
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Masters Theses Dissertations and Theses

December 2020

Network Virtualization and Emulation using Docker, OpenvSwitch Network Virtualization and Emulation using Docker, OpenvSwitch

and Mininet-based Link Emulation and Mininet-based Link Emulation

Narendra Prabhu

Follow this and additional works at: https://scholarworks.umass.edu/masters_theses_2

 Part of the Computer and Systems Architecture Commons, and the Digital Communications and

Networking Commons

Recommended Citation Recommended Citation
Prabhu, Narendra, "Network Virtualization and Emulation using Docker, OpenvSwitch and Mininet-based
Link Emulation" (2020). Masters Theses. 985.
https://scholarworks.umass.edu/masters_theses_2/985

This Open Access Thesis is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/masters_theses_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/masters_theses_2?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F985&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F985&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F985&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F985&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/masters_theses_2/985?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F985&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

NETWORK VIRTUALIZATION AND EMULATION
USING DOCKER, OPENVSWITCH

AND MININET-BASED LINK EMULATION

A Thesis Presented

by

NARENDRA PRABHU

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING

September 2020

Electrical and Computer Engineering

c© Copyright by Narendra Prabhu 2020

All Rights Reserved

NETWORK VIRTUALIZATION AND EMULATION
USING DOCKER, OPENVSWITCH

AND MININET-BASED LINK EMULATION

A Thesis Presented

by

NARENDRA PRABHU

Approved as to style and content by:

Russell Tessier, Chair

Aura Ganz, Member

Tongping Liu, Member

Christopher V. Hollot, Department Chair
Electrical and Computer Engineering

ACKNOWLEDGMENTS

I would like to thank Prof. Russell Tessier for his constant guidance and support

on this thesis. His valuable insights were an integral part of the thesis work. I would

also like to thank Xuzhi Zhang for his help and guidance for the duration of this

thesis. I extend my gratitude to Prof. Aura Ganz and Prof. Tongping Liu for serving

on my thesis committee and providing valuable suggestions. Lastly, my lab members,

George Provelengios and Aiden Gula for providing nitty-gritty technical suggestions

whenever I required.

iv

ABSTRACT

NETWORK VIRTUALIZATION AND EMULATION
USING DOCKER, OPENVSWITCH

AND MININET-BASED LINK EMULATION

SEPTEMBER 2020

NARENDRA PRABHU

B.TECH., NATIONAL INSTITUTE OF TECHNOLOGY GOA

M.S.E.C.E, UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Russell Tessier

With the advent of virtualization and artificial intelligence, research on networked

systems has progressed substantially. As the technology progresses, we expect a boom

in not only the systems research but also in the network of systems domain. It is

paramount that we understand and develop methodologies to connect and commu-

nicate among the plethora of devices and systems that exist today. One such area

is mobile ad-hoc and space communication, which further complicates the task of

networking due to myriad of environmental and physical conditions. Developing and

testing such systems is an important step considering the large investment required

to build such gigantic communication arrangements. We address two important as-

pects of network emulation in this work. We propose a network emulation framework,

which emulates the functioning of a hierarchical software defined network. One such

use-case is described using a mobile ad-hoc network (MANET) topology within a

single system by leveraging contemporary network virtualization technologies. We

v

present various aspects of the network, such as the dynamic communication in the

software domain and provide a novel approach to build upon existing emulation tech-

niques. The second part of the thesis presents a dynamic network link emulator. This

emulator enables suitable link property re-configurations such as bandwidth, delay

and packet loss for networked systems using simulation software. We characterize

the results of tests for the link emulation using a hardware and software testbed.

Through this thesis, we aim to make a small yet crucial contribution to the niche

area of software defined networks.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iv

ABSTRACT . v

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTER

1. INTRODUCTION . 1

1.1 Network Emulation . 1
1.2 Docker Based Emulation . 2
1.3 Dynamic Link Emulation . 2
1.4 Thesis Outline . 3

2. BACKGROUND . 5

2.1 Network Emulation . 5
2.2 Mobile Ad Hoc Network Emulators . 6
2.3 Link Property Reconfiguration for Emulation . 7

3. MOBILE AD-HOC NETWORK EMULATION APPROACH 9

3.1 Introduction . 9
3.2 Design . 9

3.2.1 Components of a MANET . 10
3.2.2 Components of a Mobile Node . 12

3.3 Implementation . 13

3.3.1 Virtualization with Docker . 14
3.3.2 Network Namespaces and Virtual Ethernet Interfaces 15

vii

3.3.3 Open vSwitch . 17
3.3.4 Communication Assistant . 19
3.3.5 Visibility Graph Generator . 20
3.3.6 Command-Line Interface . 20

3.3.6.1 Node-Connectivity Display . 22

3.4 Emulator Operation . 23
3.5 Initial Evaluation . 26
3.6 A Detailed Comparative Study with ContainerNet 32

3.6.1 Overview . 32
3.6.2 Similarities . 32
3.6.3 Differences . 33
3.6.4 Advantages of ContainerNet with respect to NestedNet 33
3.6.5 Drawbacks of ContainerNet with respect to NestedNet 34
3.6.6 MANET topology framework in ContainerNet 35
3.6.7 Experimentation . 35

3.6.7.1 Evaluation Infrastructure . 37
3.6.7.2 Experimental Setup . 37

3.6.8 Results . 38

3.6.8.1 Experiment 1: Intra-node and inter-node
communication performance for a 12-node
network . 38

3.6.8.2 Experiment 2: Background stress test on intra-node
processes . 42

3.6.8.3 Experiment 3: Worst-case evaluation for a 12-node
network . 45

3.6.8.4 Experiment 4: Performance scalability evaluation for
intra-node components . 47

3.6.9 Summary . 50

4. NETWORK LINK DYNAMIC EMULATION TESTBED 52

4.1 Introduction . 52

4.1.1 Bandwidth Limitation . 53
4.1.2 Delay . 54
4.1.3 Packet Loss . 56
4.1.4 Dynamic Parameters . 56

4.2 Mininet-based emulator . 57

viii

4.3 Open vSwitch and Ryu-router . 60
4.4 Linux traffic control (tc) for point link configuration 60
4.5 Hardware Testbed . 63
4.6 Implementation approach . 64

4.6.1 Link Configuration Tool . 68
4.6.2 Dynamic Link Emulation . 70

4.7 Hardware-based Evaluation . 71

4.7.1 Bandwidth Evaluation . 72
4.7.2 Delay Evaluation . 75

4.8 Software Evaluation . 78

4.8.1 Experimental Setup . 79
4.8.2 Parallel Streams . 80
4.8.3 Bidirectional Streams . 83

5. CONCLUSION . 85

5.1 Network Virtualization and Emulation using Docker and Open
vSwitch . 85

5.2 Network Link Dynamic Emulation Testbed . 86

6. FUTURE WORK . 87

6.1 Network Virtualization and Emulation using Docker and Open
vSwitch . 87

6.2 Network Link Dynamic Emulation Testbed . 88

BIBLIOGRAPHY . 90

ix

LIST OF TABLES

Table Page

3.1 System Memory Usage for NestedNet, the Mobile ad-hoc
Emulator . 27

3.2 Bandwidth for Mobile ad-hoc Emulator . 30

3.3 Latency for Mobile ad-hoc Emulator . 31

3.4 Intra-node communication summary . 40

3.5 Inter-node communication summary . 40

3.6 Throughput comparison summary . 46

3.7 Latency comparison summary . 46

3.8 Container Startup Time (seconds) . 50

4.1 Bandwidth of the Link Emulator . 72

4.2 Latency values measured by the Link Emulator . 75

x

LIST OF FIGURES

Figure Page

3.1 Decentralized collection of mobile nodes with multiple direct and
indirect paths . 10

3.2 Framework design of an emulated MANET. 12

3.3 Components of a Mobile Node . 13

3.4 A nested Docker setup for an individual mobile node. 14

3.5 A network stack vantage point for virtual Ethernet devices. 16

3.6 A two-node MANET implemented in the emulator. 18

3.7 An example of visibility updates in a five node cluster. 19

3.8 Command Line Interface to interact with the MANET emulator
(NestedNet). 21

3.9 MANET node connectivity display for twelve nodes after 20
seconds. 22

3.10 Implementation of mobile nodes and the communication assistant
(CA) and their interaction. 23

3.11 An example JSON file for visibility graph. 24

3.12 Time taken for MANET initialization. 29

3.13 Inter-node average bandwidth across nested containers in a single
emulator node . 30

3.14 Framework of the MANET topology implemented with
ContainerNet. 36

3.15 Effects of the stress test on well-behaved process throughput. 44

xi

3.16 Effect of scaling intra-node components in a two-node network. 49

4.1 A link emulator prototype. 53

4.2 Link Emulator Design with Mininet VM, OVS and Ryu-Router 58

4.3 HFSC hierarchical class tree. 61

4.4 HFSC classful configuration for bandwidth. 62

4.5 Hardware Testbed Diagram with an example scenario. 64

4.6 json file example for link emulation. 66

4.7 Workflow for packet based routing in the Mininet VM through OVS
and Ryu-router. 67

4.8 Command line interface used for dynamic link property changes. 70

4.9 Bandwidth (Configured v/s Observed) shown for two clients, C1 and
C2. 73

4.10 Configured Bandwidth v/s Observed Bandwidth and Accuracy. 74

4.11 Delay Configuration(Expected v/s Observed). 76

4.12 Effect of bandwidth variation on observed delay of another client. 77

4.13 A single parallel TCP stream from each client to server working
simultaneously. 81

4.14 Multiple parallel TCP stream from each client to server working
simultaneously. 82

4.15 Single-bidirectional TCP stream from each client to server working
simultaneously. 83

xii

CHAPTER 1

INTRODUCTION

1.1 Network Emulation

The need for network emulation has risen due to the exorbitant costs of real-time

hardware testing and potential system redesigns. Conducting live field experiments

for wireless mobile systems incurs monetary and logistical issues to administer mo-

bile platforms and support equipment, network automation and antennas. Hence,

it is critical to gauge the performance and usability of an application in a software

environment before making changes or additions to a system. Network emulation

is an established technique to test the operation and performance of applications

on a virtual network [1][62]. Mobile ad-hoc networks complicate testing as a result

of time-varying changes in topology and communication channels. A mobile ad-hoc

network (MANET) emulator must accomplish accurate portrayal and assess the ex-

clusive features that a mobile ad-hoc network presents [75]. These features include

smart peer-to-peer communication protocols and frequent link reconfiguration as a

result of geo-positional changes. Unlike simulators, which perform tasks in an ab-

stract manner to manifest the behavior of a network and corresponding components,

an emulator can mimic the behaviour to functionally supplant it [78]. The specific

contribution of this thesis in this area is the design and implementation of two dis-

tinct emulation frameworks. The first accounts for mobile node encapsulation and

reconfigurability of a MANET using Docker [23], a container-based virtualization en-

vironment. The latter emulator addresses link property re-configuration in a network

using Mininet [10], a network simulation environment.

1

1.2 Docker Based Emulation

The design space for network emulation is vast and existing techniques [14][69]

have explored several simulation software implementations to represent complex net-

works. The requirements for a mobile ad-hoc network requires careful consideration

to achieve an accurate implementation [42]. Our aim for this project is to build an

emulator with the capability to run the same software that is embedded in the final

implementation of the digital hardware. Thus, we require a operating system level of

abstraction. In this work, we use Docker-based containers [50] to represent a mobile

node in a MANET and the components it encompasses. The need for Docker is ac-

centuated by the fact that it provides the bare-bones structure with the right amount

of configurability, isolation and easy migratability [11]. Docker enables the rapid de-

ployment of custom environments in containers by abstracting the operating system

(OS). A contribution of this thesis will be to build a network emulator using Docker

containers that leverages the isolation of nested Docker containers to represent the

constituents of a network node. To better evaluate our approach against contempo-

rary emulators, we juxtapose with respect to an existing emulation platform based

on Docker containers, ContainerNet [59]. The design and architecture of a sample

software-defined network (SDN) topology is illustrated using NestedNet and then a

comparative study is charted out with respect to ContainerNet for the same. Contain-

erNet is not designed for nested/hierarchical containers for emulation purposes. This

issue reduces its ability to implement node sub-components. We perform evaluations

and illustrate the advantages and trade-offs of using nested containers in NestedNet

with respect to single-layered ContainerNet.

1.3 Dynamic Link Emulation

Network emulators incorporate a varying amount of standard network attributes

into their designs. The ability to vary link properties is an important feature for any

2

emulator based framework. It is imperative to have provisions to enable dynamic

link configurations for a mobile ad-hoc network that encompasses changeable links.

Herrscher et al. [37] presented an approach to support network configuration using

XML description language-based scenario modelling. This work uses NISTNet [14]

to perform traffic shaping for link reconfiguration.

Some of the most important network attributes for emulation are: round-trip time

across the network (latency), the amount of available bandwidth, a given degree of

packet loss, corruption and modification of packets, and/or the severity of network

jitter. In this thesis, we present a Mininet based framework using OpenvSwitch [28]

and Ryu-Router [16] to implement a dynamic link emulator. This link emulator

is unrelated to the MANET emulator and is developed as a general purpose link

emulator. It is primarily focused on a client-server topology framework. However,

use-cases of such a link emulator may arise in future MANET applications.

In this work, we introduce tunable link characteristics such as bandwidth, de-

lay and packet loss based on the source and destination IP address of nodes. Our

implementation leverages the traffic control capabilities of Linux for a series of links.

1.4 Thesis Outline

The thesis work is divided into two major parts. The first part includes the de-

velopment of an emulation structure using nested Docker containers for hierarchical

software-defined networks. The second part involves the development of a system that

allows for selective dynamic configuration of network link attributes. The document

is organized as follows. Chapter 2 discusses previous related research and associated

background. Chapter 3 describes the design and implementation of the Docker-based

emulator for a mobile ad-hoc network use-case. It also explains the components of a

mobile ad-hoc network, the components of a mobile node and implementation details

of component software. Furthermore, the operating mechanisms and scalability met-

3

rics of the approach are elaborated. Evaluation against a contemporary Docker-based

emulator, ContainerNet, is performed through a series of experiments. The results

corroborate the advantages of the proposed emulator which uses a nested Docker con-

tainer approach. Chapter 4 presents a separate framework for dynamic and selective

configurations of link attributes. A detailed explanation of the parameters that are

considered for the implementation is followed by the description of roles of Mininet,

Open vSwitch and Ryu-router in the implementation. The testbed is used to perform

a system-level evaluation. A software evaluation with more complex data streams is

provided to conclude the chapter. Chapter 5 summarizes findings from both emula-

tion systems and Chapter 6 describes potential directions for future work.

4

CHAPTER 2

BACKGROUND

2.1 Network Emulation

Network emulation has been explored since early 1980’s to aid research and the

teaching of distributed operating systems [4]. However, the emergence of virtualiza-

tion technologies allowed for the possibility of encasing an entire emulated computer

network in a single machine by leveraging virtual machines (VM). Emulation, unlike

simulation [78] which uses abstractions, represents a physical network consisting of

physical devices, applications, and products and services in a realistic, manageable

and mutable platform.

Early emulators, including DummyNet [62] and CORE [1], often used a dedicated

testbed or connections from a system under test to specialized hardware devices.

Initial research was conducted on the emulation of wired networks and, some time

later, wireless networks. The presence of multiple factors such as physical conditions,

environmental variation and link characteristics made wireless network virtualization

and emulation challenging. Noble et al. [56] introduced trace modulation in the

late 1990’s to recreate the end-to-end characteristics of a real-time wireless network.

Machine virtualization technologies, such as VMware [64] and QEMU [6] and oper-

ating system virtualization tools, such as Xen [5] and KVM [35] drove the domain

of network emulation using virtualization. The arrival of Docker [25] [50] provided

a lightweight alternative for VMs without the use of a hypervisor. Recent work has

focused on using Docker containers for emulating wireless networks and distributed

5

ad-hoc communication. To et al. [74] created Dockemu to emulate general-purpose

wired and wireless networks.

Software-defined networks benefited considerably from network emulation research.

Mininet is a popular network emulator used for emulation and prototyping software-

defined networks [17]. Fontes et al. [26] created ”Mininet-Wifi”, an emulator for

wireless OpenFlow/SDN scenarios facilitating high-fidelity experiments to replicate

real networking environments. Another recent effort [59] uses Docker to create an

emulator for network function virtualization (NFV) by extending Mininet.

2.2 Mobile Ad Hoc Network Emulators

An ad-hoc network encompasses arbitrarily-connected devices that communicate

with each other. A MANET is typically characterized by the presence of multiple

mobile hosts connected via direct or indirect links such that each host is capable of

transmitting to all hosts within its transmission range using wireless communication.

Mobile hosts can act as intermediate multi-hop routers establishing indirect links

between incommunicable hosts. This approach allows for the creation of a scenario-

based connected network of mobile hosts in a given deployment area.

Liu et al. [47] outlines the latest developments in vehicular ad-hoc networks

(VANETs) and the state-of-the-art routing protocols used in VANETs. Roh et al. [63]

propose a MANET architecture for an unmanned autonomous maneuver network.

Search and rescue and disaster relief operations [61] are other prominent areas of

MANET deployment. Such areas require quick response and fast establishment of

communications and troop deployments in unknown environments. Macker et al. [48]

provide software support for network node motion modeling.

Given the critical nature of these applications, foolproof testing and evaluation are

required to avoid failures and optimize technology decision-making. A multitude of

unpredictable environmental and physical conditions further complicate the develop-

6

ment and testing of real world systems. Considering the large investment required to

build and modify real-world systems, it is imperative to have a scalable environment

that can emulate functionality accurately and provide performance measurements to

predict the impact of change.

Recent work has produced several testbeds for MANET modelling and testing.

Simulation tools have been used to evaluate implementation scenarios. A network

simulation tool called OMNeT++ [71] was used to test communication software in a

controlled environment. Tuteja et al. [75] utilized the NS2 simulation tool to analyze

different routing protocols for a MANET.

Emulators present synthetic network environments that can be parametrized to

reproduce an original or fictitious network. Sharma et al. [69] juxtapose different

existing emulation techniques and assess their pros and cons. Nordstrom et al. [57]

developed a large scale multi-hop wireless ad-hoc network testbed based on Linux.

They use scripted scenarios implemented through a graphical user interface (GUI)

to coordinate node movements. Suri et al. [73] use CORE and EMANE to emulate

realistic military scenarios. The use of Docker containers has also been explored by

Alvarez et al. [3]. However, this implementation uses the network simulator NS3

with Docker containers for a specific hybrid monitoring algorithm. In this thesis, we

provide a Linux-based emulator framework that can effectively represent a MANET.

We test the system using pre-designed algorithms and support the execution of ap-

plication source code. It enables the testing of hierarchical SDN applications with

environment isolation, including intra-node isolation.

2.3 Link Property Reconfiguration for Emulation

To detect and compare performance measurements of network protocols and appli-

cations, it is necessary to leverage a realistic network environment. Network emulation

techniques offer an extensible and custom approach to replicate network properties.

7

Software defined networks use such environments to study link saturation and ag-

gregation. Previous work in emulation tools focuses on the emulation of network

properties at a single network interface [36]. Beshay et al. [7] emulated networks on

a machine using Linux-based traffic shaping across links to allow for easy experimen-

tation.

Mininet is widely used for link-based simulation. It presents an API for Quality

of Service (QoS) configuration [81]. Lantz et al. [46] used Linux-based network

techniques in Mininet to tune link properties. Ryu, a SDN controller, is usually used in

conjunction with an Open vSwitch in Mininet for software defined network emulation

arrangements. Al-Somaidai et al. [2] studied the effects of different Linux scheduling

algorithms with a Ryu controller, Open vSwitch and Mininet. This thesis leverages

Linux-based network packet scheduling algorithms for link property configuration.

The traffic control (TC) configuration API of Linux OS has been studied for link

manipulation for simulations [41]. The Hierarchical Token Based (HTB) Queuing

Technique [21] and Hierarchical Fair Sequence Curve (HFSC) Queuing Technique [60]

are the most popular scheduling algorithms used by a Linux kernel for QoS-based

resource allocation.

In this thesis, we propose a tool facilitating realistic emulation of network links.

We strive to incorporate a mix of both, real machines and software models on a

full-fledged network using Mininet, Open vSwitch and Ryu. We show how certain

network links can be combined to allow a single point reconfiguration of link properties

using traffic control techniques. Multiple points of reconfiguration can also be made

available, depending on the levels of reconfiguration that are required. Changing link

properties such as those from mobile communications and physical limitations are

modelled. This work can be directly extended to mobile ad-hoc networks which have

dynamically changing properties between links based on geo-location.

8

CHAPTER 3

MOBILE AD-HOC NETWORK EMULATION
APPROACH

3.1 Introduction

The interaction of MANET components leads to a transitional network. More-

over, the presence of heterogeneous nodes requires accurate isolation for each host.

Such complexity requires careful design choices for the development of a realistic em-

ulator. A simulator may not accurately represent the real-time functioning of such

a network, while an emulator can act as a prototype for physical mobile nodes by

leveraging a full OS. Moreover, each MANET node is a complex network node with

different sub-components that form an intra-node environment. Accurately emulating

these intra-node devices, which are real hardware devices is an important aspect to

enable hardware interoperability. In this chapter, an emulation environment that can

support an extensible and robust ad-hoc network is described. A nested architecture

of Docker containers is leveraged to support isolation of the intra-node environment.

Finally, an arbitrarily connected network of mobile hosts with decentralized data and

control flows via direct or indirect inter-node links is presented.

3.2 Design

A MANET emulator is characterized by specific functionalities. All mobile hosts

are configured as quasi-centralized nodes that can support an infusion of periodic

information related to its traffic modes, geographical position and the environment.

Each mobile host should be isolated and encompass parts that represent hardware

9

Ground Station

Mobile Node 3 Mobile Node 2

Mobile Node 5

Mobile Node 7

Mobile Node 6

Mobile Node 1

Mobile Node 4

Figure 3.1. Decentralized collection of mobile nodes with multiple direct and indirect
paths. Mobile Node 1 and Mobile Node 5 can communicate via two indirect paths
indicated with green arrows. The ground station interacts with the nodes.

components. The interconnection and link establishment between hosts must be

performed by a separate entity that is responsible for providing information about

possible links and their characteristics. Software libraries control node mobile trajec-

tories and distribute control data. Our emulator supports the use of user programs

in mobile host nodes.

3.2.1 Components of a MANET

A MANET consists of mobile nodes that interact with each other. An illustration

in Figure 3.1 shows a simple network of six mobile nodes. The network topology

is variable depending upon the respective movement of each individual host. Each

mobile node can communicate with peers via direct links or indirect routes. In Figure

10

3.1, we observe two paths from Mobile Node 1 to Mobile Node 5 (represented by green

paths). A node may use decision algorithms to locate a faster and more efficient route.

The identified path may not be valid over a period of time due to topology changes,

and new route options may be needed. The network may have a ground station that

relays link data. The network is formed when multiple hosts connect to peers subject

to the number of communication devices they possess.

In this work, an initialization phase is used in which all mobile nodes are set

up and made ready to transmit or receive data. A mobile node may then retrieve

information about visible peer nodes and attempt to establish connections with them.

This retrieval may happen via individual scanning or via an agent external to the

network that has a global view of the nodes.

The hosts decide whether to connect to another node based upon resource avail-

ability. A loss of visibility can cause a disconnection between MANET links. This

action causes mobile hosts to try and make new connections with available nodes

via accessible links. Both direct and indirect links may be broken. We illustrate

the framework in Figure 3.2. The Mobile Ad-hoc Emulator contains multiple mobile

nodes with functional units. Each node includes a controller (brain) of the host and

several interfaces to correspond with peer hosts. The communication assistant is an

emulation assistant that has a global view of the network. The assistant contains

visibility information for each host and manages link rearrangement. The transfer of

information occurs between the controller unit of each host and the communication

assistant via an emulator interface. A command line user interface (UI) generates the

network framework and supports emulator changes.

In Section 3.3, our emulator design and its support for MANETs is described.

The representation of nodes and links is provided. Software that performs the role of

the agent with a global network view to dictate link visibility changes is also detailed.

Finally, a test mechanism used to self-heal the network is discussed in Section 3.4.

11

Brain/Controller

Switch

interface

Mobile Ad-hoc Emulator

Command Line UI

Communication Assistant

Interface

interface

Brain/Controller

Switch

interface interface

Brain/Controller

Switch

interface interface
Brain/Controller

Switch

interface interface

Brain/Controller

Switch

interface interface

Brain/Controller

Switch

interface interface

Figure 3.2. Framework design of an emulated MANET. The communication assis-
tant communicates with individual controllers to distribute and retrieve link/visibility
information. A command line UI allows a user to generate and edit emulator param-
eters.

3.2.2 Components of a Mobile Node

Components in mobile nodes can be categorized into two types. A brain/controller

serves as a computational and control hub. Transceivers are endpoints for commu-

nication with other nodes (Figure 3.3). The brain makes decisions for the node,

including storing and distributing routing information, keeping track of available re-

sources, exchanging information with the communication assistant and evaluating the

visibility of other nodes. We call this component the Global Network Access Brain

(GNAB).

The transceivers are called interface physical devices (iPHYs) in this document.

These devices communicate with transceivers on other hosts. The iPHYs take com-

mands from the GNAB and forward data over established links. iPHY types may

12

GNAB

Reciever
/Transmitter

iPHY

Reciever
/Transmitter

iPHY

Reciever
/Transmitter

iPHY

Mobile Node

Figure 3.3. Components of a mobile node. A GNAB (Green) is the computational
hub. iPHYs (orange) are transceivers that interface with send/receive units (iPHYs)
of other mobile nodes.

differ depending on mobile host type and transmission modes. For example, radio fre-

quency (RF) based iPHYs use radio waves to communicate control and data messages

with ground stations. Laser-based iPHYs transfer data between mobile nodes.

3.3 Implementation

Virtualization technology is used to model mobile hosts. Docker containers are

used due to their ability to support OS-level virtualization with fast startup and

lower memory overhead compared to virtual machines. Docker uses containerization

to confine and condense each mobile host into an isolated container. Docker supports

a full Linux OS and has compatibility with a variety of software tools such Python [29],

Open vSwitch and network-tools [19].

The Linux-based Ubuntu 16.04 operating system is used for network building and

container-based tools. It supports in-built virtualization and networking tools, such as

virtual Ethernet (Veth) links [18] and namespacing [20]. It is possible to incorporate

dependencies such as virtual switches, kernel configurations and network utilities into

13

Parent Docker Container

GNAB

Child Docker
Container

Namespace, FileSystem,
Network Stack

iPHY

Child Docker
Container

Namespace,FileSystem,
Network Stack

Internal OpenvSwitch

Mobile Node

iPHY

Child Docker
Container

Namespace,FileSystem,
Network Stack

iPHY

Child Docker
Container

Namespace,FileSystem,
Network Stack

Figure 3.4. A nested Docker setup for an individual mobile node. Each container
has a dedicated OS and network resources.

the Linux OS. The communication assistant collaborates with the GNABs to establish

links. The CA is written in Python 2.7 to simplify communication with the mobile

host containers. A command-line interface implemented with a bash script accepts

user input and starts the emulation.

3.3.1 Virtualization with Docker

Docker helps a user package, deploy and run applications using containers [23].

Containers are widely used to package applications with libraries and dependencies.

An important emulation property is support for compute server migration. Docker

provides capabilities for container building using images that are portable across

platforms. This feature allows for code portability across platforms and emulator

migration to a variety of workstations.

A novel aspect of our work is the implementation of a nested Docker container

setup to isolate each mobile host and its individual components. Docker supports

14

a privileged mode that allows a container to operate as a standalone machine. It

allows for the creation of containers within a Docker container to generate a nested

setup. Such a setup is called a Docker-in-Docker (dind) [22] implementation. This

characteristic is most important for representing large systems with smaller opera-

tional units, as is the case for our mobile host. Figure 3.4 shows a nested Docker

setup with one external parent container representing a mobile node encompassing

several child containers. The child Docker containers are isolated from each other and

serve different functions. One Docker container may serve the role of a GNAB while

multiple containers represent iPHYs. Child containers are connected via an internal

Open vSwitch.

To summarize, Docker ensures that an application and its resources (e.g. file

system and network stack) are segregated in a container that is isolated from other

containers. Thus, each child container that runs a unique application can be rebooted

independently and have distinct root access, users, IP addresses, memory, processes,

files, applications, system libraries and configuration files. This feature allows for

clean application removal and modifications for unique individual components.

3.3.2 Network Namespaces and Virtual Ethernet Interfaces

Namespaces and interfaces represent machines and interconnect during virtual

network construction. To support the execution of multiple applications or services

inside mobile nodes, isolation is essential for security, stability and manageability.

Namespacing tools in Docker allow for the control of workstation resources by each

process.

A Linux system boots up with a process which has an associated ID (i.e. PID 1).

This process is instantiated as the root of a process tree and all the other processes

start below the root. The root process administers tasks by performing maintenance

work and starting daemons and services. A namespace allows the user to spin off a

15

Socket API

Veth	Pair

User Space

 Kernel Space

raw ethernet

Network Stack

vethX

raw ethernet

Network Stack

vethX

Socket API

Figure 3.5. A network stack vantage point for virtual Ethernet devices. Veth devices
behave as a pair of virtual interfaces by presenting an API to the user. The two ends
are connected via the OS network stack in kernel space.

new tree with a specific PID 1 process such that there can be multiple child processes

confined to the namespace. The process that creates this root for a namespace re-

mains in the parent tree of the OS. With namespace isolation, processes in the child

namespace are cognizant of the parent process’s existence. The parent namespace

has knowledge of the processes in the child’s namespace.

A separation of applications and planes of communication between MANET com-

ponents are needed for the emulator. This separation requires a unique network stack

for each component. A network namespace allows each process in a namespace to

interact with an entirely different set of networking interfaces including the loopback

interface. This setup can be achieved with supplementary virtual network interfaces

16

that can interact across namespaces. Ethernet bridges can route packets between

different namespaces to provide a networked ecosystem with isolated and virtualized

machines. Docker provides an interface for these configurations. To establish the

connections between namespaces, virtual Ethernet devices are used. The Veths can

be identified as the virtual version of physical Ethernet cables used to interconnect

physical devices.

Veth devices are constructed in pairs of connected virtual Ethernet interfaces.

The pair acts like a virtual tunnel for network packets, as shown in Figure 3.5. Data

are sent between devices without intervention by the network stack of the OS kernel.

Each end of a Veth pair acts as a standalone network device. A Veth device can be

interpreted as a virtual network interface through the socket API presented to the

user. Veths are used to either interconnect virtual containers or make connections

between containers and virtual bridges (e.g. Open vSwitch).

We use Linux-based Docker containers to construct a virtual network. Each net-

work namespace is used to represent a GNAB, iPHY and other components of a

mobile node.

3.3.3 Open vSwitch

Physical connections between GNABs and iPHYs inside nodes are fixed, prevent-

ing link loss. These connections can support SDN protocols that separate the data

and control planes. When a GNAB wants to send a control message to connect the

node to a remote iPHY in another node, it uses a control plane connection. When

data must be sent to another node, a data plane is needed. A software-controller

switch with packet switching capabilities is needed to provide this capability.

Open vSwitch (OVS) supports a number of features that allow a virtual network

environment to respond and adapt to changing requirements. An OVS aids traffic

forwarding between containers on the same host and on the same physical network.

17

Mobile Node Parent Container

GNAB

Internal
OpenvSwitch

iPHY

Child Docker
Container

Main OpenvSwitch Bridge

Veth Veth Veth

Veth

Veth

VethVeth

iPHY

Child Docker
Container

iPHY

Child Docker
Container

Child Docker Container

Mobile Node Parent Container

Internal
OpenvSwitch

iPHY

Child Docker
Container

Veth

Veth

Veth

VethVeth

iPHY

Child Docker
Container

iPHY

Child Docker
Container

VethVeth

GNAB
Child Docker Container

Figure 3.6. A two node MANET implemented in the emulator. The GNAB and
iPHYs are nested child Docker containers connect via and internal OpenvSwitch.
iPHYs are connected to the main OVS via Veth links.

Open vSwitch source code is written in platform-independent C and can be ported

to many compute environments, including Linux-based virtualization environments.

It is compatible with Docker and several popular SDN controllers such as POX [33],

NOX [53] and Ryu [16].

An OVS can act as a Layer 2 switch for data forwarding. Multiple ports can be

used to connect to the containers. Each iPHY of network nodes is connected to a

Main Open vSwitch bridge via Veth links to individual ports (Figure 3.6). This OVS

maintains a flow table with information about inter-port packet forwarding. This

feature is used to alter the flow table whenever a link is added or deleted between

two nodes. A flow table rule addition (deletion) depicts the gain (loss) of a link. The

flow table is used to forward control or data packets.

As shown in Figure 3.6, an internal OVS is used to interconnect components in

each node. The GNAB and iPHY containers are connected by individual Veth pairs to

an OVS bridge. As shown in Figure 3.4, the GNAB and iPHYs are child containers

18

1 5

3

2 4

1
4

3

2 5
Visibility Update

Visibility Update

1 4

2

3
5Visibility Update

1
2

5

3
4

Figure 3.7. An example of visibility updates in a five node cluster. Each mobile
node needs to reestablish its links.

embedded within a mobile node container. One end of a Veth pair is added as a

port on the bridge while the other end is associated with the network namespace

corresponding to a container.

3.3.4 Communication Assistant

The communication assistant (CA) controls node movement, link loss and com-

munication processes for the emulated MANET. The CA assigns an ID to each node

for identification. This ID is used for node identification and in determining node

visibility. The communication assistant tracks the location and position of each host

in the emulated system. For example, for a satellite system, the position could be the

orbital location.

A mobile node is subject to dynamic positional changes and thus, peer node

visibility may change over time. A change of position may cause a loss of connection

with nearby mobile peers relative to their position. The CA intermittently updates

the visibility information for each node. This information includes a list of IDs of

19

other nodes that could communicate with the node. The CA is a multi-threaded

application implemented in Python 2.7 that uses multiple APIs (REST API [24],

OpenFlow [49]). In our emulation environment, the visibility information is provided

to the CA in a JavaScript Object Notation (JSON) [40] file. The CA parses this file

and sends updates to nodes at pre-specified time steps.

Any link modification by the CA due to mobility changes is reported to the GNABs

in the nodes. The CA maintains a global view of node connectivity and communi-

cation resource (iPHY) availability. If a mobile node desires to connect to another

node, it must make a request to the CA to determine if a connection is possible. The

CA stores visibility information in a global table and is able to check if connectivity

is possible. The CA will respond affirmatively or negatively to the request by the

GNAB. The CA configures the links using the main Open vSwitch Bridge, shown in

Figure 3.6. It communicates directly with the OVS to set up or break port-to-port

connections. A network modification triggers the CA to change the flow table in the

OVS to include any connectivity changes.

3.3.5 Visibility Graph Generator

A visibility graph generator was developed in Python 3 language that can cre-

ate custom JSON files defining the topology over a period of time. Graphs can be

generated for any number of nodes with custom names, position values and time du-

rations. The line of sight (LOS) between nodes is set as true or false by examining

the Euclidean distance between each node. Other approaches for LOS could also be

supported.

3.3.6 Command-Line Interface

Before nodes can be instantiated at the beginning of the emulation, information

about the number of mobile nodes and the number of components within the nodes

during the emulation run is needed. A command line interface (CLI) implemented

20

Figure 3.8. Command line interface for the MANET emulator (NestedNet). The
CLI provides options to add/delete or run emulations. The number of nodes can be
specified to generate a MANET topology.

with a bash shell script takes user defined input to determine the size of the network.

The UI enables a user to build and run user-specific functions within GNABs and

iPHYs. Scripts are also present to delete the emulator, swap new code into the

components and fetch the latest information about connectivity.

A Dockerfile is used to build a custom image that has modules such has Python

3, Docker and Open vSwitch pre-installed. The dind image is used as a baseline.

The Dockerfile is a text document which contains commands that users can call to

assemble an image. This image is used to create the mobile hosts using Docker-

based containerization. A shell-based scripting language based on Linux libraries was

used to implement the UI. Thus, the emulator can be generated on any Linux-based

21

Figure 3.9. MANET node connectivity display for twelve nodes after 20 seconds.

OS. The CLI is shown in Figure 3.8. In the figure, the term NestedNet refers to the

emulator. The CLI constructs the required number of nodes with GNABs and iPHYs,

run simulations for a specified period, and then deletes the emulator.

3.3.6.1 Node-Connectivity Display

A Python 3 script using the matplotlib library was developed to visualize connec-

tions between nodes. The visualization is changed as visibility is updated. The script

extracts current connectivity information from the CA and plots the graph for the

user. An example of the display is shown in Figure 3.9. The image can be rotated

for a three-dimensional view. The figure shows a network of twelve nodes connected

after a 20 second emulation run.

22

iPHY iPHY

Main OpenvSwitch Bridge

Internal OpenvSwitch

Routing/Link
Handling
Algorithm

Tables and
Data Structures

Text

GNAB

Control OpenvSwitch Bridge

Mobile Host

iPHY iPHY

Routing/Link
Handling
Algorithm

GNAB

Mobile Host

Visibility Graphs
(Json File)

Communication
Assistant

Visibility Parser

Link Manager

Global
Connection

Data

SDN controller

Tables and
Data Structures

Internal OpenvSwitch

Figure 3.10. Implementation of mobile nodes, the communication assistant (CA)
and their interaction. GNABs communicate to the CA via a control OVS. The CA
parses the JSON file and maintains visibility and link information in tandem with
the GNABs.

3.4 Emulator Operation

After a successful emulator setup, the testing of custom, user-defined routing

protocols can begin. The CLI starts processes for all GNABs and iPHYs. During

emulator generation, the source code and binaries for applications are copied into

the individual namespace filesystems of the containerized units. Figure 3.10 shows a

system level view of the emulator.

23

Figure 3.11. An example JSON visibility graph file. Visibility to other nodes
represented as Boolean values in the LoS field.

The first component to start is the CA, followed by the nodes. The JSON-based

visibility information for each node is then parsed by the CA using the visibility parser

function. The JSON file includes a timestamp and visibility information for nodes

represented as Boolean values, as illustrated in Figure 3.11. In this example, nodes

with names BIIF-1 and BIIF-2 exist. Each node has visibility to other nodes (LOS

field) for a given timeframe indicated by the Time field. PosX, PosY , PosZ indicate

the geographical position of the node at the given time.

A GNAB polls its iPHYs to receive information about the other components

within its node. Each GNAB then sends a HELLO message to the CA via the control

OpenvSwitch Bridge asking for acknowledgement to join the network. This bridge

interfaces all the GNABs to the CA. The CA replies with a unique ID and IP address

for the GNAB. Once all GNABs have received IPs, the CA sends node visibility in-

formation to the node’s GNAB. The GNAB then receives the visibility information

24

Algorithm 1: Algorithm for handling a link request
Data: Link request with Src Node ID: s, Dst Node ID: d, Src iPHY: p
Result: Create virtual link to connect mobile nodes

1 if iPHY p is not occupied in Node s then
2 if link between Node s and Node d exists then
3 Reply Node s the LINK FAIL
4 else
5 if at least one suitable iPHY m is free in Node d then
6 Create virtual link between s and d
7 Add link information to the link table
8 Reply Node s the LINK OK
9 Inform Node d the LINK OK and the iPHY m is used

10 else
11 Reply Node s the LINK FAIL
12 end

13 end

14 else
15 Disregard current link request
16 end

from the communication assistant and stores it in its local cache, shown in Figure 3.9

as Tables and Data Structures. Based on this visibility and iPHY resource informa-

tion, the GNAB sends requests for links using a Routing/Link Handling Algorithm.

The algorithm allows iPHYs to connect with its visible peers. After the peer-to-peer

mesh network setup, the GNAB broadcasts its ID through the iPHYs and maintains

routing information about the nodes to which it can communicate. The CA continu-

ously monitors received link requests, established connections, and maintains global

connection data.

While the high-level use of the CA to configure connections in the Main Open

vSwitch Bridge was discussed in Section 3.3.4, more details are provided here. If a

GNAB has a free iPHY, it will request a new node-to-node connection. Based on

visibility information, the GNAB will send a link request to the CA to connect with

a remote node. The link allocation algorithm used by the CA is shown in detail in

Algorithm 1. The CA evaluates the request received from the GNAB and adds a flow

to the main Open vSwitch bridge using a simple Linux SDN controller. The addition

25

of the flow signifies an established link between two mobile nodes via two selected

iPHYs. A link is only created if the iPHYs in both nodes are available. The CA then

sends a LINK OK message to the requesting GNAB to confirm the link. The GNAB

adds this link to its routing table and forwards it to its components. In some cases,

the GNAB may request a link, but the CA is unable to install one. In the following

cases it may not be possible to allocate a link:

• A link already exists between the requested mobile nodes via iPHYs.

• The destination node requested the same link and the request is received before

the current request.

• Before the request could be processed, all the iPHYs were occupied in the

destination node.

In such cases, the CA will send a LINK FAIL message to the GNAB, which will

induce the GNAB to try to create another node-to-node connection. This concludes

the network generation phase of the emulator after which data flow may begin.

After a time interval, the CA processes new visibility information from the input

JSON file. If some nodes are no longer visible to each other, the CA deletes their

flows and informs the affected GNABs that they no longer exist. The GNABs may

then request new links based on the updated visibility information.

The period between two consecutive visibility changes and the frequency of the

changes may be controlled via the visibility JSON file. Emulation can be performed

over multiple time periods of minutes or hours.

3.5 Initial Evaluation

In this section, we describe an initial evaluation of our emulation framework. The

emulator is set up in a VirtualBox virtual machine (VM) installed on a 14-core Intel

26

Xeon workstation (2.6 GHz, 128 GB). The VM consists of eight processor cores and

32 GB of memory. The operating system (OS) is Ubuntu 16.04.6 LTS. Each mobile

node is assumed to contain one GNAB, four iPHYs, and an internal Open vSwitch

for internal interconnection in the mobile node. A series of tests were performed to

evaluate the emulator in terms of memory usage, initialization time and performance.

The emulator was initially evaluated for memory requirements. Docker containers

provide a tool Docker stats [38] to display a live stream of container(s) resource

usage statistics. This tool and top [8] were used to diagnose the emulator memory

requirements.

Table 3.1. System Memory Usage for NestedNet, the Mobile ad-hoc Emulator. Each
node contains one GNAB and four iPHYs

System Memory
Emulator Component Steady State (Avg.)
Parent Container 568 KB
Child Container 404 KB
Docker daemon 38 MB
Internal Open vSwitch 76 MB
Main Open vSwitch Bridge 86 MB
Single Mobile Node 128 MB
Four Node Emulator 638 MB

Table 3.1 shows the system memory usage for a test run of the emulator. A four-

node system was created for this evaluation. A Docker container uses about 400-500

KB and an Open vSwitch instance consumes just over 80MB. This is the minimal

memory usage for Docker container execution. Each node-level Docker container is

instantiated with its own Docker daemon which consumes about 38MB of memory.

This result indicates the memory usage for emulating a single mobile node.

• One Docker daemon on the host to create parent (node) container (3̃8MB)

• One parent container (568KB)

• One internal Open vSwitch (76MB)

27

• One Docker daemon inside the parent container (38MB)

• Five child containers (four iPHYs and one GNAB) (404KB each).

Excluding the Docker daemon on the host, close to 128MB are needed to represent

a single mobile node with containers and daemons. A total of 168MB are needed to

represent a one-node emulator including the Docker software running on the host.

These figures can be extended to estimate memory usage for a larger emulator. For

instance, the memory for a four-node emulator may be calculated as follows:

• Four times the memory for a single node (128 MB)

• Memory for the Docker daemon on host (38 MB)

• Memory for the main Open vSwitch bridge (86MB)

The total indicates a memory requirement of 638MB for a four-node emulator.

The initialization of the MANET emulator begins when the communication as-

sistant sends the visibility graph to the GNABs. It then configures the main Open

vSwitch bridge to create direct connections between iPHYs according to the link

requests received from the GNABs. When all iPHYs have been used or all visible

mobile nodes are connected, the GNABs stops sending link requests. Thus, initial-

ization time is defined as the time taken for the creation of all the containers and

Open vSwitches followed by the initial link creation. The emulator initialization time

relative to mobile node count was measured.

Figure 3.12 shows the time in seconds taken by the emulator to complete the

network generation. The number of mobile nodes to be generated is specified via the

Command Line UI. It is seen that the initialization time shows nearly linear growth

with the number of mobile nodes. The primary reason for this trend is the link request

processing time take by the CA. Hence, the time cost is proportional to the number

28

Figure 3.12. Time taken for MANET initialization. The emulator is initialized with
a 6, 12, 16, 24 and 31 nodes separately and the time taken for each initialization is
noted. Nodes contain a GNAB and four iPHYs.

of direct links that must be established. Duplicate link requests and the link requests

that are unable to be established may increase time overhead.

The emulator was evaluated for intra-node and inter-node communication through-

put and latency. Intra-node connections are GNAB-to-iPHY and inter-node connec-

tions are iPHY-to-iPHY across nodes. The tests were conducted using qperf [31] for

a variety of mobile node counts.

Table 3.2 shows inter-node and intra-node throughput for an increasing number of

emulator nodes. The test was conducted to determine the bandwidth between child

containers (GNAB-iPHYs) in the same node and between child containers in different

parent containers (iPHY-iPHY). A single connection per parent (node) was used. A

29

Table 3.2. Bandwidth for Mobile ad-hoc Emulator

No. Nodes Inter-node Bandwidth (Gb/sec) Intra-node Bandwidth (Gb/sec)
6 35.0 34.5
12 34.5 34.4
16 34.7 34.1
24 34.8 34.1
31 34.4 33.8

Figure 3.13. Inter-node average bandwidth across nested containers in a single
emulator node

bandwidth of about 34 Gbps was achieved for both inter-node and intra-node cases.

Packets are sent within a virtual environment using virtual interface devices (Veth)

between containers. Since both types of connections use Veth for communication via

the same kernel space with just one Open vSwitch hop, the performance difference is

negligible.

In Table 3.2, the inter- and intra-node bandwidth remains consistent regardless

of node count. This result implies that increasing the number of containers, i.e.

mobile node count in the emulator setup, does not effect individual link performance.

Rows one and five show that a 6-node emulator and a 31-node emulator both display

30

comparable bandwidth performance of 34 Gbps for both inter and intra-node cases,

indicating scalability.

Figure 3.13 shows the results of an intra-node bandwidth performance test between

a GNAB container and an iPHY container in a single node. We used iperf [55]

to measure the maximum network throughput between the two child containers by

establishing a TCP connection. One container acts as a client while the second

container runs the TCP server. The server uses its default interface to bind itself to a

TCP socket. The client then uses this IP address to send data streams with a default

TCP packet size of 1,500 bytes and a window size of 85KB. The time-stamped report

of the amount of data transferred and the throughput measured between the two

containers is shown in the figure. This test was run for ten seconds with bandwidth

calculated at one second intervals.

Latency values, measured in µs and shown in Table 3.3, were generated with qperf.

Latency was calculated by sending fixed size TCP packets (1,500 bytes) between a

qperf client and server such that the packets bounce off the IP address. The client

qperf daemon then determines the time elapsed for a packet to make the round trip.

Table 3.3. Latency for Mobile ad-hoc Emulator

No. Nodes Inter-node latency (µs) Intra-node latency (µs)
6 30.1 29.3
12 30.3 30.4
16 30.1 29.6
24 30.1 30.5
31 30.0 30.5

From the table, we observe that delay remains almost constant in the range of

30 µseconds for inter and intra-node transit. A typical network delay is measured in

milliseconds. The decreased latency in emulation is a consequence of the software-

only emulation environment in a single host. Since the packets do not traverse across

physical network devices in a physical network, the delay measurement is reduced.

31

The only delay incurred for a packet in the virtual environment is routing through

the kernel space with associated buffer delays and network stack limitations. Node

count increase has a negligible effect on latency for both types of connections.

For deeper insight, a reference baseline is needed to highlight the performance

benefits of NestedNet. In the following section, another Docker-based emulator, Con-

tainerNet, is used for reference and quantitative comparison.

3.6 A Detailed Comparative Study with ContainerNet

In this section, we evaluate our emulator, NestedNet, with respect to Container-

Net. ContainerNet does not support nested/hierarchical Docker containers, reducing

its ability to accurately implement node components. We illustrate the advantages

and trade-offs of using nested containers in NestedNet with respect to single-layered

ContainerNet.

3.6.1 Overview

ContainerNet is a fork of the popular SDN Mininet network emulator that uses

Docker containers as hosts in emulated network topologies. ContainerNet has been

designed for experimentation in cloud computing, fog computing, network function

virtualization (NFV), and multi-access edge computing (MEC). However, due to its

Mininet lineage, it can be used for generic network emulation using Docker contain-

ers with the API. ContainerNet includes virtualization technology that is similar to

NestedNet The similarities and differences between ContainerNet and NestedNet are

as follows:

3.6.2 Similarities

• Use of Docker containers for network nodes.

32

• Leverage Linux features such as network namespaces [20] and Cgroups [15] to

provide isolation.

• Open vSwitch and OpenFlow compatible.

• Veth devices utilized for virtual link emulation and compatibility with Open

vSwitch and controller technology.

3.6.3 Differences

• ContainerNet: Use of single layer Docker containers to emulate network nodes.

NestedNet: Use of nested Docker containers to emulate nodes and node sub-

components.

• ContainerNet: Processes run in each node within the container environment

using container network interfaces.

NestedNet: Processes run in nested child containers with a distinct environment.

• ContainerNet: Cannot directly run native binaries for multiple hardware plat-

forms in the same container (For example, it is not possible to execute binaries

that share the same IP address, MAC address, and TCP port in a node-level

container. They must be in isolated containers).

NestedNet: Each child container in a node has its own set of interfaces. Each

container can run binaries directly and communicate with other processes. Each

child isolates its processes from other containers to avoid memory overwrites

and allow the use of the same resource (i.e TCP port 8080 for example) without

conflicts.

3.6.4 Advantages of ContainerNet with respect to NestedNet

• Fast startup time due to a single layer of containers.

33

• Single Docker daemon and Docker image on the host for all container instances

limits memory usage.

3.6.5 Drawbacks of ContainerNet with respect to NestedNet

• No API available for creating an intra-node environment; Need to use bash

script or commands.

• Processes running in a container share an execution environment. The exe-

cution of multiple processes in the environment that require different versions

of the same library in the same userspace and filesystem can cause conflicts.

LDPATH, a Linux environment variable that points to directories where the

dynamic loader should look for libraries for each process, must be modified for

each process so the proper library can be located. Some libraries cannot be

adapted in this way since the path is hard coded in the executable at compile

time. At the network level, each process must be configured to use separate

ports.

• Multiple processes may compete for the same container resources.

• In NestedNet, an equal share of CPU time can be allotted to each child con-

tainer. This is managed via Cgroups allowing for the fair sharing of CPU and

memory resources.

• In NestedNet, private inter-process communication (IPC) namespaces can be

set up for child Docker containers. A POSIX/SysV IPC namespace provides

for the separation of named shared memory segments, semaphores and message

queues.

• In NestedNet, the PID namespace of each child container allows each sub-

component to have its own init-like process (PID 1), which controls all the

processes within it. This supports container shutdown without affecting other

34

child container operations, similar to hardware implementation. In Container-

Net, a parent container has an init-process. Process shutdown requires knowl-

edge of the process ID. The termination of PID 1 terminates all sub-component

processes.

3.6.6 MANET topology framework in ContainerNet

In this section, the use of ContainerNet to implement an emulation environment

that is similar to the environment shown for NestedNet in Figure 3.6 is detailed.

Figure 3.14 illustrates a MANET topology framework constructed using Contain-

erNet. The GNAB and iPHYs applications run as processes in a ContainerNet host.

Each node is implemented as a Docker container with five processes communicating

using Veth links through an internal Open vSwitch. Each Docker container has its

own namespace. External inter-node (iPHY-to-iPHY) connections use the Main Open

vSwitch Bridge with Veth links. Internal interfaces are created with bash scripts as

the API does not directly support the creation of intra-node links and switches. Like

NestedNet, iperf [55] is used to assess GNAB and iPHY emulator performance.

The CA operates in the same plane as the ContainerNet environment (on the

host) and assists in the setup of the emulator. The Main Open vSwitch Bridge is

controlled by the CA. The bridge is configured to add and delete flows between nodes.

It adds rules to the Main Open vSwitch Bridge to attach two ports when two specific

iPHYs in the network must be connected. If the CA needs to break a link as a result

of a visibility change, it deletes the rule corresponding to the specific link. The CA

reads visibility graph JSON files and perform topology updates based on changes in

visibility.

3.6.7 Experimentation

Experiments were conducted to evaluate the performance of generic per-link band-

width and latency and performance degradation caused due to multi-process interfer-

35

GNAB1

iPHY11

Internal	Open
vSwitch	(s1)

GNAB2

Internal	Open
vSwitch	(s2)

iPHY12 iPHY13 iPHY14 iPHY21 iPHY22 iPHY23 iPHY24

Mobile	Node	Docker	Containers

Main Open vSwitch Bridge

Processes Processes

ContainerNet

Communication
Assistant

ContainerNet
CLI

Figure 3.14. Framework of MANET topology implemented with ContainerNet. The
GNAB and iPHYs run as processes inside a parent (node) container. The GNAB and
iPHY processes share interface, memory and CPU resources with their host node
Docker container.

ence. The iperf (TCP) traffic generator was used to calculate throughput and ping

(ICMP) [52] was used to calculate round trip latency. The main observation points

were intra-node links (GNAB-iPHYs) and inter-node links (iPHYs-iPHYs) between

distinct nodes. Four sets of experiments examined 1) the throughput and latency

of intra-node and inter-node communication, 2) the effect of a network intensive

process on an iPHY to GNAB communication process in a node, 3) the worst case

throughput and latency of intra-node and inter-node communication in a 12-node, 4

iPHY network and, 4) the effect of intra-node component scaling on intra-node link

throughput.

36

3.6.7.1 Evaluation Infrastructure

• System: NestedNet is generated using the UI on a VM running Ubuntu 16.04

with 8GB memory and 4 processor cores. The VM runs on a 14-core Intel Xeon

PowerEdge server (2.6 GHz, 128 GB). ContainerNet is also launched on a VM

with the same CPU and memory resources. The parent containers and VM

host are configured with Open vSwitch version 2.11.1. Docker daemon version

18.09.3 is used. All parent node containers are based on dind, while the child

containers in NestedNet are based on a Ubuntu 16.04 Docker image.

• Topology: The topologies for NestedNet and ContainerNet were generated as

follows:

– NestedNet: A base MANET topology is created in NestedNet using nested

Docker containers, such that each parent container contains 5 child con-

tainers, 1 GNAB and 4 iPHYs. Iperf servers and clients are launched to

evaluate link performance.

– ContainerNet: For ContainerNet, all containers represent nodes and each

container runs multiple processes (iperf server/clients connected via Veth

interfaces) representing GNAB and iPHYs.

We considered assigning pre-defined equal CPU shares to each parent container

to obtain a fair division of resources. However, this effort caused severe degra-

dation of throughput and latency results for both emulators. All experiments

described subsequently do not include pre-defined CPU shares for the Docker

containers.

3.6.7.2 Experimental Setup

• NestedNet: Each container has a set of interfaces belonging to two local net-

works. One is the intra-node network for iPHY-GNAB communication (192.168.0.x),

37

the other is the network through which all iPHYs are connected via the Main

Open vSwitch Bridge (192.168.2.x). For intra-node communication, an iperf

server is executed on the GNAB container allowing all iPHYs within the node

to connect as iperf clients. For the inter-node link test, one iPHY runs the

iperf server and the other executes the iperf client. For latency evaluation,

there is no need for a client-server relationship. Round-trip time is measured

using an ICMP echo with ping.

• ContainerNet: The ContainerNet topology is created using an API [58]. Veth

interfaces in the container are not assigned to a specific namespace. An IP

address within a container cannot be repeated and thus each iPHY in the net-

work is assigned different IP addresses to enable inter-node link evaluation. A

bash script is used to create a local network that is distinct from the external

network using pairs of Veth links. One end of a Veth link is added as a port on

the Internal OVS while the other has an IP address of a local LAN and remains

open for process binding. For experimentation, an iperf server or client can

bind to an interface for intra-node and inter-node communication.

3.6.8 Results

3.6.8.1 Experiment 1: Intra-node and inter-node communication perfor-

mance for a 12-node network

In series of tests, the throughput and latency of NestedNet and ContainerNet are

compared. Intra-node and inter-node communication is evaluated by observing intra-

node iPHY-GNAB connections and inter-node iPHY-iPHY connections. Performance

results are obtained for one, two and four simultaneous network connections for both

emulators.

• Setup:

38

A 12-node network with 4 iPHYs each is used for this experiment. Each intra-

node link is a iPHY-GNAB link which consists of a pair of Veth interfaces,

interconnected via the internal Open vSwitch. One end of each interface acts as

an OVS port, while the other is bound to a process. For inter-node links, iPHYs

from two distinct parent containers (nodes) are connected via Veth interfaces,

interconnected via the Main Open vSwitch Bridge. Only a single iPHY-to-iPHY

connection exists between any two nodes.

• Experiment:

Bash scripts were used to run the tests in both emulators. A single test entails

the transfer of a continuous data stream (TCP or ICMP) between the selected

components for a given amount of time. A total of 100 tests of 60 seconds each

were conducted to evaluate throughput and delay. For inter-node communica-

tion, one of the two iPHYs is randomly selected as an iperf server to establish

connectivity. Each connection sends continuous TCP data stream of 1,500 bytes

packet for 60 seconds at the maximum bandwidth available. Inter-iPHY data

transfer is established when the iperf server and client are run. Data is sent

unidirectionally from one iPHY to another in the experiments. Latency was

calculated using ping which echoes ICMP packets towards a given IP address

for 60 seconds. For intra-node tests, packets were sent from iPHY to GNAB,

while for inter-node tests, one of the iPHYs sends data to the remote iPHY.

– Intra-node communication: For an intra-node connection, the bash script

selects a random node and an iPHY within it. The iperf server and client

establish a link to the GNAB. For two intra-node connections, a different

node than the one from the previous test is selected and two iPHYs in the

node are selected. Two iperf clients are connected to the GNAB iperf

server for simultaneously data transfer. For the four-connection tests, four

39

Table 3.4. Intra-node communication summary

Intra-Node Metrics (iPHY-GNAB connection) ContainerNet NestedNet
Avg. Throughput for 1 connection 30.36 Gbps 31.76 Gbps
Avg. Latency for 1 connection 0.056 ms 0.075 ms
Avg. Throughput for 2 connections 27.46 Gbps 26.29 Gbps
Avg. Latency for 2 connections 0.053 ms 0.072 ms
Avg. Throughput for 4 connections 17.57 Gbps 19.58 Gbps
Avg. Latency for 4 connections 0.052 ms 0.072 ms

Table 3.5. Inter-node communication summary

Intra-Node Metrics (iPHY-iPHY connection) ContainerNet NestedNet
Avg. Throughput for 1 connection 26.92 Gbps 32.05 Gbps
Avg. Latency for 1 connection 0.082 ms 0.080 ms
Avg. Throughput for 2 connections 24.11 Gbps 25.42 Gbps
Avg. Latency for 2 connections 0.075 ms 0.074 ms
Avg. Throughput for 4 connections 14.19 Gbps 15.74 Gbps
Avg. Latency for 4 connections 0.074 ms 0.073 ms

iPHYs are selected and links created in a similar fashion. Experimental

results over 100 tests are shown in Table 3.4.

– Inter-node communication: For a single link inter-node communication,

the bash script selects one random iPHY in each of two random nodes and

runs the iperf test for 60 seconds. For the two node connection test, one

iPHY is selected in each of four random nodes. Two iPHYs in separate

nodes run the iperf server while the other two run the iperf client, thus

creating two distinct inter-node connections. To create four inter-node

connections, eight nodes are randomly chosen. Four nodes have an iperf

server and four have iperf clients. Not more than one connection exists

between two nodes. The results of the inter-node experiments are shown

in Table 3.5. Every test selects a new random set of nodes and iPHYs to

allow for a distribution of samples.

• Discussion:

40

– Intra-node communication: In Table 3.4, it is observed that the intra-node

bandwidth of NestedNet is comparable to that of ContainerNet for all

three sets of experiments. The latency is about 20µs higher in Nested-

Net, however this is due to the multiple layers of containers that requires

packet processing in the child container, the parent container stack and the

destination child container stacks. Increasing the number of network con-

nections communicating simultaneously increases the network processing

time in the container network stacks and the CPU and memory usage of

the underlying virtualized OS kernel. This effect causes the per-link band-

width to drop with an increase in the number of intra-node connections.

– Inter-node communication: In Table 3.5, the inter-node throughput of

NestedNet is slightly better than that of ContainerNet for all three experi-

ments. NestedNet has a higher throughput for a single link, as each process

is encapsulated by a container and thus can share the parent network stack

evenly, as compared to ContainerNet. This effect can be explained as fol-

lows: The VMs of both emulators are allotted four CPU cores, where each

core represents 100% CPU. The Docker stats command indicates the usage

of each container with respect to total available CPU i.e. 400%. It was ob-

served that while running the iperf server and client in ContainerNet, the

node with the client used 120% of 400% CPU, while the server used only

80%. Meanwhile, in NestedNet, the client used 118%, while the server used

104%. This unevenness in ContainerNet caused the server to react more

slowly causing TCP re-transmission and delayed acknowledgement pack-

ets. NestedNet provides better resource sharing. Thus, both client and

server can match each other to provide lower packet loss, re-transmissions

and packet duplication. To validate our findings, CPU restrictions were

added to all parent containers (33% usage per parent container for 12 nodes

41

out of 400% of available CPU). It was observed that both NestedNet and

ContainerNet supported similar bandwidth (1 Gbps).

The latency for NestedNet is comparable for all sets of experiments. For

inter-node communication, the ICMP packets in ContainerNet must cross

different container network stacks via the Main Open vSwitch and thus

similar latency is seen. Similar to intra-node connections, increasing the

number of connections simultaneously in the network worsens the network

processing and CPU and memory usage leading to packets getting delayed

and backlogged. Per-link throughput drops to 15Gbps in both the emula-

tors as we increase the number of connections in the network.

3.6.8.2 Experiment 2: Background stress test on intra-node processes

In this experiment, the benefits of isolating node components in containers is

explored via an intensive network test. A network intensive background process

(misbehaving process) is executed in a node to consume resources and affect other

iPHY and GNAB processes. The misbehaving process bombards the network stack

and increases system load. It occupies the network bandwidth/network stack and

increases the CPU/memory usage of the container, thus degrading the performance of

other executing processes. An iperf client that generates concurrent 120 TCP threads

is used to represent the misbehaving process. The loopback interface, a dummy Linux

interface that bounces packets off to imitate sending/receiving packets by a intra-node

component is used. This interface exists in the same container as the misbehaving

process. For testing, a standard intra-node link is established as a baseline and the

effects of the misbehaving process are observed. An iperf client sends 1,500 bytes of

TCP data to an iperf server using a single thread to form the “well-behaved” process.

Linux processes are scheduled to run using prioritized round robin scheduling. In the

case of TCP-based iperf processes, slight delays at the data receive/send queues

42

cause the scheduler to temporarily preempt a process. For instance, if the time slice

for a process receiving data ends before the receiving buffer’s lock is released, the

lock will remain until the next time slice is allocated to the process. The time when

the process resumes execution is directly dependent on system load. The misbehaved

process increases the system load by introducing multiple parallel TCP streams. The

introduction of such a process should not have an effect on the behavior of isolated

containers. If the process is enclosed in a child container it does not share locked

resources.

We define the performance degradation of the well-behaved process in regards

to the misbehaving process using the following metric. Degradation D is defined

as D = (T1-T2/T1), where T1 is the throughput of the well-behaved process before

introducing the misbehaving process and T2 is the throughput when the misbehaving

process is running.

• Setup:

– ContainerNet: The misbehaving process executes in the same container as

the well-behaved process.

– NestedNet: The misbehaving process is in one child container while the

well-behaved process executes in a different child container.

• Experiment:

Experiments for ContainerNet and NestedNet were conducted for a period of

40 seconds such that the misbehaving process starts at the 10 second point

and ends at the 20 second point, as shown in Figure 3.15. The effect on the

throughput of the well-behaved process is observed.

• Discussion:

43

Figure 3.15. Effects of stress test on the well-behaved process throughput. The
misbehaving process executes from 10s to 20s. A large throughput drop is observed
for the well-behaved process in ContainerNet (98%) versus NestedNet (72%).

– ContainerNet: In Figure 3.15, a significant throughput drop of 30Gbps to

500Mbps is observed in ContainerNet, i.e. D = 98%. The well-behaved

process executes in the same environment (parent container) as the mis-

behaving process. They share the same IPC namespace, interfaces and

network stack. Delays in process scheduling due to irregular CPU sharing

between processes can occur, as observed in Experiment 1. This effect

may cause packet processing delays due to higher system load exerted

by the misbehaving process. Concurrent bombardment of packets by the

multi-threaded process further complicates timely packet processing of the

well-behaved process by the network stack of the parent container.

– NestedNet: In Figure 3.15, a throughput drop from 30Gbps to 8Gbps is

observed in NestedNet, i.e. D = 72%. The processes execute in distinct

child containers with dedicated network stacks, interfaces and namespaces.

The containers enable fairer CPU and memory sharing amongst the pro-

44

cesses such that the well-behaved process can send and receive packets in

a timely manner. The 72% drop can be attributed to the load on the

underlying virtualized kernel OS of the parent container and the host.

To summarize, degradation for the emulators are: ContainerNet: D =

98% ; NestedNet: D = 72%. This amounts to 26.5% lower degradation in

NestedNet.

3.6.8.3 Experiment 3: Worst-case evaluation for a 12-node network

In this experiment, a 12-node MANET environment is evaluated under the con-

dition that all inter-node and intra-node links are occupied simultaneously. This

provides a worst-case estimation for the link bandwidth and latency of the emulator.

Unlike Experiment 1, multiple inter-node connections are created between the same

nodes and all inter- and intra-node communication occurs concurrently.

• Setup:

A 12-node network with four iPHYs and a GNAB in each node is used. The

intra-node and inter-node connections are established as described in Experi-

ment 1. Intra-node and inter-node communications are evaluated by observing

intra-node iPHY-GNAB connections and inter-node iPHY-iPHY connections,

respectively. For inter-node connections, the Main Open vSwitch Bridge is con-

figured to connect all iPHYs from a node to the iPHYs of another node.

• Experiment:

An experiment consisted of two tests, one for throughput evaluation using an

iperf server and clients and one for latency using ping. A test entails con-

tinuous data transfer (TCP or ICMP) between all intra-node and inter-node

components for a period of 90 seconds. For inter-node connections, the iPHYs

in even-numbered nodes were chosen to run the iperf server and the ones in

45

Table 3.6. Throughput comparison summary

Metric (Mbps) Containernet NestedNet
Avg. intra-node throughput 1383.99 861.01
Stdev. of intra-node throughput 87.75 164.99

Avg. inter-node throughput 1827.92 1340.24
Stdev. of inter-node throughput 250.97 324.68

Table 3.7. Latency comparison summary

Metric (ms) Containernet NestedNet
Avg. intra-node latency 0.042 0.091
Stdev. of intra-node latency 0.007 0.006

Avg. inter-node latency 0.081 0.090
Stdev. of inter-node latency 0.020 0.007

odd-numbered nodes execute the client. The data flow occurs as described in

Experiment 1 for inter-node and intra-node components. A total of 100 tests

were conducted to create a performance distribution. The average and standard

deviation of both metrics were computed. The containers were set up without

any specified CPU and memory sharing as that approach would significantly

degrade the available throughput. Docker can effectively isolate and share re-

sources among the containers. ContainerNet is at a disadvantage due to the

absence of nested child containers.

• Discussion:

Throughput and latency results of the experiment are charted in Table 3.6 and

Table 3.7, respectively.

– Throughput: In Table 3.6, it is observed that average throughput per

intra- and inter-node link is better in ContainerNet than NestedNet. Nest-

edNet’s extra container layers exacerbates packet processing time. More-

over, running 72 iperf connections simultaneously (48 internal links and

24 external links) significantly increases CPU and memory load on the par-

ent containers. The CPU/memory scarcity can cause network performance

46

degradation resulting in lower throughput and higher standard deviation

due to the more difficult allocation of resources.

– Latency: The worst case latency per link is comparable in both emulators

(Table 3.7). NestedNet’s multiple layers can cause a delay of about 50µs

more than ContainerNet. A ping application occupies much less of the

CPU (0.06%) than an iperf (7%) application. Thus, the system load

from executing 72 connections is much lower. The inter-node links show a

slightly higher deviation than NestedNet.

In ContainerNet, a parent container executes four intra-node and four

inter-node ping processes at the same time, sharing the same network

stack. Thus, packets may wait until the memory resource is allocated to

the process to send a ICMP packet or a reply. A busy CPU attending to

other packets can cause this reply to be delayed, or even lost. Isolating the

processes in child containers mitigates this issue. An iPHY running in a

child container can better manage two processes (one intra-node and one

inter-node) to receive and send packets as it always has its share of CPU

and memory.

3.6.8.4 Experiment 4: Performance scalability evaluation for intra-node

components

In this experiment, internal processes in a two-node environment are scaled to

observe the effect on the throughput of intra-node links. The use of more than five

nested containers is considered. This experiment examines framework limits and

quantifies the performance of nodes with a large number of internal components.

• Setup:

47

The MANET topology is regenerated for each experiment with an increasing

number of iPHYs per node, ranging from two to twenty-five. The test and

observation points are iPHY to GNAB links.

• Experiment:

For a given number of iPHYs per node, a total of 100 tests with TCP streams

running for 90 seconds were conducted. Each test entails iperf clients (iPHYs)

sending constant TCP data of 1,500 bytes to the GNAB iperf server. The

throughput was averaged over all the iPHYs per node. The standard deviation

obtained signifies the variation in throughput amongst the intra-node links. For

each subsequent experiment, the emulator was deleted and reconstructed with

an increment of 5 iPHYs per node.

• Results:

The effect of scaling on the GNAB-iPHY link throughput is shown in Figure

3.16. The green and blue graphs indicate the average link throughput per node

for ContainerNet and NestedNet for a intra-node. The red and black graphs

show the increase in standard deviation of throughput per node as a percentage

of the average. Each point is averaged over 100 trials.

• Discussion:

– ContainerNet: In Figure 3.16, it is observed that increasing the number of

iPHYs significantly drops the throughput per intra-node link. The iPHYs

and GNAB processes execute in the parent container resulting in network

processing delays and affecting the throughput. The deviation of through-

put increases by 5% to 13%, i.e. each link may fluctuate 5-13% from the

average throughput. This can be attributed to the processes competing

for the CPU and network resources to cause difficult allocation. As seen in

48

Effect of Scaling on Throughput

25
--+- ContainerNet B/W deviation

-.- NestedNet B/W deviation

--+-- ContainerNet B/W 14

V) 20
Q.
.D
l'.)
-

...., 15

Q.
.c

Ol
:::::i 10
0
......

.c

t-

s

....... NestedNet B/W_

12

8 §
......
cu

6 >
Q)

0

4

2

0-'---�--�---�--�------.--------'-0
10 15 20 25

No. of iPHYs per Node

Figure 3.16. Effect of scaling intra-node components in a two-node network. The
average GNAB-iPHY throughput per node and corresponding percentage deviation
from average with increasing number of iPHYs per node.

Experiment 1, each client (process) may receive intermittent access to CPU

resources, resulting in a delay in transmission/re-transmission. Moreover,

the GNAB server, also present in the same environment, may encounter

delays in sending acknowledgment due to the lack of CPU time consumed

by the clients. This may lead to TCP re-transmission, duplicate packets

and packet loss.

– NestedNet: NestedNet shows a similar drop in intra-node throughput. In-

creasing TCP application usage increases overall system load, stressing

the underlying kernel of the parent and the host. However, this issue can

be alleviated with more hardware resources such as CPU/memory and is

not limited by the emulator function. The deviation of link throughput

is less in NestedNet, varying from 3% for 1 iPHY per node to 8% for 25

iPHYs per node. Thus, each intra-node connection can maintain a more

49

stable throughput. Fair division of CPU shares amongst iPHY containers

during execution mitigates the problem of a haphazard allocation of re-

sources between processes. Hence, each iPHY iperf process is more likely

to transmit and receive packets in a timely manner. Similarly, the GNAB

iperf server can send acknowledgements to all connected clients.

3.6.9 Summary

• The advantages of NestedNet can be summarized as follows:

The isolation provided by NestedNet can provide more stability for intra-node

processing. A misbehaving process can cause performance degradation of 98%

in a well-behaved link of ContainerNet versus 72% in NestedNet. Scaling the

number of internal process is less disruptive for intra-node throughput in Nest-

edNet, with a deviation of up to 8% as opposed to 13% in ContainerNet. Nest-

edNet represents better management of intra-node process due to the modular,

hierarchical design such that network resources can be reused in same network

node by different processes.

Table 3.8. Container Startup Time (seconds)

Nodes iPHYs Containernet NestedNet
12 4 28s 98s
2 25 9s 93s

• The drawbacks of NestedNet against ContainerNet can be summarized as fol-

lows:

The start-up time for NestedNet is significantly higher (Table 3.8) than Con-

tainerNet. A 12-node environment with five sub-components (Four iPHYs and

one GNAB) needs over a minute and a half to build. The primary overhead

is related to the child container image loading and creation. Increasing the

sub-components does not add significant overhead.

50

CPU usage and memory usage of bare nested containers in NestedNet is more

than in ContainerNet. An idle NestedNet node needs 0.8% CPU and 128MiB

memory, while a ContainerNet node uses 0.15% CPU and 48MiB memory. This

is due to multiple nested daemons (Docker and Open vSwitch) that are required

to instantiate child containers. As a single process, ContainerNet requires only

one Docker daemon per host and an Open vSwitch inside each container. Thus,

there is no overhead of creating an additional Docker daemon for child contain-

ers.

51

CHAPTER 4

NETWORK LINK DYNAMIC EMULATION TESTBED

4.1 Introduction

Emulation methodologies have evolved to an extent where platform-building and

application execution are not enough. Real-time distributed systems place significant

demands on a network [13]. Moreover, the introduction of new algorithms and proto-

cols exacerbate the need to provide real-time quality of service (QoS) configurations

[80].

Network emulation should provide a means to evaluate non-functional properties

of implemented protocols. However, it is challenging to emulate networked systems

accurately, especially wireless networks subject to many parameters that affect the

behaviour of a channel/link [9]. This behaviour necessitates that the emulation tool

provide a way to introduce network impairments such as bandwidth limitation, delay

and packet loss according to a user-defined model to test the protocols and applica-

tions properly.

This chapter describes the design and evaluation of a network emulator testbed,

using technologies [2][81] that can provide an interface to alter link properties. Linux

based algorithms [21][41][60] are used to change link properties using user-defined

input. As shown in Figure 4.1, the emulator resides between two routers or hosts

of a network to provide parameter throttling for several links at the same time. A

hardware and software testbed is presented that is used to validate the performance

of this emulator.

52

Link Emulator

Network Component

End Host
/Router/Repeater

Network Component

End Host
/Router/Repeater

Figure 4.1. A link emulator prototype. An emulator may function as an inter-
mediary node between two network components such as a repeater, router or end
host.

4.1.1 Bandwidth Limitation

An important property of a network link or a connection is the maximum band-

width it can support. A point-to-point connection between two hosts may have several

segments of links stacked end-to-end. A bandwidth constraint at one segment can

thus inhibit the entire link [32].

53

A prominent approach uses a leaky bucket algorithm [37] to limit bandwidth. A

leaky bucket controls outgoing traffic to the specified bandwidth by storing the surplus

traffic in a FIFO queue. When the queue is full, incoming packets are dropped. Linux

maintains traffic shapers that use packet dropping algorithms. A well-known shaper

is the Token Bucket Filter (TBF) [12]. TBF slows down packets to a specific rate

and accepts a limit option indicating the maximum number of packets to queue.

However, such leaky bucket options are not an ideal active queue management option

even though they are fast. The biggest disadvantage is that being a ”classless” shaper,

it cannot prioritize one TCP stream over another.

Hierarchical Token Bucket (HTB) [45] improves on this approach by allowing the

filtering of specific traffic to prioritized queues. However, unlike TBF, HTB doesn’t

allow queue length specification. This issue causes HTB to slow packets rather than

to drop them which can have implications on the delay.

Another Linux algorithm which is prominently used to limit bandwidth is HFSC

(Hierarchical Fair Service Curve [72]). HFSC allows classification of traffic like HTB

without the disadvantage of dropping packets. HFSC uses filters provided by the

Linux traffic control API (tc) to decide packet class.

Two-way link bandwidth can be regulated on a per-direction basis or using com-

mon bandwidth limitations. Bandwidth might also be shared by all participants of

a multi-point connection. Bandwidth limitations are primarily set to bits/second or

bytes/second.

4.1.2 Delay

In a network, packet delay between two connected hosts is comprised of diverse

components such as: propagation delay, medium access delay, and queuing delay [82].

The propagation delay is characterized by the type and length of the propagation

media. It may also include delays introduced by network components that are on

54

link segments such as repeaters. A static system will have a constant propagation

delay. Moreover, for a wireless network, the delay may vary with positional changes.

The emulation tool must support these changes.

Our emulation approach involves setting link delay properties that are an aggrega-

tion of all delays over the link. This action can be performed using point configuration

in which a single point/interface to be regulated is chosen for the complete link. Ide-

ally, a point close to the destination is selected. Point selection can be determined by

the user. Multiple points can also be considered. However, this choice may introduce

the overhead of maintaining consistent parameter values on the link interfaces.

Linux provides an API in the form of a scheduler to configure interface latency.

NetEm is a network emulator included in the Linux kernel [36]. It provides emulation

functionality to test protocols and applications by presenting an API to emulate

network properties such as packet loss, duplication and packet corruption. NetEm

consists of a queuing discipline known as “qdisc” [27]. It has been integrated as a

part of the Linux kernel since version 2.6.8. The delay parameters for a link can

be described using an average value (µ), a standard deviation (σ), and correlation

(ρ). NetEm allows for the specification of a given average time for packet delay. It

also allows for a random variation in average time delay with a correlation in %. An

example of such a configuration is:

tc qdisc add dev eth0 root netem delay 10ms 5ms 10%

where the constant delay is 10ms, 5ms is variation σ and 10% is the correlation ρ.

NetEm uses a uniform distribution (µ +/− σ) by default. A qdisc may be classless

or classful. Classful qdiscs contain classes and provide a handle to identify a class.

Handles can then be used to attach filters for packet-based QoS configuration. In our

approach, classful qdiscs are used since they allow for addition of bandwidth, and de-

lay and packet loss configuration simultaneously. Delays are described in milliseconds

(ms) in the network domain.

55

4.1.3 Packet Loss

A tunable packet loss parameter is required for specific applications. There are two

main reasons for packet loss: packets are dropped as a consequence of link congestion

or impaired due to transmission errors [44]. The bandwidth limitation approach

mentioned in the previous subsection drops surplus packets in the case of congestion

in the emulated link. Thus packet loss in our approach primarily signifies transmission

errors. Packet loss is described in percentage (%) of packets received. Such errors are

introduced in wired and wireless links. Wireless links typically have greater packet

loss that must be modeled [67]. Packet loss is defined in terms of probability, usually

as a single loss probability value in a model [66]. In this work, a simplistic emulation

model is assumed that can be characterized by a single value of packet loss. NetEm

emulates packet loss by randomly dropping the specified percentage of packets before

they are queued [36]. The model manipulates loss probability over different link

interfaces along with (if the scenario requires it) a loss correlation. However, a realistic

emulation model should provide a more flexible approach.

4.1.4 Dynamic Parameters

Network properties, including those mentioned above, propagation delay and

round trip time (RTT), must be accurately modeled in an emulation platform. RTT

delay can determine system performance for networked systems [77]. Bandwidth lim-

itations may be a consequence of protocols and applications. Bandwidth allocation

in server systems [51], link aggregations [34] and adaptive bandwidth in 802.11 proto-

cols [79] are some of examples where bandwidth throttling may be necessary. Packet

loss determination inherently requires a dynamic model that can be parameterised

with a mean probability and correlation. The model itself may change over time

depending on physical conditions, especially for wireless networks. Therefore, a real-

56

istic emulation model must support both fixed values and dynamic models of these

parameters.

4.2 Mininet-based emulator

Mininet [10] is a popular simulation software that brings together several network

tools such as namespacing [20], Veth [18] and Open Flow [49] to build custom network

models. It allows parameter tuning on physical interfaces. However, the use of

virtual interfaces is a much cleaner approach. Mininet is used to generate our custom

software environment, with support from Python [29] and Open vSwitch (OVS) to

allow smooth migration and deployment.

Mininet presents different API levels to create a custom network with abstract

processes as hosts and Veth links as cables. It supports virtual switches such as Linux

Switch [76] and Open vSwitch. In this work, the lower level API is used to generate an

environment with an Open vSwitch bridge which provides a platform to configure link

parameters. Mininet and Open vSwitch both support traffic control APIs for qdiscs

and NetEm. However, performing dynamic link reconfiguration using the Mininet

API is not straightforward and requires modification of the virtual platform.

The Mininet-based emulator uses the “Mininet-VM” virtual machine (VM) pro-

vided by its developers. The VM can be run on Oracle VirtualBox to construct a

custom environment on any host. For a simple link emulator integrated with a hard-

ware testbed, a single Open vSwitch that connects the two network ends is sufficient.

For testing purposes, the emulator is used to test a simple network, i.e. a client-server

topology. The topology consists of several clients connected to a server via multiple

links, each of which has unique characteristics. The link emulator sits between the

router connecting the clients and the server, establishes the links and throttles link

parameters of each link separately based on source and destination Layer-3 addresses.

57

OVS

Ryu SDN
Controller

MiniNet
VM

Server

c1 c2
Clients

EdgeRouter

Link
Configurator

Interface

Interface

Figure 4.2. Link Emulator Design with Mininet VM, OVS and Ryu-Router. The
Mininet VM acts as an intermediary between the physical router (EdgeRouter) and
the server workstation.

In our experimentation, the VM is deployed on a Dell Optiplex 7010 machine

with two physical interfaces (1G network interface cards). One physical interface of

the workstation is connected to one end of the network (client side) and the other

physical interface is connected to the server side. The design uses an Open VSwitch

as an intermediary black-box that can steer/modify/parameterize traffic that passes

through it. The goal is to perform QoS throttling in the black-box.

Figure 4.2 illustrates an abstract view of the emulator and its position as a black-

box between the EdgeRouter-X [54] and the server. The EdgeRouter-X is a general

purpose physical router that can forward packets from the clients to the workstation

running the VM. The addition of the emulator between the two network points is

performed by configuring the OVS such that the two interfaces on the host machine

58

are used as bridged adapters to the Mininet-VM. A bridged adapter is a part of

VirtualBox ”Bridged Networking” mode wherein it exposes the guest machine to the

local network. This is achieved by creating two virtual interfaces that reside in the

same sub-network as the physical network. Oracle VM VirtualBox can thus connect

to one of the installed NICs and exchanges network packets directly, circumventing

the host operating system’s network stack.

The virtual interfaces in the VM are configured as ports on the Open vSwitch,

allowing the OVS to be used as a nexthop point for traffic that traverses paths between

the client and server. The presence of the Open vSwitch is not enough to route traffic

via the emulator VM. The client side interface is typically connected to a physical

router (EdgeRouter) which has multiple clients on other interfaces. The clients may

belong to different sub-networks raising the need for routing software to modulate

the OVS.

The Open vSwitch resides in the Mininet-VM and can act like a router to connect

two ends of a network while simultaneously performing link property tuning. The

Open vSwitch is inherently an L2 switch. To enable the SDN capabilities of the

OVS, an SDN controller is necessary to process the packets. Ryu [65] is a remote

SDN controller developed in Python that is used in conjunction with Open vSwitch

to enable packet level filtering.

Ryu presents a general purpose API for custom application design as per user

requirements. However, for a client-server scenario, a basic router is sufficient to

effectively route packets from the various sub-nets of clients to the server. Ryu-Rest-

Router [16] is a pre-designed application that presents a REST-API based interface

with a fully functional router. It converts the Open vSwitch into a router that can

effectively route packets arriving from the clients from different LANs to the server.

It enables rules addition for routing and default gateway addresses via a REST API.

The Open vSwitch and Ryu-Router complete the configuration. The OVS acts as a

59

gateway for the traffic to and from the server. A link reconfigurator function in the

VM performs the task of throttling QoS measures.

4.3 Open vSwitch and Ryu-router

Using the Ryu-Router allows support for realistic traffic scenarios. For instance

a network with multiple LAN’s could be used with the Ryu Router such that we

can emulate links across different local area networks. Each sub-network often has

different bandwidth or delay limitations. Visibility, distance and interference influence

different wireless system link metrics.

A topology is created in Mininet that includes an Open vSwitch bridge which

supports OpenFlow 1.3. A single virtual Mininet host is created that can be used for

debugging purposes. A Ryu controller installation is accompanied with a ryu-manager

that is used to run Ryu specific applications. Once the VM setup concludes, routing

rules and gateways are added and the link configurator is initialized.

4.4 Linux traffic control (tc) for point link configuration

As described in Section 4.1.1, HFSC is a suitable design choice for bandwidth

configurations. Moreover, classful qdiscs allow delay and packet loss parameters for

the same interface. Each interface in Linux inherently contains a ingress and egress

qdisc. The egress or root qdiscs are commonly used. These features simplify queuing

disciplines by using classes and class structures. For the emulator, the two ends of

a network connection are formed via two physical interfaces. Hence, two points are

available along the link for network configuration. The absence of multiple links

between clients is not limited by the design. It is assumed that the emulator is

connected to a single physical router. Link configuration is performed at the server

side interface for ’upwards’ traffic, i.e. client to server, and at the client side interface

60

1:1
10000Mbit

1:2
5000Mbit

1:13
60000Kbit

1:23
20000Kbit

Root/Parent
Class

Leaf/Child
Classes

Figure 4.3. HFSC hierarchical class tree for bandwidth. The hierarchical structure
consists of a root class, with two levels of leaf classes signified by 1:1 and 1:2. The
1:13 and 1:23 classes reflect bandwidth configuration for two different clients.

for ’downwards’ traffic, i.e. server to client, as shown in Figure 4.2. A shell script is

used to add the link parameters to the interfaces.

The emulator supports multiple configurations per sub-network on a single inter-

face. The classful feature of HFSC and qdisc allows creation of a tree-like structure

for class hierarchy to the same interface. The tree consists of a root which enforces

the maximum bandwidth limit for the interface. Leaf classes allow a lower band-

width which can be subdivided amongst several leaf classes. Figure 4.3 illustrates a

hierarchical class tree.

An upper bandwidth limit is applied for all the child classes as a ceiling. A leaf

class with an associated parent root class is created and assigned a sequential class

number to uniquely identify a bandwidth configuration. Figure 4.4 shows an example

of such a configuration. The hierarchical structure consists of a root class followed by

two levels of leaf classes signified by 1:1 and 1:2. The 1:1 class forms the ceiling for

61

Figure 4.4. HFSC classful configuration for bandwidth. The root class 1:1 specifies
the upper limit using the sc and ul parameters to 10Gbps, 1:2 class is the default
class with a 5Gbps upper limit. The 1:13 and 1:23 classes for two different clients are
allocated 60Mbps and 20Mbps, respectively.

the given interface. The configuration is added in the form of a service curve rate (sc)

and an upper limit rate (ul). However, a simple setting can be created by using the

same bandwidth value for each. The 1:2 class is a child of the 1:1 class and is added

as the default class which will be followed if none of the classes are used. The 1:13

and 1:23 classes are the most significant as they reflect bandwidth configurations for

two different clients. They are at the same level as the default class with their parent

being 1:1. Bandwidth is set to 10Gbps for the parent class and 5Gbps for the default

class. The other two bandwidth allocations are 20Mbps and 60Mbps, respectively,

for each client.

The next step involves adding a queuing discipline as a leaf for the bandwidth

class. A handle is assigned to this qdisc such that it can be identified for addition

or deletion. The NetEm tool can be applied to a given qdisc to specify the delay

for a given branch in milliseconds and packet loss in percentage. The traffic control

filter (tc filter) is the main tool that filters exiting packets. It uses fields to direct

packets to the appropriate qdisc. One can assign a specific configuration branch of

bandwidth, delay and packet loss to a given set of packets. This filtering may happen

based on any of the fields present in an IP packet. The current application demands

filtering based on source and destination IP addresses of the clients and server. The

tc filter also supports filters based on sub-networks, L2 ports, and MAC addresses.

62

4.5 Hardware Testbed

To evaluate emulation performance, the clients and server are implemented in

hardware. Raspberry Pi Model 3B+ (RPi/Pi) [30] nodes are used to represent the

clients and server. The Pi can support multiple applications in its Raspbian Operating

System. The Pi is traffic limited by a 100Mbits/second network interface controller

(NIC). Tests are performed with traffic within 1-100 Mbits/second.

Figure 4.5 shows the detailed hardware testbed including the features of the Link

Configuration Tool and a specific address-based example. Multiple Pis that belong

to different LANs are connected to a Ubiquiti EdgeRouter X (EDRX) [39]. The

EDRX functions as a physical router connecting all the Pis belonging in different

subnets. The EDRX has five interfaces (eth0-eth4), all allowing custom connections.

Ubiquiti Networks present a web UI that allows EDRX configuration as a L2 switch

or a router, helping define the role of each interface. Two interfaces are connected

directly to two Pis to act as separate LAN interfaces. One interface is attached

to a WAN interfaced to the emulator via an Ethernet cable. The EDRX wizard

enables predefined configuration setup. The emulator VM was implemented on a

Dell Optiplex 7010, quad core with 24GB of memory. The system runs Ubuntu

Linux and has two 1G NICs. Interface eth0 (Figure 4.5) is connected directly to the

physical router (EDRX). Even though the EDRX, ethernet cables and the workstation

interfaces support 1G bandwidth, the RPi interface is a bottleneck. The eth1 interface

is connected to another RPi, the server. The link configuration function is a Python

script that performs multiple functions. The script runs in the VM to parse the json

file (json parser), adds the IP address information to the IP address constructor, and

conveys link properties to another bash script (link parameter tool). These functions

will be discussed in Section 4.6. From a user point of view, the emulation setup

includes multiple links with unique link properties between the clients and the server

even though both clients forward traffic over the same physical interfaces.

63

OVS

Ryu SDN
ControllerREST

API

MiniNet
VM

10.1.1.123
(IP1)

20.1.1.12
(IP2)

11.2.3.111

Rapsberry
Pi

(Server)

C1 C2

Raspberry Pi (Clients)

EdgeRouter

eth0

eth1

Default
gateway

via
11.3.2.50

Address 1: 10.1.1.25
Address 2: 20.1.1.25
Address 3: 192.18.2.1

Default gateway via 192.168.2.50

Address1 : 192.168.2.50
Address 2: 11.3.2.50
Gateway: Default via

192.168.2.1

Default gateway via
10.1.1.25

Default gateway via
20.1.1.25

Json Parser

Link
information

(JSON)

IP Address
constructor

Link parameter
tool

Link
Configurator

 CAT6
Ethernet

CAT6
Ethernet

Link
property

configuration
script

Figure 4.5. Hardware Testbed Diagram with an example scenario. The link con-
figuration tool consists of json parser, IP address constructor and a link parameter
tool that interacts with the SDN controller and property configuration scripts. An
example scenario with the default gateways and IP addresses are shown.

4.6 Implementation approach

In this section, the details of an emulation test, including a detailed example, are

described. A custom Mininet application written with a Python API was used to

64

generate the topology for emulation. It consists of an OVS bridge with two bridged

adapters as ports. It defines the use of a remote SDN controller over TCP port

6033 on the loopback interface of the VM. Once the structure is ready, the Rest-

Router is launched which recognizes the OVS listening to 6033 port and connects

to it. The link configuration tool then starts the process of link construction. A

JavaScript Object Notation (json) file is used to define the source and destination

IP addresses of the end hosts (Figure 4.6). These IP addresses act as the source and

destination addresses for packet filtering and provide information to the Ryu-router

for configuration. The json file also describes link configuration properties. Forward

and backward configurations may be required for one-way traffic. Thus, the json

file defines client Wide Area Network (WAN) IP addresses and the corresponding

connected servers in addition to forward and backward path bandwidth, delay and

packet loss for each client. An example of the json file is shown in Figure 4.6. This

example shows a three-client, one server network. The physical router is connected

to three clients with IP addresses defined as “Client IP”s. The “Server IP” defines

the IP address of the server. This information is used by the IP address constructor

to configure the Ryu-router.

For each client to server link, the forward and backward path properties are defined

in the form: {Link Property Type} {Client No} {direction(forward/backward)}. This

information is used by the link property tool and the bash script. To enable routing

via the virtual switch (Figure 4.5), gateway addresses are added using the REST-API

so that both the physical router and the server can use the OVS as the next hop

for all packets. This action is performed by the IP address constructor function of

the link configuration tool. For example, the clients have IP addresses 10.1.1.123

and 20.1.1.12 and the server has address 11.3.2.111. The EDRX has a LAN interface

with IP address 192.168.2.1 that is added as the default next hop for packets enter-

ing the OVS. This establishes a backward path (server-to-client). The Ryu-router

65

Figure 4.6. json file example for link emulation. The file shows three clients con-
nected to one router. The Client IPs and Server IPs are defined for a given router
along with the forward and backward path properties (throughput, delay, packetloss)
for each client.

adds an internal IP address 192.168.2.50 in the same LAN as the EDRX. This en-

ables 192.168.2.50 to be the next hop for all incoming packets from the clients on

the EdgeRouter. This setup is performed via the EDRX Web UI to establish the

forward path for the testbed (client-to-server). The default route configurations for

every packet entering the OVS/Ryu-Router can be summarized as follows:

• Default, forward to the EdgeRouter.

• Destination is server, forward to the server

• Destination is client, forward to the EdgeRouter

66

Incoming
Packet

Mininet VM

OVS

Flow Entry
Known?

Yes No

Ryu-Router

Send to appropriate
tc queue as per

Source/Dest Address

No
Flow

Drop
Packet

Packet Out

Figure 4.7. Workflow for packet based routing in the Mininet VM through OVS
and Ryu-router. Packet received at the OVS is directed to the appropriate queue as
per source/destination IP address if flow exists. If flow doesn’t exist in the OVS then
it is forwarded to the Ryu-router for further processing.

These configurations ensure the establishment of the default forward and backward

paths between the client and server. Figure 4.7 shows the function of the Ryu-router

for packet based forwarding. When a packet is received at the OVS, if a flow exists,

i.e. if the path to the destination is known, it is directed to the appropriate queue

designated by the link property configuration script as per the source/destination IP

address. If a flow does not exist in the OVS, it is forwarded to the Ryu-router for

further processing. The Ryu-router performs routing based on the information in its

routing table. If the Ryu-router is unable to find an appropriate destination for the

packet, the packet is dropped.

67

Algorithm 2: Algorithm for configuring links
Data: Link Information with Src IP: srcIP , Dst IP: dstIP , Bandwidth: bw, Delay:

del, Packet Loss: pl
Result: Add routes/gateway on router and configure link parameters

17 if src IP to dst IP route exists then
18 Call script to add Link configurations
19 if Link parameters previously defined then
20 Delete handle used to define the qdisc, netem for del, pl
21 Delete hfsc class for old bw
22 Add new hfsc class with bw with same classid
23 Add new qdisc, netem for del, pl with same handle as the one deleted

24 else
25 Add new hfsc, qdisc class with bw, del, pl
26 Add TC filter for srcIP and dstIP to the new qdisc class

27 end

28 else
29 Add new route/gateway according to srcIP and dstIP
30 Add new hfsc, qdisc class with bw, del, pl for the link
31 Add TC filter for srcIP and dstIP to the new qdisc class

32 end

4.6.1 Link Configuration Tool

The link configuration tool (LC) performs three primary tasks:

• Parse the json file (Figure 4.6).

• Extract the source and destination IP addresses and add gateway addresses on

the virtual switch via the REST API.

• Extract the link parameters (bandwidth, delay and packet loss) for each set of

source and destination IPs. Set them on forward and backward interfaces via

script calls.

The link configuration tool was implemented in Python 2.7. It is launched after

Mininet topology setup. The next step is the establishment of successful communica-

tion between the clients and the server through the EdgeRouter and the link emulator.

The addition of link parameters is then performed by invoking a bash script which

68

completes the initial setup. The link property configuration script for link parameter

setup is invoked by the LC link parameter tool.

Any existing configurations on the interface are verified before creating a class,

qdisc, and a netm in the TC hierarchy (Algorithm 2). The LC receives the source

IP, destination IP and bandwidth, delay and packet loss values. The LC first checks

if the route for the destination IP and router already exists. If it does, then the link

property configuration script is called. The script then verifies if the link parameters

are already defined. If they are, it deletes the NetEm qdisc for the given interface

using the “handle”. The handle is a unique ID that is defined to identify a qdisc.

This handle can be an arbitrary but sequential number for qdisc addition or deletion.

Once the qdisc is cleared, the hfsc class is deleted. Then a new leaf class with new

link parameters bw, class ID, del and pl is added. A filter is used to redirect packets

to a qdisc/hfsc queue uniquely use this class ID. The filter matches the source and

destination IP addresses of the packet before forwarding it to the queue.

If the class does not exist, a new leaf class is defined under the root and bw is

added using the hfsc class. Parameters del and pl are added using a unique handle

such that the hfsc class is a parent. Finally, a TC filter is added to the new qdisc

class for src IP and dst IP to establish a flow redirection to the class when a packet

is matched. When there are no routes/gateways are present on the Ryu-router, the

LC calls the IP address constructor to add the gateways and then follows the same

procedure for adding link parameters.

This concludes the initial link setup by the LC. The properties that are currently

defined may dynamically be changed in the emulator by the user. In this case, the

procedure defined in Algorithm 2 from step 20 to step 23 is followed. Modification

using the command line interface is discussed in the next subsection.

69

Figure 4.8. Command line interface used for dynamic link property changes. The
user can choose from an existing set of client - server pairs and its corresponding
forward or backward path. In this case GNAT ID refers to the Router ID and WAN
No. refers to the client ID. Setting “a” sets forward link properties and “b” for
backward link properties.

4.6.2 Dynamic Link Emulation

There can be two possible modes of operation for dynamic emulation. Either the

link parameters are periodically updated via a json file input or new parameters are

input using a command line interface. The latter approach is followed for preliminary

testing since it provides user interaction.

Once the configuration is completed by the LC, a user interface is shown to display

and/or change bandwidth, delay, and packet loss parameters. A screenshot of the user

command line user interface is shown in Figure 4.8. The user may choose an option

70

from the existing set of client - server pairs and a corresponding forward or backward

path. The LC prompts for user-defined inputs and modifies the emulator interfaces

via the TC link configuration scripts described in the previous subsection.

It is important to ensure a modification of either the forward or backward path

does not affect the other path. For example, traffic between a client and a server

should not affect the workload from another client. If the workload is similar, the

bandwidth of the link should be equally shared.

4.7 Hardware-based Evaluation

In this section, results for a set of experiments for the link emulator framework are

presented. The emulator is implemented in a VirtualBox VM installed on a 4-core

Intel i5-3470 CPU (3.20GHz, 24GB). The Mininet VM runs Ubuntu 16.04.16 LTS

and consists of 1 processor and 1 GB RAM. The emulator consumes limited memory

since it requires only three main processes, i.e. Open vSwitch, Ryu-Router and Link

Configurator. Hence, just a 1 GB RAM is sufficient for the emulation. With all

dependent files installed, including OpenvSwitch, Ryu-router and Python, the file

consumes about 1.4-1.5 GB of disk space.

The experiments were conducted using the hardware testbed described in the

Section 4.5. The testbench consists of two clients, C1 and C2 connected to the server

via an EdgeRouter and the link emulator. Tools iperf [55] and ping [52] were used to

evaluate bandwidth and delay metrics. Due to Raspberry Pi interface limitations, the

maximum bandwidth is limited to 100Mb/sec. Thus, the operation of the emulator

was evaluated in the range of 1-100 Mb/sec. The experiments were performed for

each link individually.

71

4.7.1 Bandwidth Evaluation

Table 4.1 shows the bandwidth configuration for a single link between C1 and the

server. In this case, the forward links are configured with a bandwidth setting which

is labelled ”Bandwidth”. The observed bandwidth is noted as ”Observed B/W”. An

iperf server is running on the server, while TCP traffic is generated from C1. The

client uses the server IP address to send data streams with a default TCP packet size

of 1,500 Bytes and a window size of 85KB. The number of transferred bytes and time

taken for data transfer are shown in the third and fourth columns as “Bytes Trans.”

and “Time”.

Table 4.1. Bandwidth of the Link Emulator

Bandwidth (Mb/sec) Observed B/W (Mb/sec) Bytes Trans. (MB) Time (s)

1 0.96 1.6 14.2
5 4.78 6.6 11.6
10 9.56 12.2 10.8
20 19.10 25.0 11.0
30 28.70 36.8 10.7
40 38.20 47.8 10.4
50 47.80 59.1 10.4
60 57.40 70.6 10.3
70 66.90 81.8 10.2
80 76.40 93.6 10.3
90 86.00 105.0 10.3
100 93.70 112.0 10.1

The observed bandwidth is slightly lower than the specified amount. This result is

primarily due to hardware and memory constraints imposed by the CPU, OS and NIC

buffer. Also, the TCP receive window needs time to ramp up speed to the required

level which may cause a minor drop in bandwidth. Moreover, the use of queuing

disciplines may also cause slight packet loss/corruption.

The test was conducted at requested (configured) bandwidths between 1 Mbps

and 100 Mbps. After 100Mbps, link saturation was observed due to the bottleneck

caused by the Raspberry Pi hardware interface. A visual representation of the results

72

Figure 4.9. Bandwidth (Configured v/s Observed) shown for two clients, C1 and
C2. Calculated using iperf via TCP connection between each client and the server.
A linear trend observed upon reaching saturation after 100Mbps.

are illustrated in Figure 4.9. The bandwidth configuration for C1 and C2 was varied

from 1 Mbps to 100 Mbps. At lower data rates, i.e. from 1Mbps to 20Mbps, the

granularity of the tests was increased to every 1Mbps to analyse the effect closely.

As the figure shows, the configured bandwidth is quite accurately matched by the

bandwidth observed via iperf . The linear increase in bandwidth with the requested

value indicates the accuracy of the link emulator. Both clients show similar results.

Figure 4.10 provides a closer look at the high granularity region in Figure 4.9

for a single client (Client 1). The figure shows the effect of varying the specified

bandwidth by 1Mbps steps. The experiment was conducted from 1 Mbps to 20 Mbps.

The observed bandwidth shows a linear trend with changes in configured values. An

73

Figure 4.10. Configured Bandwidth v/s Observed Bandwidth and Accuracy. Gran-
ular tests from 1 Mbits/second to 20 Mbits/second with an interval of 1 Mbits/second.
Ratio of observed to configured bandwidth is around 95%.

accuracy metric is shown in Figure 4.10 on a twin axis. The blue plot signifies the

accuracy of the observed to the requested bandwidth based on the following formula:

Accuracy =
ObservedBandwidth

ConfiguredBandwidth
∗ 100

The figure shows a narrow range of accuracy values. The accuracy metric varies

with each test from a minimum observed accuracy of 95.3 to a maximum of 95.8. The

consistent 5% reduction is likely a consequence of buffer usage and packet dropping.

74

4.7.2 Delay Evaluation

Latency (delay) and round trip time values were also evaluated with the testbed.

The tests were conducted using ping commands from the Client 1 Raspberry Pi to the

server Raspberry Pi on the hardware testbed. Table 4.2 illustrates the round trip time

(RTT) and delay measurements between Client 1 and the server. An overhead of 1.4-

1.6 seconds is observed regardless of delay setting. This overhead is a consequence

of the hardware testbed, wired links, and packet processing time along the path

combined with the routing performed by the SDN controller. This overhead time can

be termed as “Inherent Delay”.

Table 4.2. Latency values measured by the Link Emulator

Expected Delay (ms) Observed Delay
Min (ms) Avg (ms) Max (ms) stdev (ms)

0 1.46 1.67 2.05 0.135
1 2.61 2.80 3.31 0.258
2 3.75 3.8 3.92 0.061
3 3.74 4.44 6.47 1.044
4 5.64 5.77 6.15 0.204
5 6.66 6.81 7.18 0.216
6 7.68 7.81 8.24 0.168
7 8.62 8.81 9.12 0.148
8 9.66 9.80 10.55 0.282
9 10.61 10.82 11.31 0.217
10 11.51 11.82 12.18 0.211
11 12.66 12.77 12.87 0.132
12 13.68 13.81 13.99 0.107
13 14.65 14.81 14.96 0.168
14 15.53 15.76 15.87 0.090
15 16.70 16.83 17.11 0.205

Configured delay is varied with a 1 ms step. Table 4.2 indicates the delay added on

the link by the emulator as “Expected Delay” and the minimum, average, maximum

and standard deviation (stddev) of the observed experimental results in milliseconds.

Standard deviation is an average of how far each ping RTT is from the mean RTT.

The higher the stdev, the more variable the RTT over time. The maximum delay

75

Figure 4.11. Delay Configuration (Expected v/s Observed). Inherent delay exists
between the clients and the server due to the presence of hardware network compo-
nents. There is a linear trend at granular levels (Delay- 0-8 ms) and at higher values.
Standard deviation bars for each value are show in red.

is usually the time taken by the first packet to receive a reply since it must find a

destination route. Hence the minimum and average values provide a better estimate

of actual delay.

For a delay setting of 8ms, an average delay observed was 9.80ms which is 1.8ms

over the configured value. Considering an average of 1.67 ms inherent delay, the

observed variation is around 130 µ seconds. The standard deviation values measure

observed delay fluctuations (Figure 4.11).

76

Figure 4.12. Effect of bandwidth variation on observed delay of another client.
First plot shows observed delay at Client 2 (which was set constant at 2ms) while
increasing the configured bandwidth of Client 1. Second plot shows observed delay at
Client 1 (which was set constant at 5 ms) while increasing the configured bandwidth
of Client 2.

From 0 ms to 8 ms, experiments were conducted with a step interval of 0.5 ms.

The green line indicates the observed delay. The blue line is the average of the

observed delay with the expected delay. The red vertical bars for each point indicate

the standard deviation for each delay value.

The tests analyzed so far were all conducted for a single link i.e. either client1

- server or client2 - server. To evaluate the effect of running simultaneous traffic

from both clients to the server, the following test was performed. One client sends

77

uninterrupted TCP data streams to the server. At the same time, another client

generates and sends ICMP traffic to the server.

The robustness of the link emulator is evident if the observed delay at the sec-

ond client is unaffected by the TCP traffic sent to the server by the first. For the

experiment, Client 1 generates TCP traffic. A static delay value is configured for

Client 2. The observed delay at Client 2 is monitored while altering the bandwidth

configuration of Client 1.

The results of the experiment are shown in Figure 4.12. The first plot shows the

observed delay at Client 2 set at a constant 2 ms, while the configured bandwidth

of Client 1 is incrementally increased. The second plot shows the observed delay

at Client 1 set at a constant 5 ms, while the configured bandwidth of Client 2 is

incrementally increased. The observed delay of both clients under the delay test

shows minor delay variation even though the same hardware link to the same server

is used. The effect occurs because the hfsc queue and qdisc are separately configured

in the link emulator. In the first plot, the delay is around 3.6 ms for a set 2 ms delay,

which is appropriate if the inherent delay of 1.6 ms is considered. For the second

subplot, the delay is 6.6 ms which is 1.6 ms higher than configured.

4.8 Software Evaluation

In this section, we describe experiments to test the reliability of the link emulator

under stressful conditions. The emulator was migrated to a laptop, and the entire

system shown in Figure 4.5 was recreated in a VM using software alternatives. Virtu-

alBox VM was installed on a 4-core Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz(16

GiB RAM) laptop. The same Mininet VM as used for hardware-based evaluation is

used and runs Ubuntu 16.04.16 LTS and consists of 1 processor and 1 GB RAM and

1 GB disk size.

78

This evaluation tests the emulator with parallel and bidirectional streams between

the clients and server. Parallel and bi-directional streams are prevalent in wired

and wireless network emulation applications. Parallel streams can also be found in

localised applications that are multi-threaded or transmit different types of data from

a client and a server. One example is multiple uploads or downloads occurring from

the same computer connected to a centralized office server. Bidirectional streams are

prevalent in applications that require constant communication between server and

client. An example is controlling a server-based application user interface from a

client. In either case, there may be restrictions on certain workstations and users to

prevent hogging the common link. Thus, the link emulator can help allot a specific

share of throughput for each user.

This approach provides a scenario to test link emulator performance accuracy.

Each client should not exceed their allocated throughput. Three different experiments

were conducted. First, both the clients communicate with the server in parallel via

TCP streams. Second, the number of streams per client are increased and the total

allocated bandwidth and fair allocation within the streams is analyzed. Lastly, we

run a bi-directional stream from each client for various throughput configurations

ranging from 0.1Mbps to 5Gbps.

4.8.1 Experimental Setup

The experiments were conducted using an entirely virtualized testbed to replace

the hardware components from Figure 4.5. The software testbed is created in the

Mininet VM. It consists of two clients, C1 and C2 which are Mininet virtual hosts.

These hosts replace the RPi hardware hosts (Client 1 and Client 2) from Figure

4.5 and are connected to the server, which is another Mininet host, via two software

routers. The EdgeRouter is replaced with a software router (Open vSwitch) to connect

the two clients, while the Virtual OVS that is used to add the link configurations

79

remains the same. iperf [55] was used to evaluate bandwidth and throughput for the

experiments. The single link between the two routers acts as the common trunk link

between clients and the server.

Without configuration, the client to server link is found to support 4.77 Gbps

bandwidth which is the maximum any client can achieve and will serve as a baseline

for the experiments.

4.8.2 Parallel Streams

Two experiments were conducted to evaluate the effect of parallel communication

between multiple clients through the link emulator. iperf is used to generate TCP

streams from the virtual clients to the virtual server. Each stream sends TCP data

of size 1,500 bytes per packet at the maximum rate possible.

The first experiment is demonstrated in Figure 4.13. A fixed delay of 1 ms is

configured for both clients in all the experiments. The throughput of both clients

are then configured to a predefined equal value. An iperf test was run from both

clients to the server simultaneously to validate the emulator’s capability to maintain

the allotted bandwidth per-client without affecting each other. This test is performed

for four different sets of configured throughputs -(100Kbps-1Mbps), (1Mbps-10Mbps),

(10Mbps-100Mbps) and (100Mbps-5Gbps). This provides an insight into the accuracy

of the emulator at low granularity and high saturation levels of link configuration

requirements, i.e. a throughput of <1 Mbps and >1Gbps.

In Figure 4.13, it is observed that the accuracy of link emulator holds for all

levels of granularity and values. Both Client1 and Client2 achieve exact same rate as

allotted. Finally for configurations over 2.5Gbps, the link saturates. This is because

the available 4.7Gbps of bandwidth is equally divided amongst both clients.

The first experiment only evaluated for one stream per client. The second exper-

iment is demonstrated in Figure 4.14. The number of parallel streams per client are

80

O
bs
er
ve
d

Th
ro
ug
hp
ut
(M

bp
s)

Configured
Throughput(Mbps)

Client2

Client1

Figure 4.13. A single parallel TCP stream from each client to server working simul-
taneously. Streams occupy the common link between the two routers. Each client
manages to maintain the allocated bandwidth irrespective of each other. Bottom-
right plots sees saturation at 2.3Gbps since the total bandwidth of the common link
is about 4.7Gbps.

increased sequentially from 1 to 20. While scaling the streams, it is observed that the

accuracy per client and fair division of the per-client throughput amongst the TCP

streams is maintained. The throughput configuration for both client is preset to 2

Gbps and delay is set to 1 ms. Thus at a time, a client can occupy 2 Gbps of the

trunk link with server, which is less than 4.7 Gbps/2.

The fair division of throughput amongst the streams can be represented using a

Margin of Error (MoE) metric. This metric provides a overall estimate of how accu-

rately one can justify the fair division of per-client throughput amongst the streams.

81

Figure 4.14. Multiple parallel TCP stream from each client to server working si-
multaneously. Streams occupy the common link between the two routers. Each client
manages to maintain the allocated bandwidth, while equally dividing the bandwidth
amongst its streams.

For instance, for 10 streams with a client allotted 2 Gbps, the fairest division would

have 200 Mbps per stream.

However, in a realistic scenario each of the 10 streams may observe a slightly

higher or lower throughput. MoE helps quantify results over several trials, how much

each stream may diverge. The lower the MoE, the better the division of resources

and the higher the stability amongst the streams.

In Figure 4.14, it is observed that increasing the number of streams from 1 to 20

per client reduces the average per-stream throughput. Both clients follow the same

trajectory indicating the fair sharing of link bandwidth irrespective of the number

of streams per client. The margin of error, indicated by the red line, hovers around

5-10%. Hence, with an error of 5-10%, each stream achieves an average bandwidth

at the ideal division i.e. 2 Gbps / (Number of streams per client). The deviation

per stream for both clients increases slightly when the number of parallel streams is

82

O
bs
er
ve
d	
Th
ro
ug
hp
ut
(M

bp
s)

Configured	Throughput(Mbps)

Client2

Client1

Figure 4.15. Single-bidirectional TCP stream from each client to server working
simultaneously. Four streams occupy the common link between the two routers at a
time. Each client manages to maintain the allocated bandwidth for its forward stream
irrespective of other client and backward stream. Bottom-right plots see saturation
at 2.3Gbps since the total bandwidth of the common link is about 4.7Gbps.

increased. This issue might be caused by CPU and memory resource limitations which

cause buffer overuse or packet transmission delays for TCP streams. The maximum

7% MoE indicates appropriate bandwidth sharing between the streams.

4.8.3 Bidirectional Streams

In this experiment, bi-directional streams from each client to the server are exe-

cuted. Thus, for two clients, a total of four streams occupy the trunk link at a time.

The structure of the experiment is the same as the structure used for the parallel

streams, with the observed throughput compared against configured throughput for

different levels of granularity.

83

Figure 4.15 illustrates the results of bi-directional tests for 4 different sets of con-

figured throughputs -(100Kbps-1Mbps), (1Mbps-10Mbps), (10Mbps-100Mbps) and

(100Mbps-5Gbps). The downlink throughput is observed, which provides the true

estimation of the achieved throughput.

A linear trend for all sets of allotted throughput vs observed throughput is found

for both clients. Moreover, both follow the configuration exclusively. This signifies

the stability of the clients under conditions where there is bidirectional data transfer.

Finally, for configurations over 2.5Gbps, the link saturates at 2.3Gbps as the available

4.7Gbps of bandwidth is equally divided amongst both clients.

84

CHAPTER 5

CONCLUSION

5.1 Network Virtualization and Emulation using Docker and

Open vSwitch

In Chapter 3, the design and implementation of our emulation framework for

mobile ad hoc networks was discussed. The framework provides an encapsulated and

isolated environment using nested Docker containers. Open vSwitch is used to create

bridges between the nodes and the components of each mobile node. Visibility graphs

provide for the dynamic update of links due to positional changes. A communication

assistant was developed to facilitate dynamic link changes. A command line interface

allows for user interaction to generate and use the emulator.

We have successfully tested its integration with hardware and up to 144 nodes in

the MANET topology in the laboratory. Comparisons with ContainerNet shows on-

par network performance for typical connections with up to 32 Gbps throughput per

link. The use of nested containers has a CPU, memory usage and start-up time

overhead, but the nested-containers approach is a suitable model for hierarchies,

thanks to improved resource sharing between child containers located within the

parent container. Under stressful, high-bandwidth conditions, our emulator showed

26.5% better throughput versus ContainerNet. Overall, NestedNet presents a new

paradigm of nested infrastructure in hierarchical network emulation.

85

5.2 Network Link Dynamic Emulation Testbed

In Chapter 4, the successful design and implementation of a dynamic link em-

ulator was described. The emulator utilizes the traffic control API of Linux OS to

implement queuing-based link parameterization. The implementation allows link es-

tablishment between multiple subnetworks with each link allotted unique bandwidth,

delay and packet loss properties. The Ryu-router and a custom application, the Link

Configuration (LC) tool, are used to establish connections and perform link prop-

erty changes. Host information is fed through a json file which contains the source

and destination IP addresses of all connections to be created along with their unique

bandwidth, delay and packet loss values. The LC’s json parser changes the specified

IP addresses. Link properties are handled via a Linux bash script that uses the Linux

tc API. The emulator is designed to support link characterization using tc filters.

The link emulator was evaluated using multiple link property tests.

A fully software-based emulator was created in which all the hosts (clients and

server) are virtual. It was tested using parallel and bi-directional TCP streams.

Results indicate that under such scenarios, the link emulator can allocate throughput

on a per-client basis. For parallel streams, each client is throttled such that all streams

share a per-client configured throughput with a deviation of not more than 7%.

86

CHAPTER 6

FUTURE WORK

6.1 Network Virtualization and Emulation using Docker and

Open vSwitch

Our Docker-based emulator provides a solution for sub-component isolation for

SDN infrastructure using nested Docker containers. There are additional avenues to

explore.

• The scope of this thesis was limited to the emulation of a MANET and its

functionality. However, multi-switch, multi-node SDN topologies with hetero-

geneous nodes and sub-components could be emulated using the nested Docker

approach. Since we use Linux, the environmental setup may need to change.

Some emulation targets could be a network of complex computer systems or

heterogeneous data-center racks.

• A myriad of wired and ad-hoc network protocols exist. These protocols could

be evaluated with the emulator.

• A distributed system with hardware switches/routers to accelerate inter-node

protocols could be implemented. Currently, the entire emulator is implemented

in a server. The emulator could be distributed across multiple workstations to

increase scalability and explore more realistic scenarios. The primary develop-

ment required in this distributed system would be the creation of a synchronized

communication assistant.

87

• Docker containers have mostly been used for virtualization in data-center and

microservice applications. Nested containers have generally not been used in the

network domain. Fully exploring the use of nested containerization for network

emulation has potential.

• Lightweight virtualization technologies such as OpenVZ [43] and Virtuozzo [70]

are gaining popularity for network emulation. Replacing Docker with these

technologies would be interesting. It is unclear if they support nested virtual-

ization.

• The security of nested containers could be a concern. Each application needs

to operate securely in a child container. Security issues for nested containers

could be considered for network emulation and other Docker-based virtualiza-

tion domains.

6.2 Network Link Dynamic Emulation Testbed

The link emulation testbed was designed as a framework to emulate links between

network endpoints. The framework was also used to allocate per-user bandwidth and

delay to mitigate network congestion. The link emulator could be deployed for other

use cases.

• For the the scope of this thesis, two qdisc algorithms were used for link con-

figuration, Hierarchical Fair Service Curve (HFSC) and Netem. Other qdisc

algorithms, such as Token Bucket Filter (TBF) [12] and Hierarchical Tocken

Bucket (HTB) [21], could be explored. It would be desirable to provide more

accuracy than HFSC and support multiple parameters (bandwidth, delay and

packet loss).

• It would be interesting to allow for dynamic changes in per link bandwidth.

The dynamic change could be time-based or space-based. This change would

88

allow for the emulation evaluation of path-loss metrics resulting from wireless

transmission protocols and models.

• The emulator could support additional network protocols. The IEEE 802.1Q

protocol [68] supports VLANs and VxLANS, and is widely used commercially.

It would be interesting to evaluate a defined bandwidth/delay allotted per

VLAN for centralized server access. Each departmental section may have dif-

ferent bandwidth needs and the entire organization may be divided into smaller

VLANs. The emulator could serve as a bandwidth allocation firewall for all

server accesses.

• The Ryu SDN controller supports per packet L2-L3 processing in the emulator.

This characteristic can be utilized by the emulator as a repeater or a ground

station in a network emulation scenario. The work in this thesis assessed the

processing of source and destination IP addresses only. Packets received from

different sources, with different type of service priority values, VLAN tags,

TCP ports, and destinations could be processed differently to support various

scenarios.

89

BIBLIOGRAPHY

[1] Ahrenholz, J. Comparison of CORE network emulation platforms. In MILCOM
2010 Military Communications Conference (Oct 2010), pp. 166–171.

[2] Al-Somaidai, Mohammed Basheer, and Yahya, Estabrak Bassam. Effects of linux
scheduling algorithms on Mininet network performance. Communications 3, 5
(2015), 128–136.

[3] Alvarez, Jose, Maag, Stephane, and Zaidi, Fatiha. Dhymon: a continuous decen-
tralized hybrid monitoring architecture for manets. arXiv:1712.01676 (2017).

[4] Baclawski, Kenneth. A network emulation tool. In Simulation of Computer
Networks (1987), vol. 4, Citeseer, pp. 198–206.

[5] Barham, Paul, Dragovic, Boris, Fraser, Keir, Hand, Steven, Harris, Tim, Ho,
Alex, Neugebauer, Rolf, Pratt, Ian, and Warfield, Andrew. Xen and the art of
virtualization. In ACM SIGOPS operating systems review (2003), vol. 37, ACM,
pp. 164–177.

[6] Bellard, Fabrice. QEMU, a fast and portable dynamic translator. In USENIX
Annual Technical Conference, FREENIX Track (2005), vol. 41, p. 46.

[7] Beshay, J. D., Francini, A., and Prakash, R. On the fidelity of single-machine
network emulation in Linux. In 2015 IEEE 23rd International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Sys-
tems (Oct 2015), pp. 19–22.

[8] Binns, Roger. Dynamic real-time view of a running system. https://linux.

die.net/man/1/top. Last accessed 8 January 2020.

[9] Blywis, Bastian, Günes, Mesut, Juraschek, Felix, and Schiller, Jochen H. Trends,
advances, and challenges in testbed-based wireless mesh network research. Mobile
Networks and Applications 15, 3 (2010), 315–329.

[10] Bob Lantz, Brandon Heller, Nikhil Handigol, and Jeyakumar, Vimal. Mininet:
An instant virtual network on your laptop. http://mininet.org/, 2020. Last
accessed 6 January 2020.

[11] Boettiger, Carl. An introduction to Docker for reproducible research. ACM
SIGOPS Operating Systems Review 49, 1 (2015), 71–79.

90

[12] Braun, Torsten, Einsiedler, Hans Joachim, Scheidegger, Matthias, Stattenberger,
Günther, Jonas, Karl, and Heinrich, J Stüttgen. A Linux implementation of
a differentiated services router. In International Symposium on Networks and
Services for the Information Society (2000), Springer, pp. 302–315.

[13] Carpenter, Tamra, Heyman, Daniel, and Saniee, Iraj. Studies of random de-
mands on network costs. Telecommunication Systems 10, 3-4 (1998), 409–421.

[14] Carson, Mark, and Santay, Darrin. Nist Net: a Linux-based network emulation
tool. ACM SIGCOMM Computer Communication Review 33, 3 (2003), 111–126.

[15] Checconi, Fabio, Cucinotta, Tommaso, Faggioli, Dario, and Lipari, Giuseppe.
Hierarchical multiprocessor CPU reservations for the Linux kernel. In Proceedings
of the 5th international workshop on operating systems platforms for embedded
real-time applications (OSPERT 2009), Dublin, Ireland (2009), pp. 15–22.

[16] Community, Ryu SDN Framework. Ryu: A component-based software defined
networking framework. https://osrg.github.io/ryu-book/en/html/rest\

_router.html, 2017. Last accessed 6 January 2020.

[17] De Oliveira, Rogério Leão Santos, Schweitzer, Christiane Marie, Shinoda, Ail-
ton Akira, and Prete, Ligia Rodrigues. Using mininet for emulation and pro-
totyping software-defined networks. In 2014 IEEE Colombian Conference on
Communications and Computing (COLCOM) (2014), IEEE, pp. 1–6.

[18] Developers, Ubuntu. Virtual Ethernet devices. http://man7.org/linux/

man-pages/man4/veth.4.html. Last accessed 7 January 2020.

[19] Developers, Ubuntu. Important tools for controlling the network subsystem
of the Linux kernel. https://sourceforge.net/projects/net-tools/, 2005.
Last accessed 7 January 2020.

[20] Developers, Ubuntu. A namespace wraps a global system resource in an abstrac-
tion. http://man7.org/linux/man-pages/man7/namespaces.7.html, 2020.
Last accessed 7 January 2020.

[21] Devera, Martin, and Cohen, Don. HTB Linux queuing discipline manual-user
guide. M. Devera web site, Tech. Rep (2002).

[22] Docker, Inc. Dind: A nested Docker setup. https://hub.docker.com/_

/docker, 2018. Last accessed 7 January 2020.

[23] Docker, Inc. Docker containerization platform. https://www.docker.com/

resources/what-container, 2020. Last accessed 6 January 2020.

[24] Fielding, Roy. Representational state transfer. https://restfulapi.net/,
2000. Last accessed 7 January 2020.

91

[25] Fink, John. Docker: a software as a service, operating system-level virtualization
framework. Code4Lib Journal, 25 (2014).

[26] Fontes, R. R., Afzal, S., Brito, S. H. B., Santos, M. A. S., and Rothenberg,
C. E. Mininet-WiFi: Emulating software-defined wireless networks. In 2015
11th International Conference on Network and Service Management (CNSM)
(Nov 2015), pp. 384–389.

[27] Foundation, Linux Networking. Classless queuing disciplines. http://tldp.org/
HOWTO/Traffic-Control-HOWTO/classless-qdiscs.html, 2000. Last accessed
7 January 2020.

[28] Foundation, OpenSource : Linux Networking. Open vSwitch: A distributed
virtual multilayer switch. https://www.openvswitch.org/, 2009. Last accessed
6 January 2020.

[29] Foundation, Python Software. Python : a programming language that lets you
work quickly and integrate systems more effectively. https://www.python.org/,
2001. Last accessed 7 January 2020.

[30] Foundation, Raspberry Pi. Single-board computer with wireless LAN
and Bluetooth connectivity. https://www.raspberrypi.org/products/

raspberry-pi-3-model-b/. Last accessed 13 January 2020.

[31] George, Johann. qperf, measure RDMA and IP performance, 2009.

[32] Gersht, Alexander, and Kheradpir, Shaygan. Real-time bandwidth allocation
and path restorations in SONET-based self-healing mesh networks. In Pro-
ceedings of ICC’93-IEEE International Conference on Communications (1993),
vol. 1, IEEE, pp. 250–255.

[33] Guedes, Dorgival, Wundsam, Andreas, Scott, Colin, and McCauley, James.
POX: an OpenFlow controller. https://github.com/noxrepo/pox, 2007. Last
accessed 7 January 2020.

[34] Guo, Chuanxiong, Lu, Guohan, Wang, Helen J, Yang, Shuang, Kong, Chao, Sun,
Peng, Wu, Wenfei, and Zhang, Yongguang. Secondnet: a data center network
virtualization architecture with bandwidth guarantees. In Proceedings of the 6th
International COnference (2010), ACM, p. 15.

[35] Habib, Irfan. Virtualization with KVM. Linux Journal 2008, 166 (2008), 8.

[36] Hemminger, Stephen. Network emulation with NetEm. In Linux conf au (2005),
pp. 18–23.

[37] Herrscher, Daniel, Leonhardi, Alexander, and Rothermel, Kurt. Modeling com-
puter networks for emulation. In PDPTA (2002).

92

[38] Inc., Docker. Display a live stream of container resource usage statistics. https:
//docs.docker.com/engine/reference/commandline/stats/, 2000. Last ac-
cessed 8 January 2020.

[39] Inc., Ubiquiti Networks. A physical configurable router. https://dl.ubnt.com/
datasheets/edgemax/EdgeRouter_X_DS.pdf. Last accessed 8 January 2020.

[40] international standard, ECMA. Javascript programming language. https://

www.json.org/json-en.html, 1999. Last accessed 7 January 2020.

[41] Kalitay, Hemanta Kumar, and Nambiarz, Manoj K. Designing Wamen: A wide
area network emulator tool. In 2011 Third International Conference on Com-
munication Systems and Networks (COMSNETS 2011) (2011), IEEE, pp. 1–4.

[42] Kiess, Wolfgang, and Mauve, Martin. A survey on real-world implementations
of mobile ad-hoc networks. Ad Hoc Networks 5, 3 (2007), 324 – 339.

[43] Kolyshkin, Kirill. Virtualization in Linux. White paper, OpenVZ 3 (2006), 39.

[44] Kurose, James F. Computer networking: A top-down approach featuring the
Internet, 3/E. Pearson Education India, 2005.

[45] Kwan, Bruce H, Agarwal, Puneet, and Khamisy, Asad. Hierarchical queue shap-
ing, Mar. 6 2012. US Patent 8,130,648.

[46] Lantz, Bob, Heller, Brandon, and McKeown, Nick. A network in a laptop:
rapid prototyping for software-defined networks. In Proceedings of the 9th ACM
SIGCOMM Workshop on Hot Topics in Networks (2010), ACM, p. 19.

[47] Liu, Jianqi, Wan, Jiafu, Wang, Qinruo, Deng, Pan, Zhou, Keliang, and Qiao,
Yupeng. A Survey on Position-Based Routing for Vehicular Ad Hoc Networks.
Telecommunication Systems 62, 1 (2016), 15–30.

[48] Macker, J. P., Chao, W., and Weston, J. W. A low-cost, IP-based mobile net-
work emulator (MNE). In IEEE Military Communications Conference, 2003.
MILCOM 2003. (Oct 2003), vol. 1, pp. 481–486 Vol.1.

[49] McKeown, Nick, Anderson, Tom, Balakrishnan, Hari, Parulkar, Guru, Peterson,
Larry, Rexford, Jennifer, Shenker, Scott, and Turner, Jonathan. OpenFlow:
Enabling innovation in campus networks. SIGCOMM Comput. Commun. Rev.
38, 2 (Mar. 2008), 69–74.

[50] Merkel, Dirk. Docker: lightweight Linux containers for consistent development
and deployment. Linux journal 2014, 239 (2014), 2.

[51] Mogul, Jeffrey Clifford. System and method for receiver based allocation of
network bandwidth, May 6 2003. US Patent 6,560,243.

[52] Muuss, Mike. Test the reachability of a host on an Internet protocol (IP) network.
https://linux.die.net/man/8/ping, 1983. Last accessed 9 January 2020.

93

[53] Networks, Nicira. Nox: a C++ OpenFlow controller. https://github.com/

noxrepo/nox, 2008. Last accessed 7 January 2020.

[54] Networks, Ubiquiti. Physical router. https://www.ui.com/edgemax/

edgerouter-x/. Last accessed 13 January 2020.

[55] NLANR/DAST. A speed test tool for TCP, UDP and SCTP. https://iperf.
fr/, 2000. Last accessed 7 January 2020.

[56] Noble, Brian D, Satyanarayanan, Mahadev, Nguyen, Giao T, and Katz,
Randy H. Trace-based mobile network emulation. In ACM SIGCOMM Computer
Communication Review (1997), vol. 27, ACM, pp. 51–61.

[57] Nordstrom, Erik, Gunningberg, Per, and Lundgren, Henrik. A testbed and
methodology for experimental evaluation of wireless mobile ad hoc networks. In
First international conference on Testbeds and Research Infrastructures for the
Development of Networks and Communities (2005), IEEE, pp. 100–109.

[58] Peuster, Manuel. ContainerNet API, 2020.

[59] Peuster, Manuel, Kampmeyer, Johannes, and Karl, Holger. Containernet 2.0: A
rapid prototyping platform for hybrid service function chains. In 2018 4th IEEE
Conference on Network Softwarization and Workshops (NetSoft) (2018), IEEE,
pp. 335–337.

[60] Rechert, Klaus, McHardy, Patrick, and Brown, Martin A. HFSC scheduling with
Linux. Linux Magazine (2005), 28–37.

[61] Reina, DG, Askalani, Mohamed, Toral, SL, Barrero, Federico, Asimakopoulou,
Eleana, and Bessis, Nik. A survey on multihop ad hoc networks for disaster
response scenarios. International Journal of Distributed Sensor Networks 11, 10
(2015), 647037.

[62] Rizzo, Luigi. Dummynet: a simple approach to the evaluation of network proto-
cols. ACM SIGCOMM Computer Communication Review 27, 1 (1997), 31–41.

[63] Roh, Bongsoo, Han, Myoung-hun, Hoh, Mijeong, Kim, Kwangsoo, and Roh,
Byeong-hee. Tactical manet architecture for unmanned autonomous maneuver
network. In MILCOM 2016-2016 IEEE Military Communications Conference
(2016), IEEE, pp. 829–834.

[64] Rosenblum, Mendel. VmWare virtual platform. In Proceedings of Hot Chips
(1999), vol. 1999, pp. 185–196.

[65] Ryu, Jin-Le, Kwon, Jong-Chan, and Choi, Eun-Ha. Remote controller, May
2015. US Patent App. 29/493,596.

[66] Salsano, Stefano, Ludovici, Fabio, Ordine, Alessandro, and Giannuzzi, D. Def-
inition of a general and intuitive loss model for packet networks and its imple-
mentation in the netem module in the linux kernel. University of Rome (2012).

94

[67] Salyers, David C, Striegel, Aaron D, and Poellabauer, Christian. Wireless reli-
ability: Rethinking 802.11 packet loss. In 2008 International Symposium on a
World of Wireless, Mobile and Multimedia Networks (2008), IEEE, pp. 1–4.

[68] Seaman, Mick, Smith, Andrew, Crawley, Eric, and Wroclawski, John. Integrated
service mappings on ieee 802 networks. RFC2815 (2000).

[69] Sharma, S., and Kumar, S. Techniques for real-world implementation of a manet.
In 2019 International Conference on Machine Learning, Big Data, Cloud and
Parallel Computing (COMITCon) (Feb 2019), pp. 519–524.

[70] Soltesz, Stephen, Pötzl, Herbert, Fiuczynski, Marc E, Bavier, Andy, and
Peterson, Larry. Container-based operating system virtualization: a scal-
able, high-performance alternative to hypervisors. In Proceedings of the 2Nd
ACM SIGOPS/EuroSys european conference on computer systems 2007 (2007),
pp. 275–287.

[71] Staub, Thomas, Gantenbein, Reto, and Braun, Torsten. VirtualMesh: An Em-
ulation Framework for Wireless Mesh and Ad Hoc Networks in OMNeT++.
Simulation 87, 1-2 (2011), 66–81.

[72] Stoica, Ion, Zhang, Hui, and Ng, TS. A hierarchical fair service curve algorithm
for link-sharing, real-time and priority services, vol. 27. ACM, 1997.

[73] Suri, Niranjan, Hansson, Anders, Nilsson, Jan, Lubkowski, Piotr, Marcus,
Kelvin, Hauge, Mariann, Lee, King, Buchin, Boyd, Mısırhoğlu, Levent, and
Peuhkuri, Markus. A realistic military scenario and emulation environment
for experimenting with tactical communications and heterogeneous networks.
In 2016 International Conference on Military Communications and Information
Systems (ICMCIS) (2016), IEEE, pp. 1–8.

[74] To, Marco Antonio, Cano, Marcos, and Biba, Preng. DOCKEMU–a network
emulation tool. In 2015 IEEE 29th International Conference on Advanced In-
formation Networking and Applications Workshops (2015), IEEE, pp. 593–598.

[75] Tuteja, Asma, Gujral, Rajneesh, and Thalia, Sunil. Comparative Performance
Analysis of DSDV, AODV and DSR Routing Protocols in MANET Using NS2.
In 2010 International Conference on Advances in Computer Engineering (2010),
IEEE, pp. 330–333.

[76] Varis, Nuutti. Anatomy of a Linux bridge. In Proceedings of Seminar on Network
Protocols in Operating Systems (2012), p. 58.

[77] Wang, Zhiheng, Zeitoun, Amgad, and Jamin, Sugih. Challenges and lessons
learned in measuring path RTT for proximity-based applications. In Passive
and Active Measurement Workshop (2003), Citeseer.

95

[78] Weingartner, Elias, Vom Lehn, Hendrik, and Wehrle, Klaus. A Performance
Comparison of Recent Network Simulators. In 2009 IEEE International Confer-
ence on Communications (2009), IEEE, pp. 1–5.

[79] Xu, Kaixin, Tang, Ken, Bagrodia, Rajive, Gerla, Mario, and Bereschinsky,
Michael. Adaptive bandwidth management and QoS provisioning in large scale
ad hoc networks. In IEEE Military Communications Conference, 2003. MIL-
COM 2003. (2003), vol. 2, IEEE, pp. 1018–1023.

[80] Xue, Qi, and Ganz, Aura. QoS routing for mesh-based wireless LANs. Interna-
tional Journal of Wireless Information Networks 9, 3 (2002), 179–190.

[81] Yan, Jiaqi, and Jin, Dong. Vt-mininet: Virtual-time-enabled Mininet for scalable
and accurate software-define network emulation. In Proceedings of the 1st ACM
SIGCOMM Symposium on Software Defined Networking Research (2015), ACM,
p. 27.

[82] Zhang, Baoxian, and Mouftah, Hussein T. QoS routing for wireless ad hoc
networks: problems, algorithms, and protocols. IEEE Communications Magazine
43, 10 (2005), 110–117.

96

	Network Virtualization and Emulation using Docker, OpenvSwitch and Mininet-based Link Emulation
	Recommended Citation

	tmp.1597711627.pdf.ouYRi

