235 research outputs found

    Recent Innovations in Footwear and the Role of Smart Footwear in Healthcare—A Survey

    Get PDF
    © 2024 The Author(s). Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Smart shoes have ushered in a new era of personalised health monitoring and assistive technologies. Smart shoes leverage technologies such as Bluetooth for data collection and wireless transmission, and incorporate features such as GPS tracking, obstacle detection, and fitness tracking. As the 2010s unfolded, the smart shoe landscape diversified and advanced rapidly, driven by sensor technology enhancements and smartphones’ ubiquity. Shoes have begun incorporating accelerometers, gyroscopes, and pressure sensors, significantly improving the accuracy of data collection and enabling functionalities such as gait analysis. The healthcare sector has recognised the potential of smart shoes, leading to innovations such as shoes designed to monitor diabetic foot ulcers, track rehabilitation progress, and detect falls among older people, thus expanding their application beyond fitness into medical monitoring. This article provides an overview of the current state of smart shoe technology, highlighting the integration of advanced sensors for health monitoring, energy harvesting, assistive features for the visually impaired, and deep learning for data analysis. This study discusses the potential of smart footwear in medical applications, particularly for patients with diabetes, and the ongoing research in this field. Current footwear challenges are also discussed, including complex construction, poor fit, comfort, and high cost.Peer reviewe

    A Review of Wearable Sensor Systems to Monitor Plantar Loading in the Assessment of Diabetic Foot Ulcers

    Get PDF
    Diabetes is highly prevalent throughout the world and imposes a high economic cost on countries at all income levels. Foot ulceration is one devastating consequence of diabetes, which can lead to amputation and mortality. Clinical assessment of diabetic foot ulcer (DFU) is currently subjective and limited, impeding effective diagnosis, treatment and prevention. Studies have shown that pressure and shear stress at the plantar surface of the foot plays an important role in the development of DFUs. Quantification of these could provide an improved means of assessment of the risk of developing DFUs. However, commercially-available sensing technology can only measure plantar pressures, neglecting shear stresses and thus limiting their clinical utility. Research into new sensor systems which can measure both plantar pressure and shear stresses are thus critical. Our aim in this paper is to provide the reader with an overview of recent advances in plantar pressure and stress sensing and offer insights into future needs in this critical area of healthcare. Firstly, we use current clinical understanding as the basis to define requirements for wearable sensor systems capable of assessing DFU. Secondly, we review the fundamental sensing technologies employed in this field and investigate the capabilities of the resultant wearable systems, including both commercial and research-grade equipment. Finally, we discuss research trends, ongoing challenges and future opportunities for improved sensing technologies to monitor plantar loading in the diabetic foot

    Commercially available pressure sensors for sport and health applications: A comparative review

    Get PDF
    Pressure measurement systems have numerous applications in healthcare and sport. The purpose of this review is to: (a) describe the brief history of the development of pressure sensors for clinical and sport applications, (b) discuss the design requirements for pressure measurement systems for different applications, (c) critique the suitability, reliability, and validity of commercial pressure measurement systems, and (d) suggest future directions for the development of pressure measurements systems in this area. Commercial pressure measurement systems generally use capacitive or resistive sensors, and typically capacitive sensors have been reported to be more valid and reliable than resistive sensors for prolonged use. It is important to acknowledge, however, that the selection of sensors is contingent upon the specific application requirements. Recent improvements in sensor and wireless technology and computational power have resulted in systems that have higher sensor density and sampling frequency with improved usability – thinner, lighter platforms, some of which are wireless, and reduced the obtrusiveness of in-shoe systems due to wireless data transmission and smaller data-logger and control units. Future developments of pressure sensors should focus on the design of systems that can measure or accurately predict shear stresses in conjunction with pressure, as it is thought the combination of both contributes to the development of pressure ulcers and diabetic plantar ulcers. The focus for the development of in-shoe pressure measurement systems is to minimise any potential interference to the patient or athlete, and to reduce power consumption of the wireless systems to improve the battery life, so these systems can be used to monitor daily activity. A potential solution to reduce the obtrusiveness of in-shoe systems include thin flexible pressure sensors which can be incorporated into socks. Although some experimental systems are available further work is needed to improve their validity and reliability

    The potential role of sensors, wearables and telehealth in the remote management of diabetes-related foot disease

    Get PDF
    Diabetes-related foot disease (DFD), which includes foot ulcers, infection and gangrene,is a leading cause of the global disability burden. About half of people who develop DFD experience a recurrence within one year. Long-term medical management to reduce the risk of recurrence is therefore important to reduce the global DFD burden. This review describes research assessing the value of sensors, wearables and telehealth in preventing DFD. Sensors and wearables have been developed to monitor foot temperature, plantar pressures, glucose, blood pressure and lipids. The monitoring of these risk factors along with telehealth consultations has promise as a method for remotely managing people who are at risk of DFD. This approach can potentially avoid or reduce the need for face-to-face consultations. Home foot temperature monitoring, continuous glucose monitoring and telehealth consultations are the approaches for which the most highly developed and user-friendly technology has been developed. A number of clinical studies in people at risk of DFD have demonstrated benefits when using one of these remote monitoring methods. Further development and evidence are needed for some of the other approaches, such as home plantar pressure and footwear adherence monitoring. As yet, no composite remote management program incorporating remote monitoring and the management of all the key risk factors for DFD has been developed and implemented. Further research assessing the feasibility and value of combining these remote monitoring approaches as a holistic way of preventing DFD is needed

    In-shoe sensor system with an embedded user interface and wearable leg unit

    Get PDF
    In-shoe sensor systems are of great interest to monitor foot health, sports activities and rehabilitation strategies. Among the potential users are people with diabetes, a large part of the population for which monitoring foot pressure and temperature is critical to avoid ulceration, and even amputation. Despite all these reasons the use of foot monitoring devices is still uncommon compared to other accessories such as fitness tracking devices. This work describes the development of an instrumented insole for monitoring pressure, temperature and humidity taking advantage of widely available wearable components. This is made possible by additionally developing a shield board for time-division multiplexing of the pressure signals and an embedded user interface which is stored in the microcontroller's memory and uploaded to a smartphone at start-up via Bluetooth Low Energy. The user interface runs on a smartphone to provide both real time monitoring and averages of sensor data. The system is described in detail and validated by monitoring pressure patterns during stance, by testing response to temperature variations and observing patterns in individuals with pes planus posture.info:eu-repo/semantics/publishedVersio

    Development of a self-powered piezo-resistive smart insole equipped with low-power BLE connectivity for remote gait monitoring

    Get PDF
    The evolution of low power electronics and the availability of new smart materials are opening new frontiers to develop wearable systems for medical applications, lifestyle monitoring, and performance detection. This paper presents the development and realization of a novel smart insole for monitoring the plantar pressure distribution and gait parameters; indeed, it includes a piezoresistive sensing matrix based on a Velostat layer for transducing applied pressure into an electric signal. At first, an accurate and complete characterization of Velostat-based pressure sensors is reported as a function of sizes, support material, and pressure trend. The realization and testing of a low-cost and reliable piezoresistive sensing matrix based on a sandwich structure are discussed. This last is interfaced with a low power conditioning and processing section based on an Arduino Lilypad board and an analog multiplexer for acquiring the pressure data. The insole includes a 3- axis capacitive accelerometer for detecting the gait parameters (swing time and stance phase time) featuring the walking. A Bluetooth Low Energy (BLE) 5.0 module is included for transmitting in real-time the acquired data toward a PC, tablet or smartphone, for displaying and processing them using a custom Processing® application. Moreover, the smart insole is equipped with a piezoelectric harvesting section for scavenging energy from walking. The onfield tests indicate that for a walking speed higher than 1 ms−1, the device’s power requirements (i.e., P = 5.84 mW ) was fulfilled. However, more than 9 days of autonomy are guaranteed by the integrated 380-mAh Lipo battery in the total absence of energy contributions from the harvesting section

    Five year mortality and direct costs of care for people with diabetic foot complications are comparable to cancer.

    Get PDF
    BackgroundIn 2007, we reported a summary of data comparing diabetic foot complications to cancer. The purpose of this brief report was to refresh this with the best available data as they currently exist. Since that time, more reports have emerged both on cancer mortality and mortality associated with diabetic foot ulcer (DFU), Charcot arthropathy, and diabetes-associated lower extremity amputation.MethodsWe collected data reporting 5-year mortality from studies published following 2007 and calculated a pooled mean. We evaluated data from DFU, Charcot arthropathy and lower extremity amputation. We dichotomized high and low amputation as proximal and distal to the ankle, respectively. This was compared with cancer mortality as reported by the American Cancer Society and the National Cancer Institute.ResultsFive year mortality for Charcot, DFU, minor and major amputations were 29.0, 30.5, 46.2 and 56.6%, respectively. This is compared to 9.0% for breast cancer and 80.0% for lung cancer. 5 year pooled mortality for all reported cancer was 31.0%. Direct costs of care for diabetes in general was 237billionin2017.Thisiscomparedto237 billion in 2017. This is compared to 80 billion for cancer in 2015. As up to one-third of the direct costs of care for diabetes may be attributed to the lower extremity, these are also readily comparable.ConclusionDiabetic lower extremity complications remain enormously burdensome. Most notably, DFU and LEA appear to be more than just a marker of poor health. They are independent risk factors associated with premature death. While advances continue to improve outcomes of care for people with DFU and amputation, efforts should be directed at primary prevention as well as those for patients in diabetic foot ulcer remission to maximize ulcer-free, hospital-free and activity-rich days

    Foot Modeling and Smart Plantar Pressure Reconstruction from Three Sensors

    No full text
    International audienceIn order to monitor pressure under feet, this study presents a biomechanical model of the human foot. The main elements of the foot that induce the plantar pressure distribution are described. Then the link between the forces applied at the ankle and the distribution of the plantar pressure is established. Assumptions are made by defining the concepts of a 3D internal foot shape, which can be extracted from the plantar pressure measurements, and a uniform elastic medium, which describes the soft tissues behaviour. In a second part, we show that just 3 discrete pressure sensors per foot are enough to generate real time plantar pressure cartographies in the standing position or during walking. Finally, the generated cartographies are compared with pressure cartographies issued from the F-SCAN system. The results show 0.01 daN (2% of full scale) average error, in the standing position

    Validation of the wearable sensor system - MoveSole® smart insoles

    Get PDF
    Biomechanical analysis of gait is commonly used in physiotherapy. Ground reaction forces during phases of gait is one element of kinetic analysis. In this article, we analyze if the MoveSole® smart insole is valid and accurate equipment for measuring ground reaction forces in clinical physiotherapy. MoveSole® StepLab is a mobile measurement system for instant underfoot force measurements during gait. Unique electromagnetic film (EMFI) based sensor technology and printed electronics production technology is integrated in the MoveSole® StepLab measurement system. The MoveSole® StepLab measures plantar ground reaction force distribution over the sensors and provides an estimation of the maximum total ground reaction force. We developed a two phase validation process to extract relevant parameters and compared the results to a Kistler force plate using the BioWare® analyzing program as a reference method. Our results show that MoveSole® smart insoles reach the strong level of accuracy needed in clinical work concerning highest ground reaction forces during step (Pearson correlation .822 - .875). The correlation of the time when the maximum ground reaction force occurred was moderate, e.g. during heel strike or toe-off (Pearson correlation natural gait speed .351 - .462, maximum gait speed .430). Our conclusion is that MoveSole® smart insoles are a potential tool for analyzing and monitoring gait ground reaction forces during physiotherapy processes
    corecore