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Task-Driven Dictionary Learning
Julien Mairal, Francis Bach, and Jean Ponce

Abstract—Modeling data with linear combinations of a few elements from a learned dictionary has been the focus of much recent
research in machine learning, neuroscience and signal processing. For signals such as natural images that admit such sparse
representations, it is now well established that these models are well suited to restoration tasks. In this context, learning the dictionary
amounts to solving a large-scale matrix factorization problem, which can be done efficiently with classical optimization tools. The same
approach has also been used for learning features from data for other purposes, e.g., image classification, but tuning the dictionary in a
supervised way for these tasks has proven to be more difficult. In this paper, we present a general formulation for supervised dictionary
learning adapted to a wide variety of tasks, and present an efficient algorithm for solving the corresponding optimization problem.
Experiments on handwritten digit classification, digital art identification, nonlinear inverse image problems, and compressed sensing
demonstrate that our approach is effective in large-scale settings, and is well suited to supervised and semi-supervised classification,
as well as regression tasks for data that admit sparse representations.

Index Terms—Basis pursuit, Lasso, dictionary learning, matrix factorization, semi-supervised learning, compressed sensing.

F

1 INTRODUCTION

THe linear decomposition of data using a few ele-
ments from a learned dictionary instead of a pre-

defined one—based on wavelets [1] for example—has
recently led to state-of-the-art results in numerous low-
level signal processing tasks such as image denoising [2],
[3], [4], audio processing [5], [6], as well as classification
tasks [7], [8], [9], [10], [11], [12]. Unlike decompositions
based on principal component analysis (PCA) and its
variants, these sparse models do not impose that the dic-
tionary elements be orthogonal, allowing more flexibility
to adapt the representation to the data.

Consider a vector x in Rm. We say that it admits a
sparse approximation over a dictionary D = [d1, . . . ,dp]
in Rm×p, when one can find a linear combination of a
“few” columns from D that is “close” to the vector x. Ex-
periments have shown that modeling signals with such
sparse decompositions (sparse coding) is very effective
in many signal processing applications [13]. For natural
images, predefined dictionaries based on various types
of wavelets [1] have been used for this task. Initially
introduced by Olshausen and Field [14] for modeling the
spatial receptive fields of simple cells in the mammalian
visual cortex, the idea of learning the dictionary from
data instead of using off-the-shelf bases has been shown
to significantly improve signal reconstruction [2].

This classical data-driven approach to dictionary
learning is well adapted to reconstruction tasks, such
as restoring a noisy signal. These dictionaries, which
are good at reconstructing clean signals, but bad at
reconstructing noise, have indeed led to state-of-the-art
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denoising algorithms [2], [3], [4]. Unsupervised dictio-
nary learning has also been used for other purposes than
pure signal reconstruction, such as classification [5], [7],
[11], [12], [15], but recent works have shown that better
results can be obtained when the dictionary is tuned
to the specific task (and not just data) it is intended
for. Duarte-Carvajalino and Sapiro [16] have for instance
proposed to learn dictionaries for compressed sensing,
and in [8], [9], [10] dictionaries are learned for signal
classification. In this paper, we will refer to this type of
approach as task-driven dictionary learning.

Whereas purely data-driven dictionary learning has
been shown to be equivalent to a large-scale matrix
factorization problem that can be effectively addressed
with several methods [14], [17], [18], [19], its task-driven
counterpart has proven to be much more difficult to
optimize. Presenting a general efficient framework for
various task-driven dictionary learning problems is the
main topic of this paper. Even though it is different
from existing machine learning approaches, it shares
similarities with many of them.

For instance, Blei et al. [20] have proposed to learn a
latent topic model intended for document classification.
In a different context, Argyriou et al. [21] introduced
a convex formulation for multi-task classification prob-
lems where an orthogonal linear transform of input
features is jointly learned with a classifier. Learning
compact features has also been addressed in the lit-
erature of neural networks, with restricted Boltzmann
machines (RBM’s) and convolutional neural networks
for example (see [22], [23], [24], [25], [26] and references
therein). Interestingly, the question of learning the data
representation in an unsupervised or supervised way
has also been investigated for these approaches. For
instance, a supervised topic model is proposed in [27]
and tuning latent data representations for minimizing a
cost function is often achieved with backpropagation in
neural networks [28].
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1.1 Contributions

This paper makes three main contributions:
• It introduces a supervised formulation for learning

dictionaries adapted to various tasks instead of dic-
tionaries only adapted to data reconstruction.

• It shows that the resulting optimization problem is
smooth under mild assumptions, and empirically
that stochastic gradient descent addresses it effi-
ciently.

• It shows that the proposed formulation is well
adapted to semi-supervised learning, can exploit
unlabeled data when they admit sparse representa-
tions, and leads to state-of-the-art results for various
machine learning and signal processing problems.

1.2 Notation

Vectors are denoted by bold lower case letters and
matrices by upper case ones. We define for q ≥ 1, the
`q-norm of a vector x in Rm as ‖x‖q

M
= (
∑m
i=1 |x[i]|q)1/q ,

where x[i] denotes the i-th entry of x, and ‖x‖∞
M
=

maxi=1,...,m |x[i]| = limq→∞ ‖x‖q . We also define the `0-
pseudo-norm as the number of nonzero elements in a
vector. We consider the Frobenius norm of a matrix X
in Rm×n: ‖X‖F

M
= (
∑m
i=1

∑n
j=1 X[i, j]2)1/2. We also write

for a sequence of vectors xt and scalars ut, xt = O(ut),
when there exists a constant K > 0 independent of t so
that for all t, ‖xt‖2 ≤ Kut, and use a similar notation for
matrices (note that for finite-dimensional vector spaces,
the choice of norm is irrelevant). When Λ ⊆ {1, . . . ,m} is
a finite set of indices, xΛ denotes the vector in R|Λ| that
carries the entries of x indexed by Λ. Similarly, when X
is a matrix in Rm×n and Λ ⊆ {1, . . . , n}, XΛ is the matrix
in Rm×|Λ| whose columns are those of X indexed by Λ.

The rest of this paper is organized as follows: Section 2
presents the data-driven dictionary learning framework.
Section 3 is devoted to our new task-driven framework,
and Section 4 to efficient algorithms to addressing the
corresponding optimization problems. Section 5 presents
several dictionary learning experiments for signal clas-
sification, signal regression, and compressed sensing.

2 DATA-DRIVEN DICTIONARY LEARNING

Classical dictionary learning techniques [14], [17], [18]
consider a finite training set of signals X = [x1, . . . ,xn]
in Rm×n and minimize the empirical cost function

gn(D)
M
=

1

n

n∑
i=1

`u(xi,D),

with respect to a dictionary D in Rm×p, each column
representing a dictionary element. `u is a loss function
such that `u(x,D) should be small if D is “good” at
representing the signal x in a sparse fashion. As empha-
sized by the index u of `u, this optimization problem is
unsupervised. As others (see, e.g., [18]), we define `u(x,D)

as the optimal value of a sparse coding problem. We
choose here the elastic-net formulation of [29]:

`u(x,D)
M
= min

α∈Rp

1

2
‖x−Dα‖22 + λ1‖α‖1 +

λ2

2
‖α‖22, (1)

where λ1 and λ2 are regularization parameters.
When λ2 = 0, this leads to the `1 sparse decomposition
problem, also known as basis pursuit [13], or Lasso [30].
Here, our choice of the elastic-net formulation over the
Lasso is mainly for stability reasons. Using a parameter
λ2 > 0 makes the problem of Eq. (1) strongly convex and,
as shown later in this paper, ensures its unique solution
to be Lipschitz with respect to x and D with a constant
depending on λ2. Whereas the stability of this solution
is not necessarily an issue when learning a dictionary for
a reconstruction task, it has turned out to be empirically
important in some of our experiments with other tasks.

To prevent the `2-norm of D from being arbitrarily
large, which would lead to arbitrarily small values of α,
it is common to constrain its columns d1, . . . ,dp to have
`2-norms less than or equal to one. We will call D the
convex set of matrices satisfying this constraint:

D M
= {D ∈ Rm×p s.t. ∀j ∈ {1, . . . , p}, ‖dj‖2 ≤ 1}. (2)

As pointed out by Bottou and Bousquet [31], one is
usually not interested in a perfect minimization of the
empirical cost gn(D), but instead in the minimization
with respect to D of the expected cost

g(D)
M
= Ex[`u(x,D)]

a.s.
= lim

n→∞
gn(D), (3)

where the expectation is taken relative to the (unknown)
probability distribution p(x) of the data, and is supposed
to be finite.1 In practice, dictionary learning problems
often involve a large amount of data. For instance when
the vectors x represent image patches, n can be up to
several millions in a single image. In this context, online
learning techniques have shown to be very efficient
for obtaining a stationary point of this optimization
problem [19]. In this paper, we propose to minimize an
expected cost corresponding to a supervised dictionary
learning formulation, which we now present.

3 PROPOSED FORMULATION

We introduce in this section a general framework for
learning dictionaries adapted to specific supervised
tasks, e.g., classification, as opposed to the unsupervised
formulation of the previous section, and present different
extensions along with possible applications.

3.1 Basic Formulation
Obtaining a good performance in classification tasks is
often related to the problem of finding a good data rep-
resentation. Sparse decompositions obtained with data-
driven learned dictionaries have been used for that

1. We use “a.s.” (almost surely) to denote convergence with proba-
bility one.
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purpose in [5] and [7], showing promising results for
audio data and natural images. We present in this section
a formulation for learning a dictionary in a supervised
way for regression or classification tasks.

Given a dictionary D obtained using the approach
presented in the previous section, a vector x in X ⊆ Rm
can be represented as a sparse vector α?(x,D), defined
as the solution of an elastic-net problem [29]:

α?(x,D)
M
= arg min

α∈Rp

1

2
‖x−Dα‖22 +λ1‖α‖1 +

λ2

2
‖α‖22. (4)

We now assume that each signal x in X is associ-
ated to a variable y in Y , which we want to predict
from x. Concretely, the set Y can either be a finite set
of labels in classification tasks, or a subset of Rq for some
integer q in regression tasks. We can now use the sparse
vector α?(x,D) as a feature representation of a signal x
in a classical expected risk minimization formulation:

min
W∈W

f(W) +
ν

2
‖W‖2F, (5)

where W are model parameters which we want to learn,
W is a convex set, ν is a regularization parameter, and f
is a convex function defined as

f(W)
M
= Ey,x[`s

(
y,W,α?(x,D)

)
]. (6)

In this equation, `s is a convex loss function that mea-
sures how well one can predict y by observing α?(x,D)
given the model parameters W. For instance, it can be
the square, logistic, or hinge loss from support vector
machines (see [32]). The index s of `s indicates here
that the loss is adapted to a supervised learning problem.
The expectation is taken with respect to the unknown
probability distribution p(y,x) of the data. So far, the
dictionary D is be obtained in an unsupervised way.
However, Mairal et al. [9], and Bradley and Bagnell [10]
have shown that better results can be achieved when
the dictionary is obtained in a fully supervised setting,
tuned for the prediction task. We now introduce the task-
driven dictionary learning formulation, that consists of
jointly learning W and D by solving

min
D∈D,W∈W

f(D,W) +
ν

2
‖W‖2F, (7)

where D is a set of constraints defined in Eq. (2), and f
has the form

f(D,W)
M
= Ey,x[`s

(
y,W,α?(x,D)

)
]. (8)

The main difficulty of this optimization problem comes
from the non-differentiability of α?, which is the solution
of a nonsmooth optimization problem (4). Bradley and
Bagnell [10] have tackled this difficulty by introducing
a smooth approximation of the sparse regularization
which leads to smooth solutions, allowing the use of
implicit differentiation to compute the gradient of the
cost function they have introduced. This approximation
encourages some coefficients in α? to be small, and does
not produce true zeros. It can be used when “true” spar-
sity is not required. In a different formulation, Mairal et

al. [9] have used nonsmooth sparse regularization, but
used heuristics to tackle the optimization problem. We
show in Section 4 that better optimization tools than
these heuristics can be used, while keeping a nonsmooth
regularization for computing α?.

A difference between supervised and unsupervised
dictionary learning is that overcompleteness—that is,
the dictionaries have more elements than the signal
dimension, has not empirically proven to be necessary.
It is indeed often advocated for image processing appli-
cations that having p > m provides better reconstruction
results [2], [4], but for discriminative tasks, perfect recon-
struction is not always required as long as discriminative
features are captured by the sparse coding procedure.

Minor variants of the formulation (7) can also be con-
sidered: Non-negativity constraints may be added on α?

and D, leading to a supervised version of nonnegative
matrix factorization [33], regularized with a sparsity-
inducing penalty. The function `s could also take extra
arguments such as D and x instead of just y,W,α?. For
simplicity, we have omitted these possibilities, but the
formulations and algorithms we present in this paper
can easily be extended to these cases.

Before presenting extensions and applications of the
formulation we have introduced, let us first discuss the
assumptions under which our analysis holds.

3.1.1 Assumptions

From now on, we assume that:

(A) The data (y,x) admits a probability density p with
a compact support KY × KX ⊆ Y × X . This is a
reasonable assumption in audio, image, and video
processing applications, where it is imposed by the
data acquisition process, where values returned by
sensors are bounded. To simplify the notation we
assume from now on that X and Y are compact.2

(B) When Y is a subset of a finite-dimensional real
vector space, p is continuous and `s is twice con-
tinuously differentiable.

(C) When Y is a finite set of labels, for all y in Y , p(y, .)
is continuous and `s(y, .) is twice continuously
differentiable.3

Assumptions (B) and (C) allow us to use several loss
functions such as the square, logistic, or softmax losses.

3.2 Extensions

We now present two extensions of the previous formu-
lations. The first one includes a linear transform of the
input data, and the second one exploits unlabeled data
in a semi-supervised setting.

2. Even though images are acquired in practice after a quantization
process, it is a common assumption in image processing to consider
pixel values in a continuous space.

3. For a given value of y and function g, g(y, .) denotes the function
which associates to a vector x the value g(y,x).
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3.2.1 Learning a Linear Transform of the Input Data
In this section, we add to our basic formulation a
linear transform of the input features, represented by
a matrix Z. Our motivation for this is twofold: It can
be appealing to reduce the dimension of the feature
space via such a linear transform, and/or it can make
the model richer by increasing the numbers of free
parameters. The resulting formulation is the following:

min
D∈D,W∈W,Z∈Z

f(D,W,Z) +
ν1

2
‖W‖2F +

ν2

2
‖Z‖2F, (9)

where ν1 and ν2 are two regularization parameters, Z is
a convex set and

f(D,W,Z)
M
= Ey,x[`s

(
y,W,α?(Zx,D)

)
]. (10)

It is worth noticing that the formulations of Eq. (7)
and Eq. (9) can also be extended to the case of a cost
function depending on several dictionaries involving
several sparse coding problems, such as the one used
in [8] for signal classification. Such a formulation is not
developed here for simplicity reasons, but algorithms to
address it can easily be derived from this paper.

3.2.2 Semi-supervised Learning
As shown in [7], sparse coding techniques can be ef-
fective for learning good features from unlabeled data.
The extension of our task-driven formulation to the semi-
supervised learning setting is natural and takes the form

min
D∈D,W∈W

(1− µ)Ey,x[`s
(
y,W,α?(x,D)

)
]+

µEx[`u(x,D)] +
ν

2
‖W‖2F, (11)

where the second expectation is taken with respect to
the marginal distribution of x. The function `u is the
loss function defined in Eq. (1), and µ in [0, 1] is a
new parameter controlling the trade-off between the
unsupervised and supervised learning cost functions.

3.3 Applications

For illustration purposes, we present a few applications
of our task-driven dictionary learning formulations. Our
approach is of course not limited to these examples.

3.3.1 Regression
In this setting, Y is a subset of a q-dimensional real vector
space, and the task is to predict variables y in Y from
the observation of vectors x in X . A typical application
is for instance the restoration of clean signals y from
observed corrupted signals x. Classical signal restoration
techniques often focus on removing additive noise or
solving inverse linear problems [34]. When the corrup-
tion results from an unknown nonlinear transformation,
we formulate the restoration task as a general regression
problem. This is the case for example in the experiment
presented in Section 5.3.

We define the task-driven dictionary learning formu-
lation for regression as follows:

min
W∈W,D∈D

Ey,x

[1

2
‖y −Wα?(x,D)‖22

]
+
ν

2
‖W‖2F. (12)

At test time, when a new signal x is observed, the
estimate of the corresponding variable y provided by
this model is Wα?(x,D) (plus possibly an intercept
which we have omitted here for simplicity reasons). Note
that we here propose to use the square loss for estimating
the difference between y and its estimate Wα?(x,D),
but any other twice differentiable loss can be used.

3.3.2 Binary Classification
In this section and in the next one, we propose to
learn dictionaries adapted to classification tasks. Our
approach follows the formulation presented in [9], but is
slightly different and falls into our task-driven dictionary
learning framework. In this setting, the set Y is equal
to {−1; +1}. Given a vector x, we want to learn the
parameters w in Rp of a linear model to predict y in Y ,
using the sparse representation α?(x,D) as features, and
jointly optimize D and w. For instance, using the logistic
regression loss, our formulation becomes

min
w∈Rp,D∈D

Ey,x
[

log
(
1 + e−yw

>α?(x,D)
)]

+
ν

2
‖w‖22, (13)

Once D and w have been learned, a new signal x
is classified according to the sign of w>α?(x,D). For
simplicity reasons, we have omitted the intercept in
the linear model, but it can easily be included in the
formulation. Note that instead of the logistic regression
loss, any other twice differentiable loss can be used.

As suggested in [9], it is possible to extend this ap-
proach with a bilinear model by learning a matrix W so
that a new vector x is classified according to the sign of
x>Wα?(x,D). In this setting, our formulation becomes

min
W∈Rm×p,D∈D

Ey,x
[

log
(
1 + e−yx

>Wα?(x,D)
)]

+
ν

2
‖W‖2F.

(14)
This bilinear model requires learning pm parameters
as opposed to the p parameters of the linear one. It
is therefore richer and can sometimes offer a better
classification performance when the linear model is not
rich enough to explain the data, but it might be more
subject to overfitting.

Note that we have naturally presented the binary
classification task using the logistic regression loss, but
as we have experimentally observed, the square loss is
also an appropriate choice in many situations.

3.3.3 Multi-class Classification
When Y is a finite set of labels in {1, . . . , q} with q > 2,
extending the previous formulation to the multi-class
setting can be done in several ways, which we briefly
describe here. The simplest possibility is to use a set of
binary classifiers presented in Section 3.3.2 in a “one-
vs-all” or “one-vs-one” scheme. Another possibility is
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to use a multi-class cost function such as the soft-max
function, to find linear predictors wk, k in {1, . . . , q}
such that for a vector x in X , the quantities w>y α

?(x,D)
are encouraged to be greater than w>k α

?(x,D) for all
k 6= y. Another possibility is to turn the multi-class
classification problem into a regression one and consider
that Y is a set of q binary vectors of dimension q such
that the k−th vector has 1 on its k-th coordinate, and 0
elsewhere. This allows using the regression formulation
of Section 3.3.1 to solve the classification problem.

We remark that for classification tasks, scalability
issues should be considered when choosing between
a one-vs-all scheme (learning independent dictionaries
for every class) and using a multi-class loss function
(learning a single dictionary shared between all classes).
The one-vs-all scheme requires keeping into memory
qpm parameters, where q is the number of classes, which
is feasible when q is reasonably small. For classifications
problems with many classes (for instance q ≥ 1 000),
using a single (larger) dictionary and a multi-class loss
function is more appropriate, and would in addition
allow feature sharing between the classes.

3.3.4 Compressed sensing

Let us consider a signal x in Rm, the theory of com-
pressed sensing [35], [36] tells us that under certain
assumptions, the vector x can be recovered exactly from
a few measurements Zx, where Z in Rr×m is called
a “sensing” matrix with r � m. Unlike classical sig-
nal processing methods, such a linear transformation is
sometimes included physically in the data acquisition
process itself [37], meaning that a sensor can provide
measurements Zx without directly measuring x.

In a nutshell, the recovery of x has been proven to
be possible when x admits a sparse representation on
a dictionary D, and the sensing matrix Z is incoherent
with D, meaning that the rows of Z are sufficiently
uncorrelated with the columns of D (see [35], [36] for
more details).4 To ensure that this condition is satisfied, Z
is often chosen as a random matrix, which is incoherent
with any dictionary with high probability.

The choice of a random matrix is appealing for many
reasons. In addition to the fact that it provides theoretical
guarantees of incoherence, it is well suited to the case
where m is large, making it impossible to store a deter-
ministic matrix Z into memory, whereas it is sufficient to
store the seed of a random process to generate a random
matrix. On the other hand, large signals can often be cut
into smaller parts that still admit sparse decompositions,
e.g., image patches, which can be treated independently
with a deterministic smaller matrix Z. When this is the
case or when m has a reasonable size, the question of
whether to use a deterministic matrix Z or a random
one arises, and it has been empirically observed that

4. The assumption of “incoherence” between D and Z can be
replaced with a different but related hypothesis called restricted isometry
property. Again the reader should refer to [35], [36] for more details.

learned matrices Z can outperform random projections:
For example, it is shown in [38] that classical dimen-
sionality reduction techniques such as principal compo-
nent analysis (PCA) or independent component analysis
(ICA) could do better than random projections in noisy
settings, and in [16] that jointly learning sensing matrices
and dictionaries can do even better in certain cases.
A Bayesian framework for learning sensing matrices in
compressed sensing applications is also proposed in [39].

Following the latter authors, we study the case
where Z is not random but learned at the same time as
the dictionary, and introduce a formulation which falls
into out task-driven dictionary learning framework:

min
D∈D

W∈Rm×p

Z∈Rr×m

Ey,x

[1

2
‖y−Wα?(Zx,D)‖22

]
+
ν1

2
‖W‖2F+

ν2

2
‖Z‖2F,

(15)
where we learn D, W and Z so that the variable y should
be well reconstructed when encoding the “sensed” sig-
nal Zx with a dictionary D. In a noiseless setting, y is
naturally set to the same value as x. In a noisy setting,
it can be a corrupted version of x.

After having presented our general task-driven dic-
tionary learning formulation, we present next a strategy
to address the corresponding nonconvex optimization
problem.

4 OPTIMIZATION

We first show that the cost function f of our basic for-
mulation (7) is differentiable and compute its gradient.
Then, we refine the analysis for the different variations
presented in the previous section, and describe an effi-
cient online learning algorithm to address them.

4.1 Differentiability of f
We analyze the differentiability of f as defined in Eq. (7)
with respect to its two arguments D and W. We con-
sider here the case where Y is a compact subset of a
finite dimensional real vector space, but all proofs and
formulas are similar when Y is a finite set of labels. The
purpose of this section is to show that even though the
sparse coefficients α? are obtained by solving a non-
differentiable optimization problem, f is differentiable
on W ×D, and one can compute its gradient.

The main argument in the proof of Propositions 1
and 2 below is that, although the function α?(x,D) is
not differentiable, it is uniformly Lipschitz continuous,
and differentiable almost everywhere. The only points
where α? is not differentiable are points where the set
of nonzero coefficients of α? change (we always denote
this set by Λ in this paper). Considering optimality
conditions of the elastic-net formulation of Eq. (1), these
points are easy to characterize. The details of the proof
have been relegated to the Appendix (Lemma 1 and
Proposition 3) for readability purposes. With these re-
sults in hand, we then show that f admits a first-order
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Taylor expansion meaning that it is differentiable, the
sets where α? is not differentiable being negligible in
the expectation from the definition of f in Eq. (8). We
can now state our main result:

Proposition 1 (Differentiability and gradients of f ):
Assume λ2 > 0, (A), (B) and (C). Then, the function f
defined in Eq. (7) is differentiable, and{
∇Wf(D,W) = Ey,x[∇W`s(y,W,α?)],

∇Df(D,W) = Ey,x[−Dβ?α?> + (x−Dα?)β?>],
(16)

where α? is short for α?(x,D), and β? is a vector in Rp
that depends on y,x,W,D with

β?ΛC = 0 and β?Λ = (D>ΛDΛ + λ2I)
−1∇αΛ

`s(y,W,α?),
(17)

where Λ denotes the indices of the nonzero coefficients
of α?(x,D).

The proof of this proposition is given in Appendix.
We have shown that the function defined in Eq. (7) is
smooth, and computed its gradients. The same can be
done for the more general formulation of Eq. (10):

Proposition 2 (Differentiability, extended formulation):
Assume λ2 > 0, (A), (B) and (C). Then, the function f
defined in Eq. (10) is differentiable. The gradients of f
are
∇Wf(D,W,Z) = Ey,x[∇W`s(y,W,α?)],

∇Df(D,W,Z) = Ey,x[−Dβ?α?> + (Zx−Dα?)β?>],

∇Zf(D,W,Z) = Ey,x[Dβ?x>],
(18)

where α? is short for α?(Zx,D), and β? is defined in
Eq. (17).

The proof is similar to the one of Proposition 1 in
Appendix, and uses similar arguments.

4.2 Algorithm
Stochastic gradient descent algorithms are typically de-
signed to minimize functions whose gradients have the
form of an expectation as in Eq. (16). They have been
shown to converge to stationary points of (possibly
nonconvex) optimization problems under a few assump-
tions that are a bit stricter than the ones satisfied in
this paper (see [31] and references therein).5 As noted
in [19], these algorithms are generally well suited to
unsupervised dictionary learning when their learning
rate is well tuned.

The method we propose here is a projected first-order
stochastic gradient algorithm (see [40]), and it is given in
Algorithm 1. It sequentially draws i.i.d samples (yt,xt)
from the probability distribution p(y,x). Obtaining such

5. As often done in machine learning, we use stochastic gradient de-
scent in a setting where it is not guaranteed to converge in theory, but
is has proven to behave well in practice, as shown in our experiments.
The convergence proof of Bottou [31] for non-convex problems indeed
assumes three times differentiable cost functions.

i.i.d. samples may be difficult since the density p(y,x)
is unknown. At first approximation, the vectors (yt,xt)
are obtained in practice by cycling over a randomly
permuted training set, which is often done in similar
machine learning settings [41].

Algorithm 1 Stochastic gradient descent algorithm for
task-driven dictionary learning.
Require: p(y,x) (a way to draw i.i.d samples of p),

λ1, λ2, ν ∈ R (regularization parameters), D ∈ D
(initial dictionary), W ∈ W (initial parameters), T
(number of iterations), t0, ρ (learning rate parame-
ters).

1: for t = 1 to T do
2: Draw (yt,xt) from p(y,x).
3: Sparse coding: compute α? using a modified

LARS [42].

α? ← arg min
α∈Rp

1

2
||xt −Dα||22 + λ1||α||1 +

λ2

2
||α||22.

4: Compute the active set:

Λ← {j ∈ {1, . . . , p} : α?[j] 6= 0}.

5: Compute β?: Set β?ΛC = 0 and

β?Λ = (D>ΛDΛ + λ2I)
−1∇αΛ`s(yt,W,α?).

6: Choose the learning rate ρt ← min
(
ρ, ρ t0t

)
.

7: Update the parameters by a projected gradient
step

W← ΠW

[
W − ρt

(
∇W`s(yt,W,α?) + νW

)]
,

D← ΠD

[
D− ρt

(
−Dβ?α?> + (xt −Dα?)β?>

)]
,

where ΠW and ΠD are respectively orthogonal
projections on the sets W and D.

8: end for
9: return D (learned dictionary).

At each iteration, the sparse code α?(xt,D) is com-
puted by solving the elastic-net formulation of [29].
We have chosen to use the LARS algorithm, a ho-
motopy method [42], which was originally developed
to solve the Lasso formulation—that is, λ2 = 0, but
which can be modified to solve the elastic-net prob-
lem. Interestingly, it admits an efficient implementation
that provides a Cholesky decomposition of the matrix
(D>ΛDΛ+λ2I)

−1 (see [29], [42]) as well as the solution α?.
In this setting, β? can be obtained without having to
solve from scratch a new linear system.

The learning rate ρt is chosen according to a heuristic
rule. Several strategies have been presented in the liter-
ature (see [28], [43] and references therein). A classical
setting uses a learning rate of the form ρ/t, where ρ is
a constant.6 However, such a learning rate is known to

6. A 1/t-asymptotic learning rate is usually used for proving the
convergence of stochastic gradient descent algorithms [31].
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decrease too quickly in many practical cases, and one
sometimes prefers a learning rate of the form ρ/(t+ t0),
which requires tuning two parameters. In this paper, we
have chosen a learning rate of the form min(ρ, ρt0/t)—
that is, a constant learning rate ρ during t0 iterations,
and a 1/t annealing strategy when t > t0, a strategy
used by [43] for instance. Finding good parameters ρ
and t0 also requires in practice a good heuristic. The
one we have used successfully in all our experiments
is t0 = T/10, where T is the total number of iterations.
Then, we try several values of ρ during a few hundreds
of iterations and keep the one that gives the lowest error
on a small validation set.

In practice, one can also improve the convergence
speed of our algorithm with a mini-batch strategy—that
is, by drawing η > 1 samples at each iteration instead
of a single one. This is a classical heuristic in stochastic
gradient descent algorithms and, in our case, this is
further motivated by the fact that solving η elastic-net
problems with the same dictionary D can be accelerated
by the precomputation of the matrix D>D when η is
large enough. Such a strategy is also used in [19] for
the classical data-driven dictionary learning approach.
In practice, the value η = 200 has given good results in
all our experiments (a value found to be good for the
unsupervised setting as well).

As many algorithms tackling non-convex optimization
problems, our method for learning supervised dictionar-
ies can lead to poor results if is not well initialized. The
classical unsupervised approach of dictionary learning
presented in Eq. (3) has been found empirically to be
better behaved than the supervised one, and easy to
initialize [19]. We therefore have chosen to initialize our
dictionary D by addressing the unsupervised formula-
tion of Eq. (3) using the SPAMS toolbox [19].7 With this
initial dictionary D in hand, we optimize with respect
to W the cost function of Eq (5), which is convex. This
procedure gives us a pair (D,W) of parameters which
are used to initialize Algorithm 1.

4.3 Extensions
We here present the slight modifications to Algorithm 1
necessary to address the two extensions discussed in
Section 3.2.

The last step of Algorithm 1 updates the parameters D
and W according to the gradients presented in Eq. (18).
Modifying the algorithm to address the formulation of
Section 3.2.1 also requires updating the parameters Z
according to the gradient from Proposition 2:

Z← ΠZ

[
Z− ρt(Dβ?x> + ν2Z)

]
,

where ΠZ denotes the orthogonal projection on the set Z .
The extension to the semi-supervised formulation of

Section 3.2.2 assumes that one can draw samples from
the marginal distribution p(x). This is done in practice by

7. http://www.di.ens.fr/willow/SPAMS/

cycling over a randomly permuted set of unlabeled vec-
tors. Extending Algorithm 1 to this setting requires the
following modifications: At every iteration, we draw one
pair (yt,xt) from p(y,x) and one sample x′t from p(x).
We proceed exactly as in Algorithm 1, except that we
also compute α?′

M
= α?(x′t,D), and replace the update

of the dictionary D by

D← ΠD

[
D−ρt

(
(1−µ)

(
−Dβ?α?>+(xt−Dα?)β?>

)
+

µ
(
− (x′t −Dα?′)α?′>

))]
, (19)

where the term −(x′t−Dα?′)α?′> is in fact the gradient
∇D`u(xt,D), as shown in [19].

5 EXPERIMENTAL VALIDATION
Before presenting our experiments, we briefly discuss the
question of choosing the parameters in our formulation.

5.1 Choosing the Parameters
Performing cross-validation on the parameters λ1, λ2

(elastic-net parameters), ν (regularization parameter)
and p (size of the dictionary) would of course be cumber-
some, and we use a few simple heuristics to either reduce
the search space for these parameters or fix arbitrarily
some of them. We have proceeded in the following way:
• Since we want to exploit sparsity, we often set λ2

to 0, even though λ2 > 0 is necessary in our
analysis for proving the differentiability of our cost
function. This has proven to give satisfactory results
in most experiments, except for the experiment of
Section 5.5, where choosing a small positive value
for λ2 was necessary for our algorithm to converge.

• We have empirically observed that natural image
patches (that are preprocessed to have zero-mean
and unit `2-norm) are usually well reconstructed
with values of λ1 around 0.15 (a value used in [9]
for instance), and that one only needs to test a few
different values, for instance λ1 = 0.15+0.025k, with
k ∈ {−3, . . . , 3}.

• When there is a lot of training data, which is often
the case for natural image patches, the regulariza-
tion with ν becomes unnecessary and this parameter
can arbitrarily set to a small value, e.g., ν = 10−9 for
normalized input data. When there are not many
training points, this parameter is set up by cross-
validation.

• We have also observed that a larger dictionary
usually means a better performance, but a higher
computational cost. Setting the size of the dictionary
is therefore often a trade-off between results quality
and efficiency. In our experiments, we often try the
values p in {50, 100, 200, 400}.

We show in this section several applications of our
method to real problems, starting with handwritten dig-
its classification, then moving to the restoration of im-
ages damaged by an unknown nonlinear transformation,
digital art authentification, and compressed sensing.
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5.2 Handwritten Digits Classification
We consider here a classification task using the
MNIST [44] and USPS [45] handwritten datasets. MNIST
contains 70 000 28×28 images, 60 000 for training, 10 000
for testing, whereas USPS has 7 291 training images and
2 007 test images of size 16× 16.

We address this multiclass classification problem with
a one-vs-all strategy, learning independently one dictio-
nary and classifier per class, using the formulation of
Section 3.3.2. This approach has proven here to be faster
than learning a single large dictionary with a multi-class
loss function, while providing very good results. In this
experiment, the Lasso [30] is preferred to the elastic-
net formulation [29], and λ2 is thus set to 0. All digits
are preprocessed to have zero-mean and are normalized
to have unit `2-norm. For the reasons mentioned ear-
lier, we try the parameters λ1 = 0.15 + 0.025k, with
k ∈ {−3, . . . , 3}, and and ν is chosen in {10−1, . . . , 10−6}.
We select the parameters on MNIST by keeping the last
10 000 digits of the training set for validation, while
training on the first 50 000 ones. For USPS, we similarly
keep 10% of the training set for validation. Note that
a cross-validation scheme may give better results, but
would be computationally more expensive.

Most effective digit recognition techniques use fea-
tures with shift invariance properties [24], [46]. Since our
formulation is less sophisticated than for instance the
convolutional network architecture of [24] and does not
enjoy such properties, we have artificially augmented the
size of the training set by considering versions of the
digits that are shifted by one pixel in every direction.
This is of course not an optimal way of introducing shift
invariance in our framework, but it is fairly simple.

After choosing the parameters using the validation set,
we retrain our model on the full training set. Each experi-
ment is performed with 40 000 iterations of our algorithm
with a mini-batch of size 200. We report the performance
on the test set achieved for different dictionary sizes,
with p in {50, 100, 200, 300} for the two datasets, and
observe that learning D in a supervised way significantly
improves the performance of the classification. Moreover
our method achieves state-of-the-art results on MNIST
with a 0.54% error rate, which is similar to the 0.60%
error rate of [24].8 Our 2.84% error rate on USPS is
slightly behind the 2.4% error rate of [46].

We remark that a digit recognition task was also car-
ried out in [9], where a similar performance is reported.9

Our conclusions about the advantages of supervised
versus unsupervised dictionary learning are consistent
with [9], but our approach has two main advantages.
First it is much easier to use since it does not requires
complicated heuristic procedures to select the param-
eters, and second it applies to a wider spectrum of
applications such as to regression tasks.

8. It is also shown in [24] that better results can be achieved by
considering deformations of the training set.

9. The error rates in [9] are slightly higher but the dataset used in
their paper is not augmented with shifted versions of the digits.

TABLE 1
Test error in percent of our method for the digit
recognition task for different dictionary sizes p.

D unsupervised supervised
p 50 100 200 300 50 100 200 300

MNIST 5.27 3.92 2.95 2.36 .96 .73 .57 .54
USPS 8.02 6.03 5.13 4.58 3.64 3.09 2.88 2.84

Fig. 1. Error rates on MNIST when using n labeled data,
for various values of µ.

Our second experiment follows [24], where only a
few samples are labelled. We use the semi-supervised
formulation of Section 3.2.2 which exploits unlabeled
data. Unlike the first experiment where the parameters
are chosen using a validation set, and following [24], we
make a few arbitrary choices. Indeed, we use p = 300,
λ1 = 0.075, and ν = 10−5, which were the parameters
chosen in the previous experiment. As in the previous
experiment, we have observed that these parameters
lead to sparse vectors α? with about 15 non-zero coeffi-
cients. The dictionaries associated with each digit class
are initialized using the unsupervised formulation of
Section 2. To test our algorithm with different values of
µ, we use a continuation strategy: Starting with µ = 1.0,
we sequentially decrease its value by 0.1 until we have
µ = 0, learning with 10 000 iterations for each new value
of µ. We report the error rates in Figure 1, showing that
our approach offers a competitive performance similar
to [24]. The best error rates of our method for n =
300, 1000, 5000 labeled data are respectively 5.81, 3.55
and 1.81%, which is similar to [24] who has reported
7.18, 3.21 and 1.52% with the same sets of labeled data.

5.3 Learning a Nonlinear Image Mapping
We now illustrate our method in a regression context
by considering a classical image processing task called
“inverse halftoning”. With the development of several
binary display technologies in the 70s (including, for
example, printers and PC screens), the problem of con-
verting a grayscale continuous-tone image into a binary
one that looks perceptually similar to the original one
(“halftoning”) was posed to the image processing com-
munity. Examples of halftoned images obtained with the
classical Floyd-Steinberg algorithm [47] are presented in
the second column of Figure 2, with original images
in the first column. Restoring these binary images to
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continuous-tone ones (“inverse halftoning”) has become
a classical problem (see [48] and references therein).

Unlike most image processing approaches that ex-
plicitly model the halftoning process, we formulate it
as a regression problem, without exploiting any prior on
the task. We use a database of 36 images; 24 are high-
quality images from the Kodak PhotoCD dataset10 and
are used for training, and 12 are classical images often
used for evaluating image processing algorithms;11 the
first four (house, peppers, cameraman, lena) are used
for validation and the remaining eight for testing.

We apply the Floyd-Steinberg algorithm imple-
mented in the LASIP Matlab toolbox12 to the grayscale
continuous-tone images in order to build our train-
ing/validation/testing set. We extract all pairs of patches
from the original/halftoned images in the training set,
which provides us with a database of approximately 9
millions of patches. We then use the “signal regression”
formulation of Eq. (12) to learn a dictionary D and
model parameters W, by performing two passes of our
algorithm over the 9 million training pairs.

At this point, we have learned how to restore a small
patch from an image, but not yet how to restore a full
image. Following other patch-based approaches to image
restoration [2], we extract from a test image all patches
including overlaps, and restore each patch independently
so that we get different estimates for each pixel (one
estimate for each patch the pixel belongs to). These
estimates are then averaged to reconstruct the full image,
which has proven to give very good results in many
image restoration tasks (see, e.g., [2], [4]). The final image
is then post-processed using the denoising algorithm
of [4] to remove possible artefacts.

We then measure how well it reconstructs the
continuous-tone images from the halftoned ones in the
test set. To reduce the number of hyperparameters, we
have made a few arbitrary choices: We first use the Lasso
formulation for encoding the signals—that is, we set
λ2 = 0. With millions of training samples, our model
is unlikely to overfit and the regularization parameter ν
is set to 0 as well. The remaining free parameters are the
size m of the patches, the size p of the dictionary and
the regularization parameter λ1. These parameters are
selected by minimizing the mean-squared error recon-
struction on the validation set. We have tried patches of
size m = l×l, with l ∈ {6, 8, 10, 12, 14, 16}, dictionaries of
sizes p = 100, 250 and 500 , and determined λ1 by first
trying values on the logarithmic scale 10i, i = −3, 2, then
refining this parameter on the scale 0.1, 0.2, 0.3, . . . , 1.0.
The best parameters found are m = 10×10, p = 500 and
λ1 = 0.6. Since the test procedure is slightly different
from the training one (the test includes an averaging step
to restore a full image whereas the training one does
not), we have refined the value of λ1, trying different

10. http://r0k.us/graphics/kodak/
11. The list of these images can be found in [4], where they are used

for the problem of image denoising.
12. http://www.cs.tut.fi/∼lasip/

values one an additive scale {0.4, 0.45, . . . , 0.75, 0.8}, and
selected the value λ1 = 0.55, which has given the best
result on the validation set.

Note that the largest dictionary has been chosen, and
better results could potentially be obtained using an
even larger dictionary, but this would imply a higher
computational cost. Examples of results are presented
in Figure 2. Halftoned images are binary but look per-
ceptually similar to the original image. Reconstructed
images have very few artefacts and most details are
well preserved. We report in Table 2 a quantitative com-
parison between our approach and various ones from
the literature, including the state-of-the-art algorithm
of [48], which had until now the best results on this
dataset. Even though our method does not explicitly
model the transformation, it leads to better results in
terms of PSNR.13 We also present in Figure 3 the results
obtained by applying our algorithm to various binary
images found on the web, from which we do not know
the ground truth, and which have not necessarily been
obtained with the Floyd-Steinberg algorithm. The results
are qualitatively rather good.

From this experiment, we conclude that our method
is well suited to (at least, some) nonlinear regression
problems on natural images, paving the way to new
applications of sparse image coding.

5.4 Digital Art Authentification
Recognizing authentic paintings from imitations using
statistical techniques has been the topic of a few recent
works [52], [53], [54]. Classical methods compare, for
example, the kurtosis of wavelet coefficients between a
set of authentic paintings and imitations [52], or involve
more sophisticated features [53]. Recently, Hugues et
al. [54] have considered a dataset of 8 authentic paintings
from Pieter Bruegel the Elder, and 5 imitations.14 They
have proposed to learn dictionaries for sparse coding,
and use the kurtosis of the sparse coefficients as discrim-
inative features. We use their dataset, which they kindly
provided to us.15

The supervised dictionary learning approach we have
presented is designed for classifying relatively small
signals, and should not be directly applicable to the
classification of large images, for which classical com-
puter vision approaches based on bags of words may
be better adapted (see [12], [55] for such approaches).
However, we show that, for this particular dataset, a
simple voting scheme based on the classification of small
image patches with our method leads to good results.

The experiment we carry out consists of finding which
painting is authentic, and which one is fake, in a pair

13. Denoting by MSE the mean-squared-error for images whose
intensities are between 0 and 255, the PSNR is defined as PSNR =
10 log10(255

2/MSE) and is measured in dB. A gain of 1dB reduces
the MSE by approximately 20%.

14. The origin of these paintings is assessed by art historians.
15. It would have been interesting to use the datasets used in [52],

[53], but they are not publicly available.
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TABLE 2
Inverse halftoning experiments. Results are reported in PSNR (higher is better). SA-DCT refers to [48], LPA-ICI to

[49], FIHT2 to [50] and WInHD to [51]. Best results for each image are in bold.

Validation set Test set
Image 1 2 3 4 5 6 7 8 9 10 11 12
FIHT2 30.8 25.3 25.8 31.4 24.5 28.6 29.5 28.2 29.3 26.0 25.2 24.7

WInHD 31.2 26.9 26.8 31.9 25.7 29.2 29.4 28.7 29.4 28.1 25.6 26.4
LPA-ICI 31.4 27.7 26.5 32.5 25.6 29.7 30.0 29.2 30.1 28.3 26.0 27.2
SA-DCT 32.4 28.6 27.8 33.0 27.0 30.1 30.2 29.8 30.3 28.5 26.2 27.6

Ours 33.0 29.6 28.1 33.0 26.6 30.2 30.5 29.9 30.4 29.0 26.2 28.0

Fig. 2. From left to right: Original images, halftoned
images, reconstructed images. Even though the halftoned
images (center column) perceptually look relatively close
to the original images (left column), they are binary.
Reconstructed images (right column) are obtained by
restoring the halftoned binary images. Best viewed by
zooming on a computer screen.

known to contain one of each.16 We proceed in a leave-
one-out fashion, where we remove for testing one au-
thentic and one imitation paintings from the dataset,
and learn on the remaining ones. Since the dataset is
small and does not have an official training/test set,
we measure a cross-validation score, testing all possible
pairs. We consider 12× 12 color image patches, without
any pre-processing, and classify each patch from the test
images independently. Then, we use a simple majority
vote among the test patches to decide which image is
the authentic one in the pair test, and which one is the

16. This task is of course considerably easier than classifying each
painting as authentic or fake. We do not claim to propose a method
that readily applies to forgery detection.

Fig. 3. Results on various binary images publicly avail-
able on the Internet. No ground truth is available for these
images from old computer games, and the algorithm that
has generated these images is unknown. Input images
are on the left. Restored images are on the right. Best
viewed by zooming on a computer screen.

imitation.17

For each pair of authentic/imitation paintings, we
build a dataset containing 200 000 patches from the
authentic images and 200 000 from the imitations. We use
the formulation from Eq. (13) for binary classification,
and arbitrarily choose dictionaries containing p = 100
dictionary elements. Since the training set is large, we set
the parameter ν to 0, also choose the Lasso formulation
for decomposing the patches by setting λ2 = 0, and
cross-validate on the parameter λ1, trying values on a
grid {10−4, 10−3, . . . , 100}, and then refining the result
on a grid with a logarithmic scale of 2. We also compare

17. Note that this experimental setting is different from [54], where
only authentic paintings are used for training (and not imitations). We
therefore do not make quantitive comparison with this work.
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Eq. (13) with the logistic regression loss and the basic
formulation of Eq. (5) where D is learned unsupervised.

For classifying individual patches, the cross-validation
score of the supervised formulation is a classification
rate of 54.04± 2.26%, which slightly improves upon the
“unsupervised” one that achieves 51.94 ± 1.92%. The
task of classifying independently small image patches
is difficult since there is significant overlap between the
two classes. On the other hand, finding the imitation in
a pair of (authentic,imitation) paintings with the voting
scheme is easier and the “unsupervised formulation”
only fails for one pair, whereas the supervised one has
always given the right answer in our experiments.

5.5 Compressed Sensing
In this experiment, we apply our method to the prob-
lem of learning dictionaries and projection matrices for
compressed sensing. As explained in Section 3.3.4, our
formulation and the conclusions of this section hold for
relatively small signals, where the sensing matrix can
be stored into memory and learned. Thus, we consider
here small image patches of natural images of size
m = 10×10 pixels. To build our training/validation/test
set, we have chosen the Pascal VOC 2006 database
of natural images [56]: Images 1 to 3000 are used for
training; images 3001 to 4000 are used for validation,
and the remaining 1304 images are kept for testing.
Images are downsampled by a factor 2 so that the JPEG
compression artefacts present in this dataset become
visually imperceptible, thereby improving its quality for
our experiment.

We compare different settings where the task is to
reconstruct the patches y of size m = 10 × 10, from
an observation Zx of size r � m (for instance r = 20
linear measurements), where Z in Rr×m is a sensing
matrix. For simplicity reasons, we only consider here the
noiseless case, where y = x. At test time, as explained
in Section (3.3.4), our estimate of y is Wα?(Zx,D),
where D in Rr×p is a dictionary for representing Zx,
and W in Rm×p can be interpreted here as a dictionary
for representing y. We evaluate several strategies for
obtaining (Z,D,W):
• We consider the case, which we call RANDOM,

where the entries of Z are i.i.d. samples of the
Gaussian distribution N (0, 1/

√
m). Since the pur-

pose of Z is to reduce the dimensionality of the
input data, it is also natural to consider the case
where Z is obtained by principal component analy-
sis on natural image patches (PCA). Finally, we also
learn Z with the supervised learning formulation
of Eq. (15), (SL), but consider the case where it is
initialized randomly (SL1) or by PCA (SL2).

• The matrix D can either be fixed or learned. A
typical setting would be to set D = ZD′, where D′ is
discrete-cosine-transform matrix (DCT), often used
in signal processing applications [2]. It can also be
learned with an unsupervised learning formulation
(UL), or a supervised one (SL).

• W is always learned in a supervised way.
Since our training set is very large (several millions of

patches), we arbitrarily set the regularization parameters
ν1 and ν2 to 0. We measure reconstruction errors with
dictionaries of various levels of overcompleteness by
choosing a size p in {100, 200, 400}. The remaining free
parameters are the regularization parameters λ1 and λ2

for obtaining the coefficients α?. We try the values
λ1 = 10i, with i in {−5, . . . , 0}. Unlike what we have
done in the experiments of Section 5.3, it is absolutely
necessary in this setting to use λ2 > 0 (according to
the theory), since using a zero value for this parameter
has led to instabilities and prevented our algorithm from
converging. We have tried the values λ2 = 10iλ1, with
i in {−2,−1, 0}. Each learning procedure is performed
by our algorithm in one pass on 10 millions of patches
randomly extracted from our training images. The pair
of parameters (λ1, λ2) that gives the lowest reconstruc-
tion error on the validation set is selected, and we report
in Table 3 the result obtained on a test set of 500 000
patches randomly extracted from the 1304 test images.
The conclusions of this compressed sensing experiment
on natural image patches are the following:
• When Z is initialized as a Gaussian random matrix

(case RANDOM), learning D and Z significantly im-
proves the reconstruction error (case SL1). A similar
observation was made in [16].

• Results obtained with PCA are in general much
better than those obtained with random projections,
which is consistent with the conclusions of [38].

• However, PCA does better than SL1. When PCA
is used for initializing our supervised formulation,
results can be slightly improved (case SL2). This
illustrates either the limits of the non-convex opti-
mization procedure, or that PCA is particularly well
adapted to this problem.

• Learned dictionaries (cases UL and SL) outperform
classical DCT dictionaries.

6 CONCLUSION

We have presented in this paper a general formulation
for learning sparse data representations tuned to specific
tasks. Unlike classical approaches that learn a dictionary
adapted to the reconstruction of the input data, our
method learns features in a supervised way. We have
shown that this approach is effective for solving clas-
sification and regression tasks in a large-scale setting,
allowing the use of millions of training samples, and
is able of exploiting successfully unlabeled data, when
only a few labeled samples are available. Experiments
on handwritten digits classification, non-linear inverse
image mapping, digital art authentification, and com-
pressed sensing have shown that our method leads to
state-of-the-art results for several real problems. Future
work will include adapting our method to various im-
age processing problems such as image deblurring and
image super-resolution, and other inverse problems.
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TABLE 3
Compressed sensing experiment on small natural image patches. The mean squared error (MSE) measured on a
test set is reported for each scenario with standard deviations, obtained by reproducing 5 times each experiment,

randomizing the algorithm initializations and the sampling of the training images. Each patch is normalized to have
unit `2 norm, and the mean squared reconstruction error is multiplied by 100 for readability purposes. Here, r is the

number of rows of the matrix Z. The different scenarios vary with the way D and Z are learned (fixed, unsupervised,
supervised). See the main text for details.

Z RANDOM SL1 PCA SL2
D DCT UL SL SL DCT UL SL SL
r = 5 77.3± 4.0 76.9± 4.0 76.7± 4.0 54.1± 1.3 49.9± 0.0 47.6± 0.0 47.5± 0.1 47.3± 0.3

r = 10 57.8± 1.5 56.5± 1.5 55.7± 1.4 36.5± 0.7 33.7± 0.0 32.3± 0.0 32.3± 0.1 31.9± 0.2

r = 20 37.1± 1.2 35.4± 1.0 34.5± 0.9 21.4± 0.1 20.4± 0.0 19.7± 0.0 19.6± 0.1 19.4± 0.2

r = 40 19.3± 0.8 18.5± 0.7 18.0± 0.6 10.0± 0.3 9.2± 0.0 9.1± 0.0 9.0± 0.0 9.0± 0.0

APPENDIX
PROOFS AND LEMMAS

Before giving the proof of Proposition 1, we present two
general results on the elastic net formulation of [29].

Lemma 1 (Optimality conditions of the elastic net):
The vector α? is a solution of Eq. (4) if and only if for
all j in {1, . . . , p},

d>j (x−Dα?)− λ2α
?[j] = λ1 sign(α?[j]) if α?[j] 6= 0,

|d>j (x−Dα?)− λ2α
?[j]| ≤ λ1 otherwise.

(20)

Denoting by Λ
M
= {j ∈ {1, . . . , p} s.t. α?[j] 6= 0} the

active set, we also have

α?Λ = (D>ΛDΛ + λ2I)
−1(D>Λx− λ1sΛ), (21)

where sΛ in {−1; +1}|Λ| carries the signs of α?Λ.

Proof: Equation (20) can be obtained by considering
subgradient optimality conditions as done in [57] for the
case λ2 = 0. These can be written as

0 ∈ {−D>(x−Dα?) + λ2α
? + λ1p : p ∈ ∂‖α?‖1},

where ∂‖α?‖1 denotes the subdifferential of the `1 norm
evaluated at α?. A classical result (see [58], page 238)
is that the subgradients p of this subdifferential are
characterized by the fact that for all j in {1, . . . , p},
p[j] = sign(α?[j]) if α?[j] 6= 0, and |p[j]| ≤ 1 otherwise.
This gives directly Eq. (20). The equalities in Eq. (20)
define a linear system whose solution is Eq. (21).
The next proposition exploits these optimality conditions
to characterize the regularity of α?.

Proposition 3 (Regularity of the elastic net solution):
Assume λ2 > 0 and (A). Then,

1) The function α? is uniformly Lipschitz on X ×D.
2) Let D be in D, ε be a positive scalar and s be a

vector in {−1, 0,+1}p, and define Ks(D, ε) ⊆ X as
the set of vectors x satisfying for all j in {1, . . . , p},{
|d>j (x−Dα?)− λ2α

?[j]| ≤ λ1 − ε if s[j] = 0,
s[j]α?[j] ≥ ε if s[j] 6= 0.

(22)

where α? is shorthand for α?(x,D).
Then, there exists κ > 0 independent of s, D and ε
so that for all x in Ks(D, ε), the function α? is twice
continuously differentiable on Bκε(x) × Bκε(D),
where Bκε(x) and Bκε(D) denote the open balls
of radius κε respectively centered on x and D.

Proof: The first point is proven in [19]. The proof
uses the strong convexity induced by the elastic-net
term, when λ2 > 0, and the compactness of X from
Assumption (A).

For the second point, we study the differentiability
of α? on sets that satisfy conditions which are more
restrictive than the optimality conditions of Eq. (20).
Concretely, let D be in D, ε > 0 and s be in {−1, 0,+1}p.
The set Ks(D, ε) characterizes the vectors x so that
α?(x,D) has the same signs as s (and same set of
zero coefficients), and α?(x,D) satisfies the conditions
of Eq. (20), but with two additional constraints: (i) The
magnitude of the non-zero coefficients in α? should be
greater than ε. (ii) The inequalities in Eq. (20) should be
strict with a margin ε. The reason for imposing these
assumptions is to restrict ourselves to points x in X
that have a stable active set—that is, the set of non-
zero coefficients Λ of α? should not change for small
perturbations of (x,D), when x is in Ks(D, ε).

Proving that there exists a constant κ > 0 satisfying
the second point is then easy (if a bit technical): Let us
assume that Ks(D, ε) is not empty (the case when it is
empty is trivial). Since α? is uniformly Lipschitz with
respect to (x,D), so are the quantities d>j (x − Dα?) −
λ2α

?[j] and s[j]α?[j], for all j in {1, . . . , p}. Thus, there
exists κ > 0 independent of x and D such that for all
(x′,D′) satisfying ‖x − x′‖2 ≤ κε and ‖D −D′‖F ≤ κε,
we have for all j in {1, . . . , p},{
|d>′j (x′ −D′α?′)− λ2α

?′[j]| ≤ λ1 − ε
2 if s[j] = 0,

s[j]α?′[j] ≥ ε
2 if s[j] 6= 0.

where α?′ is short-hand for α?(x′,D′), and x′ is there-
fore in Ks(D

′, ε/2). It is then easy to show that the
active set Λ of α? and the signs of α? are stable on
Bκε(x) × Bκε(D), and that α?Λ is given by the closed
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form of Eq. (21). α? is therefore twice differentiable on
Bκε(x)×Bκε(D).
With this proposition in hand, we can now present the
proof of Proposition 1:

Proof: The differentiability of f with respect to W is
easy using only the compactness of Y and X and the fact
that `s is twice differentiable. We will therefore focus on
showing that f is differentiable with respect to D, which
is more difficult since α? is not differentiable everywhere.

Given a small perturbation E in Rm×p of D, we
compute

f(D + E,W)− f(D,W) =

Ey,x

[
∇α`

>
s

(
α?(x,D + E)−α?(x,D)

)]
+O(‖E‖2F),

(23)

where ∇α`s is short for ∇α`s(y,W,α?), and the term
O(‖E‖2F) comes from the fact that α? is uniformly Lips-
chitz and X ×D is compact.

Let now choose W in W and D in D. We have
characterized in Lemma 3 the differentiability of α? on
some subsets of X ×D. We consider the set

K(D, ε)
M
=

⋃
s∈{−1,0,1}p

Ks(D, ε),

and denoting by P our probability measure, it is easy
to show with a few calculations that P(X \ K(D, ε)) =
O(ε). Using the constant κ defined in Lemma 3, we
obtain that P(X \ K(D, ‖E‖F/κ)) = O(‖E‖F). Since
∇α`s(y,W,α?)>

(
α?(x,D + E) − α?(x,D)

)
= O(‖E‖F),

the set X \K(D, ‖E‖F/κ) can be neglected (in the formal
sense) when integrating with respect to x in the expec-
tation of Eq. (23), and it is possible to show that

f(D + E,W)− f(D,W) = Tr
(
E>g(D,W)

)
+O(‖E‖2F ),

where g has the form given by Eq. (16). This shows that
f is differentiable with respect to D, and its gradient
∇Df is g.
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