92,224 research outputs found

    Small Work Space Algorithms for Some Basic Problems on Binary Images

    Get PDF
    International audienceThis paper presents space-efficient algorithms for some basic tasks (or problems) on a binary image of n pixels, assuming that an input binary image is stored in a read-only array with random-access. Although efficient algorithms are available for those tasks if O(n) work space (of O(n logn) bits) is available, we aim to propose efficient algorithms using only limited work space, i.e., O(1) or O(√n) space. Tasks to be considered are (1) CCC to count the number of connected components, (2) MERR to report the minimum enclosing rectangle of every connected component, and (3) LCCR to report a largest connected component. We show that we can solve each of CCC, MERR, and LCCR in O(n logn) time using only O(1) space. If we can use O(√n) work space, we can solve them in O(n), O(n), and O(n + m logm) time, respectively, where m is the number of pixels in the largest connected component

    Optimal modeling for complex system design

    Get PDF
    The article begins with a brief introduction to the theory describing optimal data compression systems and their performance. A brief outline is then given of a representative algorithm that employs these lessons for optimal data compression system design. The implications of rate-distortion theory for practical data compression system design is then described, followed by a description of the tensions between theoretical optimality and system practicality and a discussion of common tools used in current algorithms to resolve these tensions. Next, the generalization of rate-distortion principles to the design of optimal collections of models is presented. The discussion focuses initially on data compression systems, but later widens to describe how rate-distortion theory principles generalize to model design for a wide variety of modeling applications. The article ends with a discussion of the performance benefits to be achieved using the multiple-model design algorithms

    Evolutionary algorithm-based analysis of gravitational microlensing lightcurves

    Full text link
    A new algorithm developed to perform autonomous fitting of gravitational microlensing lightcurves is presented. The new algorithm is conceptually simple, versatile and robust, and parallelises trivially; it combines features of extant evolutionary algorithms with some novel ones, and fares well on the problem of fitting binary-lens microlensing lightcurves, as well as on a number of other difficult optimisation problems. Success rates in excess of 90% are achieved when fitting synthetic though noisy binary-lens lightcurves, allowing no more than 20 minutes per fit on a desktop computer; this success rate is shown to compare very favourably with that of both a conventional (iterated simplex) algorithm, and a more state-of-the-art, artificial neural network-based approach. As such, this work provides proof of concept for the use of an evolutionary algorithm as the basis for real-time, autonomous modelling of microlensing events. Further work is required to investigate how the algorithm will fare when faced with more complex and realistic microlensing modelling problems; it is, however, argued here that the use of parallel computing platforms, such as inexpensive graphics processing units, should allow fitting times to be constrained to under an hour, even when dealing with complicated microlensing models. In any event, it is hoped that this work might stimulate some interest in evolutionary algorithms, and that the algorithm described here might prove useful for solving microlensing and/or more general model-fitting problems.Comment: 14 pages, 3 figures; accepted for publication in MNRA

    Multiscale Discriminant Saliency for Visual Attention

    Full text link
    The bottom-up saliency, an early stage of humans' visual attention, can be considered as a binary classification problem between center and surround classes. Discriminant power of features for the classification is measured as mutual information between features and two classes distribution. The estimated discrepancy of two feature classes very much depends on considered scale levels; then, multi-scale structure and discriminant power are integrated by employing discrete wavelet features and Hidden markov tree (HMT). With wavelet coefficients and Hidden Markov Tree parameters, quad-tree like label structures are constructed and utilized in maximum a posterior probability (MAP) of hidden class variables at corresponding dyadic sub-squares. Then, saliency value for each dyadic square at each scale level is computed with discriminant power principle and the MAP. Finally, across multiple scales is integrated the final saliency map by an information maximization rule. Both standard quantitative tools such as NSS, LCC, AUC and qualitative assessments are used for evaluating the proposed multiscale discriminant saliency method (MDIS) against the well-know information-based saliency method AIM on its Bruce Database wity eye-tracking data. Simulation results are presented and analyzed to verify the validity of MDIS as well as point out its disadvantages for further research direction.Comment: 16 pages, ICCSA 2013 - BIOCA sessio

    Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval

    Get PDF
    Relevance feedback schemes based on support vector machines (SVM) have been widely used in content-based image retrieval (CBIR). However, the performance of SVM-based relevance feedback is often poor when the number of labeled positive feedback samples is small. This is mainly due to three reasons: 1) an SVM classifier is unstable on a small-sized training set, 2) SVM's optimal hyperplane may be biased when the positive feedback samples are much less than the negative feedback samples, and 3) overfitting happens because the number of feature dimensions is much higher than the size of the training set. In this paper, we develop a mechanism to overcome these problems. To address the first two problems, we propose an asymmetric bagging-based SVM (AB-SVM). For the third problem, we combine the random subspace method and SVM for relevance feedback, which is named random subspace SVM (RS-SVM). Finally, by integrating AB-SVM and RS-SVM, an asymmetric bagging and random subspace SVM (ABRS-SVM) is built to solve these three problems and further improve the relevance feedback performance

    Task-Driven Dictionary Learning

    Get PDF
    Modeling data with linear combinations of a few elements from a learned dictionary has been the focus of much recent research in machine learning, neuroscience and signal processing. For signals such as natural images that admit such sparse representations, it is now well established that these models are well suited to restoration tasks. In this context, learning the dictionary amounts to solving a large-scale matrix factorization problem, which can be done efficiently with classical optimization tools. The same approach has also been used for learning features from data for other purposes, e.g., image classification, but tuning the dictionary in a supervised way for these tasks has proven to be more difficult. In this paper, we present a general formulation for supervised dictionary learning adapted to a wide variety of tasks, and present an efficient algorithm for solving the corresponding optimization problem. Experiments on handwritten digit classification, digital art identification, nonlinear inverse image problems, and compressed sensing demonstrate that our approach is effective in large-scale settings, and is well suited to supervised and semi-supervised classification, as well as regression tasks for data that admit sparse representations.Comment: final draft post-refereein

    Hashing with binary autoencoders

    Full text link
    An attractive approach for fast search in image databases is binary hashing, where each high-dimensional, real-valued image is mapped onto a low-dimensional, binary vector and the search is done in this binary space. Finding the optimal hash function is difficult because it involves binary constraints, and most approaches approximate the optimization by relaxing the constraints and then binarizing the result. Here, we focus on the binary autoencoder model, which seeks to reconstruct an image from the binary code produced by the hash function. We show that the optimization can be simplified with the method of auxiliary coordinates. This reformulates the optimization as alternating two easier steps: one that learns the encoder and decoder separately, and one that optimizes the code for each image. Image retrieval experiments, using precision/recall and a measure of code utilization, show the resulting hash function outperforms or is competitive with state-of-the-art methods for binary hashing.Comment: 22 pages, 11 figure
    • 

    corecore