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Abstract: The evolution of low power electronics and the availability of new smart materials are
opening new frontiers to develop wearable systems for medical applications, lifestyle monitoring,
and performance detection. This paper presents the development and realization of a novel smart
insole for monitoring the plantar pressure distribution and gait parameters; indeed, it includes a
piezoresistive sensing matrix based on a Velostat layer for transducing applied pressure into an
electric signal. At first, an accurate and complete characterization of Velostat-based pressure sensors
is reported as a function of sizes, support material, and pressure trend. The realization and testing of
a low-cost and reliable piezoresistive sensing matrix based on a sandwich structure are discussed.
This last is interfaced with a low power conditioning and processing section based on an Arduino
Lilypad board and an analog multiplexer for acquiring the pressure data. The insole includes a
3-axis capacitive accelerometer for detecting the gait parameters (swing time and stance phase time)
featuring the walking. A Bluetooth Low Energy (BLE) 5.0 module is included for transmitting in
real-time the acquired data toward a PC, tablet or smartphone, for displaying and processing them
using a custom Processing® application. Moreover, the smart insole is equipped with a piezoelectric
harvesting section for scavenging energy from walking. The onfield tests indicate that for a walking
speed higher than 1 ms−1, the device’s power requirements (i.e., P = 5.84 mW) was fulfilled.
However, more than 9 days of autonomy are guaranteed by the integrated 380-mAh Lipo battery in
the total absence of energy contributions from the harvesting section.

Keywords: smart insole; health monitoring; plantar pressure distribution; piezoresistivity; BLE

1. Introduction

Today technology is increasingly in close contact with humanity, an inseparable bond
that promises, used with intellect and parsimony, to improve our lives in every aspect [1–3].
Thanks to the Internet of Things (IoT), these technologies allow us to be connected and
keep under control every aspect of our life, from the home to the car, to health monitor-
ing [4–6]. The latter application is significant, both for controlling chronic diseases and the
vital parameters and performances of sportsmen; the recent advances in low power elec-
tronics and communications have enabled the development of IoMT (Internet of Medical
Things) or IoHT (Internet of Healthcare Things) devices with considerable technological
improvements in the healthcare and culture of prevention. Specifically, the wearable device
market is growing rapidly ensuring prompt intervention, punctual prevention, and time-
saving [7–9]. Recent technological advances have led to the development of biomedical
wearable devices, for instance, for gait analysis, which is crucial as plantar pressure distri-
bution reflects the foot structure and user posture [10,11]. These smart insoles are based on
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pressure sensors, such as force-sensitive resistors (FSRs), to collect data related to plantar
pressure. This paper reports on the design of a low-cost, compact, and reliable smart
insole for monitoring the plantar pressure distribution and gait parameters. It is equipped
with a matrix of piezoresistive sensors based on the Velostat® layer (manufactured by 3M
Electronics division, Saint Paul, MN, USA), based on a sandwich structure [12,13]. The
main contributions of the scientific work are:

• A comprehensive characterization of Velostat®-based piezoresistive sensors with
different sizes, support materials, fixing methods, and pressure trends to determine
the most suitable solution for implementing the sensing matrix;

• Design of the sensing matrix, including 8 FSRs with size 3 × 1 cm2, interfaced with a
conditioning and acquisition section based on Arduino Lilypad board;

• Testing of the low-power smart insole by acquiring pressure and acceleration data
provided by the sensing matrix and 3-axis accelerometer; the insole includes a piezo-
electric harvesting section to scavenge energy from the user walking [8,14];

• Development of a custom Processing® application, implementing an interpolation
method for extending the acquired pressure map.

The Arduino Lilypad board acquires and processes the sensors’ data, optimizes
the power consumption, and manages the data transmission, using a Bluetooth Low
Energy (BLE) module, toward a host device (e.g., PC, tablet or smartphone) for the post-
processing. By exploiting the low power modalities of used components, the insole power
requirement has been minimized to only 5.84 mW. The onfield tests demonstrated that, for
walking speed higher than 1 ms−1, the harvesting section entirely covered the device power
requirement (i.e., P = 5.84 mW). Nevertheless, the LiPo battery ensures an autonomy of
9 days in the absence of energy contribution from the harvesting section.

The article is arranged as follows: in the following section, an overview of smart
insoles based on FSRs and inertial sensors is presented; in Section 3, the setup employed to
characterize Velostat-based piezoresistive sensors is described. Then, the characterization
of realized Velostat-based sensors is reported as a function of size, support material,
fixing method, and pressure trend (Section 4). Moreover, the design of the sensing matrix
based on a sandwich structure is introduced, integrated with a low power acquisition and
processing section. Subsequently, the Processing® application to post-process and display
the data received by the smart insole is presented. Finally, in Section 5, the obtained results
are discussed.

2. An Overview of Smart Insoles for Plantar Pressure Detection and Gait Analysis

Recent advances in the biomedical field have led to the development of new advanced
wearable devices, including those intended for gait analysis [15,16]. The most widespread
applications regard the monitoring of diabetes ulcers [17], the evaluation of sports per-
formance [18], workers’ conditions [19], and biometric recognition [20]. The assessment
of plantar pressure distribution is essential to understand the lower limbs’ functioning,
design footwear, and prevent injuries [21]. In recent years, the design of smart insoles,
equipped with sensors for monitoring plantar pressure, has attracted considerable interest.
IoT technologies play a fundamental role in developing these devices, enabling capillary,
accurate, and continuous tracking of user conditions [22]. To detect the pressure distribu-
tion, piezoresistive force sensors (FSRs) are used instead of the piezoelectric, capacitive,
and optical sensors [23]. The FSRs are usually featured by a linear trend of conductivity
with the applied force [24]. Soft materials are preferred because featured by high sensitivity,
lightweight, low invasiveness, and a long lifetime [25]. These features make FSRs suitable
for realizing wearable devices adopting proper strategies for improving sensitivity and
flexibility [26]. A configuration to detect the resistance variations is to configure the sensor
as a voltage divider, acquiring the non-linear voltage on the sensor and managing the
non-linearity using software methods. Another applied approach uses a trans-impedance
amplifier: its output voltage varies linearly with the current through the sensor and thus
with the applied force. To obtain the complete plantar distribution on the insole, it is



Sensors 2021, 21, 4539 3 of 31

necessary to use multiple FSRs positioned at the toe, metatarsal, and heel, corresponding
to bony prominences where high pressures are often applied. In [27], the authors identified
15 interest areas on the sole foot, supporting most of the bodyweight and regulated by the
body balance. Therefore, to acquire all the signals, it is needed a multiplexing scheme for
the FSRs to use then only one analog channel [28].

Human walking represents an energy source exploitable for feeding wearable devices,
such as smart insoles and socks [29]. According to the transduction mechanism, several so-
lutions were proposed in the literature exploiting electromagnetic induction, piezoelectric,
and triboelectric effects for scavenging energy from body vibrations, body inertia, and foot
pressure [30,31]. Besides, several efforts have been made to improve efficiency, wearability,
and durability and to reduce the cost of harvesting solutions, opening to the development
of new self-powered wearable devices [32,33].

In [34], the authors proposed a low-cost characterization system to calibrate FSRs, ce-
ramic and flexible piezoelectric sensors, and characterize the designed insoles. To evaluate
the user walking mode, the authors acquired and time-segmented the vGRF (ground reac-
tion forces) signal to get its mean value and standard deviation for a gait cycle. The results
showed that the FSR is the most effective one for insole applications; instead, piezoelectric
sensors can be used only for detecting the start and end of the cycle. The data acquisition
system, whose block diagram is shown in Figure 1, collected sensors data and wirelessly
sent them to a host computer for post-processing and visualization.

Figure 1. Overall block diagram of the insole data acquisition system, Adapted from Ref. [34].

Another configuration for realizing smart insole is illustrated in Figure 2 [35]. The
authors produced six pairs of insoles to cover the most common foot sizes, using nine
circular FlexiForce sensors, located respectively under the toe (T1), metatarsals (M1–M5),
middle part (MF7), and heel (LH1, MH1), as illustrated in Figure 2a [36]. A multiplexing
scheme was used to acquire the sensor signals and then digitize them using an external
12-bit analog-to-digital converter (ADC). Their study demonstrated the importance of
FSRs calibration; specifically, the characteristic of the sensors belonging to the same batch
(Figure 3a) could differ significantly between the different realized insoles (Figure 3b).

Sang-Youn Kim et al., in [37], created a pair of tactile shoes (Figure 4) that recreate the
realistic sensations of walking on different terrains. They were engaged in walk-in virtual
reality, employing pressure sensors on the insole, foot position tracker, haptic rendering
for multi-modal interaction, and MR (MagnetoRheological) fluid actuators. Specifically,
the MR actuators adjusted the MR fluid’s viscosity by varying the magnetic field intensity
according to the selected virtual ground surface.
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Figure 2. Smart insole proposed in [35], Copyright Clearance Center_Springer Nature_Copyright Permission_Figures 2
and 3.pdf: block diagram of the proposed solution (a); view of the prototype with highlighted main sections (b); insole
installed in a shoe (c).

Figure 3. Characteristics of force sensors (a); comparison of the force–conductance ranges during calibration of force sensors
(b) [35], ® by Copyright Clearance Center_Springer Nature_Copyright Permission_Figures 2 and 3.pdf.

Figure 4. RealWalk haptic shoes (a); Sensor matrix (b) Adapted from [37].

Wei Wang et al. presented self-powered insoles integrated with piezoelectric poly
vinylidene fluoride (PVDF) nanogenerators (NGs) and manufactured using 3D flatbed
knitwear without seams for monitoring user gait and scavenging the walking energy [38].
The NGs were made by growing aluminum electrodes on the PVDF film. The characteriza-
tion results for different forefoot, heel positions, and walking speeds provided a maximum
open-circuit voltage of 41 V for a 168.1 µW power (Figure 5a).
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Figure 5. Schematic diagram of the self-powered intelligent insole detailing the fabric’s knitted motif (a) and the related
prototype (b) Adapted from [38].

Footwear plays an essential role in foot health, especially for patients with diabetes,
to prevent and treat diabetic foot ulceration. In [39], the authors reported on a health
device to assess plantar pressures and provide feedback based on set pressure thresholds.
The developed insole, called “SurroSense Rx”, stimulated plantar pressure during daily
activities (Figure 6). Each insole was equipped with eight pressure sensors located in the
highest risk regions of plantar ulcers and 6-DOF (degree of freedom) force/torque sensors;
clinical results showed a reduction of ulcer recurrence rate by more than 50%.

Figure 6. “SurroSense Rx” smart insole for curing plantar pressure during daily activities, Adapted
from [39].

D. Aggarwal et al. proposed novel smart socks allowing physiotherapists to remotely
follow patients status [40]; the socks included three pressure and movement sensors for
collecting data on weight distribution, movement freedom, and feet orientation, to be
shared in real-time, via a web platform, with the physiotherapist. The results indicated
that the smart socks were very helpful to understand better the patient’s body conditions
and decide the most suitable therapy. Similarly, the Siren startup presented novel smart
socks offering constant measurements of gait parameters [41]. The proposed socks monitor
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the feet health of diabetics, thanks to temperature sensors intertwined with the sock
fabric, to detect temperature increase due to inflammation (Figure 7a). The information is
transmitted to the smartphone app, which immediately alerts the user with a notification
or SMS (Figure 7b). In addition, the socks can integrate various sensors, such as humidity,
pressure, light and movement sensors, LEDs, and RFID chips.

Figure 7. Smart socks developed by Siren with a detection system that can help to detect the first
signs of foot ulcers: sensitive socks (a) and smartphone app (b), Adapted from [41].

Bonbouton Co. patented a smart insole to monitor the foot health of diabetic patients,
detecting the skin temperature, pressure, and other data using a graphene-based sensor [42].
The collected data were sent to a custom app, accessible by both the patient and doctor,
who can determine whether an intervention or a treatment is required.

Other similar devices are the FeetMe insoles for performing gait analysis or moni-
toring user parameters (Figure 8a) [43]. Vibrasole is an intelligent insole, based on FSRs,
for helping elderly people to monitor and manage their balance while walking and stand-
ing [44]. The Vibrasole aids diabetic users that suffer from feet ulcers with low random
vibrations (Figure 8b). Inertial sensors are also widely exploited to monitor the gait param-
eters quickly, reliably, and non-invasively. In particular, Y. Charlon et al. presented a smart
insole able to detect step count, covered distance, and gait speed [45]. Two prototypes
were developed and tested in real use conditions; the first one included an MC13213 mi-
crocontroller to acquire data from ADXL345 accelerometer and A401 piezoresistive sensor
(Figure 9a). Moreover, the device was equipped with a radio beacon to send acquired
data to a PC, which stored them in a remote database, accessible by a web application
(Figure 9b). To power supply the device, a 135-mAh lithium battery was used. The second
prototype (Figure 9c) included an onboard energy harvesting system with an MFC 13213
piezoelectric generator (Figure 9d). They demonstrated that the harvesting section could
scavenge 0.3 mW for 1 m/s walking speed. Therefore, for frail elderly patients, who walks
at an average speed of 1 m/s, only 3/10 of the energy requirement was fulfilled (1 mW); an
additional lithium battery was added to provide the required energy.
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Figure 8. Top View of the FeetMe [43] (a) and Vibrasole insoles, Adapted from [44] (b).

Figure 9. Prototypes of smart insole proposed in [45], Copyright 2018 Elsevier; first prototype (a) block diagram of the
first device version (b); prototype of the smart insole (c), and the second version of the insole with the energy harvesting
system (d).

In [46], the developed smart insole was constituted by three subsystems; the first one
was equipped with an array of 48 pressure sensors to obtain a plantar pressure map, a 3-axis
accelerometer, a 3-axis gyroscope, and a 3-axis compass to measure the user movement. The
second subsystem was the signal acquisition and transmission module, including a 12-bit
ADC operating with a sample rate up to 100 Hz. The third subsystem was represented
by sensors collection and a processing module. The data were transmitted via Bluetooth
to a smartphone and, in turn, shared with centralized servers to monitor the user gait in
real-time. In [47], an insole was proposed to assess long-term chronic diseases affecting
older people, such as stroke, dementia, Parkinson’s disease, cancer, heart disease, and
diabetes. It included four sections; the first consists of 31 piezo-sensors connected to a
12 bit ADC and a microcontroller to read the pressure data at a 5 Hz sample rate. The
second subsystem was equipped with the MPU6000 IMU to gather information about the
wearer’s movement and position. The third section was the power management system;
a 280-mAh Li-ion battery fed the device, allowing 120 min of continuous operation. The
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fourth subsystem was the communication section enabling the data transmission with a
smartphone or other devices within a 3-m radius.

Table 1 summarizes the scientific works previously analyzed and discussed from
the point of view of typology and number of used pressure sensors, the availability of
wireless connectivity, and acquired parameters. Pedar X® insoles are featured by the
highest number of pressure sensors, providing a high degree of detail for detecting the
plantar pressure map both in static and dynamic conditions, given the high acquisition rate
(100 Hz). However, the device structure seems quite inconvenient and invasive compared
to the other solutions discussed, resulting in poor applicability in daily life.

Table 1. Summarizing table with compared smart insoles previously discussed in terms of typology and number of pressure
sensors, the availability of wireless connectivity, and acquired parameters.

Work Pressure Sensors Number of
Pressure Sensors

Availability of
Wireless Connectivity Acquired Data

M. Tahir et al. [34]
Piezoresistive sensors

(FSR 402 Interlink
Electronics)

16 BLE vGRF

K. Ivanov et al. [35]
Piezoresistive sensors

(FlexiForce A301,
Tekscan)

9 BLE Plantar pressure map

Pedar X® [48] Piezoresistive sensors 99 No Maximum pressure map
Mean value map

SurroSense Rx® [39] Piezoelectric sensors 8 BLE Plantar pressure map

A.M. Reyzelman
et al. [41] - - BLE Foot temperature

Y. Charlon [45]
Piezoresistive sensors

FlexiForce A401,
Tekscan)

1 802.15.4 radio module
Step number

Distance covered
Gait speed

Y. S. Mustufa et al. [47] Capacitive pressure
sensors 32 Bluetooth

Plantar pressure map
Information on user

movement and position

G. Rescio et al. [49] Piezoresistive sensors
(CP151 IEE Innovations) 8 No Plantar pressure map

Foot temperature

3. Materials and Methods
3.1. Technical Specifications and Previous Characterizations of the Piezoresistive Layer

The Velostat piezoresistive material, also known as Linqstat, was developed by Cus-
tom Materials, now part of the 3M company and was later purchased by “Desco Industries”
in 2015, becoming a US brand (Figure 10a) [13].

It is a packaging material constituted by a polymeric layer (polyolefins) impregnated
with carbon powder to make it electrically conductive. Its main feature is to change its
electric resistance with bending or pressure due to the changing of the geometric parameters
(Figure 10b). Since the layer’s resistance decreases when pressure is applied, this reading
can indicate when the weight is applied or removed from the sensor.
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Figure 10. Pressure-sensitive conductive sheet of piezoresistive Velostat film (a) and related internal
structure (b), Adapted from [50].

Table 2 analyzes the main technical characteristics of the material concerning two
different Velostat film types, considering that two different base materials can be used with
different thicknesses: the electrically conductive EVA copolymer (1801 Sheet Stock) and the
polypropylene (1801 Sheet Stock). In particular, the sheet we use belongs to the 1801 stock
with a 1/8 inch thickness. Therefore, the “Surface resistivity” and “Volume resistivity”
parameters, shown in the following table, represent:

• Surface resistivity (RS) (Figure 11a), which measures the electrical conduction of
materials with thickness H much less than width W and length L; instead, R is the
resistance and ρ the corresponding bulk resistivity of the sample. This quantity is
given by:

RS= R
W
L

=
ρ

H′
(1)

R = ρ
L

HW′
(2)

• The measurement unit of surface resistivity in the International System is the Ohm
(Ω). Besides, it is often used “Ohms per square” (indicated with Ω/sq), dimensionally
equal to ohms, but used only for surface resistance to avoid misunderstandings.

• Volume resistivity (Figure 11b) is the current leakage resistance through the insulating
material’s volumetric body, expressed in ohm × cm2. The higher volume resistivity
means lower leakage current and, thus, lower conductance.

Figure 11. Volume resistivity (a) and surface resistivity (b).
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Table 2. Technical characteristics of 1801 Sheet Stock and 1801 Sheet Stock of Velostat film.

Technical Features Velostat Film
1801 Sheet Stock

Velostat Film
1840 Sheet Stock

Dimensions 11′′ × 11′′ (280 mm × 280 mm)
Weight 18.66 g

Temperature Limits −45 ◦C to 65 ◦C (−50 ◦F to 150 ◦F)
Heat Sealable Yes

Volume Resistivity <500 ohm-cm
Surface Resistivity <31,000 ohms/sq.cm

Hardness 58–62 Shore D 67–71 Shore D
Heat Deflection Temp 38–43 ◦C @ 264 PSI 100 ◦C @ 66PSI 50 ◦C @ 264 PSI

Water Absorption 0.1–0.2% 0.1–0.2%
Vicat Softening 88–92 ◦C 148 ◦C
Flammability 4.5–5.5 cm/min 2 cm/min

Impact Resistance 2.9–3.7 ft.-lbs./in. @ 72 ◦F 8–10 ft.-lbs./in. @ 72 ◦F
Notched Izod 0.6–1.3 ft.-lbs./in. @ 25 ◦F 7–9 ft.-lbs./in. @ 25 ◦F

Maximum Temp. Exposure 150 ◦F 180 ◦F
Tensile Strength 1700–2000 PSI 2800–3000 PSI
Flex Modulus 40,000–50,000 PSI 130,000–150,000 PSI

Mold Shrinkage 15–20 mil/in. 10–20 mil/in.
Volume Conductive <500 ohms-cm <500 ohms-cm

In [51], the authors verified the suitability of Velostat material to provide real-time
socket pressure profiles. Different bench tests were carried out to determine precision,
repeatability, and hysteresis responses of the piezoresistive material. They used a sensor
with a sandwich structure consisting of two electrodes and a layer of Velostat material
inside with 0.06-mm thickness and 5-mm diameter.

The authors realized a sensor matrix with the same configuration using multiplexing
for reducing wiring requirements. Figure 12 shows the matrix structure consisting of
strips of twelve sensitive elements arranged in sequence along the longitudinal direction.
The electrode plates, 2 mm in diameter, were positioned 20 mm apart along the strip and
used as contact point for each sensor element. The piezoresistive Velostat film was placed
between the twelve pairs of electrodes on the layers of the upper and lower circuits, and
the remaining areas of the circuit were isolated from each other with an adhesive layer to
avoid shortcircuits. A Bluetooth module was used for data acquisition and transmission.

Figure 12. Completed sensor strip featuring twelve sensitive elements, as reported in [51], Copyright 2020 Elsevier_.

The authors found slight variations in sensor response on repeated measurements,
but they were unable to determine any clear relationship between these variations and the
loading speed. They also averaged the loading and unloading responses for twenty loading
cycles, comparing the average trends. The results showed that, despite the advantages
in terms of low cost, low profile, and ease of integration, Velostat presents numerous
shortcomings in terms of accuracy and precision when used as a pressure transducer. The
accuracy error ranges between 16% and 48% of the full-scale output, depending on the
tested sensor. In addition, thermal response tests indicated a change of the sensor output
voltage of up to 67% as the ambient temperature changed.

Further characterization of piezoresistive material was reported in [52]. Four sensors
of different materials were realized and tested, based on the Velostat piezoresistive layer
and built with the sandwich structure with 1 cm2 sensing area, as shown in Figure 13.
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Figure 13. Sandwich-shaped structure for the four sensors realized and characterized in [52].

Two different tests were performed for each of the four sensors using a universal
test machine to determine the following characteristics: the response to various loads,
the repeatability of measurements, the hysteresis derived by increasing and decreasing
the load, and the ability of sensors to maintain voltage value within acceptable ranges
over time without significant drift. The first test evaluated the dynamic response on
a range of applied forces. The universal testing machine was programmed to increase
load cell strength from 0 to 500 N with a speed of 10 N/s. As soon as the force reached
500 N, the machine kept the load unchanged for 5 s and then started to reduce the force
at the same rate. Every 5 ms, the voltage and load data were stored. This procedure was
done for the four samples, four times per sample, to determine their repeatability and
hysteresis. The second test was performed to assess the stability of the sensors with a
constant load over time. During the second test, three different loads (50 N, 150 N, and
400 N) were applied to each sensor for 480 s. The test was performed without removing the
previous force, but instead of it, the remaining force was added after each 480 s cycle. The
authors demonstrated that the output voltage decreases inversely with the applied load for
all tested sensors; particularly, the sensor’s behavior shown a polynomial characteristic
(R = 6.383× F0.3793) as function of the applied force (F), typical of this kind of sensors.

This sensor was characterized by smaller voltage variations (about 0.3 normalized
units) within the applied forces’ range from 0 to 500 N; therefore, it has the smallest
sensitivity compared with other sensors. However, the hysteresis test demonstrated that
the sensor obtained the best results resulting in the lowest error percentage between
the increase and decrease of the load. This observation suggests that Velostat or similar
materials realized as films surfaced with carbon particles could be used in devices where
sensitivity does not affect the specific application, i.e., not wide pressure range. The
authors also demonstrated that the sensor made with the Velostat film has the maximum
standard deviation, which means that it can be more unstable than the others tested sensors.
However, no temperature measurements were made during the test, thus it is not possible
to determine whether the environmental parameter affected the results. Moreover, the few
test repetitions can help temperature play an even more critical role in obtained results as
well as other factors, such as the humidity or contact area.

3.2. Structure of the Realized Pressure Sensors, Experimental Setup, and Methodology for the
Characterization of the Piezoresistive Sensors

This section reports the results of the characterizations of several Velostat-based pres-
sure sensors with different shapes and sizes to better understand the material’s behavior.
The tested sensors were based on a sandwich structure (Figure 14). The piezoresistive layer
was placed between two PVC (i.e., polyvinyl chloride) supports, with 0.2-mm thickness,
on which were symmetrically placed two copper electrodes. The Velostat layer, placed
between the two electrodes, was not glued to the substrates but sealing the sensing area’s
counter by epoxy glue. Furthermore, two copper paths were connected to the electrodes to
make them accessible for electrical resistance measurement. In this way, several pressure
sensors have been realized with different sizes and shapes (Figure 15).
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Figure 14. Sandwich configuration used for the realization of the Velostat-based pressure sensors.

Figure 15. Piezoresistive sensors realized with different sizes and shapes placed on a felt insole.

To characterize the piezoresistive sensors, a suitable setup was developed; it is con-
stituted by a self-built press (2 in Figure 16) equipped with a 3D printed adapter with
dimensions equal to those of the tested sensors; in this way, the applied force is uniformly
distributed on the sensor surface (3 in Figure 16). The press includes a movable plate
placed on two flat half-bridge load cells in the lower part, with a capacity of 50 kg (model
GML670, manufactured by Gavin Electronics Technology Ltd., Shaanxi, China), connected
to obtain a full-bridge Wheatstone bridge configuration. These load cells are featured by
0.05 mV/V comprehensive error, 1 ± 0.1 mV/V output sensitivity, 0.03% FS non-linearity,
and 0.03% FS hysteresis. The two load cells were connected to an electronic conditioning
and acquisition module based on the IC HX711 (manufactured by Avia Semiconductor,
Xiamen, China, 4 in Figure 16), including a 24-bit analog-to-digital converter together with
a pre-stage-programmable amplification (PGA-Programmable Gain Amplifier). The load
cells’ signal was acquired by a microcontroller board (Arduino UNO, Somerville, MA, USA;
5 in Figure 16) using a two-wire communication interface and displayed on the PC’s serial
monitor (7 in Figure 16).

The experimental setup was calibrated using M1 class calibration weights of 1 kg
(model WAM1K1, manufactured by Società Bilanciai Porro S.r.l, Milano, Italy) and 20 kg
(model WM1NK20, manufactured by Società Bilanciai Porro S.r.l) to determine the gain
factor set in the firmware of acquisition section and used to measure the applied load from
the signal provided by the load cells. Furthermore, the setup calibration was constantly
verified before every measure, applying the 1 kg calibration weight on the press base and
checking the rightness of the detected load. Operating in this way, we consider the load
measurements provided by the developed setup to be fully reliable.
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Figure 16. Experimental setup employed for the characterization of the Velostat-based piezoresistive
sensors, with highlighted the main sections.

Besides, the setup includes a digital multimeter (model PM8236, manufactured by
Peakmeter®, Shenzhen, China; 6 in Figure 16) to measure the electrical resistance of the
sensor following the application of pressure (Rpressure) and the corresponding recovery
value (Rrecovery) of the sensor. Preliminarily, the sensors were applied to the support
material by double-side tape or epoxy glue so that the insole remains perfectly adherent to
the base. In particular, the modifications of sensor response as a function of both support
material and fixing method have been analyzed in the following Section 4.1.

The used measurement procedure involved applying a load for 8 min before the resis-
tance measurement to obtain a steady Rpressure value; afterwards, the load was removed
from the sensor, waiting for 8 min before the resistance measurement to reach a steady
Rrecovery. Thus, three different measurement campaigns have been carried out for each
sensor averaging the obtained results to derive the average resistance vs. load characteristic.
Once the measurements were completed with the first fixing method, the second one was
tested, leaving the sensor at rest for a few hours to allow the glue to dry, and the same
procedures were repeated.

4. Results

This section reports the results of the characterizations of Velostat-based piezoresistive
sensors for different supporting materials and fixing methods to determine the most suit-
able solution for the integration in the sensing matrix. To our knowledge, this is the first
characterization of this type reported in the literature for completeness and accuracy. Addi-
tionally, Section 4.1 presents a 3 × 1 cm2 Velostat sensor, a size selected for the integration
inside the sensing matrix, and hysteresis analysis carried out subjecting it to load/unload
cycles. The characterization results are widely discussed in Section 5. Section 4.2 describes
the structure of the realized piezoresistive sensing matrix and related acquisition and
communication section. Finally, Section 4.3 introduces the smart insole’s development
for monitoring the plantar pressure distribution and gait parameters, equipped with a
piezoelectric harvesting section for scavenging energy from the walking. Then, the device
wirelessly transmits the acquired data to a PC or tablet through an integrated BLE module,
where these last are stored and displayed through a suitable Processing® application.
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4.1. Experimental Results Related to the Characterization of the Realized Piezoresistive Sensors

At first, we tested five different piezoresistive sensors, named sensor i (i = 1,2, . . . 5),
with different sizes. The sensors have been applied to a felt slab using, at first, the dual-side
tape, and then, the epoxy glue to determine the effect of the fixing method on the resistance
vs. force sensor characteristics. All sensors were subjected to an ascending force from 0 to
50 kgf and following the procedure previously described.

Specifically, sensor 1 is constituted by a 5 cm × 5 cm PVC support and a 3 cm × 3 cm
active area. The R vs. F characteristics are reported in Figure 17a, both when the sensor is
applied to the support using double-sided tape and epoxy glue. The sensor was featured
by an initial resistance (defined as Roi) equal to 31.5 kΩ and 15.5 kΩ, for the two fixing
methods, reduced to an average value of the recovery resistance (Rrecovery) of 25.9 kΩ
and 13.5 kΩ, respectively, due to the settlement of the sensitive material. Comparing the
Rpressure values for the two fixing methods, the epoxy glue fixing shows a higher resistance
value, for a given applied force, than that obtained with the double-sided tape, on average
of 33.7%. This effect is due to the sensor stiffening due to the glue layer between the
sensor and support. Sensor 2 has the same dimensions as sensor 1, whose characteristics
are depicted in Figure 17b; it is featured by Roi values equal to 16.8 kΩ and 11.3 kΩ, for
the dual-sided tape and epoxy glue fixing methods. These values have been reduced to
15.6 kΩ and 10.4 kΩ average Rrecovery values, respectively. From the reported trends, it can
be seen that, in the first measurement campaign, carried out by fixing the sensor with the
double-sided tape and with the epoxy glue, the resistance trends are almost the same. In
contrast, the Rrecovery values have considerable differences, even some kΩ, with greater
values for the fixing with double-sided tape. This effect is probably due to better adhesion
of the sensor to the slab’s surface for the fixing with the epoxy glue, which induces higher
pre-stress on the material, resulting in a lower resistance value. Similarly to sensor 1, the
Rpressure values obtained with double-sided are lower than those resulting from the epoxy
glue fixing, on average 46.9%.
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Instead, sensor 3 and sensor 4 are constituted by a 3 cm × 3 cm PVC base including a
1 cm × 1 cm Velostat layer. Sensor 3 is featured by a Roi of 235.1 kΩ for the fixing with the
double-sided tape, as well as 94.7 kΩ for the epoxy glue; the obtained results indicate a Roi
of 230.4 kΩ and 61.3 kΩ for the two considered fixing methods (Figure 17c). From the value
reported in Figure 17c, an increase of Rpresure, between 5.0% and 43.7%, for the fixing with
epoxy glue compared to double-sided tape is evident due to a greater rigidity given to the
sensor by the glue layer. Sensor 4 shows a Roi equal to 85.6 kΩ for the double-sided tape
and 59.2 kΩ for the epoxy glue (Figure 17d). Similarly, an increase in Rpresure between 1.3%
and 49.1% is achieved for the glueing with the epoxy glue, compared to the double-sided
tape one. Sensor 5 comprises a 7 cm × 5 cm PVC base, on which are realized two copper
contacts and a Velostat layer with 3 cm × 1 cm dimensions. The sensor is characterized by
Roi values equal to 63.2 kΩ and 52.5 kΩ for the double-sided tape and epoxy glue fixing.
The R vs. F characteristics for the two fixing method are reported in Figure 17e; in this
case also, the Rpresure values obtained by fixing the sensor with epoxy glue are greater than
those obtained with double-sided tape, between 48.4% and 95.0%.

Moreover, another 3 cm × 1 cm piezoresistive sensor, called sensor 6, has been tested
to determine the R vs. F response for different support materials: a rigid base, a sponge
slab, and a felt insole. At first, the sensor was placed on the press’s rigid support and
changing the applied force between 0 Kgf and 50 Kgf, considering 8 min recovery time
between consecutive measurements. These data have been obtained as the average value
of the measurements carried out on four different measurement campaigns. The results
of this characterization are shown in Figure 18a (red curve), along with the characteristic
related to the sensor resistance’s reciprocal as the applied load varies. This observation
confirms the previous hypothesis related to the hyperbolic trend of the Rpresure. Indeed, the
resistance reciprocal (blue curve, Figure 18a) of the sensor is close to a linear trend, featured
by an average error of 565 × 10−6 Ω−1 and a mean square error of 4.26 × 10−5 Ω−1 from
the linear regression (green curve, Figure 18a). Afterwards, sensor 6 has been subjected to
loading/unloading cycles from 0 Kgf to 50 Kgf, leaving a rest–pause between consecutive
loads of 8 min before to measure the resistance. In Figure 18b are reported the characteristic
for ascending (curve orange) and descending load (grey curve); as evident, the sensor
shows a hysteresis in the two responses, already observed in previous characterizations [52].
The hysteresis is the maximum difference between the sensor’s responses for a single load
once applied in ascending and descending way. The hysteresis error is expressed by the
following relation:

Hysteresis(%) =

∣∣∣∣Rload − Runload
Rmax − Rmin

∣∣∣∣×100% (3)

where Rload and Runload represent the responses in ascending and descending load, respectively,
whereas Rmax and Rmin are the maximum and minimum values of the sensor responses.

Afterwards, sensor 6 has been glued on a sponge insole using epoxy glue and tested
according to the modalities previously described. The trend of Rpresure as a function of
applied force (yellow curve) and its reciprocal (blue curve) are depicted in Figure 18c.
Comparing the graphs of Figure 18a with those in Figure 18c, the effect of the support on
the sensor’s response is evident. The higher compressibility of the sponge support causes
a greater deformation of the piezoresistive sensor, and thus, a more significant reduction
of the sensor’s resistance; therefore, a more rapid reduction of the electrical resistance has
been found for a given value of the applied load.

Similarly, the sensor applied to the sponge slab was subjected to a loading/unloading
cycle from 0 Kgf to 50 Kgf (Figure 18d). As evident from the following figure, the support
greatly affects the sensor hysteresis; this last increased for reduced loads (0–10 kg); this
result can be explained by a transient deformation of the slab, leading to a variation of the
sensor response in the instants following the load removal.
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Figure 18. Characteristics of sensor 6 for different support material: rigid support (a), sponge (b), and felt insoles (c). For
each support, the trend of Rpresure as a function of the applied force (in logarithmic scale), from 0 Kgf to 50 Kgf, has been
determined (a,c,e), along with the inverse of Rpresure besides, the responses of sensor 6 to ascending and descending loads
were shown (b,d,f), along with the hysteresis trends.

Subsequently, sensor 6 was glued onto a felt slab using epoxy glue and characterized
according to the same methods described above. The characterization results for sensor
6 are shown in Figure 18e, along with the sensor resistance’s reciprocal. Comparing the
obtained trend with that determined for the sponge insole, a slight difference between the
two characteristics is evident, attributable to the support on which the sensor has been
applied. Specifically, the characteristic obtained with the felt insole is slightly higher than
the same obtained with the sponge one, probably due to the former’s lower compressibility.
The difference between the two characteristics is between 2780 Ω and 0.8 Ω, decreasing
monotonously as the applied load increases since the deformations obtained with the two
types of support tend to converge (light blue curve in Figure 18e).

Similarly, the sensor placed on the felt insole was subjected to successive loading
cycles (from 0 to 50 kg, grey curve in Figure 18f) and unloading (burgundy curve in
Figure 18f) to evaluate the hysteresis in the response of the sensor–insole system (fuchsia
curve in Figure 18f). As evident from the results shown in the following figure, the sensor’s
hysteresis is significantly reduced compared to the similar characteristic obtained with the
sponge insole; presumably, this is due to the greater ability of the felt insole to recover its
initial shape.

After the static characterizations of the Velostat-based sensor, dynamic tests have
been carried out on the eight 3 × 1 cm2 sensors included in the assembled sensing matrix.
Specifically, a memory effect, not observed on static characterizations, has been observed,
thus requiring a firmware compensation, as described in the following Section 4.4.
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4.2. Structure of the Realized Piezoresistive Sensing Matrix and Related Acquisition Section

This subsection describes and analyzes the development and realization of an insole
prototype constituted by a matrix of eight piezoresistive sensors, each based on a Velostat
layer. The acquisition section for detecting each sensor’s resistance variations will also be
discussed, relying on an analog multiplexer and an Arduino Lilypad acquisition board.

The developed sensing insole is constituted by a matrix of 8 piezoresistive sensors
distributed respectively in the toe areas (i.e., the sensors 5, 6, 7, 8), in the central part (sensor
4) and on the heel (sensors 1, 2, 3), as depicted in Figure 19. This distribution was chosen
since, from the literature analysis reported in the previous Section 2, such foot areas are
more involved in the plantar weight distribution.

Figure 19. View of the sensing matrix’s prototype consisting of 8 piezoresistive sensors before
assembly: top layer (a); bottom layer (b); and assembled sensing matrix (c).

The structure of the piezoresistive matrix respects the sandwich structure described
in Section 3.2 for the realization of tested FSR sensors; precisely, eight layers of Velostat
piezoresistive material, with 3 cm × 1 cm size, have been placed between two layers of
PVC on which eight symmetrically couples of copper electrodes are deposited. Next,
the piezoresistive layers (black boxes in Figure 19) were fixed at an end to facilitate the
alignment of the two PVC layers, and subsequently, the areas around the electrodes were
sealed employing epoxy glue. Finally, the bottom electrodes’ connections were created
by copper tape and exposed on the side of the insole to make them accessible for the
conditioning section. In contrast, all sensors’ top electrodes were connected by a single
copper track for simultaneously grounding them, as described (Figure 19c).

The proposed acquisition section includes an Arduino Lilypad board and a CD74HC4067
(manufactured by Texas Instruments, Dallas, TX, USA) analog multiplexer/demultiplexer.
The proposed architecture, shown in Figure 20a, provides that each sensor of the sensing
matrix, represented as variable resistances, is connected with the ground electrode, common
to the Arduino board and the other to a multiplexer input from C0 to C7. Additionally,
the single Z output is connected to a high precision pull-up resistor (i.e., 0.1% tolerance)
with a nominal value of 10 kΩ (model MRA0207, manufactured by Arcol Ltd., Cornwall,
UK), to which a voltage of 3.3 V has been applied via the Arduino board. This last is also
used to drive the multiplexer control bits (from S0 to S3), through four distinct general-
purpose input–output (GPIO) pins, from D2 to D5. The analog voltage VOUT, related to a
single selected sensor, is acquired using a single analog channel (A0) of the Arduino board.
According to the previously derived characteristics, this last acquires the resistance data by
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10-bit ADC and processes them to extract the pressure data. Besides, the Lilypad board
manages the multiplexer enabling/disabling to reduce its power consumption when the
stage is not busy in an acquisition.

Figure 20. Schematic representation of the acquisition section of the signals related to the piezoresis-
tive sensors of the developed piezoresistive matrix (a); flowchart of the Arduino board’s firmware for
acquiring the resistance from the eight piezoresistive sensors (b).

The CD74HC4067 multiplexer is featured by a non-negligible ON resistance (RON)
(RON = 70 Ω (typical value), RON = 160 Ω (maximum value), @ Supply Voltage = 4.5 V,
IO = 1 mA) for the considered application and also varies with the applied voltage [53];
therefore, the characterization of RON is needed to compensate for the resistance mea-
surements, avoiding its overestimation. Thus, the RON was measured by placing a 220 Ω
pull-up resistor to the Z pin and grounding the pins from C0 to C7; in this way, on each
multiplexer channel, a voltage divider between the common 220 Ω pull-up resistor and
the RON resistance was obtained. Then, the Arduino board was employed to iteratively
acquire the voltage on the RON resistance of each multiplexer channel to calculate the cor-
respondent resistance value. The mean values of the RON resistance for the eight channels
(C0–C7) of the multiplexer, calculated on ten consecutive measurements, are shown in the
following Table 3.

Table 3. Table with reported results of the characterization of RON resistance of eight channels of the
CD74HC4067 multiplexer.

Multiplexer Channel

0 1 2 3 4 5 6 7

RON [Ω] 65.31 63.19 65.02 63.37 64.70 62.80 64.88 64.80

As it can be noted, the RON values vary in the range from 62.80 Ω to 65.31 Ω, thus a
mean value equal to 64.25 Ω is considered to eliminate its contribution on the measurement,
extracting the exact information on the resistance value of the single piezoresistive sensor,
and thus on the applied pressure.

In Figure 20b, the firmware’s flowchart implemented by the Arduino board is illus-
trated to acquire the resistance values of the eight piezoresistive sensors. As it can be seen,
after initial settings, the loop function of the Arduino code, through the for-cycle, iterates,
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every 200 ms, the acquisition process from the eight piezoresistive sensors. Specifically,
each iteration involves the selection of the i-th channel and the acquisition of the corre-
sponding signal, followed by the storage of this information in the i-th element of a storage
array (data []), and finally, the serial transmission of the acquired resistance along with
cycle counter increase.

Therefore, every 200 ms (working frequency = 5 Hz), all eight channels are acquired,
thus a time equal to 25 ms is dedicated for each single-channel (working frequency = 40 Hz).
This timing is compatible with the response times of the CD74HC4067 multiplexer; in-
deed, it has a propagation delay time equal to 15 ns (maximum value, for @Supply
Voltage = 4.5 V, Temperature = 25 ◦C, CL = 50 pF) [53].

4.3. Integration of Developed Sensing Matrix and Acquisition Section inside the Smart Insole

The block diagram of the whole smart insole is reported in Figure 21, including the
piezoresistive sensing matrix, acquisition and communication sections, and power supply
unit. The acquisition section has been assembled on the bottom of the piezoresistive insole
(light blue box in Figure 22), which includes the analog multiplexer CD74HC4067 (red box
in Figure 22) and the Arduino Lilypad board (green box in Figure 22).

The proposed architecture, described in the previous subsection, provides that each
of the eight sensors of the sensing matrix is connected on one side to a ground electrode,
common to the Arduino board, on the other side to an input of the multiplexer (called
C0–C7). Moreover, the MUX output is connected to a 10 kΩ pull-up resistor supplied by
3.3 V provided by the power supply unit. The Arduino Lylipad drives the multiplexer’s
control bits (from S0 to S3) through four distinct general-purpose input–output pins (GPIO)
and acquires the analog voltage VOUT related to the single selected sensor.

Figure 21. Graphical representation of the architecture of the developed smart insole.
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Figure 22. Top view of smart insole prototype constituted by the piezoresistive sensing matrix, acquisition, and communica-
tion sections.

The Lilypad board is also interfaced through the I2C (Inter-Integrated Circuit) bus with
three axes MMA8452Q (manufactured by NXP Semiconductors, Eindhoven, Netherlands)
to count the number of steps performed and determine gait parameters (Figure 21). Partic-
ularly, it is performed by extracting the time features of the acceleration trends provided
by the accelerometers [45,54]. It is a low-energy three-axis MEMS capacitive accelerometer
with 12-bit resolution, suitable embedded functions since featured by reduced dimensions
and consumption, and flexible programming options configurable through two interrupt
pins. Furthermore, the MMA8452Q sensor is featured by a selectable full-scale value of
±2 g/±4 g/±8 g with optional high-pass data filtering. Moreover, it has a configurable
inertial interrupt signal for its awakening from sleep condition to monitor events and
remains in a low-power mode during inactivity periods.

The developed firmware for implementing the pedometer relies on comparing the sen-
sor’s total acceleration value with the threshold value set experimentally. If the acceleration
is greater than the threshold value, the acceleration sensor increases the step counter and
set the event flag to avoid multiple counting of the same step. This flag remains high until
the acceleration value falls below the threshold value, indicating that the step is completed.
In this case, the acceleration sensor resets the flag and prepares to count a new step as
soon as the acceleration value returns to be greater than the threshold value. Therefore,
the importance of the threshold value is evident. The optimal value has been determined
experimentally testing different acceleration thresholds to ensure correct sensor operation
and prevent the overestimation (if the threshold is too low) or underestimation (if the
threshold is too high) of the number of steps taken.

Furthermore, the embedded auto-weak and sleep to the MMA8452Q have been ex-
ploited to reduce the module’s power consumption when the device detects no acceleration.
In this condition, the sensor’s data acquisition rate is significantly reduced (i.e., 56 Hz
compared to 800 Hz in normal state) when no accelerations are detected for a given time
interval (i.e., 2.56 ms) and waking it up, through an interrupt signal, when acceleration
exceeds the set threshold is detected (viz 1.071 g). The flowchart related to the implemented
pedometer is reported in Figure 23a.

Moreover, to detect these gait events, a peak detection algorithm is implemented
(Figure 23b) for determining gait parameters, i.e., the swing time (SWT) and stance phase
time (SPT), expressed as:

SWT = TToe−off − THeel−Strike (4)

SPT = THeel−Strike − TToe−Off (5)
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where TToe−off and THeel−Strike are the instants of the toe detachment from the ground and
heel support [45,46,55,56]. These parameters, properly monitored, can be used to detect or
prevent the onset of any pathologies, such as the formation of diabetes ulcers [39].

Figure 23. Flowchart related to the pedometer implemented inside the developed smart insole (a) and peak detector used
to determine the SWT and SPT parameters (b).

Furthermore, the developed smart insole includes a JDY-23 BLE module (manufac-
tured by Shenzhen City Hong Teng Yu Da Electronic Technology Co. Ltd., Shenzhen,
China) for transmitting in real-time the acquired data (pressure tuples and gait parame-
ters) towards other smart devices such as a PC, a smartphone or a tablet (yellow box in
Figure 22). JDY-23 is a transparent transmission Bluetooth module, since it routes the input
data at the output without carrying out any processing operation. It complies with the
standard BLE 5.0 protocol and can transmit at a maximum distance of 60 m. The following
are the main specifications of the device:

• Transmission power: 4 dB (max)
• Power Supply Voltage 1.8–3.6 V
• Receiving Sensitivity: −97 dBm
• Transmission power: 60 m (max)
• Sizes: 19.6 × 14.94 × 1.8 mm3 (l × w × t)
• Bluetooth Version: BLE 5.0 (Compatible with BLE4.0, BLE4.2)
• Awakening Current State: 800 µA (during Transmission)
• Sleep Status of Current Light: <50 µA (Transmission)
• Deep Sleep Current: 9 µA
• Rf-TX/RX peak current: 5 mA
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Arduino board wirelessly sends the data to the PC that are displayed by Processing®

application and graphically depicted through a color map of the plantar pressure distri-
bution, as described in the following Section 4.4. The insole is powered by a 380-mAh
single-cell Li-Po battery (model LW 752035, manufactured by Celewell Technology Co., Hu-
nan, China). For adapting the battery voltage to the 3.3 VDC needed to feed the electronic
section included on the insole, a voltage DC/DC regulator (model XC6206, manufactured
by Torex Semiconductor, Tokyo, Japan) has been placed (Figure 21). The battery is charged
by a piezoelectric harvesting section constituted by a semi-rigid PZT (i.e., Lead Zirconate Ti-
tanate) piezoelectric transducer (model KS-70× 53× 0.6 mm3, manufactured by Dongguan
Cosson Electronic Ltd., Shenzhen, China) with bimorph structure and on the electronic
section based on the integrated LTC3588-2, produced by Linear Technology and integrated
into the insole. Precisely, the transducer was placed in the heel area to take advantage
of pressure variations in both the foot’s support and take-off phases. The LTC3588-2 is a
fully integrated harvesting section properly designed for alternate sources, like RF and
piezoelectric ones. Furthermore, it includes a low-loss rectifier and a high-efficiency buck
converter and implements a UVLO mechanism (Under Voltage Lockout) to reduce power
consumption when the source does not provide any power.

The acquisition and communication section was folded and placed into TPU-made
(Thermoplastic polyurethane) flexible support (Figure 24a). Next, proper housings have
been realized to place the various electronic units of the device (Figure 24b). Finally, the
accelerometer has been installed on the insole’s bottom at the forefoot (Figure 24b), as well
as the battery, harvesting circuit and DC/DC regulator in correspondence with the heel
area (Figure 24c,d), realizing channels inside the insole to hide the connections.

Figure 24. Image of the disassembled slab, which highlights the main sections (a) and detail of the housing where the
three-axis accelerometer MMA8452Q is placed (b) and detail of the voltage regulator used to feed the insole (c); insole
bottom where are integrated the 380-mAh Lipo battery and the harvesting section based on the LTC3888-2 board (d).
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4.4. Processing® Application for Data Analysis from the Smart Insole Testing

This section discusses the development of the Processing® code to post-process the
acquired pressure data and display them through a color map. Subsequently, the tests on
the developed smart insole are reported to validate the sensing matrix implementation.

As previously described, the Lilypad board cyclically connects the eight piezoresistive
sensors to a single 10 kΩ pull-up resistor by driving the CD74HC4067 multiplexer, and
then, acquires the analog voltage provided by the i-th sensor (Figure 20b). From the
gathered voltage values, the resistance of the i-th sensor is calculated to determine the
applied pressure, taking into account the RON mean value of the multiplexer channel (i.e.,
64.25 Ω). A linear 1/Rpressure vs. pressure characteristic has been supposed (as discussed in
Section 5), and the mean slope used to calculate the pressure values; for 3 × 1 cm2 sensors,
a conversion coefficient equal to 38.23 × 10−9 Ω/Pa has been used, derived from graphs
in Figure 18e. Then, the acquired pressure tuple is transmitted by the onboard BLE module;
the acquisition and communication cycle is repeated every 200 ms (5 Hz sampling rate,
incrementable up to 480 Hz, limited by the ADC conversion time, i.e., 260 µs).

The host PC receives the acquired data through a virtual serial interface, processes
and displays them using a custom Processing® application. This last iteratively reads the
incoming data and parses them into an eight elements array, containing the pressure in
the different foot sole positions. Then, an array of 8 RECT objects is instantiated, each
corresponding to the i-th position on the insole. The firmware evaluates the pressure value
acquired from the i-th sensor, determining the filling color of the corresponding rectangle,
thus obtaining the color map of the plantar pressure distribution (Figure 25).

Figure 25. Graphical interface realized with Processing® for displaying the incoming pressure data in the form of a
color map.

To test the insole, a 200-kPa load was applied to each sensor of the sensing matrix
using the setup of Figure 16. Table 4 shows the data provided by the smart insole; a good
agreement was obtained between the applied pressure and performed measurements, with
a percentage error lower than 4.8%. Besides, when a load is applied on a single sensor, the
detected pressure of neighboring ones are affected due to local stress.
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Table 4. Carried out tests applying 200-kPa load on one sensor at a time of the sensing matrix.

Pressure Value Related to the Sensors’ Insole [kPa]

Pressed sensor P1 P2 P3 P4 P5 P6 P7 P8
No sensor 0.26 0.25 0.16 0.31 0.13 0.79 0.23 0.77

Sensor 1 207.60 9.69 2.09 1.25 2.01 2.85 1.75 0.51
Sensor 2 66.62 209.60 9.02 0.95 1.71 2.01 0.59 0.47
Sensor 3 3.20 0.05 205.15 0.84 2.16 2.14 0.32 0.51
Sensor 4 0.87 0.76 3.23 206.16 1.97 1.54 0.32 0.87
Sensor 5 0.11 0.81 0.71 1.91 201.28 3.22 0.95 0.40
Sensor 6 0.08 0.78 0.63 1.25 3.54 201.43 6.00 0.06
Sensor 7 0.11 0.77 0.71 0.93 0.64 4.04 202.24 0.06
Sensor 8 0.16 0.83 0.89 1.17 1.66 4.18 3.80 209.71

Based on experimental results, after an instantaneous solicitation, a memory-effect
was observed in the following cycle, with a conservation of about 30–40% of the previously
detected resistance. This effect tends to disappear after two acquisition cycles; it was
compensated in the insole firmware adding a corrective term depending on previous
pressure value in the same position (Ps,t−1) and the time distance from current sample
(Ps,t):

P∗s,t= P s,t − C × Ps,t−1×e−∆t/τ, (6)

where P∗s,t is the adjusted version of the s-th pixel in the time t, C an adjusting coefficient,
τ the time constant related to the pressure time variation and ∆t the time interval between
consecutive samples (i.e., ∆t = 200 ms). For the developed firmware, we empirically
determined the parameters of the Equation (6), resulting in C = 0.97 and τ = 223 ms.

The developed smart insole was inserted inside a size 45 shoe to real-time monitor the
plantar pressure distribution during a walk at 1 ms−1 speed (Figure 26a). This test allowed
to verify the insole correct operation in dynamic condition over 180 s observation interval.
In the first phase of the step, when the weight is distributed on the heel (Figure 26b), the
sensors 1, 2 and 3 are most stressed; in the second phase, the pressure is exerted on the
forefoot, respectively on the sensors 5, 6, 7 (Figure 26c). Sensor 4, placed at the sole center,
shows in both cases slight stress due to the natural curvature of the foot sole.

Figure 26. Picture of the piezoresistive insole placed inside a size 45 shoe (a); pressure map during
the first phase of the step, when the weight is applied on the heel (b); second phase of the step with
the weight mainly distributed on the forefoot (c).

Subsequently, the plantar pressure map was extended using an interpolation method
proposed in [28]. This last evaluates the pressure value in an unknown position, called a
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non-source pixel, as a weighted linear combination of pressure values in known positions,
called source pixels. Specifically, the pressure value in an (i,j)-th non-source pixel (Pns(i, j),
Figure 27a) is obtained by summing the s-th source pixel pressure values (Ps) weighted for
terms inversely proportional to the distance between them (dijs).

Pns(i, j)= N×
[

Ns

∑
s=0

Ps×e−k×dijs

]
, (7)

where N is a normalizing factor, Ns and Nns, the number of source and non-source pixels,
and k, a parameter regulating the influence of source pixel pressures on the non-source ones.

Figure 27. Extended pressure maps by applying the interpolation method proposed in [28] constituted by 17 pixels
(Ns= 8, Nns= 9 (a): the first one obtained with k = 0.35, N = 1 (b) and the latter with k = 0.25, N = 0.95 (c).

This interpolation method was implemented into the Processing® application to
extend the acquired pressure frame, constituted by 8 source pixels (Ns= 8) provided by the
insole into an extended frame with 17 pixels. Figure 27b,c shows two extended pressure
maps, obtained with different parameters; the first one was obtained setting the k coupling
parameter to 0.35 and the N normalizing factor to 1 (Figure 27b), whereas the latter was for
k and N equal to 0.25 and 0.95, respectively (Figure 27c). Comparing the two maps, the
parameter effect is evident; when increasing k, the impact of the neighbouring pressure
values of source pixels is reduced. These two couple of values were the most performant
between several considered parameter combinations.

5. Discussion

After the characterizations carried out on the different Velostat-based sensors, reported
in Section 4.1, a comparative analysis is presented to determine the most suitable structure
and sizes to be used for the sensing insole. Figure 28 shows the characteristics of sensors
from 1 to 6 as a function of the applied force and pressure, when fixed on a felt slab using
epoxy glue. As evident, the six sensors have similar characteristics, with a hyperbolic trend
as the pressure varies.
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Figure 28. Summarizing graphs of characteristics (Rpressure as a function of applied force (in Kgf) (a) and pressure (in Pa) (b)
for previously tested sensors, all applied by epoxy glue on a felt base.

The sensor resistance is given by the sum of the volume resistance of the piezoresistive
material R = ρ L

A , with ρ the bulk resistivity, L the length and A the cross-section) and
the contact resistances between the Velostat layer and copper electrodes depending on
the applied force (R ∝ ρ K

F , with ]ρ the bulk resistivity, F the applied normal force, and
K parameter depending on elastic properties and roughness of the sample [57]). As the
applied force increases, the bulk resistance and contact resistances decrease due to the
reduced piezoresistive layer thickness and the increased contact area at a microscopic level
between copper electrodes and Velostat layer. Comparing the obtained characteristics, it is
evident that sensors 1 and 2, having the larger active area (3 × 3 cm2), are featured by a
lower resistance value for a given applied pressure (blue and orange curves in Figure 28b),
due to lower values of the Velostat layer’s bulk resistance and contact resistances [58].
Similarly, sensors 3 and 4, having a smaller area (1 × 1 cm2) than sensors 1, 2 and 5, 6 (9
and 3 times, respectively), present higher bulk resistance and contact resistance values for
a given applied pressure.

In [59], the authors reported a hyperbolic trend of Velostat piezoresistive film’s re-
sponses as a function of the applied force. Figure 29 depicts the obtained trends of resistance
reciprocal (Rpressure) as a function of the applied load for all the sensors described and
tested in Section 4.1. As it can be noticed, the obtained characteristics are very close to
linear regressions with determination coefficients (R2) between 0.9827 and 0.9929.
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Table 5 summarizes the slopes of the reciprocal resistance trends for the six tested
sensors. Sensors 1 and 2 are featured by higher slope due to the larger area; however, their
aspect ratio poorly adapted to the sensing matrix structure and the number of monitored
points. For these reasons, 3 × 1 cm2 sensors have been chosen to realize the sensing matrix
given a more suitable aspect ratio and good slope values.

Table 5. Summarizing table with slopes of the reciprocal resistance trends for the six tested sensors.

Sensor Slope [Ω−1/Kgf] Slope [Ω−1/Pa]

1 (3 × 3 cm2) 0.0041 3.76 10−7

2 (3 × 3 cm2) 0.0045 4.12 10−7

3 (1 × 1 cm2) 0.0009 9.18 10−9

4 (1 × 1 cm2) 0.0009 9.18 10−9

5 (3 × 1 cm2) 0.0012 3.67 10−8

6 (3 × 1 cm2) 0.0013 3.97 10−8

The developed smart insole is featured by a peak power consumption of 33.75 mW in
active mode as well as only 5.81 mW in sleep mode; in fact, the system heavily exploits
the low-power modalities of employed components. During the tests, the insole was
programmed to perform ten acquisitions of the pressure values and gait parameters per
minute. After each acquisition, the Arduino board brought in low-power mode the BLE
module and the analog multiplexer, as well as enabled the auto-weak/sleep mode of the
MMA8452Q accelerometer. Then, the Atmega328p microcontroller of Arduino Lilypad
board disabled the unnecessary components, like ADC, BOD (Brown Out Detector), and
timers, reducing its power consumption to about 1.74 mA (for 8 MHz clock signal), but
guaranteeing the acceleration monitoring. These current values were measured by a bench
multimeter (model GDM-8351, manufactured by Gwinstek, Taipei, Taiwan), acting as an
ammeter, in series to the system supply line and setting 1 kHz sampling rate.

Since the time duration of the acquisition and transmission phase was equal to about
6 ms, the charge required for each hour of the system operation was 1.76 mAh. There-
fore, the device autonomy in absence of any energy contribution from the piezoelectric
harvesting section and supposing a 40% discharge margin of the Lipo battery is given
by (8):

Autonomy =
Battery Capacity×(1 − Discharge Margin)

Charge Consumption per hour = 380 mAh×(1 − 0.4)
1.76 mAh/h ,

= 129.54 h (9.29 days for 14 h daily usage)
(8)

Therefore, an energy autonomy of 130 h was obtained without any contribution from
the harvesting section; supposing a daily use of 14 h, about nine days of autonomy are
ensured. As reported in Section 4.3, the insole integrates a harvesting section, constituted
by a bimorph PZT transducer placed under the heel, with a conditioning section based on
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LTC3588-2 IC (Integrated Circuit). The harvesting section has been tested by measuring the
scavenged power during normal walking using a data logger (model PM8236, manufac-
tured by Peakmeter®, Shenzhen, China) to detect the output current at different walking
speeds, measured by GPS Speedometer mobile app (developed by Smart Mobile Tools,
Ha Noi city, Vietnam). The extracted power values are summarized in Table 6 for 1 ms−1,
1.5 ms−1, 2 ms−1, and 3 ms−1 walking speeds.

Table 6. Power values provided by piezoelectric harvesting section for different walking speeds.

Walking Speed [m/s] Output Power [mW]

1 5.97
1.5 6.89
2 7.13
3 8.65

The harvesting section can ensure the mean power consumption required by the
developed electronic load (P = 5.84 mW) for a walking speed higher than 1 ms−1 (moderate
gait), guaranteeing a small charge surplus for recharging the battery. Otherwise, the
device’s energy requirements during the short time intervals in active mode are covered by
the 380-mAh Lipo battery.

6. Conclusions

Modern technologies are increasingly supporting medical staff and users to monitor
the onset or evolution of pathologies as well as gather information related to sport per-
formances. In this paper, the design and realization of a novel smart insole are presented
to monitor the plantar pressure distribution and gait parameters (such as SWT and SPT).
Particularly, the device includes a low cost and reliable sensing matrix constituted by eight
piezoresistive sensors based on the Velostat layer for transducing the pressure applied
by the human body into an electric signal. An accurate and complete characterization of
Velostat-based piezoresistive sensors has been carried out for different sizes, support mate-
rials, fixing methods, and applied pressure trends, demonstrating the suitability of the used
sandwich structure for the considered application. Furthermore, a low power conditioning
and processing section has been developed and integrated on the smart insole to acquire
and process the data from the piezoresistive matrix and an onboard 3-axis accelerometer
for detecting the plantar pressure distribution and gait parameters. Moreover, the device
integrates an ultra low power BLE 5.0 module for wirelessly transmitting the acquired data
toward a PC, tablet, or smartphone, where a custom Processing® application allows to
display and process them. In particular, an interpolation method has been implemented
for deriving an extended pressure map, enabling a more detailed understanding of the
plantar pressure distribution.

Moreover, the developed smart insole is equipped with a piezoelectric harvesting
section based on a bimorph PZT harvester and an integrated conditioning circuit (based
on the LTC5388-2 IC). It allows scavenging energy from the pressure variations related
to the walking and storing it into a 380-mAh Lipo battery used to feed the integrated
electronic sections. The onfield tests demonstrated that for a walking speed higher than
1 ms−1, the harvesting section could fully cover the energy requirement of the developed
device (i.e., P = 5.84 mW). However, the integrated Lipo battery can ensure a long lifetime
(i.e., 9.29 days for 14 h daily usage) to the device in the total absence of any energetic
contribution from the harvesting section.

Author Contributions: Conceptualization, R.d.F. and P.V.; methodology, R.d.F., R.V. and M.D.V.;
software, E.P. and R.d.F.; validation, R.d.F. and E.P.; data curation, E.P., R.V. and P.V.; writing—
original draft preparation, R.d.F., R.V. and P.V.; writing—review and editing, P.V. R.d.F. and M.D.V.;
supervision, M.D.V. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.



Sensors 2021, 21, 4539 29 of 31

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data of our study are available upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zangger, M.; Wälchli, C.; Stefenelli, U.; Stute, P. The Use of Mobile Health Applications for the Prevention of Non-Communicable

Diseases. Health Technol. 2021. [CrossRef]
2. Gaetani, F.; de Fazio, R.; Zappatore, G.A.; Visconti, P. A Prosthetic Limb Managed by Sensors-Based Electronic System: Experi-

mental Results on Amputees. Bull. Electr. Eng. Inform. 2020, 9, 514–524. [CrossRef]
3. Gaetani, F.; Primiceri, P.; Antonio Zappatore, G.; Visconti, P. Hardware Design and Software Development of a Motion Control

and Driving System for Transradial Prosthesis Based on a Wireless Myoelectric Armband. IET Sci. Meas. Technol. 2019, 13,
354–362. [CrossRef]

4. Gradim, L.C.C.; José, M.A.; da Cruz, D.M.C.; de Deus Lopes, R. IoT Services and Applications in Rehabilitation: An Interdisci-
plinary and Meta-Analysis Review. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 2043–2052. [CrossRef]

5. Paul, S.; Naik, B.; Bagal, D.K. Enabling Technologies of IoT and Challenges in Various Field Of Construction Industry in the 5G
Era: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2020, 970, 012019. [CrossRef]

6. Visconti, P.; Gaetani, F.; Zappatore, G.A.; Primiceri, P. Technical Features and Functionalities of Myo Armband: An Overview on
Related Literature and Advanced Applications of Myoelectric Armbands Mainly Focused on Arm Prostheses. Int. J. Smart Sens.
Intell. Syst. 2018, 11. [CrossRef]

7. Landaluce, H.; Arjona, L.; Perallos, A.; Falcone, F.; Angulo, I.; Muralter, F. A Review of IoT Sensing Applications and Challenges
Using RFID and Wireless Sensor Networks. Sensors 2020, 20, 2495. [CrossRef] [PubMed]

8. De Fazio, R.; Cafagna, D.; Marcuccio, G.; Minerba, A.; Visconti, P. A Multi-Source Harvesting System Applied to Sensor-Based
Smart Garments for Monitoring Workers’ Bio-Physical Parameters in Harsh Environments. Energies 2020, 13, 2161. [CrossRef]

9. Dash, S.P. The Impact of IoT in Healthcare: Global Technological Change & The Roadmap to a Networked Architecture in India.
J. Indian Inst. Sci. 2020, 100, 773–785. [CrossRef]

10. Saidani, S.; Haddad, R.; Mezghani, N.; Bouallegue, R. A Survey on Smart Shoe Insole Systems. In Proceedings of the IEEE
2018 International Conference on Smart Communications and Networking (SmartNets), Yasmine Hammamet, Tunisia, 15–17
November 2018; pp. 1–6.

11. Hegde, N.; Bries, M.; Sazonov, E. A Comparative Review of Footwear-Based Wearable Systems. Electronics 2016, 5, 48. [CrossRef]
12. Dzedzickis, A.; Sutinys, E.; Bucinskas, V.; Samukaite-Bubniene, U.; Jakstys, B.; Ramanavicius, A.; Morkvenaite-Vilkonciene, I.

Polyethylene-Carbon Composite (Velostat®) Based Tactile Sensor. Polymers 2020, 12, 2905. [CrossRef] [PubMed]
13. 3MTM Electronics Materials Solutions Division 3MTM Conductive Film Products. Available online: http://documents.

staticcontrol.com/pdf/2004.pdf (accessed on 12 July 2020).
14. Calabrese, B.; Velázquez, R.; Del-Valle-Soto, C.; de Fazio, R.; Giannoccaro, N.I.; Visconti, P. Solar-Powered Deep Learning-Based

Recognition System of Daily Used Objects and Human Faces for Assistance of the Visually Impaired. Energies 2020, 13, 6104.
[CrossRef]

15. Lee, S.M.; Lee, D. Healthcare Wearable Devices: An Analysis of Key Factors for Continuous Use Intention. Serv. Bus. 2020, 14,
503–531. [CrossRef]

16. Xue, Y. A Review on Intelligent Wearables: Uses and Risks. Hum. Behav. Emerg. Technol. 2019, 1, 287–294. [CrossRef]
17. Shoureshi, R.A.; Albert, S.F. Smart Insole for Diabetic Patients. U.S. Patent 7,716,005 B2, 11 May 2010.
18. Tan, A.M.; Fuss, F.K.; Weizman, Y.; Woudstra, Y.; Troynikov, O. Design of Low Cost Smart Insole for Real Time Measurement of

Plantar Pressure. Procedia Technol. 2015, 20, 117–122. [CrossRef]
19. Yu, Y.; Li, H.; Yang, X.; Umer, W. Estimating Construction Workers’ Physical Workload by Fusing Computer Vision and Smart

Insole Technologies. In Proceedings of the 35th ISARC, Berlin, Germany, 20–25 July 2018; pp. 1212–1219.
20. Ivanov, K.; Mei, Z.; Penev, M.; Lubich, L.; Mumini, O.O.; Nguyen Van, S.V.; Yan, Y.; Wang, L. Identity Recognition by Walking

Outdoors Using Multimodal Sensor Insoles. IEEE Access 2020, 8, 150797–150807. [CrossRef]
21. Razak, A.H.A.; Zayegh, A.; Begg, R.K.; Wahab, Y. Foot Plantar Pressure Measurement System: A Review. Sensors 2012, 12,

9884–9912. [CrossRef] [PubMed]
22. Eskofier, B.M.; Lee, S.I.; Baron, M.; Simon, A.L.; Martindale, C.F.; Gassner, H.; Klucken, J. An Overview of Smart Shoes in the

Internet of Health Things: Gait and Mobility Assessment in Health Promotion and Disease Monitoring. Appl. Sci. 2017, 7, 986.
[CrossRef]

23. Drăgulinescu, A.; Drăgulinescu, A.-M.; Zincă, G.; Bucur, D.; Feies, , V.; Neagu, D.-M. Smart Socks and In-Shoe Systems: State-
of-the-Art for Two Popular Technologies for Foot Motion Analysis, Sports, and Medical Applications. Sensors 2020, 20, 4316.
[CrossRef]

24. Paredes-Madrid, L.; Emmi, L.; Garcia, E.; De Santos, P.G. Detailed Study of Amplitude Nonlinearity in Piezoresistive Force
Sensors. Sensors 2011, 11, 8836–8854. [CrossRef]

25. Wang, C.; Kim, Y.; Min, S.D. Soft-Material-Based Smart Insoles for a Gait Monitoring System. Materials 2018, 11, 2435. [CrossRef]

http://doi.org/10.1007/s12553-021-00536-8
http://doi.org/10.11591/eei.v9i2.2101
http://doi.org/10.1049/iet-smt.2018.5108
http://doi.org/10.1109/TNSRE.2020.3005616
http://doi.org/10.1088/1757-899X/970/1/012019
http://doi.org/10.21307/ijssis-2018-005
http://doi.org/10.3390/s20092495
http://www.ncbi.nlm.nih.gov/pubmed/32354063
http://doi.org/10.3390/en13092161
http://doi.org/10.1007/s41745-020-00208-y
http://doi.org/10.3390/electronics5030048
http://doi.org/10.3390/polym12122905
http://www.ncbi.nlm.nih.gov/pubmed/33287414
http://documents.staticcontrol.com/pdf/2004.pdf
http://documents.staticcontrol.com/pdf/2004.pdf
http://doi.org/10.3390/en13226104
http://doi.org/10.1007/s11628-020-00428-3
http://doi.org/10.1002/hbe2.173
http://doi.org/10.1016/j.protcy.2015.07.020
http://doi.org/10.1109/ACCESS.2020.3016970
http://doi.org/10.3390/s120709884
http://www.ncbi.nlm.nih.gov/pubmed/23012576
http://doi.org/10.3390/app7100986
http://doi.org/10.3390/s20154316
http://doi.org/10.3390/s110908836
http://doi.org/10.3390/ma11122435


Sensors 2021, 21, 4539 30 of 31

26. Li, J.; Fang, L.; Sun, B.; Li, X.; Kang, S.H. Recent Progress in Flexible and Stretchable Piezoresistive Sensors and Their Applications.
J. Electrochem. Soc. 2020, 167, 1–23. [CrossRef]

27. Shu, L.; Hua, T.; Wang, Y.; Li, Q.; Feng, D.D.; Tao, X. In-Shoe Plantar Pressure Measurement and Analysis System Based on Fabric
Pressure Sensing Array. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 767–775. [CrossRef]

28. Lee, W.; Hong, S.-H.; Oh, H.-W. Characterization of Elastic Polymer-Based Smart Insole and a Simple Foot Plantar Pressure
Visualization Method Using 16 Electrodes. Sensors 2018, 19, 44. [CrossRef]

29. Shi, H.; Liu, Z.; Mei, X. Overview of Human Walking Induced Energy Harvesting Technologies and Its Possibility for Walking
Robotics. Energies 2020, 13, 86. [CrossRef]

30. Zou, Y.; Raveendran, V.; Chen, J. Wearable Triboelectric Nanogenerators for Biomechanical Energy Harvesting. Nano Energy 2020,
77, 1–19. [CrossRef]

31. Kim, H.S.; Kim, J.-H.; Kim, J. A Review of Piezoelectric Energy Harvesting Based on Vibration. Int. J. Precis. Eng. Manuf. 2011, 12,
1129–1141. [CrossRef]

32. Bai, Y.; Jantunen, H.; Juuti, J. Hybrid, Multi-Source, and Integrated Energy Harvesters. Front. Mater. 2018, 5, 1–21. [CrossRef]
33. Toprak, A.; Tigli, O. Piezoelectric Energy Harvesting: State-of-the-Art and Challenges. Appl. Phys. Rev. 2014, 1, 1–22. [CrossRef]
34. Tahir, A.M.; Chowdhury, M.E.H.; Khandakar, A.; Al-Hamouz, S.; Abdalla, M.; Awadallah, S.; Reaz, M.B.I.; Al-Emadi, N. A

Systematic Approach to the Design and Characterization of a Smart Insole for Detecting Vertical Ground Reaction Force (VGRF)
in Gait Analysis. Sensors 2020, 20, 957. [CrossRef] [PubMed]

35. Ivanov, K.; Lubich, L.; Guo, N.; Xile, D.; Zhao, Z.; Omisore, O.M.; Ho, D.; Wang, L. Design of a Sensor Insole for Gait Analysis. In
Intelligent Robotics and Applications; Springer International Publishing: Cham, Switzerland, 2019; pp. 433–444.

36. Technical Data-Sheet, Panasonic Industrial Company Electric Double Layer Capacitors (Gold Capacitors)-Technical Guide.
Available online: https://www.tekscan.com/products-solutions/force-sensors/a301 (accessed on 18 May 2020).

37. Son, H.; Gil, H.; Byeon, S.; Kim, S.-Y.; Kim, J.R. RealWalk: Feeling Ground Surfaces While Walking in Virtual Reality. In CHI EA
’18: Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems; Association for Computing Machinery:
New York, NY, USA, 2018; pp. 1–4.

38. Wang, W.; Cao, J.; Yu, J.; Liu, R.; Bowen, C.R.; Liao, W.-H. Self-Powered Smart Insole for Monitoring Human Gait Signals. Sensors
2019, 19, 5336. [CrossRef] [PubMed]

39. Najafi, B.; Ron, E.; Enriquez, A.; Marin, I.; Razjouyan, J.; Armstrong, D. Smarter Sole Survival: Will Neuropathic Patients at
High Risk for Ulceration Use a Smart Insole-Based Foot Protection System. J. Diabetes Sci. Technol. 2017, 11, 702–713. [CrossRef]
[PubMed]

40. Melbourne, H.B. University of Clever socks connecting remote patients and physios. Available online: https://pursuit.unimelb.
edu.au/articles/clever-socks-connecting-remote-patients-and-physios (accessed on 12 July 2020).

41. Reyzelman, A.M.; Koelewyn, K.; Murphy, M.; Shen, X.; Yu, E.; Pillai, R.; Fu, J.; Scholten, H.J.; Ma, R. Continuous Temperature-
Monitoring Socks for Home Use in Patients With Diabetes: Observational Study. J. Med. Internet Res. 2018, 20, 1–14. [CrossRef]

42. The Smart Insole for Diabetes. Available online: https://www.bonbouton.com/smart-insole (accessed on 12 July 2020).
43. FeetMe Devices. Available online: https://feetme.fr/en/wearables-devices#feetme-insole (accessed on 16 May 2020).
44. Niroshan Amarasiriwardena/Vibrasole. Available online: http://niroshan.com/projects/vibrasole (accessed on 16 May 2020).
45. Charlon, Y.; Campo, E.; Brulin, D. Design and Evaluation of a Smart Insole: Application for Continuous Monitoring of Frail

People at Home. Expert Syst. Appl. 2018, 95, 57–71. [CrossRef]
46. Lin, F.; Wang, A.; Zhuang, Y.; Tomita, M.R.; Xu, W. Smart Insole: A Wearable Sensor Device for Unobtrusive Gait Monitoring in

Daily Life. IEEE Trans. Ind. Inform. 2016, 12, 2281–2291. [CrossRef]
47. Mustufa, Y.S.A.; Barton, J.; O’Flynn, B.; Davies, R.; McCullagh, P.; Zheng, H. Design of a Smart Insole for Ambulatory Assessment

of Gait. In Proceedings of the 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks
(BSN), Cambridge, MA, USA, 9–12 June 2015; pp. 1–5.

48. Pedar-Footwear Pressure Distribution Measurement. Pedar®: Dynamic pressure distribution inside the footwear. Available
online: https://www.novel.de/products/pedar/ (accessed on 3 February 2021).

49. Rescio, G.; Leone, A.; Francioso, L.; Siciliano, P. Smart Insole for Diabetic Foot Monitoring. In The Sensors; Andò, B., Baldini, F.,
Di Natale, C., Ferrari, V., Marletta, V., Marrazza, G., Militello, V., Miolo, G., Rossi, M., Scalise, L., Eds.; Springer International
Publishing: Cham, Switzerland, 2019; pp. 571–577.

50. Martinaitis, A.; Daunoraviciene, K. Low Cost Self-Made Pressure Distribution Sensors for Ergonomic Chair: Are They Suitable
for Posture Monitoring? Technol. Health Care 2018, 26, 655–663. [CrossRef]

51. Hopkins, M.; Vaidyanathan, R.; Mcgregor, A.H. Examination of the Performance Characteristics of Velostat as an In-Socket
Pressure Sensor. IEEE Sens. J. 2020, 20, 6992–7000. [CrossRef]

52. Valle-Lopera, D.A.; Castaño-Franco, A.F.; Gallego-Londoño, J.; Hernández-Valdivieso, A.M. Test and Fabrication of Piezoresistive
Sensors for Contact Pressure Measurement. Rev. Fac. De Ing. Univ. De Antioq. 2017, 47–52. [CrossRef]

53. Technical Data-Sheet, High-Speed CMOS Logic 16-Channel Analog Multiplexer/Demultiplexer. Available online: https://www.
ti.com/lit/ds/symlink/cd74hc4067.pdf?ts=1590337823255 (accessed on 24 May 2020).

54. Chen, S.; Lach, J.; Lo, B.; Yang, G. Toward Pervasive Gait Analysis With Wearable Sensors: A Systematic Review. IEEE J. Biomed.
Health Inform. 2016, 20, 1521–1537. [CrossRef]

http://doi.org/10.1149/1945-7111/ab6828
http://doi.org/10.1109/TITB.2009.2038904
http://doi.org/10.3390/s19010044
http://doi.org/10.3390/en13010086
http://doi.org/10.1016/j.nanoen.2020.105303
http://doi.org/10.1007/s12541-011-0151-3
http://doi.org/10.3389/fmats.2018.00065
http://doi.org/10.1063/1.4896166
http://doi.org/10.3390/s20040957
http://www.ncbi.nlm.nih.gov/pubmed/32053914
https://www.tekscan.com/products-solutions/force-sensors/a301
http://doi.org/10.3390/s19245336
http://www.ncbi.nlm.nih.gov/pubmed/31817067
http://doi.org/10.1177/1932296816689105
http://www.ncbi.nlm.nih.gov/pubmed/28627227
https://pursuit.unimelb.edu.au/articles/clever-socks-connecting-remote-patients-and-physios
https://pursuit.unimelb.edu.au/articles/clever-socks-connecting-remote-patients-and-physios
http://doi.org/10.2196/12460
https://www.bonbouton.com/smart-insole
https://feetme.fr/en/wearables-devices#feetme-insole
http://niroshan.com/projects/vibrasole
http://doi.org/10.1016/j.eswa.2017.11.024
http://doi.org/10.1109/TII.2016.2585643
https://www.novel.de/products/pedar/
http://doi.org/10.3233/THC-182512
http://doi.org/10.1109/JSEN.2020.2978431
http://doi.org/10.17533/udea.redin.n82a06
https://www.ti.com/lit/ds/symlink/cd74hc4067.pdf?ts=1590337823255
https://www.ti.com/lit/ds/symlink/cd74hc4067.pdf?ts=1590337823255
http://doi.org/10.1109/JBHI.2016.2608720


Sensors 2021, 21, 4539 31 of 31

55. Bae, J.; Kong, K.; Byl, N.; Tomizuka, M. A Mobile Gait Monitoring System for Gait Analysis. In Proceedings of the 2009 IEEE
International Conference on Rehabilitation Robotics, Kyoto, Japan, 23–26 June 2009; pp. 73–79.

56. Arafsha, F.; Hanna, C.; Aboualmagd, A.; Fraser, S.; Saddik, A.E. Instrumented Wireless SmartInsole System for Mobile Gait
Analysis: A Validation Pilot Study with Tekscan Strideway. J. Sens. Actuator Netw. 2018, 7, 36. [CrossRef]

57. Greenwood, J.A.; Williamson, J.B.P.; Bowden, F.P. Contact of Nominally Flat Surfaces. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci.
1966, 295, 300–319. [CrossRef]

58. Timsit, R.S. Electrical Contact Resistance: Properties of Stationary Interfaces. IEEE Trans. Compon. Packag. Technol. 1999, 22, 85–98.
[CrossRef]

59. Sundaram, S.; Kellnhofer, P.; Li, Y.; Zhu, J.-Y.; Torralba, A.; Matusik, W. Learning the Signatures of the Human Grasp Using a
Scalable Tactile Glove. Nature 2019, 569, 698–702. [CrossRef] [PubMed]

http://doi.org/10.3390/jsan7030036
http://doi.org/10.1098/rspa.1966.0242
http://doi.org/10.1109/6144.759357
http://doi.org/10.1038/s41586-019-1234-z
http://www.ncbi.nlm.nih.gov/pubmed/31142856

	Introduction 
	An Overview of Smart Insoles for Plantar Pressure Detection and Gait Analysis 
	Materials and Methods 
	Technical Specifications and Previous Characterizations of the Piezoresistive Layer 
	Structure of the Realized Pressure Sensors, Experimental Setup, and Methodology for the Characterization of the Piezoresistive Sensors 

	Results 
	Experimental Results Related to the Characterization of the Realized Piezoresistive Sensors 
	Structure of the Realized Piezoresistive Sensing Matrix and Related Acquisition Section 
	Integration of Developed Sensing Matrix and Acquisition Section inside the Smart Insole 
	Processing® Application for Data Analysis from the Smart Insole Testing 

	Discussion 
	Conclusions 
	References

