbols ” , ”Recov . jpg ” , 158902 , 0 , 2)

Listing 5.4: The Ruby Code for FileSimpleDecode

We pass a collection of source symbols and repair symbols stored in Output.symbols along

with necessary variables to the FileSimpleDecode() function. When the execution of the

program is finished, we get just a Received file which is exactly our original olemiss.jpg file.

5.2 Implementation of Protocol

Our program as an implementation of RaptorQ-based broadcast protocol is able to

distribute a file to a number of nodes over the multihop wireless network. It consists of

3 different main modes including source, transmitter and leaf. The source and transmitter

modes include STARTUP, FINISHING (Poll), FINISHING (Wait), FINISHING (Extra), and

COMPLETED phases. The leaf mode consists of STARTUP and COMPLETED phases.

46

Program will switch between modes and corresponding phases using the case statement. In

fact, the case statement implements the event and act in the protocol. Ruby does not have

a built-in enum type. We create a class and define constants in it to group set of constants

logically. Listing 5.5 shows MODE and PHASE class as a follows:

class MODE
Source=0
Transmitter=1
Leaf=2

end

class PHASE
Startup=0
F in i s h i ngPo l l=1
FinishingWait=2
Fin i sh ingExtra=3
Completed=4

end

Listing 5.5: The Ruby Code for MODE and PHASE classes

The Class Neighbor with the Initialize method is created to classify each node instance

variable like socket, IP address, port number, send buffer, receive buffer, total symbols, and

children IP address. The objects of Neighbor class are accessible through all parts of the

program. The types of rcvBuf and sendBuf are string. Listing 5.6 illustrates the Class

Neighbor.

class Neighbor
def i n i t i a l i z e (ip)
@ip = ip
@multiadd = ip
@loca l=ip
@socket = socket
@req = Array . new
@rcvBuf = ’ ’
@sendBuf =’ ’
@sendBufUni=’ ’
@symbols=’ ’
@info=Array . new
@port=port

end
a t t r a c c e s s o r : ip , : multiadd , : s ta te , : socket , : rcvBuf , : req , : sendBuf , : port ,

: symbols , : sendBufUni
end

Listing 5.6: The Ruby Code for the Class Neighbor

47

We use Neighbor.new method for each node. In our test implementation, we have 1

source node, 4 transmitter nodes and, 5 leaf nodes. Listing 5.7 shows a code to generate

transmitter1Obj for transmitter1 using Neighbor class.

t r ansmi t t e r1=’ 130 . 74 . 118 . 60 ’
portT=6000
s=UDPSocket . new
transmitter1Obj=Neighbor . new(source , portT)

Listing 5.7: The Ruby Code for Neighbor Class for Transmitter 1.

Each transmitter node has two types of multicast socket sets, one multicast address for

receiving the symbol from its parent and one multicast address for sending the symbol to its

children. The code for setting the IP address to send multicast is as follows:

socke t = UDPSocket .open
socke t . s e t sockopt (Socket : : IPPROTO IP , Socket : : IP TTL , [1] . pack (’ i ’))

Listing 5.8: The Ruby Code for Send Multicast IP Setting

The code for setting the IP address to receive a multicast message is as follows:

Local=’ 0 . 0 . 0 . 0 ’
MULTIRCV=’ 2 2 4 . 0 . 0 . 1 ’
portS=5000
s=UDPSocket . new
s . bind (l o c a l , portS)
ip=IPAddr . new(MULTIRCV) . hton + IPAddr . new(” 0 . 0 . 0 . 0 ”) . hton
s . s e t sockopt (Socket : : IPPROTO IP , Socket : : IP ADD MEMBERSHIP, ip)

Listing 5.9: The Ruby Code for Receive Multicast IP Setting

Three threads are utilized to implement the RaptorQ-based broadcast protocol features.

Thread 1 is a receive thread which receives the message through the multicast receive socket

and passes it to rcvBuff which is string defined in Neighbor object. For example, a receive

thread for the transmitter node 1 is as follows:

48

r e c i e v e=Thread . new{
loop do

s l e ep (0 . 0 1)
puts ”==”
puts ”Rece iv ing thread i s read ing from socket . ”
msg , sender = s . recvfrom (1024)
neighbor1Obj . rcvBuf=’ ’
neighbor1Obj . rcvBuf << msg

end
}

Listing 5.10: The Ruby Code for Receive Multicast Thread

The receive thread receives the message from the receiving multicast socket defined in

??. A msg variable includes the received message and the sender variable consists of the IP

address of a sender. We pass the message to the rcvBuf of the transmitter node. Also, we

push the IP address of the sender to the children array determined in Neighbor class.

This rcvBuf is evaluated in the main program and different actions occur based on the

type of the message and the current state of program. After assessing the receive buffer and

determining the action, one message is generated and passed to the send buffer. In the send

buffer we determine what to send the reply based on the type of message. If the message is

NORM or POLL, the reply is multicast to its children. If the message is MORE or DONE,

the reply is unicast to its parent. The send thread for the transmitter 1 is as follows:

send=Thread . new{
loop do

s l e ep (0 . 0 15)
puts ”==”
puts ”Sending thread i s wr i t i ng to socket . ”
puts ”Send Thread i s #{neighbor1Obj . sendBuf}”
time , header , t a i l , symbol= neighbor1Obj . sendBuf . s p l i t (/ , /)
i f header . t o s==’NORM’

socke t . send (neighbor1Obj . sendBuf , 0 , multiadd2 , portT3)
e l s i f header . t o s==’POLL ’ then

socke t . send (neighbor1Obj . sendBuf , 0 , multiadd2 , portT3)
else

sUni . send (neighbor1Obj . sendBuf , 0 , source , portS)
end

end
}

Listing 5.11: The Ruby Code for Send Multicast Thread

49

The case statement is used in the main program to implement an action and an event

in the protocol. The STARTUP phase for the source mode and the transmitter mode is

different. The source node generates encoded symbols and multicasts them in its time slot.

Listing 5.12illustrate the STARTUP phase for source mode .

f i l e = F i l e . open (” o l emi s s . jpg ” , ” rb”)
Str ingSimpleSend : : Str ingSimpleSend (608 , f i l e . s i z e , f i l e . read , ”RubyOut” , 200)
mode=MODE: : Source
s t a tu s=PHASE : : Startup
case mode

when 0
case s t a tu s
#Star tup

when 0
i f ksent < kmin

F i l e . open (’ /home/ pi /RaptorQBroadcast/Fi leSend / s r c2 /RubyOut .
s r c ’+srcSymbol . to s , ’ r ’) do | f i l e |

data=f i l e . read (606)
i n f o =Time . at (Time . now+1) . t o s
i n f o += ’ , ’ +”NORM”
in f o += ’ , ’ +”empty”
i n f o += ’ , ’ +data
srcSymbol+=1
end
sourceObj . sendBuf=’ ’
sourceObj . sendBuf << i n f o
ksent+=1
puts ksent
mode=MODE: : Source
s t a tu s=PHASE : : Startup

else

mode=MODE: : Source
s t a tu s=PHASE : : F i n i s h i ngPo l l

end

Listing 5.12: The Ruby Code for source Mode in STARTUP Phase

As it can seen in Listing 5.12, if number of sent symbols, Ksent, is less than Kmin; then, the

program reads the source symbol file stored in Raspberry Pi. These source symbol files are

already generated by calling the StringSimpleSend function from the RaptorQ library. The

program adds a time and a header to the symbol and passes it in the sendBuf. Once the

number of Ksent is equal to Kmin, the program switches to the FINISHING (Poll) phase. The

transmitter mode receives encoded symbols, copies them to the total symbols string, and pass

it to the send buffer. We drop the received message according to the loss rate in a receiver

50

part of each node to simulate an error in the symbol. The loss rate sets independently in

each node.

case mode
#Al l f o r Transmitter
when 1

case s t a tu s
#Star tup
when 0

i f krecv < kmin
time , header , t a i l , symbol= neighbor1Obj . rcvBuf . s p l i t (/ , /)
event=EVENT. c l a s s e v a l (header . t o s)
case event
#NORM message
when 0

randomloss=rand (0 . 1)
i f randomloss >= l o s s

neighbor1Obj . rcvBuf=’ ’
else

neighbor1Obj . symbols << symbol
krecv=krecv+1
puts krecv
i n f o=Time . at (Time . now+10) . t o s
i n f o+= comma +”NORM”
in f o+= comma +”empty”
i n f o+= comma +symbol
neighbor1Obj . sendBuf=’ ’
neighbor1Obj . sendBuf << i n f o

end
when 1

time , header , t a i l , symbol= neighbor1Obj . rcvBuf . s p l i t
(/ , /)

neighbor1Obj . symbols << symbol
krecv+=1
i f t a i l ==neighbor1 . t o s

kextra=kmin−krecv
puts ” kextra i s #{kextra . t o s }”
i f kextra > 0

i n f o=Time . at (Time . now+10) . t o s
i n f o+= comma +”MORE”
i n f o += comma +kextra . t o s
i n f o+=comma +symbol
neighbor1Obj . sendBuf=’ ’
neighbor1Obj . sendBuf<< i n f o

else

end
else

mode=MODE: : Transmitter
s t a tu s=STATUS : : Startup

end
mode=MODE: : Transmitter
s t a tu s=STATUS : : Startup

else
puts ”Generate F i l e ”
t2=Time . now
t=t2−t1

51

puts ” time i s #{t }”
fname=fi leName+’ . symbols ’
f=F i l e .open(fname , ”w”)
f . puts neighbor1Obj . symbols
f . c l o s e
i n f o =Time . at (Time . now+10) . t o s
i n f o += comma +”DONE”
i n f o += comma +neighbor1 . t o s
neighbor1Obj . sendBuf=’ ’
neighbor1Obj . sendBuf << i n f o
mode=MODE: : Transmitter
s t a tu s=STATUS : : F i n i s h i ngPo l l

end

Listing 5.13: The Ruby Code for transmitter MODE in STARTUP phase.

In the example of 5.13, the loss is equal to 0.2.

The source node sends a POLL message in the FINISHING (Poll) phase and switches to

the FINISHING (Wait) phase. In this phase, the source node evaluates the received message

which can be MORE or DONE. If the message is MORE, the source node switches to the

FINISHING (Extra) and transmits Kextra a new generated encoded symbols.

5.3 Message Format

All packets transferred between nodes should have the same format. We define a packet

format that consists of four parts: header, time, symbol, and tail. The header part is 4 bytes,

the time part is 25 bytes, the symbol part is 606 bytes for this example, and the tail is 13

bytes. The header can be NORM, POLL, MORE and DONE. Whenever header is POLL,

the tail should be the IP address of the selected children. Also, the tail is the number of the

extra needed symbols Kextra once the header is MORE. The time in the message is for the

scheduling purpose.

5.4 Testbed Setup

The time elapsed to completely deliver the file to all of the nodes was quantified through a

series of tests performed on Raspberry Pi platforms, a single-board computer. Two models of

a Raspberry Pi are used in our testbed. The model of five Raspberry Pis out of 10 is B+ with

52

a 900MHz quad-core ARM Cortex-A7 CPU and 1GB RAM and the model of the remaining

Raspberry Pis is B with ARMv6 and 512 MB RAM. Figure5.3 shows the Raspberry Pi model

2 B+ released in February 2012. We choose the Raspbian operating system, which is a free

operating system based on Debian . These 10 Raspberry Pis are interconnected via Ethernet

switch. Our testbed includes 1 source node, 4 number of transmitter nodes and 5 leaf nodes.

We use an Ethernet switch instead of wireless dongles for interconnection. Because wireless

dongles multicast in the minimum rate which is 2 Mb/s in 802.11n. We simulate the high

packet loss characteristic of the wireless multihop network with dropping the symbols based

on the loss rate after the symbols received.

Figure 5.2: Raspberry Pi 2 Model B+

53

Table 5.1 illustrates the IP configuration for all of the nodes in our testbed.

Recive Multicast IP Send Multicast IP IP

S - 225.0.0.1 130.74.118.225
T1 225.0.0.1 224.0.0.1 130.74.118.60
T2 225.0.0.1 224.0.0.2 130.74.118.225
T3 224.0.0.1 224.0.0.3 130.74.117.150
T4 224.0.0.1 224.0.0.3 130.74.118.240
T5 224.0.0.2 - 130.74.119.12
T6 224.0.0.1 - 130.74.118.202
T7 224.0.0.3 - 130.74.118.234
T8 224.0.0.4 - 130.74.118.254
T9 224.0.0.4 - 130.74.118.69

Table 5.1: IP Configuration in Testbed

Figure 5.3 shows the topology in our testbed.

S

T1

T3

T7

T6

T2

T4

T8 T9

T5

Figure 5.3: Tree Topology for Testbed

54

The size of the file, size of the encoded symbols and number of the source symbols are

158 kB, 606 byte and, 268 respectively. The loss rate is set independently in each node in

our test.

We calculate the number of encode symbols that need to be sent in order to have

sufficient symbols to decode the file successfully. Let Ksent denote the average number of

sent encoded symbols. We consider ` as a loss probability. Let Kmin denote the minimum

number of received symbols needed to decode the file. According to RaptorQ properties

decoding failure probability of under 10−6 is achieved with the 2 extra symbols. Our test

file includes 268 source symbols. Thus, the receiver is able to decode the file by receiving

Kmin = 270. We can calculate Ksent based on Kmin and loss probability ` as a follow:

Ksent (1− `) = Kmin (5.1)

Thus for our case Ksent is

Ksent =
270

(1− `)
(5.2)

Table 5.2 illustrates the Ksent in different loss probability.

Loss Rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ksent 300 338 386 450 540 675 900 1350 2700

Table 5.2: The Average Required Number of Sent Symbols as a Function for Loss Rate

5.5 Results

We use the Time.new and sleep methods in Ruby to achieve time synchronization and

scheduling. We define the start time using the Time.new method in Ruby. We set the same

start time for all of the nodes in the testbed to have the synchronized network. A time slot is

allocated for the source node and each of the transmitter nodes using the Time.parse and the

sleep method in Ruby. Also, we set the buffer times for each transmitter node. The source

node transmits each 0.01 second. Each transmitter parses its received message time and

55

adds the buffer time to it. Then, the transmitter node sleeps for start time− recive time +

buffer time. The buffer time is 0.1 second for transmitter T1 and T2. This means that time

slot for T1 and T2 is 100 ms after receiving the message from source node. The buffer time

for T3, T4 is 0.2 second.

The source node transmits 268 source symbols in each 0.01 seconds. The transmitters

T1 and T2 drop 20% and 30% of the source symbols, respectively. Then, the source node

transmits a POLL message to poll transmitter T1, and the transmitter T1 sends back a MORE

message with a specified Kextra. Thus, two time slots are used to send the POLL message

and to receives the MORE message. The source node transmits Kextra repair symbols with

ID symbol of its own ID MOD 5. Again, the transmitter T1 and T2 receive the repair

symbols based on their loss probabilities. In this step, the source node again sends a POLL

message to poll transmitter T1 and transmitter T1 sends back a MORE message. This

process continues till transmitter T1 receives 270 the encoded symbols and is marked as

DONE. After, the source node sends a POLL message to transmitter T2. If transmitter T2

is already DONE, it will send a DONE message to the source node and the source node will

be in the COMPLETED phase. Otherwise, the transmitter T2 sends a MORE message and

this process is continued until the transmitter T2 is marked as DONE. Table 5.3 shows that

number of rounds it takes the last symbols to get to transmitters T1 and T2 and the source

node is marked as COMPLETED.

56

Number of Sent Symbols
in Source Node

Number of Received
Symbols in T1 (Loss Rate=0.2)

Number of Received
Symbols in T2 (Loss Rate=0.3)

268 214 187
1 (POLL T1) 0 0

0 0 (Kextra = 56) 0
56 44 39

1 (POLL T1) 0 0
0 0 (Kextra = 12) 0
12 9 8

1 (POLL T1) 0 0
0 0 (Kextra = 4) 0
4 3 2

1 (POLL T1) 0 0
0 0 (Kextra = 1) 0
1 1 (DONE) 1

1 (POLL T2) 0 0
0 0 0 (Kextra = 33)
33 0 23

1 (POLL T2) 0 0
0 0 0 (Kextra = 10)
10 0 7

1 (POLL T2) 0 0
0 0 0 (Kextra = 3)
3 0 2

1 (POLL T2) 0 0
0 0 0 (Kextra = 1)
1 0 1 (DONE)

COMPLETED

Table 5.3: The Minimum Round for the Source Node

According to Table 5.3, the total number of time slots required for the source node

to deliver the file to transmitters T1 and T2 equals to 396. The source node sends each

0.01 second. Also, we have 9 MORE messages and 2 DONE messages from T1 and T2.

Transmitters T1 and T2 also send each 0.01 second and they have 0.1 send buffer time. Thus,

the amount of the time elapsed for the last symbol to get to transmitter T2 and transition the

source node to COMPLETED is (396)(0.01) + (0.1 + (11)(0.01) = 4.17 second. According

to the same process, the completion time for T1, T2, T3 and T4 is 4.31 s, 4.42 s, 4.49 s and

4.57 s from the start time. Thus, the completion time to reliably deliver the file to all 10

nodes is 4.57 second. Table 5.4 shows the time elapsed to generate the file for each node and

57

completion time for source and transmitter nodes. We can see that the theoretical result is

close to measured one. The transmitter nodes are completed a few millisecond after their

parent is completed. For example, the transmitter T1 and T2 are marked as completed at 25

ms and 14 ms after the source node is completed. Also, the completion time of T1 is sooner

than T2 because the loss probability is lower in T1. Table 5.4 briefly presents the theoretical

results for the generation and completion times.

Node Loss Rate Generation Time (second) Completion Time (second)

S 0.15 - 4.17
T1 0.20 3.38 4.31
T2 0.30 4.16 4.42
T3 0.15 3.84 4.49
T4 0.30 4.29 4.57
T5 0.20 4.09 -
T6 0.35 4.20 -
T7 0.20 4.20 -
T8 0.15 4.14 -
T9 0.30 4.30 -

Table 5.4: Theoretical Result for Generation Time and Completion Time

We tested the protocol implementation in the Raspberry Pi testbed. Table 5.5presents

the measured results for the generation and completion time. We can see that the theoretical

result is so close to practical one. The transmitter nodes are completed a few milliseconds

after their parent’s completion. For example, transmitters T1 and T2 are marked as completed

13 ms and 45 ms after the source node is completed. Also, the completion of T1 is sooner

than T2 because the loss probability is the lower in T1.

58

Node Loss Rate Generation Time (second) Completion Time (second)

S 0.15 - 4.201
T1 0.20 3.7655 4.4312
T2 0.30 3.8902 4.654
T3 0.15 3.9876 4.899
T4 0.30 4.0011 4.3244
T5 0.20 4.004 -
T6 0.35 4.125 -
T7 0.20 4.32 -
T8 0.15 4.11 -
T9 0.30 4.214 -

Table 5.5: Measured Result for Generation Time and Completion Time in Testbed

59

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis we explained and implemented a RaptorQ-based broadcast protocol for a

wireless multihop network. This protocol is a novel protocol designed at the University of

Mississippi to facilitate distribution of files over wireless ad hoc networks. The implemen-

tation of a RaptorQ-based broadcast protocol is tested in the Raspberry Pi-based testbed

with 10 nodes. The results demonstrate that reliable and efficient file distribution is doable

in multihop wireless network.

We construct the minimum energy broadcast tree using mixed integer programming, a

spanning tree heuristic and a local search heuristic. Moreover, a suitable broadcast tree is

derived with a view towards facilitating reliable broadcast using RaptorQ. The resulting tree

is implemented using the mixed integer programming with power balance constraints. The

numerical results illustrate that there is trade-off between the minimum energy broadcast

tree and the balanced-power broadcast tree. The RaptorQ-based broadcast protocol takes

advantage of a wireless broadcast nature and the RaptorQ property. According to the

RaptorQ characteristic the receiver is able to recover the original file when a sufficient number

of distinct symbols is received. Thus, the reliable delivery of the file only depends on the

number of received symbols no matter which encoded symbols are. This characteristic of

the RaptorQ is very useful in a network with high loss.

The algorithm of the RaptorQ-based broadcast protocol is designed to consecutively

distribute the file. Thus, there are not any simultaneous transmissions in our implementation.

In future work, we plan to consider simultaneous transmissions. The concurrent transmission

will clearly reduce the completion time of the file distribution. We need to consider the

60

cumulative interference effect of simultaneous transmissions, which increase transmission

power.

We have changed the RaptorQ SDK interface to generate all of the source and repair

symbols in one pass. This requires substantial memory, and it is not an appropriate in limited

resource systems. A more efficient interface from Ruby to the SDK is needed to allow specific

symbols be generated by passing the repair symbol ID from the protocol written in Ruby to

the RaptorQ library written in C.

Opportunistic reception means that parent node can overhear its child’s transmission.

Opportunistic reception is able to reduce file delivery time. In fact, the opportunistic recep-

tion can also serve as acknowledgment. As future work, we plan to apply this mechanism

in our protocol. Once the parent node overhears a child’s transmission, it interprets this

transmission as a acknowledgment for the corresponding symbol. The potential to reduce or

eliminate some phases like Finishing (Poll) exists if the opportunistic reception mechanism

is used.

The other concern is high packet loss in a wireless multihop network. The control

messages like POLL, MORE and DONE are transmitted in the link with high loss rate.

Thus, these messages may be dropped, and a parent or a child node may not receive them.

We need to add a mechanism in our protocol to overcome this issue.

61

BIBLIOGRAPHY

62

BIBLIOGRAPHY

[1] Altinkemer, K., F. Salman, and P. Bellur (2004), Solving the minimum energy broad-
casting problem in ad hoc wireless networks by integer programming, in Proceedings of
the Second Workshop on Modeling and Optimization in Mobile, Ad hoc, and Wireless
Networks, WiOpt04., pp. 48–54.

[2] Beazley, D. M., et al. (2005), Swig-1.3 documentation, Tech. rep., Technical Report,
University of Chicago.

[3] Cagalj, M., J.-P. Hubaux, and C. Enz (2002), Minimum-Energy Broad-
cast in All-Wireless Networks: NP-Completeness and Distribution Issues, doi:
http://doi.acm.org/10.1145/570645.570667.

[4] Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein (2001), Introduction to
Algorithms, MIT Press.

[5] Das, A. K., R. J. Marks, M. El-Sharkawi, P. Arabshahi, and A. Gray (2003), A cluster-
merge algorithm for solving the minimum power broadcast problem in large scale wire-
less networks, in Proceedings of Military Communications Conference, MILCOM’03.,
vol. 1, pp. 416–421, IEEE.

[6] Das, A. K., R. J. Marks, M. El-Sharkawi, P. Arabshahi, and A. Gray (2003), Mini-
mum power broadcast trees for wireless networks: integer programming formulations,
in INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer
and Communications. IEEE Societies, vol. 2, pp. 1001–1010, IEEE.

[7] Guo, S., and O. Yang (2003), Minimum-energy broadcast routing in wireless multi-hop
networks, in Proceedings of Performance, Computing, and Communications Conference,
IEEE 2003, pp. 273–280, IEEE.

[8] Guo, S., and O. W. Yang (2007), Energy-aware multicasting in wireless ad hoc net-
works: A survey and discussion, Computer Communications, 30(9), 2129–2148, doi:
10.1016/j.comcom.2007.04.006.

[9] Kang, I., and R. Poovendran (2003), A comparison of power-efficient broadcast routing
algorithms, doi:10.1109/GLOCOM.2003.1258267.

[10] Kang, I., and R. Poovendran (2004), Broadcast with heterogeneous node capability
[wireless ad hoc or sensor networks], in Proceedings of Global Telecommunications Con-
ference, GLOBECOM’04., vol. 6, pp. 4114–4119.

63

[11] Kang, I., and R. Poovendran (2004), Cobra: Center-oriented broadcast routing algo-
rithms for wireless ad hoc networks, Tech. rep., DTIC Document.

[12] Kang, I., and R. Poovendran (2005), Iterated local optimization for minimum energy
broadcast, in Proceedings of Modeling and Optimization in Mobile, Ad Hoc, and Wireless
Networks, WIOPT 2005., pp. 332–341, IEEE.

[13] Kang, I. K. I., and R. Poovendran (2003), A novel power-efficient broadcast routing algo-
rithm exploiting broadcast efficiency, 2003 IEEE 58th Vehicular Technology Conference.
VTC 2003-Fall (IEEE Cat. No.03CH37484), 5, doi:10.1109/VETECF.2003.1286159.

[14] Li, D., X. Jia, and H. Liu (2004), Energy efficient broadcast routing in static ad
hoc wireless networks, IEEE Transactions on Mobile Computing, 3(2), 144–151, doi:
10.1109/TMC.2004.10.

[15] Liang, W. (2002), Constructing minimum-energy broadcast trees in wireless ad hoc
networks, in Proceedings of the 3rd ACM international symposium on Mobile ad hoc
networking & computing, pp. 112–122, ACM.

[16] Luby, M., A. Shokrollahi, M. Watson, T. Stockhammer, and L. Minder (2011), Rap-
torq forward error correction scheme for object delivery (rfc 6330), IETF Request For
Comments.

[17] Montemanni, R., L. M. Gambardella, and A. K. Das (2005), The minimum
power broadcast problem in wireless networks: a simulated annealing approach, in
Wireless Communications and Networking Conference, vol. 4, pp. 2057–2062, doi:
10.1109/WCNC.2005.1424835.

[18] Puducheri, S., J. Kliewer, and T. E. Fuja (2007), The design and performance of dis-
tributed LT codes, IEEE Transactions on Information Theory, 53(10), 3740–3754, doi:
10.1109/TIT.2007.904982.

[19] Shokrollahi, A. (2006), Raptor codes, IEEE Transactions on Information Theory, 52(6),
2551–2567, doi:10.1109/TIT.2006.874390.

[20] Singh, A., and W. N. Bhukya (2011), A hybrid genetic algorithm for the minimum
energy broadcast problem in wireless ad hoc networks, Applied Soft Computing, 11(1),
667–674, doi:10.1016/j.asoc.2009.12.027.

[21] Wieselthier, J. E., G. D. Nguyen, and A. Ephremides (2000), On the construction
of energy-efficient broadcast and multicast trees in wireless networks, in Proceedings
of Nineteenth Annual Joint Conference of the IEEE Computer and Communications
Societies, INFOCOM 2000, vol. 2, pp. 585–594, IEEE.

[22] Wolf, S., and P. Merz (2008), Evolutionary local search for the minimum energy broad-
cast problem, in Evolutionary Computation in Combinatorial Optimization, pp. 61–72,
Springer.

64

[23] Wu, X., X. Wang, and R. Liu (2008), Solving minimum power broadcast problem in
wireless ad-hoc networks using genetic algorithm, in Proceedings of Communication
Networks and Services Research Conference, CNSR 2008., pp. 203–207, IEEE.

[24] Yuan, D. (2005), Computing Optimal or Near-Optimal Trees for Minimum-Energy
Broadcasting in Wireless Networks, in Proceedings of IEEE WiOpt ’05: Model-
ing and Optimization in Mobile, Ad Hoc and Wireless Networks, pp. 223–331, doi:
10.1109/WIOPT.2005.16.

65

VITA

Roya Lotfi received her Bachelor of Engineering degree in Electrical Engineering in

2003 at Azad University, Bushehr, Iran. In August 2012, she joined the Department of

Electrical Engineering at the University of Mississippi as a graduate student emphasizing in

Telecommunications. Her research interest includes reliable file delivery protocols in wireless

networks, optimization of constructing broadcast trees, wireless mesh network and network

programming. Since August 2013, she has been a teaching assistant in control system and

computer network class at the University of Mississippi.

66

	Raptorq-Based Multihop File Broadcast Protocol
	Recommended Citation

	tmp.1561118600.pdf.bDPQS

