2,918 research outputs found

    A Future for Integrated Diagnostic Helping

    Get PDF
    International audienceMedical systems used for exploration or diagnostic helping impose high applicative constraints such as real time image acquisition and displaying. A large part of computing requirement of these systems is devoted to image processing. This chapter provides clues to transfer consumers computing architecture approaches to the benefit of medical applications. The goal is to obtain fully integrated devices from diagnostic helping to autonomous lab on chip while taking into account medical domain specific constraints.This expertise is structured as follows: the first part analyzes vision based medical applications in order to extract essentials processing blocks and to show the similarities between consumer’s and medical vision based applications. The second part is devoted to the determination of elementary operators which are mostly needed in both domains. Computing capacities that are required by these operators and applications are compared to the state-of-the-art architectures in order to define an efficient algorithm-architecture adequation. Finally this part demonstrates that it's possible to use highly constrained computing architectures designed for consumers handled devices in application to medical domain. This is based on the example of a high definition (HD) video processing architecture designed to be integrated into smart phone or highly embedded components. This expertise paves the way for the industrialisation of intergraded autonomous diagnostichelping devices, by showing the feasibility of such systems. Their future use would also free the medical staff from many logistical constraints due the deployment of today’s cumbersome systems

    Ability of head-mounted display technology to improve mobility in people with low vision: a systematic review

    Get PDF
    Purpose: The purpose of this study was to undertake a systematic literature review on how vision enhancements, implemented using head-mounted displays (HMDs), can improve mobility, orientation, and associated aspects of visual function in people with low vision. Methods: The databases Medline, Chinl, Scopus, and Web of Science were searched for potentially relevant studies. Publications from all years until November 2018 were identified based on predefined inclusion and exclusion criteria. The data were tabulated and synthesized to produce a systematic review. Results: The search identified 28 relevant papers describing the performance of vision enhancement techniques on mobility and associated visual tasks. Simplifying visual scenes improved obstacle detection and object recognition but decreased walking speed. Minification techniques increased the size of the visual field by 3 to 5 times and improved visual search performance. However, the impact of minification on mobility has not been studied extensively. Clinical trials with commercially available devices recorded poor results relative to conventional aids. Conclusions: The effects of current vision enhancements using HMDs are mixed. They appear to reduce mobility efficiency but improved obstacle detection and object recognition. The review highlights the lack of controlled studies with robust study designs. To support the evidence base, well-designed trials with larger sample sizes that represent different types of impairments and real-life scenarios are required. Future work should focus on identifying the needs of people with different types of vision impairment and providing targeted enhancements. Translational Relevance: This literature review examines the evidence regarding the ability of HMD technology to improve mobility in people with sight loss

    Towards a Common Software/Hardware Methodology for Future Advanced Driver Assistance Systems

    Get PDF
    The European research project DESERVE (DEvelopment platform for Safe and Efficient dRiVE, 2012-2015) had the aim of designing and developing a platform tool to cope with the continuously increasing complexity and the simultaneous need to reduce cost for future embedded Advanced Driver Assistance Systems (ADAS). For this purpose, the DESERVE platform profits from cross-domain software reuse, standardization of automotive software component interfaces, and easy but safety-compliant integration of heterogeneous modules. This enables the development of a new generation of ADAS applications, which challengingly combine different functions, sensors, actuators, hardware platforms, and Human Machine Interfaces (HMI). This book presents the different results of the DESERVE project concerning the ADAS development platform, test case functions, and validation and evaluation of different approaches. The reader is invited to substantiate the content of this book with the deliverables published during the DESERVE project. Technical topics discussed in this book include:Modern ADAS development platforms;Design space exploration;Driving modelling;Video-based and Radar-based ADAS functions;HMI for ADAS;Vehicle-hardware-in-the-loop validation system
    corecore